TWI377172B - Carbon nanotube composite material and method for making the same - Google Patents

Carbon nanotube composite material and method for making the same Download PDF

Info

Publication number
TWI377172B
TWI377172B TW98109055A TW98109055A TWI377172B TW I377172 B TWI377172 B TW I377172B TW 98109055 A TW98109055 A TW 98109055A TW 98109055 A TW98109055 A TW 98109055A TW I377172 B TWI377172 B TW I377172B
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
carbon
composite material
temperature
carbide particles
Prior art date
Application number
TW98109055A
Other languages
Chinese (zh)
Other versions
TW201034939A (en
Inventor
Yuan-Chao Yang
Liang Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW98109055A priority Critical patent/TWI377172B/en
Publication of TW201034939A publication Critical patent/TW201034939A/en
Application granted granted Critical
Publication of TWI377172B publication Critical patent/TWI377172B/en

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Description

1377172 101年09月20日修正替换頁 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種奈米碳管複合材料及其製備方法,尤其 涉及一種可用作電子發射源之奈米碳管複合材料及其製 備方法。 【先前技術】1377172 Modified on September 20, 2011, page 6, invention: [Technical Field] [0001] The present invention relates to a carbon nanotube composite material and a preparation method thereof, and more particularly to an electron emission source Nano carbon tube composite material and preparation method thereof. [Prior Art]

[0002] 奈米碳管(Carbon Nanotube,CNT)作為一種新型碳材 料,因具有極優異之導電性能,大之長徑比和幾乎接近 理論極限之尖端表面積(尖端表面積愈小,其局部電場愈 集中),從而具有良好之場發射性質。利用奈米碳管制作 之場發射電子源擁有極低場發射電壓(小於100伏)與極 大電流密度,故有望被廣泛應用到場發射顯示,X-射線 管及電離規等真空器件。然而,於先前技術中,用奈米 碳管制作之場發射電子源僅於高於10_5Torr之高真空下 能保持優異之場發射性能,而於低真空如10_3Torr下隨 著產生之離子數之增多,其結構容易受到離子轟擊而受 到破壞。從而使該場發射電子源會出現明顯之電流衰減 ,不能保持穩定工作。 [0003] 針對該用奈米碳管制作之場發射電子源難以於低真空穩 定工作,Jihua Zhang等人介紹了 一種於低真空下能穩 定工作之場發射電子源,該場發射電子源由一奈米碳管 複合材料製成,該奈米碳管複合材料包括一奈米碳管及 包覆於該奈米碳管之外表面之一碳化铪層。請參見“ Improvement of field emission of carbon nanotubes by hafnium coating and annealing” 0_05产單編號A0101 第4頁/共40頁 1013359402-0 1377172 101年.09月20日核正替換頁 ,Jihua Zhang et1, Nanotechnology. 17, (2006) 257-260。該奈米碳管複合材料之製備方法如下 :利用化學氣相沈積法於一 P型矽襯底上形成一奈米碳管 陣列;於該奈米碳管陣列之表面形成一金屬铪層;於 1200度之溫度下退火使該金屬鈐與奈米碳管中之碳原子 發生反應生成碳化铪,從而於該奈米碳管之表面形成耐 離子轟擊之碳化鈴層。 [0004] 於上述奈米碳管複合材料之製備過程中需要複雜之加熱 設備加熱,且該退火工藝比較繁雜。從而使得該奈米碳 管複合材料之製備方法比較複雜。 【發明内容】 [0005] 有鑒於此,提供一種方法簡單之奈米碳管複合材料之製 備方法及由該製備方法製備之奈米碳管複合材料實為必 要。 [0006] —種奈米碳管複合材料之製備方法,其包括以下步驟: 提供一奈米碳管結構,該奈米碳管結構包括至少一奈米 碳管;形成一金屬包覆層於該奈米碳管結構中至少一個 奈米碳管之外表面;給該奈米碳管結構於真空中通電, 使該奈米碳管外表面之金屬包覆層熔融並與該奈米碳管 中之碳原子反應,於該奈米碳管外表面形成複數金屬碳 化物顆粒,在该步骤中,該奈米碳管結構於真空中通電 後被加熱至第一溫度,所述金屬包覆層在該第一溫度下 熔融,該第一溫度大於或等於該金屬包覆層與奈米碳管 之反應溫度。 [0007] 一種奈米碳管複合材料之製備方法,其包括以下步驟: 1013359402-0 09810905^^'^^ A〇101 ^ 5 1 / ^ 40 1 1377172 101年09月20日梭正替換頁 提供一奈米碳管線狀結構’該奈米碳管線狀結構包括沿 其轴向延伸之複數奈米碳管;形成一金屬包覆層於該奈 米碳管線狀結構中至少一個奈米碳管之外表面;給該奈 米碳管線狀結構於真空中通電使該奈米碳管線狀結構加 熱至第一溫度,使該奈米碳管外表面之金屬包覆層熔融 ϋ與該奈米碳管中之碳原子反應,於該奈米碳管外表面 形成複數金屬碳化物顆粒;給該奈来碳管線狀結構於真 空中通電使該奈米碳管線狀結構加熱至第二溫度,使該 奈米碳管線狀結構斷裂並於斷裂處形成兩尖端,在该步 骤中,該第二溫度大於該第一溫度。 [0008] 一種奈米碳管複合材料之製備方法,其包括以下步驟: 提供一奈米碳管拉膜’該奈米碳管拉膜包括沿同一方向 延伸且通過凡德瓦爾力首尾相連之複數奈米碳管;形成 一金屬包覆層於該奈米碳管拉膜中至少一個奈米碳管之 外表面;用有機溶劑處理該奈米碳管拉膜,使其收縮成 一奈米碳管線狀結構;給該奈米碳管線狀結構於真空中 通電使該奈米碳管線狀結構加熱至第一溫度,使該至少 一個奈米碳管之外表面之金屬包覆層熔融並與奈米碳管 中之碳原子反應,於該奈米碳管外表面形成複數金屬碳 化物顆粒;給該奈米碳管線狀結構於真空中通電使該奈 米碳管線狀結構加熱至第二溫度,使該奈米碳管線狀結 構斷裂並於斷裂處形成兩尖端,在该步骤中,該第二溫 度大於該第一溫度。 第6頁/共40頁 [0009]-種奈米碳管;材料,其巾該奈米碳管複合材料包 括一奈米碳管結構,該奈米碳管結構表面形成有複數間 09810905#單編號Α0101 第6頁/共40頁 1013359402-0[0002] Carbon Nanotube (CNT), as a new type of carbon material, has excellent electrical conductivity, large aspect ratio and tip surface area close to the theoretical limit (the smaller the tip surface area, the higher the local electric field Concentrated), thus having good field emission properties. Field emission electron sources fabricated using carbon nanotubes have extremely low field emission voltages (less than 100 volts) and extremely high current densities, and are expected to be widely used in field emission displays, vacuum devices such as X-ray tubes and ionization gauges. However, in the prior art, a field emission electron source made of a carbon nanotube can maintain excellent field emission performance only under a high vacuum higher than 10_5 Torr, and an increase in the number of ions generated under a low vacuum such as 10_3 Torr. Its structure is easily damaged by ion bombardment. Therefore, the field emission electron source will have obvious current decay and cannot maintain stable operation. [0003] The field emission electron source fabricated by using the carbon nanotube is difficult to work stably under low vacuum, and Jihua Zhang et al. introduced a field emission electron source capable of stable operation under low vacuum, and the field emission electron source is The carbon nanotube composite material comprises a carbon nanotube and a layer of tantalum carbide coated on the outer surface of the carbon nanotube. See "Improvement of field emission of carbon nanotubes by hafnium coating and annealing" 0_05Bill No. A0101 Page 4/Total 40 Page 1013359402-0 1377172 101. September 20th Nuclear Replacement Page, Jihua Zhang et, Nanotechnology. 17, (2006) 257-260. The carbon nanotube composite material is prepared by forming a carbon nanotube array on a P-type ruthenium substrate by chemical vapor deposition; forming a metal ruthenium layer on the surface of the carbon nanotube array; Annealing at a temperature of 1200 degrees causes the metal ruthenium to react with carbon atoms in the carbon nanotubes to form lanthanum carbide, thereby forming an ion bombarded carbonized bell layer on the surface of the carbon nanotube. [0004] In the preparation process of the above carbon nanotube composite material, complicated heating equipment heating is required, and the annealing process is complicated. Therefore, the preparation method of the carbon nanotube composite material is complicated. SUMMARY OF THE INVENTION [0005] In view of the above, it is necessary to provide a method for preparing a carbon nanotube composite material having a simple method and a carbon nanotube composite material prepared by the preparation method. [0006] A method for preparing a carbon nanotube composite material, comprising the steps of: providing a carbon nanotube structure, the carbon nanotube structure comprising at least one carbon nanotube; forming a metal coating layer thereon An outer surface of at least one carbon nanotube in the carbon nanotube structure; energizing the carbon nanotube structure in a vacuum to melt the metal coating on the outer surface of the carbon nanotube and in the carbon nanotube The carbon atom reacts to form a plurality of metal carbide particles on the outer surface of the carbon nanotube. In this step, the carbon nanotube structure is heated to a first temperature after being energized in a vacuum, and the metal coating is Melting at the first temperature, the first temperature is greater than or equal to a reaction temperature of the metal coating layer and the carbon nanotubes. [0007] A method for preparing a carbon nanotube composite material, comprising the following steps: 1013359402-0 09810905^^'^^ A〇101 ^ 5 1 / ^ 40 1 1377172 September 20th, 2011 a nanocarbon carbon line-like structure comprising: a plurality of carbon nanotubes extending along an axial direction thereof; forming a metal coating layer of at least one carbon nanotube in the nanocarbon line structure An outer surface; the carbon carbon line-like structure is energized in a vacuum to heat the nanocarbon line-like structure to a first temperature, and the metal coating on the outer surface of the carbon nanotube is melted and the carbon nanotube a carbon atom reaction, forming a plurality of metal carbide particles on the outer surface of the carbon nanotube; energizing the nematic carbon line structure in a vacuum to heat the nanocarbon line structure to a second temperature, thereby The rice carbon line-like structure breaks and forms two tips at the break, and in this step, the second temperature is greater than the first temperature. [0008] A method for preparing a carbon nanotube composite material, comprising the steps of: providing a carbon nanotube film: the carbon nanotube film comprises a plurality of films extending in the same direction and connected end to end by van der Waals force a carbon nanotube; forming a metal coating on the outer surface of at least one of the carbon nanotubes in the carbon nanotube film; treating the carbon nanotube film with an organic solvent to shrink into a nano carbon line a structure in which the nanocarbon line-like structure is energized in a vacuum to heat the nanocarbon line-like structure to a first temperature, so that the metal coating on the outer surface of the at least one carbon nanotube is melted and bonded to the nano Reacting a carbon atom in the carbon tube to form a plurality of metal carbide particles on the outer surface of the carbon nanotube; energizing the nanocarbon line-like structure in a vacuum to heat the nanocarbon line structure to a second temperature The nanocarbon line-like structure breaks and forms two tips at the break, and in this step, the second temperature is greater than the first temperature. Page 6 of 40 [0009] - a carbon nanotube; material, the towel, the carbon nanotube composite material comprises a carbon nanotube structure, the surface of the carbon nanotube structure is formed with a plurality of 09810905# single No. 1010101 Page 6 of 40 Page 1013359402-0

Γ377172 101年.09月20日修正替换頁 隔之金屬碳化物顆粒,相鄰兩個金屬碳化物顆粒之間具 有1奈来〜100奈米之間隙。 [0010] 一種奈米碳管複合材料,其中,該奈米碳管複合材料包 括一奈米碳管結構,該奈米碳管結構中至少一奈米碳管 之外表面形成有複數間隔之金屬碳化物顆粒,相鄰兩個 金屬碳化物顆粒之間具有1奈米〜100奈米之間隙。 [0011] —種奈米碳管複合材料,其中,該奈米碳管複合材料包 括一奈米碳管,該奈米碳管表面形成有複數間隔之金屬 Φ 碳化物賴粒,相鄰兩個金屬碳化物顆粒之間具有1奈米 ~100奈米之間隙。 [0012] 相較於先前技術,該奈米碳管複合材料之製備方法,通 過給該奈米碳管結構於真空中通電即可加熱該金屬包覆 層到第一溫度使該金屬包覆層熔融,該熔融後之金屬包 覆層與該奈米碳管結構中之碳原子反應,從而於該奈米 碳管結構之外表面形成複數金屬碳化物顆粒。該奈米碳 管複合材料之製備方法中之加熱方式簡單,且無需複雜 之退火工藝,從而使該奈米碳管複合材料之製備方法更 簡單。 【實施方式】 [0013] 以下將结合附圖詳細說明本發明實施例提供之奈米碳管 複合材料之製備方法及由該製備方法所製備之奈米碳管 複合材枓。 [0014] 請參閱圖1,本發明第一實施例提供之一種奈米碳管複合 材料之製備方法,其包括以下步驟。 09810905癸單編號 A0101 第7頁/共40頁 1013359402-0 1377172 101年09月20日梭正替换頁 [0015] 步驟S101,提供-奈米碳管結構,該奈米碳管結構包括 至少一奈米碳管。該奈米碳管結構為一奈米碳管陣列, 該奈米碳管陣列採用化學氣相沈積法生長而獲得,且該 奈米碳管陣列中之奈米碳管之間存在凡德瓦爾力。該奈 米碳管陣列之生長方法請參見範守善等人於2002年11月 05日申請,於20 04年5月15日公開之第20040 72 59號台 灣專利申請。該奈米碳管結構還可為一單根奈米碳管或 一自支撐之奈米碳管結構,該自支撐之奈米碳管結構包 括由多根奈米碳管所構成奈米碳管膜或奈米碳管線狀結 構。具體地,該單根奈米碳管包括導電性單壁奈米碳管 、雙壁奈米碳管及多壁奈米碳管。該奈米碳管膜可包括 奈米碳管絮化膜、奈米碳管碾壓膜或奈米碳管拉膜,該 奈米碳管線狀結構包括至少一奈米碳管線。 [0016] 該奈米碳管絮化臈通過對一奈米碳管陣列絮化處理而獲 得,該奈米碳管絮化膜中之奈米碳管相互纏繞或各向同 性排列。該奈米碳管絮化膜之結構及製備方法請參見範 守善等人於2 007年5月11日申請,並於2008年11月16日 公開之第0961 1 6824號台灣專利申請。該奈米碳管碾壓 膜可通過採用一平面壓頭沿垂直於上述奈米碳管陣列生 長之基底之方向擠壓上述奈米碳管陣列而獲得,此時該 奈米碳管碾壓膜中之奈米碳管各向同性;請參閱圖2,該 奈米碳管碾壓膜也可通過採用一滾轴狀壓頭沿某一固定 方向碾壓上述奈米碳管陣列而獲得,此時該奈米碳管碾 壓膜中之奈米碳管於該固定方向擇優取向;該奈米碳管 碾壓膜還可通過採用滾軸狀壓頭沿不同方向碾壓上述奈 09810905#單編號 A〇101 第8頁/共40頁 1013359402-0 Γ377172 ____________ 1101年·09月20日按正替換首 米碳管陣列而獲得,此時該奈米碳管碾壓膜中之奈米碳 管沿不同方向擇優取向。該奈米碳管碾壓膜之結構及製 備方法請參見範守善等人於2007年6月29曰申請,並於 2009年1月1日公開之第096123694號之台灣專利申請。 [0017] 該奈米碳管拉膜包括複數奈米碳管通過凡德瓦爾力首尾 相連並沿同一方向擇優取向排列。該奈米碳管拉膜之結 構及其製備方法請參見範守善等人於2007年2月9日申請 之,於2008年8月13公開之第CN101239712A號大陸公 φ 開專利申請。 [0018] 該奈米碳管線狀結構包括至少一奈米碳管線,請參閱圖3 及圖4,該奈米碳管線包括複數奈米碳管沿其軸向方向延 伸或旋轉,優選地,該複數奈米碳管通過凡德瓦爾力首 尾相連。該奈米破管線狀結構可包括由複數奈米破管線 併排組成之束狀結構或相互扭轉組成之絞線結構。該奈 米碳管結構也可由複數奈米碳管線狀結構平行設置、相 互纏繞或相互編織組成。 [0019]該奈米碳管線能夠通過對一奈米碳管拉膜進行有機溶劑 處理或機械力扭轉而獲得,該奈米碳管線包括複數奈米 碳管通過凡德瓦爾力首尾相連。該通過有機溶劑處理而 獲得之非扭轉之奈米碳管線包括複數沿奈米碳管線長度 方向排列並首尾相連之奈米碳管。該通過機械力扭轉而 獲知之扭轉之奈米碳管線包括複數繞奈米碳管線軸向螺 旋排列之奈米碳管。該奈米碳管線長度不限,直徑為〇5 奈米-100微米。該通過有機溶劑處理獲得之奈米碳管線 及其製備方法請參見範守善等人於2005年12月16日申請 〇_9〇5#單編號A0101 S 9頁/共40頁 1013359402-0 1377172 101^09^ 於2007年7月1日公開之第094144790號台灣專利申請 [0020]步驟S1 02 ’形成一金屬包覆層於該奈米碳管結構中至少 一個奈米碳管之外表面。優選地,該奈米碳管結構中之 每一個奈米碳管之外表面均形成有一金屬包覆層。該金 屬包覆層之材料為過渡金屬,包括铪、钽、鈦或鍅等。 該金屬包覆層之形成方法包括磁控賤射法或電子束蒸發 法,且該金屬包覆層之厚度於1奈米〜100奈米之間,該金 屬包覆層係由粒徑範圍位於丨奈米〜丨〇〇奈米之間之金屬顆 粒彼此相接所形成。在本實施例中該金屬 包覆層為由 磁控濺射法形成之50奈米厚之铪層。 _1]步驟S103,給該奈米碳管結構於秦空中通電,使該奈米 碳官外表面之金屬包覆層熔融並與該奈米碳管中之碳原 子反應,於該奈米碳管外表面形成複數金屬碳化物顆粒 。具體地,該奈米碳管結構可固定並電連接於兩個電極 之間,將該奈米碳管結構及電極置於真空環境中並於兩 電極之間施加電壓,使該奈米碳管結構通電。 [0022] 在本實施例中’該奈米碳管結構為一奈米碳管陣列,該 奈米碳管陣列一般形成於一基底上,可用其中一電極覆 蓋並黏附該奈米碳管陣列之一端,並使該奈米碳管陣列 與基底脫離,再將另一電極電連接該奈米碳管陣列與基 底脫離之一端。此時,該奈米碳管陣列中之複數奈米碳 管沿其中一電極往另一電極延伸,從而使該奈米碳管陣 列與該電極及電源組成一回路。由於該奈米碳管結構為 電之良好導體,該奈来碳管結構為一導電結構,從而使 09810905^單编號Α0101 第10頁/共40頁 1013359402-0 Γ377172Γ377172 101. September 20th, revised replacement page The metal carbide particles are separated by a gap of 1 nanometer to 100 nanometers between two adjacent metal carbide particles. [0010] A carbon nanotube composite material, wherein the carbon nanotube composite material comprises a carbon nanotube structure, wherein at least one carbon nanotube has at least one surface formed on the outer surface of the carbon nanotube structure The carbide particles have a gap of between 1 nm and 100 nm between two adjacent metal carbide particles. [0011] a carbon nanotube composite material, wherein the carbon nanotube composite material comprises a carbon nanotube, the surface of the carbon nanotube is formed with a plurality of spaced metal Φ carbide granules, two adjacent The metal carbide particles have a gap of between 1 nm and 100 nm. [0012] Compared with the prior art, the method for preparing the carbon nanotube composite material can heat the metal cladding layer to a first temperature to make the metal cladding layer by energizing the carbon nanotube structure in a vacuum. After melting, the molten metal coating reacts with carbon atoms in the carbon nanotube structure to form a plurality of metal carbide particles on the outer surface of the carbon nanotube structure. The method for preparing the carbon nanotube composite material has a simple heating method and does not require a complicated annealing process, thereby making the preparation method of the carbon nanotube composite material simpler. [Embodiment] The preparation method of the carbon nanotube composite material provided by the embodiment of the present invention and the carbon nanotube composite material prepared by the preparation method will be described in detail below with reference to the accompanying drawings. Referring to FIG. 1, a method for preparing a carbon nanotube composite material according to a first embodiment of the present invention includes the following steps. 09810905癸单号A0101 Page 7/Total 40 Page 1013359402-0 1377172 September 20th, 2011 Shuttle replacement page [0015] Step S101, providing a carbon nanotube structure, the carbon nanotube structure including at least one Carbon tube. The carbon nanotube structure is a carbon nanotube array, the carbon nanotube array is obtained by chemical vapor deposition, and the van der Waals force exists between the carbon nanotubes in the carbon nanotube array. . For the growth method of the carbon nanotube array, please refer to the patent application of No. 20040 72 59 published by Fan Shoushan et al. on November 5, 2002, published on May 15, 2004. The carbon nanotube structure may also be a single carbon nanotube or a self-supporting carbon nanotube structure, and the self-supporting carbon nanotube structure comprises a carbon nanotube composed of a plurality of carbon nanotubes. Membrane or nanocarbon line structure. Specifically, the single carbon nanotube comprises a conductive single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. The carbon nanotube membrane may comprise a carbon nanotube flocculation membrane, a carbon nanotube membrane or a carbon nanotube membrane, the nanocarbon pipeline structure comprising at least one nanocarbon pipeline. [0016] The carbon nanotube flocculation crucible is obtained by flocculation treatment on a carbon nanotube array, and the carbon nanotubes in the carbon nanotube flocculation membrane are intertwined or isotropically aligned. For the structure and preparation method of the carbon nanotube flocculation membrane, please refer to Taiwan Patent Application No. 0961 1 6824, which was filed on May 11, 2008, by Fan Shoushan et al., and published on November 16, 2008. The carbon nanotube rolled film can be obtained by extruding the carbon nanotube array in a direction perpendicular to the substrate grown by the array of carbon nanotubes by using a planar indenter, and the carbon nanotube film is pressed at this time. The carbon nanotube is isotropic; referring to Fig. 2, the carbon nanotube rolled film can also be obtained by rolling the carbon nanotube array in a fixed direction by using a roller-shaped indenter. The carbon nanotubes in the carbon nanotube rolled film are preferentially oriented in the fixed direction; the carbon nanotube rolled film can also be rolled in different directions by using a roller-shaped indenter. A〇101 Page 8 of 40 1013359402-0 Γ377172 ____________ 1101·September 20 is obtained by replacing the first carbon nanotube array, at this time, the carbon nanotubes in the carbon nanotube film Preferred orientation in different directions. For the structure and preparation method of the carbon nanotube rolled film, please refer to Taiwan Patent Application No. 096123694, which was filed on Jun. 29, 2007 by Fan Shoushan et al. [0017] The carbon nanotube film comprises a plurality of carbon nanotubes connected end to end by van der Waals force and arranged in a preferred orientation in the same direction. For the structure of the carbon nanotube film and the preparation method thereof, please refer to the patent application of CN101239712A, published on February 9, 2008 by Fan Shoushan et al., published on August 13, 2008. [0018] The nanocarbon line-like structure includes at least one nano carbon line, please refer to FIG. 3 and FIG. 4, the nano carbon line includes a plurality of carbon nanotubes extending or rotating in an axial direction thereof, preferably, The complex carbon nanotubes are connected end to end by Van der Valli. The nano-crushed line structure may comprise a bundle structure consisting of a plurality of nano-breaking pipelines side by side or a twisted wire structure composed of mutually twisted. The carbon nanotube structure may also be composed of a plurality of nano carbon line-like structures arranged in parallel, intertwined or interwoven. [0019] The nanocarbon pipeline can be obtained by subjecting a carbon nanotube membrane to organic solvent treatment or mechanical force twisting, and the nanocarbon pipeline includes a plurality of carbon nanotubes connected end to end by van der Waals force. The non-twisted nanocarbon pipeline obtained by the organic solvent treatment comprises a plurality of carbon nanotubes arranged in the length direction of the nanocarbon pipeline and connected end to end. The twisted nanocarbon pipeline known by mechanical force torsion includes a plurality of carbon nanotubes arranged in an axially spiral arrangement around the carbon nanotubes. The nano carbon line is not limited in length and has a diameter of 〇5 nm to 100 μm. The nano carbon pipeline obtained by the organic solvent treatment and the preparation method thereof can be found in Fan Shoushan et al. on December 16, 2005. 〇 _9〇 5# single number A0101 S 9 pages / total 40 pages 1013359402-0 1377172 [0020] Step S1 02', which forms a metal coating on the outer surface of at least one of the carbon nanotube structures in the carbon nanotube structure, is disclosed in Japanese Patent Application No. 094144790, which is incorporated by reference. Preferably, a metal cladding layer is formed on the outer surface of each of the carbon nanotube structures. The material of the metal coating layer is a transition metal, including ruthenium, osmium, titanium or ruthenium. The metal coating layer forming method comprises a magnetron sputtering method or an electron beam evaporation method, and the metal coating layer has a thickness of between 1 nm and 100 nm, and the metal coating layer is located by a particle diameter range. The metal particles between the nanometer and the nanometer are formed by joining each other. In the present embodiment, the metal clad layer is a 50 nm thick germanium layer formed by magnetron sputtering. _1] Step S103, energizing the carbon nanotube structure in the Qin air, melting the metal coating of the outer surface of the carbon carbon and reacting with the carbon atoms in the carbon nanotube, in the carbon nanotube The outer surface forms a plurality of metal carbide particles. Specifically, the carbon nanotube structure can be fixed and electrically connected between the two electrodes, and the carbon nanotube structure and the electrode are placed in a vacuum environment, and a voltage is applied between the electrodes to make the carbon nanotube. The structure is energized. [0022] In the present embodiment, the carbon nanotube structure is a carbon nanotube array, and the carbon nanotube array is generally formed on a substrate, and the carbon nanotube array can be covered and adhered by one of the electrodes. One end, the array of carbon nanotubes is detached from the substrate, and the other electrode is electrically connected to one end of the array of carbon nanotubes and the substrate. At this time, the plurality of carbon nanotubes in the array of carbon nanotubes extend along one of the electrodes to the other electrode, so that the array of carbon nanotubes forms a loop with the electrode and the power source. Since the carbon nanotube structure is a good conductor of electricity, the carbon nanotube structure is a conductive structure, so that 09810905^ is numbered Α0101, page 10/total 40 pages, 1013359402-0, Γ377172

[0023][0023]

[0024] 101年.09月20日核正替换頁 該奈米碳管陣列於通電時即被加熱。當然,也可用鑷子 等工具從該奈米碳管陣列中獲取複數奈米碳管形成一奈 米碳管結構電連接於該兩個電極之間,此時,該兩個電 極之間之奈米碳管結構電阻較奈米碳管陣列之電阻進一 步增大,利於被加熱。該奈米碳管結構之加熱方式比較 簡單,無需借助外部複雜之加熱設備,且該加熱方式能 夠通過控制電流或電壓之大小來控制加熱溫度。同時, 該加熱方式無需借助外部熱源及使該奈米碳管結構周圍 之環境溫度也升高,加熱效率高,節省能源。 本技術領域人員可以理解,當該奈米碳管結構為絮化膜 或各向同性之碾壓膜時,由於該奈米碳管結構中之奈米 碳管無序排列,該奈米碳管結構於各個方向都導電,故 電極可於奈米碳管結構之任意位置。當奈米碳管結構為 固定方向取向之碾壓膜、奈米碳管拉膜或奈米碳管線狀 結構時,該電極應設置於沿奈米碳管排列方向上之兩端 ,從而使該奈米碳管沿一個電極往另一電極延伸。 當然,該奈米碳管結構之於真空中通電方式並不局限於 採用兩個電極,也可採用複數電極。 [0025] 該奈米碳管結構於真空中通電後被加熱至第一溫度,該 第一溫度為該金屬包覆層與奈米碳管之反應溫度。在本 實施例中,該第一溫度為1 600K。該奈米碳管結構於 1 600K進行熱處理時,該金屬包覆層中之金屬顆粒由於其 粒徑範圍位於奈米級,熔點顯著降低,故該金屬顆粒於 1 600K溫度下熔融,與該金屬包覆層接觸之碳原子分散到 該金屬包覆層中反應生成金屬碳化物。由於熔融態表面 _1_5#單編號删1 第11頁/共40頁 1013359402-0 1377172 101年09月20日修正替换頁 張力之作用,生成之金屬碳化物以顆粒之方式存在,其 粒徑範圍位於1奈米~100奈米之間,且複數金屬碳化物顆 粒均間隔一定距離形成,相鄰兩個金屬碳化物顆粒之間 之間距於1奈米〜100奈米之間。 [0026] 本發明實施例所提供之奈米碳管複合材料之製備方法, 熔融後之金屬包覆層與該奈米碳管結構中之碳原子反應 ,於該奈米碳管結構之外表面形成複數金屬碳化物顆粒 。無需複雜之退火工藝即可得到該奈米碳管複合材料, 從而簡化該奈米碳管複合材料之製備方法。該奈米碳管 · 結構之加熱方式也非常簡單,只需給該奈米碳管結構於 真空中通電即可加熱該金屬包覆層到第一溫度使該金屬 包覆層熔融,無需複雜之加熱設備;通過控制該奈米碳 管結構之通電電流或電壓之範圍即可控制該奈米碳管結 構之溫度範圍;且通過奈米碳管自身電阻將電能轉化為 熱能,從奈米碳管内部發熱加熱其外部包覆之金屬層, 能源利用率高。 [0027] 請參閱圖5,本發明第二實施例提供之一種奈米碳管複合 材料之製備方法,其包括以下步驟。 [0028] 步驟S201,提供一奈米碳管線狀結構,該奈米碳管線狀 結構包括沿其轴向延伸之複數奈米碳管。優選地,該多 根奈米碳管通過凡德瓦爾力首尾相連。 [0029] 步驟S202,形成一金屬包覆層於該奈米碳管線狀結構中 至少一個奈米碳管之外表面。 [0030] 步驟S203,給該奈米碳管線狀結構於真空中通電使該奈 09_5癸單編號A〇101 第12頁/共40頁 1013359402-0 Γ377172 [0031] • 1101年.09月20日修 求碳管線狀結構加熱至第一溫度,使該奈米碳管外表面 之金屬包覆層熔融並與該奈米碳管中之碳原子反應,於 該奈米碳管外表面形成複數金屬碳化物顆粒。該第一溫 度為奈米碳管與該金屬包覆層之反應溫度。 步驟S204 ’給該奈米碳管線狀結構於真空中通電使該奈 米碳管結構加熱至第二溫度,使該奈米碳管線狀結構斷 裂並於斷裂之—端形成一尖端。該奈米碳管線狀結構於 受熱時各部分由於受熱或散熱不均而升高之溫度不同, 溫度升高快之部分會產生斷裂並收縮,從而於其斷裂之 一端形成尖端。如,當該奈米碳管線狀結構相對之兩端 固定並電連接於兩個電極之間時,該奈米碳管線狀結構 於受熱時固定於該電極上或靠近電極之部分散熱比較快 ,而遠離該電極之部分散熱比較慢,故於加熱至第二溫 度時,該奈米碳管線狀結構中間之某一段產生斷裂並收 縮,從而於其斷裂之一端形成尖端。該尖端為多根奈米 碳管通過凡德瓦爾力連接形成之束狀結構,於該尖端之 末端延伸出一奈米碳管且該奈米碳管被與其相鄰之奈米 碳管通過凡德瓦爾力固定。 [0032] 相對於第一實施例中之奈米碳管複合材料之製備方法, 本發明實施例中之奈米碳管複合材料具有一尖端,該尖 端之末端具有更小之直徑。故當該奈米碳營線狀結構應 用到場發射電子發射源之時候,需要之場發射電壓更低 〇 [0033] 請參閱圖6 ’本發明第三實施例提供之—種奈米碳管複纟 材料之製備方法,其包括以下步驟。 09810905^單編號A01〇l 第13頁/共40頁 1013359402-0 [0034] [0035] [0036] [0037] 101年09月20日梭正替換頁 提供兩個電極及—奈米碳管拉膜請參閱圖7 碳管㈣包括沿同—方向延伸且 爾力首尾相連之複數奈米碳管。 =S3G2域—金屬包覆層於該奈米碳管拉膜中至少 奈Γ管之外表面。優選地,該奈米破管拉膜中之 =個奈米碳管_成有—金屬包覆層。請參_9,名 本實施例中,該金屬包覆層為5Q奈米厚之給層。 用有機溶劑處理該奈米碳管拉膜,使其收縮 ^奈来碳管線狀結構。該奈米碳管拉膜通過有機溶劑 處理後,外表面面積縮小’耐熱度提^請參_〇, 在本實施财,該奈米碳管_於使用有機溶劑處理後 化成-直H線絲34微米之奈H管線狀結構。當然 ’該奈米碳管拉膜也可於進行機械力扭轉使其外表面面 積縮小,财對贿米碳管拉職行機械力扭轉後再進 行有機溶難理,或者對該奈米碳管拉膜進行有機溶劑 處理後再進行機械力扭轉。[0024] 101 years. September 20th nuclear replacement page The carbon nanotube array is heated when energized. Of course, a plurality of carbon nanotubes can be obtained from the carbon nanotube array by a tool such as tweezers to form a carbon nanotube structure electrically connected between the two electrodes. At this time, the nanometer between the two electrodes The resistance of the carbon tube structure is further increased than that of the carbon nanotube array, which is favorable for being heated. The carbon nanotube structure is heated in a relatively simple manner without the need for externally complicated heating equipment, and the heating method can control the heating temperature by controlling the magnitude of current or voltage. At the same time, the heating method does not require an external heat source and raises the ambient temperature around the carbon nanotube structure, which has high heating efficiency and saves energy. It will be understood by those skilled in the art that when the carbon nanotube structure is a flocculated film or an isotropic laminated film, the carbon nanotubes are disorderly arranged due to the arrangement of the carbon nanotubes in the carbon nanotube structure. The structure is electrically conductive in all directions, so the electrode can be anywhere in the structure of the carbon nanotube. When the carbon nanotube structure is a fixed direction oriented rolling film, a carbon nanotube film or a nano carbon line structure, the electrode should be disposed at both ends in the direction of arrangement of the carbon nanotubes, thereby The carbon nanotubes extend along one electrode to the other. Of course, the manner in which the carbon nanotube structure is energized in a vacuum is not limited to the use of two electrodes, and a plurality of electrodes may be employed. [0025] The carbon nanotube structure is heated to a first temperature after being energized in a vacuum, and the first temperature is a reaction temperature of the metal cladding layer and the carbon nanotube. In this embodiment, the first temperature is 1 600K. When the carbon nanotube structure is heat-treated at 1 600 K, the metal particles in the metal coating layer are at a nanometer level, and the melting point is remarkably lowered, so that the metal particles are melted at a temperature of 1 600 K, and the metal The carbon atoms in contact with the cladding layer are dispersed in the metal coating layer to form a metal carbide. Since the molten surface _1_5# single number is deleted 1 page 11 / total 40 pages 1013359402-0 1377172 On September 20, 2010, the effect of the replacement sheet tension is corrected, and the generated metal carbide exists in the form of particles, and the particle size range thereof It is located between 1 nm and 100 nm, and a plurality of metal carbide particles are formed at a certain distance, and the distance between two adjacent metal carbide particles is between 1 nm and 100 nm. [0026] In the method for preparing a carbon nanotube composite material provided by the embodiment of the present invention, the molten metal coating layer reacts with carbon atoms in the carbon nanotube structure to form an outer surface of the carbon nanotube structure. A plurality of metal carbide particles are formed. The carbon nanotube composite material can be obtained without a complicated annealing process, thereby simplifying the preparation method of the carbon nanotube composite material. The carbon nanotube structure is also very simple to heat. The carbon nanotube structure can be heated in a vacuum to heat the metal coating to a first temperature to melt the metal coating without complicated heating. The temperature range of the carbon nanotube structure can be controlled by controlling the range of energization current or voltage of the carbon nanotube structure; and the electric energy is converted into heat energy through the inner resistance of the carbon nanotube, from the inside of the carbon nanotube The heat is heated to the outer metal layer of the coating, and the energy utilization rate is high. [0027] Referring to FIG. 5, a method for preparing a carbon nanotube composite material according to a second embodiment of the present invention includes the following steps. [0028] Step S201, providing a nanocarbon pipeline structure, the nanocarbon pipeline structure including a plurality of carbon nanotubes extending along the axial direction thereof. Preferably, the plurality of carbon nanotubes are connected end to end by van der Waals force. [0029] Step S202, forming a metal coating layer on the outer surface of at least one of the carbon nanotubes in the nanocarbon line structure. [0030] Step S203, energizing the nanocarbon line-like structure in a vacuum to make the nanometer 09_5癸 single number A〇101 page 12/total 40 pages 1013359402-0 Γ377172 [0031] • 1101. September 20 Repairing the carbon pipeline structure to a first temperature, melting a metal coating on the outer surface of the carbon nanotube and reacting with carbon atoms in the carbon nanotube to form a plurality of metals on the outer surface of the carbon nanotube Carbide particles. The first temperature is the reaction temperature of the carbon nanotubes and the metal coating. Step S204' energizes the nanocarbon line-like structure in a vacuum to heat the carbon nanotube structure to a second temperature, causing the nanocarbon line-like structure to break and form a tip at the fracture end. The nanocarbon line-like structure is heated at a different temperature due to uneven heat or heat dissipation, and a portion where the temperature rises rapidly breaks and contracts, thereby forming a tip at one end of the fracture. For example, when the nanocarbon line-like structure is fixed at opposite ends and electrically connected between the two electrodes, the nanocarbon line-like structure is fixed on the electrode or near the electrode when heated, and the heat dissipation is faster. The heat away from the electrode is relatively slow, so when heated to the second temperature, a certain section of the nanocarbon line-like structure breaks and contracts, thereby forming a tip at one end of the fracture. The tip is a bundle structure formed by connecting a plurality of carbon nanotubes through a van der Waals force, and a carbon nanotube is extended at the end of the tip and the carbon nanotube is passed through the adjacent carbon nanotube Devalli fixed. [0032] With respect to the method of preparing the carbon nanotube composite material in the first embodiment, the carbon nanotube composite material in the embodiment of the present invention has a tip end having a smaller diameter at the end. Therefore, when the nano carbon camp wire structure is applied to the field emission electron emission source, the required field emission voltage is lower. [0033] Please refer to FIG. 6 'the third embodiment of the present invention - the carbon nanotube A method of preparing a retanning material, comprising the following steps. 09810905^单号A01〇l Page 13/Total 40 Page 1013359402-0 [0034] [0037] [0037] On September 20, 101, the shuttle replacement page provides two electrodes and a carbon nanotube For the membrane, please refer to Figure 7. The carbon tube (4) includes a plurality of carbon nanotubes extending in the same direction and connected end to end. = S3G2 domain - a metal coating on the outer surface of at least the naphthalene tube in the carbon nanotube film. Preferably, the carbon nanotubes in the nanotubes are formed with a metal coating. Please refer to _9. In the present embodiment, the metal coating layer is a 5Q nanometer thick layer. The carbon nanotube film is treated with an organic solvent to shrink the carbon nanotube-like structure. After the carbon nanotube film is treated by an organic solvent, the outer surface area is reduced, and the heat resistance is improved. In this implementation, the carbon nanotube is treated with an organic solvent to form a straight H wire. 34 micron Na H line structure. Of course, the carbon nanotube film can also be mechanically twisted to reduce the outer surface area, and the organic solvent is reversed after the mechanical force is reversed, or the carbon nanotube is The film is subjected to an organic solvent treatment and then mechanically twisted.

步驟S304,給該奈米碳管線狀結構於真空中通電使該奈 米碳管線狀結構加熱至第一溫度,使該至少一個奈米碳 營之外表面之金屬包覆層熔融並與奈米碳管中之碳原子 反應,於該奈米碳管外表面形成複數金屬碳化物顆粒。 β亥第一溫度為該金屬包覆層與奈米破管之反應溫度。在 本實施例中,該第一溫度為16〇〇1(,加熱電壓於1〇2〇伏Step S304, energizing the nanocarbon line-like structure in a vacuum to heat the nanocarbon line-like structure to a first temperature, so that the metal coating on the outer surface of the at least one carbon carbon camp is melted and reacted with the nanometer. The carbon atoms in the carbon tube react to form a plurality of metal carbide particles on the outer surface of the carbon nanotube. The first temperature of β Hai is the reaction temperature of the metal coating layer and the nano tube. In this embodiment, the first temperature is 16〇〇1 (the heating voltage is 1〇2〇)

特之間。請參閱圖11,擁有複數金屬碳化物顆粒之奈米 碳管線狀結構之直徑或線徑有所減小,緻密度增大。而 奈米碳管線狀結構直徑或線徑之減小,能夠增大其場增 09810905#單編號Α0101 第14頁/共40頁 1013359402-0 λ因數’從而增_奈米碳管·結構之場發射效果„ 清參閱圖12至圖14,該金屬碳化物顆粒之粒徑範圍位於1 奈米〜10G奈米之間’分佈於該奈米碳管線狀結構中之每 個奈米碳官之外表面絲接於該 奈米碳管之外壁。分 佈於同—奈米碳管外表面之金屬碳化物顆粒之間還具有i 奈米〜1GG奈来之間距’同時’ #該金屬碳化物顆粒為碳 化給時’其以面心立方晶格之晶體形式存在。 _] #驟S3G5,給該奈米碳管線狀結構於真空中通.電使該奈 碳管線狀結構加熱至第二溫度,使該奈米碳管線^ 構斷裂,該奈米碳管線狀結構於其斷裂之—端形成一尖 端。在本實施例中,使該奈米碳管線狀結構發生斷裂之 第二溫度於2136K以上,加熱電壓於2〇伏特以上β請來閱 圖15至圖17,該奈米碳管線狀結構熔斷後於其斷裂處具 有—尖端,該尖端之之線徑遠小於該奈米碳管線狀結構 之線徑,進一步提升了該奈来碳管線狀結構之場發射性 月6 〇 » 相對於本發明第二實施例中之奈米碳管複合材料之製備 方法’本發明實施例中之奈米碳管結構採用—奈米碳管 拉膜。該奈米碳管拉膜中之多數奈米碳管於該奈米碳管 拉骐之法線方向重疊之比較少,且不同奈米碳管具有一 疋間隙,故該金屬包覆層更容易形成於該奈米碳管拉膜 中之每一個奈米碳管之外表面。從而能夠使該金屬碳化 物顆叛均勻分佈於該奈米碳管結構表面。 3由该奈米碳管複合材料之製備方法所製備之奈米碳管複 咖⑽一單_ 料,其包括—奈米碳管結構及形成於該奈米碳管結 1 第15頁/共40頁 1013359402-0 1377172 101年09月20日梭正替換頁 構表面之複數金屬碳化物顆粒。該金屬碳化物顆粒可形 成於該奈米碳管結構之部分表面或全部表面上,具體地 ’該金屬可分佈於該奈米碳管結構中複數奈米碳管之外 表面上,也可分饰於該奈米碳管結構之外表面。優選地 ’該金屬碳化物顆粒均句分散於該奈米碳管結構或該奈 米碳管結構中之每個奈米碳管之外表面。該金屬碳化物 顆粒之粒徑範圍位於1奈米]〇〇奈米之間,分佈於該奈米 碳管·線狀結構中之每-個奈米碳管之外表面且錢於該 奈米碳管之外壁。分佈於同一奈米破管外表面之金屬碳 4 化物顆粒之間具有丨奈米〜刚奈米之間距。當該金屬碳化 物顆粒為碳化铪時’其以面心立方晶格之晶體形式存在 〇 [_該奈純管結構包括奈米碳―、奈米碳管線狀結構、 奈米碳管陣列或單根奈米碳管,該奈米碳管線狀結構或 奈米碳管膜還可具有至少-尖端,該尖端為多根奈米碳 管通過凡德瓦爾力連接形成之束狀結構,於該尖端之末 端延伸出-奈米碳管且該奈米碳管被與其相鄰之奈米4 4 管通過凡德瓦爾力固定。 · 陶該奈米碳管複合材料通過於該奈米破管結構之表面形成 有複數金屬碳化物顆粒而形成,其具備耐離子轟擊之特 性。故利用該奈米後管複合材料製備之電子源能夠於低 真空穩定工作。 [_]综上所述,通秘該奈米碳管結構表㈣成複數抗離子 蟲擊之金屬碳化物顆粒,能夠使該奈米碳管複合材料之 於低真空下之壽命增加。另外,由於該金屬破化物顆粒 09810905#單編號A0101 第16頁/共40頁 1013359402-0 Γ377172 101年.09月20日修正替換頁 相互間隔一定距離並嵌接於該奈米碳管結構之表面,能 夠使該奈米碳管結構之直徑保持於較小之範圍,於應用 於電子發射源時,該奈米碳管複合材料能保持較大之場 增強因數,從而使其具有優異之場發射效果。 [0044] 該奈米碳管複合材料之製備方法,通過給該奈米碳管結 構於真空中通電即可加熱該金屬包覆層到第一溫度使該 金屬包覆層熔融,該熔融後之金屬包覆層與該奈米碳管 結構中之碳原子反應,從而於該奈米碳管結構之外表面 • 形成複敫金屬碳化物顆粒。該奈米碳管複合材料之製備 方法中之加熱方式簡單,且無需複雜之退火工藝,從而 使該奈米碳管複合材料之製備方法更簡單。本發明實施 例還提供一種由該奈米碳管複合材料之製備方法製備之 奈米碳管複合材料,該奈米碳管複合材料於該奈米碳管 結構之表面形成有多顆金屬碳化物顆粒,具備耐離子轟 擊之特性。 [0045] • 4 • 綜上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡習知本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 • [0046] 【圖式簡單說明】 圖1係本發明第一實施例奈米碳管複合材料之製備方法之 流程示意圖。 [0047] 圖2係本發明第一實施例作為奈米碳管結構之擇優取向奈 米碳管碾壓膜之掃描電鏡照片。 _1_5产單編號Α〇101 $ Π頁/共40頁 1013359402-0 1377172 101年09月20日核正替換頁 [0048] 圖3係本發明第一實施例作為奈米碳管結構之非扭轉奈米 碳管線之掃描電鏡照片。 [0049] 圖4係本發明第一實施例作為奈米碳管結構之扭轉奈米碳 管線之掃描電鏡照片。 [0050] 圖5係本發明第二實施例奈米碳管複合材料之製備方法之 流程示意圖。 [0051] 圖6係本發明第三實施例奈米碳管複合材料之製備方法之 流程不意圖。 j [0052] 圖7係本發明第三實施例奈米碳管拉膜之掃描電鏡照片。 [0053] 圖8係圖7中之奈米碳管拉膜尺規於2微米時之掃描電鏡照 片0 一 一 [0054] 圖9係圖8中之奈来碳管拉膜鍍上铪層後尺規於2微米時之 掃描電鏡照片。 [0055] 圖10係圖9中之奈米碳管拉膜經過有機溶劑處理後形成奈 米碳管線狀結構之掃描電鏡照片。 < [0056] 圖11係圖1 0中之奈米碳管線狀結構中之奈米碳管與金屬 · 包覆層反應後之掃描電鏡照片。 [0057] 圖12係圖10中之奈米碳管線狀結構之透射電鏡照片。 [0058] 圖13係圖11中之奈米碳管線狀結構之透射電鏡照片。 [0059] 圖14係圖13中之奈米碳管線狀結構中碳化釦顆粒之透射 電鏡照片。 [0060] 圖15係圖11中之奈米碳管線狀結構經過熱處理斷裂後形 1013359402-0 __5产單编號A0101 第18頁/共40頁 1377172 101年.09月20日核正替換頁 成尖端之掃描電鏡照片。 [0061] 圖16係圖15中之奈米碳管線狀結構尖端局部放大之掃描 電鏡照片》 [0062] 圖17係圖16中之尖端尺規於2微米時之掃描電鏡照片。 【主要元件符號說明】 [0063] 無Between the special. Referring to Fig. 11, the diameter or wire diameter of the nanocarbon line-like structure having a plurality of metal carbide particles is reduced, resulting in an increase in density. However, the diameter or diameter of the nanocarbon pipeline structure can be increased, and the field increase can be increased. 09810905#单号Α0101 Page 14/40 pages 1013359402-0 λ factor 'increased_nano carbon tube·structure field Emission effect „ See Figure 12 to Figure 14 for details, the metal carbide particles have a particle size ranging from 1 nm to 10 G nm, which is distributed outside each nanocarbon officer in the nanocarbon line structure. The surface is wire-bonded to the outer wall of the carbon nanotube. The metal carbide particles distributed on the outer surface of the same-nanocarbon tube also have a distance between the i nanometer and the 1GG nanoparticle. The metal carbide particles are When carbonization is given, it exists in the form of a crystal of a face-centered cubic lattice. _] #STEPS3G5, the carbon-carbon line-like structure is passed through a vacuum, and the carbon nanotube-like structure is heated to a second temperature, so that The nano carbon line structure is broken, and the nano carbon line structure forms a tip end at the end of the fracture. In the embodiment, the second temperature at which the nano carbon line structure is broken is above 2136K. The heating voltage is above 2 volts. Please refer to Figure 15 to Figure 17, the nanocarbon. After the pipeline structure is melted, it has a tip at the break, and the wire diameter of the tip is much smaller than the wire diameter of the nanocarbon pipeline structure, further enhancing the field emission of the Nylon carbon pipeline structure. Compared with the preparation method of the carbon nanotube composite material in the second embodiment of the present invention, the carbon nanotube structure in the embodiment of the present invention adopts a carbon nanotube film. The majority of the carbon nanotube film is drawn. The carbon nanotubes overlap in the normal direction of the carbon nanotube pulling, and the different carbon nanotubes have a gap, so the metal coating is more easily formed in the carbon nanotube film. The outer surface of each of the carbon nanotubes, thereby enabling the metal carbide to be uniformly distributed on the surface of the carbon nanotube structure. 3 The carbon nanotubes prepared by the preparation method of the carbon nanotube composite material Coffee (10) a single material, which includes a carbon nanotube structure and is formed on the carbon nanotube junction 1 page 15 / total 40 pages 1013359402-0 1377172 September 20, the shuttle is replacing the plural of the surface of the page Metal carbide particles. The metal carbide particles can be formed Part of the surface or the entire surface of the carbon nanotube structure, specifically, the metal may be distributed on the outer surface of the plurality of carbon nanotubes in the carbon nanotube structure, or may be decorated on the carbon nanotube structure An outer surface. Preferably, the metal carbide particles are uniformly dispersed on the outer surface of each of the carbon nanotube structures or the carbon nanotube structure. The particle size range of the metal carbide particles Located between 1 nanometer and 〇〇 nanometer, it is distributed on the outer surface of each of the carbon nanotubes in the carbon nanotube and linear structure and is deposited on the outer wall of the carbon nanotube. The metal carbon 4 compound particles on the outer surface of the rice pipe have a distance between the nanometer and the nanometer. When the metal carbide particle is tantalum carbide, it exists in the form of a crystal of the face-centered cubic lattice [_ The nai tube structure comprises a nano carbon-, a nano carbon line structure, a carbon nanotube array or a single carbon nanotube, and the nano carbon line structure or the carbon nanotube film may have at least a tip. The tip is a bundle structure formed by connecting a plurality of carbon nanotubes through a van der Waals force. A carbon nanotube is extended at the end of the tip and the carbon nanotube is fixed by a van der Waals force to the adjacent 4 4 tube. The ceramsite carbon nanotube composite is formed by forming a plurality of metal carbide particles on the surface of the nanotube structure, and has an ion bombardment resistance. Therefore, the electron source prepared by using the nano-tube composite can work stably under low vacuum. [_] In summary, the mesocarbon nanotube structure table (4) is a plurality of metal carbide particles resistant to ion bombardment, which can increase the life of the carbon nanotube composite under low vacuum. In addition, since the metal broken particles 09810905# single number A0101 page 16 / total 40 pages 1013359402-0 Γ 377172 101. September 20 modified replacement pages are spaced apart from each other and are embedded in the surface of the carbon nanotube structure The diameter of the carbon nanotube structure can be kept small, and when applied to an electron emission source, the carbon nanotube composite can maintain a large field enhancement factor, thereby enabling excellent field emission. effect. [0044] The method for preparing the carbon nanotube composite material, the metal cladding layer is heated to a first temperature to melt the metal cladding layer by energizing the carbon nanotube structure, and the molten metal layer is melted. The metal coating reacts with the carbon atoms in the carbon nanotube structure to form reticular metal carbide particles on the outer surface of the carbon nanotube structure. The preparation method of the carbon nanotube composite material has a simple heating method and does not require a complicated annealing process, thereby making the preparation method of the carbon nanotube composite material simpler. The embodiment of the invention further provides a carbon nanotube composite material prepared by the method for preparing the carbon nanotube composite material, wherein the carbon nanotube composite material forms a plurality of metal carbides on the surface of the carbon nanotube structure. The particles are resistant to ion bombardment. [0045] • In summary, the present invention has indeed met the requirements of the invention patent and has filed a patent application in accordance with the law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a flow chart showing a method of preparing a carbon nanotube composite material according to a first embodiment of the present invention. 2 is a scanning electron micrograph of a preferred orientation carbon nanotube rolled film of the first embodiment of the present invention as a carbon nanotube structure. _1_5Bill No. Α〇101 $ Π page/Total 40 pages 1013359402-0 1377172 September 20th, 2010 Nuclear replacement page [0048] FIG. 3 is a non-twisting naf of the first embodiment of the present invention as a carbon nanotube structure Scanning electron micrograph of the carbon carbon pipeline. 4 is a scanning electron micrograph of a twisted nanocarbon line as a carbon nanotube structure according to a first embodiment of the present invention. 5 is a schematic flow chart showing a method for preparing a carbon nanotube composite material according to a second embodiment of the present invention. 6 is a schematic flow chart showing a method of preparing a carbon nanotube composite material according to a third embodiment of the present invention. 7 is a scanning electron micrograph of a carbon nanotube film drawn by a third embodiment of the present invention. [0053] FIG. 8 is a scanning electron micrograph of the carbon nanotube film of FIG. 7 at 2 micrometers. [0054] FIG. 9 is a drawing of the carbon nanotube film of FIG. Scanning electron micrographs of the ruler at 2 microns. [0055] FIG. 10 is a scanning electron micrograph of a carbon nanotube-like structure formed by the carbon nanotube film of FIG. 9 after being treated with an organic solvent. [0056] FIG. 11 is a scanning electron micrograph of a reaction between a carbon nanotube in a nanocarbon line-like structure of FIG. 10 and a metal coating layer. 12 is a transmission electron micrograph of the nanocarbon line-like structure of FIG. 10. [0058] FIG. 13 is a transmission electron micrograph of the nanocarbon line structure of FIG. 14 is a transmission electron micrograph of carbonized buckle particles in the nanocarbon line-like structure of FIG. [0060] FIG. 15 is a diagram showing the nano carbon line structure of FIG. 11 after heat treatment fracture 1013359402-0 __5 production order number A0101 page 18 / total 40 page 1377172 101 years. September 20th nuclear replacement page A scanning electron micrograph of the tip. 16 is a partially enlarged scanning electron micrograph of the tip end of the nanocarbon line structure of FIG. 15. [0062] FIG. 17 is a scanning electron micrograph of the tip ruler of FIG. 16 at 2 micrometers. [Main component symbol description] [0063] None

單编號A0101 第19頁/共40頁 1013359402-0Single No. A0101 Page 19 of 40 1013359402-0

Claims (1)

1377172 t 101年09月20日核正替换頁 七、申請專利範圍: 1 . 一種奈米碳管複合材料之製備方法,其包括以下步驟: 提供一奈米碳管結構,該奈米碳管結構包括至少一奈米碳 管; 形成一金屬包覆層於該奈米碳管結構中至少一個奈米碳管 之外表面; 給該奈米碳管結構於真空中通電,使該奈米碳管外表面之 金屬包覆層熔融並與該奈米碳管中之碳原子反應,於該奈 米碳管外表面形成複數金屬碳化物顆粒,在该步骤中,該 < 奈米碳管結構於真空中通電後被加熱至第一溫度,所述金 屬包覆層在該第一溫度下熔融,該第一溫度大於或等於該 金屬包覆層與奈米碳管之反應溫度。 2.如申請專利範圍第1項所述之奈米碳管複合材料之製備方 法,其中,該奈米碳管結構於真空中通電之方式為:將該 奈米碳管結構固定並電連接於兩個電極之間,置於真空中 ,並於該兩電極之間施加電壓。 3 .如申請專利範圍第1項所述之奈米碳管複合材料之製備方 | 法,其中,該奈米碳管結構包括奈米碳管膜、奈米碳管線 . c> 狀結構、奈米碳管陣列或單根奈米碳管。 4 .如申請專利範圍第1項所述之奈米碳管複合材料之製備方 法,其中,該金屬包覆層之材料為銓、鈕、鈦及锆中之任 意一種或多種。 5 .如申請專利範圍第1項所述之奈米碳管複合材料之製備方 法,其中,該金屬包覆層之厚度於1奈米~100奈米之間。 6 .如申請專利範圍第1項所述之奈米碳管複合材料之製備方 09810905#單编號 A〇101 第20頁/共40頁 1013359402-0 13771721377172 t September 20, 101 Nuclear replacement page VII. Patent application scope: 1. A method for preparing a carbon nanotube composite material, comprising the steps of: providing a carbon nanotube structure, the carbon nanotube structure Including at least one carbon nanotube; forming a metal coating on at least one outer surface of the carbon nanotube in the carbon nanotube structure; energizing the carbon nanotube structure in a vacuum to make the carbon nanotube The metal coating of the outer surface is melted and reacts with carbon atoms in the carbon nanotube to form a plurality of metal carbide particles on the outer surface of the carbon nanotube. In this step, the carbon nanotube structure is After being energized in a vacuum, it is heated to a first temperature, and the metal coating layer is melted at the first temperature, and the first temperature is greater than or equal to a reaction temperature of the metal coating layer and the carbon nanotube. 2. The method for preparing a carbon nanotube composite material according to claim 1, wherein the carbon nanotube structure is energized in a vacuum by fixing and electrically connecting the carbon nanotube structure to Between the two electrodes, placed in a vacuum and a voltage is applied between the two electrodes. 3. The method for preparing a carbon nanotube composite material according to claim 1, wherein the carbon nanotube structure comprises a carbon nanotube film, a carbon nanotube line, a c> A carbon nanotube array or a single carbon nanotube. 4. The method of preparing a carbon nanotube composite material according to claim 1, wherein the material of the metal coating layer is any one or more of ruthenium, knob, titanium and zirconium. 5. The method of preparing a carbon nanotube composite according to claim 1, wherein the metal coating has a thickness of between 1 nm and 100 nm. 6. The preparation method of the carbon nanotube composite material as described in claim 1 of the patent scope 09810905#单号 A〇101 Page 20 of 40 1013359402-0 1377172 101年.09月20日核正替换頁 法,其中,該金屬包覆層之形成方法包括磁控濺射法或電 子束蒸發法。 7 . 一種奈米碳管複合材料之製備方法,其包括以下步驟: 提供一奈米碳管線狀結構,該奈米碳管線狀結構包括沿其 軸向延伸之複數奈米碳管; 形成一金屬包覆層於該奈米碳管線狀結構中至少一個奈米 碳管之外表面; 給該奈米碳管線狀結構於真空中通電使該奈米碳管線狀結 構加熱至第一溫度,使該奈米碳管外表面之金屬包覆層熔 融並與該奈米碳管中之碳原子反應,於該奈米碳管外表面 形成複數金屬碳化物顆粒; 給該奈米碳管線狀結構於真空中通電使該奈米碳管線狀結 構加熱至第二溫度,使該奈米碳管線狀結構斷裂並於斷裂 處形成兩尖端,在该步骤中,該第二溫度大於該第一溫度 8 . 一種奈米碳管複合材料之製備方法,其包括以下步驟: 提供一奈米碳管拉膜,該奈米碳管拉膜包括沿同一方向延 伸且通過凡德瓦爾力首尾相連之複數奈米碳管; 形成一金屬包覆層於該奈米碳管拉膜中至少一個奈米碳管 之外表面; 用有機溶劑處理該奈米碳管拉膜,使其收縮成一奈米碳管 線狀結構; 給該奈米碳管線狀結構於真空中通電使該奈米碳管線狀結 構加熱至第一溫度,使該至少一個奈米碳管之外表面之金 屬包覆層熔融並與奈米碳管中之碳原子反應,於該奈米碳 管外表面形成複數金屬碳化物顆粒; 1013359402-0 0981_5多單编號A〇101 第頁/共40頁 1377172 101年09月20日修正替换頁 給該奈米碳管線狀结構於真空中通電使該奈米碳管線狀結 構加熱至第二溫度,使該奈米碳管線狀結構斷裂並於斷裂 處形成兩尖端,在该步骤中,該第二溫度大於該第一溫度 9 . 一種奈米碳管複合材料,其改進在於,該奈米碳管複合材 料包括一奈米碳管结構,該奈米碳管結構表面形成有複數 間隔之金屬碳化物顆粒,相鄰兩個金屬碳化物顆粒之間具 有1奈米〜100奈米之間隙。101. The method of forming a metal cladding layer includes a magnetron sputtering method or an electron beam evaporation method. 7. A method of preparing a carbon nanotube composite material, comprising the steps of: providing a nanocarbon line-like structure comprising a plurality of carbon nanotubes extending along an axial direction thereof; forming a metal Coating a surface of the at least one carbon nanotube in the nanocarbon line-like structure; energizing the nanocarbon line-like structure in a vacuum to heat the nanocarbon line-like structure to a first temperature, a metal coating on the outer surface of the carbon nanotube is melted and reacts with carbon atoms in the carbon nanotube to form a plurality of metal carbide particles on the outer surface of the carbon nanotube; the carbon nanotube-like structure is vacuumed The medium energization heats the nanocarbon line-like structure to a second temperature, causing the nanocarbon line-like structure to break and form two tips at the fracture, and in the step, the second temperature is greater than the first temperature 8 . A method for preparing a carbon nanotube composite material, comprising the steps of: providing a carbon nanotube film, the carbon nanotube film comprising a plurality of carbon nanotubes extending in the same direction and connected end to end by van der Waals force Forming a metal coating on the outer surface of at least one of the carbon nanotubes in the carbon nanotube film; treating the carbon nanotube film with an organic solvent to shrink into a nano carbon line structure; The nanocarbon line-like structure is energized in a vacuum to heat the nanocarbon line-like structure to a first temperature, so that the metal coating on the outer surface of the at least one carbon nanotube is melted and formed in the carbon nanotube Carbon atom reaction, forming a plurality of metal carbide particles on the outer surface of the carbon nanotube; 1013359402-0 0981_5 more than a single number A〇101 page / a total of 40 pages 1377172 101 September 20 revised replacement page to the nano The carbon line-like structure is energized in a vacuum to heat the nanocarbon line-like structure to a second temperature, causing the nanocarbon line-like structure to break and form two tips at the fracture. In this step, the second temperature is greater than the The first temperature is 9. A carbon nanotube composite material, the improvement is that the carbon nanotube composite material comprises a carbon nanotube structure, and the surface of the carbon nanotube structure is formed with a plurality of spaced metal carbide particles, the phase Neighbor two Attachment between the carbide particles have a gap of 1 nm ~ 100 nm. 10 . —種奈米碳管複合材料,其改進在於,該奈米碳管複合材 料包括一奈米碳管结構,該奈米碳管結構中至少一奈米碳 管之外表面形成有複數間隔之金屬碳化物顆粒,相鄰兩個 金屬碳化物顆粒之間具有1奈米〜100奈米之間隙。 11 .如申請專利範圍第10項所述之奈米碳管複合材料,其中, 該奈米碳管結構包括奈米碳管膜、奈米碳管線狀結構、奈 米碳管陣列或單根奈米碳管。 12 .如申請專利範圍第11項所述之奈米碳管複合材料,其中, 該奈米碳管線狀結構或奈米碳管膜具有至少一尖端。 13 .如申請專利範圍第10項所述之奈米碳管複合材料,其中, 該金屬碳化物材料為碳化姶、碳化鈕、碳化鈦及碳化錯中 之任意一種或多種。 14 .如申請專利範圍第13項所述之奈米碳管複合材料,其中, 該金屬碳化物顆粒為以面心立方晶格晶體結構存在之碳化 給。 15 .如申請專利範圍第13項所述之奈米碳管複合材料,其中, 該金屬碳化物顆粒嵌接於該奈米碳管之外壁。 16 .如申請專利範圍第15項所述之奈米碳管複合材料,其中, __5癸單编號A0101 $ 22頁/共4〇頁 1013359402-0 1.377172 17 . 18 . 101年.09月20日慘正替換頁 該金屬碳化物顆粒之粒徑範圍位於1奈米〜1〇〇奈米之間。 如申請專利範圍第15項所述之奈米碳管複合材料,其中, 於同一奈米碳管表面上,相鄰兩個金屬碳化物顆粒間隔設 置。 一種奈米碳管複合材料,其改進在於,其包括一奈米碳管 ,該奈米碳管表面形成有複數間隔之金屬碳化物顆粒,相 鄰兩個金屬碳化物顆粒之間具有1奈米~100奈米之間隙。 09810905^^^^ A0101 第23頁/共40頁 1013359402-010 . The nano carbon tube composite material is improved in that the carbon nanotube composite material comprises a carbon nanotube structure, and at least one carbon nanotube outer surface of the carbon nanotube structure is formed with a plurality of intervals The metal carbide particles have a gap of between 1 nm and 100 nm between two adjacent metal carbide particles. 11. The carbon nanotube composite material according to claim 10, wherein the carbon nanotube structure comprises a carbon nanotube membrane, a nanocarbon pipeline structure, a carbon nanotube array or a single root. Carbon tube. 12. The carbon nanotube composite of claim 11, wherein the nanocarbon line structure or the carbon nanotube film has at least one tip. The carbon nanotube composite material according to claim 10, wherein the metal carbide material is any one or more of niobium carbide, carbonized niobium, titanium carbide, and carbonization. The carbon nanotube composite material according to claim 13, wherein the metal carbide particles are carbonized in the presence of a face-centered cubic lattice crystal structure. The carbon nanotube composite material according to claim 13, wherein the metal carbide particles are embedded in the outer wall of the carbon nanotube. 16. The carbon nanotube composite material according to claim 15 of the patent application, wherein __5 癸 single number A0101 $ 22 pages / total 4 pages 1013359402-0 1.377172 17 . 18 . 101. September 20 Mistaken replacement page The metal carbide particles have a particle size ranging from 1 nm to 1 nm. The carbon nanotube composite material according to claim 15, wherein two adjacent metal carbide particles are spaced apart on the surface of the same carbon nanotube. A carbon nanotube composite material, which is improved in that it comprises a carbon nanotube having a plurality of spaced apart metal carbide particles formed on the surface thereof, and 1 nm between two adjacent metal carbide particles ~100 nm gap. 09810905^^^^ A0101 Page 23 of 40 1013359402-0
TW98109055A 2009-03-20 2009-03-20 Carbon nanotube composite material and method for making the same TWI377172B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98109055A TWI377172B (en) 2009-03-20 2009-03-20 Carbon nanotube composite material and method for making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98109055A TWI377172B (en) 2009-03-20 2009-03-20 Carbon nanotube composite material and method for making the same

Publications (2)

Publication Number Publication Date
TW201034939A TW201034939A (en) 2010-10-01
TWI377172B true TWI377172B (en) 2012-11-21

Family

ID=44855731

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98109055A TWI377172B (en) 2009-03-20 2009-03-20 Carbon nanotube composite material and method for making the same

Country Status (1)

Country Link
TW (1) TWI377172B (en)

Also Published As

Publication number Publication date
TW201034939A (en) 2010-10-01

Similar Documents

Publication Publication Date Title
CN101823688B (en) Carbon nano-tube composite material and preparation method thereof
Bellucci Carbon nanotubes: physics and applications
JP5336419B2 (en) Carbon nanotube film, method for producing the same, and light emitting device
Dervishi et al. Carbon nanotubes: synthesis, properties, and applications
Santandrea et al. Field emission from single and few-layer graphene flakes
US7781950B2 (en) Field emission element having carbon nanotube and manufacturing method thereof
JP4577385B2 (en) Conductor and manufacturing method thereof
Wei et al. Vacuum-breakdown-induced needle-shaped ends of multiwalled carbon nanotube yarns and their field emission applications
KR20090033138A (en) Planar heating source
Li et al. Field emission from carbon nanotube bundle arrays grown on self-aligned ZnO nanorods
CN103730302B (en) Field emitting electronic source and field emission apparatus
WO2010123007A1 (en) Cold-cathode field-emission electron source including rare-earth hexaboride
CN103730305B (en) The preparation method of field emitting electronic source
CN101442848A (en) Method for locally heating object
TWI377172B (en) Carbon nanotube composite material and method for making the same
Wei et al. Breaking single-walled carbon nanotube bundles by Joule heating
TWI362684B (en) Method of making field emission electron source
TWI309055B (en) Method for making emission source having carbon nanotube
TWI362677B (en) Method for making field emission electron source
TWI309428B (en) Emission source having carbon nanotube
CN103730303A (en) Field emission electron source array and field emission device
TW202105430A (en) Field emission neutralizer
Zhao et al. Light emission and degradation of single-walled carbon nanotube filament
TW201043569A (en) Carbon nanotube wire structure and method for making the same
Asaka Field Electron Emission from Heat-Treated Nanowhiskers C60 Fullerene