TW200929463A - Light source module and manufacturing method therefor - Google Patents

Light source module and manufacturing method therefor Download PDF

Info

Publication number
TW200929463A
TW200929463A TW096151141A TW96151141A TW200929463A TW 200929463 A TW200929463 A TW 200929463A TW 096151141 A TW096151141 A TW 096151141A TW 96151141 A TW96151141 A TW 96151141A TW 200929463 A TW200929463 A TW 200929463A
Authority
TW
Taiwan
Prior art keywords
substrate
light source
source module
emitting diode
cold
Prior art date
Application number
TW096151141A
Other languages
Chinese (zh)
Other versions
TWI358801B (en
Inventor
Wen-Jang Jiang
Original Assignee
Foxsemicon Integrated Tech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foxsemicon Integrated Tech Inc filed Critical Foxsemicon Integrated Tech Inc
Priority to TW096151141A priority Critical patent/TWI358801B/en
Publication of TW200929463A publication Critical patent/TW200929463A/en
Application granted granted Critical
Publication of TWI358801B publication Critical patent/TWI358801B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating

Landscapes

  • Led Device Packages (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Led Devices (AREA)

Abstract

This invention provides a light source module. The light source module includes at least one light emitting diode chip and a thermo-electric cooler. The thermo-electric cooler has a hot substrate, a cool substrate and a plurality of thermo-electric cooling units arranged between the hot substrate and the cool substrate. The cool substrate has a first surface and a second surface opposite thereto. The at least one light emitting diode chip is arranged on the first surface and the plurality of thermo-electric cooling units are arranged on the second surface. Each of the plurality of the thermo-electric cooling units has a P-type semiconductor element and a N-type semiconductor element. The light source module further includes a heat-sink thermally connected to the hot substrate.

