TW201005785A - Electron emission device - Google Patents

Electron emission device Download PDF

Info

Publication number
TW201005785A
TW201005785A TW97128269A TW97128269A TW201005785A TW 201005785 A TW201005785 A TW 201005785A TW 97128269 A TW97128269 A TW 97128269A TW 97128269 A TW97128269 A TW 97128269A TW 201005785 A TW201005785 A TW 201005785A
Authority
TW
Taiwan
Prior art keywords
electron
electrode
emitting device
emitting
emitter
Prior art date
Application number
TW97128269A
Other languages
Chinese (zh)
Other versions
TWI368248B (en
Inventor
Yang Wei
Peng Liu
Liang Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW097128269A priority Critical patent/TWI368248B/en
Publication of TW201005785A publication Critical patent/TW201005785A/en
Application granted granted Critical
Publication of TWI368248B publication Critical patent/TWI368248B/en

Links

Abstract

The present invention relates to an electron emission device. The electron emission device includes an insulated substrate, a number of first electrodes and a number of second electrodes disposed on the insulated substrate, and a number of electron emission units. Every two adjacent first electrodes and every two adjacent second electrodes form a grid. Each electron emission unit is disposed in and corresponding to one grid. Each electron emission unit includes two electron emitters opposite with each other. The first electrodes and second electrodes are electrically connected to two electron emitters separately. Each of the electron emitter includes a segment of a carbon nanotube array.

Description

201005785 九、發明說明: 【發明所屬之技術領域】 本發明涉及-種電子發射器件,尤其涉及一種基於碳 納米管的電子發射器件。 【先前技術】 常見的電子發射器件一般包括場發射電子器件和表 面傳導電子發射器件。場發射電子器件和表面傳導電子發 ❺射器件在低溫或者室溫下工作,與電真空器件中的熱發射 電子器件相比具有能耗低、回應速度快以及低放氣等優 點’、故用場發射電子器件或者表面傳導電子發射器件有望 替代電真空器件中的熱發射電子器件。大面積電子發射器 件在平板顯示器等裝置中有著廣闊的應用前景,故,製備 大面積電子發射器件成為目前研究的一個熱點。 "月參閱圖1,先前技術中的場發射電子器件,包 =一絕緣基底3G,複數個電子發射單元36設置於該絕緣 ❹土底上,以及複數個陰極電極34與複數個栅極電極%設 置於該絕緣基底30上。其中,所述陰極電極34與柵極電 極32,間由介質絕緣層33隔離,以防止短路。每個電子 X射單元36包括至少一陰極發射體38,該陰極發射體% /、所述陰極電極34電連接並與所述栅極電極32間隔設 置。所述陰極發射體38在所述栅極電極32正電位元的作 ^下發射電子。該類電子發射器件300的電子發射效率較 円。然,所述場發射電子器件3〇〇中栅極電極32的位置通 常高於陰極電極34的位置,陰極發射體38在栅極電極% 201005785 .的作用下發射電子’故冑要陰極電極與拇極電極Μ的 •距離很近。然而陰極電極34和拇極電極32的間距不能精 確控制,所需的驅動電壓較高,提高了驅動電路的成本。 明參閱圖2及圖3,先前技術中的表面傳導電子發射 盗件40G,包括-絕緣基底4(),複數個電子發射單元^設 置於該絕緣基底40上,以及複數個栅極電極42與複數個 陰極電極44設置於該絕緣基底4()上。其中,所述之複數 ❹個栅極電極42與複數個陰極電極44分別平行且等間隔設 置於絕緣基底4〇上,而且,栅極電極42與陰極電極料垂 直設置並在交又處由介質絕緣層43隔離,以防止短路。 每個栅極電極42包括複數個等間隔設置的延伸部421。每 個電子發射單it 46包括—電子發射體财別與所述陰極 電極44和栅極電極42的延伸部421電連接,該電子發射體 48包括一電子發射區(請參見,A 36 inch201005785 IX. Description of the Invention: [Technical Field] The present invention relates to an electron-emitting device, and more particularly to a carbon nanotube-based electron-emitting device. [Prior Art] Common electron-emitting devices generally include field emission electronic devices and surface conduction electron-emitting devices. Field emission electronics and surface conduction electron emission devices operate at low temperatures or room temperature, and have the advantages of low power consumption, fast response speed, and low bleed air compared with thermal emission electronic devices in electric vacuum devices. Field emission electronics or surface conduction electron-emitting devices are expected to replace thermal-emitting electronic devices in electrical vacuum devices. Large-area electron-emitting devices have broad application prospects in devices such as flat panel displays. Therefore, the preparation of large-area electron-emitting devices has become a hot research topic. Referring to FIG. 1, a field emission electronic device of the prior art, including an insulating substrate 3G, a plurality of electron-emitting units 36 are disposed on the insulating bauxite, and a plurality of cathode electrodes 34 and a plurality of gate electrodes % is disposed on the insulating substrate 30. The cathode electrode 34 and the gate electrode 32 are separated by a dielectric insulating layer 33 to prevent short circuit. Each of the electron-emitting units 36 includes at least one cathode emitter 38, and the cathode emitters are electrically connected to and spaced apart from the gate electrodes 32. The cathode emitter 38 emits electrons under the positive potential of the gate electrode 32. The electron emission efficiency of this type of electron-emitting device 300 is relatively low. However, the position of the gate electrode 32 in the field emission electronic device 3A is generally higher than the position of the cathode electrode 34, and the cathode emitter 38 emits electrons under the action of the gate electrode %201005785. The distance of the thumb electrode is very close. However, the pitch of the cathode electrode 34 and the thumb electrode 32 cannot be accurately controlled, and the required driving voltage is high, which increases the cost of the driving circuit. Referring to FIG. 2 and FIG. 3, the surface conduction electron-emitting electron-emitting device 40G of the prior art includes an insulating substrate 4 (), a plurality of electron-emitting units are disposed on the insulating substrate 40, and a plurality of gate electrodes 42 and A plurality of cathode electrodes 44 are disposed on the insulating substrate 4 (). Wherein, the plurality of gate electrodes 42 and the plurality of cathode electrodes 44 are respectively disposed in parallel and equally spaced on the insulating substrate 4, and the gate electrode 42 is disposed perpendicular to the cathode electrode material and is disposed at the intersection and the medium. The insulating layer 43 is isolated to prevent short circuits. Each of the gate electrodes 42 includes a plurality of equally spaced extensions 421. Each electron emission unit it 46 includes an electron emitter that is electrically connected to the cathode electrode 44 and an extension portion 421 of the gate electrode 42. The electron emitter 48 includes an electron emission region (see, A 36 inch).

Surface-conduction Electron-e.itter Display(SED), 〇 T.Oguch! et al., SIDO5 Digest, V36, P1929-1931 (2005))。該電子發射區係由極小顆粒構成的薄膜。通 過在所述電子發射區兩端施加電I,並且該電子發射區 通吊需要-些表面處理工藝使其啟動,電子才能形成表 面傳導電流,並在陽極電場的仙下發射電子。所述表 面傳導電子發射器件400的結構簡單。然,由於電子發射 區薄臈内的顆粒間距極小,使陽極電場不易渗透頌述 ==射區内部,導致所述表面傳導電子發㈣件柳的 電子發射效率低。 7 201005785 有鑒於此,提供一種結構簡單,且電子發射效率高 且驅動電壓較低的大面積電子發射器件實為必要。 【發明内容】 一種電子發射器件,其包括:一絕緣基底;複數個平 仃且等間隔排列的第一電極與複數個平行且等間隔排列的 第一電極设置於絕緣基底上,每兩個相鄰的第一電極與每 兩個相鄰的第二電極形成一個網格;以及複數個電子發射 ❹單元刀別對應设置於每個網格内;其中,每個電子發射單 疋中包括兩個相對設置的電子發射體,該兩個電子發射體 ;7別與第-電極和第二電極電連接,每個電子發射體包括 一碳納米管陣列片斷。 相較於先前技術,本技術方案實施例所提供的電子發 :器件具有以下優點:其-,第-電極、第二電極和電子 ^射體共面設置該電子發射时結構簡單,適合做 ❹ -石m ± 其一’所述之電子發射體的為 -^ ^ ^ -nr -r - 豕孓射性此杈好,在驅動電壓 的障况下可以獲得較大的場發射電流。 【實施方式】 下面將結合附圖及具體實施例對本 的電子發射n件做詳細的㈣。 累所&供 菸M叫參關4及圖5,本技術方案實施例提供-種電子 :射器件’包括一絕緣基底1〇及設 = 1。上的複數個電子發射單元22、複數個、 複數個第二電極14。所、+ 电極12與 所述之稷數個第一電極12與複數個 8 201005785 第二電極14分別沿不同的方向平行 緣基底H)上。在第-電極12血第#間㈣置於該絕 有介質絕緣層2 0,該介質絕緣 虽14父叉處設置 二電極14電隔離,以防止第一;二將第-電極12與第 間短路。優選地,複數個第一電極12 ' 14分別按照行與列的方式平 、數個第-電極 1〇上,每兩個相鄰的第一電極it間距設置於絕緣基底 i … 與兩個相鄰的第二電極 14相互垂直地父又設置形成一 内對應地設置有-個電子發射單元22。’母個網格16 ;基底1〇為陶究基板、玻璃基板、樹脂基 板、石夬基板等。絕緣基底㈣小與厚度不限,本領域 :術人員可以根據實際需要選擇。本實施例十,絕緣基 底10優選為一玻璃基板。 所述複數㈣-電極12與複數個第二電極14H 電體’如金屬層等。該複數個第—電極i2與複數個第二 ❹電極14的行距和列距均為微米_2毫米。該第一電極η 與第一電極14的寬度均為3〇微米_2〇〇微米,厚度均為忉 微米-50微来。所述每個第一電極12進一步包括複數個平 行且間隔排列的延伸部121。該複數個延伸部i2i均設置 於所述第一電極12的同一側,每個延伸部121對應設置於 -個網格16内,且每個延㈣121至少部分與相應網格内 的第二電極14正對。所述延伸部121與第二電極14之間的 間距為200微米-1毫米,本實施例中,所述延伸部ΐ2ι與第 二電極14之間的間距為27〇微米。所述延伸部121的形狀 201005785 ,不限。本實施例+,該複數個第一電極12與複數個第二 .電極14優選為採用導電漿料印製的平面導電體,所述第 、,電極12的延伸部均為等大的立方體結構,長度為微 米,寬度為20微米,厚度為2〇微米。 每個電子發射單元22中包括兩個相對設置的電子發 射體18所述電子發射體18與絕緣基底丄⑽隔設置或直 接設置於所述絕緣基底1G上。該電子發射體邮括一第 ❹端181及與第% 181相對的第二端183,1%個電子發射 體18的第-端181分別與第一電㈣上的延伸部i2i和第 -電極14連接’即兩個電子發射體18的第—端⑻分別與 所述第電極12和第二電極14電連接。兩個電子發射體 18:第二端183相對’且形成-間隙182,該間隙職間 距·、、、0.1微米-50微米。電子發射體18的卩度為⑽微米 -500微米,直徑為3()微米_7()微来。本實施射,間隙ΐδ2 ^距為4微米’電子發射體W的長度為15G微米,直徑 ❹為50微米。 所述之兩個電子發射體18為由從直接生長的碳納米 =列中選取的—部分碳納米管陣列後,將碳納米管陣 列的兩端分別與第—雷搞1?4 @ 弟電極12和第二電極14電連接,在真 2兄或㈣氣體存在的環境下,通過在第-電極12和 二在部分碳納米管陣列中通人—定的電流後, 5 Γηηπ二的作用T ’該部分碳納米管陣列溫度達到2000κ 兩個;^後斷開獲侍。該部分碳納米管陣列斷開後’形成 、相對的碳納米管陣列片斷,該碳納米管陣列片斷包 201005785 括複數個並列且均勻分佈的碳納米管,兩個電子發射體 18中的碳納米管的延伸方向一致。碳納米管陣列片斷即 為電子發射體18,碳納米管陣列片斷之間的間隙即電子 發射體18之間的間隙182。本實施例中,通過在第一電極 12'第二電極14之間施加一 3〇5毫安培的電流,該部分碳 納米管陣列在焦耳熱的作用下加熱到溫度為Μ罵後,該 參 部分碳納米管陣列斷開,形成兩個相對的電子發射體18 和間隙182。 ^見圖6、圖7及圖8,所述電子發射體Μ為一碳 1納:官陣列片斷’其包括複數個並列設置的碳納米管 Γ第:Γ體18中的碳納米# 184在電子發射體18 =-h 181相互平行拂列且均勾分佈維持原碳納米 官陣列的形態。在電子發射體' # 184 ^ ^ , 旧乐一知183 ’碳納米 I你 個碳納米管束,該碳納米管束均句 :二形成複數個場發射尖端185,每個場發射尖端⑻ •二:=5管中束。電子發射體18中碳納米管谢在 置:::185=凡德瓦爾力相互結合且並列設 漸減小,形成-v型尖端。埸=第广181的方向逐 子發射端。電子發射體^讀射尖端185的頂部為電 乎具雔辟 中碳納米管184包括單壁碳响 未g、雙壁碳納米管、多壁 厌肩 選地,碳納米其1S4沾古 、,内未®或其任思組合,優 微米]亳米。同〇·5納米_50納米,長度為 相鄰碳納米管m :門的』射體18中,第-端的 之間的距離為〇.1納米.5納米,第二端Surface-conduction Electron-e.itter Display (SED), 〇 T.Oguch! et al., SIDO5 Digest, V36, P1929-1931 (2005)). The electron-emitting region is a film composed of extremely small particles. By applying an electric current to both ends of the electron-emitting region, and the electron-emitting region is required to be activated by some surface treatment processes, electrons can form a surface conduction current and emit electrons under the anode electric field. The surface conduction electron-emitting device 400 has a simple structure. However, since the particle spacing in the thin region of the electron-emitting region is extremely small, the anode electric field is not easily penetrated into the inside of the == emitter region, resulting in low electron emission efficiency of the surface-conducting electron-emitting electrons. 7 201005785 In view of this, it is necessary to provide a large-area electron-emitting device having a simple structure and high electron emission efficiency and a low driving voltage. SUMMARY OF THE INVENTION An electron-emitting device includes: an insulating substrate; a plurality of flat and equally spaced first electrodes and a plurality of parallel and equally spaced first electrodes disposed on the insulating substrate, each two phases The adjacent first electrode forms a grid with each two adjacent second electrodes; and a plurality of electron emission unit knives are correspondingly disposed in each of the grids; wherein each of the electron emission units includes two The opposite electron emitters are electrically connected to the first electrode and the second electrode, and each of the electron emitters comprises a carbon nanotube array segment. Compared with the prior art, the electronic hair-emitting device provided by the embodiments of the present technical solution has the following advantages: the -electrode, the second electrode and the electron emitter are arranged in a coplanar manner, and the structure is simple and suitable for ❹ - stone m ± one of the electron emitters described above is -^ ^ ^ -nr -r - 豕孓 性 杈 杈 杈 杈 杈 杈 杈 杈 杈 杈 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 [Embodiment] Hereinafter, the electron emission n piece of the present embodiment will be detailed (4) in conjunction with the drawings and specific embodiments. The accumulating & smoking M is called the reference 4 and FIG. 5, and the embodiment of the present invention provides an electron: the radiating device 'includes an insulating substrate 1 and is set to 1. A plurality of electron emission units 22, a plurality of, and a plurality of second electrodes 14 are disposed. The + electrode 12 and the plurality of first electrodes 12 and the plurality of 8 201005785 second electrodes 14 are respectively parallel to the edge substrate H) in different directions. The first electrode 12 is placed between the first electrode 12 and the fourth dielectric layer 20, and the dielectric insulation is electrically isolated from the parent fork 14 to prevent the first; the second electrode 12 and the first Short circuit. Preferably, the plurality of first electrodes 12' 14 are respectively arranged in a row and column manner, and a plurality of first electrodes 1 〇 are disposed, and each two adjacent first electrodes are spaced apart from each other on the insulating substrate i ... and two phases The adjacent second electrodes 14 are disposed perpendicularly to each other, and the parent is further disposed to form an electron-emitting unit 22 correspondingly. The mother mesh 16; the substrate 1 is a ceramic substrate, a glass substrate, a resin substrate, a stone substrate, or the like. Insulation base (4) is small and thickness is not limited, the field: the surgeon can choose according to actual needs. In the tenth embodiment, the insulating substrate 10 is preferably a glass substrate. The plurality (four)-electrode 12 and the plurality of second electrodes 14H are made of a metal layer or the like. The line spacing and the column pitch of the plurality of first electrodes i2 and the plurality of second electrodes 14 are both micrometers and 2 mm. The first electrode η and the first electrode 14 have a width of 3 μm 2 _2 μm and a thickness of 忉 μm to 50 μm. Each of the first electrodes 12 further includes a plurality of parallel and spaced-apart extensions 121. The plurality of extensions i2i are disposed on the same side of the first electrode 12, each extension 121 is correspondingly disposed in the grid 16, and each extension (four) 121 is at least partially connected to the second electrode in the corresponding grid. 14 is right. The distance between the extending portion 121 and the second electrode 14 is 200 micrometers to 1 millimeter. In the embodiment, the spacing between the extending portion ΐ2ι and the second electrode 14 is 27 〇 micrometers. The shape of the extension portion 121 is 201005785, not limited. In this embodiment, the plurality of first electrodes 12 and the plurality of second electrodes 14 are preferably planar