TWI386966B - Field emission display - Google Patents

Field emission display Download PDF

Info

Publication number
TWI386966B
TWI386966B TW97113309A TW97113309A TWI386966B TW I386966 B TWI386966 B TW I386966B TW 97113309 A TW97113309 A TW 97113309A TW 97113309 A TW97113309 A TW 97113309A TW I386966 B TWI386966 B TW I386966B
Authority
TW
Taiwan
Prior art keywords
electrode
field emission
emission display
cathode
electrodes
Prior art date
Application number
TW97113309A
Other languages
Chinese (zh)
Other versions
TW200943359A (en
Inventor
Peng Liu
Shou-Shan Fan
Liang Liu
Kai-Li Jiang
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW97113309A priority Critical patent/TWI386966B/en
Publication of TW200943359A publication Critical patent/TW200943359A/en
Application granted granted Critical
Publication of TWI386966B publication Critical patent/TWI386966B/en

Links

Description

場發射顯示器 Field emission display

本發明涉及一種場發射顯示器,尤其涉及一種大面積平面場發射顯示器。 The present invention relates to a field emission display, and more particularly to a large area planar field emission display.

奈米碳管(Carbon Nanotube,CNT)係一種新型碳材料,由日本研究人員Iijima於1991年發現,請參見"Helical Microtubules of Graphitic Carbon",S.Iijima,Nature,vol.354,p56(1991)。奈米碳管具有極大的長徑比(其長度於微米量級以上,直徑只有幾個奈米或幾十個奈米),具有良好的導電導熱性能,並且還有很好的機械強度和良好的化學穩定性,這些特性使得奈米碳管成為一種優良的場發射材料。因此,奈米碳管於場發射裝置中的應用成為目前奈米科技領域的一個研究熱點。 Carbon Nanotube (CNT) is a new type of carbon material discovered by Japanese researcher Iijima in 1991. See "Helical Microtubules of Graphitic Carbon", S.Iijima, Nature, vol. 354, p56 (1991) . The carbon nanotubes have a very large aspect ratio (the length of which is above the order of micrometers and the diameter is only a few nanometers or tens of nanometers), have good electrical and thermal conductivity, and have good mechanical strength and good The chemical stability of these properties makes the carbon nanotubes an excellent field emission material. Therefore, the application of nano carbon tubes in field emission devices has become a research hotspot in the field of nanotechnology.

場發射顯示器係繼陰極射線管(Cathode Ray Tube,CRT)顯示器、液晶顯示器、電漿顯示器之後,最具發展潛力的下一代新興顯示器。場發射顯示器與其他顯示器相比,具有更高的對比度、更廣的視角、更高的亮度、更低的能量消耗、更短的回應時間及更寬的工作溫度等優點,可適合作照明光源、平板顯示器及室外用的全色大螢幕顯示幕及各種廣告顯示面板等。 The field emission display is the next generation of emerging display with the most potential after the cathode ray tube (CRT) display, liquid crystal display and plasma display. Compared with other displays, field emission displays have higher contrast ratio, wider viewing angle, higher brightness, lower energy consumption, shorter response time and wider operating temperature, which are suitable for illumination sources. , flat panel display and full-color large screen display screen for outdoor use, and various advertising display panels.

先前技術提供一種場發射顯示器100。請參考圖1及圖2,該場發射顯示器100包括:一透明基板110,複數個支撐體140,一絕緣基底130,玻璃基板110與絕緣基底130由 複數個支撐體140間隔設置且真空封裝於一起。玻璃基板110面對絕緣基底130的表面形成有一金屬導電層116,一螢光粉層114,一濾光膜112。於絕緣基底130面對玻璃基板110的表面形成有複數個交叉設置的行電極134與列電極132。所述的複數個行電極134與複數個列電極132分別平行且等間隔的交叉設置於絕緣基底130表面,行電極134與列電極132交叉處設有絕緣層136。每兩個相鄰的行電極134與每兩個相鄰的列電極132形成一網格138,且每個網格138定位一個電子發射單元120。每一個電子發射單元120由一個陰極電極125、一個陽極電極126及覆蓋陰極電極125與陽極電極126的陰極發射體127組成。所述陰極電極125與陰極電極125對應的列電極132電連接,陽極電極126與陽極電極126對應的行電極134電連接,於所述陰極發射體127的中央形成有一個電子發射間隙124。所述陰極發射體127為一導電薄膜。 The prior art provides a field emission display 100. Referring to FIG. 1 and FIG. 2 , the field emission display 100 includes a transparent substrate 110 , a plurality of support bodies 140 , an insulating substrate 130 , and the glass substrate 110 and the insulating substrate 130 . A plurality of supports 140 are spaced apart and vacuum-packed together. A surface of the glass substrate 110 facing the insulating substrate 130 is formed with a metal conductive layer 116, a phosphor powder layer 114, and a filter film 112. A plurality of row electrodes 134 and column electrodes 132 which are disposed to intersect each other are formed on the surface of the insulating substrate 130 facing the glass substrate 110. The plurality of row electrodes 134 and the plurality of column electrodes 132 are respectively disposed in parallel and equally spaced on the surface of the insulating substrate 130, and the insulating layer 136 is disposed at the intersection of the row electrode 134 and the column electrode 132. Each two adjacent row electrodes 134 and each two adjacent column electrodes 132 form a grid 138, and each grid 138 positions an electron-emitting unit 120. Each of the electron-emitting units 120 is composed of a cathode electrode 125, an anode electrode 126, and a cathode emitter 127 covering the cathode electrode 125 and the anode electrode 126. The cathode electrode 125 is electrically connected to the column electrode 132 corresponding to the cathode electrode 125, and the anode electrode 126 is electrically connected to the row electrode 134 corresponding to the anode electrode 126. An electron emission gap 124 is formed in the center of the cathode emitter 127. The cathode emitter 127 is a conductive film.

上述場發射顯示器於工作時,電子發射單元120的陰極電極125與陽極電極126之間的電壓由與之對應電連接的列電極132與行電極134控制,由於電子發射單元120的兩個電極之間的陰極發射體127中電子發射間隙124的寬度為奈米級,基於量子隧道效應的原理,電子發射間隙124於陰極電極125與陽極電積126之間的電壓作用下形成隧道電流(請參見,表面傳導電子發射顯示技術進展,液晶與顯示,V21,P226-231(2006))。於玻璃基板110表面的金屬導電層116上加一高電壓,使得金屬導電層116與絕緣基底130之間形成一強電場,隧道電流中的 電子於該強電場的作用下轟擊到玻璃基板110表面的螢光層114上,從而實現發光顯示。 When the field emission display is in operation, the voltage between the cathode electrode 125 and the anode electrode 126 of the electron emission unit 120 is controlled by the column electrode 132 and the row electrode 134 electrically connected thereto, due to the two electrodes of the electron emission unit 120. The width of the electron emission gap 124 in the cathode emitter 127 is nanometer. Based on the principle of quantum tunneling, the electron emission gap 124 forms a tunnel current under the voltage between the cathode electrode 125 and the anode electrode 126 (see , Surface conduction electron emission display technology advances, liquid crystal and display, V21, P226-231 (2006)). A high voltage is applied to the metal conductive layer 116 on the surface of the glass substrate 110, so that a strong electric field is formed between the metal conductive layer 116 and the insulating substrate 130. The electrons are bombarded onto the phosphor layer 114 on the surface of the glass substrate 110 by the strong electric field, thereby realizing light-emitting display.

上述場發射顯示器100存於以下缺點:第一,陰極發射體127的發射間隙124的寬度非常小,造成所形成的隧道電流的電流強度很大,故,該場發射顯示器的能耗很大。第二,該場發射顯示器的螢光粉層114設置於玻璃基板110表面,由於發射間隙124中隧道電流的電流強度很大,故,隧道電流中的電子於透明基板110表面的金屬導電層116與絕緣基底130之間的電場的作用下,僅有少量的電子轟擊到透明基板110的螢光粉層114上,導致了螢光粉層114發光效率低。第三,由於製備工藝所限制,於採用包含金屬化合物的導電薄膜作為陰極發射體127製作的大面積場發射電子器件100中,各個電子發射間隙124的大小及位置不一,從而導致場發射顯示器的電子發射的整體均勻性較差。 The above field emission display 100 has the following disadvantages: First, the width of the emission gap 124 of the cathode emitter 127 is very small, resulting in a large current intensity of the tunnel current formed, so that the field emission display consumes a large amount of energy. Second, the phosphor layer 114 of the field emission display is disposed on the surface of the glass substrate 110. Since the current intensity of the tunnel current in the emission gap 124 is large, the electron conduction layer 116 of the electrons in the tunnel current on the surface of the transparent substrate 110 Under the action of the electric field between the insulating substrate 130, only a small amount of electrons are bombarded onto the phosphor layer 114 of the transparent substrate 110, resulting in low luminous efficiency of the phosphor layer 114. Third, due to limitations in the fabrication process, in the large-area field emission electronic device 100 fabricated using the conductive film containing the metal compound as the cathode emitter 127, the size and position of the respective electron emission gaps 124 are different, resulting in a field emission display. The overall uniformity of the electron emission is poor.

有鑒於此,提供一種能耗低、螢光粉層發光效率高且電子發射性能穩定的大面積場發射顯示器實為必要。 In view of this, it is necessary to provide a large-area field emission display with low energy consumption, high luminous efficiency of the phosphor powder layer, and stable electron emission performance.

一種場發射顯示器,其包括:一透明基板;複數個支撐體;一絕緣基底通過複數個支撐體與透明基板相對間隔設置;複數個行電極與列電極分別平行且等間隔設置於該絕緣基底上,該複數個行電極與複數個列電極相互交叉設置,每兩個相鄰的行電極與每兩個相鄰的列電極交叉構成一個網格,且行電極與列電極之間電絕緣;複數個像素單元,每個像素單元對應一個網格設置,每個像 素單元包括一螢光粉層,間隔設置的一個陽極電極與一個陰極電極,及一個陰極發射體,該陽極電極和陰極電極分別與相應行電極與列電極電連接,該陰極發射體一端與相應陰極電極電連接;其中,所述螢光粉層設置於相應陽極電極表面。 A field emission display comprising: a transparent substrate; a plurality of supporting bodies; an insulating substrate disposed opposite to the transparent substrate by a plurality of supporting bodies; a plurality of row electrodes and column electrodes are respectively disposed in parallel and equally spaced on the insulating substrate The plurality of row electrodes and the plurality of column electrodes are disposed to intersect each other, and each two adjacent row electrodes and each two adjacent column electrodes intersect to form a grid, and the row electrodes and the column electrodes are electrically insulated; Pixel unit, each pixel unit corresponding to a grid setting, each image The element unit comprises a phosphor layer, an anode electrode and a cathode electrode, and a cathode emitter, wherein the anode electrode and the cathode electrode are respectively electrically connected to the corresponding row electrode and the column electrode, and the cathode emitter has one end and corresponding The cathode electrode is electrically connected; wherein the phosphor powder layer is disposed on a surface of the corresponding anode electrode.

相較於先前技術,所述的場發射顯示器,由於螢光粉層設置於陽極電極表面,陽極電極與陰極電極間隔設置於絕緣基底表面,使得陰極發射體發射的電子大部分準確轟擊到陽極表面的螢光粉層上,從而大大提高了螢光粉層的發光效率。 Compared with the prior art, the field emission display has a phosphor powder layer disposed on the surface of the anode electrode, and the anode electrode and the cathode electrode are spaced apart from the surface of the insulating substrate, so that most of the electrons emitted by the cathode emitter are bombarded to the anode surface. The phosphor layer is on the layer, thereby greatly improving the luminous efficiency of the phosphor layer.

以下將結合附圖詳細說明本技術方案的場發射顯示器。 The field emission display of the present technical solution will be described in detail below with reference to the accompanying drawings.

請參閱圖3及圖4,本技術方案實施例提供一種場發射顯示器200,其包括:一透明基板210;複數個支撐體240;一絕緣基底230通過所述複數個支撐體240與透明基板210相對且真空間隔設置;複數個像素單元220設置於該絕緣基底230上;及複數個行電極234與複數個列電極232交叉設置於該絕緣基底230面對透明基板210的表面。該複數個行電極234相互平行且每兩個相鄰的行電極234之間的間隔相等,該複數個列電極232相互平行且每兩個相鄰的列電極232之間的間隔相等,於行電極234與列電極232交叉處由一絕緣層236隔離,以防止短路。每兩個相鄰的行電極234與每兩個相鄰的列電極232形成一網格結構238,且每個網格結構238定位一個像素單元220。 Referring to FIG. 3 and FIG. 4 , an embodiment of the present disclosure provides a field emission display 200 including: a transparent substrate 210; a plurality of supporting bodies 240; an insulating substrate 230 passing through the plurality of supporting bodies 240 and the transparent substrate 210 The plurality of pixel units 220 are disposed on the insulating substrate 230; and the plurality of row electrodes 234 and the plurality of column electrodes 232 are disposed on the surface of the insulating substrate 230 facing the transparent substrate 210. The plurality of row electrodes 234 are parallel to each other and the interval between each two adjacent row electrodes 234 is equal. The plurality of column electrodes 232 are parallel to each other and the interval between each two adjacent column electrodes 232 is equal. The electrode 234 is separated from the column electrode 232 by an insulating layer 236 to prevent short circuit. Each two adjacent row electrodes 234 and each two adjacent column electrodes 232 form a grid structure 238, and each grid structure 238 positions one pixel unit 220.

所述的複數個像素單元220對應設置於上述網格結構238中,且每個網格結構238中設置一個像素單元220,該複數個像素單元220於絕緣基板上形成顯示矩陣。每個像素單元220包括:一陽極電極226與一螢光粉層228,一陰極電極225,及一陰極發射體227。該陽極電極226與陰極電極225對應且間隔設置,且陽極電極226與陰極電極225分別與相應行電極234與列電極232電連接。該螢光粉層228覆蓋於相應陽極電極226表面。該陰極發射體227設置於陽極電極226與陰極電極225之間,且,陰極發射體227一端與所述陰極電極225電連接,另一端指向相應陽極電極226。該陰極發射體227與絕緣基底230間隔設置或設置於絕緣基底230上。為了獲得更均勻的電子發射性能,本實施例中,同一行的像素單元220中的陽極電極226與同一行電極234電連接,同一列的像素單元220中的陰極電極225與同一列電極232電連接。 The plurality of pixel units 220 are correspondingly disposed in the grid structure 238, and each of the grid structures 238 is provided with a pixel unit 220, and the plurality of pixel units 220 form a display matrix on the insulating substrate. Each pixel unit 220 includes an anode electrode 226 and a phosphor layer 228, a cathode electrode 225, and a cathode emitter 227. The anode electrode 226 is corresponding to and spaced apart from the cathode electrode 225, and the anode electrode 226 and the cathode electrode 225 are electrically connected to the row electrode 234 and the column electrode 232, respectively. The phosphor layer 228 covers the surface of the corresponding anode electrode 226. The cathode emitter 227 is disposed between the anode electrode 226 and the cathode electrode 225, and one end of the cathode emitter 227 is electrically connected to the cathode electrode 225, and the other end is directed to the corresponding anode electrode 226. The cathode emitter 227 is spaced apart from or disposed on the insulating substrate 230. In order to obtain more uniform electron emission performance, in the embodiment, the anode electrode 226 in the pixel unit 220 of the same row is electrically connected to the same row electrode 234, and the cathode electrode 225 and the same column electrode 232 in the pixel unit 220 of the same column are electrically connected. connection.

所述的透明基板210採用透明材料如玻璃等構成,並製成平板形狀。該透明基板210的大小與厚度不限,本技術領域的技術人員可以根據需要進行選擇。 The transparent substrate 210 is made of a transparent material such as glass or the like and is formed into a flat plate shape. The size and thickness of the transparent substrate 210 are not limited, and those skilled in the art can select as needed.

所述的支撐體240為長方體絕緣材料,如塑膠、玻璃、陶瓷等。支撐體240的厚度應大於行電極234及列電極232的厚度,當透明玻璃基板210的面積增大時,可以於絕緣基底230上平行等間隔設置複數個支撐體240。本實施例中,支撐體240的優選厚度為10微米~2毫米,寬度為30微米~100微米。 The support body 240 is a rectangular parallelepiped insulating material such as plastic, glass, ceramic, or the like. The thickness of the support body 240 should be greater than the thickness of the row electrode 234 and the column electrode 232. When the area of the transparent glass substrate 210 is increased, a plurality of support bodies 240 may be disposed on the insulating substrate 230 at equal intervals. In this embodiment, the support body 240 preferably has a thickness of 10 micrometers to 2 millimeters and a width of 30 micrometers to 100 micrometers.

所述的絕緣基底230為一絕緣基板,如玻璃基板,塑膠基 板等。絕緣基底230大小與厚度不限,本領域技術人員可以根據實際需要進行選擇。本實施例中,絕緣基底230優選為一玻璃基板,其厚度為大於1毫米,邊長大於1厘米。 The insulating substrate 230 is an insulating substrate, such as a glass substrate, and a plastic base. Board and so on. The size and thickness of the insulating substrate 230 are not limited, and those skilled in the art can select according to actual needs. In this embodiment, the insulating substrate 230 is preferably a glass substrate having a thickness of more than 1 mm and a side length of more than 1 cm.

所述的複數個行電極234與複數個列電極232為一導電體,如金屬層等。本實施例中,該複數個行電極234與複數個列電極232優選為採用導電漿料印製的平面導電體,且該複數個行電極234與複數個列電極232的行距和列距為300微米~500微米。該行電極234與列電極232的寬度為30微米~100微米,厚度為10微米~50微米。本實施例中,該行電極234與列電極232的交叉角度為10度到90度,優選為90度。本實施例中,通過絲網印刷法將導電漿料印製於絕緣基底230上製備行電極234與列電極232。該導電漿料的成分包括金屬粉、低熔點玻璃粉和黏結劑。其中,該金屬粉優選為銀粉,該黏結劑優選為松油醇或乙基纖維素。該導電漿料中,金屬粉的重量比為50~90%,低熔點玻璃粉的重量比為2~10%,黏結劑的重量比為10~40%。 The plurality of row electrodes 234 and the plurality of column electrodes 232 are an electrical conductor such as a metal layer or the like. In this embodiment, the plurality of row electrodes 234 and the plurality of column electrodes 232 are preferably planar conductors printed with a conductive paste, and the row spacing and the column spacing of the plurality of row electrodes 234 and the plurality of column electrodes 232 are 300. Micron ~ 500 microns. The row electrode 234 and the column electrode 232 have a width of 30 micrometers to 100 micrometers and a thickness of 10 micrometers to 50 micrometers. In this embodiment, the intersection angle of the row electrode 234 and the column electrode 232 is 10 degrees to 90 degrees, preferably 90 degrees. In this embodiment, the row electrode 234 and the column electrode 232 are prepared by printing a conductive paste on the insulating substrate 230 by a screen printing method. The composition of the conductive paste includes metal powder, low melting point glass powder, and a binder. Among them, the metal powder is preferably silver powder, and the binder is preferably terpineol or ethyl cellulose. In the conductive paste, the weight ratio of the metal powder is 50 to 90%, the weight ratio of the low melting point glass powder is 2 to 10%, and the weight ratio of the binder is 10 to 40%.

所述的陰極電極225與陽極電極226為一導電體,如金屬層等。本實施例中,該陰極電極225與陽極電極226為一平面導電體,其尺寸依據網格238的尺寸決定。該陰極電極225和陽極電極226直接與上述列電極232和行電極234連接,從而實現電連接。陰極電極225與陽極電極226的長度為10微米~1毫米,寬度為1微米~100微米,厚度為1微米~100微米。本實施例中,陰極電極225與陽極電極 226的長度優選為150微米,寬度優選為50微米,厚度優選為50微米。本實施例中,該陰極電極225與陽極電極226的材料為導電漿料,通過絲網印刷法印製於絕緣基底230上。該導電漿料的成分與上述電極引線所用的導電漿料的成分相同。 The cathode electrode 225 and the anode electrode 226 are an electric conductor such as a metal layer or the like. In this embodiment, the cathode electrode 225 and the anode electrode 226 are a planar conductor, and the size thereof is determined according to the size of the grid 238. The cathode electrode 225 and the anode electrode 226 are directly connected to the above-described column electrode 232 and row electrode 234, thereby achieving electrical connection. The cathode electrode 225 and the anode electrode 226 have a length of 10 μm to 1 mm, a width of 1 μm to 100 μm, and a thickness of 1 μm to 100 μm. In this embodiment, the cathode electrode 225 and the anode electrode The length of 226 is preferably 150 microns, the width is preferably 50 microns, and the thickness is preferably 50 microns. In this embodiment, the material of the cathode electrode 225 and the anode electrode 226 is a conductive paste, which is printed on the insulating substrate 230 by screen printing. The composition of the conductive paste is the same as that of the conductive paste used for the electrode lead described above.