Description

200929463 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種光源模組及其製造方法,尤其涉及一 種具有散熱裝置之且採用發光二極體(Light-Emitting Diode,簡稱LED)作為光源之光源模組及其製造方法。 【先前技術】 由於LED具有發光效率高、耗能少等優點而越來越多 地被運用至各種照明裝置。請參見Daniel A. Steigerwald等 €>人 於文獻 IEEE Journal on Selected Topics in Quantum Electronics,Vol.8, No.2, March/April 2002 中之 Illumination With Solid State Lighting Technology —文。 由於發光二極體於使用過程中之穩定性容易受周圍溫 度之影響,如,當溫度過高時,發光二極體之發光強度容 易發生衰減,並導致其使用壽命變短。 目前採用LED作為光源之光源模組,需要設置一散熱 G裝置對LED進行散熱。 有鑒於此,提供一種具有良好散熱效果之具有散熱裝 置之光源模纟且實為必要。 【發明内容】 本發明提供一種光源模組,其包括至少一發光二極體 晶片與一熱電致冷器。該熱電致冷器具有一熱端基板、一 冷端基板以及若干設置於該熱端基板與冷端基板間之熱電 致冷單元’該冷端基板具有一第一表面與一相對之第二表 面’該發光二極體晶片設置於該第一表面,該若干熱電致 5 200929463 冷單元設置於該第二表面。每個該熱電致冷單元包括一 p 型半導體元件與N型半導體元件。該光源模組進一步具有 一散熱器,該散熱器與該熱端基板熱連接。 本發明還提供一種該光源模組之製造方法,其包括以 下步驟: (1) 於一第一基板一表面生長形成若干個發光二極體晶 片; (2) 將該若干個發光二極體晶片從該第一基板之表面移 〇植至該冷端基板之第一表面; (3) 於該冷端基板上布導電線路; (4) 於該冷端基板之第二表面依次設置該若干熱電致冷 單元與熱端基板; (5) 封裝該若干個發光二極體晶片; (6) 提供一散熱器,將其與該熱端基板熱連接。 本發明提供之光源模組,採用熱電致冷器對發光二極 ©體晶片進行主動散熱,發光二極體晶片設置於該熱電致冷 器之冷端基板,提高二者間熱耦合效率。且,本發明提供 之該光源模組之製造方法,係將外延生長之發光二極體晶 片從外延生長之襯底移植至該冷端基板,提高其二者間熱 耦合效率。 【實施方式】 下面將結合圖式對本發明作進一步之詳細說明。 請參閱圖1,為本發明提供之一種光源模組30,其包 括至少一光源32與一熱電致冷器33。該熱電致冷器33包 6 200929463 括一熱端基板35、一冷端基板31以及若干設置於該熱端基 板35與冷端基板31間之熱電致冷單元330。該冷端基板 31具有一第一表面311與一相對之第二表面312,該發光 二極體晶片321設置於該第一表面311,若干熱電致冷單元 330設置於該第二表面312。 該光源32為一封裝好之發光二極體,其包括一發光二 極體晶片321、封裝該發光二極體晶片321之一封裝體322 與一導電線323。該冷端基板32之第一表面鋪設有導電線 〇路313,該導電線323電連接該發光二極體晶片321與該 導電線路313以使得該發光二極體晶片321電連接至外部 電源裝置。 優選地,該LED光源模組30進一步包括一散熱器34, 其具有若干散熱鰭片341。該散熱器34與該熱電致冷器31 之熱端基板35熱連接,具體地,該散熱器34直接設置於 該熱端基板35之表面。 ^ 優選地,該熱電致冷器33具有若干個熱電致冷單元 330,該熱電致冷單元330包括一 P型半導體元件331與一 N型半導體元件332。 該P型半導體331與N型半導體元件332藉由第一電 極片333a電連接,且其分別藉由第二電極片333b與第三 電極片333c連接至一直流電源上。該第一電極片333a貼 敷於該第二表面312,使得該熱電致冷器33設置於該第二 表面312且與該冷端基板31熱連接。 該第一電極片333a、第二電極片333b與第三電極片 7 200929463 ,333c均採用導電性與導熱性均佳之銅等金屬製成。 優選地,該P型半導體33UN型半導體元件332分 ’別為摻雜有其他元素之Bi_Te系、Sb-Te系、Bi_Se系、Pb_Te 系、Ag-Sb_Te 系、Si_Ge 系、Fe_Si 系、Mn si 系或 Cr Si 系化合物半導體之固態塊體(Solid-Sute Cube>。 優選地’該Bi-Te系化合物為Bi2Te3。 該若干個熱電致冷單元330成陣列式排列於該第二表 面312’優選地,該若干個熱電致冷單$ 33〇串聯至該直流 罾=源’且’該陣列兩端之兩個半導體元件分別連接至該直 流電源之兩極’使得,由於載流子之傳輸作用,該熱電致 冷單元330熱流方向為從該光源31方向至散熱器%。 優選地,該若干個熱電致冷單元330均勾間隔地分佈 於該冷端基板之第二表面312。 —可以理解,該若干熱電致冷單元330也可分別連接至 若干個直流電源或並聯到一直流電源,進而對該光源U q行散熱。 優選地,該冷端基板31與熱端基板35均為絕緣性與 導熱性具佳之陶兗基板。可纽解,該冷端基板31還可為 ,面鍍有二氧化邦iC)2)之半導财基板或表面經過陽極 軋化處理之鋁複合基板等。該半導體矽基板與鋁複合基板 均具有絕緣與導熱性能良好之特性,同樣可用以作為發光 二極體晶片321與熱電致冷單元33〇間之冷端基板31。 請參閱圖2至圖7,為製造該光源模組30之一系列步 驟之不意圖。該光源模組3〇具體製造方法為: 8 200929463 於一第一基板30a上生長形成若干個發光二極體晶片 321 ; •優選地,該第一基板30a為藍寶石基板、碳化矽基板、 三五族化合物基半導體(Π-V Group Compound based Semiconductor)基板或二六族化合物基半導體(Π - VI Group Compound based Semiconductor)基板。具體地,該步驟(1) 為於該第一基板30a上採用外延(Epitaxy)生長之方法形成 該若干發光二極體晶片321。可以理解,該發光二極體晶片 Ο 321為未封裝之半導體器件。 (2) 將該若干發光二極體晶片321移植至該冷端基板31 之第一表面311 ; 具體地,將該生長形成有若干發光二極體晶片321之 第一基板31翻轉,將該若干發光二極體晶片321熱連接至 該冷端基板31之一第一表面311,優選地,用導熱膠或共 晶金屬(eutectic metal)將該若干發光二極體晶片321黏貼於 _該冷端基板31之第一表面311。 ❹ 後採用雷射剝離(Laser Lift-off)或蝕刻研磨之方法將 該第一基板321去除,使得該若干發光二極體晶片321移 植至該冷端基板之第一表面311。該雷射剝離之方法與蝕刻 研磨之方法均為本領域内已知之基底去除之方法。 (3) 於該冷端基板31之第一表面311上鋪設該導電線路 313 ; 優選地,於該步驟(3)之後,進行如下操作:於該第一 表面311塗敷一保護層314,該保護層314將該發光二極體 9 200929463 晶片321及導電線路313與外部隔離。優選地,該保護層 314為一層黑蠟。 (4) 於該冷端基板31之第二表面312設置若干熱電致冷 單元330 ; 可以理解,可繼續設置該熱端基板35使得該熱端基板 35與該若干熱電致冷單元330熱連接。 (5) 封裝該若干個發光二極體晶片。 可以理解,先去除該保護層314,後封裝該若干發光二 〇極體晶片。該封裝為本領域内已知之發光二極體晶片之封 裝方法,具體地,該封裝包括於發光二極體晶片上製造電 極、打線(wire-bonding)與封裝(Encapsulation)。可以理解, 該打線(wire-bonding)為提供一導電線323將該發光二極體 晶片321之電極電連接至該導電線路313,優選地,該導電 線323為金線(Gold Wire)。該導電線323、發光二極體晶片 321與封裝體(Encapsulant)構成該光源32。 ◎ (6)提供一散熱器34,將其與該若干熱電致冷單元330 熱連接。 該步驟(6)之具體方法為:將該散熱器34設置於該熱端 基板35之一表面且與該若干熱電致冷單元330相對設置。 本發明實施例提供之光源模組30,採用熱電致冷器33 對發光二極體晶片321進行主動散熱,且發光二極體晶片 321與該熱電致冷單元330共用一冷端基板31,提高其熱 耦合效率。且,本發明提供製造該光源模組30之方法,其 利用雷射剝離等手段將外延生長之發光二極體晶片321移 200929463 植至提供之冷端基板31上,實現該發光晶片321與熱電致 冷單元330共用一冷端基板31,提高其二者間熱耦合效率。 综上所述,本發明確已符合發明專利之要件,遂依法 提出專利申請。惟,以上所述者僅為本發明之較佳實施方 式,自不能以此限制本案之申請專利範圍。舉凡熟悉本案 技藝之人士援依本發明之精神所作之等效修飾或變化,皆 應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 Ο 圖1係本發明實施例提供之光源模組之結構示意圖。 圖2-7係製造圖1提供之光源模組之一系列步驟之示意 圖。 【主要元件符號說明】 光源模組 30 熱電致冷器 33 冷端基板 31 N型半導體元件 332 散熱器 34 P型半導體元件 331 熱端基板 35 熱電致冷單元 330 第一表面 311 第一電極片 333a 第二表面 312 第三電極片 333c 光源 32 第二電極片 333b 熱端基板 35 發光二極體晶片 321 散熱縛片 341 導電線 323 導電線路 313 封裝體 322 第一基板 30a 保護層 314 11The present invention relates to a light source module and a method of fabricating the same, and more particularly to a light-emitting diode (Light-Emitting Diode, LED) for use as a light source. Light source module and method of manufacturing the same. [Prior Art] Since LEDs have advantages of high luminous efficiency and low energy consumption, they are increasingly applied to various lighting devices. See Daniel A. Steigerwald et al., IEEE Transactions on Selected Topics in Quantum Electronics, Vol. 8, No. 2, March/April 2002, Illumination With Solid State Lighting Technology. Since the stability of the light-emitting diode during use is easily affected by the ambient temperature, for example, when the temperature is too high, the light-emitting intensity of the light-emitting diode is easily attenuated, and the service life thereof is shortened. At present, the LED is used as the light source module of the light source, and a heat dissipation G device is needed to dissipate the LED. In view of this, it is necessary to provide a light source module having a heat dissipating device having a good heat dissipation effect. SUMMARY OF THE INVENTION The present invention provides a light source module including at least one light emitting diode chip and a thermoelectric cooler. The thermoelectric cooler has a hot end substrate, a cold end substrate, and a plurality of thermoelectric cooling units disposed between the hot end substrate and the cold end substrate. The cold end substrate has a first surface and an opposite second surface. The light emitting diode chip is disposed on the first surface, and the plurality of thermoelectric 5 200929463 cold cells are disposed on the second surface. Each of the thermoelectric cooling units includes a p-type semiconductor element and an N-type semiconductor element. The light source module further has a heat sink that is thermally coupled to the hot end substrate. The invention also provides a method for manufacturing the light source module, comprising the steps of: (1) growing a plurality of light emitting diode chips on a surface of a first substrate; (2) forming the plurality of light emitting diode chips Moving from the surface of the first substrate to the first surface of the cold-end substrate; (3) laying a conductive line on the cold-end substrate; (4) sequentially setting the plurality of thermoelectrics on the second surface of the cold-end substrate a cooling unit and a hot end substrate; (5) encapsulating the plurality of light emitting diode chips; (6) providing a heat sink to thermally connect the hot end substrate. The light source module provided by the invention uses a thermoelectric cooler to actively dissipate the light-emitting diodes from the body wafer, and the light-emitting diode chip is disposed on the cold-end substrate of the thermoelectric cooler to improve the thermal coupling efficiency between the two. Moreover, the method for fabricating the light source module of the present invention is to transplant an epitaxially grown light-emitting diode wafer from an epitaxially grown substrate to the cold-end substrate to improve the thermal coupling efficiency therebetween. [Embodiment] Hereinafter, the present invention will be further described in detail with reference to the drawings. Please refer to FIG. 1 , which is a light source module 30 according to the present invention, which includes at least one light source 32 and a thermoelectric cooler 33 . The thermoelectric cooler 33 package 6 200929463 includes a hot end substrate 35, a cold end substrate 31, and a plurality of thermoelectric cooling units 330 disposed between the hot end substrate 35 and the cold end substrate 31. The cold junction substrate 31 has a first surface 311 and an opposite second surface 312. The LED substrate 321 is disposed on the first surface 311, and the plurality of thermoelectric cooling units 330 are disposed on the second surface 312. The light source 32 is a packaged light emitting diode, and includes a light emitting diode chip 321 , a package body 322 encapsulating the light emitting diode chip 321 , and a conductive line 323 . The first surface of the cold-end substrate 32 is covered with a conductive line 313 electrically connected to the LED chip 321 and the conductive line 313 to electrically connect the LED chip 321 to an external power supply device. . Preferably, the LED light source module 30 further includes a heat sink 34 having a plurality of heat dissipation fins 341. The heat sink 34 is thermally connected to the hot end substrate 35 of the thermoelectric cooler 31. Specifically, the heat sink 34 is directly disposed on the surface of the hot end substrate 35. Preferably, the thermoelectric cooler 33 has a plurality of thermoelectric cooling units 330, and the pyroelectric cooling unit 330 includes a P-type semiconductor element 331 and an N-type semiconductor element 332. The P-type semiconductor 331 and the N-type semiconductor element 332 are electrically connected by the first electrode piece 333a, and are connected to the DC power supply by the second electrode piece 333b and the third electrode piece 333c, respectively. The first electrode sheet 333a is attached to the second surface 312 such that the thermoelectric cooler 33 is disposed on the second surface 312 and is thermally connected to the cold end substrate 31. The first electrode sheet 333a, the second electrode sheet 333b, and the third electrode sheet 7200929463, 333c are each made of a metal such as copper having excellent conductivity and thermal conductivity. Preferably, the P-type semiconductor 33UN-type semiconductor device 332 is divided into a Bi_Te system, an Sb-Te system, a Bi_Se system, a Pb_Te system, an Ag-Sb_Te system, a Si_Ge system, an Fe_Si system, and an Mn si system doped with other elements. Or a solid block of a Cr Si based compound semiconductor (Solid-Sute Cube). Preferably, the Bi-Te compound is Bi2Te3. The plurality of thermoelectric cooling units 330 are arranged in an array on the second surface 312'. The plurality of thermoelectric cooling sheets are connected to the DC 罾=source' and the two semiconductor elements at both ends of the array are respectively connected to the two poles of the DC power source, so that due to the transmission of carriers, The heat flow direction of the thermoelectric cooling unit 330 is from the direction of the light source 31 to the heat sink %. Preferably, the plurality of thermoelectric cooling units 330 are spaced apart from each other on the second surface 312 of the cold end substrate. - It can be understood that The plurality of thermoelectric cooling units 330 can also be respectively connected to a plurality of DC power sources or connected in parallel to the DC power source to further dissipate heat from the light source U q. Preferably, the cold end substrate 31 and the hot end substrate 35 are both insulated and thermally conductive. Sex The ceramic substrate Yan. New solutions may be, the substrate 31 may also be cold end, surface plating, a state dioxide iC) 2) of the semiconductor substrate or the surface of fiscal treatment of anodized aluminum rolled composite substrate. Both the semiconductor germanium substrate and the aluminum composite substrate have the characteristics of good insulation and thermal conductivity, and can also be used as the cold-end substrate 31 between the light-emitting diode wafer 321 and the thermoelectric cooling unit 33. Please refer to FIG. 2 to FIG. 7 for the purpose of manufacturing a series of steps of the light source module 30. The light source module 3 is specifically manufactured by: 8 200929463, a plurality of light emitting diode chips 321 are grown on a first substrate 30a; preferably, the first substrate 30a is a sapphire substrate, a tantalum carbide substrate, and three or five Π-V Group Compound based Semiconductor substrate or Group - VI Group Compound based Semiconductor substrate. Specifically, the step (1) is to form the plurality of light emitting diode chips 321 by epitaxial growth on the first substrate 30a. It can be understood that the light emitting diode chip 321 is an unpackaged semiconductor device. (2) transplanting the plurality of light-emitting diode chips 321 to the first surface 311 of the cold-end substrate 31; specifically, flipping the first substrate 31 on which the plurality of light-emitting diode wafers 321 are formed, The light emitting diode chip 321 is thermally connected to one of the first surfaces 311 of the cold end substrate 31. Preferably, the plurality of light emitting diode chips 321 are adhered to the cold end by a thermal conductive adhesive or a eutectic metal. The first surface 311 of the substrate 31. The first substrate 321 is removed by laser lift-off or etching, so that the plurality of light-emitting diode chips 321 are transferred to the first surface 311 of the cold-end substrate. The laser stripping method and the etching method are both methods of substrate removal known in the art. (3) laying the conductive line 313 on the first surface 311 of the cold-end substrate 31. Preferably, after the step (3), performing the following operation: applying a protective layer 314 to the first surface 311, The protective layer 314 isolates the light-emitting diode 9 200929463 wafer 321 and the conductive line 313 from the outside. Preferably, the protective layer 314 is a layer of black wax. (4) A plurality of thermoelectric cooling units 330 are disposed on the second surface 312 of the cold-end substrate 31. It can be understood that the hot-end substrate 35 can be continuously disposed such that the hot-end substrate 35 is thermally connected to the plurality of thermoelectric cooling units 330. (5) Encapsulating the plurality of light emitting diode chips. It can be understood that the protective layer 314 is removed first, and then the plurality of light emitting diode wafers are packaged. The package is a method of packaging a light-emitting diode wafer known in the art. Specifically, the package includes an electrode, a wire-bonding, and an encapsulation on a light-emitting diode wafer. It can be understood that the wire-bonding is to provide a conductive wire 323 to electrically connect the electrode of the LED chip 321 to the conductive line 313. Preferably, the conductive line 323 is a gold wire. The conductive line 323, the light-emitting diode chip 321 and the package (Encapsulant) constitute the light source 32. ◎ (6) A heat sink 34 is provided which is thermally connected to the plurality of thermoelectric cooling units 330. The specific method of the step (6) is that the heat sink 34 is disposed on one surface of the hot end substrate 35 and disposed opposite to the plurality of thermoelectric cooling units 330. The light source module 30 of the embodiment of the present invention uses the thermoelectric cooler 33 to actively dissipate the light emitting diode chip 321 , and the light emitting diode chip 321 and the thermoelectric cooling unit 330 share a cold end substrate 31 to improve Its thermal coupling efficiency. Moreover, the present invention provides a method for manufacturing the light source module 30, which uses a laser stripping method or the like to move the epitaxially grown light-emitting diode chip 321 to the cold-end substrate 31 provided, thereby realizing the light-emitting chip 321 and the thermoelectric The cooling unit 330 shares a cold end substrate 31 to improve the thermal coupling efficiency therebetween. In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by persons skilled in the art in light of the present invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic structural view of a light source module according to an embodiment of the present invention. 2-7 are schematic illustrations of a series of steps for fabricating the light source module of Fig. 1. [Main component symbol description] Light source module 30 Thermoelectric cooler 33 Cold end substrate 31 N-type semiconductor element 332 Heat sink 34 P-type semiconductor element 331 Hot end substrate 35 Thermoelectric cooling unit 330 First surface 311 First electrode sheet 333a Second surface 312 third electrode sheet 333c light source 32 second electrode sheet 333b hot end substrate 35 light emitting diode wafer 321 heat dissipation tab 341 conductive line 323 conductive line 313 package body 322 first substrate 30a protective layer 314 11

Claims (1)

200929463 十、申請專利範圍: 1. 一種光源模組,其包括: 至少一發光二極體晶片,該至少一發光二極體晶片為光 源;以及 一熱電致冷器,該熱電致冷器包括一熱端基板、一冷端基 ,以及若干個設置於該熱端基板與冷端基板間之熱電致ς 單疋,該冷端基板具有-第一表面與一相重子之第二表面, 該發光二極體晶片設置於該冷端基板之第—表面,該若干 «個熱電致冷單元設置於該冷端基板之第二表面。 2·如申請專利ϋ圍第工項所述之光源模組,其中,每個熱 電致冷單元包括一 P型半導體元件與- N型半導體元件了 所述1型半導體元件與N型半導體元件串聯。 3. 如申請專利範圍第1項所述之光源模組,其中,該若干 個熱電致冷單元串聯於__直流電流供電電路。 4. 如申請專利範圍帛i項所述之光源模組,其中,該若干 〇㈣電致冷單元均勾間隔地分佈於該冷端基板之第二表 面。 5. 如申請專利範㈣i項所述之光源模組,其十,該若干 :熱電致冷單元分別獨立連接至若干個直流電流供電電 路0 6·如申請專利範圍第2項所述之光源模組,其t,該卩型 ^ N型半導體元件為由Bi-Te系、Sb-Te系、Bi-Se系、Pb-Te 会、、Ag-Sb-Te 系、Si_Ge 系、以々系、Mn_si 系或 Cr_si 系化合物半導體材料制成之固態塊體。 12 200929463 7·如申請專利範圍第1項所述之光源模組,其中,該光源 模組進一步具有一散熱器’該散熱器與該熱端基板熱連接。 • 8. 一種光源模組之製造方法,其包括以下步驟: (1) k供一第一基板,於該第一基板之一表面生長形成至少 一發光二極體晶片; (2) 將該至少一發光二極體晶片貼附於一第二基板之一第一 表面,並移除該第一基板; (3) 於該第二基板之第一表面形成導電線路; 〇 (4)於該冷端基板之一與第一表面相對之第二表面上依次設 置若干熱電致冷單元與一第三基板,該第二基板、若干熱 電致冷單元與第三基板構成一熱電致冷器; (5)封裝該若干個發光二極體晶片。 9. 如申請專利範圍第8項所述之光源模組之製造方法,其 中該第基板為藍寶石基板、碳化石夕基板、三五族化合 物基半導體基板或二六族化合物基半導體基板,該生長形 ❹成發光一極體晶片之方法為外延生長。 10. 如中請專利範圍第8項所述之光源模組之製造方法, 其中’該冷端基板為表面财二氧切之半導财基板、 =經過陽極氧化處理之銘複合基板或電絕緣且導熱之陶 瓷基板。 η.,如申請專利範圍第8項所述之光源模組之製造方法,其 才木用雷射剝離或钮刻研磨之方法將該第一基板移除。 13200929463 X. Patent application scope: 1. A light source module, comprising: at least one light emitting diode chip, the at least one light emitting diode chip is a light source; and a thermoelectric refrigerator, the thermoelectric cooler comprises a a hot-end substrate, a cold-end base, and a plurality of thermoelectrically-conductive substrates disposed between the hot-end substrate and the cold-end substrate, the cold-end substrate having a first surface and a second surface of a phase, the illuminating The diode chip is disposed on the first surface of the cold end substrate, and the plurality of thermoelectric cooling units are disposed on the second surface of the cold end substrate. 2. The light source module of claim 1, wherein each thermoelectric cooling unit comprises a P-type semiconductor element and an -N type semiconductor element, wherein the type 1 semiconductor element and the N-type semiconductor element are connected in series . 3. The light source module of claim 1, wherein the plurality of thermoelectric cooling units are connected in series to a __DC current supply circuit. 4. The light source module of claim 2, wherein the plurality of (four) electric refrigeration units are spaced apart from each other on the second surface of the cold end substrate. 5. The light source module according to item (4), wherein the plurality of thermoelectric refrigeration units are independently connected to a plurality of direct current power supply circuits, and the light source module is as described in claim 2 In the group, the 卩-type N-type semiconductor device is made of Bi-Te, Sb-Te, Bi-Se, Pb-Te, Ag-Sb-Te, Si_Ge, lanthanide, A solid block made of Mn_si or Cr_si compound semiconductor material. The light source module of claim 1, wherein the light source module further has a heat sink, the heat sink being thermally coupled to the hot end substrate. 8. A method of manufacturing a light source module, comprising the steps of: (1) k supplying a first substrate, growing at least one light emitting diode chip on a surface of the first substrate; (2) a light emitting diode chip is attached to a first surface of a second substrate, and the first substrate is removed; (3) forming a conductive line on the first surface of the second substrate; a plurality of thermoelectric cooling units and a third substrate are sequentially disposed on the second surface opposite to the first surface, and the second substrate, the plurality of thermoelectric cooling units and the third substrate form a thermoelectric cooler; The plurality of light emitting diode chips are packaged. 9. The method of manufacturing a light source module according to claim 8, wherein the second substrate is a sapphire substrate, a carbonized carbide substrate, a tri-five compound-based semiconductor substrate or a di-hexa-based semiconductor substrate, and the growth is performed. The method of forming a light-emitting one-pole wafer is epitaxial growth. 10. The method of manufacturing a light source module according to claim 8, wherein the cold end substrate is a semi-conducting substrate with a surface dioxet, an anodized composite substrate or an electrical insulation. And a thermally conductive ceramic substrate. The method of manufacturing a light source module according to claim 8, wherein the first substrate is removed by laser stripping or button polishing. 13
TW096151141A 2007-12-31 2007-12-31 Light source module and manufacturing method there TWI358801B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW096151141A TWI358801B (en) 2007-12-31 2007-12-31 Light source module and manufacturing method there

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096151141A TWI358801B (en) 2007-12-31 2007-12-31 Light source module and manufacturing method there

Publications (2)

Publication Number Publication Date
TW200929463A true TW200929463A (en) 2009-07-01
TWI358801B TWI358801B (en) 2012-02-21

Family

ID=44864489

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096151141A TWI358801B (en) 2007-12-31 2007-12-31 Light source module and manufacturing method there

Country Status (1)

Country Link
TW (1) TWI358801B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9322580B2 (en) 2011-02-05 2016-04-26 Laird Technologies, Inc. Circuit assemblies including thermoelectric modules
TWI832362B (en) * 2021-08-13 2024-02-11 台灣積體電路製造股份有限公司 Integrated circuit device, chip package, and method for fabricating chip package

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9322580B2 (en) 2011-02-05 2016-04-26 Laird Technologies, Inc. Circuit assemblies including thermoelectric modules
TWI832362B (en) * 2021-08-13 2024-02-11 台灣積體電路製造股份有限公司 Integrated circuit device, chip package, and method for fabricating chip package

Also Published As

Publication number Publication date
TWI358801B (en) 2012-02-21

Similar Documents

Publication Publication Date Title
CN101471337B (en) Light source die set with good radiating performance
CN101465347A (en) Light source die set and method of manufacturing the same
US7997087B2 (en) Thin film thermoelectric devices for hot-spot thermal management in microprocessors and other electronics
US6743972B2 (en) Heat dissipating IC devices
JP3566657B2 (en) Semiconductor device with integrated thermoelectric cooler and method of manufacturing the same
US6981380B2 (en) Thermoelectric cooling for microelectronic packages and dice
EP2937908B1 (en) Transistor, heat sink structure thereof, and method for manufacturing the same
US20090175035A1 (en) Light source module and method for manufacturing same
US20100257871A1 (en) Thin film thermoelectric devices for power conversion and cooling
TWI549322B (en) Led component by integrating epitaxial structure and package substrate together and method of manufacturing the same
US20050045901A1 (en) Package for a semiconductor light emitting device
JP2009231729A (en) Semiconductor device
JP2007535803A (en) Thin film thermoelectric devices for power conversion and cooling
EP1590838A2 (en) Peltier cooler integrated with electronic device(s)
Li et al. Active thermal management of high-power LED through chip on thermoelectric cooler
Liu et al. High efficiency silicon-based high power LED package integrated with micro-thermoelectric device
CN102194972A (en) Light-emitting device (LED) package component
Cheng Thermal management of high-power white LED package
US8222728B2 (en) Active solid heatsink device and fabricating method thereof
TW200929463A (en) Light source module and manufacturing method therefor
JP2015076607A (en) Semiconductor chip structure
Zhang et al. Analysis and modeling of thermal-electric coupling effect of high-power monolithically integrated light-emitting diode
CN205227913U (en) Hot electric refrigeration ware
KR102013849B1 (en) Self-generation electricity light emitting diode using seeback effect, method for manufacturing the same, and light emitting diode module having the same
TW200933833A (en) Light source module and method for manufacturing the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees