TW201208128A - Package structure of LED - Google Patents

Package structure of LED Download PDF

Info

Publication number
TW201208128A
TW201208128A TW99125546A TW99125546A TW201208128A TW 201208128 A TW201208128 A TW 201208128A TW 99125546 A TW99125546 A TW 99125546A TW 99125546 A TW99125546 A TW 99125546A TW 201208128 A TW201208128 A TW 201208128A
Authority
TW
Taiwan
Prior art keywords
light
package structure
emitting diode
transparent substrate
metal layer
Prior art date
Application number
TW99125546A
Other languages
Chinese (zh)
Other versions
TWI407599B (en
Inventor
Tzu-Chien Hung
Ya-Wen Lin
Original Assignee
Advanced Optoelectronic Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Optoelectronic Tech filed Critical Advanced Optoelectronic Tech
Priority to TW99125546A priority Critical patent/TWI407599B/en
Publication of TW201208128A publication Critical patent/TW201208128A/en
Application granted granted Critical
Publication of TWI407599B publication Critical patent/TWI407599B/en

Links

Abstract

The present invention relates to a package structure of LED. The package structure includes a transparency substrate and an LED chip mounted on the transparency substrate. The transparency substrate has a first surface, a second surface opposite to the first surface, and a lateral surface connecting the first and second surfaces. The transparency substrate defines a groove at the first surface. The package structure further includes a metal layer attached on the second surface and the lateral surface. A pair of electrodes are located at a bottom of the groove of the transparency substrate and extend through the metal layer. An insulated material is filled between the transparency substrate and the electrodes. Light emitted by the LED chip is transmitted through the transparency substrate and reflected by the metal layer.

Description

201208128 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種發光二極體’特別是指一種發光二極體 之封裝結構。 【先前技術·】 [0002]發光二極體(Light Emitting Diode,LED)為一種半 導體光源,其電、光特性及壽命對溫度敏感,在此,一 種在溫度變化過程中還能保持穩定光強之新型發光二極 體可參見Yukio Tanaka等人在文獻IEEE Transactions On Electron Devices, Vol. 41, No. 7, July 1 994 中之 A Novel Temperature-Stable Light-Emitting Diode— 文。 _3]目前,提高LED之亮度是研究LED之一大課題。作為提高 亮度之手段’考慮或提高LED内部之量子之效率,或提高 LED晶片在封裝結構中發出之光之出光效率。如圖1所示 ,一種習知之發光二極體气封裝結構10包括:一基板u 、一反光杯18圍鱗於該基极11周圍、一對電極12及13設 置在基板11上、一晶粒15貼設在該電極12上且分別通過 導線17連接該對電極12及13、一封裝膠16填充於該反光 杯18内並覆蓋該晶粒15。該晶粒15發出之光線經過反光 杯18内表面反射從頂部射出。然而,由於反光杯18之出 光口限制了出光面,使得發光二極體之封裝結構10之出 光面積S較小,若為了增加出光面積,必須增加基板之面 積,導致整個封裝結構之體積變大,並不符合現在工業 上之需求。 099125546 表單編號A0101 第4頁/共19頁 0992044839-0 201208128 【發明内容】 [_㈣於此,有提供-種出光面積大 一極體之封裝結構。 出光效率高之發光 [0005]201208128 VI. Description of the Invention: [Technical Field of the Invention] [0001] The present invention relates to a light-emitting diode', particularly to a package structure of a light-emitting diode. [Prior Art] [0002] Light Emitting Diode (LED) is a semiconductor light source whose electrical, optical characteristics and lifetime are sensitive to temperature. Here, a stable light intensity can be maintained during temperature changes. A novel light-emitting diode can be found in Yukino Tanaka et al., IEEE Transactions On Electron Devices, Vol. 41, No. 7, July 1 994, A Novel Temperature-Stable Light-Emitting Diode. _3] At present, improving the brightness of LED is one of the major issues in researching LEDs. As a means of increasing the brightness, the efficiency of the quantum inside the LED is considered or improved, or the light-emitting efficiency of the light emitted by the LED chip in the package structure is improved. As shown in FIG. 1 , a conventional LED package structure 10 includes a substrate u, a reflector 18 surrounding the base 11 , and a pair of electrodes 12 and 13 disposed on the substrate 11 . The granules 15 are attached to the electrodes 12 and connected to the pair of electrodes 12 and 13 via wires 17, respectively, and an encapsulant 16 is filled in the reflectors 18 and covers the dies 15 . The light emitted by the die 15 is reflected from the inner surface of the reflector 18 and ejected from the top. However, since the light exiting surface of the reflector cup 18 limits the light exiting surface, the light emitting area S of the package structure 10 of the light emitting diode is small. If the light emitting area is increased, the area of the substrate must be increased, resulting in a larger volume of the entire package structure. Does not meet the needs of the current industry. 099125546 Form No. A0101 Page 4 of 19 0992044839-0 201208128 [Summary of the Invention] [_ (4) Here, there is provided a package structure with a large light-emitting area and a single-pole body. High luminous efficiency [0005]

[0006] 〇 [0007] [0008] 099125546 -種發光二極體封裝之結構,包括—透明基板、一設置 於透月基板上之凹槽、及一位於該凹槽底部之晶粒,透 月基板’、有—第—表面、—第二表面以及連接所述第一 表面及第一表面之側面,該凹槽位於該透明基板之第一 表面該發光二極體之封裝結構還包括覆蓋於所述透明 基板之第—表面及側面之一金屬層,一對金屬電極位於 凹槽底部並延伸穿過翁透,基板之第二表面及金屬層 ’ 一絕緣材料隔絕該金屬電極與該金屬層;金屬層將晶 粒發出之並穿過透明基板之光線反敏出去。 相對於習知技術’本發明透明基板之光逸性更提高發光 二極體之封裝結構之出光面積及出光致率。【實施方式】 '£ π - in-工、<. ,髮 :;* :* :; 下面將結合附圖對本發明實施例作進一步的詳細說明。 明參閱圖2至圖3,本發明第一實施例發光二極體之封裝 結構20包括一透明·基板29、一晶粒24、及二金屬電極25 。忒透明基板29具有一第一表面291、一與第一表面291 相對之第二表面292及連接第一、第二表面291、292之 側面293。該透明基板29在第一表面291上設有一凹槽 296。所述晶粒24通過—導熱基板23設置在凹槽296之底 部。该發光二極體之封裝結構2〇還包括一金屬層27覆蓋 於所述透明基板29之第二表面292及侧面293。所述二電 極25位於凹槽296底部並延伸至所述透明基板29之第二表 表單編號第5頁/共19頁 0992 201208128 面292及穿過金屬層27,並利用一絕緣材料295與所述金 屬層27隔絕。一導熱系統設置在透明基板29内連接導熱 基板23與金屬層27,以將該晶粒24產生之熱量由導熱系 統傳遞至金屬層27。本實施例中之導熱系統為一導熱柱 28。該導熱柱28設置於所述導熱基板23下方並延伸至所 述透明基板29之第二表面292連接所述金屬層27。 [⑽9] 該晶粒24可以為III-V族化合物半導體晶片或II-VI族化 合物半導體晶片,並且該晶粒24發出之光包含可見光或 不可見光或可見光與不可見光之混光,例如:紫外(UV) 光、藍光、綠光或多種波長光之混光。 [0010] 所述二電極25分別置於凹槽296兩側,且每一電極25之頂 端並分別通過導線253與晶粒24連接。每一電極25之底端 均穿置於所述透明基板29及所述金屬層27。一絕緣材料 隔絕所述金屬層27及所述二電極25以防止結構短路之問 題,所述絕緣材料可使用矽膠、環氧樹脂等。 [0011] 該透明基板29可選用石英、氮化矽、玻璃或透明膠材等 可透光性材質。一封裝膠26填充於所述凹槽296内以保護 晶粒24。該封裝膠26可選用矽泰、環氧樹脂等透明膠材 。封裝膠26内可添加合適之螢光粉265,以增加不同之出 光顏色。所述螢光粉265可以為石權石(garnet)結構之 化合物、硫化物(sulfide)、填化物(phosphate)、氮 化物(nitride)、氣氧化物(oxynitride)、石夕铭氧氮聚 合物(SiAlON)或石夕酸鹽類(silicate)。 [0012] 請一併參閱圖4,所述金屬層27覆蓋於所述透明基板29之 099125546 表單編號A0101 第6頁/共19頁 0992044839-0 201208128 〇 第二表面292及側面293,將整個發光二極體之封裝結構 20之側部及底部圍設。該金屬層27由具有發射功能及導 熱性能良好之金屬材料支撐,可依據晶粒發出之波長選 擇適當之金屬材料,如銅、鋁或銀等等。該金屬層27包 括一覆盍於透明基板29之第二表面292之底板275及覆蓋 於透明基板29之侧面293之側壁276。金屬層27之底板 275設有二間隔之穿孔271,該穿孔之形狀不限,主要依 據電極25形狀而定,以供電極25之底端穿設。其中每一 穿孔271之尺寸均大於對應之電極25之尺寸,並且使金屬 層27之底板275與每一電極底端均勻間隔以填充所述 絕緣材料295,以防止電極25與金屬層27電連接而發生漏 電。該側壁276與底板275呈一角度Θ傾斜設置,以將晶 粒24發出之光線透過封裝膠26後反射出。在本實施例中 ,該角度Θ之值可以是大於90度且小於150度中選擇一個 合適值以改變側壁276之傾斜角以提高光之反射率,此時 ’發光二極體之封裝結構20之出光面積A相對習知技術之 [0013] 出光面積S較大。 該導熱柱28連接金屬層27之底板275與導熱基板23,以 將晶粒24產生之熱量迅速傳遞至金屬層27上。可以理解 地,該發光二極體之封裝結構20之晶粒24數量可以是多 個,每一晶粒24可對應設置一導熱柱28連接所述金屬層 27,或者設置一單個之導熱柱28 —端同時連接所有晶粒 24,另一端連接金屬層27。 [0014] 本發明之發光二極體之封裝結構工作時’由於透明基板 29之透光作用,使晶粒24發出之光線穿過透明基板29之 099125546 表單編號A0101 第7頁/共19頁 0992044839-0 201208128 側面293且經由金屬層27之侧壁276朝出光面反射出去, 增大了發光二極體之封裝結構20之出光面積A及出光率。 同時,金屬層27之側壁276與底板275之間之角度θ亦可 以根據設計需要選擇一個合適值以提高光之反射率。另 外,晶粒24產生之熱量直接通過導熱柱28迅速傳遞至金 屬層27之底板275及側壁276 ’使得發光二極體之封裝結 構20具有良好之散熱性能’有別於傳統封裝結構只利用 導線傳導電熱更能夠增加發光二極體之使用壽命。 [0015] 請參閱圖5,為本發明第二實施例之發光二極體之封裝結 構30,包括一透明基板39、一晶粒34、二電極35、一覆 蓋於所述透明基板39之金屬層3?、及一導熱系統。與第 一實施例中之發光二極體之封裴鲒構20之不同之處在於 ,該發光二極體之封裝結構30之透明基板39之第一表面 391為粗糙面’即其上設置凹凸之刻紋,以降低光線在透 明基板39内出現全反射之概率,增加發光二極體之封裝 結構30之出光率。 [0016] 另外,與第一實施例中之聲暴二<極丨;雜之封裝結構20之不 同之處還在於’本實施例中之導熱系統為一熱電致冷器 ,該熱電致冷器(圖未標)包括一與晶粒34接觸之第一 基板381、與金屬層37接觸之第二基板382、置於第一基 板3 81與第一基板382之間之熱電致冷單元組。 [0017] 該第一基板3 81及第二基板3 8 2均可為絕緣性及導熱性較 好之材料製成。該熱電致冷單元組包括複數串聯在一起 之熱電致冷單元384。在本實施例中,相鄰兩個熱電致冷 單元384通過一導電片385形成電連接。每個熱電致冷單 099125546 表單編號A0101 第8頁/共19頁 0992044839-0 201208128 [0018] Ο [0019] Ο [0020] 099125546 元384包括一導電基底386、及設置在該導電基底386 一 側並分別與該導電基底386電連接之ρ型半㈣額洲 型半導體塊388。該熱電致冷單元組之兩蠕分別與一直流 電源40相連’其中圖5中直流電源4〇與發光二極體之封裝 結構30之位置關係僅為簡單示意,並非具體之實物連接 〇 該Ρ型半導體塊387與該Ν型半導體塊388分別為摻雜有 Bi-Te 系、Sb-Te 系、Bi-Se 系、Pb_Te 系、Ag_Sb_Te 、Si-Ge系、Fe-Si系、Mn_Si系或者Cr Si系化合物半 導體之固態塊體(Soli^State Cube)。在本實施例中 ,該P型半導體塊387與該N塑半導癥塊分別為ρ型 Bi2Te3、N型Bi2Te3。 : - 1 ), _ I 當直流電源40給熱電致冷單元組提供電能時,熱電致冷 單元組所包括之多個熱電致冷單元384场會產生帕貼爾效 應(Peltier Effect) ’該熱電致冷單元組之靠近第一 基板381—端之熱量可以通過ρ型半導體塊387及ν型半導 體塊388之傳輸作甩被傳送到靠近第二基板382 一端。在 此,該晶粒24發出之熱量經由導熱性佳之第一基板381傳 導至該多個熱電致冷單元384,再通過ρ型半導體塊387及 N型半導體塊388之傳輸作用將熱量傳送到該第二基板382 ,接著經由金屬層3 7快速傳導出去。 另外,本領域技術人員還可以在本發明精神内做其他變 化,例如適當變更透明基板、金屬層之材質及形狀、凹 槽之深度,以及將熱管、平板熱管作為導熱系統等,當 然,這些依據本發明精神所做之變化,都應包含在本發 表單編號A0101 第9頁/共19頁 0992044839-0 201208128 明所要求保護之範圍之内。 [0021] 综上所述,本發明符合發明專利要件,爰依法提出專利 申請。惟,以上所述者僅為本發明之較佳實施例,舉凡 熟悉本案技藝之人士,在爰依本發明精神所作之等效修 飾或變化,皆應涵蓋於以下之申請專利範圍内。 【圖式簡單說明】 [0022] 圖1為習知技術之發光二極體之封裝結構之剖面示意圖。 [0023] 圖2為本發明第一實施例之發光二極體之封裝結構之剖面 示意圖。 [0024] 圖3為圖2之發光二極體之封裝結構之俯視圖。 [0025] 圖4為圖2之發光二極體之封裝結構之仰視圖。 [0026] 圖5為本發明第二實施例之發光二極體之封裝結構之剖面 示意圖。 【主要元件符號說明】 [0027] 反光杯:1 8 [0028] 發光二極體之封裝結構:10、20、30 [0029] 基板:11 [0030] 導熱基板:23 [0031] 晶粒:15、24、34 [0032] 電極:25、12、35 [0033] 導線:17、253 099125546 表單編號A0101 第10頁/共19頁 0992044839-0 201208128 [0034]封裝膠:1 6、2 6、3 6 [0035] 螢光粉:265 [0036] 金屬層:27、37 [0037] 底板:27 5 · [0038] 穿孔:271 [0039] 側壁:27 6 [0040] 絕緣材料:295 [0041] 導熱柱.2 8 [0042] 熱電致冷器:38 [0043] 透明基板:29、39 [0044] 第一表面:291 [0045] 第二表面:292 [0046] u 侧面:293 [0047] 凹槽:296 [0048] 第一基板:381 [0049] 第二基板:382 [0050] 熱電致冷單元:384 [0051] 導電片:385 [0052] 導電基底:386 099125546 表單編號A0101 第11頁/共19頁 0992044839-0 201208128 [0053] P型半導體塊:387 [0054] N型半導體塊:388 [0055] 直流電源:40[0006] 99 [0007] [0008] 099125546 - a structure of a light-emitting diode package, comprising - a transparent substrate, a groove disposed on the moon-permeable substrate, and a die located at the bottom of the groove, through the moon a substrate, a first surface, a second surface, and a side surface connecting the first surface and the first surface, the recess being located on the first surface of the transparent substrate, the package structure of the light emitting diode further comprising a metal layer of the first surface and the side surface of the transparent substrate, a pair of metal electrodes are located at the bottom of the groove and extend through the second surface of the substrate and the metal layer 'an insulating material isolates the metal electrode from the metal layer The metal layer counteracts the light emitted by the die and passing through the transparent substrate. Compared with the prior art, the light-emitting property of the transparent substrate of the present invention further increases the light-emitting area and light-emitting rate of the package structure of the light-emitting diode. [Embodiment] '£ π - in-工, <., hair:;*:*:; The embodiment of the present invention will be further described in detail below with reference to the accompanying drawings. Referring to FIG. 2 to FIG. 3, a package structure 20 for a light-emitting diode according to a first embodiment of the present invention includes a transparent substrate 29, a die 24, and a two-metal electrode 25. The transparent substrate 29 has a first surface 291, a second surface 292 opposite the first surface 291, and a side surface 293 connecting the first and second surfaces 291, 292. The transparent substrate 29 is provided with a recess 296 on the first surface 291. The die 24 is disposed at the bottom of the recess 296 through a thermally conductive substrate 23. The package structure 2 of the light emitting diode further includes a metal layer 27 covering the second surface 292 and the side surface 293 of the transparent substrate 29. The two electrodes 25 are located at the bottom of the recess 296 and extend to the second surface of the transparent substrate 29, page 5 / 19 pages 0992 201208128, 292 and through the metal layer 27, and utilize an insulating material 295 The metal layer 27 is isolated. A thermally conductive system is disposed within the transparent substrate 29 to connect the thermally conductive substrate 23 to the metal layer 27 to transfer heat generated by the die 24 to the metal layer 27 from the thermal conduction system. The heat conducting system in this embodiment is a heat conducting column 28. The heat conducting post 28 is disposed under the thermally conductive substrate 23 and extends to a second surface 292 of the transparent substrate 29 to connect the metal layer 27. [(10)9] The crystal grain 24 may be a III-V compound semiconductor wafer or a II-VI compound semiconductor wafer, and the light emitted by the crystal grain 24 includes visible light or invisible light or a mixed light of visible light and invisible light, for example, ultraviolet light. (UV) Light, blue, green, or a mixture of multiple wavelengths of light. [0010] The two electrodes 25 are respectively disposed on two sides of the groove 296, and the top ends of each of the electrodes 25 are connected to the die 24 through wires 253, respectively. The bottom end of each of the electrodes 25 is placed on the transparent substrate 29 and the metal layer 27. An insulating material isolates the metal layer 27 and the two electrodes 25 to prevent a short circuit of the structure, and the insulating material may be silicone, epoxy or the like. [0011] The transparent substrate 29 may be made of a light transmissive material such as quartz, tantalum nitride, glass or a transparent adhesive. An encapsulant 26 is filled in the recess 296 to protect the die 24. The encapsulant 26 can be selected from transparent adhesives such as bismuth and epoxy. A suitable phosphor powder 265 can be added to the encapsulant 26 to increase the color of the different light. The phosphor powder 265 may be a compound of a garnet structure, a sulfide, a phosphate, a nitride, an oxynitride, or an Oxygen nitrogen polymer. (SiAlON) or silicate. [0012] Please refer to FIG. 4 together, the metal layer 27 covers the transparent substrate 29, 099125546, form number A0101, page 6 / 19 pages 0992044839-0 201208128 〇 second surface 292 and side 293, will illuminate the whole The side and bottom of the package structure 20 of the diode are enclosed. The metal layer 27 is supported by a metal material having a good emission function and a good thermal conductivity, and a suitable metal material such as copper, aluminum or silver may be selected depending on the wavelength of the crystal grains. The metal layer 27 includes a bottom plate 275 overlying the second surface 292 of the transparent substrate 29 and a sidewall 276 overlying the side 293 of the transparent substrate 29. The bottom plate 275 of the metal layer 27 is provided with two spaced apart perforations 271, the shape of which is not limited, depending mainly on the shape of the electrode 25, for the bottom end of the electrode 25 to pass through. Each of the through holes 271 is larger in size than the corresponding electrode 25, and the bottom plate 275 of the metal layer 27 is evenly spaced from the bottom end of each electrode to fill the insulating material 295 to prevent the electrode 25 from being electrically connected to the metal layer 27. And leakage occurred. The side wall 276 is inclined at an angle to the bottom plate 275 to reflect the light emitted by the crystal grain 24 through the encapsulant 26. In this embodiment, the value of the angle Θ may be greater than 90 degrees and less than 150 degrees to select a suitable value to change the tilt angle of the sidewall 276 to improve the reflectivity of the light. At this time, the package structure 20 of the light emitting diode. The light-emitting area A is larger than the conventional technique [0013]. The thermally conductive post 28 connects the bottom plate 275 of the metal layer 27 with the thermally conductive substrate 23 to rapidly transfer heat generated by the die 24 to the metal layer 27. It can be understood that the number of the dies 24 of the package structure 20 of the illuminating diode can be multiple. Each of the dies 24 can be connected to the metal layer 27 by a heat conducting column 28 or a single heat conducting column 28 can be disposed. The terminals are connected to all of the dies 24 at the same time, and the other end is connected to the metal layer 27. [0014] When the package structure of the light-emitting diode of the present invention operates, the light emitted from the die 24 passes through the transparent substrate 29 due to the light transmission effect of the transparent substrate 29. Form No. A0101 Page 7 / 19 pages 0992044839 -0 201208128 The side surface 293 is reflected toward the light exit surface via the side wall 276 of the metal layer 27, thereby increasing the light exit area A and the light extraction rate of the package structure 20 of the light emitting diode. At the same time, the angle θ between the sidewall 276 of the metal layer 27 and the bottom plate 275 can also be selected according to design requirements to increase the reflectivity of the light. In addition, the heat generated by the die 24 is directly transmitted to the bottom plate 275 and the sidewall 276 of the metal layer 27 through the heat conducting column 28, so that the package structure 20 of the light emitting diode has good heat dissipation performance, which is different from the conventional package structure. Conductive electric heating can increase the service life of the light-emitting diode. 5 is a package structure 30 of a light emitting diode according to a second embodiment of the present invention, including a transparent substrate 39, a die 34, two electrodes 35, and a metal covering the transparent substrate 39. Layer 3?, and a heat transfer system. The difference from the sealing structure 20 of the LED of the first embodiment is that the first surface 391 of the transparent substrate 39 of the package structure 30 of the LED is a rough surface, that is, the surface is provided with irregularities. The pattern reduces the probability of total reflection of light in the transparent substrate 39, and increases the light extraction rate of the package structure 30 of the light-emitting diode. [0016] In addition, the difference from the acoustic storm II in the first embodiment is that the heat conducting system in the embodiment is a thermoelectric cooler, and the thermoelectric cooling is performed. The device (not shown) includes a first substrate 381 in contact with the die 34, a second substrate 382 in contact with the metal layer 37, and a thermoelectric cooling unit group disposed between the first substrate 381 and the first substrate 382. . [0017] The first substrate 381 and the second substrate 382 can be made of a material having better insulation and thermal conductivity. The thermoelectric cooling unit group includes a plurality of thermoelectric cooling units 384 connected in series. In the present embodiment, two adjacent thermoelectric cooling units 384 are electrically connected by a conductive sheet 385. Each thermoelectric cooling unit 099125546 Form No. A0101 Page 8/19 pages 0992044839-0 201208128 [0018] Ο [0020] 0099125546 384 includes a conductive substrate 386 and is disposed on the side of the conductive substrate 386 And a p-type half (four) fore-type semiconductor block 388 electrically connected to the conductive substrate 386, respectively. The two creeps of the thermoelectric cooling unit group are respectively connected to the DC power source 40. The positional relationship between the DC power source 4〇 and the package structure 30 of the light emitting diode in FIG. 5 is only a simple illustration, and is not a specific physical connection. The semiconductor block 387 and the germanium semiconductor block 388 are doped with a Bi-Te system, an Sb-Te system, a Bi-Se system, a Pb_Te system, an Ag_Sb_Te, a Si-Ge system, an Fe-Si system, an Mn_Si system or a Cr. A solid block of a Si-based compound semiconductor (Soli^State Cube). In this embodiment, the P-type semiconductor block 387 and the N-shaped semi-conductive block are respectively p-type Bi2Te3 and N-type Bi2Te3. : - 1 ), _ I When the DC power supply 40 supplies power to the thermoelectric cooling unit group, the 384 fields of the plurality of thermoelectric cooling units included in the thermoelectric cooling unit group generate a Peltier Effect 'Thermal power The heat of the cooling unit group adjacent to the end of the first substrate 381 can be transferred to the end of the second substrate 382 by the transmission of the p-type semiconductor block 387 and the v-type semiconductor block 388. Here, the heat generated by the die 24 is conducted to the plurality of thermoelectric cooling units 384 via the first substrate 381 having good thermal conductivity, and the heat is transferred to the P-type semiconductor block 387 and the N-type semiconductor block 388. The second substrate 382 is then quickly conducted out through the metal layer 37. In addition, those skilled in the art can also make other changes in the spirit of the present invention, for example, appropriately changing the transparent substrate, the material and shape of the metal layer, the depth of the groove, and the heat pipe and the flat heat pipe as the heat conduction system, etc., of course, these basis Changes made by the spirit of the present invention should be included in the scope of the claims as claimed in this publication No. A0101, page 9 / 19 pages 0992044839-0 201208128. [0021] In summary, the present invention complies with the requirements of the invention patent, and submits a patent application according to law. However, the above description is only the preferred embodiment of the present invention, and equivalent modifications or variations made by those skilled in the art of the present invention should be included in the following claims. BRIEF DESCRIPTION OF THE DRAWINGS [0022] FIG. 1 is a schematic cross-sectional view showing a package structure of a light-emitting diode of the prior art. 2 is a cross-sectional view showing a package structure of a light-emitting diode according to a first embodiment of the present invention. 3 is a top plan view of the package structure of the light emitting diode of FIG. 2. 4 is a bottom view of the package structure of the light emitting diode of FIG. 2. 5 is a cross-sectional view showing a package structure of a light-emitting diode according to a second embodiment of the present invention. [Main component symbol description] [0027] Reflective cup: 1 8 [0028] Light-emitting diode package structure: 10, 20, 30 [0029] Substrate: 11 [0030] Thermally conductive substrate: 23 [0031] Grain: 15 , 24, 34 [0032] Electrode: 25, 12, 35 [0033] Wire: 17, 253 099125546 Form No. A0101 Page 10 / Total 19 Page 0992044839-0 201208128 [0034] Encapsulant: 1 6, 2 6, 3 6 [0035] Fluorescent powder: 265 [0036] Metal layer: 27, 37 [0037] Base plate: 27 5 · [0038] Perforation: 271 [0039] Side wall: 27 6 [0040] Insulation material: 295 [0041] Heat conduction Column. 2 8 [0042] Thermoelectric cooler: 38 [0043] Transparent substrate: 29, 39 [0044] First surface: 291 [0045] Second surface: 292 [0046] u Side: 293 [0047] Groove : 296 [0048] First substrate: 381 [0049] Second substrate: 382 [0050] Thermoelectric cooling unit: 384 [0051] Conductive sheet: 385 [0052] Conductive substrate: 386 099125546 Form No. A0101 Page 11 / Total 19 pages 0992044839-0 201208128 [0053] P-type semiconductor block: 387 [0054] N-type semiconductor block: 388 [0055] DC power supply: 40

[0056] 出光面積:A、S[0056] Light-emitting area: A, S

[0057] 角度:6» 099125546 表單編號A0101 第12頁/共19頁 0992044839-0[0057] Angle: 6» 099125546 Form No. A0101 Page 12 of 19 0992044839-0

Claims (1)

201208128 七、申請專利範圍: 1 . 一種發光二極體之封裝結構,包括一透明基板、一設置於 透明基板上之凹槽、及一位於該凹槽底部之晶粒,透明基 板具有一第一表面、一第二表面以及連接所述第一表面及 第二表面之側面,該凹槽位於該透明基板之第一表面,該 發光二極體之封裝結構還包括覆蓋於所述透明基板之第二 表面及側面之一金屬層,一對金屬電極位於凹槽底部並延 伸穿過所述透明基板之第二表面及金屬層,一絕緣材料隔 ^ 絕該金屬電極與該金屬層;金屬層將晶粒發出之並穿過透 Ο 明基板之光線反射出去。 2 .如申請專利範圍第1項所述之發光二極體之封裝結構,其 中該透明基板之第一表面為粗梭表面。 3 .如申請專利範圍第1項所述之發光二極體之封裝結構,其 中還包括一設置於透明基板内之熱電致冷器,該熱電致冷 器連接所述晶粒與金屬層以將該晶粒產生之熱量由熱電致 冷器傳遞至金屬層。 ^ 4 .如申請專利範圍第1項所述之發光二極體之封裝結構,其 中還包括一設置於透明基板W芝♦熱柱,該導熱柱連接所 述晶粒與金屬層以將該晶粒產生之熱量由導熱柱傳遞至金 屬層。 5 .如申請專利範圍第4項所述之發光二極體之封裝結構,其 中還包括一導熱基板位於所述晶粒與所述導熱柱之間。 6 .如申請專利範圍第1項所述之發光二極體之封裝結構,其 中還包括一對金屬導線電性連接所述晶粒與所述金屬電極 099125546 表單編號A0101 第13頁/共19頁 0992044839-0 201208128 7 .如申請專利範圍第1項所述之發光二極體之封裝結構,其 中還包括一封裝膠填充於所述凹槽内。 8 .如申請專利範圍第7項所述之發光二極體之封裝結構,其 中還包括螢光粉摻雜於所述封裝膠。 9 .如申請專利範圍第1項所述之發光二極體之封裝結構,其 中該透明基板為石英、氮化矽、玻璃或是透明膠材。 10 .如申請專利範圍第1項所述之發光二極體之封裝結構,其 中該第二表面及所述側面之角度介於90度至150度之間。 099125546 表單編號A0101 第14頁/共19頁 0992044839-0201208128 VII. Patent application scope: 1. A package structure of a light-emitting diode, comprising a transparent substrate, a groove disposed on the transparent substrate, and a die at the bottom of the groove, the transparent substrate having a first a surface, a second surface, and a side surface connecting the first surface and the second surface, the recess is located on the first surface of the transparent substrate, and the package structure of the light emitting diode further includes a surface covering the transparent substrate a metal layer of two surfaces and a side surface, a pair of metal electrodes are located at the bottom of the groove and extend through the second surface of the transparent substrate and the metal layer, and an insulating material separates the metal electrode from the metal layer; the metal layer The light emitted by the crystal grains and reflected through the transparent substrate is reflected. 2. The package structure of the light-emitting diode according to claim 1, wherein the first surface of the transparent substrate is a rough shuttle surface. 3. The package structure of the light-emitting diode according to claim 1, further comprising a thermoelectric cooler disposed in the transparent substrate, the thermoelectric cooler connecting the die and the metal layer to The heat generated by the die is transferred from the thermoelectric cooler to the metal layer. The package structure of the light-emitting diode according to claim 1, further comprising a thermal substrate disposed on the transparent substrate, the thermally conductive column connecting the die and the metal layer to the crystal The heat generated by the particles is transferred from the thermally conductive column to the metal layer. 5. The package structure of the light-emitting diode of claim 4, further comprising a thermally conductive substrate between the die and the thermally conductive column. 6. The package structure of the light-emitting diode according to claim 1, further comprising a pair of metal wires electrically connecting the die and the metal electrode 099125546 Form No. A0101 Page 13 of 19 The package structure of the light-emitting diode according to claim 1, further comprising an encapsulant filled in the groove. 8. The package structure of a light-emitting diode according to claim 7, further comprising a phosphor powder doped with the encapsulant. 9. The package structure of the light-emitting diode according to claim 1, wherein the transparent substrate is quartz, tantalum nitride, glass or a transparent adhesive. The package structure of the light-emitting diode according to claim 1, wherein the angle between the second surface and the side surface is between 90 degrees and 150 degrees. 099125546 Form No. A0101 Page 14 of 19 0992044839-0
TW99125546A 2010-08-02 2010-08-02 Package structure of led TWI407599B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99125546A TWI407599B (en) 2010-08-02 2010-08-02 Package structure of led

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99125546A TWI407599B (en) 2010-08-02 2010-08-02 Package structure of led

Publications (2)

Publication Number Publication Date
TW201208128A true TW201208128A (en) 2012-02-16
TWI407599B TWI407599B (en) 2013-09-01

Family

ID=46762393

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99125546A TWI407599B (en) 2010-08-02 2010-08-02 Package structure of led

Country Status (1)

Country Link
TW (1) TWI407599B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104282671A (en) * 2013-07-01 2015-01-14 广镓光电股份有限公司 Light emitting diode assembly and manufacturing method thereof
TWI506812B (en) * 2013-04-22 2015-11-01 Lextar Electronics Corp Light-emitting diode with side-wall bump structure and mounting structure having the same
TWI602322B (en) * 2013-06-27 2017-10-11 晶元光電股份有限公司 Light-emitting diode assembly and manufacturing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10085238T5 (en) * 1999-11-30 2004-04-29 Omron Corp. Optical component and device with this optical component
TWI292962B (en) * 2005-10-21 2008-01-21 Advanced Optoelectronic Tech Package structure for a solid-state lighting device and method of fabricating the same
US7586125B2 (en) * 2006-02-20 2009-09-08 Industrial Technology Research Institute Light emitting diode package structure and fabricating method thereof
US7977696B2 (en) * 2006-05-31 2011-07-12 Fujikura Ltd. Light-emitting element mounting substrate, light-emitting element package, display device, and illumination device
TWI402999B (en) * 2008-01-14 2013-07-21 Epistar Corp Light-emitting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI506812B (en) * 2013-04-22 2015-11-01 Lextar Electronics Corp Light-emitting diode with side-wall bump structure and mounting structure having the same
TWI602322B (en) * 2013-06-27 2017-10-11 晶元光電股份有限公司 Light-emitting diode assembly and manufacturing method thereof
CN104282671A (en) * 2013-07-01 2015-01-14 广镓光电股份有限公司 Light emitting diode assembly and manufacturing method thereof
CN104282671B (en) * 2013-07-01 2018-08-21 晶元光电股份有限公司 Light-emitting diode component and production method

Also Published As

Publication number Publication date
TWI407599B (en) 2013-09-01

Similar Documents

Publication Publication Date Title
CN102315354B (en) Packaging structure of light emitting diode
US8067782B2 (en) LED package and light source device using same
CN101471337B (en) Light source die set with good radiating performance
KR20120000582A (en) High power alingan based multi-chip light emitting diode
US8783911B2 (en) LED packaging structure having improved thermal dissipation and mechanical strength
CN103078040A (en) Light emitting device package and light unit
JP2007502548A6 (en) High power multi-chip light emitting diode made of AlInGaN material
TW201230408A (en) LED-based light source utilizing asymmetric conductors
CN103078033A (en) Light emitting device package, light source module, and lighting system including the same
JP2004327863A (en) Semiconductor light emitting device having reflection plate with heat dissipation function
TWI549322B (en) Led component by integrating epitaxial structure and package substrate together and method of manufacturing the same
TWI532221B (en) Light emitting unit and light emitting module
TW201145624A (en) Light emitting device
TWI613842B (en) Light emitting device
CN101477981A (en) Light source module and manufacturing process thereof
TW201306315A (en) Light-emitting diode package and method for manufacturing the same
TW201145609A (en) Light-emitting diode package
TW201208128A (en) Package structure of LED
TWM327548U (en) Light emitting semiconductor device
TWI517442B (en) Light emitting diode (led) device and manufacturing method thereof
US9236304B2 (en) Semiconductor light emitting device and method of manufacturing the same
KR20130040519A (en) Light emitting device module
KR102397909B1 (en) Board and light source module having the same
TWI523282B (en) Led device and display device and electronic apparatus
KR101259876B1 (en) Led package having a thermoelectric element and method for manufacturin thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees