TW200930156A - Thermionic electron source - Google Patents

Thermionic electron source Download PDF

Info

Publication number
TW200930156A
TW200930156A TW96150087A TW96150087A TW200930156A TW 200930156 A TW200930156 A TW 200930156A TW 96150087 A TW96150087 A TW 96150087A TW 96150087 A TW96150087 A TW 96150087A TW 200930156 A TW200930156 A TW 200930156A
Authority
TW
Taiwan
Prior art keywords
hot electron
electron source
electrode
emitter
substrate
Prior art date
Application number
TW96150087A
Other languages
Chinese (zh)
Other versions
TWI373283B (en
Inventor
Peng Liu
Liang Liu
Kai-Li Jiang
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW096150087A priority Critical patent/TWI373283B/en
Publication of TW200930156A publication Critical patent/TW200930156A/en
Application granted granted Critical
Publication of TWI373283B publication Critical patent/TWI373283B/en

Links

Landscapes

  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Abstract

The present invention relates to a thermionic electron source. The thermionic electron source includes a substrate, at least two electrodes and a thermionic electron emitter. The two electrodes are separately disposed on the thermionic electron emitter at a certain distance and electrically connected thereto. The thermionic electron emitter is a film structure. A part of the thermionic electron emitter and the substrate are separately disposed.

Description

200930156 九、發明說明: *【發明所屬之技術領域】 • 本發明涉及一種熱電子源,尤其涉及一種基於奈米碳 管的熱電子源。 【先前技術】 從1991年曰本科學家njima首次發現奈米碳管以來 (口月參見 Helical microtubules of graphiiic carbon, Nature, Sumio Iijima,v〇i 354, p56(1991)),以奈米碳管為代表的奈 ©米材料以其獨特的結構和性質引起了人們極大的關注。近 幾年來’隨著奈米碳管及奈米材料研究的不斷深入,其廣 闊的應用前景不斷顯現出來。如,由於奈米碳管所具有的 獨特的電磁學、光學、力學、化學等性能,大量有關其在 電子發射裝置、感測器、新型光學材料、軟鐵磁材料等領 域的應用研究不斷被報導。 通常’電子發射裝置採用熱電子發射體或者冷電子發 毫I射體作為電子發射源。利用熱電子發射體從電子發射裝置 發射電子的現象稱為熱電子發射現象。熱電子發射係利用 加熱的方法使發射體内部電子的動能增加,以致使一部分 電子的動能大到足以克服發射體表面勢壘而逸出體外。從 發射體表面發射的電子可以稱為熱電子,並且發射熱電子 的發射體可以稱為熱電子發射體。 先前技術中,熱電子源一般包括一熱電子發射體、兩 個電極和一基板。所述兩個電極設置於所述基板之上,並 與該基板相接觸。所述熱電子發射體設置於兩個電極之 200930156 間’與所述兩個電極電接觸的同時並與基板表面相接觸。 .通常採用硼化物材料或者氧化物材料作為熱電子發射體 、’材料。然而以含有硼化物材料作為熱電子發射體製傷的熱 電子源中熱電子發射體和基板表面相接觸,在對熱電子發 射體進行加熱的過程中,基板會導熱從而將所述熱電子發 射體的大部分熱量傳導進大氣中,影響所製備的熱電子源 的熱電子發射性能。而且’由於含棚化物材料或者驗土金 屬碳酸鹽材料的熱電子發射體具有相當高的電阻率,所製 ❹備的熱電子源在加熱時發射電子會產生較大的功耗,因此 不適合於大電流密度和高亮度的應用。 有鑒于此’提供一種具有優良的熱發射性能且使用壽 命高,可用於大電流密度和高亮度的平板顯示和邏輯電路 等多個領域的熱電子源實為必要。 【發明内容】 一種熱電子源包括一基板、至少兩個電極和一熱電子 ❹發射體,所述至少兩個電極間隔設置,並與該熱電子發射 體電接觸,所述熱電子發射體為一薄膜結構,該熱電子發 射體至少部分與所述基板間隔設置。 與先前技術相比較,所述的熱電子源中熱電子發射體 與基板間隔設置,基板不會將加熱所述熱電子發射體而產 生的熱量傳導進大氣中,故所製備的熱電子源的熱電子發 射性能優異。而且,所述熱電子發射體為一薄臈結構,電 阻率低’在較低的熱功率下即可實現熱電子的發射,降低 了所述熱電子源在加熱時發射電子而產生的功耗,可用於 200930156 大電流密度和高亮度的平板顯示和邏輯電路等多個領域。 【實施方式】 以下將結合附圖詳細說明本技術方案熱電子源及其製 備方法。 請參閱圖1,本技術方案第一實施例提供的一種熱電 子源10包括一基板12、一第一電極14、一第二電極16 和一熱電子發射體18。所述第一電極w和第二電極16間 隔設置於所述基板12的表面,並與該基板12的表面接觸。 ®所述熱電子發射體18與所述第一電極14和第二電極16 的表面電接觸。所述熱電子發射體18為一薄膜結構,該熱 電子發射體18至少部分通過所述第一電極14和/或第二電 極16與所述基板12間隔設置。 所述熱電子源1G進-步包括—低逸出功層,該低逸出 功層設置在所述熱電子發射體18的表面。該低逸出功層的 材料為氧化鋇或者!土等,可以使所述熱電子源1()在較低的 ❹温度下實現熱電子的發射。 所述基板12的材料可為陶瓷、玻璃、樹脂、石英等。 /、令所述基板12的形狀大小不限,可依據實際需要進行 改變。本技術方案第-實施例中所述基板12優選為一玻璃 基板。 所述的帛t極14和第二電極16間隔設置在所述基 ^ 12表面,以使所述熱電子發射體18應用於熱電子源10 定的阻值避免短路現象的產生。所述第—電極、4 •-:虽16的材料為金、銀和銅等導電金屬。所述第一 8 200930156 電極14和第二電極16係一金屬鍍層或者一金屬箔片,通 .過一粘結劑(圖未示)固定於所述基板12表面。所述第—電 ,極14和第二電極16的材料也可選擇為石墨、奈米碳管等 導電材料。所述第一電極14和第二電極16可以係一石墨 層,通過一粘結劑(圖未示)固定於所述基板12表面,還可 以係一奈米碳管長線或者一奈米碳管薄膜通過本身的粘性 直接固定於所述基板12表面。可以理鹿,所述第一電極 14和第二電極16固定於所述基板12的方式不限於上述方 式,只要使該第一電極14和第二電極16能固定於所述基 板12的方式都在本發明的保護範圍内。本技術方案第一^ 把例中所述第—電極14和第二電極16優選為銅鍍層,分 別通過一粘結劑固定於所述基板12的表面。 、所述熱電子發射體18的材料為蝴化物、氧化物、金屬 或者奈米碳管。所述熱電子發射體18的長度為200微米 〇微米寬度為1 〇〇微米〜300微米。本技術方案第一 ❹5施例中所述熱電子發射體18優選為一奈米碳管層。該奈 米石反5層包括一奈米碳管薄膜或者至少兩個重疊設置的奈 米石反官薄膜。該奈米碳管薄膜中奈米碳管沿同一方向擇優 取向排列。所述重疊設置的奈米碳管薄膜中相鄰的兩個夺 米碳管薄膜中奈米碳管排列方向具有一交又角度α,0度 —α_90度所述奈米碳管薄膜包括多個首尾相連且擇優取 向排列的奈米碳管束,相鄰的奈米碳管束之間通過凡德瓦 爾力連接。該奈米碳管束包括多個長度相等且相互平行排 列的奈米碳管,相鄰奈求碳管之間通過凡德瓦爾力連接。 9 200930156 本技術方案實施例中’由於採用氣相沈積法在4英寸 *的基底上生長超順排奈米碳管陣列,並進行進一步地處理 彳于到一奈米碳管薄膜,故該奈米碳管薄膜的寬度為〇 〇1厘 米〜10厘米,厚度為10奈米〜1〇〇微米。所述奈米碳管薄 膜可根據實際需要切割成具有預定尺寸和形狀的奈米碳管 薄膜。可以理解,當採用較大的基底生長超順排奈米碳管 陣列時,可以得到更寬的奈米碳管薄膜。上述奈米碳管薄 膜中的奈米石反官為單壁奈米碳管、雙壁奈米碳管或者多壁 ❹奈米碳管。當奈米碳管薄膜中的奈米碳管為單壁奈米碳管 時,該單壁奈米碳管的直徑為0.5奈米〜50奈米。當奈= 碳管薄膜中的奈米碳管為雙壁奈米碳管時,該雙壁奈^碳 官的直徑為1.0奈米〜50奈米。當奈米碳管薄膜中的奈米 碳管為多壁奈米碳管時,該多壁奈米碳管的直徑為15' ^ 米〜50奈米。由於奈采碳管薄臈中的奈米碳管非常純淨: 且由於奈求碳管本身的比表面積非常大,故該奈米碳管薄 ⑩膜本身具有較強的粘性。該奈米碳管薄膜可利用其本身的 粘性直接固定於所述第一電極14和第二 η/ 、200930156 IX. Description of the invention: * [Technical field to which the invention pertains] The present invention relates to a source of hot electrons, and more particularly to a source of thermal electrons based on a carbon nanotube. [Prior Art] Since the first discovery of carbon nanotubes by the scientist Njima in 1991 (see Helical microtubules of graphiiic carbon, Nature, Sumio Iijima, v〇i 354, p56 (1991)), the carbon nanotubes are used. The representative nano-materials have attracted great attention due to their unique structure and properties. In recent years, with the deepening of research on carbon nanotubes and nanomaterials, its broad application prospects have been continuously revealed. For example, due to the unique electromagnetic, optical, mechanical, and chemical properties of carbon nanotubes, a large number of applications related to their applications in electron-emitting devices, sensors, new optical materials, and soft ferromagnetic materials have been Report. Generally, the electron-emitting device employs a thermal electron emitter or a cold electron emitter as an electron emission source. The phenomenon of emitting electrons from an electron-emitting device using a thermal electron emitter is called a phenomenon of thermal electron emission. The thermal electron emission system uses heating to increase the kinetic energy of electrons in the emitter so that the kinetic energy of a part of the electrons is large enough to escape the surface of the emitter surface and escape the body. The electrons emitted from the surface of the emitter may be referred to as hot electrons, and the emitter emitting the hot electrons may be referred to as a thermionic emitter. In the prior art, a hot electron source generally comprises a thermal electron emitter, two electrodes, and a substrate. The two electrodes are disposed on the substrate and are in contact with the substrate. The thermal electron emitter is disposed between the two electrodes 200930156' while being in electrical contact with the two electrodes and in contact with the surface of the substrate. A boride material or an oxide material is usually used as the thermal electron emitter, 'material. However, in the hot electron source containing the boride material as a thermal electron emission system, the hot electron emitter is in contact with the surface of the substrate, and during heating of the thermal electron emitter, the substrate is thermally conductive to thereby transfer the thermal electron emitter. Most of the heat is conducted into the atmosphere, affecting the thermal electron emission properties of the prepared hot electron source. Moreover, because the thermal electron emitters containing the shed material or the soil metal carbonate material have a relatively high electrical resistivity, the prepared hot electron source generates a large power consumption when heated, and thus is not suitable for High current density and high brightness applications. In view of the above, it is necessary to provide a hot electron source in various fields such as flat display and logic circuits which have excellent heat emission performance and high service life and can be used for high current density and high brightness. SUMMARY OF THE INVENTION A thermal electron source includes a substrate, at least two electrodes, and a hot electron enthalpy emitter. The at least two electrodes are spaced apart and electrically contacted with the thermal electron emitter. The thermal electron emitter is A thin film structure, the thermal electron emitter being at least partially spaced from the substrate. Compared with the prior art, the hot electron emitter in the hot electron source is spaced apart from the substrate, and the substrate does not conduct heat generated by heating the hot electron emitter into the atmosphere, so the prepared hot electron source Excellent thermal electron emission performance. Moreover, the thermal electron emitter is a thin germanium structure, and the resistivity is low. 'The emission of hot electrons can be realized at a lower thermal power, and the power consumption generated by the electrons emitted by the hot electron source during heating is reduced. It can be used in many fields such as 200930156 high current density and high brightness flat panel display and logic circuit. [Embodiment] Hereinafter, a hot electron source of the present technical solution and a method of manufacturing the same will be described in detail with reference to the accompanying drawings. Referring to FIG. 1, a thermoelectric source 10 according to a first embodiment of the present invention includes a substrate 12, a first electrode 14, a second electrode 16, and a thermal electron emitter 18. The first electrode w and the second electrode 16 are spaced apart from each other on the surface of the substrate 12 and are in contact with the surface of the substrate 12. The thermal electron emitter 18 is in electrical contact with the surfaces of the first electrode 14 and the second electrode 16. The hot electron emitter 18 is a thin film structure, and the hot electron emitter 18 is spaced apart from the substrate 12 at least partially by the first electrode 14 and/or the second electrode 16. The hot electron source 1G further includes a low work function layer disposed on a surface of the hot electron emitter 18. The material of the low work function layer is ruthenium oxide or earth or the like, and the hot electron source 1 () can be made to emit hot electrons at a lower temperature. The material of the substrate 12 may be ceramic, glass, resin, quartz or the like. /, the shape and size of the substrate 12 are not limited, and can be changed according to actual needs. The substrate 12 in the first embodiment of the present technical solution is preferably a glass substrate. The 帛t pole 14 and the second electrode 16 are spaced apart from each other on the surface of the base 12 to apply the thermal electron emitter 18 to the resistance of the hot electron source 10 to avoid the occurrence of a short circuit phenomenon. The first electrode, 4 •-: although the material of 16 is a conductive metal such as gold, silver or copper. The first 8 200930156 electrode 14 and the second electrode 16 are a metal plating layer or a metal foil, and are fixed to the surface of the substrate 12 via an adhesive (not shown). The materials of the first electrode, the electrode 14 and the second electrode 16 may also be selected from conductive materials such as graphite and carbon nanotubes. The first electrode 14 and the second electrode 16 may be a graphite layer, fixed on the surface of the substrate 12 by an adhesive (not shown), or may be a long carbon nanotube or a carbon nanotube. The film is directly fixed to the surface of the substrate 12 by its own viscosity. The manner in which the first electrode 14 and the second electrode 16 are fixed to the substrate 12 is not limited to the above, as long as the first electrode 14 and the second electrode 16 can be fixed to the substrate 12 Within the scope of protection of the present invention. In the first embodiment, the first electrode 14 and the second electrode 16 are preferably copper plating layers, which are fixed to the surface of the substrate 12 by an adhesive, respectively. The material of the thermal electron emitter 18 is a butterfly, an oxide, a metal or a carbon nanotube. The thermal electron emitter 18 has a length of 200 micrometers and a micron width of from 1 micron to 300 micrometers. The thermal electron emitter 18 described in the first embodiment of the present technical solution is preferably a carbon nanotube layer. The reverse layer of the nano stone includes a carbon nanotube film or at least two nanoshield eclipse films disposed one on top of the other. The carbon nanotubes in the carbon nanotube film are preferably aligned in the same direction. The arrangement of the carbon nanotubes in the adjacent two carbon nanotube films in the overlapped carbon nanotube film has an intersection angle α, 0 degrees - α_90 degrees, and the carbon nanotube film comprises a plurality of A bundle of carbon nanotubes arranged end to end and preferentially oriented, and adjacent carbon nanotube bundles are connected by van der Waals force. The carbon nanotube bundle comprises a plurality of carbon nanotubes of equal length and arranged in parallel with each other, and adjacent carbon tubes are connected by van der Waals force. 9 200930156 In the embodiment of the present technical solution, the ultra-sequential carbon nanotube array is grown on a 4 inch* substrate by vapor deposition and further processed to a carbon nanotube film. The carbon nanotube film has a width of from 1 cm to 10 cm and a thickness of from 10 nm to 1 μm. The carbon nanotube film can be cut into a carbon nanotube film having a predetermined size and shape according to actual needs. It will be appreciated that a wider carbon nanotube film can be obtained when a larger substrate is used to grow a super-sequential carbon nanotube array. The nano stone in the above carbon nanotube film is a single-walled carbon nanotube, a double-walled carbon nanotube or a multi-walled nanocarbon tube. When the carbon nanotubes in the carbon nanotube film are single-walled carbon nanotubes, the diameter of the single-walled carbon nanotubes is from 0.5 nm to 50 nm. When the carbon nanotubes in the carbon nanotube film are double-walled carbon nanotubes, the diameter of the double-walled carbon nanotubes is from 1.0 nm to 50 nm. When the carbon nanotubes in the carbon nanotube film are multi-walled carbon nanotubes, the diameter of the multi-walled carbon nanotubes is from 15 'm to 50 nm. Since the carbon nanotubes in the thin carbon nanotubes of the Nai Cai carbon pipe are very pure: and since the specific surface area of the carbon nanotube itself is very large, the carbon nanotube thin film itself has strong viscosity. The carbon nanotube film can be directly fixed to the first electrode 14 and the second η/ by its own viscosity.

電子發射體18還可以通過一導電粘結劑固定於所述第二 電極14和第二電極16。可以理解,所述熱電子發射體^ 固定於所述第-電極14和第二電極16的方式不限於 方式,只要使該熱電子發射體18固定於所述第一電極W 和第二電極16的方式都在本發明的保護範圍内。本技術方 案第一實施例優選將所述熱電子發射體】s n 肪·丄〇通過一導雷扯 結劑固定於所述第一電極14和第二電極16。 电柏 200930156 2參閱圖2及圖3,本技術方案第二實施例提供 .種熱電子源20包括一基板22、一第一電極24、:=電 極26、一第一固定元件25、一 一 、 弟一固疋兀件27和一埶電 .子發射體28。所述第一電極24 …= 所述基板22的表面,並…二:電::間_於 一 卫”该基板22的表面接觸。所述第 疋兀25和第—固定①件27分別對應於所述第一電 f 24和第二電極26設置。所述熱電子發射冑 第一固定元件25和/或第二固定元件27固定於所述^電 〇極24和第二電極26,並與所述第—電極24和第二電極% 電接觸。所述熱電子發射體28設置於所述固定元件和所述 電極之間°所述熱電子發射體28至少部分通過所述第一電 極24和/或第二電極26與所述基板22間隔設置。 所述熱電子發射體28與本技術方案第一實施例中熱 電子發射體18的結構相同,均為—薄臈結構。 Φ 所述第©疋元件25和第二固定元件27用於將所述 熱電子發射體28更好地固定於所述第-電極24和第二電 極26。所述第一固定元件25和第二固定元件^通過一枯 結劑(圖未示)將所述熱電子發射體28固定於所述第—電極 24和第二電極26。所述第一固定元件25和第二固定元件 的材料幵> 狀、大小和結構开》式不⑯,只要能將所述熱 電子發射體28更好地固定於所述第一電極%和第二電極 26即可。可以理解,所述熱電子發射體28還可以通過導 電膠固定於所述第一電極24和第二電極26。本技術方案 第二實施例中所述第一固定元件25和第二固定元件27優 11 200930156 選為石墨層,所述熱電子發射體28通過一粘結劑固定於所 述第一電極24和第二電極26。可以理解,使用所述第一 口疋元件25和第二固定元件27中任意一個,也可將所述 熱電子發射體28固定於所述第一電極24和第二電極%。 ©The electron emitter 18 can also be fixed to the second electrode 14 and the second electrode 16 by a conductive adhesive. It is to be understood that the manner in which the thermionic emitters are fixed to the first electrode 14 and the second electrode 16 is not limited to the mode, as long as the thermionic emitter 18 is fixed to the first electrode W and the second electrode 16 The manner of the invention is within the scope of the invention. The first embodiment of the present technology preferably fixes the thermal electron emitters s n 丄〇 丄〇 to the first electrode 14 and the second electrode 16 through a lightning striker. 2, 3, and 3, the second embodiment of the present invention provides a substrate 20 including a substrate 22, a first electrode 24, a = electrode 26, a first fixing member 25, and a first , a brother and a member 27 and a child. The first electrode 24 ...= the surface of the substrate 22, and the second surface of the substrate 22 is in contact with the surface of the substrate 22. The second electrode 25 and the first fixed portion 27 respectively correspond to each other. Provided at the first electric f 24 and the second electrode 26. The hot electron emission 胄 first fixing member 25 and/or the second fixing member 27 are fixed to the electric gate 24 and the second electrode 26, and Electrically contacting the first electrode 24 and the second electrode %. The thermal electron emitter 28 is disposed between the fixing member and the electrode. The thermal electron emitter 28 at least partially passes through the first electrode 24 and/or the second electrode 26 is spaced apart from the substrate 22. The thermal electron emitter 28 has the same structure as the thermal electron emitter 18 of the first embodiment of the present invention, and is a thin crucible structure. The 疋 element 25 and the second fixing element 27 are used to better fix the thermionic emitters 28 to the first electrode 24 and the second electrode 26. The first fixing element 25 and the second fixing The component ^ is fixed to the first electrode 2 by a deadting agent (not shown) 4 and the second electrode 26. The material 幵> size, size and structure of the first fixing member 25 and the second fixing member are not so long as the thermo electron emitter 28 can be better fixed to The first electrode % and the second electrode 26 may be. It can be understood that the thermionic emitter 28 can also be fixed to the first electrode 24 and the second electrode 26 by a conductive adhesive. The first fixing member 25 and the second fixing member 27 are selected as a graphite layer, and the thermionic emitter 28 is fixed to the first electrode 24 and the second electrode 26 by an adhesive. The thermoelectron emitter 28 can also be fixed to the first electrode 24 and the second electrode % using any one of the first port member 25 and the second fixing member 27.

請參閱圖4,本技術方案第三實施例提供的一種熱電 子源30包括一基板32、一第一支撐元件%、一第二支撐 元件36、一第一電極35、一第二電極扣和一熱電子發射 體38所述第-支撐元件34和第二支撐元件%間隔設置 於所述基板32的表面,並與該基板32的表面接觸。所述 第-電極35和第二電極37間隔設置於所述熱電子發射體 38的表面,並與所述熱電子發射體38的表面電接觸。所 述熱電子發射體38至少部分通過所述第一支撐元件^和/ 或第二支撐元件36與所述基板32間隔設置。 所述第一電極35和第二電極37可以通過一導電膠固 定於所述熱電子發射體38的表面。所述第一電極%和第 一電極37设置於所述熱電子發射體38的位置不限,只要 所述第-電極35和第二電極37間隔設置即可。本技術方 案第三實施例中所述第一電極3 5和第二電極3 7優選分別 對應所述第一支撐元件34和第二支撐元件36 # 所述熱電子發射體38與本技術方案第一 ^施例中熱 電子發射體18的結構相同,均為一薄膜結構。 所述第一支撐元件34和第二支樓元件%用㈣所述 熱電子發射體38與所述基板32間隔設置。所述第一支撐 兀件34和第二支撐元件36通過一粘結劑(圖未示)固定於 12 200930156 所述基板32之上。所述第—支撐元件34和第二支撐元件 ,36的㈣、雜、以、和結構形式秘u能使所述執 .電子發射體38至少部分通過該第—支據元件34和第二支 撑元件36與所述基板32間隔設置即可。本技術方案第三 實施例中所述第一支樓元件34和第二支擇元件%優選為 玻璃層,分別通過一粘結劑固定於所述基板%的表面。可 以理解,使用所述第-支撐元件34和第二支撐元件^中 ❹個,也可將所述熱電子發射體%與所述基板㈣ 、-月參閱圖5’為本技術方案第一實施例提供的熱電子 源10的熱發射特性曲線圖。所述熱電子源w中第一電極 14和第二電極16的形狀為矩形。該第一電極 極16的長度均為勘微米,寬度均為15〇微米。所述= 2射體18為—奈米碳管層,該奈米碳管層包括-奈;碳 二=該奈峨薄膜的長度為3〇〇微米,寬度為⑽ ® ;'所述第一電極14和第二電極16之間施加一定的 電屋對所述奈米碳官薄膜進行加熱使奈米碳管薄膜内部電 子的動能增加,以致接一邱八 山則吏4刀電子的動能大到足以克服奈 射二c勢壘而逸出體外’從而實現熱電子的發 射。通過測減可以發現,所述苐—電極14和第二電極16 =電=為3.56伏’流過所述奈米碳管薄膜的電流為44 毫女培時’該奈米碳管薄膜的溫度為1557Κ,並可以發射 :電;^述第-電極14和第二電極⑽電壓為= 瓜β所述奈米碳官薄膜的電流為56毫安培時,該奈米 13 200930156 碳管薄膜的溫度為1839K,並可以發出均句的白熾光。從 ,圖令我可以看出’該熱電子源1〇在較低的熱功率下即可 .實現熱電子的發射。進-步地,還可以在所述奈米碳管薄 臈的表面喷塗-含氧化鋇或者处等的低逸出功層,從而在 較低的溫度下實現熱電子的發射。 與先前技術相比較,所述的熱電子源具有以下優點· 其-,採用奈来碳管薄膜作為熱電子發.射體,該奈米碳管 薄膜中奈米碳管均句分佈,所製備的熱電子源可以發射均 〇 =而穩㈣熱電子流;其二’奈米碳管薄膜的化學性能穩 延長了所製備的熱電子源的使用壽命;其三,奈米碳 官薄膜與基板間隔設置,基板不會將加熱所述奈米碳管薄 膜而產生的熱量傳導進大氣中,故所製備的熱電子源的熱 電子發射性能優異;其四,所述奈米碳管薄膜厚度小,電 P率低&製備的熱電子源在較低的熱功率下即可實現熱 電子^發射,降低了熱發射時加熱產生的功耗,可用於大 φ電流密度和高亮度的平板顯示和邏輯電路等多個領域。 綜上所述’本發明確已符合發明專利之要件,遂依法 提出專射請。惟’以上所述者僅為本發明之較佳實施例, 自不月b以此限制本案之中請專利範圍。舉凡熟悉本案技藝 =人士援依本發明之精神所作之等效修飾或變化,皆應涵 蓋於以下申請專利範圍内。 14 200930156 【圖式簡單說明】 圖1係本技術方案第—實施例的熱電子源的㈣4Referring to FIG. 4 , a thermal electron source 30 according to a third embodiment of the present invention includes a substrate 32 , a first supporting component % , a second supporting component 36 , a first electrode 35 , and a second electrode latch . A thermal electron emitter 38 is disposed at a distance from the surface of the substrate 32 and is in contact with the surface of the substrate 32. The first electrode 35 and the second electrode 37 are spaced apart from the surface of the thermionic emitter 38 and are in electrical contact with the surface of the thermionic emitter 38. The thermal electron emitter 38 is spaced apart from the substrate 32 at least in part by the first support member and/or the second support member 36. The first electrode 35 and the second electrode 37 may be fixed to the surface of the thermionic emitter 38 by a conductive paste. The position at which the first electrode % and the first electrode 37 are disposed on the thermionic emitter 38 is not limited as long as the first electrode 35 and the second electrode 37 are spaced apart from each other. In the third embodiment of the present technical solution, the first electrode 35 and the second electrode 37 preferably correspond to the first supporting member 34 and the second supporting member 36, respectively, and the thermal electron emitter 38 and the technical solution. In the embodiment, the thermo electron emitters 18 have the same structure and are all a film structure. The first support member 34 and the second branch member are disposed at a distance from the substrate 32 by (4) the thermal electron emitter 38. The first support member 34 and the second support member 36 are secured to the substrate 32 of 12 200930156 by an adhesive (not shown). The (four), miscellaneous, and, and structural forms of the first support member 34 and the second support member 36 enable the electron emitter 38 to pass at least partially through the first support member 34 and the second support The element 36 may be spaced apart from the substrate 32. The first branch member 34 and the second retaining member % in the third embodiment of the present technical solution are preferably glass layers which are respectively fixed to the surface of the substrate by an adhesive. It can be understood that, using one of the first support member 34 and the second support member, the hot electron emitter % and the substrate (4), and the month of FIG. 5' may be the first implementation of the technical solution. A graph of the thermal emission characteristics of the hot electron source 10 provided by the example. The shape of the first electrode 14 and the second electrode 16 in the hot electron source w is a rectangle. The length of the first electrode 16 is micron and the width is 15 〇 micron. The = 2 emitter 18 is a carbon nanotube layer, the carbon nanotube layer comprises - Nai; carbon 2 = the length of the naphthalene film is 3 〇〇 microns, the width is (10) ® ; A certain electric house is applied between the electrode 14 and the second electrode 16 to heat the nano carbon official film, so that the kinetic energy of the electrons in the inner surface of the carbon nanotube film is increased, so that the kinetic energy of the electrons of the knives is high. To the extent that it is sufficient to overcome the nano-c barrier and escape outside the body' to achieve the emission of hot electrons. It can be found by measurement that the 苐-electrode 14 and the second electrode 16 = electricity = 3.56 volts 'the current flowing through the carbon nanotube film is 44 milliamperes', the temperature of the carbon nanotube film It is 1557 Κ and can emit: electricity; the voltage of the first electrode 14 and the second electrode (10) is = the current of the nano carbon film of the melon β is 56 mA, the temperature of the carbon 13 film of the nanometer 13 200930156 It is 1839K and can emit a uniform sentence of incandescent light. From the figure, I can see that the hot electron source 1 can be at a lower thermal power to achieve the emission of hot electrons. Further, it is also possible to spray a surface containing a ruthenium oxide or a low work function layer on the surface of the carbon nanotube thin crucible to effect the emission of hot electrons at a lower temperature. Compared with the prior art, the hot electron source has the following advantages: - a carbon nanotube film is used as a thermal electron emitter, and the carbon nanotube film is uniformly distributed in the carbon nanotube film. The hot electron source can emit a uniform enthalpy = stable (four) hot electron flow; the chemical properties of the second 'nanocarbon nanotube film steadily prolong the service life of the prepared hot electron source; third, the nano carbon official film and substrate At intervals, the substrate does not conduct heat generated by heating the carbon nanotube film into the atmosphere, so the prepared hot electron source has excellent thermal electron emission performance; fourth, the carbon nanotube film has a small thickness. The electric P-rate is low and the prepared hot electron source can realize the thermal electron emission at a lower thermal power, which reduces the power consumption caused by heating during heat emission, and can be used for flat panel display with large φ current density and high brightness. And logic circuits and other fields. In summary, the present invention has indeed met the requirements of the invention patent, and has proposed a special shot in accordance with the law. However, the above description is only a preferred embodiment of the present invention, and the scope of the patent application in this case is limited by this. Equivalent modifications or variations made by persons in accordance with the spirit of the present invention are intended to be within the scope of the following claims. 14 200930156 [Simplified description of the drawings] Fig. 1 is a (4) 4 of the thermal electron source of the first embodiment of the technical solution.

回I I圖2係本技術方案第二實施例的熱電子源的結構4 圖3係本技術方案第二實施例的熱電子源的掃插電鏡 0 4係本技術方案第 二實施例的熱電子源的結構示 意 一實施例的熱電子源的熱發射特 10, 20, 30 12, 22, 32 14, 24, 35 16, 26, 37 18, 28, 38 25 27 34 36 圖5係本技術方案第 性曲線圖。 【主要元件符號說明】 熱電子源 基板 第一電極 第一·電極 熱電子發射體 第一固定元件 第二固定元件 第一支撐元件 第二支撐元件 15FIG. 2 is a structure of a thermoelectron source according to a second embodiment of the present technical solution. FIG. 3 is a scanning electron microscope of a thermoelectron source according to a second embodiment of the present technical solution. The structure of the source indicates the thermal emission of the hot electron source of an embodiment. 10, 20, 30 12, 22, 32 14, 24, 35 16, 26, 37 18, 28, 38 25 27 34 36 Figure 5 is a technical solution The first graph. [Main component symbol description] Thermoelectron source substrate First electrode First electrode Electrothermal emitter First fixing component Second fixing component First supporting component Second supporting component 15

Claims (1)

200930156 十、申請專利範圍 ,1. 一種熱電子源,包括一基板、至少兩個電極和一熱電子 ' 發射體,所述至少兩個電極間隔設置,並與熱電子發射 體電接觸,其改良在於,所述熱電子發射體為一薄膜結 構,該熱電子發射體至少部分與所述基板間隔設置。 2.如申請專利範圍第J項所述的熱電子源,其中,所述 的熱電子發射體的長度為2〇〇微米〜5〇〇微米,寬度為 100微米〜300微米。 f 3.如申請專利範圍第1項所述的熱電子源’其中,所述 熱電子發射體為一奈米碳管層。 4. 如申請專利範圍第3項所述的熱電子源,其中,所述 奈米奴管層包括一奈米碳管薄膜或者至少兩個重疊設 置的奈米碳管薄膜。 5. 如申請專利範圍第4項所述的熱電子源,其中,所述 奈米碳管薄膜中奈米碳管沿同一方向擇優取向排列。 黪6.如申請專利範圍第5項所述的熱電子源,其中,所述 重豐设置的奈米碳管薄膜中相鄰兩個奈米碳管薄膜中 的奈米碳管排列方向具有一交又角度α,〇度5〇^9〇度。 7.如申請專利範圍第4項所述的熱電子源,其中,所述 的奈米碳官薄膜的寬度為〇.〇1厘米〜10厘米,厚度為 10奈米〜100微米。 8·如申請專利範圍第4項所述的熱電子源,其中,所述 奈米奴管薄膜包括多個首尾相連且擇優取向排列的奈 米碳官束’相鄰的奈米碳管束之間通過凡德瓦爾力連 16 200930156 ... 接。 、9.如申請專利範圍第8項所述的熱電子源,其中,所述 V 奈米碳管束包括多個長度相等且相互平行排列的奈米 碳官,相鄰的奈米碳管之間通過凡德瓦爾力連接。 i〇.如申請專利範圍第1項所述的熱電子源,其中,所述 熱電子源進一步包括一低逸出功層,該低逸出功層設 置在所述熱電子發射體的表面。 11.如申請專利範圍第10項所述的熱電子源,其中,所述 … 低逸出功層的材料為氧化鋇或者鉦。 12·如申請專利範圍第1項所述的熱電子源,其中,所述 電極設置於所述基板表面,所述熱電子發射體通過所 述電極與所述基板間隔設置。 13. 如申請專利範圍第1項所述的熱電子源,其中,所述 熱電子發射體通過一導電膠固定於所述電極。 14. 如申請專利範圍第1項所述的熱電子源,其中,所述 . 熱電子源進一步包括至少一固定元件,所述固定元件 分別對應於所述電極設置,所述熱電子發射體通過該 固定元件固定於所述電極。 15. 如申請專利範圍第1項所述的熱電子源,其中,所述 熱電子源進一步包括至少一支撐元件,所述支撐元件 設置於所述基板表面,所述熱電子發射體通過所述支 撐元件與所述基板間隔設置。 16. 如申請專利範圍第15項所述的熱電子源,其中,所述 電極通過一導電膠固定於所述熱電子發射體。 17200930156 X. Patent application scope, 1. A hot electron source comprising a substrate, at least two electrodes and a hot electron 'emitter, the at least two electrodes being spaced apart and electrically contacting the hot electron emitter, the improvement thereof The thermal electron emitter is a thin film structure, and the thermal electron emitter is at least partially spaced from the substrate. 2. The hot electron source according to claim J, wherein the thermal electron emitter has a length of from 2 μm to 5 μm and a width of from 100 μm to 300 μm. f. The hot electron source according to claim 1, wherein the thermal electron emitter is a carbon nanotube layer. 4. The hot electron source of claim 3, wherein the nanotube layer comprises a carbon nanotube film or at least two overlapping carbon nanotube films. 5. The hot electron source of claim 4, wherein the carbon nanotube tubes are arranged in a preferred orientation in the same direction. The hot electron source according to claim 5, wherein the carbon nanotubes in the adjacent two carbon nanotube films of the heavy carbon nanotube film have a direction of arrangement The angle is α, and the degree is 5〇^9〇. 7. The hot electron source according to claim 4, wherein the nano carbon official film has a width of from 1 cm to 10 cm and a thickness of from 10 nm to 100 μm. 8. The hot electron source of claim 4, wherein the nanotube film comprises a plurality of end-to-end aligned and preferentially oriented nanocarbon arms between adjacent carbon nanotube bundles. Via Van der Valli Lian 16 200930156 ... pick up. 9. The hot electron source of claim 8, wherein the V nanotube bundle comprises a plurality of carbon directors of equal length and arranged in parallel with each other, between adjacent carbon nanotubes. Connected by Van der Valli. The hot electron source of claim 1, wherein the hot electron source further comprises a low work function layer disposed on a surface of the thermionic emitter. 11. The hot electron source of claim 10, wherein the material of the low work function layer is ruthenium oxide or ruthenium. The hot electron source according to claim 1, wherein the electrode is disposed on a surface of the substrate, and the hot electron emitter is spaced apart from the substrate by the electrode. 13. The hot electron source of claim 1, wherein the thermal electron emitter is fixed to the electrode by a conductive paste. 14. The hot electron source of claim 1, wherein the hot electron source further comprises at least one fixing element, the fixing elements respectively corresponding to the electrode arrangement, the thermo electron emitter passing The fixing member is fixed to the electrode. 15. The hot electron source of claim 1, wherein the thermoelectron source further comprises at least one support member, the support member being disposed on a surface of the substrate, the thermal electron emitter passing the A support member is spaced from the substrate. 16. The hot electron source of claim 15, wherein the electrode is fixed to the thermionic emitter by a conductive paste. 17
TW096150087A 2007-12-26 2007-12-26 Thermionic electron source TWI373283B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW096150087A TWI373283B (en) 2007-12-26 2007-12-26 Thermionic electron source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096150087A TWI373283B (en) 2007-12-26 2007-12-26 Thermionic electron source

Publications (2)

Publication Number Publication Date
TW200930156A true TW200930156A (en) 2009-07-01
TWI373283B TWI373283B (en) 2012-09-21

Family

ID=44864805

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096150087A TWI373283B (en) 2007-12-26 2007-12-26 Thermionic electron source

Country Status (1)

Country Link
TW (1) TWI373283B (en)

Also Published As

Publication number Publication date
TWI373283B (en) 2012-09-21

Similar Documents

Publication Publication Date Title
CN101459019B (en) Thermal electron source
US7772755B2 (en) Thermionic emission device
US8072127B2 (en) Thermionic electron emission device
CN101400198B (en) Surface heating light source, preparation thereof and method for heat object application
CN101409962B (en) Surface heat light source and preparation method thereof
US7915798B2 (en) Thermionic emission device
CN101497438B (en) Carbon nano-tube compound film
TWI320026B (en) Field emission componet and method for making same
JP2009164118A (en) Method for manufacturing thermion emission element
US7915797B2 (en) Thermionic electron source
TW201005785A (en) Electron emission device
TWI302327B (en) Electron emission device
TW200930156A (en) Thermionic electron source
TWI386966B (en) Field emission display
TWI330858B (en) Thermionic emission device
CN105742139A (en) Composite type field emission negative electrode emission source and preparation method therefor
TWI352369B (en) Thermionic emission device and method for making t
TWI425553B (en) Method for making carbon nantoube wire tip and method for making field emission structure
TWI377172B (en) Carbon nanotube composite material and method for making the same
CN113130275A (en) Thermionic electron emission device
TWI386964B (en) Electron emitter and displaying device using the same
TWI383420B (en) Electron emitter and displaying device using the same
TW200929314A (en) Method for making thermionic electron source
TW200932665A (en) Thermionic emission device
TW200929322A (en) Field emission electron device