TW200933833A - Light source module and method for manufacturing the same - Google Patents

Light source module and method for manufacturing the same

Info

Publication number
TW200933833A
TW200933833A TW097101944A TW97101944A TW200933833A TW 200933833 A TW200933833 A TW 200933833A TW 097101944 A TW097101944 A TW 097101944A TW 97101944 A TW97101944 A TW 97101944A TW 200933833 A TW200933833 A TW 200933833A
Authority
TW
Taiwan
Prior art keywords
insulating substrate
light source
source module
light emitting
substrate
Prior art date
Application number
TW097101944A
Other languages
Chinese (zh)
Inventor
Wen-Jang Jiang
Original Assignee
Foxsemicon Integrated Tech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foxsemicon Integrated Tech Inc filed Critical Foxsemicon Integrated Tech Inc
Priority to TW097101944A priority Critical patent/TW200933833A/en
Publication of TW200933833A publication Critical patent/TW200933833A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Abstract

The present invention relates to a light source module and method for manufacturing the same. The light source module includes a lighting module and a thermo-electric cooler. The lighting module includes a first insulating base, and a plurality of LED chips disposed on the first insulating base. The thermo-electric cooler is placed on one surface of the first insulating base opposite to the LED chips. The thermo-electric cooler includes a second insulating base opposite to the first insulating base, and a thermo-electric cooler unit group between the first insulating base and the second insulating base. The thermo-electric cooler unit group is thermally connected with the first insulating base and the second insulating base. The thermo-electric cooler unit group includes a plurality of thermo-electric cooler units connected together.

Description

200933833 九、發明說明: , 【發明所屬之技術領域】 本發明涉及一種光源模組及其製造方法,尤其涉及一 種具良好散熱性能之光源模組及其製造方法。 【先前技術】 發光二極體(Light Emitting Diode,LED)為一種固態光 學元件,其電、光特性及壽命對溫度敏感,於此,一種於 溫度變化過程中還能保持穩定光強之新型發光二極體可參 ϋ 見 Yukio Tanaka 等人於文獻 IEEE Transactions On Electron Devices, Vol. 41,No.7, July 1994 中之 A Novel Temperature-Stable Light-Emitting Diode —文。一般而言, 較高之溫度會導致低落之内部量子效應並且壽命亦會明顯 縮短;另一方面,半導體之電阻隨著溫度地升高而降低, 滑落得電阻會帶來較大之電流及更多之熱產生,造成熱累 積現象地發生;此一熱破壞循環往往會加速破壞高功率 O LED光源模組。 如圖1所示,一種典型之LED光源模組100包括:一 個印刷電路板(Printed Circuit Board,PCB) 101、複數個言支置 於該印刷電路板101上之發光元件102(如,LED),及一個 用於對該複數個發光元件102進行散熱得散熱元件1〇3。一 種製作該LED光源模組1〇〇之方法包括以下步驟:將複數 個發光元件102設置於該印刷電路板101上並使其與該印 刷電路板101上之金屬線路形成電連接;將該散熱元件1〇3 設置於該印刷電路板101地遠離該複數個發光元件1〇2的 200933833 一側,並使該散熱元件103藉由導熱膏與印刷電路板101 . 形成熱性連接。然而,使用該方法制造得LED光源模組100 ^ 之散熱性能較差。 【發明内容】 下面將以實施例說明一種光源模組及其製造方法。 一種光源模組,其包括一個發光模組及一個熱電致冷 器。該發光模組包括一第一絕緣基板及設置於其上之複數 個發光二極體晶片;該熱電致冷器形成於該第一絕緣基板 〇 的與該複數個發光二極體晶片相對的一表面上,其包括一 第二絕緣基板及一熱電致冷單元組,該第二絕緣基板與該 第一絕緣基板相對設置,該熱電致冷單元組設置於該第一 絕緣基板與該第二絕緣基板之間且與該第一絕緣基板與該 第二絕緣基板熱連接,該熱電致冷單元組包括複數個連接 在一起之熱電致冷單元。 一種光源模組之製造方法,其包括以下步驟:(A)提供 〇 —第一絕緣基板,並於其一第一表面上形成金屬線路及複 數個發光二極體晶片;(B)於該第一絕緣基板的與其第一表 面相對的第二表面上形成一熱電致冷器,該熱電致冷器包 括一第二絕緣基板及一熱電致冷單元組,該第二絕緣基板 與該第一絕緣基板相對設置,該熱電致冷單元組設置於該 第一絕緣基板與該第二絕緣基板之間且與該第一絕緣基板 與該第二絕緣基板熱連接,該熱電致冷單元組包括複數個 連接在一起之熱電致冷單元。 相對於先前技術,該光源模組中之熱電致冷器設置於 200933833 該第一絕緣基板地遠離該複數個發光二極體晶片的一側 . 上,該複數個發光二極體晶片產生之熱量經過較短之距離 ^ 即可傳入該熱電致冷器,提高了該熱電致冷器對複數個發 光二極體晶片之散熱效率。並且,該熱電致冷器可對該複 數個發光二極體晶片之散熱效率進行主動控制,由此可使 該複數個發光二極體晶片於一恒定之溫度範圍内工作,以 保證該複數個發光二極體晶片具有穩定之光電特性,提升 該光源模組之工作效率。該光源模組之製造方法係先於絕 緣基板之第一表面上形成複數個發光二極體晶片及金屬線 路,再於該絕緣基板的與第一表面相對的第二表面上形成 一熱電致冷器,從而實現該複數個發光二極體晶片,金屬 線路及熱電致冷器共用一個絕緣基板。 【實施方式】 下面將結合附圖對本發明實施例作進一步之詳細說 明。 Q 請參見圖2,本發明第一實施例提供之光源模組20, 其包括:一個發光模組 21 及一個熱電致冷器 (Thermo-electric Cooler,簡稱 TEC)22。 該發光模組21包括一第一基板212,一個設置於該第 一基板212上之金屬線路層214,複數個設置於該第一基板 212上且分別與該金屬線路層214電連接之發光二極體晶 片216,以及複數個分別覆蓋該發光二極體晶片216之封裝 體218。於本實施例中,該複數個發光二極體晶片216外延 生長於該第一基板212上且分別藉由金線219與該金屬線 200933833 路層214形成電連接。 該第一基板212為藍寶石基板,其具有很好之絕緣性 及導熱性。可理解的是,該第一基板212亦可為碳化矽基 • 板、及其它1II-V族、II-VI族化合物基半導體基板。 該熱電致冷器22包括一個第二基板222及一個熱電致 冷單元組224。該第二基板222與上述第一基板212相對設 置且位於遠離該複數個發光二極體晶片216的一側。該熱 電致冷單元組224設置於該第一基板212與該第二基板222 ❹之間且與該第一基板212及該第二基板222熱連接。 該第二基板222亦可為絕緣性及導熱性較好之藍寶石 基板或碳化矽基板等。該第二基板222地遠離該第一基板 212的一側設置有散熱鰭片23,該散熱鰭片23沿遠離該第 一基板212之方向延伸。 該熱電致冷單元組224包括複數個串聯於一起之熱電 致冷單元2240。於本實施例中,相鄰兩個熱電致冷單元2240 ◎藉由一導電片2242形成電連接。每個熱電致冷單元2240 包括一導電基底2241,及設置於該導電基底2241 —侧並分 別與該導電基底2241電連接之P型半導體塊2243與K型 半導體塊2245。於本實施例中,該導電基底2241設置於該 第一基板212地靠近該第二基板222的一側’並與該第一 基板212直接接觸;該P型半導體塊2243與N型半導體塊 2245並列設置於該導電基底2241地遠離該第一基板212 的一側;該導電片2242設置於該第二基板222地靠近該第 一基板212的一側並與該第二基板222直接接觸’該導電 200933833 片2242地遠離該第二基板222的一側與一個熱電致冷單元 2240之P型半導體塊2243及相鄰熱電致冷單元2240之N 型半導體塊2245電連接。該熱電致冷單元組224之兩端分 別與一直流電源201相連。 該P型半導體塊2243與該N型半導體塊2245分別為 摻雜有 Bi-Te 系、Sb-Te 系、Bi-Se 系、Pb-Te 系、Ag-Sb-Te 系、Si-Ge系、Fe-Si系、Mn-Si系或者Cr-Si系化合物半導 體之固態塊體(Solid-State Cube)。於本實施例中,該P型半 ❹導體塊2243與該N型半導體塊2245分別為P型Bi2Te3、N 型 Bi2Te3。 請參見圖3,該複數個發光二極體晶片216亦可覆晶封 裝(Flip-chip)於該第一基板212地遠離該第二基板222的一 侧,即發光二極體晶片216包括並行設置之第一接觸電極 2162與第二接觸電極2163,該第一接觸電極2162與該第 二接觸電極2163藉由焊料(圖未示)分別與金屬線路層214 &形成電連接。 ❹ 當直流電源201給熱電致冷單元組224提供電能時, 熱電致冷單元組224所包括得複數個熱電致冷單元22\〇.均 會產生帕貼爾效應(Peltier Effect),該熱電 ,該熱電致冷單元組224BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light source module and a method of fabricating the same, and more particularly to a light source module having good heat dissipation performance and a method of fabricating the same. [Prior Art] A Light Emitting Diode (LED) is a solid-state optical component whose electrical, optical, and lifetime are sensitive to temperature. Here, a new type of illumination that maintains stable light intensity during temperature changes. Diodes can be found in Yukino Tanaka et al., IEEE Transactions On Electron Devices, Vol. 41, No. 7, July 1994, A Novel Temperature-Stable Light-Emitting Diode. In general, higher temperatures result in low internal quantum effects and a much shorter lifetime; on the other hand, the resistance of the semiconductor decreases with increasing temperature, and the resistance of the slip causes a larger current and more More heat is generated, causing thermal accumulation to occur; this thermal destruction cycle tends to accelerate the destruction of high-power O LED light source modules. As shown in FIG. 1 , a typical LED light source module 100 includes a printed circuit board (PCB) 101 and a plurality of light-emitting elements 102 (eg, LEDs) disposed on the printed circuit board 101. And a heat dissipating component 1 〇 3 for dissipating the plurality of illuminating elements 102. A method for fabricating the LED light source module 1b includes the steps of: arranging a plurality of light emitting elements 102 on the printed circuit board 101 and electrically connecting the metal lines on the printed circuit board 101; The component 1〇3 is disposed on the side of the printed circuit board 101 away from the 200933833 side of the plurality of light emitting elements 1〇2, and the heat dissipating component 103 is thermally connected to the printed circuit board 101 by the thermal conductive paste. However, the heat dissipation performance of the LED light source module 100^ manufactured by this method is poor. SUMMARY OF THE INVENTION A light source module and a method of fabricating the same will be described below by way of embodiments. A light source module includes a light emitting module and a thermoelectric cooler. The illuminating module includes a first insulating substrate and a plurality of illuminating diode chips disposed thereon; the thermoelectric cooler is formed on the first insulating substrate 相对 opposite to the plurality of illuminating diode wafers On the surface, the second insulating substrate and the thermoelectric cooling unit are disposed opposite to the first insulating substrate, and the thermoelectric cooling unit is disposed on the first insulating substrate and the second insulating layer. The first insulating substrate and the second insulating substrate are thermally connected to each other, and the thermoelectric cooling unit group includes a plurality of thermoelectric cooling units connected together. A method for manufacturing a light source module, comprising the steps of: (A) providing a first insulating substrate, and forming a metal line and a plurality of light emitting diode chips on a first surface thereof; (B) Forming a thermoelectric cooler on a second surface of the insulating substrate opposite to the first surface thereof, the thermoelectric cooler comprising a second insulating substrate and a thermoelectric cooling unit group, the second insulating substrate and the first insulating layer The thermoelectric cooling unit group is disposed between the first insulating substrate and the second insulating substrate and is thermally connected to the first insulating substrate and the second insulating substrate, and the thermoelectric cooling unit group includes a plurality of Thermoelectric cooling unit connected together. Compared with the prior art, the thermoelectric cooler in the light source module is disposed on the side of the first insulating substrate away from the plurality of LED chips in 200933833. The heat generated by the plurality of LED chips After a short distance ^, the thermoelectric cooler can be introduced to improve the heat dissipation efficiency of the thermoelectric cooler for a plurality of LED chips. Moreover, the thermoelectric cooler can actively control the heat dissipation efficiency of the plurality of LED chips, thereby allowing the plurality of LED chips to operate in a constant temperature range to ensure the plurality of The light-emitting diode chip has stable photoelectric characteristics and improves the working efficiency of the light source module. The light source module is formed by forming a plurality of light emitting diode chips and metal lines on a first surface of the insulating substrate, and forming a thermoelectric cooling on the second surface of the insulating substrate opposite to the first surface. The plurality of light emitting diode chips are realized, and the metal circuit and the thermoelectric cooler share an insulating substrate. [Embodiment] Hereinafter, embodiments of the present invention will be further described in detail with reference to the accompanying drawings. Referring to FIG. 2, a light source module 20 according to a first embodiment of the present invention includes: a light emitting module 21 and a thermoelectric cooler (TEC) 22. The light-emitting module 21 includes a first substrate 212, a metal circuit layer 214 disposed on the first substrate 212, and a plurality of light-emitting diodes disposed on the first substrate 212 and electrically connected to the metal circuit layer 214, respectively. The polar body wafer 216, and a plurality of packages 218 respectively covering the light emitting diode wafer 216. In this embodiment, the plurality of LED chips 216 are epitaxially grown on the first substrate 212 and electrically connected to the metal line 200933833 via 214 by gold wires 219, respectively. The first substrate 212 is a sapphire substrate which has excellent electrical and thermal conductivity. It can be understood that the first substrate 212 can also be a silicon carbide substrate, and other 1 II-V, II-VI compound-based semiconductor substrates. The thermoelectric cooler 22 includes a second substrate 222 and a thermoelectric cooling unit group 224. The second substrate 222 is disposed opposite to the first substrate 212 and located on a side away from the plurality of LED chips 216. The thermoelectric cooling unit group 224 is disposed between the first substrate 212 and the second substrate 222 , and is thermally connected to the first substrate 212 and the second substrate 222 . The second substrate 222 may be a sapphire substrate or a tantalum carbide substrate having good insulating properties and thermal conductivity. A heat dissipating fin 23 is disposed on a side of the second substrate 222 away from the first substrate 212, and the heat dissipating fin 23 extends in a direction away from the first substrate 212. The thermoelectric cooling unit group 224 includes a plurality of thermoelectric cooling units 2240 connected in series. In this embodiment, two adjacent thermoelectric cooling units 2240 are electrically connected by a conductive sheet 2242. Each of the thermoelectric cooling units 2240 includes a conductive substrate 2241, and a P-type semiconductor block 2243 and a K-type semiconductor block 2245 disposed on the side of the conductive substrate 2241 and electrically connected to the conductive substrate 2241, respectively. In this embodiment, the conductive substrate 2241 is disposed on a side of the first substrate 212 adjacent to the second substrate 222 and is in direct contact with the first substrate 212; the P-type semiconductor block 2243 and the N-type semiconductor block 2245 The conductive sheet 2242 is disposed on a side of the second substrate 222 adjacent to the first substrate 212 and is in direct contact with the second substrate 222. The side of the conductive 200933833 piece 2242 away from the second substrate 222 is electrically connected to the P-type semiconductor block 2243 of one thermoelectric cooling unit 2240 and the N-type semiconductor block 2245 of the adjacent thermoelectric cooling unit 2240. Both ends of the thermoelectric cooling unit group 224 are connected to the DC power source 201, respectively. The P-type semiconductor block 2243 and the N-type semiconductor block 2245 are doped with a Bi-Te system, an Sb-Te system, a Bi-Se system, a Pb-Te system, an Ag-Sb-Te system, or a Si-Ge system, respectively. A solid-state cube of a Fe-Si-based, Mn-Si-based or Cr-Si-based compound semiconductor. In the present embodiment, the P-type semiconductor block 2243 and the N-type semiconductor block 2245 are P-type Bi2Te3 and N-type Bi2Te3, respectively. Referring to FIG. 3, the plurality of LED chips 216 may also be flip-chip mounted on the side of the first substrate 212 away from the second substrate 222, that is, the LED array 216 includes parallel The first contact electrode 2162 and the second contact electrode 2163 are disposed. The first contact electrode 2162 and the second contact electrode 2163 are electrically connected to the metal circuit layer 214 & respectively by solder (not shown). ❹ When the DC power source 201 supplies power to the thermoelectric cooling unit group 224, the thermoelectric cooling unit group 224 includes a plurality of thermoelectric cooling units 22, which generate a Peltier Effect, which is a pyroelectric effect. The thermoelectric cooling unit group 224

11 200933833 之傳輸作用將熱量傳送到該第二基板222,接著經由散熱鰭 . 片23快速傳導出去。 可理解的是,該複數個熱電致冷單元2240亦可分別連 « 接若干個直流電源或者並聯到一個直流電源,同樣可實現 帕貼爾效應從而對該複數個發光二極體晶片216進行散熱。 該熱電致冷器22之工作溫度可由該直流電源201所施 加電壓進行設定,從而使該熱電致冷器22對該複數個發光 二極體晶片216之散熱效率進行主動控制,由此可使該複 ^ 數個發光二極體晶片216於一恒定之溫度範圍内工作,以 保證該複數個發光二極體晶片216具有穩定之光電特性, 提升該光源模組20之工作效率。此外,該熱電致冷器22 直接設置於該第一基板212的與該複數個發光二極體晶片 216相對的一表面上,使得該複數俩發光二極體晶片216 產生之熱量經過較短之距離即可傳入該熱電致冷器22,提 高了該熱電致冷器22對複數個發光二極體晶片216之散熱 ❹效率。 本發明第二實施例提供之光源模組之製造方法包括以 下步驟: (1)提供一第一絕緣基板,並於該第一絕緣基板之一第 一表面上形成金屬線路及複數個發光二極體晶片。如圖4 所示,先於絕緣基板212之第一表面2120上採用磊晶 (Epitaxy)生長得方法形成複數個發光二極體晶片216,再利 用蒸鍍或電鍍等方式於該複數個發光二極體晶片216之間 形成金屬線路214。於此,該絕緣基板212可為藍寶石基 12 200933833 板,碳化矽基板或其他III-V族、π_νΐ族化合物基半導體 • 基板。 (2)於該第一絕緣基板之第一表面上形成一保護層,以 使該保護層覆蓋該金屬線路及複數個發光二極體晶片。如 圖5所示,將一保護層14塗敷於該絕緣基板212之第一表 面2120上,該保護層14覆蓋該金屬線路214及複數個發 光二極體晶片216’使該金屬線路214及複數個發光二極體 晶片216與外部隔離。於本實施例中,該保護層14為黑蠟。 β (3)於該第一絕緣基板的與其第一表面相對的第二表 面上形成一熱電致冷器(Thermo-electric Cooler,簡稱 TEC)。如圖6所示,於絕緣基板212之第二表面2122上形 成熱電致冷器包括以下步驟:(a)利用蒸鍍或電鍍等方式將 複數個導電基底2241分別設置於該絕緣基板212之第二表 面2122上並使其陣列排布;(b)於每個導電基底2241地遠 離該絕緣基板212的一側利用導電膠黏接一個N型半導體 ❹塊2245及一個P型半導體塊2243,以使該P型半導體塊 2243與N型半導體塊2245分別與該導電基底2241電連接 以形成一個熱電致冷單元2240,於此,該導電膠可為銀膠; (c)提供一具有複數個導電片2242之絕緣基板222,將其設 置於該複數個熱電致冷單元2240地遠離絕緣基板212的〜 側’並使該複數個導電片2242分別與相鄰兩個熱電致冷單 元2240中之一個熱電致冷單元之p型半導體塊與另一個熱 電致冷單元之N型半導體塊電連接,以使該複數個熱電執 冷單元2240串聯於一起形成熱電致冷單元組224。 13 200933833 (4) 將該第一絕緣基板之第一表面上之保護層去除。如 _ 圖7所示,使用化學試劑將絕緣基板212之第一表面2120 之保護層14去除,於本實施例中,該化學試劑為乙丙醇。 (5) 將該複數個發光二極體晶片分別與金屬線路打線 連接(Wire-bonding),並將複數個封裝體(Encapsulant)設置 於該第一絕緣基板之第一表面上以分別覆蓋該複數個發光 二極體晶片。如圖8所示,將該複數個發光二極體晶片216 分別與金屬線路214打線連接,並將複數個封裝體218設 ® 置於該絕緣基板212之第一表面2120上以覆蓋該複數個發 光二極體晶片216。 (6) 於該熱電致冷器地遠離該第一絕緣基板的一側設 置一散熱鰭片。如圖2所示,利用導電膠於絕緣基板222 地遠離該絕緣基板212的一側黏接一散熱鰭片23。 可理解的是,上述步驟(5)該“將該複數個發光二極體 晶片分別與金屬線路打線連接”亦可於上述步驟(1)中完 ◎成;根據實際需要,上述步驟(2)及(4)可省略。 於本實施例中,先於絕緣基板212之第一表面2120上 形成複數個發光二極體晶片216及與其電連接之金屬線路 214,再於該絕緣基板212之第二表面2122上形成一熱電 致冷器22,從而實現該複數個發光二極體晶片216,金屬 線路214及熱電致冷器22共用一個絕緣基板。 本發明第三實施例提供之光源模組之製造方法包括以 下步驟: (1)提供一第一絕緣基板,於該第一絕緣基板之一第一 14 200933833 表面上形成金屬線路,再將複數個發光二極體晶片覆晶封 裝(Flip-chip)於該第一表面上以與該金屬線路形成電連 接。如圖9所示,先於絕緣基板212上形成金屬線路214, 再將複數個發光二極體晶片216覆晶封裝於該絕緣基板 212之第一表面2120上,使得該複數個發光二極體晶片216 與金屬線路214形成電連接。 (2) 於該第一絕緣基板之第一表面上形成一保護層,以 使該保護層覆蓋該金屬線路及複數個發光二極體晶片。如 ® 圖10所示,將一保護層14塗敷於該絕緣基板212之第一 表面2120上,該保護層14覆蓋該金屬線路214及複數個 發光二極體晶片216,使該金屬線路214及複數個發光二極 體晶片216與外部隔離。於本實施例中,該保護層14為黑 躐。 (3) 於該第一絕緣基板的與其第一表面相對的第二表 面上形成一熱電致冷器。 q (4)將該第一絕緣基板之第一表面上之保護層去除。 (5)於該熱電致冷器地遠離該第一絕緣基板的一側設 置一散熱鰭片,如圖3所示。 上述步驟(3)、(4)、(5)分別與第一實施例中之步驟(3)、 (4)、(6)基本相同,於此不再贅述。 於本實施例中,先於絕緣基板212之第一表面2120上 形成金屬線路214並覆晶封裝複數個發光二極體晶片 216,再於該絕緣基板212的與其第一表面2120相對的第 二表面上形成一熱電致冷器,從而實現該複數個發光二極 15 200933833 體晶片216,金屬線路214及熱電致冷器共用一個絕緣基 -板。所以,使用第二及第三實施例所提供之方法制造得光 . 源模組具有良好之散熱效率。 知上所述,本發明確已符合發明專利之要件,遂依法 提出專利申請。惟,以上所述者僅為本發明之較佳實施方 式,自不能以此限制本案之申請專利範圍。舉凡熟悉本案 技藝之人士援依本發明之精神所作之等效修飾或變化,皆 應涵蓋於以下申請專利範圍内。 ® 【圖式簡單說明】 圖1係先前技術中之一種LED裝置之側視圖。 圖2係本發明第一實施例之光源模組之截面示意圖。 圖3係圖2所示光源模組所包括得發光二極體採用覆 晶封裝得截面示意圖。 圖4係於第一絕緣基板之第一表面上形成金屬線路層 及複數個發光二極體晶片之狀態示意圖。 ❹ 圖5係於圖4中所示第一絕緣基板之第一表面上塗覆 保護層之狀態示意圖。 圖6係於圖5中所示第一絕緣基板之第二表面上形成 熱電致冷器之狀態示意圖。 圖7係將圖6中所示第一絕緣基板之第二表面上之保 護層去除後之狀態示意圖。 圖8係將圖7中所示之複數個發光二極體晶片分別與 金屬線路打線連接,並將複數個封裝體設置於該絕緣基板 之第一表面上之狀態示意圖。 16 200933833 圖9係於第一絕緣基板之第一表面上形成金屬線路層 並將複數個發光二極體晶片覆晶封裝於該第一表面上之狀 態示意圖。 圖10係於圖9中所示第一絕緣基板之第一表面上塗覆 保護層之狀態示意圖。 【主要元件符號說明】 LED光源模組 100 印刷電路板 101 ❹發光元件 102 散熱元件 103 光源模組 20 發光模組 21 熱電致冷器 22 第一基板 212 金屬線路層 214 發光二極體晶片 216 封裝體 218 金線 219 第二基板 222 電致冷單元組 224 散熱鰭片 23 熱電致冷單元 2240 導電片 2242 導電基底 2241 17 200933833 Ρ型半導體塊 2243 Ν型半導體塊 2245 直流電源 201 第一接觸電極 2162 第二接觸電極 2163 第一表面 2120 第二表面 2122 保護層 14 Ο ❹ 18The transmission of 1133833833 transfers heat to the second substrate 222, which is then quickly conducted out via the heat sink fins 23. It can be understood that the plurality of thermoelectric cooling units 2240 can also be connected to a plurality of DC power sources or connected to a DC power source respectively, and the Peltier effect can also be implemented to dissipate the plurality of LED chips 216. . The operating temperature of the thermoelectric cooler 22 can be set by the voltage applied by the DC power source 201, so that the thermoelectric cooler 22 actively controls the heat dissipation efficiency of the plurality of LED chips 216, thereby enabling the The plurality of light emitting diode chips 216 operate in a constant temperature range to ensure stable optical characteristics of the plurality of light emitting diode chips 216, thereby improving the working efficiency of the light source module 20. In addition, the thermoelectric cooler 22 is disposed directly on a surface of the first substrate 212 opposite to the plurality of LED chips 216, so that the heat generated by the plurality of LED chips 216 is relatively short. The distance can be transmitted to the thermoelectric cooler 22, which improves the heat dissipation efficiency of the thermoelectric cooler 22 for the plurality of LED chips 216. A method for manufacturing a light source module according to a second embodiment of the present invention includes the following steps: (1) providing a first insulating substrate, and forming a metal line and a plurality of light emitting diodes on a first surface of the first insulating substrate Body wafer. As shown in FIG. 4, a plurality of light-emitting diode chips 216 are formed on the first surface 2120 of the insulating substrate 212 by epitaxial growth, and then the plurality of light-emitting diodes are formed by evaporation or electroplating. Metal lines 214 are formed between the pole body wafers 216. Herein, the insulating substrate 212 may be a sapphire-based 12 200933833 plate, a tantalum carbide substrate or other III-V group, π_ν steroid-based semiconductor substrate. (2) forming a protective layer on the first surface of the first insulating substrate such that the protective layer covers the metal line and the plurality of light emitting diode chips. As shown in FIG. 5, a protective layer 14 is applied on the first surface 2120 of the insulating substrate 212. The protective layer 14 covers the metal line 214 and the plurality of LED chips 216' to make the metal line 214 and A plurality of light emitting diode chips 216 are isolated from the outside. In this embodiment, the protective layer 14 is black wax. β (3) forms a thermoelectric cooler (TEC) on the second surface of the first insulating substrate opposite to the first surface thereof. As shown in FIG. 6, forming a thermoelectric cooler on the second surface 2122 of the insulating substrate 212 includes the following steps: (a) disposing a plurality of conductive substrates 2241 on the insulating substrate 212 by evaporation or plating, respectively. The two surfaces 2122 are arranged on the second surface 2122; (b) an N-type semiconductor germanium block 2245 and a P-type semiconductor block 2243 are adhered by conductive adhesive on the side of each of the conductive substrates 2241 away from the insulating substrate 212. The P-type semiconductor block 2243 and the N-type semiconductor block 2245 are electrically connected to the conductive substrate 2241, respectively, to form a thermoelectric cooling unit 2240. Here, the conductive paste may be a silver paste; (c) providing a plurality of conductive materials The insulating substrate 222 of the sheet 2242 is disposed on the side of the plurality of thermoelectric cooling units 2240 away from the insulating substrate 212 and causes the plurality of conductive sheets 2242 to be respectively associated with one of the adjacent two thermoelectric cooling units 2240. The p-type semiconductor block of the thermoelectric cooling unit is electrically connected to the N-type semiconductor block of the other thermoelectric cooling unit such that the plurality of thermoelectric cooling units 2240 are connected in series to form the thermoelectric cooling unit group 224. 13 200933833 (4) The protective layer on the first surface of the first insulating substrate is removed. As shown in FIG. 7, the protective layer 14 of the first surface 2120 of the insulating substrate 212 is removed using a chemical reagent. In this embodiment, the chemical reagent is ethylene propanol. (5) wire-bonding the plurality of light-emitting diode chips to the metal line, and setting a plurality of packages on the first surface of the first insulating substrate to cover the plurality Light-emitting diode chips. As shown in FIG. 8, the plurality of LED chips 216 are respectively wired to the metal line 214, and a plurality of packages 218 are disposed on the first surface 2120 of the insulating substrate 212 to cover the plurality of Light-emitting diode wafer 216. (6) A heat dissipating fin is disposed on a side of the thermoelectric cooler away from the first insulating substrate. As shown in FIG. 2, a heat dissipating fin 23 is adhered to the side of the insulating substrate 222 away from the insulating substrate 212 by using a conductive paste. It can be understood that, in the above step (5), the "connecting the plurality of light-emitting diode wafers to the metal lines respectively" may also be completed in the above step (1); according to actual needs, the above step (2) And (4) can be omitted. In this embodiment, a plurality of light emitting diode chips 216 and a metal line 214 electrically connected thereto are formed on the first surface 2120 of the insulating substrate 212, and a thermoelectric circuit is formed on the second surface 2122 of the insulating substrate 212. The refrigerator 22 realizes the plurality of light emitting diode chips 216, and the metal line 214 and the thermoelectric cooler 22 share an insulating substrate. A method for manufacturing a light source module according to a third embodiment of the present invention includes the following steps: (1) providing a first insulating substrate, forming a metal line on a surface of the first 14 200933833 of the first insulating substrate, and then forming a plurality of A light-emitting diode wafer is flip-chip mounted on the first surface to form an electrical connection with the metal line. As shown in FIG. 9, a metal line 214 is formed on the insulating substrate 212, and a plurality of light emitting diode chips 216 are flip-chip mounted on the first surface 2120 of the insulating substrate 212, so that the plurality of light emitting diodes are formed. Wafer 216 is in electrical connection with metal line 214. (2) forming a protective layer on the first surface of the first insulating substrate such that the protective layer covers the metal line and the plurality of light emitting diode chips. As shown in FIG. 10, a protective layer 14 is applied on the first surface 2120 of the insulating substrate 212. The protective layer 14 covers the metal line 214 and the plurality of LED chips 216, and the metal line 214 is formed. And a plurality of light emitting diode chips 216 are isolated from the outside. In this embodiment, the protective layer 14 is black enamel. (3) Forming a thermoelectric cooler on the second surface of the first insulating substrate opposite to the first surface thereof. q (4) Removing the protective layer on the first surface of the first insulating substrate. (5) A heat dissipating fin is disposed on a side of the thermoelectric cooler away from the first insulating substrate, as shown in FIG. The above steps (3), (4), and (5) are basically the same as the steps (3), (4), and (6) in the first embodiment, and details are not described herein again. In this embodiment, a metal line 214 is formed on the first surface 2120 of the insulating substrate 212, and a plurality of light emitting diode chips 216 are flip-chip encapsulated, and then a second surface of the insulating substrate 212 opposite to the first surface 2120 thereof. A thermoelectric cooler is formed on the surface to realize the plurality of light emitting diodes 1533833833 body wafer 216, and the metal line 214 and the thermoelectric cooler share an insulating base plate. Therefore, the light source is manufactured using the methods provided in the second and third embodiments. The source module has good heat dissipation efficiency. As described above, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by persons skilled in the art in light of the present invention are intended to be included within the scope of the following claims. ® [Simple Description of the Drawings] Fig. 1 is a side view of an LED device of the prior art. 2 is a schematic cross-sectional view showing a light source module according to a first embodiment of the present invention. FIG. 3 is a schematic cross-sectional view showing a light-emitting diode of the light source module shown in FIG. 4 is a schematic view showing a state in which a metal wiring layer and a plurality of light emitting diode chips are formed on the first surface of the first insulating substrate. Figure 5 is a schematic view showing a state in which a protective layer is coated on the first surface of the first insulating substrate shown in Figure 4 . Fig. 6 is a view showing a state in which a thermoelectric refrigerator is formed on the second surface of the first insulating substrate shown in Fig. 5. Fig. 7 is a view showing a state in which the protective layer on the second surface of the first insulating substrate shown in Fig. 6 is removed. Fig. 8 is a view showing a state in which a plurality of light-emitting diode wafers shown in Fig. 7 are respectively connected to a metal wiring, and a plurality of packages are disposed on a first surface of the insulating substrate. 16 200933833 FIG. 9 is a schematic view showing a state in which a metal wiring layer is formed on a first surface of a first insulating substrate and a plurality of light emitting diode wafers are flip-chip mounted on the first surface. Fig. 10 is a view showing a state in which a protective layer is coated on the first surface of the first insulating substrate shown in Fig. 9. [Main component symbol description] LED light source module 100 Printed circuit board 101 ❹ Light-emitting element 102 Heat-dissipating component 103 Light source module 20 Light-emitting module 21 Thermoelectric cooler 22 First substrate 212 Metal wiring layer 214 Light-emitting diode wafer 216 Packaging Body 218 Gold wire 219 Second substrate 222 Electrocooling unit group 224 Heat sink fin 23 Thermoelectric cooling unit 2240 Conductive sheet 2242 Conductive substrate 2241 17 200933833 Ρ-type semiconductor block 2243 Ν-type semiconductor block 2245 DC power source 201 First contact electrode 2162 Second contact electrode 2163 first surface 2120 second surface 2122 protective layer 14 Ο ❹ 18

Claims (1)

200933833 十、申請專利範圍: • 種光源模組,其包括:一個發光模組及一個熱電致冷 ,益,該發光模組包括一第一絕緣基板及設置於其上之複數 個發光二極體晶片;該熱電致冷器形成於該第-絕緣基板 的與該複數個發光二極體晶片相對的一表面上,其包括— 第二絕緣基板及-熱電致冷單元組’該第二絕緣基板與該 =一絕緣基板相對設置,該熱電致冷單元組設置於該第」 絶緣基板與該第二絕緣基板之間且與該第一絕緣基板與該 第二絕緣基板熱連接,該熱電致冷單元組包括複數個連接 在一起之熱電致冷單元。 2.如申請專利範圍第i項所述之光源模組,其中,該複數個 發光二極體晶片外延生長於該第一絕緣基板上。 3·如申請專利範圍第i項所述之光源模組,其中,該複數個 發光二極體晶片覆晶封裝於該第一絕緣基板上。 4·如申請專利範圍第丨項所述之光源模組,其中,該光源模 Q組還包括散熱鰭片,其設置於該第二絕緣基板上且位於遠 離該發光模組的一側。 5. 如申請專利範圍第i項所述之光源模組,其中,每個熱電 致冷單元包括一導電基底,及設置於該導電基底一側並與 該導電基底電連接之P型半導體塊與N型半導體塊,相鄰 兩個熱電致冷單元藉由一導電片形成電連接。 6. —種光源模組之製造方法,其包括以下步驟: (A)提供一第一絕緣基板,並於其一第一表面上形成金屬線 路及複數個發光二極體晶片; 19 200933833 (B)於該第一絕緣基板的與其第一表面相對的第二表面上形 .成-熱電,冷n,該熱電致冷器包括—第二絕緣基板及二 ,熱電致冷單元組,該第二絕緣基板與該第—絕緣基板相對 設置,該熱電致冷單元組設置於該第一絕緣基板與該第二 絕緣基板之間且與該第一絕緣基板與該第二絕緣基板熱連 接,該熱電致冷單元組包括複數個連接在一起之熱電致一 早70。 7.如申請專利範圍第6項所述之光源模組製造 ®卜㈣⑷包括以下子㈣:先於該第—絕緣基板之第一表 面上磊晶生長複數個發光二極體晶片,再於該第一表面上 形成金屬線路並將該複數個發光二極體晶片分別與金屬線 路打線連接,接著於該第-表面上設置複數個封裝體以分 別覆蓋該複數個發光二極體晶片。 8·如申請專利範圍第6項所述之光源模組之製造方法,其 中,步驟(Α)包括以下子步驟:先於第一絕緣基板之第一 ^ ❹面上形成金屬線路,再將該複數個發光二極體晶片覆晶封 裝於該第一表面上。 9. 如申請專利範圍第6項所述之光源模組之製造方法,.其 中,於步驟(Α)之後且於步驟之前還包括步驟,於該 第一絕緣基板之第一表面上形成一保護層以覆蓋金屬線路 及複數個發光二極體晶片。 10. 如申請專利範圍第6項所述之光源模組之製造方法,其 中,於步驟(B)之後還包括步驟(D),於該熱電致冷器地遠離 該第一絕緣基板的一側設置一散熱韓片。 20 200933833 t 11.如申請專利範圍第6項所述之光源模組之製造方法’其 . 中’步驟(B)包括以下子步驟: .(a)將複數個導電基底分別設置於第一絕緣基板的與其第一 表面相對的第二表面上並使該複數個導電基底陣列排布; (b) 於每個導電基底地遠離該第一絕緣基板的一侧設置一個 P型半導體塊及一個N型半導體塊,並使該p型半導體塊 與N型半導體塊分別與該導電基底電連接以形成一個熱電 致冷單元; ❹ β (c) 提供一具有複數個導電片之第二絕緣基板,將其設置於 該複數個熱電致冷單元地遠離該第一絕緣基板的一側,並 使該複數個導電片分別與相鄰兩個熱電致冷單元中之一個 熱電致冷單元之ρ型半導體塊與另一個熱電致冷單元之Ν 型半導體塊電連接以使該複數個熱電致冷單元連接在一 起。200933833 X. Patent application scope: • A light source module comprising: a light emitting module and a thermoelectric cooling device, the light emitting module comprising a first insulating substrate and a plurality of light emitting diodes disposed thereon a thermoelectric cooler formed on a surface of the first insulating substrate opposite to the plurality of light emitting diode wafers, comprising: a second insulating substrate and a thermoelectric cooling unit group The thermoelectric cooling unit is disposed between the first insulating substrate and the second insulating substrate and is thermally connected to the first insulating substrate and the second insulating substrate, and the thermoelectric cooling is disposed opposite to the insulating substrate. The unit group includes a plurality of thermoelectric cooling units connected together. 2. The light source module of claim 1, wherein the plurality of light emitting diode wafers are epitaxially grown on the first insulating substrate. 3. The light source module of claim 1, wherein the plurality of light emitting diode chips are flip chip mounted on the first insulating substrate. The light source module of claim 2, wherein the light source module Q further comprises a heat dissipating fin disposed on the second insulating substrate and located on a side away from the light emitting module. 5. The light source module of claim 1, wherein each thermoelectric cooling unit comprises a conductive substrate, and a P-type semiconductor block disposed on a side of the conductive substrate and electrically connected to the conductive substrate The N-type semiconductor block, the adjacent two thermoelectric cooling units are electrically connected by a conductive sheet. 6. A method of fabricating a light source module, comprising the steps of: (A) providing a first insulating substrate, and forming a metal line and a plurality of light emitting diode chips on a first surface thereof; 19 200933833 (B) Forming a thermoelectric, cold n on the second surface of the first insulating substrate opposite to the first surface thereof, the thermoelectric cooler includes a second insulating substrate and two, a thermoelectric cooling unit group, the second An insulating substrate is disposed opposite to the first insulating substrate, and the thermoelectric cooling unit is disposed between the first insulating substrate and the second insulating substrate and is thermally connected to the first insulating substrate and the second insulating substrate, the thermoelectric The refrigeration unit group includes a plurality of thermocouples 70 that are connected together. 7. The manufacturing of the light source module according to claim 6 of the patent application scope (4) (4) includes the following sub (4): epitaxially growing a plurality of light emitting diode chips on the first surface of the first insulating substrate, and then A metal line is formed on the first surface, and the plurality of light emitting diode chips are respectively connected to the metal line, and then a plurality of packages are disposed on the first surface to cover the plurality of light emitting diode chips respectively. The method of manufacturing a light source module according to claim 6, wherein the step (Α) includes the following sub-step: forming a metal line on the first surface of the first insulating substrate, and then A plurality of light emitting diode wafers are flip chip mounted on the first surface. 9. The method of manufacturing a light source module according to claim 6, wherein after the step (step) and before the step, the step further comprises forming a protection on the first surface of the first insulating substrate. The layer covers the metal line and a plurality of light emitting diode chips. 10. The method of manufacturing a light source module according to claim 6, wherein the step (B) further comprises the step (D), the side of the thermoelectric cooler away from the first insulating substrate Set up a cooling Korean film. 20 200933833 t 11. The manufacturing method of the light source module according to claim 6 of the patent application, wherein the step (B) comprises the following sub-steps: (a) placing a plurality of conductive substrates respectively on the first insulation And arranging the plurality of conductive substrate arrays on the second surface of the substrate opposite to the first surface; (b) providing a P-type semiconductor block and a N on a side of each of the conductive substrates away from the first insulating substrate a semiconductor block, and electrically connecting the p-type semiconductor block and the N-type semiconductor block to the conductive substrate respectively to form a thermoelectric cooling unit; ❹β (c) providing a second insulating substrate having a plurality of conductive sheets, The p-type semiconductor block is disposed on a side of the plurality of thermoelectric cooling units away from the first insulating substrate, and the plurality of conductive sheets are respectively connected to one of the two thermoelectric cooling units The 半导体-type semiconductor block of another thermoelectric cooling unit is electrically connected to connect the plurality of thermoelectric cooling units together. 21twenty one
TW097101944A 2008-01-18 2008-01-18 Light source module and method for manufacturing the same TW200933833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097101944A TW200933833A (en) 2008-01-18 2008-01-18 Light source module and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097101944A TW200933833A (en) 2008-01-18 2008-01-18 Light source module and method for manufacturing the same

Publications (1)

Publication Number Publication Date
TW200933833A true TW200933833A (en) 2009-08-01

Family

ID=44866073

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097101944A TW200933833A (en) 2008-01-18 2008-01-18 Light source module and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TW200933833A (en)

Similar Documents

Publication Publication Date Title
CN101471337B (en) Light source die set with good radiating performance
TWI303113B (en)
US7759144B2 (en) Package for a semiconductor light emitting device
US20090175035A1 (en) Light source module and method for manufacturing same
JP5040765B2 (en) Semiconductor device
KR100634307B1 (en) Light-emitting device and method of manufacturing the same
CN101465347A (en) Light source die set and method of manufacturing the same
TWI549322B (en) Led component by integrating epitaxial structure and package substrate together and method of manufacturing the same
EP2316131A1 (en) Thermally optimised led chip-on-board module
TWI548058B (en) Led array encapsulation structure and manufacture method thereof
TW201131829A (en) Thermally-enhanced hybrid LED package components
US8222728B2 (en) Active solid heatsink device and fabricating method thereof
TWI484674B (en) Electronic device
US7943430B2 (en) Semiconductor device with heat sink and method for manufacturing the same
JP2008193092A (en) Light emitting diode chip support and utilization method thereof
TWI358801B (en) Light source module and manufacturing method there
US8519409B2 (en) Light emitting diode components integrated with thermoelectric devices
TW200933833A (en) Light source module and method for manufacturing the same
JP2007188942A (en) Light emitting diode device coupling rectifying circuit to sub-carrier and manufacturing method thereof
TW201208128A (en) Package structure of LED
KR102013849B1 (en) Self-generation electricity light emitting diode using seeback effect, method for manufacturing the same, and light emitting diode module having the same
TW200928214A (en) Light source module with high heat dissipation capability
TWI789163B (en) Light-emitting diode package structure and manufacturing method thereof
Zhang et al. Research progress on packaging thermal management techniques of high power led
KR20100124179A (en) Submount bonding method and the apparatus