conductors printed with a conductive paste, and the extensions of the electrodes 12 are all equal cubic structures. The length is micron, the width is 20 microns, and the thickness is 2 microns. Each of the electron-emitting units 22 includes two oppositely disposed electron emitters 18 which are disposed or directly disposed on the insulating substrate 1G and the insulating substrate (10). The electron emitter includes a first end 181 and a second end 183 opposite to the first 181. The first end 181 of the 1% electron emitter 18 and the extension i2i and the first electrode on the first electric (four), respectively. The 14th connection 'that is, the first end (8) of the two electron emitters 18 is electrically connected to the first electrode 12 and the second electrode 14, respectively. Two electron emitters 18: the second ends 183 are opposite 'and form a gap 182, which is between 0.1 micrometers and 50 micrometers. The electron emitter 18 has a twist of (10) micrometers - 500 micrometers and a diameter of 3 () micrometers - 7 () micro. In the present embodiment, the gap ΐ δ 2 ^ is 4 μm. The electron emitter W has a length of 15 Gm and a diameter ❹ of 50 μm. The two electron emitters 18 are selected from a directly grown carbon nanometer=column of carbon nanotube arrays, and the two ends of the carbon nanotube array are respectively associated with the first-ray electrode. 12 and the second electrode 14 are electrically connected, in the presence of a true 2 brother or (d) gas, after the first electrode 12 and the second in a part of the carbon nanotube array pass a predetermined current, the action of 5 Γηηπ 2 'The temperature of this part of the carbon nanotube array reached 2000 κ two; ^ was disconnected and served. After the partial carbon nanotube array is broken, the formed carbon nanotube array fragments are formed. The carbon nanotube array fragment 201005785 includes a plurality of juxtaposed and uniformly distributed carbon nanotubes, and carbon nanometers in the two electron emitters 18 The tube extends in the same direction. The carbon nanotube array segment is the electron emitter 18, and the gap between the carbon nanotube array segments is the gap 182 between the electron emitters 18. In this embodiment, by applying a current of 3 〇 5 milliamperes between the second electrodes 14 of the first electrode 12 ′, the portion of the carbon nanotube array is heated under the action of Joule heat to a temperature of Μ骂, the ginseng A portion of the carbon nanotube array is broken, forming two opposing electron emitters 18 and gaps 182. ^ See FIG. 6, FIG. 7 and FIG. 8, the electron emitter is a carbon 1 nano: official array segment 'which includes a plurality of carbon nanotubes arranged side by side: carbon nanometer #184 in the body 18 The electron emitters 18 = -h 181 are parallel to each other and are uniformly distributed to maintain the morphology of the original carbon nano-anomaly array. In the electron emitter ' # 184 ^ ^ , the old music knows 183 'carbon nano I I have a carbon nanotube bundle, the carbon nanotube bundles are uniform: two form a plurality of field emission tips 185, each field emission tip (8) • two: =5 tube bundle. The carbon nanotubes in the electron emitter 18 are placed at :::185 = van der Waals forces are combined with each other and juxtaposed to form a -v-type tip.埸 = the direction of the wide 181 is the transmitter. The top of the electron emitter ^ reading tip 185 is a carbon nanotube 184 including a single-walled carbon ring, a double-walled carbon nanotube, a multi-walled anti-shoulder, a carbon nano-small 1S4, Neiwei® or its combination, excellent micron] glutinous rice. The same distance is 5 nm _50 nm, the length is adjacent to the carbon nanotube m: the gate of the ejector 18, the distance between the first end is 〇.1 nm. 5 nm, the second end

II 201005785 1 3的相鄰的場發射尖端185頂部 -500納米,大曰1的距離為50納米 距離。本眚^ 鄰碳納米管18 4之間的 本實知例令,碳納米管184為吉 壁碳納米管,导声在;^ Μ卓 〃、、直仏為1納米的單 離為01^ 碳納米管184之間的距 米為.1納未’場發射尖端185頂部之間的距離為1〇〇納 圖9為電子發射體μ的場發射尖 圖,用拉曼光碰分妍身明雷;恭鉍触 的拉曼光譜 Φ 8的場發射尖端⑻ 、、峰比標準碳納米管的缺陷峰低。也就說,電子發 射體18的場發射尖端185的碳納米管品質較高。電子發 射體18中的碳納米管184係碳納米管陣列中的碳納米管 加熱熔斷後獲得,電子發射體W的場發射尖端185處於 碳納米管的熔斷處’由於碳納米管熔斷處經過熱處理後 2陷減少,另一方面富含缺陷的石墨層容易在高溫下崩 7貝,剩下一些品質較高的石墨層,故,電子發射體18的 ❾場發射尖端185的品質得到了極大的提高。 所述電子發射器件100的每個電子發射單元22進一 步可以包括複數個固定元件24,分別設置於所述第一電 極12的延伸部121和/或第二電極14上。所述固定元件% 的材料不限,包括金屬、聚合物等,用於將所述碳納米 管陣列18更好地固定於所述第一電極12的延伸部121和 第二電極14上。可以理解,所述複數個固定元件24可通 過一導電膠分別設置於所述第一電極12的延伸部121和 第一電極14上’也可以通過分子間力或者其他方式設置。 12 201005785 所述電子發射器件100可以應用於場發射顯示器,在 所述第一電極12和第二電極14之間施加一定的正^壓, 所述第二電極14在第一電極12的牽引作用下發射電子, 並在陽極電㈣作用τ,所射出的f子轟擊陽極處的營 光粉層,從而實現場發射顯示器的顯示功能。當在所述 第#電極12和第二電極14之間施加一定的負電壓時,所 述第-電極12還可以在第二電極14的牵引作用下發射電 子。 本技術方案實施例所提供的電子發射器件具有以下 優點:其一,第一電極、第二電極和電子發射體共面設 :,故,該電子發射器件結構簡單,適合做成大面積的 。子發射器件’·其二’第一電極和第二電極上相對的電 子發射體為由碳納米管陣列直接熔斷後獲得,故,電子 發射體之間的距離易於控制,最低可達狀丨微米,故, 該電子發射器件具有較低的驅動電壓,驅動電路的成本 ,低、,、其三’所述電子發射體包括複數個場發射尖端, 所,第-電極和第二電極之間施加一電壓時,可以在 =第-電極和第二電極之間形成較大的場發射電流, ^ 了所述f子發射H件的電子發射效率;其四,所述 :子發射體包括複數個碳納来管,故,場發射性能較好, 在驅:電壓一定的情況下可獲得較大的場發射電流。 接山Γ上所述’本發明確已符合發明專利之要件,遂依法 &amp;利中π 以上所述者僅為本發明之較佳實施例, 不月b以此限制本案之申請專利範圍。舉凡習知本案技藝 13 201005785 •之人士援依本發明之精神所作之等效修飾或變化,皆 蓋於以下申請專利範圍内。 …- 【圖式簡單說明】 圖1係先前技術中場發射電子器件的侧視結構示意 圖。 ^ 圖2係先前技術中表面傳導電子發射器件的側視結構 不意圖。 圖3係先前技術中表面傳導電子發射器件的俯視結構 示意圖。 圖4係本技術方案實施例的電子發射器件的側視結構 示意圖。 圖5係本技術方案實施例的電子發射器件的俯視結 構示意圖。 圖6係本技術方案實施例的電子發射體的結構示意 圖。 、 ❹ 圖7係本技術方案實施例所提供的電子發射體的場 發射尖端的掃描電鏡照片。 圖8係圖7中場發射尖端局部放大的掃描電鏡照片。 圖9係本技術方案實施例所提供的電子發射體的場 發射尖端的拉曼光譜圖。 10, 30, 40 100 【主要元件符號說明】 絕緣基底 電子發射器件 201005785 第一電極 12 延伸部 121,421 第二電極 14 網格 16 電子發射體 18, 48 電子發射體第一端 181 電子發射體的間隙 182 Ο 電子發射體第二端 183 碳納米管 184 電子發射端 185 介質絕緣層 20, 33, 43 電子發射單元 22, 36, 46 固定元件 24 場發射電子器件 300 桃極電極 32, 42 陰極電極 34, 44 陰極發射體 38 表面傳導電子發射器件 400 15II 201005785 1 3 The adjacent field emission tip 185 is -500 nm at the top, and the distance between the 曰1 is 50 nm. In this example, the carbon nanotubes 184 are Jibi carbon nanotubes, and the sound conduction is in the middle; the Μ Μ , , , , , , , , , , , , , , , , , , , , , , , , The distance between the carbon nanotubes 184 is 1.1 nanometer and the distance between the tops of the field emission tips 185 is 1 〇〇. FIG. 9 is a field emission tip of the electron emitter μ, which is touched by Raman light. Ming Lei; Christie's Raman spectrum Φ 8 field emission tip (8), the peak is lower than the standard carbon nanotube defect peak. That is, the carbon nanotubes of the field emission tip 185 of the electron emitter 18 are of high quality. The carbon nanotubes 184 in the electron emitter 18 are obtained by heat-fusing the carbon nanotubes in the carbon nanotube array, and the field emission tip 185 of the electron emitter W is at the melting point of the carbon nanotubes. After the second trap is reduced, on the other hand, the graphite layer rich in defects is easy to collapse at a high temperature, leaving some high quality graphite layers, so the quality of the field emission tip 185 of the electron emitter 18 is greatly improved. improve. Each of the electron-emitting units 22 of the electron-emitting device 100 may further include a plurality of fixing members 24 disposed on the extension portion 121 and/or the second electrode 14 of the first electrode 12, respectively. The material of the fixing member % is not limited, and includes a metal, a polymer, or the like for better fixing the carbon nanotube array 18 to the extending portion 121 and the second electrode 14 of the first electrode 12. It can be understood that the plurality of fixing members 24 can be respectively disposed on the extending portion 121 and the first electrode 14 of the first electrode 12 through a conductive adhesive. The intermolecular force or other manner can also be set. 12 201005785 The electron-emitting device 100 can be applied to a field emission display, a certain positive pressure is applied between the first electrode 12 and the second electrode 14, and the traction of the second electrode 14 at the first electrode 12 The electrons are emitted downward, and the anodic electricity (4) acts on the τ, and the emitted f-subjects bombard the camping powder layer at the anode, thereby realizing the display function of the field emission display. When a certain negative voltage is applied between the #12 electrode 12 and the second electrode 14, the first electrode 12 can also emit electrons under the traction of the second electrode 14. The electron-emitting device provided by the embodiment of the present technical solution has the following advantages: First, the first electrode, the second electrode, and the electron emitter are coplanar: Therefore, the electron-emitting device has a simple structure and is suitable for making a large area. The electron emitters of the first emitter electrode and the second electrode of the sub-emissive device are obtained by directly fusing the carbon nanotube array, so that the distance between the electron emitters can be easily controlled, and the minimum is 丨 micron. Therefore, the electron-emitting device has a lower driving voltage, the cost of the driving circuit is low, and the electron emitter includes a plurality of field emission tips, and the first electrode and the second electrode are applied between At a voltage, a large field emission current can be formed between the = first electrode and the second electrode, ^ the electron emission efficiency of the F-emission H piece; fourth, the sub-emitter includes a plurality of The carbon nanotube is used, so the field emission performance is good, and a large field emission current can be obtained under the condition that the driving voltage is constant. The present invention has indeed met the requirements of the invention patent, and the above is only a preferred embodiment of the present invention. </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic side view showing a field emission electronic device of the prior art. Figure 2 is a side view of a surface conduction electron-emitting device of the prior art. Fig. 3 is a schematic plan view showing a surface conduction electron-emitting device of the prior art. Fig. 4 is a side view showing the structure of an electron-emitting device of an embodiment of the present technical solution. Fig. 5 is a schematic plan view showing the structure of an electron-emitting device according to an embodiment of the present technical solution. Fig. 6 is a schematic view showing the structure of an electron emitter of an embodiment of the present technical solution. Figure 7 is a scanning electron micrograph of the field emission tip of the electron emitter provided by the embodiment of the present technical solution. Figure 8 is a partially enlarged scanning electron micrograph of the field emission tip of Figure 7. Fig. 9 is a Raman spectrum diagram of a field emission tip of an electron emitter provided by an embodiment of the present technical solution. 10, 30, 40 100 [Description of main component symbols] Insulation base electron-emitting device 201005785 First electrode 12 Extension 121, 421 Second electrode 14 Grid 16 Electron emitter 18, 48 Electron emitter first end 181 Electron emitter Clearance 182 Ο Electron emitter second end 183 Carbon nanotube 184 Electron emitting end 185 Dielectric insulating layer 20, 33, 43 Electron emitting unit 22, 36, 46 Fixing element 24 Field emission electronic device 300 Peach electrode 32, 42 Cathode Electrode 34, 44 Cathode emitter 38 Surface conduction electron-emitting device 400 15

Claims (1)

201005785 十、申請專利範圍 1. 一種電子發射器件,其包括: 一絕緣基底; 排列的第一電極與複數個平行且 第二電極設置於絕緣基底上,每兩個相鄰 $極與每兩個相鄰的第二電極形成一個網格;以 及201005785 X. Patent application scope 1. An electron-emitting device comprising: an insulating substrate; a first electrode arranged in parallel with a plurality of parallel electrodes and a second electrode disposed on the insulating substrate, each two adjacent $ poles and each two Adjacent second electrodes form a grid; :數個電子發射單元分別對應設置於每個網格内 置的 電極 管陣 電子發每個電子發射單元中包括兩個相對設 發射體,該兩個電子發射體分別與相應的第一 ::二電極電連接,每個電子發射體包括一碳納米 2.如申請專利範圍第 述之碳納米管陣列 碳納米管。 1項所述之電子發射器件,其中,所 片斷包括複數個並列且均句分佈的 ❹請專利範圍第2項所述之電子發射器件 =每電:雷發射體包括一第-端及與第-端相對的第二 別與所述2發射單70中’兩個電子發射體的第一端分 體的第極及第二電極電連接4兩個電子發射 4 :一知正對設置形成一間隙。 個圍第3項所述之電子發射器件’其中,每 管的^中所述之兩個電子發射體中的碳納米 子發射體致,每個電子發射體中的碳納米管從電 射體的第一端向第二端延伸。 16 201005785 5· ,所 電膠 如申請專利範圍第3項所述之電子發射器件,其中 述之兩個電子發射體的第一端通過分子間力或導 分別與第一電極和第二電極電連接。 6.如申請專利範圍帛3項所述之電子發射器件’其中, 述之間隙的大小為〇·〗微米_2〇微米。 所 7. 如申請專利範®第3項所述之電子發射H件,其中, G 述電子發射體的第一端中的碳納米管相互平行/、、岣勾2 佈’且電子發射體的第—端中相鄰的碳納米管:分 距為納米-5納米。 、門 8. 如申請專利範圍帛3項所述之電子發射器件,其中, 収電子發射體的第二端包括複數個場發射尖端,每^ 場發射尖端包括一碳納米管束。 9.如申請專利範圍第8項所述之電子發射器件,其中, 述之場發射尖端的直徑沿遠離電子發射體第一 2 向逐漸減小。 的方 ❹10.如申請專利範圍第8項所述之電子發射器件,其中, 所述之場發射尖端的頂部為電子發射端,同一電子發 體中相鄰的電子發射端之間的距離為5〇納米_5卯納 米。 、、朽 如申請專利範圍第1項所述之電子發射器件,其中’ 所述之電子發射體的長度為1〇〇微米_5〇〇微米,' 為30微米_70微米。 二 12.如申請專利範圍第2項所述之電子發射器件,其中, 所述之碳納米管的直徑為〇 5納米_5〇納米,長度為謂 17 201005785 微米-500微米。 請專利範㈣】項所述之電子發射 所述電子發射器件中的每個第二&quot;中, 個間隔排列的延伸邻,$ &gt; ° 步包括複數 每個電子發射單元内。 〗對應狄置於 14.如申請專利範圍第彳1 s ηΜ 項所述之電子發射器件,其中, 所述複數個延伸部均設詈 、中 $,丨、邱八盘知處所述第一電極的同一側,並 _ Ρ 、相應網格内的第二電極正對。 ® 15.如申請專利範圍第14項所述 所述之延伸部與第二電極之間的距離為200 1米二 米0a plurality of electron-emitting units respectively corresponding to the electrode array arrays built in each of the grids. Each of the electron-emitting units includes two opposite emitters, and the two electron emitters respectively correspond to the first:: two The electrodes are electrically connected, and each electron emitter comprises a carbon nanometer 2. The carbon nanotube array carbon nanotubes as described in the patent application scope. The electron-emitting device according to Item 1, wherein the fragment includes a plurality of parallel and uniform sentence distributions, and the electron-emitting device of the second aspect of the patent scope = each electric: the lightning emitter includes a first end and a The second opposite end of the second emission unit 70 is electrically connected to the first and second electrodes of the first end of the two electron emitters. 4 Electron emission 4: forming a gap . The electron-emitting device according to item 3, wherein the carbon nano-sub-emitter in each of the two electron emitters in each of the tubes emits carbon nanotubes from each of the electron emitters The first end extends toward the second end. The electron-emitting device of claim 3, wherein the first ends of the two electron emitters are electrically connected to the first electrode and the second electrode by intermolecular force or conduction, respectively. connection. 6. The electron-emitting device according to claim 3, wherein the size of the gap is 〇·μm 2 〇μm. 7. The electron-emitting H piece according to claim 3, wherein the carbon nanotubes in the first end of the electron emitter are parallel to each other, and the hooks are attached to each other and the electron emitters are Adjacent carbon nanotubes in the first end: the pitch is from nanometer to 5 nanometers. 8. The electron-emitting device of claim 3, wherein the second end of the electron-emitting emitter comprises a plurality of field emission tips, and each of the field emission tips comprises a bundle of carbon nanotubes. 9. The electron-emitting device according to claim 8, wherein the diameter of the field emission tip is gradually decreased in a first direction away from the electron emitter. The electron-emitting device of claim 8, wherein the top of the field emission tip is an electron-emitting end, and the distance between adjacent electron-emitting ends in the same electron-emitting body is 5 〇Nano _5卯 nanometer. The electron-emitting device of claim 1, wherein the electron emitter has a length of 1 μm to 5 μm and a size of 30 μm to 70 μm. 2. The electron-emitting device according to claim 2, wherein the carbon nanotubes have a diameter of 〇 5 nm _ 5 〇 nanometers and a length of 17 201005785 微米 - 500 μm. The electron emission described in the patent specification (4)] is each of the second &quot; spaced apart extensions of the electron-emitting device, and the $&gt; step includes a plurality of electron-emitting units. The electron-emitting device of claim 1, wherein the plurality of extensions are provided with 詈, 中$, 丨, Qiu Bapan, said first The same side of the electrode, and _ 、 , the second electrode in the corresponding grid is facing. ® 15. The distance between the extension and the second electrode as described in claim 14 is 200 1 m 2 .
TW097128269A 2008-07-25 2008-07-25 Electron emission device TWI368248B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097128269A TWI368248B (en) 2008-07-25 2008-07-25 Electron emission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097128269A TWI368248B (en) 2008-07-25 2008-07-25 Electron emission device

Publications (2)

Publication Number Publication Date
TW201005785A true TW201005785A (en) 2010-02-01
TWI368248B TWI368248B (en) 2012-07-11

Family

ID=44826443

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097128269A TWI368248B (en) 2008-07-25 2008-07-25 Electron emission device

Country Status (1)

Country Link
TW (1) TWI368248B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI421895B (en) * 2011-01-04 2014-01-01 Hon Hai Prec Ind Co Ltd Field emission device and field emission display
TWI421897B (en) * 2011-01-04 2014-01-01 Hon Hai Prec Ind Co Ltd Field emission display
TWI421896B (en) * 2011-01-04 2014-01-01 Hon Hai Prec Ind Co Ltd Field emission device and field emission display
TWI427662B (en) * 2011-01-10 2014-02-21 Hon Hai Prec Ind Co Ltd Field emission cathod device and field emission display
TWI464772B (en) * 2012-06-20 2014-12-11 Hon Hai Prec Ind Co Ltd Thermal emission device
CN109041288A (en) * 2018-09-25 2018-12-18 佛山市昂达电器有限公司 A kind of far infrared transmission device, array and preparation method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI421895B (en) * 2011-01-04 2014-01-01 Hon Hai Prec Ind Co Ltd Field emission device and field emission display
TWI421897B (en) * 2011-01-04 2014-01-01 Hon Hai Prec Ind Co Ltd Field emission display
TWI421896B (en) * 2011-01-04 2014-01-01 Hon Hai Prec Ind Co Ltd Field emission device and field emission display
TWI427662B (en) * 2011-01-10 2014-02-21 Hon Hai Prec Ind Co Ltd Field emission cathod device and field emission display
TWI464772B (en) * 2012-06-20 2014-12-11 Hon Hai Prec Ind Co Ltd Thermal emission device
CN109041288A (en) * 2018-09-25 2018-12-18 佛山市昂达电器有限公司 A kind of far infrared transmission device, array and preparation method
CN109041288B (en) * 2018-09-25 2023-12-15 佛山市昂达电器有限公司 Far infrared emission device, array and preparation method

Also Published As

Publication number Publication date
TWI368248B (en) 2012-07-11

Similar Documents

Publication Publication Date Title
US7982382B2 (en) Thermionic electron source
US8072127B2 (en) Thermionic electron emission device
US7772755B2 (en) Thermionic emission device
US7915798B2 (en) Thermionic emission device
CN101499389B (en) Electronic emitter
CN101625946B (en) Electronic emission device
JP5199052B2 (en) Method for manufacturing thermionic emission device
US8299698B2 (en) Field emission display
JP5209659B2 (en) Incandescent light source display device
TW201005785A (en) Electron emission device
JP5102193B2 (en) Thermionic emission device
CN105448620B (en) Field-transmitting cathode and field emission apparatus
Jung et al. Horizontally aligned single-walled carbon nanotube field emitters fabricated on vertically aligned multi-walled carbon nanotube electrode arrays
CN102543633B (en) Field emission cathode device and field emission display
TWI386966B (en) Field emission display
TWI386971B (en) Field emitter and method for making the same
TWI330858B (en) Thermionic emission device
TWI352369B (en) Thermionic emission device and method for making t
TWI304598B (en) Emission source having carbon nanotube and method for making same
TWI360831B (en) Field emission electron device
TWI383420B (en) Electron emitter and displaying device using the same
TWI386964B (en) Electron emitter and displaying device using the same
TWI417924B (en) Field emission electronic device
TW200937484A (en) Electron emission device and method for making the same
TW200937485A (en) Electron emission device