TW200928214A - Light source module with high heat dissipation capability - Google Patents

Light source module with high heat dissipation capability Download PDF

Info

Publication number
TW200928214A
TW200928214A TW96151111A TW96151111A TW200928214A TW 200928214 A TW200928214 A TW 200928214A TW 96151111 A TW96151111 A TW 96151111A TW 96151111 A TW96151111 A TW 96151111A TW 200928214 A TW200928214 A TW 200928214A
Authority
TW
Taiwan
Prior art keywords
heat
light source
insulating substrate
source module
substrate
Prior art date
Application number
TW96151111A
Other languages
Chinese (zh)
Inventor
Chih-Chung Tsao
Wen-Jang Jiang
Original Assignee
Foxsemicon Integrated Tech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foxsemicon Integrated Tech Inc filed Critical Foxsemicon Integrated Tech Inc
Priority to TW96151111A priority Critical patent/TW200928214A/en
Publication of TW200928214A publication Critical patent/TW200928214A/en

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Led Device Packages (AREA)

Abstract

The present invention relates to a light source module with high heat dissipation capability. The light source module includes a thermo-electric cooler, a plurality of LED chips and a metal wire layer. The thermo-electric cooler includes a first heat-conducting insulating base, a second heat-conducting insulating base opposite to the first heat-conducting insulating base, and a thermo-electric cooler unit group between the second heat-conducting insulating base and the first heat-conducting insulating base. The thermo-electric cooler unit group includes many thermo-electric cooler units connected with each other. The LED chips and the metal wire layer are placed on the first heat-conducting insulating base and located on one side which is away from the second heat-conducting insulating base. The LED chips are electrically connected with the metal wire layer respectively.

Description

200928214 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種光源模組,尤其係一種具有良好散熱 " 性能之光源模組。 【先前技術】 發光二極體(Light Emitting Diode, LED)為一種半導體 光源,其電、光特性及壽命對溫度敏感,於此,一種於溫 度變化過程中還能保持穩定光強的新型發光二極體可參見 〇 Yukio Tanaka 等人在文獻 IEEE Transactions On Electron Devices, Vol. 41, No.7, July 1994 中之 A Novel Temperature-Stable Light-Emitting Diode —文。一|曼而言, 較高的溫度會導致低落的内部量子效應並且壽命亦會明顯 縮短;另一方面,半導體的電阻隨著溫度的升高而降低, 滑落的電阻會帶來較大的電流及更多的熱產生,造成熱累 積現象的發生;此一熱破壞循環往往會加速破壞高功率 LED光源模組。 如圖1所示,一種典型的LED光源模組100包括:一 個印刷電路板(Printed Circuit Board, PCB) 101、複數個發光 元件102(如,LED)及一個散熱元件103。印刷電路板101 包括兩個相對設置的表面(圖未標示)。散熱元件103與複數 個發光元件102分設於所述印刷電路板101之兩個相對的 表面上;所述印刷電路板101上設置有金屬線路層以與複 數個發光元件102形成電連接。所述散熱元件103可藉由 導熱膏與印刷電路板101形成熱性連接,其遠離印刷電路 200928214 板101的一側通常設置有複數個散熱鰭片丨〇3丨用以增大表 . 面積以利於散熱。 i - 然而,設置於該複數個發光元件102與該散熱元件1〇3 之間的印刷電路板ιοί之導熱性較差,並且散熱元件ι〇3 只能被動的將複數個發光元件1〇2發出的熱量傳導出去, 導致該LED光源模組1 〇〇之散熱性能較差。 【發明内容】 下面將以實施例說明一種具良好散熱性能之光源模 ◎組。 、 一種具良好散熱性能之光源模組,其包括:一個熱電 致冷器,複數個發光二極體晶片及一個金屬線路層;該熱 電致冷器包括-第-導熱絕緣基板,一與該第一導熱絕緣 基板相對设置之第二導熱絕緣基板,以及設置於該第一導 熱絶緣基板與戎第二導熱絕緣基板之間的熱電致冷單元 ❹組,該熱電致冷單元組包括複數個連接在一起的熱電致冷 單元;該複數個發光二極體晶片及該金屬線路層設置於該 第一導熱絕緣基板上且位於遠離該第二導熱絕緣基板的一 側,該複數個發光二極體晶片分別與該金屬線路層形成電 連接。 ^相對於先前技術,所述複數個發光二極體晶片設置於 第一導熱絕緣基板上且位於遠離該第二導熱絕緣基板的一 側,其產生的熱量經過較短的距離即可傳入該熱電致冷 益,提高了該熱電致冷器對複數個發光二極體晶片的散熱 200928214 效率。並且,該熱電致冷器可對該複數個發光二極體晶片 的散熱效率進行主動控制,由此可使該複數個發光二極體 晶片於一恒定的溫度範圍内工作,以保證該複數個發光二 極體晶片具有穩定的光電特性,提升該光源模組之工作效 率。 【實施方式】 下面將結合附圖對本發明實施例作進一步的詳細說 明。 參見圖2,本發明實施例提供之具良好散熱性能之光源 模組20 ’其包括:一個熱電致冷器(Therm〇_eiectric c〇〇ier, 簡稱TEC)200,複數個發光二極體晶片3〇〇,一個金屬線路 層400及散熱鰭片5〇〇。 垓熱電致冷器200包括一第一基板210, 一與該第一基 板210相對設置之第二基板220’以及設置於該第一基板 21 〇與該第二基板220之間的熱電致冷單元組230。 該第一基板210與該第二基板220均為陶瓷基板,其 具有很好的絕緣性及導熱性。可理解的是,該第一基板21〇 與該第二基板220亦可以係玻璃纖維基板,矽基板,表面 經過陽極氧化處理之鋁複合基板或者表面具有類鑽石薄膜 之複合基板等。 該散熱鰭片500設置於該第二基板220上且位於遠離 該第一基板210的一側’並沿遠離該第一基板210的方向 200928214 延伸。 . x…電致冷單元組230包括複數個串聯在一起的熱電 .致冷單70 232。於本實施例中,相鄰兩個熱電致冷單元232 藉由導電片234形成電連接。每個熱電致冷單元包 括冷电基底2320’及設置於該導電基底232〇 —側並與該 導電基底2320電連接之P型半導體塊2322與n型半導體 塊2324。於本實施例中,該導電基底232〇設置於該第一基 ®板210之靠近該第二基板220 # 一側,並與該第-基板210 直接接觸;該P型半導體塊232WN型半導體塊2324並 列設置於該導電基底232〇的與該第一基板2ι〇相對的一 側;該導電片234設置於該第二基板22()之靠近該第一基 板210的一側並與該第二基板22〇直接接觸,該導電片 之遠離該第二基板220的一側與一個熱電致冷單元232之p 型半導體塊2322及相鄰熱電致冷單元232 <Ν型半導體塊 © 2324電連接。該熱電致冷單元組23()之兩端分縣 j 電源201相連。 ^ 該P型半導體塊2322與該N型半導體塊2324分別 摻雜有 Bi-Te 系、Sb-Te 系、Bi_Se 系、Pb ‘、、、 ie 糸、Ag-Sb-Te 系、s卜Ge系、、Fe_si系、Mn_Si系或者Cr_Si系化合物半導 體之固態塊體(Solid-State Cube)。於本實施例中,該p型半 導體塊2322與該N型半導體塊2324分別為卩型^ 型 Bi2Te3。 2 200928214 4複數個發光二極體晶#遍外延生長於該第一基板 .210之遂離。亥第—基板220的一側上。該金屬線路層4〇〇 .亦設置於該第一基板21〇上且位於遠離該第二基板22〇的 一側,該複數個發光二極體晶片3〇〇分別藉由金線_與 該金屬線路層形成電連接。請參見圖3,該複數個發光 -極體日日片3GG亦可覆晶封裝(Flip_eMp)於該第_基板⑽ 之遠離該第二基板22〇的一側,即發光二極體晶片3⑻包 ❹括並行設置之第一接觸電⑬31〇肖第二接觸電極似,該第 接觸電極31G與該第二接觸電極32()藉由焊料(圖未示) 分別與金屬線路層400形成電連接。 當直流電源2〇1給熱電致冷單元組23〇提供電能時, 熱電致冷單7C組23〇所包括的複數個熱電致冷單元加均 會產生帕貼爾效應效應(Peltier雕⑽),該熱電致冷單元組 β 心—基板Ml端之熱量可以藉由P型半導體塊 © 322及N型半導體塊2324的傳輸作用被傳送到靠近第二 基板220 一端。於此,該複數個發光二極體晶片_發出 的熱量經由導熱性佳的第-基板21〇傳導至該複數個執電 致冷早疋232,再藉由P型半導體塊助與N型半導體塊 ⑽的傳輸作用將熱量傳送到該第二基板咖,接著經由 放熱趟片5 0 0快速傳導出去。 可理解的是’所述複數個熱電致冷單元说亦可以八 別連接若干個直流電源或者並聯到—個直流電源,同樣^ 11 200928214 以實現帕貼爾效應從而對所述複數個發光二極體晶片300 • 進行散熱。 . 該熱電致冷器2〇〇之工作溫度可由該直流電源201所 施加電壓進行設定,從而使該熱電致冷器200對該複數個 發光二極體晶片300的散熱效率進行主動控制,由此可使 °亥複數個發光二極體晶片300於一恒定的溫度範圍内工 作,以保證該複數個發光二極體晶片3〇〇具有穩定的光電 ❾特丨生’提升該光源模組2〇的工作效率。此外,該複數個發 光一極體晶片300外延生長於該第一基板21〇上,使得其 產生的熱量經過較短的距離即可傳入該熱電致冷器2〇〇,提 円了该熱電致冷器2〇〇對複數個發光二極體晶片3〇〇的散 熱效率。 h综上所述,本發明確已符合發明專利之要件,遂依法 ,出專利申請。惟’以上所述者僅為本發明之較佳實施方200928214 IX. Description of the Invention: [Technical Field] The present invention relates to a light source module, and more particularly to a light source module having good heat dissipation performance. [Prior Art] A Light Emitting Diode (LED) is a semiconductor light source whose electrical, optical characteristics and lifetime are sensitive to temperature. Here, a new type of light-emitting diode that maintains stable light intensity during temperature changes The polar body can be found in Novel Yukio Tanaka et al., IEEE Aluminium On Electron Devices, Vol. 41, No. 7, July 1994, A Novel Temperature-Stable Light-Emitting Diode. In the case of Aman, higher temperatures result in low internal quantum effects and a much shorter lifetime; on the other hand, the resistance of the semiconductor decreases with increasing temperature, and the falling resistance causes a large current. And more heat generation, resulting in the occurrence of heat accumulation; this thermal damage cycle will often accelerate the destruction of high-power LED light source modules. As shown in FIG. 1, a typical LED light source module 100 includes a printed circuit board (PCB) 101, a plurality of light emitting elements 102 (eg, LEDs), and a heat dissipating component 103. The printed circuit board 101 includes two oppositely disposed surfaces (not shown). The heat dissipating component 103 and the plurality of light emitting components 102 are disposed on two opposite surfaces of the printed circuit board 101; the printed circuit board 101 is provided with a metal wiring layer to form electrical connection with the plurality of light emitting components 102. The heat dissipating component 103 can be thermally connected to the printed circuit board 101 by a thermal conductive paste. The side of the heat dissipating component 103 is away from the side of the printed circuit board 200928214. The heat dissipating fins are usually provided with a plurality of heat dissipating fins 丨〇3丨 for increasing the surface area. Cooling. i - However, the thermal conductivity of the printed circuit board ιοί disposed between the plurality of light-emitting elements 102 and the heat-dissipating elements 1 〇 3 is poor, and the heat-dissipating elements ι 〇 3 can only passively emit a plurality of light-emitting elements 1 〇 2 The heat is conducted out, which causes the heat dissipation performance of the LED light source module 1 to be poor. SUMMARY OF THE INVENTION A light source module having good heat dissipation performance will be described below by way of example. a light source module with good heat dissipation performance, comprising: a thermoelectric cooler, a plurality of light emitting diode chips and a metal circuit layer; the thermoelectric cooler comprises a - first heat conductive insulating substrate, and the first a second thermally conductive insulating substrate disposed opposite to the thermally conductive insulating substrate, and a thermoelectric cooling unit disposed between the first thermally conductive insulating substrate and the second thermally conductive insulating substrate, the thermoelectric cooling unit group comprising a plurality of connections a plurality of light-emitting diodes; the plurality of light-emitting diode chips and the metal circuit layer are disposed on the first heat-conductive insulating substrate and located on a side away from the second heat-conductive insulating substrate, the plurality of light-emitting diode chips Electrical connections are made to the metal circuit layer, respectively. According to the prior art, the plurality of LED chips are disposed on the first thermally conductive insulating substrate and located on a side away from the second thermally conductive insulating substrate, and the generated heat is transmitted to the short distance. The thermoelectric cooling effect increases the efficiency of the thermoelectric cooler for the heat dissipation of a plurality of light-emitting diode chips 200928214. Moreover, the thermoelectric cooler can actively control the heat dissipation efficiency of the plurality of light emitting diode chips, thereby allowing the plurality of light emitting diode chips to operate in a constant temperature range to ensure the plurality of The light-emitting diode chip has stable photoelectric characteristics and improves the working efficiency of the light source module. [Embodiment] Hereinafter, embodiments of the present invention will be further described in detail with reference to the accompanying drawings. Referring to FIG. 2, a light source module 20 having a good heat dissipation performance according to an embodiment of the present invention includes: a thermoelectric cooler (Therm〇_eiectric c〇〇ier, TEC for short) 200, a plurality of light emitting diode chips 3〇〇, a metal circuit layer 400 and heat sink fins 5〇〇. The thermoelectric cooler 200 includes a first substrate 210, a second substrate 220' disposed opposite the first substrate 210, and a thermoelectric cooling unit disposed between the first substrate 21 and the second substrate 220. Group 230. The first substrate 210 and the second substrate 220 are both ceramic substrates, and have excellent insulation and thermal conductivity. It can be understood that the first substrate 21 〇 and the second substrate 220 may be a glass fiber substrate, a ruthenium substrate, an aluminum composite substrate whose surface is anodized, or a composite substrate having a diamond-like film on the surface. The heat dissipation fins 500 are disposed on the second substrate 220 and located on a side away from the first substrate 210 and extend in a direction away from the first substrate 210 200928214. The x-cooling unit group 230 includes a plurality of thermoelectric units connected in series. A cooling unit 70 232. In the present embodiment, two adjacent thermoelectric cooling units 232 are electrically connected by the conductive sheets 234. Each of the thermoelectric cooling units includes a cold-electric substrate 2320' and a P-type semiconductor block 2322 and an n-type semiconductor block 2324 disposed on the side of the conductive substrate 232 and electrically connected to the conductive substrate 2320. In this embodiment, the conductive substrate 232 is disposed on a side of the first substrate plate 210 adjacent to the second substrate 220 and directly in contact with the first substrate 210; the P-type semiconductor block 232WN-type semiconductor block 2324 is juxtaposed on a side of the conductive substrate 232 〇 opposite to the first substrate 2 ι; the conductive sheet 234 is disposed on a side of the second substrate 22 adjacent to the first substrate 210 and the second The substrate 22 is in direct contact, and the side of the conductive sheet remote from the second substrate 220 is electrically connected to the p-type semiconductor block 2322 of a thermoelectric cooling unit 232 and the adjacent thermoelectric cooling unit 232 < . The two ends of the thermoelectric cooling unit group 23() are connected to the county j power source 201. The P-type semiconductor block 2322 and the N-type semiconductor block 2324 are respectively doped with a Bi-Te system, an Sb-Te system, a Bi_Se system, a Pb ', , an 糸 糸, an Ag-Sb-Te system, or a s-Ge system. , a solid-state block of Fe_si, Mn_Si or Cr_Si compound semiconductor. In the present embodiment, the p-type semiconductor block 2322 and the N-type semiconductor block 2324 are respectively Bi-type Bi2Te3. 2 200928214 4 a plurality of light-emitting diode crystals # are epitaxially grown on the first substrate . On the one side of the substrate 220. The metal circuit layer 4 is also disposed on the first substrate 21A and located on a side away from the second substrate 22〇, and the plurality of LED chips 3〇〇 are respectively The metal circuit layers form an electrical connection. Referring to FIG. 3, the plurality of light-emitting body day 3GGs can also be flip-chip packaged (Flip_eMp) on the side of the first substrate (10) away from the second substrate 22, ie, the LED package 3 (8) package. The first contact electrodes 1331 and the second contact electrodes 32 are electrically connected to the metal wiring layer 400 by solder (not shown). When the DC power source 2〇1 supplies electric power to the thermoelectric cooling unit group 23,, the plurality of thermoelectric cooling units included in the thermoelectric cooling unit 7C group 23〇 generate a Peltier effect (Peltier engraving (10)). The heat of the pyroelectric unit group β core-substrate M1 end can be transferred to the end of the second substrate 220 by the transmission of the P-type semiconductor block © 322 and the N-type semiconductor block 2324. Here, the heat emitted by the plurality of light-emitting diode wafers is conducted to the plurality of electro-cooling early 232 via the first substrate 21 having good thermal conductivity, and the N-type semiconductor is assisted by the P-type semiconductor block. The transfer function of the block (10) transfers heat to the second substrate coffee, which is then quickly conducted out through the heat release cymbal 500. It can be understood that the plurality of thermoelectric cooling units can also be connected to a plurality of DC power sources or to a DC power source in parallel, as well as 11 11 282 14 to achieve the Peltier effect to the plurality of light-emitting diodes. Body Wafer 300 • Dissipates heat. The operating temperature of the thermoelectric cooler 2 can be set by the voltage applied by the DC power source 201, so that the thermoelectric cooler 200 actively controls the heat dissipation efficiency of the plurality of LED chips 300, thereby The plurality of light-emitting diode chips 300 can be operated in a constant temperature range to ensure that the plurality of light-emitting diode chips 3 have stable photoelectricity characteristics. Work efficiency. In addition, the plurality of light-emitting diode chips 300 are epitaxially grown on the first substrate 21, so that the heat generated by the light-emitting diodes 300 can be transmitted to the thermoelectric cooler 2 through a short distance, thereby improving the thermoelectricity. The heat dissipation efficiency of the refrigerator 2 to the plurality of LED chips 3〇〇. h In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is made according to law. However, the above is only the preferred embodiment of the present invention.

二蔹自不能以此限制本案之申請專賴圍。舉凡熟悉本案 支:之人士援依本發明之精神所作之等效料或變化,例 比 ^先二極體晶片以其他方式與金屬線路層形成電連接, 白應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 你元則技術中之一種led裝置之側視圖。 =2係本發明實施例之光源模組之截面示意圖。 Θ 3係圖2所不光源模組所包 晶封裝之截面示意圖。 料先-極體_ 12 200928214 .【主要元件符號說明】Second, it is not possible to limit the application of this case. Any person who is familiar with the present invention will be able to make an electrical connection with the metal wiring layer in other ways than the first diode wafer, and the white should be covered by the following patent application. [Simple diagram of the diagram] You are a side view of a led device in the technology. 2 is a schematic cross-sectional view of a light source module according to an embodiment of the present invention. Θ 3 is a schematic cross-sectional view of the encapsulated package of the non-light source module of Figure 2. Material first - polar body _ 12 200928214 . [Main component symbol description]

G LED光源模組 100 印刷電路板 101 發光元件 102 散熱元件 103. 散熱鰭片 1031 光源模組 20 熱電致冷器 200 發光二極體晶片 300 金屬線路 400 散熱鰭片 500 第一基板 210 第二基板 220 熱電致冷單元組 230 熱電致冷單元 232 導電片 234 導電基底 2320 P型半導體塊 2322 N型半導體塊 2324 金線 600 第一接觸電極 310 第二接觸電極 320 直流電源 201 13G LED light source module 100 printed circuit board 101 light-emitting element 102 heat-dissipating element 103. heat-dissipating fin 1031 light source module 20 thermoelectric cooler 200 light-emitting diode wafer 300 metal line 400 heat-dissipating fin 500 first substrate 210 second substrate 220 thermoelectric cooling unit group 230 thermoelectric cooling unit 232 conductive sheet 234 conductive substrate 2320 P type semiconductor block 2322 N type semiconductor block 2324 gold line 600 first contact electrode 310 second contact electrode 320 DC power source 201 13

Claims (1)

200928214 十、申請專利範圍: • 1. 一種具良好散熱性能之光源模組,其包括:一個熱電致△ .器’複數個發光二極體晶片及一個金屬線路層; 該熱電致冷器包括一第一導熱絕緣基板,一與該第—導 熱絕緣基板相對設置之第二導熱絕緣基板,以及設置於該 第一導熱絕緣基板與該第二導熱絕緣基板之間的熱電致^ 單元組,該熱電致冷單元組包括複數個連接在一起 ^ 致冷單元; …电 該複數個發光二極體晶片及該金屬線路層設置於該第一 導熱絕緣基板上且位於遠離該第二導熱絕緣基板的一側, 該複數個發光二極體晶片分別與該金屬線路層形成 接。 2又如申凊專利範圍第}項所述之光源模組,其中,該複數個 1光二極體晶片外延生長於該第-導熱絕緣基板上。 ^明專利範圍第〗項所述之光源模組,其中,該複數個 © H極體晶片覆晶封裝於該第—導熱絕緣基板上。 2申凊專利範圍第1項所述之光源模經,其中,該複數個 x 極體晶片分別與該金屬線路層打線連接。 . 請專利範_ 1項所述之光源模組,其中,該光源模 =括政熱,鳍片’其設置於該第二導熱絕緣且位 於通離該第-導熱絕緣基板的一側。 片如專利範圍第5項所述之光源模組’其中,該散熱縛 片^離該第—導熱絕緣基板的方向延伸。 申月專利1巳圍第1項所述之光源模組,其中,該第-導 14 200928214 =絕緣基板與該第m緣基板為料基板,破璃纖維 ::有:::¾ΐ面經過陽極氧化處理之紹複合基板或表 面〃有肩鑽石薄膜之複合基板。 8.如申請專利範圍第 致冷單元包括料組,其中,每個熱電 該導電基底電連拉> D _及。又置於該導電基底一側並與 — 運接之Ρ型半導"辦i台XT 兩個熱電致冷單元萨由一體鬼/、N型半導體塊,相鄰 g 導電片形成電連接。200928214 X. Patent application scope: 1. A light source module with good heat dissipation performance, comprising: a thermoelectrically induced Δ device, a plurality of light emitting diode chips and a metal circuit layer; the thermoelectric cooler includes a a first thermally conductive insulating substrate, a second thermally conductive insulating substrate disposed opposite the first thermally conductive insulating substrate, and a thermoelectric unit disposed between the first thermally conductive insulating substrate and the second thermally conductive insulating substrate, the thermoelectric The cooling unit group includes a plurality of connected cooling units, and the plurality of light emitting diode chips and the metal circuit layer are disposed on the first heat conductive insulating substrate and located away from the second heat conductive insulating substrate. On the side, the plurality of light emitting diode chips are respectively connected to the metal circuit layer. 2. The light source module of claim 1, wherein the plurality of photodiode wafers are epitaxially grown on the first thermally conductive insulating substrate. The light source module of the invention, wherein the plurality of H-pole wafers are flip-chip mounted on the first heat-conductive insulating substrate. The light source module of claim 1, wherein the plurality of x-pole wafers are respectively wire-bonded to the metal wiring layer. The light source module of claim 1, wherein the light source module includes a heat, and the fins are disposed on the second heat conductive insulation and on a side of the first heat conductive insulating substrate. The light source module as described in claim 5, wherein the heat dissipation tab extends in a direction away from the first heat conductive insulating substrate. The light source module according to Item 1, wherein the first guide 14 200928214 = the insulating substrate and the m-th edge substrate are material substrates, and the glass fiber:::::3⁄4ΐ passes through the anode The composite substrate on which the oxidation treatment is performed or the composite substrate having the shoulder diamond film on the surface. 8. The patented range of the first cooling unit comprises a material group, wherein each of the thermoelectric electrodes is electrically connected to pull > D _ and . It is placed on the side of the conductive substrate and is electrically connected to the adjacent g conductive sheets of the two thermoelectric cooling units, the two-type thermoelectric cooling unit.
TW96151111A 2007-12-31 2007-12-31 Light source module with high heat dissipation capability TW200928214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96151111A TW200928214A (en) 2007-12-31 2007-12-31 Light source module with high heat dissipation capability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96151111A TW200928214A (en) 2007-12-31 2007-12-31 Light source module with high heat dissipation capability

Publications (1)

Publication Number Publication Date
TW200928214A true TW200928214A (en) 2009-07-01

Family

ID=44863928

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96151111A TW200928214A (en) 2007-12-31 2007-12-31 Light source module with high heat dissipation capability

Country Status (1)

Country Link
TW (1) TW200928214A (en)

Similar Documents

Publication Publication Date Title
CN101471337B (en) Light source die set with good radiating performance
TWI303113B (en)
US7759144B2 (en) Package for a semiconductor light emitting device
TWI295115B (en) Encapsulation and methods thereof
US20090175035A1 (en) Light source module and method for manufacturing same
US7926979B2 (en) Illumination device
US20090153007A1 (en) Light source module and method for manufacturing same
US9006973B2 (en) Light emitting device
JP2009231729A (en) Semiconductor device
KR100928728B1 (en) Cooling device of light emitting diode lighting fixture using Peltier effect
Liu et al. High efficiency silicon-based high power LED package integrated with micro-thermoelectric device
JP5038355B2 (en) Optical semiconductor device module
US8222728B2 (en) Active solid heatsink device and fabricating method thereof
TW201017922A (en) Light emitting diode package
US7943430B2 (en) Semiconductor device with heat sink and method for manufacturing the same
TW201324881A (en) Electronic device
KR102013849B1 (en) Self-generation electricity light emitting diode using seeback effect, method for manufacturing the same, and light emitting diode module having the same
KR101418008B1 (en) Substrate for LED and LED heat-sink structure
TW200928214A (en) Light source module with high heat dissipation capability
TW201208128A (en) Package structure of LED
TWI358801B (en) Light source module and manufacturing method there
TW201119102A (en) High heat dissipation chip-on-chip/flip-chip LED
KR101259876B1 (en) Led package having a thermoelectric element and method for manufacturin thereof
TW200933833A (en) Light source module and method for manufacturing the same
TWI390761B (en) Light emitting diode package