TW200937487A - Chemical ionization reaction or proton transfer reaction mass spectrometry with a quadrupole or time-of-flight mass spectrometer - Google Patents

Chemical ionization reaction or proton transfer reaction mass spectrometry with a quadrupole or time-of-flight mass spectrometer Download PDF

Info

Publication number
TW200937487A
TW200937487A TW097138598A TW97138598A TW200937487A TW 200937487 A TW200937487 A TW 200937487A TW 097138598 A TW097138598 A TW 097138598A TW 97138598 A TW97138598 A TW 97138598A TW 200937487 A TW200937487 A TW 200937487A
Authority
TW
Taiwan
Prior art keywords
ions
reagent
ion
chamber
product
Prior art date
Application number
TW097138598A
Other languages
Chinese (zh)
Other versions
TWI368249B (en
Inventor
Timothy Roger Robinson
Mark Attwood
Xing Chen
William M Holber
Mark Philip Longson
Jonathan Henry Palk
Ali Shajii
John A Smith
Original Assignee
Mks Instr Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/869,978 external-priority patent/US8003935B2/en
Priority claimed from US11/869,980 external-priority patent/US8003936B2/en
Priority claimed from US12/026,799 external-priority patent/US8334505B2/en
Application filed by Mks Instr Inc filed Critical Mks Instr Inc
Publication of TW200937487A publication Critical patent/TW200937487A/en
Application granted granted Critical
Publication of TWI368249B publication Critical patent/TWI368249B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/105Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation, Inductively Coupled Plasma [ICP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/14Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers
    • H01J49/145Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers using chemical ionisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes

Abstract

A system and methods are described for generating reagent ions and product ions for use in a mass spectrometry system. Applications for the system and method are also disclosed for detecting volatile organic compounds in trace concentrations. A microwave or high-frequency RF energy source ionizes particles of a reagent vapor to form reagent ions. The reagent ions enter a chamber, such as a drift chamber, to interact with a fluid sample. An electric field directs the reagent ions and facilitates an interaction with the fluid sample to form product ions. The reagent ions and product ions then exit the chamber under the influence of an electric field for detection by a mass spectrometer module. The system includes various control modules for setting values of system parameters and analysis modules for detection of mass and peak intensity values for ion species during spectrometry and faults within the system.

Description

200937487 九、發明說明: 【發明所屬之技術領域】 本發明大體而言係關於質譜測定法且尤其係關於使用微 波或高頻率射頻電漿來形成試劑離子之質譜測定法’以及 其應用。 相關申請案 本申請案為2007年10月10日申請之標題為” Chemical j200937487 IX. INSTRUCTIONS OF THE INVENTION: FIELD OF THE INVENTION The present invention relates generally to mass spectrometry and, in particular, to mass spectrometry for the formation of reagent ions using microwave or high frequency radio frequency plasmas and their applications. Related Applications This application was filed on October 10, 2007 and titled "Chemical j"

Ionization Reaction or Proton Transfer Reaction Mass ❹ Spectrometry with a Quadrupole Mass Spectrometer"之美國 專利申請案第11/869,978號的部分接續申請案,該美國專 利申請案之整個揭示内容據此以引用之方式併入本文中。 同在申請中之2007年10月10日申請之標題為"Chemical Ionization Reaction or Proton Transfer Reaction Mass Spectrometry with a Time-of-Flight Mass Spectrometer"的 美國專利申請案第11/869,980號亦據此以引用之方式全部 併入本文中。 ❿ 【先前技術】 質譜測定通常係指對粒子之質量值之直接量測或藉由使 用光譜數據量測其他物理量而進行的對粒子之質量值之隱 式測定。質譜測定常常涉及測定離子化分子或組分之質荷 比。當已知離子化粒子之電荷時,粒子之質量值可根據質 量值之光譜確定。 用於執行質譜測定之系統稱為質譜儀。質譜儀系統通常 包括離子源、質量過濾器或分離器及偵測器。舉例而言, 133727.doc 200937487 刀子或組刀之樣本可藉由離子源中之電子衝擊來離子化以 產生離子。具有不同質量值之離子藉由質量分析器而分離 成質量77布或光譜’例如,藉由向離子施加電場或磁場來 進行。㈣II收集離子,且可觀察及/或記錄f量分布。 利用光譜中之質量值之相對豐度來較樣本之組成及樣本 之分子或組分之質量值或特性。 存在許多不同類型之質譜儀,包括稱為離子_分子反應 質譜儀(臟姻)之種類。在該種類中,存在若干技術, 包括質子轉移反應質譜測定法(ptr_ms)及選擇離子流管質 譜測定法⑻FT福)。該等種類通常涉及用以產生離子之Ionization Reaction or Proton Transfer Reaction Mass ❹ Spectrometry with a Quadrupole Mass Spectrometer " U.S. Patent Application Serial No. 11/869,978, the entire disclosure of which is hereby incorporated by reference herein . U.S. Patent Application Serial No. 11/869,980, entitled "Chemical Ionization Reaction or Proton Transfer Reaction Mass Spectrometry with a Time-of-Flight Mass Spectrometer", filed on October 10, 2007, which is hereby incorporated by reference. The manner of reference is incorporated herein in its entirety. ❿ [Prior Art] Mass spectrometry generally refers to the direct measurement of the mass value of a particle or the implicit measurement of the mass value of a particle by measuring other physical quantities using spectral data. Mass spectrometry often involves determining the mass to charge ratio of ionized molecules or components. When the charge of the ionized particles is known, the mass value of the particles can be determined from the spectrum of the mass values. The system used to perform mass spectrometry is called a mass spectrometer. Mass spectrometer systems typically include an ion source, a mass filter or a separator and a detector. For example, 133727.doc 200937487 A sample of a knife or group of knives can be ionized by electron impact in an ion source to generate ions. Ions having different mass values are separated into a mass 77 cloth or spectrum by a mass analyzer, for example, by applying an electric or magnetic field to the ions. (d) II collects ions and can observe and/or record the amount of f. The relative abundance of the mass values in the spectrum is used to compare the composition of the sample with the mass or identity of the molecules or components of the sample. There are many different types of mass spectrometers, including those known as ion-molecular reaction mass spectrometers. In this class, there are several techniques, including proton transfer reaction mass spectrometry (ptr_ms) and selective ion flow mass spectrometry (8) FT. These types usually involve the generation of ions

方法。舉例而t,質子轉移反應質譜儀包括離子源,其產 生试劑離子(通常為水合氫離子(H3〇+)),以(例如)藉由質 子轉移使電荷轉移至樣本組分。在選擇離子流管質譜儀 中’载氣沿流管輸送經過據之離子。在由I〇nie()n a响仙method. By way of example, a proton transfer reaction mass spectrometer includes an ion source that produces reagent ions (typically hydronium ions (H3〇+)) to transfer charge to the sample components, for example, by proton transfer. In the selected ion flow tube mass spectrometer, the carrier gas is transported along the flow tube through the ions. In the ring by I〇nie()n a

GmbH of Innsbruck,Austda出售之質子轉移反應質譜儀 中,將中空陰極管用作離子源以藉由向水蒸氣流施加〇。 電漿放電來產生試劑離子。 一些質譜測定系統係根據所用質量分析器之類型來分 類。舉例而言,一些質譜測定系統係基於,,串聯技術&quot;,其 中將另一分析技術與質譜測定設備組合使用。一實例為氣 相層析質譜測定法(GC-MS) ’其中在用質譜儀分析之前使 用氣相層析管柱來分離樣本之組分。 質罐測$ *可用⑨測定樣本中之揮發性有機化合物 (V0C)之量。voc之量測已變得很重要,因為甚至痕量 133727.doc 200937487 V〇c之存在可在許多不同應用中料重要診斷指標且可能 會影響人類健康。舉例而言,當v〇c之激度升至某一水平 以上時,可能在人類中產生有害之健康景多響,諸如呼吸病 狀。此外,特定樣本中之voc之類型及量可指示爆炸物、 有害化學試劑、燃燒產物、疾病藥劑、腐爛或污染、縱火 ' 力口速劑或溢用藥物之存在。另外,監測獸之存在及量適 用於工業處理,諸如生物化學或醫藥製造過程。 對於現有質4測定系統,__般而言且當應用於彳貞測 ❹ 時,若干缺點為固有的。舉例而言,使用氣相層析術之f 譜測定系統由於對樣本之分析相對較緩慢而不適於連續、 即時監測流體樣本。此外,上述質譜測定系統常常需要在 基於實驗室之環境中分析(而非就地分析)樣本之前自現場 收集樣本。上述質譜測定系統對樣本中之較低濃度組分為 相對不敏感的,此例如係因為離子源未產生足以產生較低 濃度成分之可鑑別質譜之量的離子。該等系統中之較低濃 ❹纟成分之質譜常常不能與由於動態範圍限制所引起或由來 自較高濃度組分之峰干涉所掩蓋之雜訊或由電子或機械設 備產生之雜訊區分開。具有合適敏感性水平之質譜測定系 統可有助於VOC之存在之偵測,但可能易受來自所存在之 • 丨他化合物《干涉影響且因此不能確定地鑑料定化合物 或物質。 【發明内容】 對於能提供連續、即時及就地分析之穩固質譜測定系統 存在著需要。此外,對於能可靠地確定特定樣本中之 133727.doc 200937487 v〇c(包括痕量voc)之存在及鑑別的系統存在著需要。 」吏本發明具體化之系統及方法之特點為使用微波能量或 间頻率RF此量來產生例如水合氫離子之試劑離子,以與流 體樣本相互作用之質譜測定法。已發現使用微波能量產生 數篁多於其他所報導之離子化方法(例如其中使用放射源) 的諸如水合氫之試劑離子,同時亦避免與dc放電源相關 之電極侵餘及不穩定性。更多量之試劑離子使㈣統靈敏 度提尚,此有助於甚至痕量之個別v〇Cs之定量量測及/或 鑑別。高頻率RF能量亦在質譜測定法中展現與當使用微波 能量來產生試劑離子時所達成之彼等優點類似的優點。此 外,本發明係關於用於在相對高壓(例如超過約1〇〇毫巴(約 10,000帕斯卡))下即時量測¥〇(:之系統及方法。 在一些實施態樣中,使本發明具體化之系統及方法可用 於 &lt;貞測濃度為兆體積分率(pptv)數量級之VOC。在一些實 施態樣中,模組基於所獲得之質譜來分析及分類特定偵測 之VOC。用於本發明之實施態樣中之系統組件適於攜帶型 質譜測定法及/或就地應用。本文中所描述之概念可用於 使用化學離子化反應質譜測定法(CIRMS)技術或質子轉移 反應質譜測定法(PTR-MS)技術之質譜測定系統中。 在一些實施態樣中’本發明包括用於在系統操作期間處 理所獲得、偵測或收集之數據之分析或控制模組。舉例而 言,一些系統包括多變數分析模組以有助於基於質譜來债 測及鑑別VOC。多變數分析模組亦可用於監測質譜測定系 統或偵測系統内之錯誤。另外,控制模組或反饋迴路可用 133727.doc -10- 200937487 於在質譜測定系統中,(例如)藉由控制系統之各種過程參 數來控制試劑離子及樣本離子之產生及其產量。該等參數 包括各種電場、壓力值、離子及蒸氣流速以及離子能量。 本發明亦係關於各種系統組件之間用於影響試劑離子樣 本組分及產物離子穿過質譜測定系統之移動的耦合、連接 或介面。 本文中所述之化學離子化反應質譜儀及質子轉移反應質 谱儀之靈敏度可基於各種系統參數來改變。靈敏度可基於 漂移區甲之試劑離子濃度(例如水合氫離子濃度)來改變。 漂移區中之電場與中性粒子濃度之比率E/N(以湯生 (Townsend,Td)表示)會影響譜儀之靈敏度。E/N比率為漂 移區中之壓力(例如氣體密度)及電場強度之函數。ε/ν&amp; 率影響離子橫越漂移區所需之時間。 靈敏度可受在退出漂移區後連到質譜儀之離子束(由試 劑離子及產物離子組成)之強度的影響。其隨轉移區中影 響束流聚焦及束流傳輸性質之轉移光學器件(例如電極/透 鏡孔徑幾何形狀)、電場及壓力狀態(泵抽)而變化。 靈敏度可基於漂移區中之本體樣本氣體與中性試劑物質 之分壓之間的比率來改變。受監測之氣體樣本物質之質子 轉移速率常數(k)f彡響靈敏度。漂移區之長度料靈敏度, 原因在於對於物質橫越漂移區而言較長漂移區需要更多時 間,且因此試劑離子與樣本物質反應之機會更多。靈敏度 亦可能受各種質譜儀相關靈敏度因素(例如,離子傳輸/質 量辨別、摘測器/前置放大器增益及信號雜訊比)的影響。 133727.doc 200937487 在一態樣中,本發明係關於一種系統。該系統包括一用 於以微波或R F能量離子化試劑蒸氣之粒子以形成一或多種 試劑離子之微波或高頻率RF能源。該系統亦包括一包含一 入口端之腔室,該入口端允許樣本進入該腔室以與來自該 微波或咼頻率RF能源之一或多種試劑離子相互作用,從而 • 形成一或多種產物離子。該腔室具有產生於其中之電磁 場。該系統亦包括一相對於該腔室之一退出節流孔安置之 四極質譜儀模組,其用以收集一或多種產物離子及一或多 〇 種試劑離子,以便有助於產物離子及試劑離子中之各者之 峰強度及/或質量的值之測定。 在一些實施態樣中,微波能源包括微波電漿產生器。高 頻率RF能源可包括電容耦合!^^電漿產生器。在一些實施 態樣中,試劑離子包括水合氫離子、氧離子或氧化亞氮離 子。樣本可包括一或多種揮發性有機化合物(v〇c)。 該系統之一些實施態樣之特點為一組相對於腔室安置以 _ 在腔室中產生電磁場之電極^該電磁場有助於試劑離子與 樣本之間的相互作用且引導產物離子及試劑離子穿過腔室 之退出節流孔。該電極組可環繞腔室之一軸沿徑向安置, • 且電磁場大體上轴向地引導產物離子及試劑離子。在一些 • 實施態樣中,一控制模組與該電極組連通。該控制模組可 操作以基於該系統之操作參數來測定腔室内部之電磁場 (或電磁場梯度)的值。 該系統可包括用於確定進入腔室之樣本之量的質量流量 控制器、毛細管或漏泄閥。該系統可包括安置在微波或高 133727.doc •12· 200937487 頻率RF能源與腔室之間的質量過濾器’其用以選擇性地允 許試劑離子進入腔室。合適質量過濾器之實例包括四極質 量過遽器。在一些實施態樣中,該系統包括一與該系統連 通之多變數分析模組’其可操作以分析來自四極質譜儀模 組之數據。 微波能源可包括微波產生器、諧振器部分、安置在該諧 振器部分内部且與腔室連通之管部分,及一或多個抗流 器,該管穿過該(等)抗流器以降低試劑蒸氣供應源、腔室 或兩者内部之微波能量之量。在一些實施態樣中,該系統 包括一與該系統連通之控制模組,其可操作以部分基於系 統之操作參數來改變系統之輸入參數。該等參數包括樣本 之組成、腔室之壓力、產物離子或試劑離子穿過腔室之速 度、樣本或試劑離子進入腔室中之流率、產物或試劑離子 之能量、試劑離子、產物離子或樣本之化學組成,或其任 何組合。在一些實施態樣中,該控制模組可操作以部分地 基於操作參數來改變一組電極之輸入參數,該組電極在腔 室内部產生電磁場。 在一些實施態樣中,該系統包括一與該系統連通之控制 模組以偵測或鑑別該系統之操作參數之錯誤。該控制模組 亦可部分地基於錯誤之偵測或鑑別來改變操作參數之值。 該系統可包括一與該系統連通之控制模組以用於監測該系 統。該控制模組回應於該監測而設定或調整該系統之操作 參數之值,且該控制模組係基於多變數統計分析算法。在 一些實施態樣中,該控制模組包括多變數統計分析模組。 133727.doc -13- 200937487 多變數統δ1&quot;分析模组可用於過程監測及/或用於積測質譜 測定系統中$ 4UL @ 办 曰-、°多變數統計分析模組可用於偵測及/ 或鑑別錯誤。在—些實施態樣巾,將多變數料分析模組 用於解譯質谱分析數據(例如,質譜中之數據)且用於鑑別 來自質β普中之組成♦之組分。乡變數統計分析模組可與四 極質譜儀或飛行時間質譜儀—起使用。在-些實施態樣 中’將控制模組或多變數統計分析模組用則貞測及/或鑑 別系統中之錯誤且用以解譯及/或分析數據,(例如)以便鑑 別來自質譜儀中之組成峰之組分。In a proton transfer reaction mass spectrometer sold by the company of Innsbruck, Austda, a hollow cathode tube is used as an ion source to apply helium to the water vapor stream. The plasma is discharged to generate reagent ions. Some mass spectrometry systems are classified according to the type of mass analyzer used. For example, some mass spectrometry systems are based on, in tandem, &quot;, where another analytical technique is used in combination with a mass spectrometry device. An example is gas chromatography mass spectrometry (GC-MS) where a gas chromatography column is used to separate the components of the sample prior to analysis by mass spectrometry. The canister is measured by $* to determine the amount of volatile organic compounds (V0C) in the sample. The measurement of voc has become important because even the presence of traces 133727.doc 200937487 V〇c can be an important diagnostic indicator in many different applications and may affect human health. For example, when the frequency of v〇c rises above a certain level, it may cause harmful health effects in humans, such as respiratory symptoms. In addition, the type and amount of voc in a particular sample may indicate the presence of explosives, hazardous chemical agents, combustion products, disease agents, rot or contamination, arson 'sonics or overdose. In addition, monitoring the presence and amount of the beast is suitable for industrial processing, such as biochemical or pharmaceutical manufacturing processes. For existing mass 4 assay systems, a number of disadvantages are inherent in the general sense and when applied to the test ❹. For example, f-spectral measurement systems using gas chromatography are not suitable for continuous, immediate monitoring of fluid samples due to the relatively slow analysis of the samples. In addition, the above mass spectrometry systems often require sample collection from the field prior to analysis (rather than in situ analysis) of the sample in a laboratory-based environment. The mass spectrometry system described above is relatively insensitive to the lower concentration components in the sample, for example because the ion source does not produce an amount of ions sufficient to produce a identifiable mass spectrum of the lower concentration component. The mass spectrum of the lower concentration components in such systems is often not distinguishable from noise caused by dynamic range limitations or by noise interference from peak interference from higher concentration components or noise generated by electronic or mechanical equipment. . A mass spectrometry system with a suitable level of sensitivity may aid in the detection of the presence of VOCs, but may be susceptible to interference with the presence of other compounds that are present and therefore indefinitely identify compounds or substances. SUMMARY OF THE INVENTION There is a need for a robust mass spectrometry system that provides continuous, immediate, and in situ analysis. In addition, there is a need for a system that can reliably determine the presence and identification of 133727.doc 200937487 v〇c (including trace voc) in a particular sample. The system and method embodied by the present invention is characterized by the use of microwave energy or an intermediate frequency RF to generate a reagent ion such as hydronium ion ions for mass spectrometry interaction with a fluid sample. It has been found that the use of microwave energy produces a number of reagent ions such as hydronium ions that are more abundant than other reported ionization methods (e.g., using a source), while also avoiding electrode erosion and instability associated with dc discharge sources. A greater amount of reagent ions allows for (4) more sensitive sensitivity, which facilitates the quantitative measurement and/or identification of even trace amounts of individual v〇Cs. High frequency RF energy also exhibits advantages in mass spectrometry that are similar to those achieved when using microwave energy to generate reagent ions. Furthermore, the present invention relates to systems and methods for instantaneous measurement of 〇(:) at relatively high pressures (e.g., in excess of about 1 mbar (about 10,000 Pascals). In some embodiments, the invention is The system and method can be used to &lt;detect a VOC having a concentration on the order of mega-volume fraction (pptv). In some implementations, the module analyzes and classifies a particular detected VOC based on the obtained mass spectrum. System components in embodiments of the invention are suitable for portable mass spectrometry and/or in situ applications. The concepts described herein can be used to determine by chemical ionization mass spectrometry (CIRMS) or proton transfer reaction mass spectrometry. In a mass spectrometry system of the method (PTR-MS) technology. In some embodiments, the invention includes an analysis or control module for processing acquired, detected or collected data during system operation. Some systems include multivariate analysis modules to aid in the measurement and identification of VOCs based on mass spectrometry. Multivariate analysis modules can also be used to monitor errors in mass spectrometry systems or to detect systems. The control module or feedback loop can be used in a mass spectrometry system to control the generation of reagent ions and sample ions and their yield, for example, by controlling various process parameters of the system. Various electric fields, pressure values, ion and vapor flow rates, and ion energies. The present invention is also directed to couplings, connections, or interfaces between various system components for influencing the movement of reagent ion sample components and product ions across a mass spectrometry system. The sensitivity of the chemical ionization mass spectrometer and the proton transfer reaction mass spectrometer described above can be varied based on various system parameters. The sensitivity can be varied based on the reagent ion concentration of the drift zone A (eg, hydronium ion concentration). The ratio of the electric field to the neutral particle concentration E/N (expressed in Townsend (Td)) affects the sensitivity of the spectrometer. The E/N ratio is a function of the pressure (eg gas density) and electric field strength in the drift region. The ε/ν&amp; rate affects the time required for the ion to traverse the drift region. Sensitivity can be attached to the mass spectrum after exiting the drift region. The effect of the intensity of the ion beam (composed of reagent ions and product ions) on the transfer optics (eg electrode/lens aperture geometry), electric field and pressure state in the transfer region that affect beam focusing and beam transport properties ( The sensitivity can be varied based on the ratio between the partial pressure of the bulk sample gas and the neutral reagent material in the drift zone. The proton transfer rate constant (k) of the monitored gas sample material is the sensitivity. The length of the drift region is sensitive because the longer drift region requires more time for the material to traverse the drift region, and therefore the reagent ions have more chance of reacting with the sample material. Sensitivity may also be affected by various mass spectrometer-related sensitivity factors ( For example, the effects of ion transmission/quality discrimination, picker/preamplifier gain, and signal noise ratio. 133727.doc 200937487 In one aspect, the invention relates to a system. The system includes a microwave or high frequency RF energy source for ionizing particles of reagent vapors with microwave or R F energy to form one or more reagent ions. The system also includes a chamber including an inlet end that allows a sample to enter the chamber to interact with one or more reagent ions from the microwave or helium frequency RF energy source to form one or more product ions. The chamber has an electromagnetic field generated therein. The system also includes a quadrupole mass spectrometer module positioned relative to one of the chambers to exit the orifice for collecting one or more product ions and one or more reagent ions to aid in product ions and reagents Determination of the peak intensity and/or mass of each of the ions. In some embodiments, the microwave energy source includes a microwave plasma generator. High frequency RF energy sources can include capacitive coupling!^^ Plasma generators. In some embodiments, the reagent ions include hydronium ions, oxygen ions, or nitrous oxide ions. The sample may include one or more volatile organic compounds (v〇c). Some embodiments of the system are characterized by a set of electrodes disposed relative to the chamber to generate an electromagnetic field in the chamber. The electromagnetic field facilitates interaction between the reagent ions and the sample and directs product ions and reagent ions to pass through. Exit the orifice through the chamber. The electrode set can be disposed radially about one of the axes of the chamber, and the electromagnetic field substantially directs product ions and reagent ions axially. In some embodiments, a control module is in communication with the electrode set. The control module is operative to determine a value of an electromagnetic field (or electromagnetic field gradient) inside the chamber based on operating parameters of the system. The system can include a mass flow controller, capillary or leak valve for determining the amount of sample entering the chamber. The system can include a mass filter disposed between the microwave or high frequency RF energy source and the chamber to selectively allow reagent ions to enter the chamber. Examples of suitable mass filters include quadrupole mass filters. In some implementations, the system includes a multivariate analysis module </ RTI> coupled to the system operative to analyze data from the quadrupole mass spectrometer module. The microwave energy source can include a microwave generator, a resonator portion, a tube portion disposed within the resonator portion and in communication with the chamber, and one or more flow resistors that pass through the (equal) choke to reduce The amount of microwave energy in the reagent vapor supply, chamber, or both. In some implementations, the system includes a control module in communication with the system operable to vary input parameters of the system based in part on operating parameters of the system. These parameters include the composition of the sample, the pressure of the chamber, the rate at which product ions or reagent ions pass through the chamber, the flow rate of sample or reagent ions into the chamber, the energy of the product or reagent ions, reagent ions, product ions, or The chemical composition of the sample, or any combination thereof. In some implementations, the control module is operative to vary input parameters of a set of electrodes that generate an electromagnetic field within the chamber based in part on operational parameters. In some implementations, the system includes a control module in communication with the system to detect or identify errors in operational parameters of the system. The control module can also change the value of the operational parameter based in part on the detection or discrimination of the error. The system can include a control module in communication with the system for monitoring the system. The control module sets or adjusts the value of the operating parameter of the system in response to the monitoring, and the control module is based on a multivariate statistical analysis algorithm. In some implementations, the control module includes a multivariate statistical analysis module. 133727.doc -13- 200937487 The multivariate system δ1&quot; analysis module can be used for process monitoring and/or for the integration of mass spectrometry systems with $4UL @ 曰 -, ° multivariate statistical analysis module for detection and / Or identify the error. In some embodiments, the multivariate data analysis module is used to interpret mass spectrometry data (e.g., data in a mass spectrum) and to identify components from the composition of the mass. The township variable statistical analysis module can be used with a quadrupole mass spectrometer or a time-of-flight mass spectrometer. In some implementations, the control module or the multivariate statistical analysis module is used to detect and/or identify errors in the system and to interpret and/or analyze the data, for example, to identify from the mass spectrometer. The component of the composition peak.

系統亦可包括一相對於腔室安置之提取電極。該提取電 極界定一節流孔,試劑離子或產物離子經由該節流孔傳至 四極質谱儀模組。該提取電極亦可操作以指定試劑離子或 產物離子之能量值以便藉由四極質譜儀模組進行收集。該 系統之一些實施態樣之特點為一相對於腔室安置之透鏡組 件,其用於使試劑離子及產物離子集中於一提取節流孔 上,該節流孔有助於試劑離子及產物離子向質譜儀模組之 傳遞0 在另一態樣中,本發明係關於一種用以產生用於質子轉 移反應質譜儀或化學離子化反應質譜儀之一或多種試劑離 子的方法。該方法涉及供應试劑秦氣且將微波能量提供給 該試劑蒸氣以產生一或多種試劑離子》 該方法亦可涉及將一或多種試劑離子引導至一區域以便 與樣本之成分相互作用而形成產物離子。試劑離子可藉由 微波電漿來產生。試劑蒸氣可包括水蒸氣、氧或氧化亞 133727.doc -14· 200937487 氮,且試劑離子可為水合氫離子、氧離子或氧化亞氣離 子。在一些實施態樣中,微波能量係由具有大於約 MHz之頻率之電磁波或輻射所提供。 在另一態樣中,本發明係關於一種用以產生用於質子轉 移反應質譜儀或化學離子化反應質譜儀之一或多種試劑離 子的方法。該方法涉及供應試劑蒸氣且將高頻率RF能量提 供給該試劑蒸氣以產生試劑離子。The system can also include an extraction electrode disposed relative to the chamber. The extraction electrode defines a orifice through which reagent ions or product ions are passed to the quadrupole mass spectrometer module. The extraction electrode can also be operated to specify the energy value of the reagent ion or product ion for collection by the quadrupole mass spectrometer module. Some embodiments of the system are characterized by a lens assembly disposed relative to the chamber for concentrating reagent ions and product ions on an extraction orifice that facilitates reagent ions and product ions Transfer to the mass spectrometer module. In another aspect, the present invention is directed to a method for generating one or more reagent ions for a proton transfer reaction mass spectrometer or a chemical ionization reaction mass spectrometer. The method involves supplying a reagent Qin gas and providing microwave energy to the reagent vapor to produce one or more reagent ions. The method may also involve directing one or more reagent ions to a region to interact with components of the sample to form a product. ion. Reagent ions can be generated by microwave plasma. The reagent vapor may comprise water vapor, oxygen or oxidized nitrogen, and the reagent ions may be hydronium ions, oxygen ions or oxidized gas ions. In some embodiments, the microwave energy is provided by electromagnetic waves or radiation having a frequency greater than about MHz. In another aspect, the invention is directed to a method for generating one or more reagent ions for a proton transfer reaction mass spectrometer or a chemical ionization reaction mass spectrometer. The method involves supplying reagent vapors and supplying high frequency RF energy to the reagent vapors to produce reagent ions.

在一些實施態樣中,RF能量係由具有介於約4〇〇 kHz與 約800 MHz之間的頻率之電磁波所提供。試劑離子可藉由 電容耦合RF電漿來產生。 在另一態樣中,本發 Μ/1 IfW /ΓΓ 吻&quot;/2:吵汉脾 试劑蒸氣供應至一電漿區且將微波或高頻率RF能量提供給 該電漿區中之該試劑蒸氣以形成一或多種試劑離子。該方 法涉及使該等試劑離子與氣體樣本互相作用以產生一或多 種產物離子。該方法亦涉及將產物及試劑離子引導至一四 極質谱儀模組之收集器區域,且藉由該質譜儀模組測定產 物離子及試劑離子之峰強度及/或質量之值。 本發明之另一態樣係關於一種質譜測定系統。該質譜測 定系統包括-用於自試劑蒸氣供應源藉由提供給試劑^氣 微波或高頻率RF能量來產生一或多種試劑離子之構件。該 系統亦包括-用於使樣本與試劑離子互相作用以形成一或 多種產物離子之構件。該系統包括一用於將產物離子及試 劑離子引導至-收集器區域之構件,該構件包括電磁場。 該系統亦包括—與《以區域連通以詩敎產物離子 133727.doc •15- 200937487 及試劑離子中之各者之峰強度及/或質量的值之構件。 在一態樣中,本發明係關於一種系統。該系統包括一用 於以微波或RF能量離子化試劑蒸氣之粒子以形成一或多種 試劑離子之微波或高頻率RF能源《該系統亦包括一包含一 入口端之腔室,該入口端允許樣本進入該腔室以與來自該 微波或RF能源之試劑離子相互作用,從而形成一或多種產 物離子。該系統亦包括一相對於該腔室之一退出節流孔安 置之質譜儀模組。該質譜儀模組包括一飛行區,產物離子In some embodiments, the RF energy is provided by electromagnetic waves having a frequency between about 4 kHz and about 800 MHz. Reagent ions can be generated by capacitively coupling RF plasma. In another aspect, the present invention/1 IfW /ΓΓ kiss&quot;/2: the spleen reagent vapor is supplied to a plasma zone and the microwave or high frequency RF energy is supplied to the plasma zone. The reagent vapor forms one or more reagent ions. The method involves interacting the reagent ions with a gas sample to produce one or more product ions. The method also involves directing product and reagent ions to a collector region of a quadrupole mass spectrometer module, and determining the peak intensity and/or mass of the product ions and reagent ions by the mass spectrometer module. Another aspect of the invention pertains to a mass spectrometry system. The mass spectrometry system includes means for generating one or more reagent ions from a reagent vapor supply source by providing a reagent microwave or high frequency RF energy. The system also includes means for interacting the sample with the reagent ions to form one or more product ions. The system includes a means for directing product ions and reagent ions to a collector region, the member including an electromagnetic field. The system also includes means for connecting to the peak intensity and/or mass of each of the reagent ions 133727.doc •15-200937487 and the reagent ions. In one aspect, the invention relates to a system. The system includes a microwave or high frequency RF energy source for ionizing reagent vapors with microwave or RF energy to form one or more reagent ions. The system also includes a chamber including an inlet end, the inlet end allowing the sample The chamber is entered to interact with reagent ions from the microwave or RF energy source to form one or more product ions. The system also includes a mass spectrometer module that exits the orifice relative to one of the chambers. The mass spectrometer module includes a flight zone, product ions

或試劑離子經由該飛行區行進且該飛行區界定一路徑長 度。該質譜儀模組亦包括一收集器區域以接收來自該飛行 區之產物離子或試劑離子。產物離子或試劑離子之質量值 係基於產物離子及試義子巾之各者橫越該路徑長度所歷 經之時間量來確定。 在一些貫施態樣中 ' 叫月唷诹棋殂亦包括一相對於腔室 之退出節流孔安置以用脈衝將產物離子及試_子流輸送 至飛行區中之離子束調節器。該質譜儀模組亦包括-安置 於飛行區中用以增加產物離子及試劑離子所行進之路徑長 度值之光學系.统。該離子束調節器可利用自一控制器提供 之擬隨機-進序列來調節產物離子及試劑離子之流動。在 一些實施態樣中’一分析模組對自質譜儀模組接收之數據 執行最大概似㈣處理算㈣確定產物㈣ 峰強度及/或質量之值。該分 &lt; 藝于之 收之動攄魅I接 3刀析帛組可冑自質譜儀模組接 收之數據解卷積以確定產物離子或試 或質量之值。該收集器區 #強度及/ 括以脈衝計數模式操作之 133727.doc -16 - 200937487 一堆疊式微通道板摘測器或一雙極偵測器^在一些實施態 樣中,該光學系統包括一反射件。系統之特點可為一用: 將試劑及產物離子集中於該離子束調節器上之透鏡,且該 離子束調節器包括離子束截斷器、離子束閘極、離子束調 整器、Bradbury-Nielsen閘極或該等者之任何組合。 . 在一些實施態樣中’該系統之特點亦為一相對於腔室及 質譜儀模組安置之光學系統。該光學系統包括用於將試劑 離子及產物離子流朝一離子束調節器引導之至少一個四極 &amp;透鏡。在一些實施態樣中,質譜儀模組界定一穿過飛行區 之大體上呈直線的軸。該大體上呈直線的軸可大體上平行 於一穿過飛行區之第二柏(例如Uthoff軌道)。 在一些實施態樣中,系統包括一相對於微波能源及腔室 安置用以選擇性允許試劑離子之子集進入腔室之質量過渡 器。該過濾器可為四極質量過濾器。該系統之特點可為一 用於自質譜儀模組接收數據以解譯質譜中之數據之分析模 組’該數據包括產物離子及試劑離子之峰強度及/戍質量 之值。該分析模組可用於偵測及/或鑑別質譜測定系統中 之錯誤。該分析模組可基於多變數統計分析。 在一些實施態樣中,系統之特點為一用於基於由質譜儀 模組產生之質譜鑑別樣本之組分的多變數統計分析模組。 該系統可包括一與該系統連通之控制模組,其可操作以基 於系統之操作參數來偵測或鑑別系統中之錯誤。該控制模 組可部分地基於錯誤之偵測或鑑別來改變操作參數之值。 系統可包括一與該系統連通用以基於該系統之操作參數 133727.doc • 17· 200937487Or reagent ions travel through the flight zone and the flight zone defines a path length. The mass spectrometer module also includes a collector region to receive product ions or reagent ions from the flight region. The mass value of the product ion or reagent ion is determined based on the amount of time that each of the product ion and the test smear traverses the length of the path. In some embodiments, the mooncake also includes an ion beam regulator that is positioned relative to the exit orifice of the chamber to pulse the product ions and test substreams into the flight zone. The mass spectrometer module also includes an optical system disposed in the flight zone for increasing the path length value of the product ions and reagent ions. The ion beam modulator can utilize a pseudo-random sequence provided from a controller to regulate the flow of product ions and reagent ions. In some implementations, an analysis module performs the most approximate (four) processing calculations on the data received from the mass spectrometer module (4) to determine the peak intensity and/or mass of the product (iv). The sub- &lt; art in the collection of the enchanting I I 3 knife analysis group can be deconvoluted from the data received by the mass spectrometer module to determine the value of the product ion or test or quality. The collector region #intensity and/or operation in pulse counting mode 133727.doc -16 - 200937487 a stacked microchannel plate finder or a bipolar detector ^ In some embodiments, the optical system includes a Reflector. The system can be characterized as: a lens that concentrates reagents and product ions on the ion beam adjuster, and the ion beam adjuster includes an ion beam interceptor, an ion beam gate, an ion beam adjuster, a Bradbury-Nielsen gate Extreme or any combination of these. In some embodiments, the system is also characterized by an optical system disposed relative to the chamber and mass spectrometer modules. The optical system includes at least one quadrupole & lens for directing reagent ions and product ion currents toward an ion beam regulator. In some embodiments, the mass spectrometer module defines a generally linear axis that passes through the flight zone. The generally linear axis may be substantially parallel to a second cypress (e.g., Uthoff track) passing through the flight zone. In some embodiments, the system includes a mass transitioner disposed relative to the microwave energy source and the chamber for selectively allowing a subset of reagent ions to enter the chamber. The filter can be a quadrupole mass filter. The system can be characterized by an analysis module for receiving data from the mass spectrometer module to interpret data in the mass spectrum. The data includes the peak intensity of the product ions and reagent ions and/or the value of the mass. The analysis module can be used to detect and/or identify errors in the mass spectrometry system. The analysis module can be based on multivariate statistical analysis. In some embodiments, the system features a multivariate statistical analysis module for identifying components of the sample based on mass spectrometry generated by the mass spectrometer module. The system can include a control module in communication with the system operable to detect or identify errors in the system based on operating parameters of the system. The control module can change the value of the operational parameter based in part on the detection or discrimination of the error. The system can include a system in communication with the system for operating parameters based on the system 133727.doc • 17· 200937487

來改變該系統之輸入參數值的控制模組。在一些實施態樣 中,系統包括一組相對於腔室安置之電極,其用以產生有 助於試劑離子與樣本之間的交互作用之電磁場且用以引導 產物離子及試劑離子穿過腔室之退出節流孔。此類系統之 特點可為一與該電極組連通用以基於該系統之操作參數來 測定腔室内部之電磁場值的控制模組。系統之操作參數可 包括樣本之組成、腔室之壓力、產物離子或試劑離子穿過 腔室之速度、樣本或試劑離子進入腔室_之流率、產物或 試劑離子之能量、產物離子、試劑離子或樣本之化學組 成,或該等參數之任何組合。該控制模組亦可操作以部分 地基於操作參數來改變該電極組之輸入參數。 在另一態樣中,本發明係關於一種系統。該系統包括一 用於以微波或RF能量離子化試劑蒸氣之粒子以形成一或多 種試劑離子之微波或高頻率RF能源。該系統包括一包含一 端之腔至,該入口端允許樣本進入該腔室以與來自該 微波或RF能源之試劑離子相互作用,從而形成—或多種產 物離子。該系統亦包括一相對於該腔室之一退出節流孔安 置之飛行時間質谱儀模組’其用於基於產物離子及試劑離 子中之各者橫越質譜儀所歷經之時間量來產生包括產物離 子及試劑離子之質量值之光譜。 在一些實施態樣中,該飛行時間質譜儀模組包括一飛行 品產物及忒劑離子經由該飛行區行進。該飛行區界定一 路徑長度。該飛行時間質譜儀模組亦包括一用於調節試劑 或產物離子進入飛行區中之流動之離子束調節器及一安置 133727.doc •18· 200937487 在該飛行區中用以增加產物離子及試劑離子所行進之該路 徑長度之光學系統。該質譜儀模組亦包括一收集器用以接 收來自該飛行區之產物離子及試劑離子。 在另一態樣中,本發明係關於一種用於處理飛行時間質 譜儀中之信號之方法。該等信號係基於藉由將微波或犯能 量提供給試劑蒸氣所產生之一或多種試劑離子且亦係基於 藉由使試劑離子與流體樣本在電磁場中互相作用所產生之 一或多種產物離子。該方法涉及建立包括試劑離子及產物 離子之第一離子流,及根據指定流動型式改變該第一離子 流以產生第二離子流。該方法亦涉及在—㈣器處接收該 第二離子流且根據最大概似型統計算法,自由該偵測器所 傳達之數據確定質譜。該質譜包括“試義子及產物離 子之質量及/或峰強度之數據。 在一些實施態樣中,第二流為脈衝流。脈衝流可基於根 據擬隨機二進序列所產生之指定流動型式。 在另一態樣中,本發明係關於一種方法。該方法涉及將 試劑蒸氣供應至-電漿區且將微波或高頻率R F能量提供給 該電漿區中之該試劑蒸氣以形成一或多種試劑離子。該方 法亦涉及使該等試劑離子與氣體樣本互相作用以產生一或 多種產物離h該方法涉及沿飛行時間質譜儀模組之飛行 區中之軌道引導產物離子及試劑離子。該方法亦涉及藉由 該質譜儀模組測定產物離子及試劑離子之峰強度及/或質 量之值。 本發明之一態樣係關於一種用於量測一或多種試劑離子 133727.doc -19- 200937487 及或夕種產物離子之質量之系統。試劑離子係藉由將微 波或RF能量提供給試劑蒸氣來產生。產物離子係藉由使一 或多種試劑離子與流體樣本在電磁場中互相作用來產生。 該系統包括一組相對於一漂移管組件之一離子退出節流孔 安置之四極透鏡,其用於接收包括試劑離子及產物離子之 • 第一離子流。該透鏡組接收穿過該退出節流孔之產物離子 及”式劑離子且產生被引導至一離子束調節器之第二離子 流。該系統亦包括該離子束調節器,其可操作以選擇性允 ® 許第二離子流可傳遞至飛行時間質譜儀之飛行區。 在另一態樣中,本發明係關於一種系統,該系統包括一 用於以微波或高頻率RF能量離子化試劑蒸氣之粒子以形成 一或多種試劑離子之構件。該系統亦包括一用於使樣本與 試劑離子互相作用以形成一或多種產物離子之構件,其包 括電磁場。該系統亦包括一用於基於產物離子及試劑離子 橫越指定距離所歷經之時間量來測定產物離子及試劑離子 中之各者之峰強度及/或質量的值之構件。 在另一態樣中,本發明係關於一種用於量測一或多種試 劑離子及一或多種產物離子之質量之系統。試劑離子係藉 ' 由將微波或RF能量提供給試劑蒸氣來產生。產物離子係藉 - 由使試劑離子與流體樣本在電磁場中互相作用來產生。該 系統包括一用於建立包括試劑離子及產物離子之第一離子 流之構件。該系統亦包括一用於根據指定中斷型式調節第 一離子流以產生第二離子流之構件。該系統亦包括一用於 自由一偵測構件所傳達之數據產生質譜之構件。該數據對 133727.doc -20- 200937487 應於該第二離子流。 在另一態樣中,本發明係關於一種用於量測一或多種試 劑離子及-或多種產物離子之質量之系統。試劑離子係藉 由將微波或RF能量提供給試劑蒸氣來產生。產物離子係藉 由使試劑離子與流體樣本在電磁場中互相作用來產生。該 . 系統包括一用於接收包括試劑離子及產物離子之第一離子 流之光學構件。該光學構件亦產生被引向一調整構件之第 二離子流。該系統亦包括該調整構件,其用於選擇性控制 ® 朝向一質譜儀之該第二離子流。 在另一態樣中,本發明係關於一種方法。該方法涉及引 入樣本氣體。該方法亦涉及將試劑蒸氣供應至一電漿區且 將微波或高頻率RF能量提供給該電漿區中之該試劑蒸氣以 形成一或多種試劑離子。該方法亦涉及使一或多種試劑離 子與樣本氣體互相作用以產生一或多種產物離子且將產物 離子及試劑離子引導至一四極或飛行時間質譜儀模組。該 方法涉及藉由該質譜儀模組測定產物離子及試劑離子之峰 強度或質量之值。 在另一態樣中,本發明係關於一種系統。該系統包括一 用於以微波或RF能量離子化試劑蒸氣之粒子以形成一或多 種試劑離子之微波或高頻率RF能源。該系統包括一有助於 包括至少痕量濃度之一或多種揮發性有機化合物之樣本氣 體的分析之供應源。該系統亦包括一具有一入口端之腔 室,該入口端允許該樣本氣體進入該腔室以與來自該微波 或高頻率RF能源之試劑離子相互作用,從而形成一或多種 133727.doc -21- 200937487 子。該腔室具有在該腔室中產生之電磁場。該系統 =-相對於該腔室之一退出節流孔安置之四極或飛行 時間質譜儀模組,其用於收集產物離子及試劑離子以有助 於產物離子及試劑離子之峰強度或質量之值的測定。 在另-態樣中’本發明係關於一種質譜測定系統,其包 括一用於引人包括至少痕量濃度之-或多種揮發性有機化 合物之樣本氣體的構件。該系統包括一用於自一試劑蒸氣A control module that changes the input parameter values of the system. In some embodiments, the system includes a set of electrodes disposed relative to the chamber for generating an electromagnetic field that facilitates interaction between the reagent ions and the sample and for directing product ions and reagent ions through the chamber Exit the orifice. Such a system may be characterized by a control module in communication with the electrode set for determining an electromagnetic field value within the chamber based on operating parameters of the system. The operating parameters of the system may include the composition of the sample, the pressure of the chamber, the velocity of the product ions or reagent ions passing through the chamber, the flow rate of the sample or reagent ions entering the chamber, the energy of the product or reagent ions, product ions, reagents The chemical composition of the ion or sample, or any combination of these parameters. The control module is also operative to vary the input parameters of the electrode set based in part on operational parameters. In another aspect, the invention is directed to a system. The system includes a microwave or high frequency RF energy source for ionizing particles of reagent vapors with microwave or RF energy to form one or more reagent ions. The system includes a chamber containing an end that allows a sample to enter the chamber to interact with reagent ions from the microwave or RF energy source to form - or a plurality of product ions. The system also includes a time-of-flight mass spectrometer module disposed relative to one of the chamber exiting the orifices for generating time based on the amount of time that each of the product ions and reagent ions traverse the mass spectrometer A spectrum of mass values including product ions and reagent ions. In some embodiments, the time-of-flight mass spectrometer module includes a flight product and helium ions traveling through the flight zone. The flight zone defines a path length. The time-of-flight mass spectrometer module also includes an ion beam adjuster for regulating the flow of reagent or product ions into the flight zone and a placement 133727.doc • 18· 200937487 in the flight zone for increasing product ions and reagents The optical system of the path length through which the ions travel. The mass spectrometer module also includes a collector for receiving product ions and reagent ions from the flight zone. In another aspect, the invention is directed to a method for processing signals in a time-of-flight mass spectrometer. The signals are based on one or more reagent ions generated by supplying microwave or energy to the reagent vapor and also based on one or more product ions produced by interacting the reagent ions with the fluid sample in an electromagnetic field. The method involves establishing a first ion stream comprising reagent ions and product ions, and varying the first ion current to produce a second ion current according to a specified flow pattern. The method also involves receiving the second ion stream at a - (IV) and determining a mass spectrum based on data conveyed by the detector based on a most approximate haptic statistical algorithm. The mass spectrum includes "data for the mass and/or peak intensity of the tester and product ions. In some embodiments, the second stream is a pulse stream. The pulse stream can be based on a specified flow pattern generated from the quasi-random binary sequence. In another aspect, the invention relates to a method of supplying reagent vapor to a plasma zone and providing microwave or high frequency RF energy to the reagent vapor in the plasma zone to form one or more Reagent ions. The method also involves interacting the reagent ions with a gas sample to produce one or more products. The method involves directing product ions and reagent ions along an orbit in a flight zone of a time-of-flight mass spectrometer module. It also relates to determining the peak intensity and/or mass of the product ions and reagent ions by the mass spectrometer module. One aspect of the invention relates to a method for measuring one or more reagent ions 133727.doc -19- 200937487 And a system of the mass of the product ions. The reagent ions are generated by supplying microwave or RF energy to the reagent vapor. The product ions are made by one or more The reagent ions are generated by interacting with the fluid sample in an electromagnetic field. The system includes a set of quadrupole lenses disposed relative to one of the drift tube assemblies and exiting the orifice for receiving reagent ions and product ions. Ion stream. The lens group receives product ions and "agent ions" through the exit orifice and produces a second ion stream that is directed to an ion beam regulator. The system also includes the ion beam modifier operative to selectively allow the second ion stream to be delivered to the flight zone of the time-of-flight mass spectrometer. In another aspect, the invention is directed to a system comprising a member for ionizing particles of reagent vapors with microwave or high frequency RF energy to form one or more reagent ions. The system also includes a means for interacting the sample with the reagent ions to form one or more product ions, including an electromagnetic field. The system also includes means for determining the peak intensity and/or mass of each of the product ions and reagent ions based on the amount of time that the product ions and reagent ions traverse a specified distance. In another aspect, the invention is directed to a system for measuring the quality of one or more reagent ions and one or more product ions. Reagent ions are generated by supplying microwave or RF energy to the reagent vapor. The product ions are generated by interacting the reagent ions with the fluid sample in an electromagnetic field. The system includes a means for establishing a first ion stream comprising reagent ions and product ions. The system also includes a means for adjusting the first ion current to produce a second ion current in accordance with a specified interruption pattern. The system also includes a means for generating a mass spectrum from the data conveyed by the free detecting component. The data pair 133727.doc -20- 200937487 should be in the second ion stream. In another aspect, the invention is directed to a system for measuring the quality of one or more reagent ions and/or product ions. Reagent ions are produced by supplying microwave or RF energy to the reagent vapor. The product ions are produced by interacting the reagent ions with the fluid sample in an electromagnetic field. The system includes an optical member for receiving a first ion stream comprising reagent ions and product ions. The optical member also produces a second ion stream directed to an adjustment member. The system also includes the adjustment member for selectively controlling the second ion stream toward a mass spectrometer. In another aspect, the invention relates to a method. This method involves introducing a sample gas. The method also involves supplying reagent vapor to a plasma zone and providing microwave or high frequency RF energy to the reagent vapor in the plasma zone to form one or more reagent ions. The method also involves interacting one or more reagent ions with the sample gas to produce one or more product ions and directing the product ions and reagent ions to a quadrupole or time-of-flight mass spectrometer module. The method involves determining the peak intensity or mass of the product ions and reagent ions by the mass spectrometer module. In another aspect, the invention is directed to a system. The system includes a microwave or high frequency RF energy source for ionizing particles of reagent vapors with microwave or RF energy to form one or more reagent ions. The system includes a supply source that facilitates analysis of a sample gas comprising at least one trace of one or more volatile organic compounds. The system also includes a chamber having an inlet end that allows the sample gas to enter the chamber to interact with reagent ions from the microwave or high frequency RF energy source to form one or more of 133727.doc -21 - 200937487 child. The chamber has an electromagnetic field generated in the chamber. The system = - a quadrupole or time-of-flight mass spectrometer module disposed relative to one of the chambers exiting the orifice for collecting product ions and reagent ions to aid in peak intensity or mass of product ions and reagent ions Determination of the value. In another aspect, the invention relates to a mass spectrometry system comprising a member for introducing a sample gas comprising at least a trace concentration of - or a plurality of volatile organic compounds. The system includes a reagent vapor for use

供應源’藉由提供給該試劑蒸氣供應源微波或高頻率㈣ 量來產生-或多種試劑離子之構件。該系統包括一用於使 樣本氣體與試劑離子互相作用以形成—或多種產物離子之 構件。該系統亦包括—用於將產物離子及試劑離子引導至 一質谱儀模組以用於測定產物離子及試劑離子之峰強度或 質量中之至少一者或用於鑑別樣本氣體中之揮發性有機化 合物的構件。 額外特點與上述態樣有關。舉例而言,樣本氣體包括至 少痕量濃度之一或多種揮發性有機化合物。痕量濃度可在 以體積計,約兆分之—與約十億分之—之間。痕量泼度可 在以體積計,約十億分之一與百萬分之一之間。 方法亦可涉及將氣體樣本入口端聯結至封閉空間。方法 亦可涉及將氣體樣本入口端定位於非封閉空間中。氣體樣 本入口知可與容器聯結。在一些實施態樣中,將氣體樣本 入口端與汽車或航空器之排氣件聯結。氣體樣本入口端可 與食物或飲料產品上方之頂部空間聯結以(例如)測定食物 或飲料產品之含量。 133727.doc -22- 200937487 在一些實施態樣中,方法涉及將氣體樣本入口端接近於 人類口腔定位以將呼氣引入該端口中。方法可涉及將氣體 樣本入口端接近於發出氣體或蒸氣之固體樣本物質定位。 在一些實施態樣中,使氣體樣本入口端與氣體之供應源聯 結。 四極或飛行時間質譜儀模組可有助於測定氣體樣本中之 揮發性有機化合物之峰強度或質量中之至少一者,或揮發 性有機化合物之特性。可被量測、偵測及/或鑑別之揮發 性有機化合物(包括痕量濃度之揮發性有機化合物)包括以 戴奥辛(dioxin)為主之化合物、以呋喃為主之化合物氣 紛、萘、苯、甲笨、乙苯、二甲苯、非甲烧有機化合物、 一級有機氣溶膠、等壓化合物、化學戰劑、戰場氣體、助 燃劑、由體液或經由真菌物質(例如黴菌毒素(mye〇t〇xin)) 之作用所發出之VOC物質,或該等者之任何組合。在一些 實施態樣中,揮發性有機化合物包括人造的或生物源揮發 性有機化合物。在一些實施態樣中,樣本氣體包括無機氣 體或蒸氣物質(例如硫化氫)。 一或多個實例之細節係如隨附圖式所示且於以下實施方 式中加以闡述。根據實施方式、圖式及申請專利範圍,本 發明之其他特點、態樣及優點將變得顯而易見。 【實施方式】 圖1為說明使本發明具體化之系統1 〇〇之組件的平面圖。 系統100包括試劑蒸氣供應源1〇4及電漿產生器1〇8。微波/ RF電漿產生器108可使用微波能量(微波電漿)或高頻率尺1? 133727.doc •23- 200937487 能量(RF電漿)產生電漿。rf能量可由電容麵合高頻率rF 能源(未圖示)來供應。來自試劑蒸氣供應源1〇4之試劑蒸氣 (未圖示)與電漿區112中之電漿相互作用以形成所要或特定 之試劑離子’其可為多種不同物質之一或多者,此視系統 100之特定應用而定。在一些實施態樣中,電漿區i丨2及微 波/RF電漿產生器1〇8構成同一組件之部分(未圖示)以便使 試劑蒸氣與電漿在該組件内部相互作用。在一些實施態樣 中’電漿區112被安置在一玻璃管内部。 電漿區112與安裝在凸緣116内部之電隔離性節流孔板電 極120流體流通。一絕緣體(未圖示)被安置在凸緣116與節 流孔板電極12 0之間以提供其之間的電隔離。將一電位施 加於f卩流孔板電極120以增加電漿之電位,進而將一或多 種試劑離子引導穿過由凸緣116及節流孔板電極12〇界定之 孔122且進入漂移外部腔室124内部之化學離子化/漂移區 136中。化學離子化/漂移區136被維持在比節流孔板電極 120低之電位。樣本供應源128與化學離子化/漂移區136流 體流通以將樣本流體(例如樣本氣體)提供至系統1〇〇。樣本 氣體流入一入口端(未圖示)中以通過漂移外部腔室124之表 面(未圖示)且進入化學離子化/漂移區136中。將該入口端 定位於位於凸緣116内部中心之節流孔板電極12〇之下游, 此允許試劑離子可與化學離子化/漂移區136内部之樣本氣 體之組刀混0。存在用於將試劑離子及樣本氣體引入化學 離子化/漂移區136中之其他組態且均屬於本發明之範疇 内。舉例而言’該入π端可與凸緣116直接聯結以在樣本 133727.doc 24- 200937487 氣體流過環繞孔122徑向定位之流體路徑(未圖示)時產生 ”淋浴頭”效應。 漂移組件126包括化學離子化/漂移區136及泵抽漂移外 部腔室124。泵抽漂移外部腔室〗24有效地容納化學離子化/ 漂移區136。化學離子化/漂移區136可由一系%電極及絕 緣板(具有中間0環密封件(未圖示))所界定,各自具有穿過 其之中心安置的通道。化學離子化/漂移區136係參考圖5 及圖6來更詳細地加以討論。化學離子化/漂移區136有助 於樣本與試劑離子之間的相互作用(例如化學反應)。樣本 與試劑離子之間的相互作用形成一或多種產物離子。通 常,試劑離子在數量上大大超過樣本氣體之組分,且可在 產物離子產生後監測產物離子流中之試劑離子。化學離子 化/漂移區136通常包括一電磁場(未圖示)以在樣本及試劑 離子在化學離子化/漂移區136内部混合時有助於樣本與試 劑離子之間的相互作用。化學離子化/漂移區136中之電磁 場亦將試劑離子及產物離子朝退出節流孔丨3 8引導。 使穿過化學離子化/漂移區136且經過退出節流孔138之 離子集中於由凸緣140界定之退出節流孔144上。退出節流 孔144允許離子可退出漂移外部腔室124。離子係藉由透鏡 組件142集中於退出節流孔144上。在一些實施態樣中,透 鏡組件142包括一聚焦孔。一些實施態樣採用三元件單透 鏡(Einzel len)用於透鏡組件142。透鏡組件142(例如)根據 諸如離子之通量、速度或動量之指定流動參數將離子朝質 譜儀模組148引導《透鏡組件142可用於最佳化穿過退出節 133727.doc •25- 200937487 抓孔144之離子數量。在一些實施態樣中系統1〇〇不包括 透鏡組件。 ❹The supply source is a component that produces - or a plurality of reagent ions by providing microwave or high frequency (four) quantities to the reagent vapor supply source. The system includes a means for interacting the sample gas with the reagent ions to form - or a plurality of product ions. The system also includes - for directing product ions and reagent ions to a mass spectrometer module for determining at least one of peak intensity or mass of product ions and reagent ions or for identifying volatility in the sample gas A component of an organic compound. Additional features are related to the above. For example, the sample gas includes at least one or more volatile organic compounds at a trace concentration. The trace concentration can be between about megahertz and about one billionth of a gram by volume. The trace amount can be between about one part per billion and one part per million by volume. The method may also involve joining the gas sample inlet end to the enclosed space. The method may also involve positioning the gas sample inlet end in a non-closed space. The gas sample inlet can be connected to the container. In some embodiments, the gas sample inlet end is coupled to a venting member of a car or aircraft. The gas sample inlet end can be coupled to the headspace above the food or beverage product to, for example, determine the level of the food or beverage product. 133727.doc -22- 200937487 In some embodiments, the method involves positioning a gas sample inlet end proximate to a human oral cavity to introduce exhalation into the port. The method may involve positioning the gas sample inlet end adjacent to a solid sample material that emits a gas or vapor. In some embodiments, the gas sample inlet end is coupled to a supply of gas. A quadrupole or time-of-flight mass spectrometer module can be used to determine at least one of the peak strength or mass of a volatile organic compound in a gas sample, or the characteristics of a volatile organic compound. Volatile organic compounds (including trace concentrations of volatile organic compounds) that can be measured, detected, and/or identified include dioxin-based compounds, furan-based compounds, naphthalene, and benzene. , stupid, ethylbenzene, xylene, non-combustible organic compounds, primary organic aerosols, isobaric compounds, chemical warfare agents, battlefield gases, combustion improvers, by body fluids or via fungal substances (eg mycotoxins) The VOC substance emitted by the action of xin)), or any combination of these. In some embodiments, the volatile organic compounds include artificial or biologically derived volatile organic compounds. In some embodiments, the sample gas comprises an inorganic gas or a vaporous material (e.g., hydrogen sulfide). The details of one or more examples are set forth in the accompanying drawings and are set forth in the embodiments below. Other features, aspects, and advantages of the present invention will become apparent from the Detailed Description. [Embodiment] FIG. 1 is a plan view showing a component of a system 1 to which the present invention is embodied. System 100 includes a reagent vapor supply source 〇4 and a plasma generator 1〇8. The microwave/RF plasma generator 108 can generate plasma using microwave energy (microwave plasma) or high frequency scale 1 133727.doc • 23- 200937487 energy (RF plasma). The rf energy can be supplied by a capacitive surface combined with a high frequency rF energy source (not shown). The reagent vapor (not shown) from the reagent vapor supply source 〇4 interacts with the plasma in the plasma zone 112 to form a desired or specific reagent ion 'which can be one or more of a plurality of different substances, as such Depending on the particular application of system 100. In some embodiments, the plasma zone i丨2 and the microwave/RF plasma generator 1〇8 form part of the same component (not shown) to allow reagent vapor and plasma to interact within the assembly. In some embodiments, the plasma zone 112 is disposed inside a glass tube. The plasma zone 112 is in fluid communication with an electrically isolating orifice plate electrode 120 mounted within the flange 116. An insulator (not shown) is disposed between the flange 116 and the orifice plate electrode 120 to provide electrical isolation therebetween. A potential is applied to the f-flow plate electrode 120 to increase the potential of the plasma, thereby directing one or more reagent ions through the aperture 122 defined by the flange 116 and the orifice plate electrode 12 and into the drifting outer cavity. The chemical ionization/drift region 136 inside the chamber 124. The chemical ionization/drift region 136 is maintained at a lower potential than the orifice plate electrode 120. The sample supply source 128 is in fluid communication with the chemical ionization/drift zone 136 to provide a sample fluid (e.g., sample gas) to the system. The sample gas flows into an inlet port (not shown) to pass through the surface of the outer chamber 124 (not shown) and into the chemical ionization/drift region 136. The inlet end is positioned downstream of the orifice plate electrode 12A at the center of the flange 116, which allows reagent ions to be mixed with the sample gas within the chemical ionization/drift zone 136. There are other configurations for introducing reagent ions and sample gases into the chemical ionization/drift region 136 and are within the scope of the present invention. For example, the π-end can be directly coupled to the flange 116 to create a "shower head" effect when the sample 133727.doc 24-200937487 gas flows through a fluid path (not shown) that is radially positioned around the aperture 122. The drift assembly 126 includes a chemical ionization/drift region 136 and a pumping drift external chamber 124. The pumping drift external chamber 24 effectively accommodates the chemical ionization/drift zone 136. The chemical ionization/drift region 136 can be defined by a series of % electrodes and an insulating plate (with an intermediate 0 ring seal (not shown)) each having a channel disposed through its center. Chemical ionization/drift region 136 is discussed in more detail with reference to Figures 5 and 6. The chemical ionization/drift region 136 facilitates interactions between the sample and the reagent ions (e.g., chemical reactions). The interaction between the sample and the reagent ions forms one or more product ions. Typically, the reagent ions greatly exceed the composition of the sample gas and the reagent ions in the product ion stream can be monitored after product ion generation. The chemical ionization/drift region 136 typically includes an electromagnetic field (not shown) to facilitate interaction between the sample and the reagent ions as the sample and reagent ions are mixed within the chemical ionization/drift region 136. The electromagnetic field in the chemical ionization/drift region 136 also directs reagent ions and product ions toward the exit orifice 丨38. Ions passing through the chemical ionization/drift zone 136 and passing through the exit orifice 138 are concentrated on the exit orifice 144 defined by the flange 140. Exiting the orifice 144 allows ions to exit the drifting outer chamber 124. The ions are concentrated by the lens assembly 142 on the exit orifice 144. In some implementations, the lens assembly 142 includes a focusing aperture. Some embodiments use a three-element single lens for the lens assembly 142. Lens assembly 142 directs ions toward mass spectrometer module 148, for example, according to specified flow parameters such as ion flux, velocity, or momentum. Lens assembly 142 can be used to optimize passage through exit section 133727.doc • 25- 200937487 The number of ions in the aperture 144. In some implementations, the system 1 does not include a lens assembly. ❹

質5普儀模組148(例如)藉由收集離子來測定試劑離子及 產物離子之質量及數量。質譜儀模組148產生及/或分析表 示穿過退出節流孔144之試劑及產物離子之特徵的所得質 譜。與產物離子相關之質譜可用於測定由樣本供應源128 提供之樣本之成分的存在、數量、體積、濃度或特性。將 對試劑離子之量測用於對系統1〇〇作校準及/或誤差檢驗。 質譜儀模組148可為四極質譜儀或飛行時間質譜儀。 系統1〇〇亦包括控制模組152。控制模組152接收關於系 統100之操作條件或參數之數據。基於該數據,控制模組 152可確定或設定系統組件之輸入值或輸入操作參數。舉 例而言,控制模組152可接收來自試劑蒸氣供應源ι〇4、電 漿產生器108、電漿區112、節流孔板電極12〇、化學離子 化/漂移區136、透鏡組件142、退出節流孔電極144或質譜 儀模組148之數據。控制模組152可回應於所收集之數據來 設定該等組件中之各者之輸入值,例如,#系統ι〇〇啟動 時或回應於關於操作參數所接收之數據來設定。 ,控制模組152回應於關於操作參數 在一些實施態樣中 所接收之數據自動地更新操作參數之輸A值。冑例而言, 若關於化學離子化/漂移區136㈣之壓力或電磁場之料 參數偏離彼等參數之指定或所要值,則控制模組M2可調 整設定化學離子化/漂移區136中之壓力之樣本供應源128 或產生電磁場之電極(未圖示), 直至參數符合彼等參數之 133727.doc •26- 200937487 輸入值或正確值為止。其他操作參數包括系統1〇〇中之試 劑離子或產物離子之速度或能量、流體樣本進入化學離子 化/漂移區丨36中之流率、試劑離子進入化學離子化/漂移區 136中之流率、樣本之組成、樣本及試劑離子之相對濃度 或試劑離子及產物離子之相對濃度。在一些實施態樣中, 控制模組152監測系統1〇〇之多個操作參數。 在些實施態樣中,控制模組1 52使用一種電漿計量方 法來接收及/或更新系統100之參數。電漿計量方法可監測 (例如)來自電漿區112之光發射光譜。基於光發射光譜,控 制模組152確定電漿區Π2内部之操作參數(例如,&quot;電漿參 數”)之值,例如,特定發射波長之強度,且若參數偏離指 疋或所要值,則控制模組15 2可調整電漿參數直至該等參 數符合彼等參數之最佳值。若控制模組152不能達到最佳 條件或參數,則可偵測到及/或記錄錯誤條件。 在些實施態樣中,一質量過濾器(未圖示)可被定位在 微波/RF電漿區112與化學離子化/漂移區136之間。該質量 過濾器可用於選擇性地允許試劑離子進入化學離子化/漂 移區136中。在一些實施態樣中,質量過濾器為四極質量 過濾器。 系統100包括一或多個與一或多個泵(未圖示)耦合用於 建立遍及系統100之壓力之值的端口(未圖示)。舉例而言, 微波/RF電漿區112、化學離子化/漂移區136、泵抽漂移外 部腔室124及質譜儀模組148内部之壓力值係藉由一或多個 果來維持。 133727.doc -27- 200937487 圖2為一質譜測定系統(例如,圖j之系統丨〇〇)之試劑蒸 氣供應源組件200之橫截面圖。對組件2〇〇加以配置以向能 源(例如圖1之電漿產生器108)提供蒸氣之一致或穩定的通 量或流動。由組件200提供之蒸氣包括一或多種可藉由微 波或RF電漿離子化之試劑分子,且有時稱為試劑蒸氣。組 件200包括用於容納流體供應源之儲集器2〇2。儲集器2〇2 可由不鏽鋼或其他合適金屬建構。 在一些實施態樣中,儲集器202容納水或純水以產生水 蒸氣。如圖所示’儲集器2〇2包括5個端口。端口2〇4可連 接於用於將流體引入儲集器(例如,用於完成水或流體供 應)之管或通道。端口 206可連接於用於將試劑蒸氣傳遞或 傳送至質譜測定系統之管或通道。端口2〇8可連接於用於 獲得關於儲集器202内部之流體之量測的管或通道。舉例 而言,端口 208可與電容器壓力計量規耦合以用於測定儲 集器208内部之頂部空間壓力。在一些實施態樣中,不使 用端口 208。端口 216可連接於用於量測儲集器2〇2中之流 體數量之管或通道(例如,連接於水位指示器)。端口218可 連接於用於排放或排空具有流體之儲集器2〇2之管或通 道。端口 208及216中之各者為任選的,且在一些實施態樣 中’不包括在系統200中或不用於質譜測定操作。在一些 實施態樣中,端口 204、206、208、216及218中之各者可 連接於具有0.25吋直徑(約〇 635公分)之管。其他尺寸的管 或通道可連接於該等端口,且該等管或通道不必具有相同 尺寸。 133727.doc -28· 200937487 在一些實施態樣中’使用包裹儲集器202之加熱器夹套 214將儲集器202加熱至特定高溫。在一些實施態樣中,圖 1之控制模組152與熱電偶212耦合。儲集器202.(及其中之 流體)之溫度可為藉由控制模組152回應於質譜測定系統之 操作來維持、調節及調整之操作參數。該控制使使用者能 夠將液體表面210上方之頂部空間213中之蒸氣壓維持為指 定或所要之值。 組件200亦包括與質量流量控制器224流體流通地耦合之 管222。質量流量控制器224可確定流過管226且進入電衆 區230中之試劑蒸氣之數量,在電漿區230中,試劑離子之 產生藉由將微波或RF能量施加於試劑蒸氣來發生。在一些 實施態樣中,質量流量控制器224可為具有獨立電子元件 之加熱式質量流量控制器,該等電子元件係距離組件2〇〇 遙遠地加以定位(未圖示)。 其他類型之流量控制器可連同質量流量控制器224或替 代質量流量控制器2 2 4來使用。如圖所示,組件2 〇 〇包括用 於指示電漿區230内部之壓力值之量規或監測器228。量規 可為電容壓力計量規。在一些實施態樣中,圖1之控制模 組152與量規或監測器228耦合’且電漿區230内部之壓力 為藉由控制模組152來維持、調節及調整之操作參數。在 一些實施態樣中’量規或監測器228不包括在組件200中。 在一些實施態樣中’管222及管226係由不鏽鋼製得且界 疋具有約0.25叫·(約0.635公分)之外部直徑《管229使組件 200之主體與電漿區23〇電隔離。在一些實施態樣中,管 133727.doc • 29- 200937487 229係由聚四氟乙烯(&quot;pTFE&quot;)製得且界定具有約〇 Μ吋(約 0.635公分)之外部直徑。電漿反應區23〇内部之壓力在質譜 測定操作期間可為約1-5托(約1〇〇_7〇〇帕斯卡)。組件2㈧内 部之壓力係藉由位於組件2〇〇之外部的泵(未圖示)來維持。 舉例而言,與圖〗之漂移外部腔室124(且又與化學離子化/ 漂移區136)耦合之泵可用於經由與組件2〇〇流體流通來建 立組件200内之壓力。圖}之化學離子化區域136可經由孔 122及電漿區/管u 2與組件2〇〇流體流通地耦合。 在一些實施態樣中,將端口 220用於將試劑蒸氣與另一 氣體混合以改良施加微波或RF能量期間的試劑離子產生。 舉例而s,混合氣艎可為氬、氮或氬/氮混合物。在一些 實施態樣中,欲用於試劑離子產生之氣體或氣體混合物 (例如NO或〇2)係經由端口 22〇引入,且利用一閥(未圖示) 使儲集器202與管222之間的流動隔離開。 圖3為用於產生試劑離子之方法之流程圖3〇〇。在步驟 305中,供應試劑蒸氣。舉例而言,可根據圖2中所示之系 統200來供應試劑蒸氣,以便供應試劑蒸氣之相對一致或 穩定之流動。試劑蒸氣可為純水蒸氣或與電漿混合氣體 (諸如氬或氮或其混合物)混合之水蒸氣。在一些實施態樣 中,試劑蒸氣包括諸如氧化亞氮(N〇)或雙原子氧(〇2)之試 劑物質。 在步驟3 10中,向試劑蒸氣提供能量。在一些實施態樣 中,能量為微波輻射,其用以形成離子化微波電漿。在一 些實施態樣中,能量為高頻率RF電源,其用以形成RF電 133727.doc .30· 200937487 衆’例如’為由電容柄合RF能源產生之類型之rf電衆β 微波能量通常係指由具有大於約800 MHz且小於約300 GHz之頻率值之電磁波產生的能量(例如輻射能量)^高頻 率RF能量通常係指由具有大於約4〇〇 kHz且小於約800 MHz之頻率值之電磁波產生的能量(例如輻射能量)^詳言 之,RF能量可在由工業、科學及醫學無線電中心 帶頻率指定之頻率值内提供。 步驟3 10中所施加之能量激發試劑蒸氣通量中之分子以The mass spectrometer module 148, for example, measures the mass and quantity of reagent ions and product ions by collecting ions. The mass spectrometer module 148 generates and/or analyzes the resulting mass spectrum indicative of the characteristics of the reagents and product ions passing through the exit orifice 144. The mass spectrum associated with the product ions can be used to determine the presence, amount, volume, concentration, or characteristics of the components of the sample provided by the sample supply source 128. The reagent ion measurement is used to calibrate and/or error the system. The mass spectrometer module 148 can be a quadrupole mass spectrometer or a time-of-flight mass spectrometer. The system 1 also includes a control module 152. Control module 152 receives data regarding operating conditions or parameters of system 100. Based on the data, control module 152 can determine or set input values for system components or input operational parameters. For example, the control module 152 can receive from the reagent vapor supply source ι 4, the plasma generator 108, the plasma region 112, the orifice plate electrode 12, the chemical ionization/drift region 136, the lens assembly 142, The data of the orifice electrode 144 or the mass spectrometer module 148 is exited. The control module 152 can set the input values for each of the components in response to the collected data, for example, when the system is activated or in response to data received regarding the operational parameters. The control module 152 automatically updates the value of the input A of the operational parameter in response to the data received in some embodiments with respect to the operational parameters. For example, if the material parameters of the pressure or electromagnetic field of the chemical ionization/drift region 136(4) deviate from the specified or desired values of the parameters, the control module M2 can adjust the pressure in the set chemical ionization/drift region 136. Sample supply source 128 or an electrode that generates an electromagnetic field (not shown) until the parameters meet the input values or correct values of their parameters 133727.doc •26- 200937487. Other operational parameters include the velocity or energy of the reagent or product ions in the system, the flow rate of the fluid sample into the chemical ionization/drift region 丨36, and the flow rate of reagent ions into the chemical ionization/drift region 136. The composition of the sample, the relative concentration of the sample and reagent ions, or the relative concentrations of reagent ions and product ions. In some implementations, the control module 152 monitors a plurality of operational parameters of the system 1〇〇. In some implementations, control module 152 uses a plasma metering method to receive and/or update parameters of system 100. The plasma metering method can monitor, for example, the light emission spectrum from the plasma zone 112. Based on the light emission spectroscopy, the control module 152 determines the value of the operating parameters (eg, &quot;plasma parameters") within the plasma zone ,2, such as the intensity of a particular emission wavelength, and if the parameter deviates from the index or desired value, then The control module 15 2 can adjust the plasma parameters until the parameters meet the optimal values of the parameters. If the control module 152 fails to achieve the optimal conditions or parameters, the error conditions can be detected and/or recorded. In an embodiment, a mass filter (not shown) can be positioned between the microwave/RF plasma region 112 and the chemical ionization/drift region 136. The mass filter can be used to selectively allow reagent ions to enter the chemistry. In the ionization/drift zone 136. In some embodiments, the mass filter is a quadrupole mass filter. The system 100 includes one or more coupled to one or more pumps (not shown) for establishing the system 100. Port of pressure value (not shown). For example, the pressure values inside the microwave/RF plasma zone 112, the chemical ionization/drift zone 136, the pumping drift external chamber 124, and the mass spectrometer module 148 are By one or more fruits 133727.doc -27- 200937487 Figure 2 is a cross-sectional view of a reagent vapor supply assembly 200 of a mass spectrometry system (e.g., system 图 of Figure j). Component 2〇〇 is configured to be energy ( For example, the plasma generator 108 of Figure 1 provides a consistent or stable flux or flow of vapor. The vapor provided by the assembly 200 includes one or more reagent molecules that can be ionized by microwave or RF plasma, and is sometimes referred to as The reagent vapor comprises a reservoir 2 〇 2 for containing a fluid supply source. The reservoir 2 〇 2 may be constructed of stainless steel or other suitable metal. In some embodiments, the reservoir 202 contains water or pure Water to produce water vapor. As shown, 'Reservoir 2〇2 includes 5 ports. Port 2〇4 can be connected to a tube for introducing fluid into the reservoir (for example, to complete water or fluid supply) Or channel. Port 206 can be coupled to a tube or channel for delivering or delivering reagent vapors to the mass spectrometry system. Port 2〇8 can be coupled to a tube or channel for obtaining a measurement of fluid within reservoir 202 For example, port 208 Coupled with a capacitor pressure gauge for determining headspace pressure inside the reservoir 208. In some implementations, port 208 is not used. Port 216 can be coupled to a fluid used to measure reservoir 2〇2 A number of tubes or channels (e.g., connected to a water level indicator). Port 218 can be connected to a tube or channel for draining or evacuating a reservoir 2〇2 with fluid. Ports 208 and 216 are each Selected, and in some embodiments, 'not included in system 200 or used for mass spectrometry operations. In some implementations, each of ports 204, 206, 208, 216, and 218 can be connected to have 0.25. The diameter of the tube (about 635 cm). Other sized tubes or channels may be connected to the ports, and the tubes or channels do not have to be the same size. 133727.doc -28- 200937487 In some embodiments, the reservoir 202 is heated to a particular elevated temperature using a heater jacket 214 of the package reservoir 202. In some implementations, the control module 152 of FIG. 1 is coupled to the thermocouple 212. The temperature of the reservoir 202. (and the fluid therein) can be an operational parameter maintained, adjusted, and adjusted by the control module 152 in response to operation of the mass spectrometry system. This control allows the user to maintain the vapor pressure in the headspace 213 above the liquid surface 210 at a specified or desired value. Assembly 200 also includes a tube 222 that is fluidly coupled to mass flow controller 224. The mass flow controller 224 can determine the amount of reagent vapor flowing through the tube 226 and into the electrical zone 230. In the plasma zone 230, reagent ion generation occurs by applying microwave or RF energy to the reagent vapor. In some implementations, mass flow controller 224 can be a heated mass flow controller with separate electronic components that are remotely located from assembly 2 (not shown). Other types of flow controllers can be used in conjunction with the mass flow controller 224 or the alternate mass flow controller 2 24 . As shown, the assembly 2 〇 includes a gauge or monitor 228 for indicating the pressure value inside the plasma zone 230. The gauge can be a capacitive pressure gauge. In some embodiments, the control module 152 of Figure 1 is coupled to the gauge or monitor 228 and the pressure within the plasma zone 230 is an operational parameter maintained, adjusted, and adjusted by the control module 152. In some embodiments, the gauge or monitor 228 is not included in the assembly 200. In some embodiments, tube 222 and tube 226 are made of stainless steel and have an outer diameter of about 0.25 Å (about 0.635 cm). Tube 229 electrically isolates the body of assembly 200 from plasma zone 23 。. In some embodiments, tube 133727.doc • 29-200937487 229 is made of polytetrafluoroethylene (&quot;pTFE&quot;) and defines an outer diameter of about 〇 (about 0.635 cm). The pressure inside the plasma reaction zone 23 可 may be about 1-5 Torr (about 1 〇〇 7 7 Pascals) during the mass spectrometry operation. The pressure inside the component 2 (8) is maintained by a pump (not shown) located outside the module 2〇〇. For example, a pump coupled to the drift external chamber 124 (and in conjunction with the chemical ionization/drift region 136) can be used to establish pressure within the assembly 200 via fluid communication with the assembly 2 . The chemical ionization region 136 of Figure 5 can be fluidly coupled to the component 2 via vias 122 and plasma zone/tube u2. In some embodiments, port 220 is used to mix reagent vapors with another gas to improve reagent ion generation during application of microwave or RF energy. For example, the mixed gas can be an argon, nitrogen or argon/nitrogen mixture. In some embodiments, a gas or gas mixture (eg, NO or 〇2) to be used for reagent ion generation is introduced via port 22, and reservoir 202 and tube 222 are utilized by a valve (not shown). The flow between them is isolated. 3 is a flow chart 3 of a method for generating reagent ions. In step 305, a reagent vapor is supplied. For example, reagent vapor can be supplied according to system 200 shown in Figure 2 to supply a relatively consistent or stable flow of reagent vapor. The reagent vapor can be pure water vapor or water vapor mixed with a plasma mixed gas such as argon or nitrogen or a mixture thereof. In some embodiments, the reagent vapor comprises a reagent material such as nitrous oxide (N〇) or diatomic oxygen (〇2). In step 310, energy is supplied to the reagent vapor. In some embodiments, the energy is microwave radiation that is used to form an ionized microwave plasma. In some embodiments, the energy is a high frequency RF power source, which is used to form RF power. 133727.doc.30·200937487 A 'for example' is a type of rf electricity generated by a capacitive shank combined with RF energy. Refers to energy (eg, radiant energy) produced by electromagnetic waves having frequency values greater than about 800 MHz and less than about 300 GHz. High frequency RF energy generally refers to frequency values having greater than about 4 kHz and less than about 800 MHz. Energy generated by electromagnetic waves (eg, radiant energy) ^ In other words, RF energy can be provided at frequency values specified by the frequency bands of industrial, scientific, and medical radio centers. The energy applied in step 3 10 excites the molecules in the reagent vapor flux to

產生試劑離子。試劑蒸汽流中之分子被電漿離子化。舉例 而言,當將水蒸氣用作試劑蒸氣時,經由多步反應產生水 合氫離子: 反應1 反應2 e_+H20—H20++2e_ H20++H20—&gt;Η30++〇η 反應/步及來自離子化電漿之自由電子⑹與水分子(KG) 相互作用以形成帶正電電荷、離子化之水分子及第二自由 電子。在反應2中,帶正電水分子與中性水分子相互作用 、形成水α氫離子(Η3〇+)及經基。水合氫離子可為隨後與 流體樣本之成分相互作用之試劑離子。 '波及同頻RF電漿為理想的,此係、因為其提供—種產生 ,子及電子之充足來源之有效方式,而該等離子及電子為 生試劑離子物質(例如水合氨離子)所需。 高頻RF電漿相斟姑兔y , 漿直接接觸的卜’很^、具有或不具有常常與電極與電 二陰極/輝光放電電漿來源相關之内部濺 皮及高咖電漿來源之&quot;少電極&quot;性質意謂可降低與 133727.doc 200937487 電極腐㈣關之不穩定性及漂移之影響。此外,微波及高 頻RF電漿來源能夠提供相對、高含量之試劑離子。 在一些實施態樣中, Ψ圖3之方法包括涉及量測微波或高 頻RF電漿之麼力之額外步驟(未圖示卜電漿壓力之值可為 質譜測定系統之控制參數(例如,可㈣i之㈣模組152 控制)。電漿壓力亦可用以確定試劑蒸氣(例如,來自組件 200之試劑蒸氣)之適當供應源。Reagent ions are generated. The molecules in the reagent vapor stream are ionized by the plasma. For example, when water vapor is used as the reagent vapor, hydronium ions are generated via a multi-step reaction: Reaction 1 Reaction 2 e_+H20-H20++2e_H20++H20-&gt;Η30++〇η Reaction/step and from The free electrons (6) of the ionized plasma interact with water molecules (KG) to form positively charged, ionized water molecules and second free electrons. In the reaction 2, the positively charged water molecules interact with the neutral water molecules to form water alpha hydrogen ions (Η3〇+) and a meridine. Hydronium ions can be reagent ions that subsequently interact with components of the fluid sample. It is desirable to have an intra-frequency RF plasma, as it provides an efficient means of generating a sufficient source of ions and electrons that are required for the production of reagent ionic species (e.g., hydrated ammonia ions). The high-frequency RF plasma is in contact with the rabbit, and the slurry is in direct contact with the 'very ^, with or without the internal splash and high coffee source associated with the electrode and the electric two cathode / glow discharge plasma source. The "less electrode" property means that it can reduce the effects of instability and drift with 133727.doc 200937487 electrode rot (4). In addition, microwave and high frequency RF plasma sources provide relatively high levels of reagent ions. In some embodiments, the method of FIG. 3 includes an additional step involving measuring the force of the microwave or high frequency RF plasma (not shown) the value of the plasma pressure can be a control parameter of the mass spectrometry system (eg, The plasma pressure can also be used to determine the appropriate supply of reagent vapor (e.g., reagent vapor from assembly 200).

圖4為圖示使本發明具體化之質譜測定方法_之流程 圖。步驟405涉及供應試劑蒸氣,且步驟彻涉及將微波或 RF能量提供給試劑蒸氣以產生試劑離子,例如,如上文關 於圖3所討論。隨後,藉由由錢反應區與化學離子化/漂 移區之間的壓降產生之流體流動%象與來自化學離子化/ 漂移區内部之離子提取節流孔或電極的電磁場梯度影響之 組合,將試劑離子引導至化學離子化/漂移區。 在步驟415中,流體樣本(例如,含有一或多種揮發性有 機化合物分子之氣體)與試劑離子相互作用。將流體樣本 與試劑離子混合導致流體樣本與試劑離子之間的相互作 用。舉例而言,流體樣本可經由一進口管線供應至試劑離 子流,該進口管線穿過漂移外部腔室且進入化學離子化/ 漂移區《樣本供應源與化學離子化/漂移區之間的壓降可 有助於運載流體樣本之流體流進入化學離子化/漂移區 中。化學離子化/漂移區包括有助於試劑離子在該區域内 部移動且有助於試劑離子與流體樣本之成分之間的碰撞之 電磁場。試劑離子與流體樣本之成分之間的碰撞導致使流 133727.doc -32- 200937487 體樣本之粒子離子化之化學反應。涉及水合氫離子及具有 大於水之彼質子親和力之質子親和力的成分分子之樣本物 質及之化學反應的實例如下所示: H30++R-&gt;RH++H20 反應 3 涉及水合氫離子及物質π之化學反應為低能量及/或軟離 - 子化相互作用。舉例而言,當與諸如電子衝擊離子化之較 . 高能量離子化過程相比時,樣本分子之完整性未顯著改變 且樣本之分子碎裂得以減少或最小化。此外,樣本中具有 ® 小於水之彼質子親和力之質子親和力的物質並未因與水合 氫原子碰撞而離子化,且因此並未在質譜測定期間偵測 到。該等物質之實例包括空氣之常見成分,包括雙原子 氮、雙原子氧、氬、二氧化碳及甲烷。一般而言,空氣之 該等成分在基於樣本中空氣之成分相對於以痕量數量存在 於樣本中之成分的較大比例所獲得之質譜中產生高強度光 譜峰。高強度光譜峰可能使附近之低強度峰模糊,或可能 增大區別低強度峰與高強度峰之困難。因此,該化學離子 ® 化技術之選擇性性質可增強區別歸因於樣本中之低強度/ 痕量物質的光譜峰之能力。 . 在步驟420中,試劑離子及產物離子係經由透鏡或退出 • 節流孔組件自化學離子化/漂移區引出且引向質譜儀之收 集器區域。在一些實施態樣中,試劑離子及產物離子係利 用在化學離子化/漂移區中建立之電磁場自化學離子化/漂 移區引出。試劑及產物離子可經由透鏡組件,經由離子提 取節流孔自化學離子化/漂移區末端處之節流孔傳遞出 133727.doc -33- 200937487 來’且進入質譜儀模組中。透鏡組件可以 徵,或可以一三元件單透鏡為特徵。在一此 ’、、、、、、 離子提取節流孔被安置在一凸緣内部。可二施態樣中, 鏡組件及料提取節流孔,讀產生 f加於透 物離子穿過節流孔。一般…在相=引導試劑及產 找城 在相對岗真空下操作質碰 儀祆組以確保分子流動條件可成 ”曰 有效操作。 、”儀及其組件之Fig. 4 is a flow chart showing a mass spectrometry method for embodying the present invention. Step 405 involves supplying reagent vapors, and the steps are all directed to providing microwave or RF energy to the reagent vapor to produce reagent ions, for example, as discussed above with respect to Figure 3. Subsequently, by the combination of the fluid flow % produced by the pressure drop between the money reaction zone and the chemical ionization/drift zone, and the electromagnetic field gradient influence from the ion extraction orifice or electrode inside the chemical ionization/drift zone, The reagent ions are directed to the chemical ionization/drift zone. In step 415, a fluid sample (e.g., a gas containing one or more volatile organic compound molecules) interacts with reagent ions. Mixing the fluid sample with the reagent ions results in an interaction between the fluid sample and the reagent ions. For example, a fluid sample can be supplied to a reagent ion stream via an inlet line that passes through the drifting external chamber and into the chemical ionization/drift zone "pressure drop between the sample supply source and the chemical ionization/drift zone The fluid stream carrying the fluid sample can be assisted into the chemical ionization/drift zone. The chemical ionization/drift region includes an electromagnetic field that facilitates the movement of reagent ions within the region and facilitates collisions between reagent ions and components of the fluid sample. The collision between the reagent ions and the components of the fluid sample results in a chemical reaction that ionizes the particles of the sample 133727.doc -32- 200937487. Examples of sample materials and chemical reactions involving hydronium ions and component molecules having a proton affinity greater than the proton affinity of water are as follows: H30++R-&gt;RH++H20 Reaction 3 involves hydronium ions and substances The chemical reaction of π is a low energy and/or soft ionization interaction. For example, when compared to a high energy ionization process such as electron impact ionization, the integrity of the sample molecules does not change significantly and the molecular fragmentation of the sample is reduced or minimized. In addition, the substance in the sample with a proton affinity of less than the proton affinity of water was not ionized by collision with hydrated hydrogen atoms and was therefore not detected during mass spectrometry. Examples of such materials include common components of air, including diatomic nitrogen, diatomic oxygen, argon, carbon dioxide, and methane. In general, the components of air produce high intensity spectral peaks in a mass spectrum based on a ratio of the composition of the air in the sample to a significant proportion of the components present in the sample in trace amounts. High-intensity spectral peaks may blur nearby low-intensity peaks or may increase the difficulty of distinguishing between low-intensity peaks and high-intensity peaks. Therefore, the selective nature of this chemical ionization technology enhances the ability to distinguish spectral peaks attributed to low intensity/trace materials in the sample. In step 420, reagent ions and product ions are drawn from the chemical ionization/drift region via a lens or exit/throttle assembly and directed to the collector region of the mass spectrometer. In some embodiments, the reagent ions and product ions are extracted from the chemical ionization/drift region using an electromagnetic field established in the chemical ionization/drift region. Reagents and product ions can be passed through the lens assembly through the ion extraction orifice from the orifice at the end of the chemical ionization/drift zone to 133727.doc -33- 200937487 and enter the mass spectrometer module. The lens assembly may be characterized or may be characterized by a three-element single lens. Here, the ', , , , , and ion extraction orifices are placed inside a flange. In the second embodiment, the mirror assembly and the material extract the orifice, and the reading produces f plus the permeate ions passing through the orifice. Generally... in the phase = guiding reagents and production looking for the city, operating the mass in the relative vacuum, the instrument group to ensure that the molecular flow conditions can be "" effective operation.," instrument and its components

^儀模組可包括四極f譜儀或飛行時間質譜儀。對賀 型而言’將試劑及產物離子引導至質譜儀之 區域。離子與收集器區域_之_器碰撞, 得電流在質譜儀中放大(例如,使用電子倍增器與前置放 2之組合)。基於來自收集器之輸入,質譜儀累積關於 试劑及產物離子之數據且產生指示所收集離子之質量值 (或質荷比)及數量之信號譜。 步驟425涉及(例如)基於所產生之質譜測定試劑離子及 產物離子之質#及數量。㈣巾之良好解析峰可用於測定 試劑及產物離子之精確質量或質荷比。該等峰之特定位置 亦可藉由將根據光譜或信號峰測定之質量值與具有已知質 量之分子或離子比較而有助於流體樣本之組分之鑑別。在 一些實施態樣中’-分析模組可用於展現信號譜及/或測 定光譜中峰之存在及位置。 圖5為使本發明具體化之四極質譜測定系統5〇〇之橫截面 圖。系統500包括與化學離子化/漂移區5〇8耦合之試劑離 子源504。系統500中之試劑離子源5〇4係基於微波能源, 133727.doc 34- 200937487 其包括具有穿過諧振腔520之孔516安置之短天線514的磁 控管512。在一些實施態樣中,試劑離子源能源504可基於 高頻率能源,諸如RF能源。試劑離子源504亦包括經由孔 528穿過諧振腔520之管524。管524亦穿過2個安置在諧振 腔520之外表面536上之微波抗流器532。微波抗流器532降 . 低逸出諧振腔520或管524之微波能量之量且降低延伸至系 , 統500之其他組件之微波能量。管524可由矽石或諸如石英 之矽石物質製得。在一些實施態樣中,管524可由藍寶石 © 製得。管524之末端540可與試劑蒸氣供應源(未圖示)之相 應末端(未圖示)耦合以用於將試劑蒸氣提供至試劑離子源 504。舉例而言,末端532可與圖2中所示之試劑蒸氣供應 系統200之管229耦合。 在一些實施態樣中,管524具有約6毫米之外部直徑。諧 振腔520界定沿y軸之長度/。長度/對應於或約等於諧振腔 520之最低等級諧振模式之一個全波長λ。管524被定位於 沿y軸離諧振腔520之頂部544約%人之距離處。更特定而 言,管524被定位於諧振腔520之反節點處以最大化自諧振 腔520轉移至管524之共振能量。 在一些實施態樣中,磁控管512為具有短天線514之900 . 瓦特磁控管,其將微波功率提供至諧振腔520。該功率係 藉由在微波波譜中具有頻率值之電磁波輻射分布於諧振腔 520中且轉移至管524。由於與管524内部之試劑蒸氣相互 作用之空腔520内部的共振能量,在管524内部產生電漿。 試劑蒸氣經由與試劑蒸氣供應源耦合之末端540進入管 133727.doc •35- 200937487 524由於管524與化學離子化/漂移腔室5〇8之間的壓降, 試劑蒸氣供應源(例如)沿χ軸將試劑蒸氣流提供或引導至管 524中。試劑蒸氣之持續流動確保微波電漿在管524内部得 以維持以產生一或多種試劑離子,(例如)如上文所討論。 在一些實施態樣中,諧振腔520係由具有封閉末端(例 如,空腔520之頂部544及底部548)之鍍銀的鋁擠壓物建 構。在一些實施態樣中’微波抗流器532形狀為圓柱狀, 其具有與χ軸平行、同軸或共線之中心線(未圖示)。微波抗 流器532可由不鏽鋼或鋁製得。在一些實施態樣中,通道 533女置在微波抗流器532之一或兩者内部。通道533之長 度可為沿y軸之大致% /。 管524之第二末端552在夾持於凸緣560内部且連接於化 學離子化/漂移區508之節流孔板556之面557(參見圖6)處終 止。試劑離子自管524穿過節流孔板556且進入化學離子化/ 漂移區508中。化學離子化/漂移區508係部分地由以沿又軸 穿過漂移外部腔室562之中心之空間關係安置的環形電極 564界定。將電位施加於電極564中之各者以產生電磁場。 在一些實施態樣中,電磁場具有沿x轴引導之線性場梯 度°施加於各電極之正電位之值沿X軸之正方向降低以產 生轴向引導之線性場梯度。亦可使用非線性場梯度。該等 電極564係利用安置於其之間的環形絕緣組件568而彼此電 隔離。電場有助於來自試劑離子源504(例如管524)之試劑 離子與在化學離子化/漂移腔室端口 566處引入之樣本之間 的相互作用。 133727.doc -36- 200937487 漂移外部腔室562亦包括與栗抽系統58〇輕合之果抽端口 576。漂移外部腔室562亦包括電馈通端口(未圖示)以及具 有用於樣本引入管線(未圖示)及用於與總塵力量規572及第 二量規(未圖示)流體流通之管接頭(未胃示)的端口 571。在 一實施態樣中’栗抽系統58〇包括渴輪分子果與隔膜預 抽泵(未圖示)。泵抽系統580在漂移外部腔室及化學離 • 子化/漂移區508内部建立所需壓力。漂移腔室508内部之 壓力可由總壓力量規572所監測,且漂移外部腔室562中之 壓力可由第一量規所監測(未圖示由該等量規提供之數 據可作為輸人供應至控龍組(未圖示),(例如)用於系統 診斷處理。 化學離子化/漂移區508及漂移外部腔室562包括凸緣 584,其經由雙侧凸緣586與質譜儀592之相冑凸緣5_ 合。系統500中所示之質譜儀592為四 -包括譜儀探物,且與系抽系統596流體流= &amp; 合。泵抽系統596建立質譜儀592内部之壓力,(例如)以有 助於試劑離子及產物離子之質量之量測,且降低由與質譜 儀中之環境組分相互作用所產生的對離子質量之該量測的 •負效應。 自化學離子化/漂移區508傳遞至質譜儀592之離子係藉 由離子提取電極582引導至質譜儀探針594。在一些實施綠 樣中,離子光學組件(未圖示)可連同離子提取電極m 一 = 使用以增加傳遞至質譜儀592之試劑離子及產物離子之數 量舉例而§ ’彳使用$焦孔或三元件單透鏡。譜儀探針 133727.doc -37· 200937487 ::何為電偏移四極質量分析器或質量過濾器。四極質量 :析盗包括4個(例如)作為正方形頂點且平行於X軸定位之 平仃金屬’干。桿之相反對電性耦合以產生2個電性耦合偶 j。具有正DC電壓分量之第一職量或電壓可施加於第 —偶極之桿’且具有負DC㈣分量之第二RF能量或電壓 可施加於第二偶極之桿。處於穿過質量過濾器之穩定軌道 上之離子在桿之間,在通常平行於捍⑼如,平行於正方 形之中心軸)之方向上傳遞。 施加於譜儀探針594之RFw或DC能量產生質量選擇性 振蘯場。質量選擇性場產生具有指定幾何形狀(諸如具有 ,常沿X轴之方向之振盛幾何形狀)的離子軌道。執道經指 疋以便使具有指定範圍内之質荷比值之離 該軌道達到㈣器·,而減範圍外之離子不遵循= 道達到偵測IS 598。未經選擇之離子與桿碰撞且不被债測 器598收集。在一些實施態樣中,質量選擇性場根據施加 於四極桿之能量(例如,電位、DC能量或RF能量)之值來變 化。質量值之帶寬可利用特定場強或通量來選擇。另外, 譜儀探針594可藉由變化f量選擇性場來掃描質量範圍。 在-些實施態樣中,譜儀探針594包括稱為三重過濾器 四極質量分析器之3個四極之直線、同軸系列。在該等實 施態樣中,三重過據器之第一及第三元件為相對短的(例 如大致W或2.54公分)&quot;單獨RF&quot;過濾$,其運载由第二或 主過濾器傳遞至其之㈣壓要素。該等&quot;單獨rf&quot;前置及後 置過濾器起離子透鏡作用且將離子集中於質量過濾器組件 133727.doc -38- 200937487 集中於質量過濾器組件外。以該方式使用前置及後置 過濾器之目的為藉由增加所傳輸之離子數量來改良離子經 由過濾器組件之傳輸,尤其具有較高質量(例如,超過約 80個原子質量單位)之彼等離子之傳輸。前置及後置過濾 器亦改良過遽器之質量解析度及豐度靈敏度效能。成功穿 • 過二重過濾器組件之離子被偵測器598所收集。在一些實 • 施態樣中,偵測器598為電子倍增器偵測器《電子倍增器 偵測器放大因與偵測器之入口或正面(未圖示)之離子碰撞 © 所產生的電信號。 圖6為圖5中所示之化學離子化/漂移區5〇8之放大圖。化 學離子化/漂移區508包括化學離子化/漂移腔室62〇,其可 女裝在界定提取節流孔616之離子提取電極612上。當試劑 離子自電漿區608移動至化學離子化/漂移區5〇8中時,試 劑離子穿過提取節流孔616 ^離子提取電極612可與一能源 (未圖示)流體流通地耦合。離子在由施加於提取電極612之 ❸ 電位產生之電磁場影響下穿過提取節流孔616。提取電極 612係藉由一或多個具有陶瓷插入物或由另一絕緣物質製 得之插入物之螺桿(未圖示)與凸緣6〇4耦合。該等螺桿及插 入物穿過絕緣(例如陶瓷或PEEK)套環014以進一步使提取 • 電極612與凸緣604電隔離。在一些實施態樣中,提取電極 612上所施加之電位之值影響試劑離子在其沿中心線a(大 體上平行於X軸)行進至化學離子化/漂移區5〇8之化學離子 化/漂移腔室620中時之平均能量。另外,提取節流孔616 之尺寸及/或幾何形狀決定著試劑離子流進化學離子化/漂 133727.doc •39- 200937487 移腔室620中之量。 離子穿過提取電極612中之提取節流孔616且大體上沿中 心線A(例如,在X轴之軸向上或平行於X軸)進入化學離子 化/漂移腔室620中。利用施加於一或多個板電極624及漂 移端板電極625(亦稱為電極堆疊)中之各者之電位,在漂移 . 區620中產生電磁場《電極可由金屬或其他導電物質製 得。在一些實施態樣中,板電極624及漂移端板電極625各 自具有環形形狀,其具有與中心線A對準之中心節流孔630 © 及633。各板電極之中心節流孔630直徑可為大致10毫米。 漂移端板電極之中心節流孔633直徑可為大致卜2毫米。其 他直徑及幾何形狀(例如非圓形)在本發明之範疇内。板電 極624及漂移端板電極625係利用一或多個絕緣套環628而 物理隔離及電隔離。在一些實施態樣中,絕緣套環628具 有環形形狀,其具有與中心線A對準之中心節流孔631。絕 緣套環628中之中心節流孔631之直徑可為大致20毫米。其 他直徑及幾何形狀在本發明之範疇内。適用於絕緣套環 628之材料包括聚合物材料,諸如由Victrex pic of Lancashire,England出售之PEEK:™製得之套環,或靜態耗 • 散性塑膠,諸如由 Quadrant Engineering Plastic Products of Reading, Pennsylvania 出售之 SEMITRON®。0環(未圖 示)位於絕緣套環628中之各者之任一側上的環形槽内部。 〇環有助於絕緣套環與板電極624或漂移端板電極625之間 的介面處之氣密密封。在一些實施態樣中,該等0環可由 Du Pont Performance Elastomers of Wilmington, Delaware 133727.doc -40- 200937487 出售之VITON®氟彈性體製得。 提取電極612、板電極624及漂移端板電極625配合以在 化學離子化/漂移腔室620内部產生電磁場。在一些實施態 樣中’電磁場具有沿X軸之線性場梯度。電磁場梯度亦可 為非線性的,例如,基於施加於提取電極6丨2、板電極624 • 中之各者及漂移端板電極625之電位之間的差異。電磁場 引導試劑離子且有助於試劑離子與樣本流體之成分之間的 相互作用。 © 在一些實施態樣中,沿中心線A,在沿X軸之漸增方向 上,將漸減電位施加於板電極624及漂移端板電極62 5中之 各者,以有助於試劑離子及產物離子在化學離子化/漂移 腔室620内部之流動。樣本氣體係(例如)如圖1中所討論, 經由漂移外部腔室中之一端口(例如,圖5之端口 57丨)且隨 後經由絕緣套環628之側面中之端口 632,自樣本供應源 (未圖示)供應至化學離子化/漂移腔室62〇。另一絕緣套環 0 628之側面中之相似端口可與圖5之端口 571上之量規572流 體流通,以有助於化學離子化/漂移腔室62〇内部之壓力之 量測。在一些實施態樣中,樣本供應源由質量流量控制器 , 組成,其用以控制進入化學離子化/漂移腔室020之流體樣 • 本之流動。樣本氣體沿中心線A,在沿X軸之漸增方向上釋 出,且與試劑離子相互作用。板電極624及漂移端板電極 625被固定於提取電極612,該提取電極支撐化學離子化/ 沛移腔室620内部之板電極624及漂移端板電極625。 在一些實施態樣中,一控制模組(未圖示)與離子提取電 133727.doc 200937487 極612、板電極624中之各者及漂移端板電極625耦合以便 將電位提供至電極612、624及625中之各者。該控制模組 亦監測化學離子化/漂移腔室620内部之其他參數,諸如場 梯度、壓力或所偵測離子強度。當特定受監測參數之值偏 離預定臨限值時,控制模組可重設或調整施加於離子提取 電極612、板電極624中之各者及漂移端板電極625之電位 的值。 在些實施態樣中’控制模組經由反饋迴路回應於化學 離子化/漂移腔室620之參數之改變自動地改變離子提取電 極612、板電極624中之各者及漂移端板電極625之電位。 舉例而言,控制模組可建立電場梯度及壓力作為初始條件 或模式,此可確定給定樣本監測需求之最佳e/n(例如電荷 密度)設定。在一些實施態樣中,控制模組可監測化學離 子化/漂移腔室620之參數且經由即時調整電場梯度及/或壓 力來維持最佳e/n水平。在一些實施態樣中,控制模組可 基於e/n水平之使用者誘成之調整-例如,當使用不同e/n水 平以在2種等壓化合物之間作辨別時,對化學離子化/漂移 腔室620場梯度及/或壓力水平進行改變。在一些實施態樣 中,由離子提取電極612、板電極624中之各者及漂移端板 電極625建立之電場梯度沿乂軸(或中心線A)為線性的。在 一些實施態樣中,電場梯度為非線性的。可由控制模組監 測且與化學離子化/漂移腔室620内部之電場、壓力及e/n水 平相關之另一參數為產物離子與試劑離子之比率。 漂移外部腔室562合併一固定凸緣636,該固定凸緣係以 133727.doc •42· 200937487 安置於中間之雙邊凸緣648被固定於質譜儀644之相應凸緣 640。界定提取節流孔656之離子提取電極652係(例如)利用 一或多個絕緣螺桿660固定於凸緣648。絕緣套環658(例 如,由陶瓷製得)使離子提取電極652與雙邊凸緣648電隔 離。金屬板659遮蔽絕緣套環658且減少表面電荷之堆積, . 而該堆積可能會干擾化學離子化/漂移腔室620與質譜儀 644之間的區域657中之離子光學器件。將電位施加於離子 提取電極652以產生將試劑離子及產物離子自化學離子化/ © 漂移腔室620引導至質譜儀644之電磁場。質譜儀644包括 具有一或多個孔668之譜儀探針664以有助於真空泵抽及/ 1、 或排空質譜儀644及譜儀探針664。譜儀探針664大體上與 中心線A對準,且離子可沿中心線A,經由聚焦電極676進 入譜儀探針664。譜儀探針664與分析模組耦合,該分析模 組基於由與譜儀探針664耦合之偵測器(未圖示)收集之試劑 及產物離子產生及/或展現質譜。在一些實施態樣中,將 額外離子光學器件(未圖示)用於化學離子化/漂移腔室620 v 與質譜儀644之間的區域657中,(例如)以最佳化達到質譜 儀644之試劑及產物離子之量。離子光學器件可呈現聚焦 • 孔或三元件單透鏡之形式。 . 圖7為使本發明具體化之飛行時間質譜儀系統700之平面 圖。系統700包括用於將離子供應至系統700之離子源 704。離子源704可供應來自(例如)化學離子化/漂移區508 之化學離子化/漂移腔室620之產物離子及試劑離子。離子 經由離子流自離子源704傳遞至飛行時間質譜儀708中。離 133727.doc -43- 200937487 子可經由與飛行時間質譜儀708電隔離之離子提取電極(未 圖示)中之離子提取節流孔(未圖示)進人飛行時間質银儀 708。電位可施加於離子提取電細產生用於將離子^ 於飛行時間質譜儀708内之電磁場。The instrument module can include a quadrupole f spectrometer or a time-of-flight mass spectrometer. For the HE type, the reagent and product ions are directed to the area of the mass spectrometer. The ions collide with the collector region, and the current is amplified in the mass spectrometer (for example, using a combination of an electron multiplier and a preamplifier 2). Based on input from the collector, the mass spectrometer accumulates data on reagents and product ions and produces a signal spectrum indicative of the mass value (or mass to charge ratio) and amount of collected ions. Step 425 involves, for example, determining the mass and amount of reagent ions and product ions based on the mass spectrum produced. (d) A good analytical peak of the towel can be used to determine the exact mass or mass-to-charge ratio of the reagent and product ions. The particular position of the peaks can also aid in the identification of the components of the fluid sample by comparing the mass values determined from the spectra or signal peaks to molecules or ions of known mass. In some implementations, the '-analysis module can be used to reveal the signal spectrum and/or to determine the presence and location of peaks in the spectrum. Fig. 5 is a cross-sectional view showing a quadrupole mass spectrometry system 5 of the present invention. System 500 includes a reagent ion source 504 coupled to a chemical ionization/drift zone 5〇8. The reagent ion source 5〇4 in system 500 is based on microwave energy, 133727.doc 34-200937487 which includes a magnetron 512 having a short antenna 514 disposed through aperture 516 of cavity 520. In some implementations, reagent ion source energy source 504 can be based on a high frequency energy source, such as an RF energy source. Reagent ion source 504 also includes a tube 524 that passes through cavity 520 through aperture 528. Tube 524 also passes through two microwaves 532 disposed on outer surface 536 of cavity 520. The microwave choke 532 lowers the amount of microwave energy that escapes the cavity 520 or tube 524 and reduces the microwave energy that extends to other components of the system 500. Tube 524 can be made of vermiculite or a vermiculite material such as quartz. In some implementations, tube 524 can be made of sapphire ©. End 540 of tube 524 can be coupled to a corresponding end (not shown) of a reagent vapor supply (not shown) for providing reagent vapor to reagent ion source 504. For example, end 532 can be coupled to tube 229 of reagent vapor supply system 200 shown in FIG. In some embodiments, tube 524 has an outer diameter of about 6 millimeters. The resonant cavity 520 defines the length / along the y-axis. The length / corresponds to or is approximately equal to one full wavelength λ of the lowest level resonant mode of the cavity 520. Tube 524 is positioned at a distance of about 5% from the top 544 of cavity 520 along the y-axis. More specifically, tube 524 is positioned at the opposite node of resonant cavity 520 to maximize the resonant energy transferred from resonant cavity 520 to tube 524. In some implementations, magnetron 512 is a 900 watt magnetron with short antenna 514 that provides microwave power to resonant cavity 520. The power is distributed in the cavity 520 by electromagnetic wave radiation having a frequency value in the microwave spectrum and transferred to the tube 524. Plasma is generated inside the tube 524 due to the resonance energy inside the cavity 520 that interacts with the reagent vapor inside the tube 524. The reagent vapor enters the tube via a tip 540 coupled to the reagent vapor supply source 133727.doc • 35- 200937487 524 due to the pressure drop between the tube 524 and the chemical ionization/drift chamber 5〇8, the reagent vapor supply source (eg) along The helium shaft provides or directs a reagent vapor stream into tube 524. The continued flow of reagent vapor ensures that the microwave plasma is maintained inside tube 524 to produce one or more reagent ions, for example as discussed above. In some embodiments, the resonant cavity 520 is constructed of a silver plated aluminum extrudate having a closed end (e.g., a top 544 and a bottom 548 of the cavity 520). In some embodiments, the microwave choke 532 is cylindrical in shape having a centerline (not shown) that is parallel, coaxial, or collinear with the x-axis. The microwave reactor 532 can be made of stainless steel or aluminum. In some implementations, the channel 533 is placed within one or both of the microwaves 532. The length of the channel 533 can be approximately % of the y-axis. The second end 552 of the tube 524 terminates at a face 557 (see Figure 6) that is clamped inside the flange 560 and connected to the orifice plate 556 of the chemical ionization/drift zone 508. Reagent ions pass through orifice plate 556 from tube 524 and into chemical ionization/drift region 508. The chemical ionization/drift region 508 is defined in part by a ring electrode 564 disposed in a spatial relationship along the axis of the drifting outer chamber 562 along the re-axis. A potential is applied to each of the electrodes 564 to generate an electromagnetic field. In some embodiments, the electromagnetic field has a linear field gradient guided along the x-axis. The value of the positive potential applied to each electrode decreases in the positive direction of the X-axis to produce an axially-directed linear field gradient. Nonlinear field gradients can also be used. The electrodes 564 are electrically isolated from one another by an annular insulating component 568 disposed therebetween. The electric field facilitates interaction between reagent ions from reagent ion source 504 (e.g., tube 524) and samples introduced at chemical ionization/drift chamber port 566. 133727.doc -36- 200937487 The drift external chamber 562 also includes a fruit pumping port 576 that is lightly coupled to the pumping system 58. The drift external chamber 562 also includes an electrical feedthrough port (not shown) and has a sample introduction line (not shown) for fluid communication with the total dust gauge 572 and a second gauge (not shown). Port 571 of the fitting (not shown). In one embodiment, the chest pumping system 58 includes a thirsty wheel molecule and a diaphragm pre-pump (not shown). Pumping system 580 establishes the desired pressure within the drift outer chamber and chemical ionization/drift region 508. The pressure inside the drift chamber 508 can be monitored by the total pressure gauge 572, and the pressure in the drift external chamber 562 can be monitored by the first gauge (data not provided by the gauges can be supplied as input to the input) The control group (not shown), for example, is used for system diagnostic processing. The chemical ionization/drift zone 508 and the drift external chamber 562 include a flange 584 that is opposite the mass spectrometer 592 via the double-sided flange 586. The flange 5-1 is shown in the system 500. The mass spectrometer 592 shown in the system 500 is four-inclusive and includes a fluid flow = & the pumping system 596 establishes the pressure inside the mass spectrometer 592 (eg ) to measure the mass of reagent ions and product ions, and to reduce the negative effects of this measurement of ion mass produced by interaction with environmental components in the mass spectrometer. Self-chemical ionization / drift The ions passed to the mass spectrometer 592 in region 508 are directed to mass spectrometer probe 594 by ion extraction electrode 582. In some implementation green samples, an ion optical assembly (not shown) can be used in conjunction with ion extraction electrode m = Pass to mass spectrometer 592 The number of reagent ions and product ions is exemplified by § '彳 using a $ coke or three-element single lens. Spectrometer probe 133727.doc -37· 200937487 ::What is an electric offset quadrupole mass analyzer or mass filter. Quadrupole Mass: The thief consists of four (for example) flat metal 'stems that are positioned as square vertices and positioned parallel to the X-axis. The opposite pair of poles are electrically coupled to produce two electrical coupling couples j. With a positive DC voltage component A second amount of RF energy or voltage that can be applied to the rod of the first dipole and that has a negative DC (quad) component can be applied to the rod of the second dipole. The ions in the stable orbit through the mass filter are The rods are transferred in a direction generally parallel to the 捍 (9), for example, parallel to the central axis of the square. The RFw or DC energy applied to spectrometer probe 594 produces a mass selective vibrating field. The mass selective field produces ion orbitals having a specified geometry, such as a vibrating geometry having a direction that is often along the X axis. The trajectory is commanded so that the mass-to-charge ratio within the specified range reaches the (four) device, and the ions outside the reduced range do not follow = the channel reaches the detection IS 598. Unselected ions collide with the rod and are not collected by the debt detector 598. In some embodiments, the mass selective field varies depending on the value of the energy (e.g., potential, DC energy, or RF energy) applied to the quadrupole. The bandwidth of the quality value can be selected using a particular field strength or flux. Additionally, spectrometer probe 594 can scan the mass range by varying the f-quantity selective field. In some embodiments, the spectrometer probe 594 includes a three-pole linear, coaxial series called a triple filter quadrupole mass analyzer. In such embodiments, the first and third elements of the triple passer are relatively short (eg, approximately W or 2.54 cm) &quot;single RF&quot; filtered $, carried by the second or main filter To (4) the pressure element. These &quot;separate rf&quot; pre and post filters act as ion lenses and concentrate ions on the mass filter assembly 133727.doc -38- 200937487 focus on the mass filter assembly. The purpose of using the pre- and post-filters in this manner is to improve the transport of ions through the filter assembly by increasing the amount of ions transported, especially with higher mass (eg, over about 80 atomic mass units). Plasma transfer. The front and rear filters also improve the mass resolution and abundance sensitivity of the filter. Successfully worn • The ions of the double filter assembly are collected by detector 598. In some implementations, the detector 598 is an electron multiplier detector. The electron multiplier detector amplifies the electricity generated by the ion collision with the entrance or front of the detector (not shown). signal. Figure 6 is an enlarged view of the chemical ionization/drift region 5〇8 shown in Figure 5. The chemical ionization/drift zone 508 includes a chemical ionization/drift chamber 62A that can be worn on the ion extraction electrode 612 that defines the extraction orifice 616. As the reagent ions move from the plasma zone 608 to the chemical ionization/drift zone 5〇8, the reagent ions pass through the extraction orifice 616. The ion extraction electrode 612 can be fluidly coupled to an energy source (not shown). The ions pass through the extraction orifice 616 under the influence of an electromagnetic field generated by the zeta potential applied to the extraction electrode 612. The extraction electrode 612 is coupled to the flange 6〇4 by one or more screws (not shown) having a ceramic insert or an insert made of another insulating material. The screws and inserts pass through an insulating (e.g., ceramic or PEEK) collar 014 to further electrically isolate the extraction electrode 612 from the flange 604. In some embodiments, the value of the potential applied across the extraction electrode 612 affects the chemical ionization of the reagent ions along their centerline a (substantially parallel to the X-axis) to the chemical ionization/drift region 5〇8/ The average energy in the drift chamber 620. Additionally, the size and/or geometry of the extraction orifice 616 determines the amount of reagent ions flowing into the chemical ionization/drift 133727.doc • 39-200937487 shift chamber 620. Ions pass through the extraction orifice 616 in the extraction electrode 612 and enter the chemical ionization/drift chamber 620 generally along the centerline A (e.g., in the axial direction of the X-axis or parallel to the X-axis). An electromagnetic field is generated in the drift region 620 by the potential applied to each of the one or more plate electrodes 624 and the drift end plate electrodes 625 (also referred to as electrode stacks). The electrodes may be made of metal or other conductive material. In some implementations, plate electrode 624 and drift end plate electrode 625 each have an annular shape with central orifices 630 and 633 aligned with centerline A. The center orifice 630 of each plate electrode may have a diameter of approximately 10 mm. The center orifice 633 of the drift end plate electrode may have a diameter of approximately 2 mm. Other diameters and geometries (e.g., non-circular) are within the scope of the present invention. The plate electrode 624 and the drift end plate electrode 625 are physically and electrically isolated by one or more insulating collars 628. In some embodiments, the insulating collar 628 has an annular shape with a central orifice 631 aligned with the centerline A. The central orifice 631 in the insulating collar 628 can have a diameter of approximately 20 mm. Other diameters and geometries are within the scope of the present invention. Suitable materials for the insulating collar 628 include polymeric materials such as those made from PEEK:TM sold by Victrex pic of Lancashire, England, or static consumption plastics such as those from Quadrant Engineering Plastic Products of Reading, Pennsylvania. SEMITRON® for sale. Ring 0 (not shown) is located inside the annular groove on either side of the insulating collar 628. The ankle ring facilitates a hermetic seal at the interface between the insulating collar and the plate electrode 624 or the drift end plate electrode 625. In some embodiments, the 0 ring can be obtained from VITON® fluoroelastomer sold by Du Pont Performance Elastomers of Wilmington, Delaware 133727.doc -40-200937487. The extraction electrode 612, the plate electrode 624, and the drift end plate electrode 625 cooperate to generate an electromagnetic field inside the chemical ionization/drift chamber 620. In some implementations, the electromagnetic field has a linear field gradient along the X axis. The electromagnetic field gradient can also be non-linear, for example, based on the difference between the potential applied to each of the extraction electrode 丨2, the plate electrode 624, and the drift end plate electrode 625. The electromagnetic field directs the reagent ions and aids in the interaction between the reagent ions and the components of the sample fluid. © In some embodiments, along the centerline A, a decreasing potential is applied to each of the plate electrode 624 and the drift end plate electrode 62 5 in an increasing direction along the X axis to facilitate reagent ions and The product ions flow within the chemical ionization/drift chamber 620. The sample gas system is, for example, as discussed in Figure 1, via a port in one of the drifting external chambers (e.g., port 57A of Figure 5) and then via port 632 in the side of insulating collar 628, from the sample supply source (not shown) is supplied to the chemical ionization/drift chamber 62A. A similar port in the side of the other insulating collar 0 628 can circulate with the gauge 572 fluid on port 571 of Figure 5 to aid in the measurement of the pressure inside the chemical ionization/drift chamber 62. In some embodiments, the sample supply source is comprised of a mass flow controller that controls the flow of the fluid sample entering the chemical ionization/drift chamber 020. The sample gas is released along the centerline A in an increasing direction along the X-axis and interacts with the reagent ions. The plate electrode 624 and the drift end plate electrode 625 are fixed to an extraction electrode 612 that supports the plate electrode 624 and the drift end plate electrode 625 inside the chemical ionization/penetration chamber 620. In some implementations, a control module (not shown) is coupled to each of the ion extraction 133727.doc 200937487 pole 612, the plate electrode 624, and the drift end plate electrode 625 to provide a potential to the electrodes 612, 624. And each of 625. The control module also monitors other parameters within the chemical ionization/drift chamber 620, such as field gradients, pressure, or detected ionic strength. The control module resets or adjusts the value of the potential applied to each of ion extraction electrode 612, plate electrode 624, and drift end plate electrode 625 when the value of the particular monitored parameter deviates from the predetermined threshold. In some implementations, the control module automatically changes the potential of each of the ion extraction electrode 612, the plate electrode 624, and the drift end plate electrode 625 via a feedback loop in response to a change in the parameters of the chemical ionization/drift chamber 620. . For example, the control module can establish an electric field gradient and pressure as an initial condition or mode that determines the optimal e/n (e.g., charge density) setting for a given sample monitoring demand. In some implementations, the control module can monitor the parameters of the chemical ionization/drift chamber 620 and maintain an optimal e/n level via an immediate adjustment of the electric field gradient and/or pressure. In some embodiments, the control module can be based on user-induced adjustments at the e/n level - for example, chemical ionization when different e/n levels are used to distinguish between two isostatic compounds / Drift chamber 620 changes in field gradient and/or pressure level. In some embodiments, the electric field gradient established by ion extraction electrode 612, plate electrode 624, and drift end plate electrode 625 is linear along the x-axis (or centerline A). In some implementations, the electric field gradient is non-linear. Another parameter that can be monitored by the control module and associated with the electric field, pressure, and e/n levels within the chemical ionization/drift chamber 620 is the ratio of product ions to reagent ions. The drift outer chamber 562 incorporates a fixed flange 636 that is secured to the corresponding flange 640 of the mass spectrometer 644 by a bilateral flange 648 disposed therebetween in the middle of the 133727.doc • 42·200937487. Ion extraction electrode 652 defining extraction orifice 656 is affixed to flange 648, for example, using one or more insulating screws 660. An insulating collar 658 (e.g., made of ceramic) electrically isolates the ion extraction electrode 652 from the bilateral flange 648. The metal plate 659 shields the insulating collar 658 and reduces the accumulation of surface charges, which may interfere with the ion optics in the region 657 between the chemical ionization/drift chamber 620 and the mass spectrometer 644. A potential is applied to ion extraction electrode 652 to generate an electromagnetic field that directs reagent ions and product ions from chemical ionization/© drift chamber 620 to mass spectrometer 644. Mass spectrometer 644 includes a spectrometer probe 664 having one or more apertures 668 to facilitate vacuum pumping and/or evacuation of mass spectrometer 644 and spectrometer probe 664. Spectrometer probe 664 is generally aligned with centerline A, and ions can enter spectrometer probe 664 via focus electrode 676 along centerline A. Spectrometer probe 664 is coupled to an analysis module that generates and/or exhibits a mass spectrum based on reagents and product ions collected by a detector (not shown) coupled to spectrometer probe 664. In some embodiments, additional ion optics (not shown) are used in region 657 between chemical ionization/drift chamber 620v and mass spectrometer 644, for example, to optimize mass spectrometer 644 The amount of reagent and product ions. Ion optics can be in the form of a focal hole or a three-element single lens. Figure 7 is a plan view of a time-of-flight mass spectrometer system 700 embodying the present invention. System 700 includes an ion source 704 for supplying ions to system 700. Ion source 704 can supply product ions and reagent ions from chemical ionization/drift chamber 620 of, for example, chemical ionization/drift region 508. Ions are transferred from ion source 704 to time-of-flight mass spectrometer 708 via ion current. From 133727.doc -43- 200937487, an ion extraction orifice (not shown) in an ion extraction electrode (not shown) that is electrically isolated from time-of-flight mass spectrometer 708 can be introduced into time-of-flight mass spectrometer 708. The potential can be applied to the ion extraction electrofine to generate an electromagnetic field for use in ionizing the time-of-flight mass spectrometer 708.

飛行時間質譜儀708與在飛行腔室7〇8内建立壓力之泵抽 系統7U流體流通_合。離子㈣向包括—組離子透鏡 720之離子光學組件716&lt;&gt;將一或多個電位施加於離子透鏡 720以提供引導離子束及界定離子束之幾何形狀之電磁 場。舉例而言,離子透鏡720可約束離子流之可能軌道且 進而集中離子流或增加穿過較小體積之離子通量。離子透 鏡720亦可降低離子之速度譜或分布之可變性。在一些實 施態樣中,離子透鏡720為靜電透鏡,諸如施加有一=多 個DC電位之四極透鏡。離子透鏡72G產生與離子流相互作 用以最小化在離子流方向上(例如沿軌道728)之空間可變性 之聚焦場。光學組件716可最佳化離子束或離子流之特 徵,以(例如)增加離子流之離子通量、動量或速度。該等 束特徵之改良允許質譜之改良解析度及質譜中之峰之改良 價測。質譜中之峰指示具有特定f量值之特定離子之㈣ 或數量。質譜及光譜峰之改良解析度允許改良的峰與光譜 或信號雜訊之間的區別。 離子以朝離子束調節器724引導之集中流退出光學組件 716。離子束調節器724可為截斷器組件,其中斷或調節離 子沿軌道728穿過飛行區732之流動。在—些實施態樣中, 離子束調節器724與一驅動系統(未圖示)(例如一控制離子 133727.doc •44· 200937487 束調節器724之參數之數位電子控制模組)耦合。參數可根 據指定中斷或流動型式來控制。該等參數包括施加於離子 束調節器中之交替線路之正電壓及負電壓,該離子束調節 器當施加電壓時產生離子散射且當不施加電位時產生離子 沿執道72 8之不間斷流動(或脈衝)。在一些實施態樣中所 施加正電壓及負電壓之量值可為了最佳效能而加以調整。 在一些實施態樣中’驅動系統根據指定型式,例如,以特 定時段重複打開及關閉離子束調節器閘極來控制離子束調 節器724之參數。驅動系統亦可根據隨機或未指定型式來 控制離子束調節器724之參數。在一些實施態樣中,驅動 系統係基於擬隨機二進序列,其可產生離子沿軌道728之 脈衝流動。在一些實施態樣中,離子束調節器724為可快 速切換以(例如)根據指定流動型式產生脈衝離子流之離子 問極。合適離子閘極之一實例稱為Bradbury_Nielsen閘 極〇 離子沿軌道728,在X軸之漸減方向上移動且移向第二光 學系統736。光學系統736可為藉由反射離子來影響及/或 改變軌道728之方向之反射件(在本文中亦稱為736),其中 軌道728a之路徑與軌道728之路徑對稱,其對稱軸穿過反 射件736之中心。在一些實施態樣中,反射件736包括一組 靜電透鏡(未圖示)以反射及/或重定向離子沿反射軌道728a 之流動。在一些實施態樣中,反射件736由黏合在一起之 電阻玻璃管之2個部分組成。一柵極(未圖示)位於反射件 736之正面730且第二柵極738位於2個黏合管部分之間。固 133727.doc •45- 200937487 定電位可施加於反射件736之正面730處、管之2個部分之 間的柵極處及背面734處的栅極。該類組態允許可在管内 部建立電場梯度以用於離子反射。退出光學系統736後, 離子遵循反射軌道72 8 a達到偵測器740 » 光學系統736可用於使路徑長度/增加而超過離子在飛行 區732中行進之長度,(例如)以增加所獲得質譜中之信號峰 之解析度。路徑長度/可具有以(例如)軌道728及反射軌道 728a中之各者之長度的總和計之已知或測定值。離子橫越 路徑長度/所需之時間量可用於確定試劑離子或產物離子 之質量或質荷比。舉例而言,橫越路徑長度/所需之時間 量指示加速後,在由光學系統716產生之電磁場影響下, 離子在飛行腔室708中之速度或動能。離子橫越路徑長度/ 所花費之時間可與勞侖茲力定律(L〇rentz f〇rce law)及牛頓 第二定律(Newton’s second law) 一起用以確定質量或質荷 比。光學系統736亦可用以校正試劑離子及產物離子之動 能變化。具有相對較高動能之離子比具有相對較低動能之 離子在光學系統中(沿漸減乂軸)行進更遠。該現象有時被稱 為穿透或反射件穿透。在軌道728或反射軌道728a之焦點 上或附近定位偵測器7 4 〇可降低能量分布對質譜之影響。 移動穿過飛行區732之來自離子束調節器724之不同脈衝 的離子可在飛行區732中混合,此引起由㉙測器·接收之 信號或由❹】器74()產生之質譜中的信號卷積4測器74〇 通常位於月&amp;量焦點上或附近以便使退出光學系統之具 才同質量但具有不同能量之離子被偵測器大致同時地收 133727.doc •46· 200937487 集。在一些實施態樣中,偵測器740為堆疊式微通道板型 偵測器。偵測器740以脈衝計數模式操作。脈衝計數模式 允許在穿過飛行區732後,在個別離子達到偵測器時將其 收集。在一些實施態樣中,將偵測器74〇連同信號鑑別 器、放大器及/或時間數位轉換器(TDC)—起使用。 • 當離子束調節器724使用擬隨機二進序列型脈衝時,自 , ㈣測器74G收集之離子所獲得之信號可使用㈣處理技 _ ’諸如統計信號處自技術來解卷積。統計信冑處理技術 〇 &amp;於所卷積信號或光譜之統計分析來提供關於信號或光譜 之資訊。用於解卷積所獲得信號之合適信號處理技術之一 實例為最大概似信號處理。 最大概似信號處理通常基於所量測事件來執行統計計 算。舉例而言,對量測/為丨至#之自變數&amp;及因變數/之 個事件的集合而言,可根據所量測數據&amp;及力確定擬合函 數。擬合函數將包括m個參數α,.,丨為1至讲。擬合函數對各 個事件而言可寫成咖恃⑹〜,α2 ..為)形式。對各個事 件而言,〆X:·)擬合函數可轉化成正規化概率密度函數 ⑺;以〜,,.·,‘)。概率密度函數Λ可在^之觀察值下計 算。概似函數幻,…,〜)為個別概率密度之積,以便使 . 屯〜.,〜) =㊉及各個參K最大概似值可藉由最小 化關於該等參數之概似函數Ζ(α/, 來獲得。 在—些實施態樣中,飛行時間質譜儀7〇〇係使用離子束 調節器724之擬隨機二進序列脈衝來操作以產生卷積信號 或光譜。㈣使用最大概似信號處理將卷積信號或光譜解 133727.doc •47· 200937487 卷積。當以此模式使料’離子束調節器724允許離子可 傳遞歷時總可用時間之大致50%,此允許總可用離子之大 致50%穿過飛行區732。飛行時間質譜儀之此&quot;高負載循環 (high duty cycle)”操作就增加之信號雜訊比、改良靈敏度 及較寬動態範圍而言提供效能益處。在一些實施態樣中了 飛行時間質譜儀700係以單脈衝模式操作,其中來自離子 束調節器724之單脈衝之所有離子係由偵測器74〇在離子束 調節器之後續脈衝觸發之前收集。 除由飛行時間質譜儀700之”高負載循環,,操作提供之益 處外,最大概似信號處理亦提供超過其他信號解卷積方法 之額外效能改良。最大概似信號處理處理如柏松雜訊 (Poisson noise)之信號雜訊而非高斯雜訊(以哪⑹ noise)。最大概似信號處理亦可參考實際器具回應函數, 例如實際離子束調節器脈衝形狀’而非理想化器具回應函 數該等效能改良有助於信號解析度增加以及信號雜訊比 及動態範圍進一步增大。 在一些實施態樣中,最大概似信號處理係由數據分析模 組(未圖示)來執行。數據分析模組亦可用以(例如)基於查 找表或單變數或多變數概率方法來鑑別質譜中之物質。在 一些實施態樣中,數據分析模組可基於多變數統計分析。 合適多變數統計分析之實例包括(例如)使用霍特林型分析 (Hotelling-type analysis)或DModX型分析之偏最小平方判 別分析(PLS-DA)或主要組分分析。在一些實施態樣中,將 數據分析模組用以解譯樣本數據以確定樣本是否與特定群 133727.doc -48 - 200937487 體相關。在一些實施態樣中,數據分析模組監測系統之診 斷輸出以確定是否在例如圖1之系統1〇〇之系統中已發生錯 誤0 存在本文中所述之質譜測定系統及技術之許多應用。詳 言之,可偵測痕量數量或濃度之揮發性有機化合物。即時 偵測及鑑別痕量揮發性有機化合物之靈敏度及能力增強為 本文中之系統及方法提供各種應用。特定應用包括氣體 (例如,環境空氣、來自封閉空間之氣體、來自氣體供應 源之氣體、自固體樣本或自容器或在食物或飲料產品上方 的頂邛二間中發出之乳體)之取樣。隨後,將所取之氣體 引入氣體樣本入口端且與試劑離子交互作用以形成產物離 子。揮發性有機化合物之特定應用及偵測與氣體樣本入口 端如何且在何處定位相關。 在一些實施態樣中,氣體樣本人口端包括特定應用特徵 以使氣體樣本入口端適應應用之需要。舉例而言,在醫學 診斷應用中,氣體樣本入口端可與覆蓋人之鼻及口之面具 耦合。氣體樣本入口端或面具亦可合併有細菌過濾器。在 涉及自含有粒子之環境取樣之應用中,粒子過濾器可併入 (例如)樣本管線或氣體樣本入口端中。在樣本蒸氣含有可 冷凝之物質之應用中,加熱器可併入系統(例如樣本管線) 中以將樣本管線加熱至特定溫度。 樣本氣體收集器之實例包括含有用於氣體傳遞進入氣體 樣本入口端中之出口端之容器、罐或基於真空之產品。氣 體收集器彳收集内部發現氣體之環境中之氣豸,且儲存該 133727.doc •49- 200937487 氣體用於稍後分析’在該狀況下,收集器為相對不透氣 的。在一些實施態樣中,氣體收集器包括出口端,其饋料 至氣體樣本入口端中且進入漂移腔室以供即時偵測及/或 監測。 後文所述之質譜測定系統及方法之各種應用屬於本發明 之範疇及精神範圍内。所述質譜測定技術之應用之一個種 類涉及量測包括環境空氣之空氣中之揮發性有機化合物的 痕量濃度《環境空氣可自封閉空間或非封閉空間(例如, 藉由將氣體樣本入口端接近於環境空氣定位)取樣。 可監測市區中之揮發性有機化合物,以偵測城市及城鎮 中及/或工業場所附近之車輛散發物或污染物。該等揮發 性有機化合物有時稱為人造的voc。舉例而言,工業場所 可包括化學工廠、廢物焚化工廠、鋼及/或水泥生產設 施。工業設施可散發諸如戴奥辛代用品(及以戴奥辛為主 之化合物)、呋喃(及以呋喃為主之化合物)、氣酚、萘、 笨 '甲苯、乙苯、二甲苯(統稱BTEX)物質之v〇c。此外, VOC或城市有害空氣污染物係由管理機構(諸如美國環境 保護署(Environmental Protection Agency in the U.S.)或其 他國家之環境部門(MfE))回應於諸如V〇C起始或非甲烷有 機化合物起始之特定程式來鑑別。 在一些實施態樣中,將氣體樣本入口端定位在廢物焚化 工廠或煙囪附近適用於即時監測及調整(例如即時反饋)以 減少散發物。該即時監測亦適用於確認洗滌器之規定效率 且最佳化燃燒過程。 133727.doc •50· 200937487 在一些實施態樣中,將氣體樣本人口端定位於封閉空間 中以監測封閉空間中之空氣中的v〇c含量。封閉空間之實 例包括建築物内部、車輛内部及航空器驗内部。氣體可自 工作區位置(例如,半導體製造設施或鑄工場中之清潔室) 取樣以確°忍對環境法規(environmental regulations)(例如職 • 業安全及健康法規(occupational safety and heahh regUlatl〇nS))之遵守。氣體樣本入口端亦可用於即時監測 纟偵測建築物中之空氣調節及過濾系統以用於環境空氣控 Ο 制’用於研究,,病態建築&quot;症候群,㈣包括汽漏建築物内 部之建築材料之降解,且測試建築物内部之消耗型產品 (例如,由塗層及材料發出之煙霧)。 本文中所述之質譜測定法可用於監測及偵測(例如)在非 市區、鄉村或偏遠位^中之森林及/或工廠發出之胃。 通常,該類型之VOC稱為”生物源&quot;voc。在一些實施態樣 中,自含有土壤樣本之容器之頂部空間取氣體樣本(例 0 如,以測試自經污染場所或其周圍所取之土壤樣本中之 voc)。質譜測定技術可用於監測、偵測及分析由填埋場 所、畜牧區(包括集中動物飼養操作)及/或水系統發出之氣 • 體。 在非封閉空間中,氣體樣本入口端可定位於汽車或航空 器引擎排氣件之下游以監測及/或定量該等發出物之voc 含量或其他所關注之氣體(包括硫化氫(Hj))。本文中所述 之技術亦可適用於藉由將氣體樣本入口端定位以獲得大氣 氣體來研究大氣化學及/或大氣組成。分析該等氣體以研 133727.doc 51 200937487 究且評估光氧化過程及/或導致 有機氣溶膠之形成的其他機制。括專壓化石物之二級 言之技術亦可適用於食品及飲料工業。舉例而 去來八/飲科產品上方之頂部空間含有可使用質譜測定 分析之氣體。頂部空間可處於封閉空間(例如,在密 封办器内部)或處於非封閉空間中。 食品及飲料應用之實例包括監測、鑑職分群各種食物 :味道及/或香味,該等食物諸如有咖啡、橄欖油、乳製 品、肉製品(包括家禽及豬肉)、魚製品、草藥及香辛料、 啤酒、酒及其錢錢料。可基於促成㈣味道之voc組 分來測定及/或鑑別氣體之味道。化學離子化反應及/或質 子轉移反應質譜測定法可用於(例如)經由分析由於食物中 之細菌活性而產生之VOC來監測食物腐敗及/或腐爛。本 文中之質譜測定法可用於測定食物(例如麵包)之新鮮性, 且^供品質保證及品質控制,以及幫助確定產品穩定性及 存放期《質譜測定技術可用於包括混合、摻合、烘烤及蒸 煮之食品製造之過程監測中,且用於確定特定批次之食物 是否不適於分配或消費。 在食品及飲料工業中,質譜測定法可用於偵測食品中來 自食品包裝之污染(例如,來自塑膠食品包裝之溶劑殘餘 物或污染物)。本文中之質譜測定技術在測試水溶性及脂 溶性抗氧化劑及/或用於各種食品中之其他食品添加劑時 具有適用性。 化學離子化反應及/或質子轉移反應質譜儀亦在醫學及 133727.doc •52- 200937487The time-of-flight mass spectrometer 708 is in fluid communication with a pumping system 7U that establishes pressure within the flight chambers 7〇8. The ions (4) apply an ion optic assembly 716&lt;&gt; to the ion lens assembly 720 comprising one or more potentials to the ion lens 720 to provide an electromagnetic field that directs the ion beam and defines the geometry of the ion beam. For example, ion lens 720 can constrain the possible orbits of the ion current and thereby concentrate the ion current or increase the ion flux through a smaller volume. Ion lens 720 also reduces the variability in the velocity spectrum or distribution of ions. In some embodiments, ion lens 720 is an electrostatic lens, such as a quadrupole lens that applies a plurality of DC potentials. Ion lens 72G produces a focus field that interacts with the ion stream to minimize spatial variability in the direction of ion flow (e.g., along track 728). Optical component 716 can optimize the characteristics of the ion beam or ion current to, for example, increase the ion flux, momentum or velocity of the ion current. The improvement of the beam characteristics allows for improved resolution of the mass spectrum and improved yield measurements of the peaks in the mass spectrum. The peaks in the mass spectrum indicate the (four) or number of specific ions with a particular f magnitude. Improved resolution of mass spectra and spectral peaks allows for improved peak-to-spectral or signal-to-signal differences. The ions exit the optical assembly 716 in a concentrated flow directed toward the ion beam regulator 724. The ion beam adjuster 724 can be a shutoff assembly that interrupts or regulates the flow of ions through the flight zone 732 along the track 728. In some implementations, the ion beam adjuster 724 is coupled to a drive system (not shown) (e.g., a digital electronic control module that controls the parameters of the ion 133727.doc • 44· 200937487 beam adjuster 724). Parameters can be controlled based on the specified interrupt or flow pattern. The parameters include positive and negative voltages applied to alternating lines in the ion beam regulator that produce ion scattering when a voltage is applied and produce uninterrupted flow of ions along the lane 72 8 when no potential is applied. (or pulse). The magnitude of the positive and negative voltages applied in some embodiments can be adjusted for optimum performance. In some implementations, the drive system controls the parameters of the ion beam regulator 724 according to a specified pattern, e.g., repeatedly opening and closing the ion beam regulator gate for a particular period of time. The drive system can also control the parameters of the ion beam adjuster 724 based on a random or unspecified pattern. In some implementations, the drive system is based on a quasi-random binary sequence that produces a pulsed flow of ions along the track 728. In some embodiments, ion beam modifier 724 is an ion beam that can be rapidly switched to produce a pulsed ion current, e.g., according to a specified flow pattern. An example of a suitable ion gate is referred to as a Bradbury_Nielsen gate ion along track 728 that moves in the decreasing direction of the X axis and moves toward the second optical system 736. Optical system 736 can be a reflective member (also referred to herein as 736) that affects and/or changes the direction of track 728 by reflecting ions, wherein the path of track 728a is symmetrical with the path of track 728, and its axis of symmetry passes through the reflection The center of piece 736. In some implementations, the reflector 736 includes a set of electrostatic lenses (not shown) to reflect and/or redirect the flow of ions along the reflective track 728a. In some embodiments, the reflector 736 is comprised of two portions of a resistive glass tube that are bonded together. A gate (not shown) is located on the front side 730 of the reflector 736 and a second gate 738 is located between the two bonded tube portions. Solid 133727.doc •45- 200937487 A constant potential can be applied to the front side 730 of the reflector 736, the gate between the two portions of the tube, and the gate at the back side 734. This type of configuration allows an electric field gradient to be established inside the tube for ion reflection. Upon exiting the optical system 736, the ions follow the reflective track 72 8 a to reach the detector 740 » The optical system 736 can be used to increase the path length/increase beyond the length of the ions traveling in the flight zone 732, for example, to increase the mass spectrum obtained. The resolution of the signal peak. The path length/can have known or measured values, for example, the sum of the lengths of each of the track 728 and the reflective track 728a. Ion traverse path length / amount of time required can be used to determine the mass or mass to charge ratio of reagent or product ions. For example, the length of the traversing path/the amount of time required indicates the velocity or kinetic energy of the ions in the flight chamber 708 under the influence of the electromagnetic field generated by the optical system 716 after acceleration. The length of the ion traversing path/time spent can be used with L'rentz f〇rce law and Newton's second law to determine mass or mass-to-charge ratio. Optical system 736 can also be used to correct for kinetic changes in reagent ions and product ions. Ions with relatively higher kinetic energy travel farther in the optical system (along the decreasing 乂 axis) than ions with relatively lower kinetic energy. This phenomenon is sometimes referred to as penetration or penetration of the reflector. Positioning the detector 7 4 at or near the focus of the track 728 or the reflective track 728a reduces the effect of the energy distribution on the mass spectrum. Ions of different pulses from ion beam modifier 724 that move through flight zone 732 can be mixed in flight zone 732, which causes a signal in the mass spectrum produced by the detector or by the detector 74(). The convolution 4 detector 74 is typically located at or near the Moon &amp; volume focus so that ions of the same quality but different energies exiting the optical system are collected by the detector at approximately the same time 133727.doc • 46· 200937487 episodes. In some implementations, detector 740 is a stacked microchannel plate type detector. The detector 740 operates in a pulse counting mode. The pulse count mode allows individual ions to be collected as they pass through the flight zone 732 as they reach the detector. In some implementations, the detector 74 is used in conjunction with a signal discriminator, an amplifier, and/or a time digital converter (TDC). • When the ion beam adjuster 724 uses a quasi-random binary sequence type pulse, the signal obtained from the ions collected by the (four) detector 74G can be deconvoluted using techniques from the (4) processing technique, such as statistical signals. Statistical Signal Processing Techniques amp &amp; statistical analysis of convolved signals or spectra to provide information about signals or spectra. One example of a suitable signal processing technique for deconvolving the resulting signal is the most approximate signal processing. Most likely signal processing typically performs statistical calculations based on measured events. For example, for a set of measurements/indicators of 丨 to # and variables and events, the fitting function can be determined based on the measured data & The fitting function will consist of m parameters α, ., 丨 from 1 to speak. The fitting function can be written in the form of a curry (6)~, α2 ..) for each event. For each event, the 〆X:·) fitting function can be transformed into a normalized probability density function (7); with ~,,.,, ‘). The probability density function 计 can be calculated under the observed value of ^. The approximate function illusion, ..., ~) is the product of the individual probability densities, so that 屯~.,~) = ten and the most approximate values of the various parameters can be minimized by minimizing the approximate function of the parameters Ζ ( In some embodiments, the time-of-flight mass spectrometer 7 is operated using a pseudo-random binary sequence pulse of the ion beam adjuster 724 to produce a convolved signal or spectrum. (4) The most approximate use The signal processing convolves the convolved signal or spectral solution 133727.doc •47· 200937487. When this mode is used, the ion beam regulator 724 allows the ion to pass through approximately 50% of the total available time, which allows the total available ion Approximately 50% passes through the flight zone 732. This &quot;high duty cycle&quot; operation of the time-of-flight mass spectrometer provides performance benefits in terms of increased signal to noise ratio, improved sensitivity, and wide dynamic range. In an embodiment, the time-of-flight mass spectrometer 700 operates in a single pulse mode in which all of the ions from a single pulse of the ion beam adjuster 724 are collected by the detector 74 before the subsequent pulse triggering of the ion beam adjuster. In addition to the benefits of operation provided by the high-load cycle of the time-of-flight mass spectrometer 700, most likely signal processing provides additional performance improvements over other signal deconvolution methods. Most likely signal processing such as Bosson noise (Poisson noise) signal noise instead of Gaussian noise (which (6) noise). Most likely signal processing can also refer to the actual instrument response function, such as the actual ion beam regulator pulse shape ' instead of the idealized instrument response function. Such performance improvement will help increase the signal resolution and further increase the signal noise ratio and dynamic range. In some implementations, the most approximate signal processing is performed by a data analysis module (not shown). The module can also be used to identify substances in the mass spectrum, for example, based on lookup tables or single variable or multivariate probability methods. In some implementations, the data analysis module can be based on multivariate statistical analysis. Examples include, for example, partial least square discriminant analysis using Hotelling-type analysis or DModX type analysis PLS-DA) or primary component analysis. In some implementations, the data analysis module is used to interpret the sample data to determine if the sample is associated with a particular group 133727.doc -48 - 200937487. In some implementations The data analysis module monitors the diagnostic output of the system to determine if an error has occurred in a system such as the system of Figure 1. There are many applications of the mass spectrometry systems and techniques described herein. Detection of trace amounts or concentrations of volatile organic compounds. The sensitivity and ability to detect and identify trace amounts of volatile organic compounds in real time provides a variety of applications for the systems and methods herein. Specific applications include sampling of gases (e.g., ambient air, gases from a confined space, gases from a gas supply, from a solid sample, or from a container or from a top of a food or beverage product). Subsequently, the taken gas is introduced into the gas sample inlet end and interacts with the reagent ions to form product ions. The specific application and detection of volatile organic compounds is related to how and where the gas sample inlet is located. In some embodiments, the gas sample population end includes specific application features to adapt the gas sample inlet end to the needs of the application. For example, in medical diagnostic applications, the gas sample inlet end can be coupled to a mask covering the nose and mouth of a person. The gas sample inlet or mask may also incorporate a bacterial filter. In applications involving sampling from an environment containing particles, the particle filter can be incorporated into, for example, a sample line or a gas sample inlet end. In applications where the sample vapor contains condensable material, the heater can be incorporated into a system (e.g., a sample line) to heat the sample line to a particular temperature. Examples of sample gas collectors include vessels, canisters or vacuum based products containing gas for delivery into the inlet end of the gas sample inlet. The gas collector collects gas in the environment where the gas is found internally and stores the gas for later analysis. In this case, the collector is relatively gas impermeable. In some embodiments, the gas collector includes an outlet end that feeds into the gas sample inlet end and into the drift chamber for immediate detection and/or monitoring. Various applications of the mass spectrometry systems and methods described hereinafter are within the scope and spirit of the invention. One type of application of the mass spectrometry technique involves measuring trace concentrations of volatile organic compounds in air including ambient air. "Environmental air can be self-enclosed or non-enclosed (eg, by approaching the gas sample inlet end) Sampling for ambient air positioning). VOCs in urban areas can be monitored to detect vehicle emissions or contaminants in cities and towns and/or industrial sites. These volatile organic compounds are sometimes referred to as artificial vocs. For example, industrial sites may include chemical plants, waste incineration plants, steel and/or cement production facilities. Industrial facilities can distribute materials such as dioxin substitute (and dioxin-based compounds), furan (and furan-based compounds), gas phenol, naphthalene, stupid 'toluene, ethylbenzene, xylene (collectively BTEX) substances. 〇c. In addition, VOCs or urban hazardous air pollutants are responded to by a regulatory agency (such as the Environmental Protection Agency in the US or other national environmental agencies (MfE)), such as V〇C starting or non-methane organic compounds. Start with a specific program to identify. In some embodiments, positioning the gas sample inlet end adjacent to the waste incineration plant or stack is suitable for immediate monitoring and adjustment (e.g., immediate feedback) to reduce emissions. This instant monitoring is also suitable for confirming the specified efficiency of the scrubber and optimizing the combustion process. 133727.doc • 50· 200937487 In some embodiments, the gas sample population end is positioned in an enclosed space to monitor the v〇c content in the air in the enclosed space. Examples of enclosed spaces include interiors of buildings, interiors of vehicles and interiors of aircraft inspections. Gas can be sampled from the location of the work area (for example, a semiconductor manufacturing facility or a clean room in a caster yard) to ensure that environmental regulations (such as occupational safety and heahh regUlatl〇nS) are met. ) compliance. The gas sample inlet can also be used for immediate monitoring, detecting air conditioning and filtration systems in buildings for ambient air control, 'for research, diseased buildings' syndromes, (iv) including buildings inside steam leak buildings Degradation of materials and testing of consumable products inside the building (eg, fumes from coatings and materials). The mass spectrometry described herein can be used to monitor and detect, for example, the stomachs of forests and/or factories that are not in urban, rural, or remote locations. Typically, this type of VOC is referred to as a "biological source". In some embodiments, a gas sample is taken from the headspace of a container containing a soil sample (eg, for testing from a contaminated site or its surroundings) The vocabulary in soil samples. Mass spectrometry can be used to monitor, detect, and analyze gas generated by landfills, livestock areas (including concentrated animal feeding operations), and/or water systems. In non-enclosed spaces, The gas sample inlet end can be positioned downstream of the vehicle or aircraft engine vent to monitor and/or quantify the vocal content of the stimuli or other gases of interest (including hydrogen sulfide (Hj)). It can also be applied to study atmospheric chemistry and/or atmospheric composition by positioning the gas sample inlet end to obtain atmospheric gases. The gases are analyzed to evaluate the photooxidation process and/or lead to organic aerosols. 133727.doc 51 200937487 Other mechanisms of formation, including the second-level technology of specializing in fossils, can also be applied to the food and beverage industry. For example, go to the top space above the eight/drink products. The gas can be analyzed using mass spectrometry. The headspace can be in an enclosed space (for example, inside a sealed container) or in a non-enclosed space. Examples of food and beverage applications include monitoring, sanctioning, and grouping of various foods: taste and/or aroma Such foods as coffee, olive oil, dairy products, meat products (including poultry and pork), fish products, herbs and spices, beer, wine and their money materials can be determined based on the voc component that contributes to the taste And/or identifying the taste of the gas. Chemical ionization and/or proton transfer reaction mass spectrometry can be used to monitor food spoilage and/or decay, for example, by analyzing VOCs produced by bacterial activity in food. Mass spectrometry can be used to determine the freshness of foods (such as bread), and to provide quality assurance and quality control, as well as to help determine product stability and shelf life. Mass spectrometry technology can be used to include mixing, blending, baking and cooking. The process of food manufacturing is monitored and used to determine if a particular batch of food is unsuitable for distribution or consumption. In the beverage industry, mass spectrometry can be used to detect contamination from food packaging in foods (eg, solvent residues or contaminants from plastic food packaging). The mass spectrometry techniques in this paper test water-soluble and fat-soluble antioxidants and / or applicability when used in other food additives in various foods. Chemical ionization and / or proton transfer reaction mass spectrometer is also in medicine and 133727.doc • 52- 200937487

,健=域具有作為用於診斷或預後之器具之應用 吕’氣體樣本人口端可接近人類口腔定位时集人類啤 吸從而提供至質譜測定系統。呼吸中之v〇c可指示 體内特U病或身體病狀之存在。存在涉及v〇c之;^分 析應用之若干實例。舉例而言,可分析呼吸以藉由偵測: 疋院k或苯何生物來篩檢各種類型之癌症,例如肺癌。就 諸如肺結核、糖尿病、真菌感議如在㈣患者中)、精 神分裂症及/或雙極性病症之其他病狀而言,亦可基於患 者之呼吸中之voc物質及其數量來分析呼吸。 〜 本文中所述之質譜測定法亦可用u監測腎或其他腎功 月匕。g存在細菌感染時,囊踵性纖維化患病者之人類呼吸 可包括特定VOC’且可診斷感染。在一些實施態樣中,人 類呼吸包括指示器官移植排斥反應之特定voc。人類呼吸 亦可包括痕量濃度之效能增強藥物,其可藉由所述光譜法 來偵測。VOC之呼吸分析及偵測亦可用以特製用於運動員 及患者之飲食及訓練方案。使用本文令所述之質譜儀,對 人類呼吸之VOC分析可實現對代謝功能之評估及監測,及 對甲狀腺問題之診斷。 化學離子化反應及/或質子轉移反應質譜測定法在安全 性、生物安全性、法醫科學及刑事偵查領域具有應用。舉 例而言’在此所述之系統及方法可用於監測及偵測爆炸性 物質、化學戰劑(CWA)及/或戰場氣體、助燃劑(在縱火調 查中)及埋葬屍體之位置。此外’氣體樣本入口端可經定 位以收集人類呼吸以便篩檢對CWA或戰場氣體之曝露。質 133727.doc -53- 200937487 譜測定法可用於偵測及分析特定voc,其為不同體液(例 如,在犯罪現場所收集之證據)之特徵。本文中所述之概 念亦可適用於經由呼吸分析,或藉由將氣體樣本入口端與 懷疑含有藥物之容器耦合來筛檢及偵測濫用之麻醉劑及/ 或藥物。更一般而言,氣體樣本入口端可與裝運容器或包 裝耦合以偵測voc,其為造成生物安全威脅之材料或物質 (例如炭疽或孢子)之特徵。 所述技術亦可用以監測作物之由V〇C之存在所表明之農 業害蟲及病原體污染。舉例而言,氣體樣本入口端可定位 於榖物附近以偵測穀物中之真菌毒素(黴菌毒素)之存在。 化學離子化反應及/或質子轉移反應質譜測定法亦可用以 债測收穫後作物中(例如’在分配至食品及飲料生產公司 之前)之真菌或昆蟲。 化學離子化反應及/或質子轉移反應質譜測定法應用亦 存在於化妝品、化妝用品及消費型醫藥工業中,諸如,在 產品開發階段期間分析及測試產品。在生產過程期間,亦 可使用質譜測定法以在分配之前偵測任何疵點或有缺陷的 產品。 來自化妝品、化妝用品及消費型醫藥工業之應用之實例 包括基於鑑別有助於特定芳香劑(例如,香水、止汗劑及 除臭劑)之VOC組分的芳香劑研究及開發。在此所述之概 念亦可適用於開發及測試化妝用品及消費型產品(例如, 在用於測試期間或於實驗室環境中,監測VOC含量及偵測 VOC水平)。該等產品包括漱口水、牙膏、肥皂、防腐軟 133727.doc •54· 200937487 膏及乳膏、除臭劑及止汗劑。口腔衛生產品亦可使用呼吸 分析來分析及監測。如同食品及飲料工業,化學離子化反 應及/或質子轉移反應質譜測定法可用於化妝品、化妝用 品及消費型醫藥產品之通用品質控制及/或品質保證程 式’包括評估產品穩定性及/或存放期。 存在化學離子化反應及/或質子轉移反應質譜測定法之 額外應用。舉例而言’所述概念可用於生物醫藥工業中之 過程監測及控制,例如,監測及鑑別在醱酵過程期間產生 之VOC。某些管理當局(例如,國際ASTM)已公布旨在改 良生物醫藥產品製造之品質、安全性及效率的目標。將氣 體樣本入口端定位以在製造過程期間收集用於在線分析之 樣本可促進彼等管理目標之實現。 在些實施態樣中,質譜測定法可用於生物學研究目 的,用以偵測與植物葉子創口及防禦機制相關之痕量濃度 之VOC。在一些實施態樣中,氣體樣本入口端被定位以自 例如烴羽流(hydrocarbon plume)之氣體供應源收集樣本。 氣體供應源之VOC含量係根據上文所述之方法來測定。烴 羽流可扣示油及/或氣體沈積物,且本文中之質譜測定技 術可用於石油勘探。化學離子化反應及/或質子轉移反應 質譜測定法亦可用於分析及最佳化汽車工業中之觸媒效 能。在該等應用中,氣體樣本入口端被定位以收集觸媒前 及觸媒後氣體物質,(例如)用於比較目的。其他應用將對 熟%此項技術者而言為顯而易見的,且其屬於本發明之範 疇及精神範圍内。 I33727.doc -55- 200937487The health=domain has applications as an instrument for diagnosis or prognosis. The gas sample population can be brought close to human oral positioning to provide human beer to the mass spectrometry system. V〇c in the breath can indicate the presence of a specific U disease or physical condition in the body. There are several examples of applications involving v〇c; For example, breathing can be analyzed to detect various types of cancer, such as lung cancer, by detecting: brothel k or benzene organisms. For reasons such as tuberculosis, diabetes, fungal instimulation as in (4) patients, schizophrenia and/or other conditions of bipolar disorder, breathing may also be analyzed based on the vocal substance in the patient's breath and its amount. ~ Mass spectrometry as described herein can also be used to monitor kidney or other renal function. g In the presence of a bacterial infection, the human breath of a patient with cystic fibrosis may include a specific VOC&apos; and may diagnose the infection. In some embodiments, human breathing includes a particular vocium indicative of an organ transplant rejection. Human respiration can also include trace levels of potency enhancing drugs that can be detected by the spectroscopy. VOC respiratory analysis and detection can also be used for diet and training programs for athletes and patients. Using the mass spectrometer described in this document, VOC analysis of human respiration can be used to assess and monitor metabolic function and to diagnose thyroid problems. Chemical ionization and/or proton transfer mass spectrometry have applications in the fields of safety, biosafety, forensic science and criminal investigation. For example, the systems and methods described herein can be used to monitor and detect explosive materials, chemical warfare agents (CWA) and/or battlefield gases, combustion improvers (in arson investigations), and locations where corpses are buried. In addition, the inlet end of the gas sample can be positioned to collect human breath for screening for exposure to CWA or battlefield gases. Quality 133727.doc -53- 200937487 Spectral assays can be used to detect and analyze specific vocatures that characterize different body fluids (eg, evidence collected at a crime scene). The concepts described herein may also be applicable to screening and detecting abuse of anesthetics and/or drugs via a breath analysis or by coupling a gas sample inlet end to a container suspected of containing a drug. More generally, the gas sample inlet end can be coupled to a shipping container or package to detect voc, which is characteristic of the material or substance (e.g., anthrax or spore) that poses a biosafety threat. The technique can also be used to monitor agricultural pest and pathogen contamination as indicated by the presence of V〇C in crops. For example, the gas sample inlet end can be positioned near the sputum to detect the presence of mycotoxins (mycotoxins) in the grain. Chemical ionization reactions and/or proton transfer reaction mass spectrometry can also be used to measure fungi or insects in post-harvest crops (e.g., prior to distribution to food and beverage production companies). Chemical ionization and/or proton transfer reaction mass spectrometry applications are also found in the cosmetics, cosmetics and consumer pharmaceutical industries, such as analyzing and testing products during the product development phase. Mass spectrometry can also be used during the manufacturing process to detect any defects or defective products prior to dispensing. Examples of applications from the cosmetics, cosmetics, and consumer pharmaceutical industries include the research and development of fragrances based on the identification of VOC components that contribute to particular fragrances (e.g., perfumes, antiperspirants, and deodorants). The concepts described herein are also applicable to the development and testing of cosmetics and consumer products (for example, monitoring VOC levels and detecting VOC levels during testing or in a laboratory setting). These products include mouthwash, toothpaste, soap, antiseptic soft 133727.doc •54· 200937487 creams and creams, deodorants and antiperspirants. Oral hygiene products can also be analyzed and monitored using respiratory analysis. Like the food and beverage industry, chemical ionization and/or proton transfer mass spectrometry can be used for general quality control and/or quality assurance programs for cosmetics, cosmetics and consumer pharmaceutical products, including evaluation of product stability and/or storage. period. There are additional applications for chemical ionization and/or proton transfer reaction mass spectrometry. For example, the concepts can be used for process monitoring and control in the biopharmaceutical industry, for example, to monitor and identify VOCs produced during the fermentation process. Some regulatory authorities (for example, International ASTM) have announced targets aimed at improving the quality, safety and efficiency of biopharmaceutical manufacturing. Positioning the gas sample inlet end to collect samples for online analysis during the manufacturing process can facilitate the achievement of their management objectives. In some embodiments, mass spectrometry can be used for biological research purposes to detect trace concentrations of VOC associated with plant leaf wound and defense mechanisms. In some embodiments, the gas sample inlet end is positioned to collect a sample from a gas supply source such as a hydrocarbon plume. The VOC content of the gas supply is determined according to the method described above. Hydrocarbon plumes can be used to deduct oil and/or gas deposits, and the mass spectrometry techniques herein can be used for petroleum exploration. Chemical ionization and/or proton transfer reactions Mass spectrometry can also be used to analyze and optimize the catalytic performance of the automotive industry. In such applications, the gas sample inlet end is positioned to collect the pre-catalyst and post-catalyst gas species, for example, for comparison purposes. Other applications will be apparent to those skilled in the art and are within the scope and spirit of the invention. I33727.doc -55- 200937487

在二實施I、樣中,併入了本發明原理之譜儀係用作一 電子鼻系統之一組件。在一些實施態樣中,該電子鼻系統 亦包括一用於分析由該諸儀輸出之信號之分析模組。電子 鼻系統可用於分析蒸氣及氣體,包括固體或液體物質上方 之頂部m中之彼等蒸氣及氣體,該等物質包括複數種組 分。該分析模組分析由該譜儀輸出之信號且能夠鑑別樣本 中之特定組分。此外,該分析模組執行對所存在之物質之 整體指紋分析(料,獲得化學特徵),該分㈣與先前儲 存之資訊中之其他物質的指紋圖譜相比較。 在一些實施態樣中,分析模組包括電腦處理器,其執行 (例如)尤其適用於處理許多樣本參數(例如,為某些氣味及 味道之特徵之許多VOC組分峰)之多變數分析算法、模式 鑑別算法或神經網路算法以表徵及比較樣本。I例而言, 多變數分析技術適用於觀察及分析一個以上統計變數,且 可減少來自複雜指紋譜圖之數據以使簡單比較能夠進行。 使用該方法,可將相似味道及氣味分群並可鑑別且突顯出 非正常值(outlier) 〇 電子鼻系統已被用於分析由常常係由許多組分例如, 複數種不同v〇c物質)組成之食品及飲料所發出之VOC的 整體指紋圖譜。舉例而f,氣味係由各自具有特定尺寸及 形狀之分子組成。該等分子中之各者皆在人類鼻子中具有 呈相應尺寸及形狀之㈣。譜儀可用於㈣地對氣味樣本 内之許多不同分子採集指紋圖譜。電子鼻系統之額外應用 包括偵測對疾病而言特定之氣味以供醫學診斷,及偵測污 133727.doc -56- 200937487 染物及氣體漏泄用於環境保護。在一些實施態樣中,電子 鼻系統包括額外感應器(例如’ 一或多種氣體感應器,包 括金屬氧化物半導髏(MOS)、導電聚合物(CP)、石英晶體 微量天平及場效應電晶體(MOSFET)感應器),其輸出藉由 分析模組加以分析之信號。 雖然已參考具體實施態樣特定地展示及描述了本發明, 但熟習此項技術者應瞭解,在不脫離如由隨附申請專利範 圍所定義之本發明之精神及範疇的情況下,可對其中之形 δ 式及細節作出各種改變。 【圖式簡單說明】 圖1為說明使本發明具體化之系統之組件的平面圖。 圖2為一質譜測定系統之試劑蒸氣供應源組件之橫截面 圖。 圖3為用於產生試劑離子之方法之流程圖。 圖4為圖示使本發明具體化之質譜測定方法之流程圖。 寥圖5為具體化本發明之四極質譜測定系統之橫截面圖。 圖6為圖5中所示之漂移腔室組件之放大囷。 圖7為使本發明具體化之飛行時間質譜儀模組之平面 圖.。 【主要元件符號說明】 100 104 108 112 133727.doc 系統 試劑蒸氣供應源 微波/RF電漿產生器 電漿區 -57- 200937487 116 、 140 凸緣 120 節流孔板電極 122 孔 124 漂移外部腔室/泵抽漂移外部腔室 126 漂移組件 . 128 樣本供應源 136 化學離子化/漂移區 138 、 144 退出節流孔 ❹ 142 透鏡組件 148 質譜儀模組 152 控制模組 200 試劑蒸氣供應源組件 202 儲集器 204 、 206 ' 208 、 216 &gt; 218 ' 220 端口 210 液體表面 Ο w 212 熱電偶 213 頂部空間 214 加熱器夾套 222 管 224 質量流量控制器 226 、 229 管 228 量規或監測器 230 電漿區/電漿反應區 133727.doc -58- 200937487 500 四極質譜測定系統 504 試劑離子源 508 化學離子化/漂移區 512 磁控管 514 短天線 . 516 子L 520 諧振腔 524 管 ❹ 528 孔 532 微波抗流器 533 通道 536 外表面 540 末端 544 頂部 548 底部 552 第二末端 — 556 節流孔板 557 面 . 560 凸緣 562 漂移外部腔室 564 環形電極 566 化學離子化/漂移腔室端口 568 環形絕緣組件 571 端口 133727.doc -59- 200937487In the second embodiment, the spectrometer incorporating the principles of the present invention is used as an assembly of an electronic nose system. In some embodiments, the electronic nose system also includes an analysis module for analyzing signals output by the instruments. The electronic nose system can be used to analyze vapors and gases, including those vapors and gases in the top m above solid or liquid materials, which include a plurality of components. The analysis module analyzes the signals output by the spectrometer and is capable of identifying specific components in the sample. In addition, the analysis module performs an overall fingerprint analysis of the material present, which is compared to the fingerprint of other substances in the previously stored information. In some implementations, the analysis module includes a computer processor that performs, for example, a multivariate analysis algorithm that is particularly well suited for processing many sample parameters (eg, many VOC component peaks that are characteristic of certain odors and tastes). , pattern identification algorithms or neural network algorithms to characterize and compare samples. In the case of I, multivariate analysis techniques are useful for observing and analyzing more than one statistical variable, and can reduce data from complex fingerprint spectra to enable simple comparisons. Using this method, similar tastes and odors can be grouped and identified and highlighted as outliers. The electronic nose system has been used for analysis consisting of many components, for example, a plurality of different v〇c substances. The overall fingerprint of the VOC issued by the food and beverage. For example, f, the odor is composed of molecules each having a specific size and shape. Each of these molecules has a corresponding size and shape in the human nose (4). The spectrometer can be used to (4) acquire fingerprints of many different molecules within the odor sample. Additional applications for electronic nose systems include the detection of specific odors for disease for medical diagnosis and detection of contamination. 133727.doc -56- 200937487 Dyes and gas leaks are used for environmental protection. In some embodiments, the electronic nose system includes additional sensors (eg, 'one or more gas sensors, including metal oxide semi-conductive germanium (MOS), conductive polymer (CP), quartz crystal microbalance, and field effect electricity A crystal (MOSFET) inductor whose output is analyzed by an analysis module. Although the present invention has been particularly shown and described with reference to the specific embodiments of the present invention, it will be understood by those skilled in the art, without departing from the spirit and scope of the invention as defined by the appended claims Among them, the shape δ and details are changed. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a plan view showing the components of a system embodying the present invention. 2 is a cross-sectional view of a reagent vapor supply source assembly of a mass spectrometry system. Figure 3 is a flow diagram of a method for generating reagent ions. Fig. 4 is a flow chart showing a mass spectrometry method for embodying the present invention. Figure 5 is a cross-sectional view of a quadrupole mass spectrometry system embodying the present invention. Figure 6 is an enlarged view of the drift chamber assembly shown in Figure 5. Figure 7 is a plan view of a time-of-flight mass spectrometer module embodying the present invention. [Main component symbol description] 100 104 108 112 133727.doc System reagent vapor supply source microwave / RF plasma generator plasma zone -57- 200937487 116 , 140 flange 120 orifice plate electrode 122 hole 124 drift external chamber / pumping drift external chamber 126 drift component. 128 sample supply source 136 chemical ionization / drift zone 138, 144 exit throttle ❹ 142 lens component 148 mass spectrometer module 152 control module 200 reagent vapor supply source component 202 Collector 204, 206' 208, 216 &gt; 218 '220 Port 210 Liquid Surface Ο w 212 Thermocouple 213 Headspace 214 Heater Jacket 222 Tube 224 Mass Flow Controller 226, 229 Tube 228 Gauge or Monitor 230 Pulp/plasma reaction zone 133727.doc -58- 200937487 500 Quadrupole mass spectrometry system 504 Reagent ion source 508 Chemical ionization/drift zone 512 Magnetron 514 Short antenna. 516 Sub L 520 Resonant cavity 524 Tube 528 Hole 532 Microwave choke 533 channel 536 outer surface 540 end 544 top 548 bottom 552 second end - 556 orifice plate 557 560 flange 562 outer chamber 564 drift ring electrode 566 chemical ionization / drift chamber an annular insulating member 571 port 568 port 133727.doc -59- 200937487

572 總壓力量規 576 泵抽端口 580 、 596 栗抽系統 582 離子提取電極 584 、 588 、 604 凸緣 586 雙侧凸緣 592 、 644 質譜儀 594 、 664 譜儀探針 598 偵測器 608 電漿區 612 、 652 離子提取電極 614 、 628 、 658 絕緣套環 616 ' 656 提取節流孔 620 化學離子化/漂移腔室 624 板電極 625 漂移端板電極 630 、 633 中心節流孔 631 中心節流孔 632 端口 636 固定凸緣 640 凸緣 648 雙邊凸緣 657 區域 659 金屬板 -60- 133727.doc 200937487572 Total Pressure Gauge 576 Pumping Port 580, 596 Chest Pumping System 582 Ion Extraction Electrode 584, 588, 604 Flange 586 Bilateral Flange 592, 644 Mass Spectrometer 594, 664 Spectrometer Probe 598 Detector 608 Plasma Zone 612, 652 ion extraction electrodes 614, 628, 658 insulation collar 616 ' 656 extraction orifice 620 chemical ionization / drift chamber 624 plate electrode 625 drift end plate electrode 630, 633 central orifice 631 central orifice 632 port 636 fixing flange 640 flange 648 bilateral flange 657 area 659 metal plate -60- 133727.doc 200937487

660 668 676 700 704 708 712 716 720 724 728 728a 730 732 734 736 738 740 絕緣螺桿 孔 聚焦電極 飛行時間質譜儀系統 離子源 飛行時間質譜儀/飛行腔室 系抽系統 離子光學組件 離子透鏡 離子束調節器 軌道 反射軌道 正面 飛行區 背面 第二光學系統/反射件 第二柵極 偵測器 133727.doc -61 -660 668 676 700 704 708 712 716 720 724 728 728a 730 732 734 736 738 740 Insulated screw hole focusing electrode time-of-flight mass spectrometer system ion source time-of-flight mass spectrometer / flight chamber system pumping system ion optics component ion lens ion beam regulator Orbital reflection track frontal flight area back second optical system / reflector second gate detector 133727.doc -61 -

Claims (1)

200937487 十、申請專利範圍: 1. 一種方法’其包含: 引入樣本氣體; 將試劑蒸氣供應至電漿區; 將微波或高頻率RF能量提供給該電漿區中之該試劑蒸 . 氣以形成一或多種試劑離子; 使該一或多種試劑離子與該樣本氣體互相作用以產生 一或多種產物離子; 〇 將該一或多種產物離子及該一或多種試劑離子引導至 四極或飛行時間質譜儀模組;及 藉由該質s普儀模組測定該一或多種產物離子及該一或 多種試劑離子中之各者之峰強度或質量中的至少一者之 值〇 2. 如凊求項1之方法,其中該樣本氣體包括至少痕量濃度 之一或多種揮發性有機化合物。 3. 4· 如凊求項1之方法,其中該引入包含將一氣體樣本入口 端聯結至一封閉空間》 如°青求項1之方法’其中該引入包含將一氣體樣本入口 端置於一非封閉空間中。 項1之方法,其中該引入包含將一氣體樣本入口 端聯結至一容器。 6. 如請求:C§ 1 «V +、_L - 7· 之方法,其中該引入包含從一汽車或航空器 ¥氣件之下游處聯結一氣體樣本入口端。 如請求項1:·、土 之方法’其中該引入包含將一氣體樣本入口 133727.doc 200937487 端聯結至一食物或飲料產品上方之一頂部空間。 8·=請求項i之方法,其中該引入包含將一:體樣本入口 端置於接近人類口腔處以收集呼氣。 9. 如請求項!之方法’其中該引入包含將_氣體樣本入口 端置於接近一發出氣體或蒸氣之固體樣本物質之處。 10. 如請求項!之方法,其中該引入包含將—氣體樣本入口 端聯結至一氣體供應源耦合。 11· 一種系統,其包含: 用於以微波或RF能量離子化試劑蒸氣之粒子以形成一 或多種試劑離子之微波或高頻率RF能源; 有助於包括至少痕量濃度之一或多種揮發性有機化合 物之樣本氣體的分析之供應源; 包括入口端之腔室’該入口端允許該樣本氣體進入該 腔室以與來自該微波或高頻率RF能源之該一或多種試劑 離子相互作用,從而形成一或多種產物離子,該腔室具 有產生於其中之電磁場;及 相對於該腔室之退出節流孔而安置之四極或飛行時間 質譜儀模組,其用於收集該一或多種產物離子及該一或 多種試劑離子,以有助於該一或多種產物離子及該一或 多種試劑離子中之各者之峰強度或質量中的至少一者之 值之測定。 12.如請求項11之系統,其中該四極或飛行時間質譜儀模組 有助於該氣體樣本中之該一或多種揮發性有機化合物之 峰強度或質量中的至少一者之測定。 133727.doc -2- 200937487 13·如請灰&lt; 崎11之系統’其中該四極或飛行時間質譜儀模組 有助於該氡體樣本中之該一或多種揮發性有機化合物之 特性的測定。 I4·如咐求項11之系統,其中該一或多種揮發性有機化合物 包括以戴奥辛(dioxin)為主之化合物、以呋喃為主之化合 物人氣盼、蔡、苯、曱苯、乙苯、二甲苯、非甲院有機 化合物、二級有機氣溶膠、等壓化合物、化學戰劑、戰 ❹ 場氣體、助燃劑、表徵體液及真菌物f及徽菌毒素 (mycotoxin)之存在之揮發性有機化合物,或其任何組 合。 K如請求項U之系統’其中該—或多種揮發性有機化合物 包括人為的或生物源揮發性有機化合物。 16. —種質譜測定系統,其包含: 用於引入包括至少痕量濃度之一或多種揮發性有機化 合物之樣本氣體的構件; =於自試劑蒸氣供應源,藉由提供給該試劑蒸氣微波 或商頻率RF能量來產生一或多種試劑離子之構件; /於使該樣本氣體與該一或多種試劑離子互相作用以 形成一或多種產物離子之構件; 用於將該-或多種產物離子及該一或多種試劑 導至質譜儀於測定該_或多種產物離子及兮 多種試劑離子尹之各者之峰強度或質量令的至二 17 值,或用於鐘別該-或多種揮發性有機化合 一種系統,其包含: #件° 133727.doc 200937487 用於以微波或RF能量離子化試劑蒸氣之粒子以形成一 或多種試劑離子之微波或高頻率RF能源; 包括入口端之腔室,該入口端允許樣本進入該腔室以 與來自該微波或高頻率RF能源之該一或多種試劑離子相 互作用,從而形成一或多種產物離子,該腔室具有產生 於其中之電磁場;及 相對於該腔至之退出節流孔安置之四極質譜儀模組, 收集1¾ -或多種產物離子及該一 4多種試劑離 ® 子’以便有助於該-❹種產物離子及該—或多種試劑 離子中之各者之峰強度或質量的值之測定。 如&quot;月求項1 7之系統’其中該微波能源包含微波電聚產生 器。 月求項1 7之系統,其中該高頻率RF能源包含電容耦合 RF電漿產生器。 &quot;月求項1 7之系統,其中該一或多種試劑離子包含水合 一 氣離子、氧離子或氣化亞氮離子。 月长項17之系統,其中該樣本包括一或多種揮發性 機化合物。 奮求項1 7之系統,其另外包含一組相對於該腔室安置 之電極,其用以產生該電磁場以便有助於該一或多種試 齊J離子與該樣本之間的相互作用,且引導該— 物離子;裡座 該—或多種試劑離子穿過該腔室之該退出節流 孔0 如吻求項22之系統’其中該電極組係環繞該腔室之軸沿 133727.doc 200937487 徑向安置’且該電磁場大體上轴向地引導該一或多種產 物離子及該一或多種試劑離子。 24_如請求項22之系統’其另外包含與該電極組連通之控制 模組,其可供操作以基於該系統之操作參數來測定該腔 室内部之該電磁場的值。 25. 如請求項17之系統’其另外包含質量流量控制器、毛細 管或漏泄閥’其用於確定進入該腔室之該樣本之量。200937487 X. Patent application scope: 1. A method comprising: introducing a sample gas; supplying reagent vapor to a plasma region; supplying microwave or high frequency RF energy to the reagent in the plasma region to vaporize One or more reagent ions; interacting the one or more reagent ions with the sample gas to produce one or more product ions; and directing the one or more product ions and the one or more reagent ions to a quadrupole or time-of-flight mass spectrometer a module; and determining, by the mass spectrometer module, a value of at least one of peak intensities or masses of the one or more product ions and each of the one or more reagent ions 〇2. The method of 1, wherein the sample gas comprises at least one or more volatile organic compounds in a trace concentration. 3. The method of claim 1, wherein the introducing comprises joining a gas sample inlet end to a closed space, such as the method of "Calling Item 1", wherein the introducing comprises placing a gas sample inlet end in a In a non-enclosed space. The method of item 1, wherein the introducing comprises joining the inlet end of a gas sample to a container. 6. If requested by the method of C§ 1 «V +, _L - 7·, wherein the introduction comprises joining a gas sample inlet end downstream of a gas or aircraft. The method of claim 1: The method of soil wherein the introduction comprises joining a gas sample inlet 133727.doc 200937487 end to a headspace above a food or beverage product. 8. The method of claim i, wherein the introducing comprises placing a body sample inlet end proximate to a human mouth to collect exhalation. 9. The method of claim </RTI> wherein the introduction comprises placing the inlet end of the gas sample adjacent to a solid sample material that emits gas or vapor. 10. The method of claim 2, wherein the introducing comprises coupling the gas sample inlet end to a gas supply source coupling. 11. A system comprising: a microwave or high frequency RF energy source for ionizing particles of reagent vapors with microwave or RF energy to form one or more reagent ions; facilitating inclusion of at least one or more traces of volatility a supply of analysis of a sample gas of an organic compound; a chamber including an inlet end that allows the sample gas to enter the chamber to interact with the one or more reagent ions from the microwave or high frequency RF energy source, thereby Forming one or more product ions, the chamber having an electromagnetic field generated therein; and a quadrupole or time-of-flight mass spectrometer module disposed relative to the exit orifice of the chamber for collecting the one or more product ions And the one or more reagent ions to facilitate determination of the value of at least one of peak intensities or masses of the one or more product ions and each of the one or more reagent ions. 12. The system of claim 11, wherein the quadrupole or time-of-flight mass spectrometer module facilitates determination of at least one of peak intensities or masses of the one or more volatile organic compounds in the gas sample. 133727.doc -2- 200937487 13·If the ash &lt; 崎11的系统', the quadrupole or time-of-flight mass spectrometer module contributes to the determination of the characteristics of the one or more volatile organic compounds in the steroid sample . I4. The system of claim 11, wherein the one or more volatile organic compounds include a compound mainly composed of dioxin, a compound mainly composed of furan, Cai, benzene, benzene, ethylbenzene, and Toluene, non-cave organic compounds, secondary organic aerosols, isobaric compounds, chemical warfare agents, trench gases, combustion improvers, volatile organic compounds in the presence of body fluids and fungi f and mycotoxin , or any combination thereof. K. The system of claim U wherein the or more volatile organic compounds include artificial or biologically derived volatile organic compounds. 16. A mass spectrometry system comprising: means for introducing a sample gas comprising at least a trace concentration of one or more volatile organic compounds; = from a reagent vapor supply source, by supplying the reagent vapor to microwave or a component of RF energy to generate one or more reagent ions; a member for interacting the sample gas with the one or more reagent ions to form one or more product ions; for the one or more product ions and The one or more reagents are directed to the mass spectrometer for determining the peak intensity or mass of the _ or more product ions and the enthalpy of each of the reagent ions to a value of 2 or 17, or for counting the one or more volatile organic compounds A system comprising: #件° 133727.doc 200937487 a microwave or high frequency RF energy source for ionizing reagent particles of a microwave or RF energy to form one or more reagent ions; including a chamber at the inlet end, the inlet The end allows the sample to enter the chamber to interact with the one or more reagent ions from the microwave or high frequency RF energy source to form one or more a product ion, the chamber having an electromagnetic field generated therein; and a quadrupole mass spectrometer module disposed opposite the chamber to the exit orifice, collecting 13⁄4 or more product ions and the one or more reagents from the ® A determination of the value of the peak intensity or mass of the respective product ions and each of the reagent ions or ions. For example, &quot;System of Monthly Item 1&apos; wherein the microwave energy source comprises a microwave electropolymer generator. The system of claim 1 wherein the high frequency RF energy source comprises a capacitively coupled RF plasma generator. &quot;The system of claim 1, wherein the one or more reagent ions comprise hydrated gas ions, oxygen ions or gasified nitrous ions. A system of month length 17, wherein the sample comprises one or more volatile organic compounds. The system of claim 1, further comprising a set of electrodes disposed relative to the chamber for generating the electromagnetic field to facilitate interaction between the one or more J ions and the sample, and Directing the object ion; or the reagent ion passing through the chamber exiting the orifice 0, such as the system of the kiss 22, wherein the electrode group surrounds the axis of the chamber 133727.doc 200937487 Radially disposed 'and the electromagnetic field substantially axially directs the one or more product ions and the one or more reagent ions. 24_ The system of claim 22, further comprising a control module in communication with the electrode set operable to determine a value of the electromagnetic field within the chamber based on operational parameters of the system. 25. The system of claim 17 which additionally comprises a mass flow controller, capillary or leak valve for determining the amount of the sample entering the chamber. 26. 如凊求項17之系統,其另外包含安置在該微波或高頻率 源與該腔室之間的質量過據器’以選擇性地允許試 劑離子進入該腔室中。 27’如清求項26之系統’其中該質量過遽器為四極質量過遽 器。 如-月=項17之系統,其另外包含一與該系統連通且可操 作以分析來自該四極質譜儀模組之數據之多變數分析模 組。26. The system of claim 17, further comprising a mass filter disposed between the microwave or high frequency source and the chamber to selectively allow reagent ions to enter the chamber. 27', as in the system of claim 26, wherein the mass filter is a quadrupole mass filter. A system such as -month = item 17, further comprising a multivariate analysis module in communication with the system and operable to analyze data from the quadrupole mass spectrometer module. 29.如請求項17之系統, 微波產生器; 諧振器部分; 女置在該諧振器 分;及 其中該微波能源包含: 部分内部且與該腔室連通之管部 其另外包含一 30.如請求項17之系統 與該系統連通之控制 133727.doc 200937487 模組’其可供操作以部分地基於該系統之操作參數來改 變該系統之輸入參數。 3】.如清求項3〇之系統,其_該系統之該操作參數包含以下 參數中之至少一古. 者.該樣本之組成、該腔室之壓力該 2多種產物離子或該—或多種試劑離子穿過該腔室之 」Γ之該樣本或該等試劑離子進入該腔室中之流率、該 2 #產物離子或該—或多種試劑離子之能量、試劑 j 、、產物離子之化學組成或其任何組合。 於2項30之系統’其令該控制模組可操作以部分地基 該腔?作f數來改變一組電極之輸入參數,該組電極在 。至内部產生該電磁場。 組=項17之系統’其另外包含與㈣統連通之控制模 …求=ΓΓΓ或鑑別該系統之操作參數之錯誤。 於神节 其中該控制模組可操作以部分地基 35 誤之該偵測或鑑別來改變該操作參數之值。 組,&quot;其= 17m其另外包含與該系統連通之控制模 或調整=監測該系統且可操作以回應於該監測來設定 或調整该系統之操作參數之 多變數統計分析算法。 γ該控制椟組係基於 36·如請求項17之系統,直 取雷;'、卜匕3相對於該腔室安置之提 ,其界定節流孔,試劑_ 流孔傳至該四搞L $劑離子或產物離子經由該節 指明$ #1°儀模組,且該提取電極可供操作以 知明該等試劑離 質譜儀模組進行收^ 之能量值以便藉由該四極 133727.doc 200937487 ^明求項17之系統,其另外包含相對於該腔室安置之 =件’其用於使該等試劑離子及產物離子集中於提取 h孔上’該節流孔有助於試劑離子及產物離子向 譜儀模組之傳遞。 ^ 38· -種用以產生用於一質子轉移反應質譜儀或化學離子反 應質譜儀之一或多種試劑離子的方法,該方法包含: 供應試劑蒸氣;及29. The system of claim 17, a microwave generator; a resonator portion; the female device is disposed in the resonator; and wherein the microwave energy source comprises: a portion of the tube portion that is internal and in communication with the chamber, further comprising a 30. Control of the system of claim 17 in communication with the system 133727.doc 200937487 The module 'is operable to vary the input parameters of the system based in part on the operating parameters of the system. 3). The system of claim 3, wherein the operating parameter of the system comprises at least one of the following parameters: the composition of the sample, the pressure of the chamber, the more than 2 product ions or the - or a plurality of reagent ions passing through the chamber, the flow rate of the sample or the reagent ions entering the chamber, the energy of the 2# product ion or the reagent ion or reagent ions, the reagent j, and the product ion Chemical composition or any combination thereof. In the system of 2 items 30, which makes the control module operable to partially base the cavity? The f number is used to change the input parameters of a set of electrodes, and the set of electrodes is at . This electromagnetic field is generated internally. The system of group = item 17' additionally includes a control module that communicates with (d) to determine or determine the error of the operating parameters of the system. In the gods section, the control module is operable to change the value of the operating parameter by partial detection or discrimination by a portion of the ground. Group, &quot; it = 17m which additionally contains a control module or adjustment in communication with the system = a multivariate statistical analysis algorithm that monitors the system and is operable to set or adjust operational parameters of the system in response to the monitoring. γ The control group is based on 36. According to the system of claim 17, the lightning is taken directly; ', the dice 3 is arranged relative to the chamber, which defines the orifice, and the reagent_flow hole is transmitted to the four. The dose ion or product ion indicates the $#1° meter module via the section, and the extraction electrode is operable to know the energy value of the reagents from the mass spectrometer module to be received by the quadrupole 133727.doc 200937487 The system of claim 17, further comprising a member disposed relative to the chamber for concentrating the reagent ions and product ions on the extraction h-holes, the orifice facilitating reagent ions and products The transfer of ions to the spectrometer module. ^ 38 - A method for producing one or more reagent ions for a proton transfer reaction mass spectrometer or a chemical ion reaction mass spectrometer, the method comprising: supplying a reagent vapor; 將微波能量提供給該試劑蒸氣以產生一或多種試劑離 子。 39.如請求項38之方法,其另外包含將該一或多種試劑離子 引導至-區域以便與—樣本之成分相互作用而形成產物 離子。 40. 如叫求項38之方法,其中該一或多種試劑離子係藉由微 波電漿來產生。 41. 如請求項38之方法,其中該試劑蒸氣包括水蒸氣、氧或 氧化亞氮’且該一或多種試劑離子包括水合氫離子、氧 離子或氧化亞氮離子。 42. 如請求項38之方法,其中該微波能量係由具有大於約 800 MHz之頻率之電磁波提供。 43. —種用以產生用於質子轉移反應質譜儀或化學離子反應 質譜儀之一或多種試劑離子的方法,該方法包含: 供應試劑蒸氣;及 將高頻率RF能量提供給該試劑蒸氣以產生一或多種試 劑離子。 133727.doc 200937487 44. 如請求項43之方法,其中該rF能量係由具有介於約400 kHz與約800 MHz之間的頻率之電磁波提供。 45. 如請求項43之方法,其中該一或多種試劑離子係藉由電 容耦合RF電漿來產生。 46. —種方法,其包含: 將試劑蒸氣供應至電漿區; 將微波或高頻率RF能量提供給該電漿區中之該試劑蒸 氣以形成一或多種試劑離子; ❹Microwave energy is supplied to the reagent vapor to produce one or more reagent ions. 39. The method of claim 38, further comprising directing the one or more reagent ions to a region to interact with a component of the sample to form a product ion. 40. The method of claim 38, wherein the one or more reagent ions are generated by microwave plasma. 41. The method of claim 38, wherein the reagent vapor comprises water vapor, oxygen or nitrous oxide&apos; and the one or more reagent ions comprise hydronium ions, oxygen ions or nitrous oxide ions. 42. The method of claim 38, wherein the microwave energy is provided by electromagnetic waves having a frequency greater than about 800 MHz. 43. A method for producing one or more reagent ions for a proton transfer reaction mass spectrometer or a chemical ion reaction mass spectrometer, the method comprising: supplying a reagent vapor; and providing high frequency RF energy to the reagent vapor to produce One or more reagent ions. 133727.doc. The method of claim 43, wherein the rF energy is provided by electromagnetic waves having a frequency between about 400 kHz and about 800 MHz. 45. The method of claim 43, wherein the one or more reagent ions are generated by capacitively coupling RF plasma. 46. A method comprising: supplying a reagent vapor to a plasma zone; providing microwave or high frequency RF energy to the reagent vapor in the plasma zone to form one or more reagent ions; 使該一或多種試劑離子與一氣體樣本互相作用以產生 一或多種產物離子; 將該或多種產物離子及該一或多種試劑離子引導至 四極質譜儀模組之收集器區域丨及 藉由該質譜儀模組測定該一或多種產物離子及該一或 多種試劑離子中之各者之峰強度或質量的值。 47. —種質譜測定系統,其包含· 藉由知;供給該試劑蒸氣微波 或多種試劑離子之構件; 種試劑離子互相作用以形成一 用於自試劑蒸氣供應源 或高頻率RF能量來產生一 用於使樣本與該一或多 或多種產物離子之構件; 包括電磁場之構件,装 該一或多種試_子5||^將該:或多種產物離子及 與該收集器區域連通以用於域’及 及該-或多種試劑離子夂二疋該一或多種產物離子 構件。 之各者之峰強度或質量的值之 133727.doc 200937487 48· —種系統,其包含: 用於以微波或RF能量離子化試劑蒸氣之粒子以形成一 或多種試劑離子之微波或高頻率RF能源; 包括入口端之腔室,該入口端允許樣本進入該腔室以 與來自該微波或RF能源之該一或多種試劑離子相互作 用,從而形成一或多種產物離子;及 相對於該腔室之一退出節流孔安置之質譜儀模組,該 質譜儀模組包括: 飛行區,該一或多種產物離子及該一或多種試劑離 子經由該飛行區行進,該飛行區界定一路徑長度;及 用以接收來自該飛行區之該一或多種產物離子及該 一或多種試劑離子之收集器區域,其中質量之值係基於 該一或多種產物離子及該一或多種試劑離子中之各者橫 越該路徑長度所歷經之時間的量來測定。 49.如請求項48之系統,其中該質譜儀模組另外包含: 相對於該腔室之該退出節流孔安置以用脈衝將該一或 多種差物離子及該一或多種試劑離子流輸送至該飛行區 中之離子束調節器;及 安置於該飛行區中用以増加該一或多種產物離子及該 一或多種試劑離子所行進之該路徑長度的值之光學系 統。 50· ^請求項49之系統’其中該離子束調節器利用自控制器 提供之擬隨機二進序列來調節該一或多種產物離子及該 一或多種試劑離子之流動。 133727.doc 200937487 5 1.如明求項5 〇之系統,其中一分析模組對自該質譜儀模組 接收之數據執行最大概似信號處理算法,以確定該一或 多種產物離子及該一或多種試劑離子中之各者之峰強度 或質量的值β 52·如吻求項49之系統,其中一分析模組將自該質譜儀模組 接收之數據解卷積,以確定該一或多種產物離子及該一 或多種試劑離子中之各者之峰強度或質量的值。 53. 如請求項49之系統,其中該收集器區域包含以脈衝計數 模式操作之堆疊式微通道板偵測器或一雙極偵測器。 54. 如明求項49之系統,其中該光學系統包含反射件。 55’如叫求項49之系統,其另外包含用於將該等試劑及產物 離子集中於該離子束調節器上之透鏡,其中該離子束調 節器包含離子束截斷器、離子束閘極、離子束調整器或 其任何組合β 56·如凊求項48之系統,其另外包含相對於該腔室及該質譜 儀模組安置之光學系統,該光學系統包括至少一個用於 將該一或多種產物離子及該一或多種試劑離子之流動朝 一離子束調節器引導的四極透鏡。 57.如凊求項48之系統,其中該質譜儀模組界定穿過該飛行 區之大體上呈直線的軸。 請求項57之系統,其中該大體上呈直線的輛大體上平 行於穿過該飛行區之第二軸。 59.如^項48之系統,其另外包含相對於該微波能源及該 腔室安置用以選擇性允許該一或多種試劑離子之子集進 133727.doc 200937487 入該腔室之質量過濾器。 6〇·如請求項59之系統,其_該質量過滤器包含四極質量過 遽器。 如用长項48之系統,其另外包含用於自用以產生質譜之 ^質&quot;普儀模組接收數據之分析模組,該質譜包括該一或 . 多種產物離子及該—或多種觸離子巾之各者之峰 . 或質量的值。 涵度 62’如凊求項48之系統’其另外包含用於基於由該質譜儀模 組產生之質譜鑑別該樣本之組分的多變數統計分析模 、用求項48之系統,其另外包含與該系統連通且可操作 以基於該系統之操作參數來㈣或鑑別該系統 之控制模組。 曰誤 64.如奸求項63之系統,其中該控制模組可操作以部分地基 於該錯誤之該偵測或鑑別來改變該操作參數之值。土 月求項48之系統,其另外包含與該系統連通且可操作 以基於該系統之操作參數來改變該系統之輸人參數 的控制模組β ^ 凊求項48之系統,其另外包含一組相對於該腔室安置 之電極,其用以產生有助於該一或多種試劑離子與該樣 本:間的相互作用,且用於引導該一或多種產物離;及 該一或多種試劑離子穿過該腔室之該退出節流孔之電 場。 域 67’如請求項66之系统,其另外包含與該電極組連通之控制 133727.doc 200937487 ^組’其可供操作以基於該系統之操作參數來測定該腔 室内部之該電磁場的值。 68.如請求項67之系統,其中該系統之該操作參數包含以下 參數中之至少一者:該樣本之組成、該腔室之壓力該 一或多種產物離子或該—或多種試劑離子穿過該腔室之 • 速度、該樣本或該等試劑離子進人該腔室中之流率、該 . —或多種產物離子或該—或多種試劑離子之能量、試劑 離子或產物離子之化學組成或其任何組合。 Φ 69.如請求項67之系統,其中該控制模組可供操作以部分地 基於該操作參數來改變該電極組之一輸入參數。 7 0. —種系統,其包含: 用於以微波或RF能量離子化試劑蒸氣之粒子以形成一 或多種試劑離子之微波或高頻率RF能源; 包括入口端之腔室,該入口端允許樣本進入該腔室以 與來自該微波或RF能源之該一或多種試劑離子相互作 用’從而形成一或多種產物離子;及 相對於該腔室之退出節流孔安置之飛行時間質譜儀模 組’其用於基於該一或多種產物離子及該一或多種試劑 • 離子中之各者橫越該質譜儀所歷經之時間的量來產生包 . 括該一或多種產物離子及該一或多種試劑離子中之各者 之質量的值之光譜。 71.如請求項70之系統,其中該飛行時間質譜儀模組包含: 飛行區,該一或多種產物離子及該一或多種試劑離子 經由該飛行區行進,該飛行區界定一路徑長度; 133727.doc • 12- 200937487 用於調節該一或多種產物離子及該一或多種試劑離子 進入該飛行區中之流動之離子束調節器; 安置於該飛行區中用以增加該一或多種產物離子及該 一或多種言式劑離子所行進之該路徑長度的值之光 統;及 用於接收來自該飛行區之該一或多種產物離子及該一 或多種試劑離子之收集器區域。 72· -種用於處理飛行時間質譜儀中之信號之方法,該等信 號係基於藉由將微波或R F能量提供給試劑蒸氣所產生之 -或多種試劑離子且係基於藉由使該—或多種試劑離子 與一流體樣本在一電磁場中互相作用所產生之一或多種 產物離子,該方法包含: 建立第-離子流,其包括該—或多種試劑離子及該一 或多種產物離子; 根據指定流動型式改變該第一離子流以產生第二離子 流; 在债測器處接收該第二離子流;及 根據最大概似型統計算法,自由該偵測器所傳達之數 據確定質譜,該質譜包括指示該一或多種試劑離子及該 一或多種產物離子之質量或峰強度之數據。 73.如請求項72之方法,其中該第二離子流為脈衝流。 74’如吻求項73之方法,其中該脈衝流係基於該根據擬隨機 二進序列產生之指定流動型式。 75. —種方法,其包含: 133727.doc •13· 200937487 將試劑蒸氣供應至電漿區; 將微波或高頻率RF能量提供給該電漿區中之該試劑蒸 氣以形成一或多種試劑離子; 使該一或多種試劑離子與一氣體樣本互相作用以產生 一或多種產物離子; 沿飛行時間質譜儀模組之飛行區令之軌道y導該一或 多種產物離子及該一或多種試劑離子;及 藉由該質譜儀模組測定該一或多種產物離子及該一或 泛 多種試劑離子中之各者之峰強度或質量的值。 76· —種用於量測一或多種試劑離子及一或多種產物離子之 質量之系統,該一或多種試劑離子係藉由將微波或rf能 量知_供、、’。試劑蒸乳來產生,且該一或多種產物離子係藉 由使該一或多種試劑離子與一流體樣本在一電磁場中互 相作用來產生’該系統包含: 一組相對於漂移管組件之離子退出節流孔安置之四極 • ϋ鏡’其用於接收穿過該退出節流孔之包括該一或多種 試劑離子及該-或多種產物離子之第—離子流,且用以 產生被引向一離子束調節器之第二離子流;及 該離子束調節器,其可操作以選擇性允許該第二離子 流可傳至飛行時間質譜儀之飛行區。 7 7. —種系統,其包含: 用於以微波或高頻率灯能量離子化試劑蒸氣之粒子以 形成一或多種試劑離子之構件; 包括電磁場而用於使一樣本與該一或多種試劑離子 133727.doc •14· 200937487 互相作用以形成一或多種產物離子之構件丨及 :用於基於該-或多種產物離子及該—或多種試劑離 =之各者橫越1定距離所歷經之時間的量,來測定 以一或多種產物離子及該__或多種試劑離子中之各者之 峰強度或質量的值之構件。 78.—種用於量測—或多種試劑離子及—或多種產物離子之 • f量之m或多種試劑離子係藉由將微波或rF能 量提供給試劑蒸氣來產生且該-或多種產物離子係藉由 ❹ 使該—❹種試劑離子與-㈣樣本在-電磁場中互相 作用來產生,該系統包含: 用於建立包括該一或多種試劑離子及該一或多種產物 離子之第一離子流之構件; 用於根據指定中斷型式調節該第一離子流以產生第二 離子流之構件;及 用於自偵測器構件所傳達之數據產生質譜之構件,該 數據對應於該第二離子流。 ❹ 79. —種用於量測一或多種試劑離子及一或多種產物離子之 質量之系統’該一或多種試劑離子係藉由將微波或RF能 . 量提供給試劑蒸氣來產生,且該一或多種產物離子係藉 - 由使該一或多種試劑離子與一流體樣本在一電磁場中互 相作用來產生’該系統包含: 用於接收包括該一或多種試劑離子及該一或多種產物 離子之第一離子流且用於產生被引向一調整構件之第二 離子流的光學構件;及 133727.doc •15· 200937487 該調整構件,其用於選擇性控制朝向質譜儀之該第二 離子流。Interacting the one or more reagent ions with a gas sample to produce one or more product ions; directing the one or more product ions and the one or more reagent ions to a collector region of the quadrupole mass spectrometer module, and by using the A mass spectrometer module measures values of peak intensities or masses of each of the one or more product ions and the one or more reagent ions. 47. A mass spectrometry system comprising: a component for supplying a microwave or a plurality of reagent ions of the reagent vapor; a reagent ion interacting to form a source for supplying a reagent or a high frequency RF energy to generate a a member for causing a sample to be associated with the one or more product ions; a member comprising an electromagnetic field, the one or more test elements 5 ||^: or a plurality of product ions and communicating with the collector region for The domain 'and the reagent ion or ions are one or more of the product ion members. 133727.doc 200937487 48. A system comprising: a microwave or high frequency RF for ionizing reagent particles of microwave or RF energy to form one or more reagent ions Energy; a chamber including an inlet end that allows a sample to enter the chamber to interact with the one or more reagent ions from the microwave or RF energy source to form one or more product ions; and relative to the chamber One of the mass spectrometer modules exiting the orifice, the mass spectrometer module comprising: a flight zone, the one or more product ions and the one or more reagent ions traveling through the flight zone, the flight zone defining a path length; And a collector region for receiving the one or more product ions and the one or more reagent ions from the flight zone, wherein the value of the quality is based on each of the one or more product ions and the one or more reagent ions The amount of time elapsed across the length of the path is measured. 49. The system of claim 48, wherein the mass spectrometer module further comprises: the exit orifice relative to the chamber disposed to pulse the one or more differential ions and the one or more reagent ion streams An ion beam modulator to the flight zone; and an optical system disposed in the flight zone for adding the value of the path length of the one or more product ions and the one or more reagent ions. 50. The system of claim 49 wherein the ion beam modulator utilizes a pseudo-random binary sequence provided from a controller to adjust the flow of the one or more product ions and the one or more reagent ions. 133727.doc 200937487 5 1. The system of claim 5, wherein an analysis module performs a most approximate signal processing algorithm on data received from the mass spectrometer module to determine the one or more product ions and the one Or the value of the peak intensity or mass of each of the plurality of reagent ions. [beta] 52. The system of Kiss 49, wherein an analysis module deconvolutes data received from the mass spectrometer module to determine the one or The value of the peak intensity or mass of each of the plurality of product ions and the one or more reagent ions. 53. The system of claim 49, wherein the collector region comprises a stacked microchannel plate detector or a bipolar detector operating in a pulse counting mode. 54. The system of claim 49, wherein the optical system comprises a reflective member. 55' The system of claim 49, further comprising a lens for concentrating the reagents and product ions on the ion beam modifier, wherein the ion beam modulator comprises an ion beam interceptor, an ion beam gate, An ion beam adjuster or any combination thereof, wherein the system of claim 48 further comprises an optical system disposed relative to the chamber and the mass spectrometer module, the optical system comprising at least one for the one or A plurality of product ions and a flow of the one or more reagent ions are directed toward a quadrupole lens guided by an ion beam regulator. 57. The system of claim 48, wherein the mass spectrometer module defines a substantially linear axis passing through the flight zone. The system of claim 57, wherein the substantially linear vehicle is substantially parallel to a second axis passing through the flight zone. 59. The system of item 48, further comprising a mass filter disposed in the chamber relative to the microwave energy source and the chamber for selectively allowing a subset of the one or more reagent ions to enter 133727.doc 200937487. 6. The system of claim 59, wherein the mass filter comprises a quadrupole mass filter. For example, the system of the long term 48 further includes an analysis module for receiving data from the mass spectrometer of the mass spectrometer, the mass spectrum including the one or more product ions and the one or more kinds of contact ions. The peak of each of the towels. Or the value of the quality. The system 62', such as the system of claim 48, additionally includes a multivariate statistical analysis module for identifying components of the sample based on a mass spectrum generated by the mass spectrometer module, the system of claim 48, additionally comprising Connected to the system and operable to (4) or identify a control module of the system based on operational parameters of the system. False 64. The system of claim 63, wherein the control module is operative to vary the value of the operational parameter based in part on the detecting or authenticating of the error. A system of earthly item 48, further comprising a system in communication with the system and operable to change a control parameter of the input parameter of the system based on operational parameters of the system, the system further comprising a a set of electrodes disposed relative to the chamber for generating an interaction between the one or more reagent ions and the sample, and for directing the one or more products away; and the one or more reagent ions The electric field exiting the orifice through the chamber. Field 67&apos; is the system of claim 66, which additionally includes a control 133727.doc 200937487^ group&apos; that is in communication with the electrode set operable to determine the value of the electromagnetic field within the chamber based on operational parameters of the system. 68. The system of claim 67, wherein the operational parameter of the system comprises at least one of the following: a composition of the sample, a pressure of the chamber, the one or more product ions, or the reagent ions or ions pass through The velocity of the chamber, the flow rate of the sample or the reagent ions into the chamber, the energy of the product ion or the reagent ions or reagent ions, or the chemical composition of the reagent ion or product ion or Any combination of them. Φ 69. The system of claim 67, wherein the control module is operative to change an input parameter of the electrode set based in part on the operational parameter. 7 0. A system comprising: a microwave or high frequency RF energy source for ionizing reagent vapors with microwave or RF energy to form one or more reagent ions; including a chamber at the inlet end, the inlet end allowing the sample Entering the chamber to interact with the one or more reagent ions from the microwave or RF energy source to form one or more product ions; and a time-of-flight mass spectrometer module disposed relative to the exit orifice of the chamber The method for generating a package based on the amount of time that the one or more product ions and the one or more reagent ions traverse the mass spectrometer includes the one or more product ions and the one or more reagents A spectrum of values of the mass of each of the ions. The system of claim 70, wherein the time-of-flight mass spectrometer module comprises: a flight zone, the one or more product ions and the one or more reagent ions traveling via the flight zone, the flight zone defining a path length; 133727 .doc • 12-200937487 an ion beam regulator for regulating the flow of the one or more product ions and the one or more reagent ions into the flight zone; disposed in the flight zone to increase the one or more product ions And a light source of the path length value of the one or more horn ions; and a collector region for receiving the one or more product ions and the one or more reagent ions from the flight zone. 72. A method for processing signals in a time-of-flight mass spectrometer based on - or a plurality of reagent ions generated by supplying microwave or RF energy to a reagent vapor and based on Generating a plurality of reagent ions with a fluid sample in an electromagnetic field to produce one or more product ions, the method comprising: establishing a first ion stream comprising the one or more reagent ions and the one or more product ions; The flow pattern changes the first ion current to produce a second ion current; the second ion stream is received at the debt detector; and the mass spectrum is determined by the data conveyed by the detector according to a most approximate haptic statistical algorithm Data indicative of the mass or peak intensity of the one or more reagent ions and the one or more product ions are included. 73. The method of claim 72, wherein the second ion stream is a pulsed stream. 74' The method of claim 73, wherein the pulse flow is based on the specified flow pattern generated from the quasi-random binary sequence. 75. A method comprising: 133727.doc • 13· 200937487 supplying reagent vapor to a plasma zone; supplying microwave or high frequency RF energy to the reagent vapor in the plasma zone to form one or more reagent ions Passing the one or more reagent ions with a gas sample to produce one or more product ions; directing the one or more product ions and the one or more reagent ions along a flight zone of the time-of-flight mass spectrometer module And determining, by the mass spectrometer module, values of peak intensities or masses of the one or more product ions and each of the one or more reagent ions. 76. A system for measuring the mass of one or more reagent ions and one or more product ions by means of microwave or rf energy. The reagent is produced by steaming, and the one or more product ions are generated by interacting the one or more reagent ions with a fluid sample in an electromagnetic field. The system comprises: a set of ions exiting relative to the drift tube assembly a quadrupole of the orifice arrangement ϋ mirror for receiving a first ion stream comprising the one or more reagent ions and the one or more product ions passing through the exit orifice, and for generating a directed a second ion stream of the ion beam modulator; and the ion beam modulator operative to selectively allow the second ion stream to pass to a flight zone of the time-of-flight mass spectrometer. 7 7. A system comprising: means for ionizing particles of a reagent vapor at a microwave or high frequency lamp to form one or more reagent ions; including an electromagnetic field for aligning the same with the one or more reagent ions 133727.doc •14· 200937487 A component that interacts to form one or more product ions and: a time taken to traverse a fixed distance based on the one or more product ions and the one or more reagents The amount of the component to determine the peak intensity or mass of each of the one or more product ions and the _ or reagent ions. 78. A meter or a plurality of reagent ions for measuring - or a plurality of reagent ions and - or a plurality of product ions - are generated by supplying microwave or rF energy to the reagent vapor and the product ion Produced by interfering with the -(iv) sample in an -electromagnetic field, the system comprising: for establishing a first ion current comprising the one or more reagent ions and the one or more product ions a member for adjusting the first ion current to generate a second ion current according to a specified interruption pattern; and means for generating a mass spectrum from the data conveyed by the detector member, the data corresponding to the second ion current . ❹ 79. A system for measuring the mass of one or more reagent ions and one or more product ions. The one or more reagent ions are generated by supplying microwave or RF energy to the reagent vapor, and One or more product ions are generated by interacting the one or more reagent ions with a fluid sample in an electromagnetic field. The system includes: for receiving the one or more reagent ions and the one or more product ions a first ion stream and an optical member for generating a second ion current directed to an adjustment member; and 133727.doc • 15· 200937487 the adjustment member for selectively controlling the second ion toward the mass spectrometer flow. 133727.doc 16-133727.doc 16-
TW097138598A 2007-10-10 2008-10-07 Chemical ionization reaction or proton transfer reaction mass spectrometry with a quadrupole or time-of-flight mass spectrometer TWI368249B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/869,978 US8003935B2 (en) 2007-10-10 2007-10-10 Chemical ionization reaction or proton transfer reaction mass spectrometry with a quadrupole mass spectrometer
US11/869,980 US8003936B2 (en) 2007-10-10 2007-10-10 Chemical ionization reaction or proton transfer reaction mass spectrometry with a time-of-flight mass spectrometer
US12/026,799 US8334505B2 (en) 2007-10-10 2008-02-06 Chemical ionization reaction or proton transfer reaction mass spectrometry

Publications (2)

Publication Number Publication Date
TW200937487A true TW200937487A (en) 2009-09-01
TWI368249B TWI368249B (en) 2012-07-11

Family

ID=40330703

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097138598A TWI368249B (en) 2007-10-10 2008-10-07 Chemical ionization reaction or proton transfer reaction mass spectrometry with a quadrupole or time-of-flight mass spectrometer

Country Status (6)

Country Link
EP (1) EP2212903B1 (en)
JP (3) JP2011511929A (en)
KR (2) KR101260566B1 (en)
CN (1) CN101855700B (en)
TW (1) TWI368249B (en)
WO (1) WO2009048739A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI579888B (en) * 2013-07-10 2017-04-21 卡爾蔡司Smt有限公司 Mass spectrometer, the use thereof, and methods for mass spectrometric analysis of gas mixtures
TWI783009B (en) * 2017-07-18 2022-11-11 以色列商應用材料以色列公司 Cleanliness monitor and a method for monitoring a cleanliness of a vacuum chamber

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101089328B1 (en) 2009-12-29 2011-12-02 한국기초과학지원연구원 Apparatus for electrospray ionization and method for electrospray ionization using the same
EP2421024A1 (en) 2010-08-18 2012-02-22 Ionicon Analytik Gesellschaft m.b.h. Ionisation method for a universal gas analyzer
FR2967692B1 (en) * 2010-11-23 2016-02-05 Ct Scient Tech Batiment Cstb DEVICE FOR DETECTION OF FUNGAL CONTAMINATION
CN102129950B (en) * 2011-01-28 2012-05-30 浙江大学 Microwave plasma ordinary-pressure desorption ionization source and application thereof in mass spectrum analysis
DE102012203137A1 (en) * 2012-02-29 2013-08-29 Inficon Gmbh Method for determining the maximum of the mass peak in mass spectrometry
FR2994271B1 (en) * 2012-08-03 2014-09-05 Commissariat Energie Atomique GAS ANALYSIS SYSTEM
JP6159821B2 (en) * 2012-12-26 2017-07-05 アール バイオ カンパニー リミテッドR Bio Co., Ltd. Cancer diagnosis method using respiratory gas
DE102013201499A1 (en) * 2013-01-30 2014-07-31 Carl Zeiss Microscopy Gmbh Method for the mass spectrometric analysis of gas mixtures and mass spectrometers
CN103337445B (en) * 2013-06-15 2015-10-28 中国科学院合肥物质科学研究院 A kind of anion proton reversion moves the mass spectrographic organic substance checkout gear of reaction and detection method
GB201413236D0 (en) 2014-07-25 2014-09-10 Smiths Detection Watford Ltd Method and apparatus
CN104538275B (en) * 2014-12-25 2016-11-30 华南师范大学 A kind of laser assisted glow discharge ionization device
CN106158574A (en) * 2015-04-09 2016-11-23 中国科学院生态环境研究中心 Photoinduction ion source Proton transfer reaction mass spectrometry instrument
US9496126B2 (en) 2015-04-17 2016-11-15 Thermo Finnigan Llc Systems and methods for improved robustness for quadrupole mass spectrometry
CN105548341B (en) * 2015-12-15 2018-11-09 南京信息工程大学 A kind of foul gas monitoring method and monitor
CN106024572B (en) * 2016-07-22 2017-09-19 中国科学院合肥物质科学研究院 The organic matter detection means and detection method of a kind of bipolarity Proton transfer reaction mass spectrometry
CN106546656A (en) * 2016-10-09 2017-03-29 中国科学院化学研究所 A kind of method of chemi-ionization linear paraffin
KR20190119106A (en) * 2017-02-21 2019-10-21 칼 짜이스 에스엠티 게엠베하 Real-time monitoring method of process and mass spectrometer
GB2560160B (en) * 2017-02-23 2021-08-18 Thermo Fisher Scient Bremen Gmbh Methods in mass spectrometry using collision gas as ion source
CN109243960B (en) * 2017-07-10 2020-11-17 株式会社岛津制作所 Proton transfer reaction mass spectrometer
GB201808892D0 (en) * 2018-05-31 2018-07-18 Micromass Ltd Mass spectrometer
GB201808912D0 (en) 2018-05-31 2018-07-18 Micromass Ltd Bench-top time of flight mass spectrometer
EP3629365A1 (en) 2018-09-28 2020-04-01 Ionicon Analytik Gesellschaft m.b.H. Imr-ms reaction chamber
CN110110743B (en) 2019-03-26 2019-12-31 中国检验检疫科学研究院 Automatic recognition system and method for seven-class mass spectrum
DE102019215319A1 (en) * 2019-10-07 2021-04-08 Leybold Gmbh Inlet system for a mass spectrometer
EP3819611B1 (en) * 2019-11-05 2024-03-27 Hitachi High-Tech Analytical Science GmbH An easily adjustable optical emission spectrometer
CN111220697A (en) * 2020-01-21 2020-06-02 北京雪迪龙科技股份有限公司 Detection method, detection system and detection equipment for gas in atmosphere
US20230024038A1 (en) * 2020-02-28 2023-01-26 Georgetown University Apparatus and methods for detection and quantification of elements in molecules
CN112347155B (en) * 2020-10-29 2023-11-21 南京大学 Site pollution characteristic factor identification and monitoring index optimization method based on data mining
WO2022173451A1 (en) * 2021-02-15 2022-08-18 Boronse Adrien A device for detecting explosive materials, or weapons or firearms, or knives or substances
CN113192818B (en) * 2021-03-26 2022-07-08 广东省科学院测试分析研究所(中国广州分析测试中心) Microwave plasma torch-solid phase micro extraction-flight time mass spectrum combined system
CN113447618B (en) * 2021-06-29 2023-11-03 重庆大学 Stepped air chamber of multi-sensor electronic nose, double-sample-injection detection system and method
WO2023013161A1 (en) * 2021-08-02 2023-02-09 株式会社島津製作所 Mass spectrometry device and mass spectrometry method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2147497A5 (en) 1971-07-29 1973-03-09 Commissariat Energie Atomique
JPS5512632A (en) * 1978-07-11 1980-01-29 Shimadzu Corp Ion source device for mass spectrometer
GB2362259B (en) * 1999-04-15 2002-02-20 Hitachi Ltd Mass analysis apparatus and method for mass analysis
GB2349270B (en) * 1999-04-15 2002-02-13 Hitachi Ltd Mass analysis apparatus and method for mass analysis
JP3392790B2 (en) * 1999-10-13 2003-03-31 三菱重工業株式会社 Mass spectrometer interface and mass spectrometry system
US6649907B2 (en) * 2001-03-08 2003-11-18 Wisconsin Alumni Research Foundation Charge reduction electrospray ionization ion source
US7095019B1 (en) * 2003-05-30 2006-08-22 Chem-Space Associates, Inc. Remote reagent chemical ionization source
US7518108B2 (en) 2005-11-10 2009-04-14 Wisconsin Alumni Research Foundation Electrospray ionization ion source with tunable charge reduction
JP3912688B1 (en) * 2006-01-12 2007-05-09 独立行政法人国立環境研究所 Organic compound measuring apparatus and measuring method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI579888B (en) * 2013-07-10 2017-04-21 卡爾蔡司Smt有限公司 Mass spectrometer, the use thereof, and methods for mass spectrometric analysis of gas mixtures
US10304672B2 (en) 2013-07-10 2019-05-28 Carl Zeiss Smt Gmbh Mass spectrometer, use thereof, and method for the mass spectrometric examination of a gas mixture
TWI783009B (en) * 2017-07-18 2022-11-11 以色列商應用材料以色列公司 Cleanliness monitor and a method for monitoring a cleanliness of a vacuum chamber

Also Published As

Publication number Publication date
EP2212903B1 (en) 2014-08-27
TWI368249B (en) 2012-07-11
EP2212903A2 (en) 2010-08-04
CN101855700B (en) 2012-12-05
CN101855700A (en) 2010-10-06
WO2009048739A2 (en) 2009-04-16
KR101260566B1 (en) 2013-05-06
JP2012054239A (en) 2012-03-15
KR20120107010A (en) 2012-09-27
KR101260631B1 (en) 2013-05-06
JP2011511929A (en) 2011-04-14
KR20100083785A (en) 2010-07-22
WO2009048739A3 (en) 2009-11-26
JP2012037529A (en) 2012-02-23

Similar Documents

Publication Publication Date Title
US8704171B2 (en) Chemical ionization reaction or proton transfer reaction mass spectrometry
EP2212903B1 (en) Chemical ionization reaction or proton transfer reaction mass spectrometry with a quadrupole or time-of-flight mass spectrometer
Cumeras et al. Review on ion mobility spectrometry. Part 1: current instrumentation
Smoluch et al. Plasma‐based ambient ionization mass spectrometry in bioanalytical sciences
Kanu et al. Predicting optimal resolving power for ambient pressure ion mobility spectrometry
JP5252748B2 (en) Chemical substance detection method and system
US8866075B2 (en) Apparatus preparing samples to be supplied to an ion mobility sensor
US20090095901A1 (en) Chemical ionization reaction or proton transfer reaction mass spectrometry with a quadrupole mass spectrometer
US10304672B2 (en) Mass spectrometer, use thereof, and method for the mass spectrometric examination of a gas mixture
US20070272852A1 (en) Differential mobility spectrometer analyzer and pre-filter apparatus, methods, and systems
Guharay et al. Ion mobility spectrometry: Ion source development and applications in physical and biological sciences
US7963146B2 (en) Method and system for detecting vapors
US20050139762A1 (en) Mobility based apparatus and methods using dispersion characteristics, sample fragmentation, and/or pressure control to improve analysis of a sample
US20090095902A1 (en) Chemical ionization reaction or proton transfer reaction mass spectrometry with a time-of-flight mass spectrometer
EP1601948A2 (en) Systems for differential ion mobility analysis
Schilling et al. Continuous simultaneous detection in mass spectrometry
Zhao et al. An electrospray chemical ionization source for real-time measurement of atmospheric organic and inorganic vapors
Španěl et al. Electrostatic switching and selection of H3O+, NO+, and O2+• reagent ions for selected ion flow-drift tube mass spectrometric analyses of air and breath
Allers et al. Detection of volatile toxic industrial chemicals with classical ion mobility spectrometry and high-kinetic energy ion mobility spectrometry
Bohnhorst et al. Ion fragmentation and filtering by alpha function in ion mobility spectrometry for improved compound differentiation
US6943343B2 (en) Chemical agent detection apparatus and method
Manard et al. Differential mobility spectrometry/mass spectrometry: The design of a new mass spectrometer for real-time chemical analysis in the field
US10458946B2 (en) Ion selecting device for identification of ions in gaseous media
Patel Development and Verification of Injection Systems for Proton Transfer Reaction Mass Spectrometry (PTR-MS) Analysis of Diverse Volatile Organic Compounds
Kaltsonoudis et al. Measurement of Atmospheric Volatile and Intermediate Volatility Organic Compounds: Development of a New Time-of-Flight Mass Spectrometer

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees