201145609 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種光電元件之封裝結構,尤其涉及一種發 光二極體封裝結構。 【先前技術】 [0002] 光電組件中的發光二極體(light_emitting di〇de ; LED)具有低耗電、南贵度、體積小及使用壽命長等優點 ,故被認為係第三代綠色節能照明的最佳光澡。 [0003] 伴隨著LED電流強度和發光量的增加’LED中的LED晶片 曰曰 的發熱量亦隨之上升,對於高功率LED,輸入能源的80% 都以熱的形式消耗掉。習知技街中的帶引線的塑朦晶片201145609 VI. Description of the Invention: [Technical Field] The present invention relates to a package structure of a photovoltaic element, and more particularly to a light-emitting diode package structure. [Prior Art] [0002] Light-emitting diodes (LEDs) in photovoltaic modules have the advantages of low power consumption, south cost, small size, and long service life, so they are considered to be the third generation of green energy saving. The best light bath for lighting. [0003] Along with the increase in LED current intensity and amount of luminescence, the amount of heat generated by the LED chip LED in the LED also increases, and for high-power LEDs, 80% of the input energy is consumed in the form of heat. Leaded plastic wafer in the street
載體(Plastic Leaded Chip Carrier,PLCC) LED ,因其封裝材料及塑膠透鏡在高溫環境卞容易變質而引 發封裝結構故障及降低LED的壽命,故具有無法对高溫的 缺陷。習知技術中的另一類LED封裝結構以傳熱效率較高 的陶資•材料作為LED::辱片的:基板,該基板上設有收容槽, ◎ 該LED晶片置於該收容槽中,並以矽膠透鏡壓合在該陶瓷 基板上’以將該LED晶片封裝於該基板上,該led晶片產 生的熱量藉由該陶瓷基板傳至外界,然而,該陶瓷材質 的基板的脆性較強,在壓合透鏡及切割過程中均易發生 碎裂’從而無法實施大規模量產。故,能夠使得LED晶片 在操作時熱能消散以及LED封裝結構耐高溫的設計,係在 封裝結構以及技術中一項重要的課題。 【發明内容】 [0004] 有鑒於此,有必要提供一種耐高溫且壽命長的發光二極 099117701 表單編號A0101 第3頁/共24頁 0992031423-0 201145609 體封裝結構。 [0005] —種發光二極體封裝結構,包括一基板、一 LED晶片及罩 設於該LED晶片上的一透鏡,該基板包括一第一表面及與 該第一表面相對的一第二表面,該第一表面上設有一收 容槽,該晶片固定於該收容槽的底面上,以將該LED晶片 封裝於該收容槽中,該基板為矽基板,該透鏡為玻璃透 鏡。 [0006] 為增加封裝結構的散熱功能,與本發明的實施例中,所 述矽基板表面設有複數凹槽,可以增加與外部空氣或焊 料的接觸面積以增加該發光二極體封裝結構的散熱效率 。再者,本發明的實施例中,所述透鏡為非線型玻璃或 設有複數凸鏡狀微凸鏡的玻璃平板,可以避免熱蓄積以 及增加該發光二極體封裝結構的發光效率。 [0007] 與習知技術中的發光二極體封裝結構相比,本發明的發 光二極體封裝結構中,矽基板及玻璃材質的透鏡均具有 較好的耐高溫性能,且該矽基板同時具有較強的導熱性 ,從而可輕鬆應對LED晶片的發熱問題,使該發光二極體 封裝結構具備較長壽命及耐高溫特性。再者,該矽基板 相較於陶瓷基板承受應力較佳,在生產過程中不容易發 生碎裂,從而適合大規模量產。 【實施方式】 [0008] 下面參照附圖結合實施例對本發明作進一步說明。 [0009] 圖1所示為本發明第一實施例中的發光二極體封裝結構 100,該發光二極體封裝結構100包括一基板10、設於該 099117701 表單編號A0101 第4頁/共24頁 0992031423-0 201145609 基板10上的一LED晶片20、固定於該LED晶片2〇外圍的— 穩壓二極體3〇及罩設於該LED晶片20與該穩壓二極體3〇 上的一透鏡40。 [0010] ο β月參照圖2 ’該基板1〇為碎基板’可以為低電阻或高電阻 的特性。進一步說aj|之,高電阻的石夕基板其電阻率 (resistivity)約為1至30000歐姆-釐米 (ohm-centimeter)且可摻雜硼(B)或磷(p),而低電阻 的矽基板其電阻率約為〇· 〇〇1至0. 02歐姆-釐米且可換雜 领(B)、坤(As)、錄(Sb)或破(P)。於本發明第一實施例 中,所使用的矽基板為高電阻,該基板1〇包括一第一表 面11及與該第一表面11相對的一第二表面12。該第一表 面11向下凹設有一收容槽111,該:收容槽111呈碗狀,該 收容槽111的底面112呈平面狀。該收容槽ill的寬度自 該收容槽111的底面112向該基板10的第一表面11逐漸增 大,從而使該收容槽111的側壁形成一向上傾斜的反射面 113,該反射面113與該底面112之間形成的角為鈍角。 ο 為增加反射面113的k射功效,可另增設一反射層於反射 面113上》該反射面113靠近該基板10的第一表面11的端 部形成有一台階面114,該台階面114平行於該收容槽 111的底面112。該收容槽111的底面112鋪設有一第一打 線區115及一第二打線區116,該第一打線區115及第二 打線區11 6為鋪設於該收容槽111底面112的導電材料, 如銅箔、氧化銦錫(IT0)、鎳(Ni)、鈦(Ti)、銀(Ag)、 銘(A1)、錫(Sn)、金(Au)或其合金(a 11 oy)。進一步說 明之,若使用低電阻的矽基板材料,打線區與矽基板之 099117701 表單編號A0101 第5頁/共24頁 0992031423-0 201145609 間更包含—絕緣層’用以隔離砍基板與打線區的電性, 其中絕緣層的材質可以為氧切缝切。該第一打線 區115與該第二打線區116相互間⑯。該基板的第二表面 12上鋪設有-第-電極區117及—第二電極區ιΐ8,該第 -電極區1Π與該第二電極區118均為鋪設於該第二表面 12上的導電材料,如銅箔、氧化銦錫(ΙΤ〇)、鎳(^)、 銀(Ag)、鈦(Ti)、鋁(A1)、錫(Sn)、金(Au)或其合金 (alloy)。該第一電極區117與第二電極區118分別正對 該第一打線區11 5與第二打線區116。該基板1〇還設有貫 穿該收容槽111的底面1找及該基板丨〇的第二表面丨2的兩 導通孔119,該兩導通孔Π9中用以填充導電體1191,如 銅柱或銀漿等導電材料,以將該第一打線區115與第一電 極區117及第二打線區116與第二電極區118電性導通。 [0011] 該LED晶片20為一 P-N結半導體,該LEP晶片20的P極與N 極通電時,該LED晶片2 0内部發生電子的遷移,從而致使 該LED晶片20發光。該LED晶片20固定於該基板1〇的收容 槽111的底面112或該第一打線區115上,該LED晶片20的 P極與N極分別藉由導線,如金線、鋁線或銀線等與該第 一打線區115及第二打線區116電性連接。可以理解地, 該LED晶片20亦可以利用覆晶或共晶的方式與該第一打線 區115及第二打線區116電性連接。於本發明實施例中, 該LED晶片20為高功率之LED或可發出短波長之LED,其 中短波為4 5 0納米(nm)以下的波長。 該穩壓二極體3 0為一齊納二極體,該穩壓二極體3 〇固定 於該基板10的收容槽111的底面112上,其兩個電極分別 099117701 表單編號A0101 第6頁/共24頁 0992031423-0 [0012] 201145609 藉由導線與該第一打線區115及第二打線區116電性連接 。或者,將該穩壓二極體30直接固定於第二打線區116上 並電連結第二打線區116 ’同時透過導線電連結第一打線 區115,如圖2所示。該穩壓二極體3〇與該LED晶片2〇並 連’以穩定該LED晶片20兩端的電壓。 [0013]該透鏡40為玻璃製成,該透鏡40藉由黏合劑固定於該基 板10的收容槽111中的台階面114上。與本發明的實施例 中,该透鏡40呈平板狀且上下表面均設有均勻排列的複 數凸鏡狀微凸鏡41 ’該透鏡4G上表面的每一微凸鏡41正 0 對該下表面的一微凸鏡41 ’每一偭微凸鏡41相當於一個 微型的凸鏡,以增強該發光二極體封裝結構100的光線散 射效果,同時增加與外部空氣的接觸面以避免熱蓄。該 透鏡40的邊緣呈傾斜狀,且斜率與該基板10的收容槽111 的側壁的斜率可以相同,以與該基板10的收容槽111的侧 壁緊密配合。該透鏡40上奉面上塗布有一層螢光粉42, 該螢光粉42包含石榴石(garnet j結構之化合物、矽酸鹽 、氮化物、氮氧化物、磷化物、硫化物或其組合的物質 ^ 。該螢光粉42可以將LED晶片20所發出的波長轉換成不同 於原波長之光線’使得發光二極體封裝結構100可以產生 多波長的光束射出。可以理解地’還可採取其他的方式 達到轉換出光波長的目的,如:(1)在該透鏡40的下表 面塗布一層螢光粉42; (2)在該透鏡40的上下兩個表面 均塗布螢光粉42; (3)利用材質内含有螢光粉成份的透 鏡40; (4)如圖3所示,利用兩層透鏡40a且兩詹透鏡 40a之間夾設一層螢光粉42等方式° 099117701 表單編號A0101 第7頁/共24頁 0992031423-0 201145609 [0014] 上述發光二極體封裝結構100中,矽基板10及玻璃材質的 透鏡40均具有較好的耐高溫性能,且該矽基板10同時具 有較強的導熱性,從而增加該發光二極體封裝結構100應 對LED晶片20的發熱而具備較長壽命及耐高溫特性。再者 ,該石夕基板10相較於陶曼基板承受應力較佳,在生產過 程中不容易發生碎裂,適合大規模量產,從而使該發光 二極體封裝結構100具有較低的生產成本。 [0015] 圖4所示為本發明第三實施例中的發光二極體封裝結構 l〇〇b,其與第一實施例相似,不同之處在於··該發光二 極體封裝結構100b的基板10的收容槽111中填充有螢光 填充料50,該螢光填充料50為透明膠體添加螢光粉的均 勻混和物,其_透明膠體包含·《夕穆(si 1 icone)、環氧樹 脂(epoxy)或其他任一可透光之材料。該螢光填充料50 不僅可以使該發光二極體封裝結構l〇〇b達到混光的效果 ,還可以對該收容槽111内的結構起到密封以防止該收容 槽111内的結構被氧化的作用。 [0016] 圖5所示為本發明第四實施例中的一發光二極體封裝結構 100c,其與第一實施例中的發光二極體封裝結構100相似 ,不同之處在於:該發光二極體封裝結構100c的透鏡40c 具有一拱形的截面,該透鏡40c朝向該LED晶片20的内侧 形成一凹陷43,該透鏡40c跨設於該基板10的收容槽111 中的台階面114上。該透鏡40c的頂面上塗布有一層螢光 粉42,同樣的道理,前述螢光粉42的其他分佈方式亦適 用於本實施例。 [0017] [0017] 圖6所示為本發明第五實施例中的一發光二極體封裝結構 099117701 表單編號A0101 第8頁/共24頁 0992031423-0 201145609 100d,其與第一實施例中的發光二極體封裝結構100相似 ,不同之處在於:該發光二極體封裝結構100d的透鏡40d 具有一半圓形的截面,該透鏡40(1的底部呈平面狀且朝向 該led晶片20,該透鏡4〇d的頂部呈弧形且朝向該發光二 極體封裝結構10〇d的外侧。該透鏡40d的頂面上塗布有一 層螢光粉42,同樣的道理,前述螢光粉42的其他分佈方 式亦適用於本實施例。 [0018] Ο 圖7所示為本發明第六實施例中的一發光二極體封裝結構 100e,其與第一實施例相似,不同之處在於:本實施例 中的第一電極區117e背向該基板10的底面設有複數凹槽 1171,第二電極區118e背向該基板1〇的底面設有複數凹 槽1181,從而使該第一電極區U7e及第二電極區丨丨心的 底面均呈凹凸不平狀,如此不僅可以增加該第一、第二 電極區11 7e、118e與外部空氣或焊料的接觸面積以增加 該發光二極體封裝結構1〇〇6的散熱效率,還可以防止焊 料漫延至該基板10的側壁上。 Q [0019] 圖8所示為本發明第七實施例中的一發光二極體封裝結構 100f,其與第七實施例相似,不同之處在於:本實施例 中的基板10f的第二表面12f上凹設有複數凹槽121,所 述第一電極區117f朝向該基板l〇f的頂面及第二電極區 118f朝向該基板i〇f的頂面分別正對所述凹槽κι設有複 數凸起1172、1182,該第一電極區117f背向該基板10f 的底面及該第二電極區U8f背向該基板1〇f的底面正對每 一凸起1172、1182分別設有一凹槽1173、1183,該第 一電極區117f及該第二電極區U8f上的凸起1172、 099117701 表單編號A0101 第9頁/共24頁 0992031423-0 201145609 1182分別收容於該基板1〇f上對應的凹槽121中從而可 以增大該第一電極區117f及該第二電極區118丨與該基板 l〇f的接觸面積,以增強該發光二極體封裝結構1〇〇f的熱 傳導效率。該第一電極區ll7f及該第二電極gU8f上的 凹槽im、1183不僅可以增加該第一、第二電極區117e 、118e與外部空氣或焊料的接觸面積以增加該發光二極 體封裝結構10 〇 e的散熱效率,還可以防止焊料漫延至該 基板10 f的側壁上。 [0020] [0021] 圖9所示為本發明第八實施例中的一發光二極體封裝結構 l〇〇g,其與第一實施例相似,不同之處在於:該發光二 極體封裝結構100g採用了熱電分離的結構。該第—打線 區115g與第二打線區i16g分別位於該LED晶片2〇的相對 兩側,該基板i〇g的中部設有貫穿其第二表面12g及該收 容槽111的底面112g的-通孔u〇,一導熱柱6〇收容於該 通孔110中,該導熱柱60由導熱性較佳的材料,如銅、鋁 及其合金等製成,該LED晶片20貼設於該導熱柱6G的頂端 ,該導熱柱60可迅速將該LED晶片20產生的熱量傳導至外 界。該導熱柱60的底端形成有一導熱盤61,該導熱盤61 的底面上設有複數凹槽61G,從而可增大該導熱柱6〇與外 界的接觸面積。該第一電極區117§的底面及該第二電極 區118g的底面均設有複數凹槽1171、1181,如此不僅可 以增加該第一 '第二電極區117g、U8g與外部空氣或焊 料的接觸面積以增加該發光二極體封裝結構1〇〇8的散熱 效率,還可以防止焊料漫延至該基板1〇g的侧壁上。 综上所述,本發明符合發明專利要件,爰依法提出專利 099117701 表單編號A0101 第10頁/共24頁 0992031423-0 201145609 申請。惟,以上所述者僅為本發明之較佳實施例,舉凡 熟悉本案技藝之人士,在爰依本發明精神所作之等效修 飾或變化,皆應涵蓋於以下之申請專利範圍内。 【圖式簡單說明】 [0022] 圖1為本發明第一實施例中的發光二極體封裝結構的截面 示意圖。 [0023] 圖2為圖1所示的發光二極體封裝結構的分解圖。 [0024] 圖3為本發明第二實施例中的發光二極體封裝結構的透鏡 的截面示意圖。 [0025] 圖4為本發明第三實施例中的發光二極體封裝結構的截面 示意圖。 [0026] 圖5為本發明第四實施例中的發光二極體封裝結構的截面 示意圖。 [0027] 圖6為本發明第五實施例中的發光二極體封裝結構的截面 示意圖。 [0028] 圖7為本發明第六實施例中的發光二極體封裝結構的截面 示意圖。 [0029] 圖8為本發明第七實施例中的發光二極體封裝結構的戴面 示意圖。 [0030] 圖9為本發明第八實施例中的發光二極體封裝結構的截面 示意圖。 【主要元件符號說明】 [0031] 發光二極體封裝結構:100、100b、100c、100d、100e 099117701 表單編號 A0101 第 11 頁/共 24 頁 0992031423-0 201145609 、100f 、 100g [0032] 基板:10、10f、10g [0033] 第一表面:11 [0034] 通孔:110 [0035] 收容槽:111 [0036] 底面:112 [0037] 反射面:113 [0038] 台階面:114 [0039] 第一打線區:115、115g [0040] 第二打線區:116、116g [0041] 第一電極區:117、117e、117f、117g [0042] 凹槽:1171、1181、121、417S、1183、610 丨Μ [0043] 凸起:1172、1182 [0044] :;;; 第二電極區:U8、118e、118f、118g [0045] 導通孔:119 [0046] 導電體:1191 [0047] 第二表面:12、12f [0048] LED晶片:20 [0049] 穩壓二極體:30 099117701 表單編號A0101 第12頁/共24頁 0992031423-0 201145609 [0050] 透鏡:40、40a、40c、40d [0051] 微凸鏡:41 [0052] 螢光粉:42 [0053] 螢光填充料:50 [0054] 導熱柱:60 [0055] 導熱盤:61 〇 ,.......ί, U. 0992031423-0 099117701 表單編號Α0101 第13頁/共24頁The Plastic Leaded Chip Carrier (PLCC) LED has a defect that cannot be applied to high temperature because its packaging material and plastic lens are easily deteriorated in a high temperature environment to cause package structure failure and reduce the life of the LED. Another type of LED package structure in the prior art has a high heat transfer efficiency of the ceramic material: as a substrate: the substrate is provided with a receiving groove, ◎ the LED chip is placed in the receiving groove, And pressing the LED chip on the ceramic substrate to encapsulate the LED chip on the substrate, the heat generated by the LED wafer is transmitted to the outside through the ceramic substrate, however, the ceramic substrate is more brittle. Fragmentation is prone to occur during the lamination of the lens and the cutting process, so mass production cannot be performed. Therefore, the design that enables the LED chip to dissipate heat during operation and the high temperature resistance of the LED package structure is an important issue in the package structure and technology. SUMMARY OF THE INVENTION [0004] In view of this, it is necessary to provide a high temperature resistant and long life light-emitting diode 099117701 Form No. A0101 Page 3 of 24 0992031423-0 201145609 Body package structure. [0005] A light emitting diode package structure includes a substrate, an LED chip, and a lens disposed on the LED chip, the substrate including a first surface and a second surface opposite to the first surface The first surface is provided with a receiving groove. The wafer is fixed on the bottom surface of the receiving groove to encapsulate the LED chip in the receiving groove. The substrate is a germanium substrate, and the lens is a glass lens. [0006] In order to increase the heat dissipation function of the package structure, in the embodiment of the present invention, the surface of the germanium substrate is provided with a plurality of grooves, which can increase the contact area with the outside air or solder to increase the package structure of the light emitting diode. Cooling efficiency. Furthermore, in the embodiment of the present invention, the lens is a non-linear glass or a glass plate provided with a plurality of convex mirror-like micro-convex mirrors, which can avoid heat accumulation and increase the luminous efficiency of the light-emitting diode package structure. [0007] Compared with the light emitting diode package structure of the prior art, in the light emitting diode package structure of the present invention, both the germanium substrate and the glass material lens have better high temperature resistance, and the germanium substrate simultaneously The utility model has strong thermal conductivity, so that the heat generation problem of the LED chip can be easily dealt with, and the LED package structure has long life and high temperature resistance. Furthermore, the tantalum substrate is better stressed than the ceramic substrate, and is less prone to chipping during the production process, and is suitable for mass production. [Embodiment] The present invention will be further described below in conjunction with the embodiments with reference to the accompanying drawings. 1 is a light emitting diode package structure 100 according to a first embodiment of the present invention. The LED package structure 100 includes a substrate 10 disposed on the 099117701 Form No. A0101 Page 4 of 24 Page 0992031423-0 201145609 An LED chip 20 on the substrate 10, a voltage stabilizing diode 3固定 fixed to the periphery of the LED chip 2, and a cover on the LED chip 20 and the Zener diode 3 A lens 40. [0010] ο β month Referring to FIG. 2 'The substrate 1 〇 is a broken substrate' may have characteristics of low resistance or high resistance. Further, aj|, the high-resistance Shixi substrate has a resistivity of about 1 to 30,000 ohm-centimeter and can be doped with boron (B) or phosphorus (p), and low resistance 矽The substrate has a resistivity of about 〇· 〇〇1 to 0.02 ohm-cm and can be replaced by (B), Kun (As), recorded (Sb) or broken (P). In the first embodiment of the present invention, the germanium substrate used is high resistance, and the substrate 1 includes a first surface 11 and a second surface 12 opposite to the first surface 11. The first surface 11 is recessed downwardly with a receiving groove 111. The receiving groove 111 has a bowl shape, and the bottom surface 112 of the receiving groove 111 has a planar shape. The width of the receiving slot ill gradually increases from the bottom surface 112 of the receiving slot 111 to the first surface 11 of the substrate 10, so that the sidewall of the receiving slot 111 forms an upwardly inclined reflecting surface 113, and the reflecting surface 113 The angle formed between the bottom faces 112 is an obtuse angle. ο In order to increase the k-ray effect of the reflective surface 113, a reflective layer may be additionally disposed on the reflective surface 113. The reflective surface 113 is formed near the end of the first surface 11 of the substrate 10 with a stepped surface 114. The stepped surface 114 is parallel. The bottom surface 112 of the receiving groove 111. A first wire bonding area 115 and a second wire bonding area 116 are disposed on the bottom surface 112 of the receiving groove 111. The first wire bonding zone 115 and the second wire bonding zone 116 are electrically conductive materials, such as copper, laid on the bottom surface 112 of the receiving groove 111. Foil, indium tin oxide (IT0), nickel (Ni), titanium (Ti), silver (Ag), indium (A1), tin (Sn), gold (Au) or alloys thereof (a 11 oy). Further, if a low-resistance ruthenium substrate material is used, the wire-bonding zone and the 矽-substrate 099117701 Form No. A0101 Page 5/24 pages 0992031423-0 201145609 further include an insulating layer for isolating the substrate and the wire-punching area. Electrical properties, wherein the material of the insulating layer can be cut by oxygen cutting. The first bonding area 115 and the second bonding area 116 are 16 from each other. The second surface 12 of the substrate is provided with a first electrode region 117 and a second electrode region ι 8 , and the first electrode region 1 Π and the second electrode region 118 are electrically conductive materials laid on the second surface 12 . For example, copper foil, indium tin oxide (yttrium), nickel (^), silver (Ag), titanium (Ti), aluminum (A1), tin (Sn), gold (Au) or alloy thereof. The first electrode region 117 and the second electrode region 118 face the first bonding region 115 and the second bonding region 116, respectively. The substrate 1 is further provided with two through holes 119 extending through the bottom surface 1 of the receiving groove 111 to find the second surface 2 of the substrate, and the two via holes 9 are used to fill the electric conductor 1191, such as a copper pillar or A conductive material such as silver paste electrically connects the first bonding region 115 and the first electrode region 117 and the second bonding region 116 to the second electrode region 118. [0011] The LED chip 20 is a P-N junction semiconductor. When the P pole and the N pole of the LEP wafer 20 are energized, electron migration occurs inside the LED chip 20, thereby causing the LED chip 20 to emit light. The LED chip 20 is fixed on the bottom surface 112 of the receiving groove 111 of the substrate 1 or the first wire-bonding region 115. The P-pole and the N-pole of the LED chip 20 are respectively connected by wires such as gold wire, aluminum wire or silver wire. The first bonding area 115 and the second bonding area 116 are electrically connected. It can be understood that the LED chip 20 can also be electrically connected to the first wire bonding region 115 and the second wire bonding region 116 by means of flip chip or eutectic. In the embodiment of the present invention, the LED chip 20 is a high-power LED or an LED capable of emitting a short wavelength, wherein the short-wavelength is a wavelength below 450 nanometers (nm). The Zener diode 30 is a Zener diode, and the Zener diode 3 is fixed on the bottom surface 112 of the receiving slot 111 of the substrate 10. The two electrodes are respectively 099117701 Form No. A0101 Page 6 / A total of 24 pages 0992031423-0 [0012] 201145609 is electrically connected to the first bonding area 115 and the second wiring area 116 by wires. Alternatively, the Zener diode 30 is directly fixed to the second wire bonding region 116 and electrically connected to the second wire bonding region 116' while electrically connecting the first wire bonding region 115 through the wires, as shown in FIG. The Zener diode 3 is connected in parallel with the LED chip to stabilize the voltage across the LED chip 20. The lens 40 is made of glass, and the lens 40 is fixed to the stepped surface 114 in the receiving groove 111 of the substrate 10 by an adhesive. In the embodiment of the present invention, the lens 40 has a flat shape and the upper and lower surfaces are respectively provided with a plurality of convex mirror-like micro-convex mirrors 41. Each micro-convex mirror 41 on the upper surface of the lens 4G is positively 0 to the lower surface. A micro-convex mirror 41' each micro-convex mirror 41 is equivalent to a micro-convex mirror to enhance the light scattering effect of the LED package structure 100 while increasing the contact surface with the outside air to avoid heat storage. The edge of the lens 40 is inclined, and the slope of the lens 40 can be the same as the side wall of the receiving groove 111 of the substrate 10 to closely match the side wall of the receiving groove 111 of the substrate 10. The lens 40 is coated with a layer of phosphor powder 42 containing garnet (a compound of garnet j structure, niobate, nitride, nitrogen oxide, phosphide, sulfide or a combination thereof). The phosphor powder 42 can convert the wavelength emitted by the LED chip 20 into a light different from the original wavelength, so that the light-emitting diode package structure 100 can generate a multi-wavelength beam. It can be understood that other The purpose of converting the wavelength of light is as follows: (1) coating a layer of phosphor powder 42 on the lower surface of the lens 40; (2) coating the phosphor powder 42 on both upper and lower surfaces of the lens 40; (3) A lens 40 containing a phosphor component in the material is used; (4) As shown in FIG. 3, a two-layer lens 40a is used and a layer of phosphor powder 42 is interposed between the two lenses 40a. 099117701 Form No. A0101 Page 7 [0014] In the above-mentioned light emitting diode package structure 100, both the germanium substrate 10 and the glass material lens 40 have better high temperature resistance, and the germanium substrate 10 has strong heat conduction at the same time. Sex, thereby increasing the illuminating dipole The package structure 100 has a long life and high temperature resistance in response to heat generation of the LED chip 20. Furthermore, the Shishi substrate 10 is more stress-resistant than the Tauman substrate, and is less prone to chipping during production, and is suitable for large Mass production, so that the light emitting diode package structure 100 has a lower production cost. [0015] FIG. 4 shows a light emitting diode package structure 10b according to a third embodiment of the present invention, which is The first embodiment is similar, except that the receiving slot 111 of the substrate 10 of the LED package 100b is filled with a fluorescent filler 50, which is a transparent colloid-added phosphor. Uniform mixture, the transparent colloid contains · si 1 icone, epoxy or any other material that can transmit light. The fluorescent filler 50 can not only encapsulate the LED The structure l〇〇b achieves the effect of mixing light, and the structure in the receiving groove 111 can be sealed to prevent the structure in the receiving groove 111 from being oxidized. [0016] FIG. A light emitting diode package structure in an embodiment 100c, which is similar to the LED package structure 100 of the first embodiment, except that the lens 40c of the LED package 100c has an arched cross section, and the lens 40c faces the LED chip 20. A concave portion 43 is formed on the inner side, and the lens 40c is disposed on the step surface 114 of the receiving groove 111 of the substrate 10. The top surface of the lens 40c is coated with a layer of phosphor powder 42, and the same reason, the fluorescent powder [0017] FIG. 6 shows a light emitting diode package structure in accordance with a fifth embodiment of the present invention. 099117701 Form No. A0101 Page 8 / Total 24 Page 0992031423 -0 201145609 100d, which is similar to the LED package structure 100 of the first embodiment, except that the lens 40d of the LED package 100d has a semicircular cross section, and the lens 40 (1) The bottom portion is planar and faces the LED wafer 20. The top of the lens 4〇d is curved and faces the outside of the LED package structure 10〇d. The top surface of the lens 40d is coated with a layer of phosphor powder 42. For the same reason, other distribution patterns of the phosphor powder 42 are also applicable to the present embodiment. [0018] FIG. 7 shows a light emitting diode package structure 100e according to a sixth embodiment of the present invention, which is similar to the first embodiment, except that the first electrode region 117e in the present embodiment is back. A plurality of recesses 1171 are disposed on the bottom surface of the substrate 10, and a plurality of recesses 1181 are disposed on the bottom surface of the second electrode region 118e facing away from the substrate, so that the first electrode region U7e and the second electrode region are centered The bottom surface is uneven, so that the contact area between the first and second electrode regions 11 7 and 118 e and the outside air or solder can be increased to increase the heat dissipation efficiency of the LED package 1 〇〇 6 . The solder is prevented from spreading to the side walls of the substrate 10. 8 is a light emitting diode package structure 100f according to a seventh embodiment of the present invention, which is similar to the seventh embodiment, except that the second surface of the substrate 10f in this embodiment is different. The plurality of recesses 121 are recessed in the recess 12f, and the first electrode region 117f faces the top surface of the substrate 10f and the second electrode region 118f faces the top surface of the substrate i〇f, respectively, facing the recess κι There are a plurality of protrusions 1172, 1182, and the first electrode region 117f faces away from the bottom surface of the substrate 10f and the second electrode region U8f faces away from the bottom surface of the substrate 1f, and each of the protrusions 1172, 1182 is respectively provided with a concave surface. The grooves 1173 and 1183, the protrusions 1172 and 099117701 on the first electrode region 117f and the second electrode region U8f, the form number A0101, the 9th page, and the 24th page 0992031423-0 201145609 1182 are respectively accommodated on the substrate 1〇f. Therefore, the contact area of the first electrode region 117f and the second electrode region 118丨 with the substrate 10f can be increased to enhance the heat conduction efficiency of the LED package structure 1f. The first electrode region ll7f and the grooves im, 1183 on the second electrode gU8f can not only increase the contact area of the first and second electrode regions 117e, 118e with external air or solder to increase the light emitting diode package structure. The heat dissipation efficiency of 10 〇e also prevents solder from spreading to the sidewall of the substrate 10 f . [0021] FIG. 9 shows a light emitting diode package structure 10 in the eighth embodiment of the present invention, which is similar to the first embodiment, except that the light emitting diode package is The structure 100g employs a thermoelectric separation structure. The first wire-bonding zone 115g and the second wire-bonding zone i16g are respectively located on opposite sides of the LED chip 2〇, and the middle of the substrate i〇g is provided with a through-surface of the second surface 12g and the bottom surface 112g of the receiving groove 111. A heat conducting column 6 is received in the through hole 110. The heat conducting column 60 is made of a material having better thermal conductivity, such as copper, aluminum, an alloy thereof, etc., and the LED chip 20 is attached to the heat conducting column. At the top of the 6G, the heat conducting post 60 can quickly transfer the heat generated by the LED chip 20 to the outside. The bottom end of the heat conducting column 60 is formed with a heat conducting plate 61. The bottom surface of the heat conducting plate 61 is provided with a plurality of grooves 61G, so that the contact area of the heat conducting column 6〇 with the outer boundary can be increased. The bottom surface of the first electrode region 117§ and the bottom surface of the second electrode region 118g are each provided with a plurality of recesses 1171, 1181, so that not only the contact of the first 'second electrode regions 117g, U8g with external air or solder can be increased. The area is increased to increase the heat dissipation efficiency of the light emitting diode package structure 1〇〇8, and solder can be prevented from spreading to the sidewalls of the substrate 1〇g. In summary, the present invention complies with the requirements of the invention patent, and patents are filed according to law. 099117701 Form No. A0101 Page 10/24 pages 0992031423-0 201145609 Application. However, the above description is only the preferred embodiment of the present invention, and equivalent modifications or variations made by those skilled in the art of the present invention should be included in the following claims. BRIEF DESCRIPTION OF THE DRAWINGS [0022] FIG. 1 is a schematic cross-sectional view showing a light emitting diode package structure in a first embodiment of the present invention. 2 is an exploded view of the light emitting diode package structure shown in FIG. 1. 3 is a schematic cross-sectional view showing a lens of a light emitting diode package structure according to a second embodiment of the present invention. 4 is a schematic cross-sectional view showing a light emitting diode package structure in a third embodiment of the present invention. 5 is a schematic cross-sectional view showing a light emitting diode package structure in a fourth embodiment of the present invention. 6 is a schematic cross-sectional view showing a light emitting diode package structure in a fifth embodiment of the present invention. 7 is a cross-sectional view showing a light emitting diode package structure in a sixth embodiment of the present invention. 8 is a schematic view showing a wearing surface of a light emitting diode package structure according to a seventh embodiment of the present invention. 9 is a cross-sectional view showing a light emitting diode package structure in an eighth embodiment of the present invention. [Main component symbol description] [0031] LED package structure: 100, 100b, 100c, 100d, 100e 099117701 Form No. A0101 Page 11 of 24 0992031423-0 201145609, 100f, 100g [0032] Substrate: 10 10f, 10g [0033] First surface: 11 [0034] Through hole: 110 [0035] Storage groove: 111 [0036] Bottom surface: 112 [0037] Reflecting surface: 113 [0038] Step surface: 114 [0039] One-line area: 115, 115g [0040] Second line area: 116, 116g [0041] First electrode area: 117, 117e, 117f, 117g [0042] Grooves: 1171, 1181, 121, 417S, 1183, 610凸起 [0043] Raised: 1172, 1182 [0044]:;; Second electrode region: U8, 118e, 118f, 118g [0045] Via: 119 [0046] Conductor: 1191 [0047] Second surface :12,12f [0048] LED chip: 20 [0049] Voltage regulator diode: 30 099117701 Form number A0101 Page 12 / Total 24 page 0992031423-0 201145609 [0050] Lens: 40, 40a, 40c, 40d [0051 Micro convex mirror: 41 [0052] Fluorescent powder: 42 [0053] Fluorescent filler: 50 [0054] Thermal conductive column: 60 [0055] Thermal pad: 61 〇 ,....... ί, U. 0992031423-0 099117701 Form number Α0101 Page 13 of 24