所述的螢光粉層228設置於相應陽極電極226的表面,該螢光粉層228的材料包括高壓螢光粉及低壓螢光粉。該螢光粉層228可以採用沈積法或塗敷法設置於所述陽極電極226的表面。該螢光粉層228厚度為5微米~50微米。 The phosphor layer 228 is disposed on the surface of the corresponding anode electrode 226. The material of the phosphor layer 228 includes high pressure phosphor powder and low pressure phosphor powder. The phosphor layer 228 may be disposed on the surface of the anode electrode 226 by a deposition method or a coating method. The phosphor layer 228 has a thickness of 5 microns to 50 microns.

所述的陰極發射體227包括一個電子發射體223或複數個平行且等間隔排列的電子發射體223,如:矽線、單根碳纖維或奈米碳管長線等。該陰極發射體227一端與陰極電極225的電連接方式可以為通過一導電膠電連接,也可以通過分子間力或者其他方式實現。所述每個電子發射體223包括一電子發射端229,該電子發射端229為電子發射體223遠離陰極電極225的一端。該電子發射端229與陽極電極226之間的距離為1微米~200微米。該電子發射體223的長度為200微米~400微米,且相鄰的電子發射體223之間的間距為1奈米~100奈米。請參閱圖3,本實施例中,陰極發射體227包括複數個平行排列的奈米碳管長線,每個奈米碳管長線為一個電子發射體223。採用複數個平行排列的奈米碳管長線作為陰極發射體227時,每個奈米碳管長線的一端與陰極電極225電連接,另一端指向陽極電極226,作為電子發射體223的電子發射端229。該電子發射端229與陽極電極226之間的距離為1微米 ~100微米。該奈米碳管長線的長度為200微米~300微米,且相鄰的奈米碳管長線之間的間距為1奈米~50奈米。該奈米碳管長線中包括複數個首尾相連且擇優取向排列的奈米碳管束,相鄰的奈米碳管束之間通過凡德瓦爾力連接。該奈米碳管束中包括複數個平行且緊密排列的奈米碳管。所述奈米碳管長線中的奈米碳管為單壁、雙壁或多壁奈米碳管。所述奈米碳管的長度範圍為10微米~100微米,且奈米碳管的直徑小於15奈米。所述陰極發射體227中的電子發射體223由於具有較大的長徑比,因而具有較好的電子發射特性,從而使得該陰極發射體227的發射效率較高。 The cathode emitter 227 includes an electron emitter 223 or a plurality of parallel and equally spaced electron emitters 223, such as a twisted wire, a single carbon fiber or a long carbon nanotube wire. The electrical connection between one end of the cathode emitter 227 and the cathode electrode 225 may be electrically connected through a conductive paste, or may be achieved by intermolecular force or other means. Each of the electron emitters 223 includes an electron emission end 229 which is an end of the electron emitter 223 away from the cathode electrode 225. The distance between the electron-emitting end 229 and the anode electrode 226 is from 1 micrometer to 200 micrometers. The length of the electron emitter 223 is 200 micrometers to 400 micrometers, and the spacing between adjacent electron emitters 223 is 1 nanometer to 100 nanometers. Referring to FIG. 3, in the present embodiment, the cathode emitter 227 includes a plurality of long-line carbon nanotube long lines arranged in parallel, and each nanocarbon tube long line is an electron emitter 223. When a plurality of parallel arranged carbon nanotube long wires are used as the cathode emitter 227, one end of each nanocarbon long line is electrically connected to the cathode electrode 225, and the other end is directed to the anode electrode 226 as an electron-emitting end of the electron emitter 223. 229. The distance between the electron emission end 229 and the anode electrode 226 is 1 micrometer. ~100 microns. The length of the long carbon nanotubes is 200 micrometers to 300 micrometers, and the spacing between adjacent nanocarbon tubes is 1 nanometer to 50 nanometers. The carbon nanotube long line includes a plurality of carbon nanotube bundles arranged end to end and arranged in a preferred orientation, and adjacent carbon nanotube bundles are connected by van der Waals force. The carbon nanotube bundle includes a plurality of parallel and closely arranged carbon nanotubes. The carbon nanotubes in the long line of the carbon nanotubes are single-walled, double-walled or multi-walled carbon nanotubes. The carbon nanotubes have a length ranging from 10 micrometers to 100 micrometers, and the carbon nanotubes have a diameter of less than 15 nanometers. The electron emitter 223 in the cathode emitter 227 has a good electron emission characteristic because of its large aspect ratio, so that the emission efficiency of the cathode emitter 227 is high.

所述的像素單元220還可以進一步包括一固定電極221,該固定電極221設置於相應陰極電極225之上,其作用為將陰極發射體227固定於該陰極電極225之上,且該固定電極221為可選部件。本實施例中,所述固定電極221的材料與所述陽極電極226的材料相同,可以用絲網印刷法把該固定電極221設置於相應陰極電極225上,從而將該陰極發射體227固定於所述陰極電極225之上。 The pixel unit 220 may further include a fixed electrode 221 disposed on the corresponding cathode electrode 225, and configured to fix the cathode emitter 227 on the cathode electrode 225, and the fixed electrode 221 It is an optional part. In this embodiment, the material of the fixed electrode 221 is the same as the material of the anode electrode 226, and the fixed electrode 221 can be disposed on the corresponding cathode electrode 225 by screen printing, thereby fixing the cathode emitter 227 to the cathode electrode 227. Above the cathode electrode 225.

本實施例的大面積場發射顯示器200於工作時,通過於絕緣基板230上的行電極234與列電極232上分別連接驅動電路的掃描電極與訊號電極,當掃描電極與訊號電極同時接通時,對應像素單元220內的陰極電極225與陽極電極226之間將會形成電勢差,從而電子通過與陰極電極225電連接的陰極發射體227的電子發射端229發射出來並轟擊到陽極電極226表面的螢光粉層228上,由於陰極 發射體227的電子發射端229與陽極電極226間隔設置並指向陽極電極226,使得電子大部分準確轟擊到螢光粉層228上,從而大大提高了螢光粉層的發光效率。本實施例的大面積場發射顯示器200中,複數個陰極發射體227之間的行距與列距相等,且每個陰極發射體227遠離陰極電極255的一端與陽極電極256之間的間隔相等,每個陰極發射體227包括複數個平行且等間隔設置的電子發射體223,故,發射的電子整體均勻性好。另外,該大面積場發射顯示器200中,於相同的驅動電壓下,陰極發射體227的電子發射端229與陽極電極226具有較大間隔,使得發射電流的電流強度較小,從而使得該大面積場發射顯示器200能耗較低。 When the large-area field emission display 200 of the embodiment is in operation, the scan electrode and the signal electrode of the driving circuit are respectively connected to the row electrode 234 and the column electrode 232 on the insulating substrate 230, and when the scan electrode and the signal electrode are simultaneously turned on. A potential difference will be formed between the cathode electrode 225 and the anode electrode 226 in the corresponding pixel unit 220, so that electrons are emitted from the electron-emitting end 229 of the cathode emitter 227 electrically connected to the cathode electrode 225 and bombarded onto the surface of the anode electrode 226. Phosphor layer 228, due to the cathode The electron-emitting end 229 of the emitter 227 is spaced apart from the anode electrode 226 and directed toward the anode electrode 226, so that most of the electrons are accurately bombarded onto the phosphor layer 228, thereby greatly improving the luminous efficiency of the phosphor layer. In the large-area field emission display 200 of the present embodiment, the row spacing and the column spacing between the plurality of cathode emitters 227 are equal, and the interval between the end of each cathode emitter 227 away from the cathode electrode 255 and the anode electrode 256 is equal. Each of the cathode emitters 227 includes a plurality of electron emitters 223 arranged in parallel and at equal intervals, so that the emitted electrons have good overall uniformity. In addition, in the large-area field emission display 200, at the same driving voltage, the electron-emitting end 229 of the cathode emitter 227 and the anode electrode 226 have a larger interval, so that the current intensity of the emission current is smaller, thereby making the large area Field emission display 200 consumes less power.

另外,本領域技術人員還可於本發明精神內做其他變化,當然,這些依據本發明精神所做的化,都應包含於本發明所要求保護的範圍之內。 In addition, those skilled in the art can make other changes in the spirit of the present invention. Of course, these modifications in accordance with the spirit of the present invention should be included in the scope of the present invention.

100,200‧‧‧場發射顯示器 100,200‧‧‧ field emission display

110,210‧‧‧透明基板 110,210‧‧‧ Transparent substrate

114,228‧‧‧螢光粉層 114,228‧‧‧Fluorescent powder layer

120‧‧‧電子發射單元 120‧‧‧Electronic emission unit

124‧‧‧電子發射間隙 124‧‧‧Electronic emission gap

125,225‧‧‧陰極電極 125,225‧‧‧cathode electrode

126,226‧‧‧陽極電極 126,226‧‧‧Anode electrode

127,227‧‧‧陰極發射體 127,227‧‧‧ cathode emitter

130,230‧‧‧絕緣基底 130,230‧‧‧Insulation base

132,232‧‧‧列電極 132,232‧‧‧ column electrodes

134,234‧‧‧行電極 134,234‧‧‧ rows of electrodes

136,236‧‧‧絕緣層 136,236‧‧‧Insulation

138,238‧‧‧網格 138, 238‧‧ Grid

140,240‧‧‧支撐體 140,240‧‧‧Support

220‧‧‧像素單元 220‧‧‧pixel unit

221‧‧‧固定電極 221‧‧‧Fixed electrode

223‧‧‧電子發射體 223‧‧‧Electronic emitters

229‧‧‧電子發射尖端 229‧‧‧Electronic emission tip

圖1為先前技術中的場發射顯示器的側視圖。 1 is a side view of a field emission display of the prior art.

圖2為先前技術中的場發射顯示器的俯視圖。 2 is a top plan view of a field emission display of the prior art.

圖3為本技術方案實施例的場發射顯示器的俯視圖。 3 is a top plan view of a field emission display of an embodiment of the present technology.

圖4為本技術方案實施例的場發射顯示器的側視圖。 4 is a side view of a field emission display of an embodiment of the present technology.

210‧‧‧透明基板 210‧‧‧Transparent substrate

220‧‧‧像素單元 220‧‧‧pixel unit

221‧‧‧固定電極 221‧‧‧Fixed electrode

225‧‧‧陰極電極 225‧‧‧Cathode electrode

226‧‧‧陽極電極 226‧‧‧Anode electrode

227‧‧‧陰極發射體 227‧‧‧ cathode emitter

229‧‧‧電子發射端 229‧‧‧Electronic transmitter

230‧‧‧絕緣基底 230‧‧‧Insulation base

240‧‧‧支撐體 240‧‧‧Support

Claims (13)

一種場發射顯示器,其包括:一透明基板;複數個支撐體;一絕緣基底通過所述複數個支撐體與透明基板相對間隔設置;複數個行電極與列電極分別平行且等間隔設置於該絕緣基底上,該複數個行電極與複數個列電極交叉設置,每兩個相鄰的行電極與每兩個相鄰的列電極交叉構成一個網格,且行電極與列電極之間電絕緣;複數個像素單元,每個像素單元對應一個網格設置,每個像素單元包括一個螢光粉層,一個陽極電極與一個陰極電極間隔設置於所述絕緣基底,及一個陰極發射體,該陽極電極和陰極電極分別與相應行電極與列電極電連接,該陰極發射體一端與相應陰極電極電連接;其改良在於,所述的螢光粉層設置於相應陽極電極表面。 A field emission display comprising: a transparent substrate; a plurality of supporting bodies; an insulating substrate disposed opposite to the transparent substrate by the plurality of supporting bodies; a plurality of row electrodes and column electrodes are respectively disposed in parallel and equally spaced from the insulating layer On the substrate, the plurality of row electrodes are disposed across the plurality of column electrodes, and each two adjacent row electrodes and each two adjacent column electrodes intersect to form a grid, and the row electrodes and the column electrodes are electrically insulated; a pixel unit, each pixel unit corresponding to a grid arrangement, each pixel unit includes a phosphor layer, an anode electrode and a cathode electrode are spaced apart from the insulating substrate, and a cathode emitter, the anode electrode and The cathode electrodes are electrically connected to the respective row electrodes and the column electrodes, and one end of the cathode emitter is electrically connected to the corresponding cathode electrode; and the improvement is that the phosphor powder layer is disposed on the surface of the corresponding anode electrode. 如申請專利範圍第1項所述的場發射顯示器,其中,所述陰極發射體的另一端與相應陽極電極間隔設置並指向該陽極電極,且所述陰極發射體的另一端與所述陽極電極之間的間距為1微米~200微米。 The field emission display of claim 1, wherein the other end of the cathode emitter is spaced apart from the corresponding anode electrode and directed to the anode electrode, and the other end of the cathode emitter and the anode electrode are The spacing between 1 micron and 200 micron is used. 如申請專利範圍第1項所述的場發射顯示器,其中,所述陰極發射體與絕緣基底間隔設置或設置於絕緣基底上,且該陰極發射體包括一個電子發射體或複數個平行且等間隔排列的電子發射體。 The field emission display of claim 1, wherein the cathode emitter is spaced apart from or disposed on the insulating substrate, and the cathode emitter comprises an electron emitter or a plurality of parallel and equally spaced Arranged electron emitters. 如申請專利範圍第3項所述的場發射顯示器,其中,所述 電子發射體之間的間距為1奈米~100奈米。 The field emission display of claim 3, wherein the The spacing between the electron emitters is from 1 nm to 100 nm. 如申請專利範圍第3項所述的場發射顯示器,其中,所述電子發射體包括矽線、單根碳纖維或奈米碳管長線。 The field emission display of claim 3, wherein the electron emitter comprises a twisted wire, a single carbon fiber or a carbon nanotube long wire. 如申請專利範圍第5項所述的場發射顯示器,其中,所述奈米碳管長線包括複數個首尾相連且擇優取向排列的奈米碳管束,且相鄰奈米碳管束之間通過凡德瓦爾力連接。 The field emission display of claim 5, wherein the long carbon nanotube line comprises a plurality of carbon nanotube bundles arranged end to end and arranged in a preferred orientation, and the adjacent carbon nanotube bundles pass through the van der Waals Valli connection. 如申請專利範圍第6項所述的場發射顯示器,其中,所述的奈米碳管束包括複數個平行且緊密排列的奈米碳管。 The field emission display of claim 6, wherein the carbon nanotube bundle comprises a plurality of parallel and closely arranged carbon nanotubes. 如申請專利範圍第7項所述的場發射顯示器,其中,所述奈米碳管為單壁奈米碳管,雙壁奈米碳管或多壁奈米碳管。 The field emission display of claim 7, wherein the carbon nanotubes are single-walled carbon nanotubes, double-walled carbon nanotubes or multi-walled carbon nanotubes. 如申請專利範圍第8項所述的場發射顯示器,其中,所述奈米碳管的長度為10微米~100微米,且直徑小於15奈米。 The field emission display of claim 8, wherein the carbon nanotubes have a length of 10 micrometers to 100 micrometers and a diameter of less than 15 nanometers. 如申請專利範圍第1項所述的場發射顯示器,其中,所述行電極與列電極交叉處設置有一絕緣層。 The field emission display of claim 1, wherein an insulating layer is disposed at an intersection of the row electrode and the column electrode. 如申請專利範圍第1項所述的場發射顯示器,其中,所述複數個像素單元對應網格設置成陣列,且設置於同一行的像素單元的陽極電極與同一個行電極電連接,設置於同一列的像素單元的陰極電極與同一個列電極電連接。 The field emission display of claim 1, wherein the plurality of pixel units are arranged in an array corresponding to the grid, and the anode electrodes of the pixel units disposed in the same row are electrically connected to the same row electrode, and are disposed on The cathode electrodes of the pixel units of the same column are electrically connected to the same column electrode. 如申請專利範圍第1項所述的場發射顯示器,其中,所述的像素單元進一步包括一固定電極,該固定電極設置於相應陰極電極之上。 The field emission display of claim 1, wherein the pixel unit further comprises a fixed electrode disposed on the corresponding cathode electrode. 如申請專利範圍第1項所述的場發射顯示器,其中,所述的螢光粉層的材料為低壓螢光粉或高壓螢光粉,且厚度為5微米~50微米。 The field emission display of claim 1, wherein the material of the phosphor layer is low pressure phosphor powder or high pressure phosphor powder, and has a thickness of 5 micrometers to 50 micrometers.
TW97113309A 2008-04-11 2008-04-11 Field emission display TWI386966B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97113309A TWI386966B (en) 2008-04-11 2008-04-11 Field emission display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97113309A TWI386966B (en) 2008-04-11 2008-04-11 Field emission display

Publications (2)

Publication Number Publication Date
TW200943359A TW200943359A (en) 2009-10-16
TWI386966B true TWI386966B (en) 2013-02-21

Family

ID=44869001

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97113309A TWI386966B (en) 2008-04-11 2008-04-11 Field emission display

Country Status (1)

Country Link
TW (1) TWI386966B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI448196B (en) * 2010-12-16 2014-08-01 Tatung Co Field emission planar lighting lamp
TWI489507B (en) * 2011-01-04 2015-06-21 Hon Hai Prec Ind Co Ltd Field emission device and field emission display
CN112103155B (en) * 2020-09-22 2023-11-21 成都创元电子有限公司 Electron bombardment type lanthanum hexaboride cathode

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060061257A1 (en) * 2000-11-17 2006-03-23 Masayuki Nakamoto Field emission cold cathode device of lateral type
US20070029525A1 (en) * 2004-08-02 2007-02-08 Dowa Mining Co., Ltd. Phosphor and phosphor film for electron beam excitation and color display apparatus using the same
TW200711991A (en) * 2005-09-16 2007-04-01 Hon Hai Prec Ind Co Ltd Nanofluid and method of making the same
TWI295068B (en) * 2005-11-17 2008-03-21 Tatung Co Ltd Field emission display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060061257A1 (en) * 2000-11-17 2006-03-23 Masayuki Nakamoto Field emission cold cathode device of lateral type
US20070029525A1 (en) * 2004-08-02 2007-02-08 Dowa Mining Co., Ltd. Phosphor and phosphor film for electron beam excitation and color display apparatus using the same
TW200711991A (en) * 2005-09-16 2007-04-01 Hon Hai Prec Ind Co Ltd Nanofluid and method of making the same
TWI295068B (en) * 2005-11-17 2008-03-21 Tatung Co Ltd Field emission display device

Also Published As

Publication number Publication date
TW200943359A (en) 2009-10-16

Similar Documents

Publication Publication Date Title
CN101540260B (en) Field emission display
US8030837B2 (en) Field emission cathode device and display using the same
US8110975B2 (en) Field emission display device
CN102082061B (en) Field emission display device
CN102768930B (en) Field emission electron device
JP3581298B2 (en) Field emission type electron source array and method of manufacturing the same
TWI386966B (en) Field emission display
US8013510B2 (en) Electron emission device and display device using the same
CN102024653B (en) Field emission unit and field emission pixel tube
US8053967B2 (en) Electron emission device and display device using the same
CN102543633B (en) Field emission cathode device and field emission display
TWI393160B (en) Field emission cathode structure and display using the same
TWI330858B (en) Thermionic emission device
TWI360831B (en) Field emission electron device
TWI383420B (en) Electron emitter and displaying device using the same
TWI427662B (en) Field emission cathod device and field emission display
TWI386964B (en) Electron emitter and displaying device using the same
TWI421896B (en) Field emission device and field emission display
TWI352369B (en) Thermionic emission device and method for making t
TWI421897B (en) Field emission display
TWI353002B (en) A field emission device and a field emission displ
TWI489507B (en) Field emission device and field emission display
TWI421895B (en) Field emission device and field emission display
TWI417924B (en) Field emission electronic device
WO2008145049A1 (en) Planar tripolar field emission display device and the preparing method thereof