TW200927972A - Method for making indium oxide tranparent conductive film - Google Patents

Method for making indium oxide tranparent conductive film Download PDF

Info

Publication number
TW200927972A
TW200927972A TW97138076A TW97138076A TW200927972A TW 200927972 A TW200927972 A TW 200927972A TW 97138076 A TW97138076 A TW 97138076A TW 97138076 A TW97138076 A TW 97138076A TW 200927972 A TW200927972 A TW 200927972A
Authority
TW
Taiwan
Prior art keywords
film
partial pressure
powder
transparent conductive
oxygen
Prior art date
Application number
TW97138076A
Other languages
Chinese (zh)
Inventor
Seiichiro Takahashi
Norihiko Miyashita
Original Assignee
Mitsui Mining & Smelting Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining & Smelting Co filed Critical Mitsui Mining & Smelting Co
Publication of TW200927972A publication Critical patent/TW200927972A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

This invention provides a method for making a transparent conductive film, which is formed by using a sputtering target having a sintered oxide which contains indium oxide, and optional tin, and an additive element, and the amorphous film is formed under a condition that the water partial pressure being 1. 0x10<SP>-5</SP>Pa or less.

Description

200927972 六、發明說明: 【發明所屬之技術領域】 本發明有關一種膜全體皆為均勻的非晶形膜 • (amorphous film),能容易藉由弱酸蝕刻=實施圖案化 ‘ (patterning) ’且可容易結晶化’而在結晶化後成為低電 • 阻且高透射率的透明導電膜之製造方法。 【先前技術】 由於氧化銦-氧化錫(In2〇3_Sn〇2的複合氧化物,以下, © _「ITG」)膜’係可見光透㈣高’且導電性高之故, 廣泛用於液晶顯示«置作為透明導_、或防止玻缚結露 用發熱膜、紅外線反射膜等,惟有難於作成非晶形膜之問 另-方面’作為非晶形膜者,周知有氧化銦_氧 ⑽)透明導電膜,又’本發明切人先前提案於ιτ〇膜中 添加石夕作為透明導電膜並依既定條件成膜之非晶形透明導 〇電膜之製造方法(參考專利文U)。再者,本發明申請人 發現,添加有鋇之氧化銦系透明導電膜,係一種低電阻且 透明性優異的非晶形膜而藉由弱酸蝕刻即可容 化、又更可容易結晶化之事實而先前已提出申請(日本特願 2007- 095783)。 士如藉由濺鍍(sputtering)而進行此種非晶形膜之成磨 時’-般的作法係在將作為惰性氣體之氬氣(Ar)導 入於满 管理所到達之真空度同時控制會對電阻率及透制 〜〜響之氧乳分慶,惟如觀察成膜於基板全體之膜 320653 3 200927972 時,有時在面内會產生蝕刻性之不均勻。於具有此種斑紋 之不均勻膜,如使用草酸等弱酸並依濕式蝕刻(wet etching)而實施圖案化時,則產生蝕刻殘留物以致有成為 .成品率下降要因之問題。又有因退火處理(annealing)所弓} ‘ 起之於面内發生結晶化溫度不一致之問題。 [專利文獻1 ]日本特開2005-135649號公報(申請專利 範圍) 【發明内容】 w [發明欲解決之課題] 鑑於此種情況,本發明之課題在於提供一種透明導電 膜之製造方法,該膜全體皆為均勻的非晶形膜且能容易藉 由弱酸蝕刻而實施圖案化,並可容易使其結晶化,且在結 曰曰化後成為低電阻且兩透射率的透明導電膜者。.200927972 VI. Description of the Invention: [Technical Field] The present invention relates to a film having a uniform amorphous film which can be easily patterned by weak acid etching = patterning A method of producing a transparent conductive film which is crystallized and becomes a low electric resistance and high transmittance after crystallization. [Prior Art] Since indium oxide-tin oxide (composite oxide of In2〇3_Sn〇2, the following, © _"ITG") film is light-transmissive (four) high and highly conductive, it is widely used for liquid crystal display« It is known as a transparent conductive film, or a heat-radiating film for preventing binding condensation, an infrared reflecting film, etc., but it is difficult to form an amorphous film. As an amorphous film, an indium oxide-oxygen (10) transparent conductive film is known. Further, the present invention has previously proposed a method for producing an amorphous transparent conductive film which is formed by adding a shixi as a transparent conductive film to a film of ιτ〇 and forming a film according to a predetermined condition (refer to Patent U). Further, the applicant of the present invention has found that an indium oxide-based transparent conductive film to which ruthenium is added is an amorphous film having low resistance and excellent transparency, and can be filled by weak acid etching and more easily crystallized. The application has been filed previously (Japan's special wish 2007-095783). For the grinding of such an amorphous film by sputtering, the general method is to introduce the argon gas (Ar) as an inert gas into the vacuum reached by the full management while controlling The resistivity and the osmotic pressure of the osmotic pressure of the ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ When a non-uniform film having such a streak is patterned by wet etching using a weak acid such as oxalic acid, etching residue is generated to cause a problem of a decrease in yield. There is also the problem of inconsistent crystallization temperature due to annealing in the annealing. [Patent Document 1] Japanese Laid-Open Patent Publication No. 2005-135649 (Patent Application) [Description of the Invention] In view of the above circumstances, an object of the present invention is to provide a method for producing a transparent conductive film. The entire film is a uniform amorphous film and can be easily patterned by weak acid etching, and can be easily crystallized, and becomes a low-resistance and two-transmissive transparent conductive film after the formation. .

[解決課題之手段] 本發明人等為了解決上述課題而經專心研究之結果獲 〇得,當藉由添加元素之添加而進行非晶形的氧化銦系透明 導電膜之成膜時,如膜面的水與作為反應性氣體之氧氣間 的反應不均勻時,則不能製得膜全體皆為均勻的非晶形狀 態,並且低電阻且透明性優異的膜之心得,終於完成本發 明。 x 亦即獲知’一般濺鍍室(sputtering chamber)内,由 於隨著排氣時間而殘留氣體分壓減少,並且當搬運玻璃等 基板至真空室(vacuum chamber)内時所帶進之水分起源的 吸附氣體等的影響,以致環境將大為變化,惟此種環境的 320653 4 200927972 變化,尤其是殘留之水將對如上述的非晶形膜的成膜造成 很大的影響,以致成為不均勻的成骐的原因。又,獲知, 特別是在大型濺鍍裝置中’由於當為了在大型玻璃基板上 •進行成膜,搬運基板至真空室内時所帶進之水分量會增 多,且基板内水的吸附置會成為不均勻之故,將發生水與 反應性氣體之間的反應不均或溫度不均,以致在餘刻性上 發生不均勻之情況。 0 根據此種心得所完成之本發明,係經由將水的分壓控 制為既定值以下之低值,即可進行臈全體皆均勻的非晶形 犋之成膜,由此可藉由弱酸蝕刻而容易並均勻地進行圖案 化,且更容易使膜進行結晶化。 本發明之第1狀態係一種透明導電膜之製造方法,其 特徵為:當使用具備有含有氧化銦與需要時之錫同時含有 泰加元素之氧化物燒結體之滅鏡乾(sputtering target) 進行膜之成膜,而製造含有氧化銦與需要時之錫同時含有 〇,添加元素且為非晶形的透明導電膜時’將成膜時的水的分 壓(partial pressure)作成 lxi〇-5pa(帕斯卡)以下。 在此第1狀態下,由於將水的分壓控制在既定值以下 之故,tT.進行膜全體皆均勻的非晶形的膜之成膜。 本發明之第2狀態,係如第1狀態所記載之透明導電 祺之製造方法,其中,在非晶形膜之成膜後,藉由退火處 理而作成結晶化之透明導電膜。 在此第2狀態下,經成膜為非晶形膜後,町藉由退火 而容易使其結晶化,並使其具有时弱酸性。 5 320653 200927972 載之透明導3:!方:如::至第3之任-狀態— 自_)爛述 咖以及觸所成群(=::tL抓㈣)、 二1=如使用選自“、1一、 [發明之效果] 之添加%素’即可作成非晶形膜。 ❹ 含有得含有氧化銦與需要時之錫同時 時的水的八膝為非晶形的透明導電膜時,經由將成膜 體皆為均i』=xi〇5pa以下,即可發揮能製造一種全 化,並可容易li曰Γ ’可藉由弱酸钱刻而容易進行圖案 的透明導電=效果。晶化,結晶化後為低電阻且透射率高 【實施方式;] Ο 電膜化銦系透明導電膜所用之透明導 且含有添加元素乏氧2鋼作為主體’需要時含有锡者, 其氧化物之狀t :燒結體,添加元素,係只要維持 —tion)之狀態 &amp;固浴體(_d 在此,添加元素而ί,ΎΤ 以限定。 等。::而二:可例示··bSiWLi'u、 形膜之成膜。」添加元素的添加,而可實現非晶 莫耳以上未達銦1莫耳含有 佳為0.0001莫耳以上未達〇1〇 320653 200927972 莫耳,更佳為Ο.刚2以 成之範圍為宜。如少於此量,達二,舞作為形 多於此量,則^、 則添加之效果不顯著,又, 黃色情形會成之透明導電骐的電阻增高以及帶 電膜中的添;^素的含#錢㈣形成之透明導 為同一含量。’、 為與所使用之濺鍍靶中之含量 踢的含量,係採用相 Ο 莫耳之濺鍍靶作&gt; ^莫耳含有0至o.d 相對於鋼圍。如含有錫的情形,以採用 成膜為宜。如在此Γ · 1至G.3莫耳範圍之賴把進行 的密度以及遷移率:持=適當控制嶋的載體電子 羊保持導電性在良好的範圍。又,如添 ± &amp;圍化,則會降低濺鍍靶的載體電子的遷移率同 :使導電性劣化而不宜。在此,由上述之濺鍍靶所形 成之透明導電财_含4,觸使用线_中的含量 為同一含量。 由於此種濺鍍靶,具有能以DC(直流)磁控(magnetr〇n) 雜進行減鍍程度的電阻值,因而能以比較廉價的DC磁控 賤鑛進行濺鍍,當然亦可採用高頻的磁控濺鍍裝置。 如使用此種透明導電膜用濺鍍靶,即可形成同一組成 的氧化銦系透明導電膜。此種氧化錮系透明導電膜的組成 分析,可將單膜全部溶解後,使用ICP(感應式藕合電漿, inductively coupled plasma)進行分析。又,如膜本身成 為元件構成的情形等,則按照需要而使用FIB(聚焦離子 束’ focused ion beam)等裁切相當的部分的剖面’採用附 7 320653 200927972 於 SEM(掃瞒式電子顯微鏡,Scanning electron microscope) 或TEM(透射式電子顯微鏡,transmission electron microscope)等之元素分析裝置(EDS(能量色散分光計, energy dispersive spectrometer))或 WDS(波長色散光譜 儀(Wavelength dispersive spectrometer)、奥格電子分 光法(Auger electron spectroscopy)等),亦能加以特定。 ❹ 由此種本發明而製造之氧化銦系透明導電膜,係由於 含有既定量的既定添加元素之故,雖因含量而異,惟經由 在室溫以上較結晶化溫度為低的溫度條件(例如,較2〇〇£&gt;c 為低的溫度條件,較佳為較15(TC為低的溫度條件,更佳 為較100°C為低的溫度條件)進行成膜,即可在非晶形狀的 狀態下成膜。又,此種非晶形的膜,具有能以弱酸性的勉 刻劑(etchant)進行钱刻之優點。在此,本說明書中, 係包含於圖案化步驟中者,且為用以獲得既定之圓案者。 ❾ 、又:所獲得之透明導電膜的電阻率(⑽州吻),雖 因添加元素的種類、合暑亡 ^•(^〜。 惟電阻率為在1^ 再者’經歧之_結晶化溫度, 元素的種類、含量而有所不同,且隨著含^有之添加 惟經由則0(rc至30代的 =而上升, 其結晶化。由於此種 ;^仃敎處理,即可使 中所使用之故,亦可'在通常的半導體製造過程 此溫度範圍中,==種製程中使其結晶化。再者,在 至鮮C結晶化者更㈣為佳,以在5〇 叫200至25()。(:結晶化者最佳。 320653 8 200927972 flb製付非晶形的膜之添加元素,可例舉:、 曰〔Li ' La、Ca、Mg、Y等。當添加此種元素以形成 非曰曰形的膜時,如在既定的水分壓下進行成膜,即可防止 , 不句勻之發生。另外,此種防止钱刻性不均勻之效 ‘果’可推剩為在能製得非晶形膜之ΙΖ0中亦會發生。 在此,退火處理,係指於大氣中、環境氣體中,真空 中在所需要溫度下進行一定時間的加熱之意。該一定時 ❾間,一般係指數分鐘至數小時左右,惟工業製程上,只要 是效果相同,一般以短時間為佳。 經此種藉由退火處理而結晶化後的透明導電膜,其短 波長側的透射率即獲提升,例如’波長400至50〇nm的平 均透射率會成為以上。又,不會因此而有如在IZO膜 成為問題之膜帶黃色的問題。在此,—般而言,短波長侧 的透射率,·係愈高者愈佳。 . 另一方面’經結晶化之透明導電膜,抗蝕刻性增高, ❹以致以祕刻非晶形膜之弱酸性勉刻劑不能進行韻刻。因 而,於後續步驟中的抗腐蝕性、或元件(device)本 環境性將獲提升。 如此,在本發明中,由於能改變添加元素的含量,藉 以設定成膜後的結晶化溫度為所需要的溫度之故,成^ 後,可作成避免接受結晶化溫度以上的溫度的熱處理並可 維持非晶形狀態之方式,亦可作成在成膜後經圖案化後, 以、’、。日0化之溫度以上的溫度進行熱處理使其結晶化,以改 變抗蝕刻性之方式。 320653 9 200927972 其次’將就本發明中所採用之減鑛把的製造方法加以 說明,惟此等僅係例示者,製造方法並不特別加以限定。 首先’構成本發明的濺鍍靶之起始原料而言,一般的 作法係採用構成元素的氧化物,惟亦可將此等的單體、化 合物、複合氧化物等作為原料使用。如使用單體、化合物 時,則作成預先經過製作成氧化物之製程。 ❹[Means for Solving the Problem] The inventors of the present invention have obtained the results of intensive studies in order to solve the above problems, and when the amorphous indium oxide-based transparent conductive film is formed by the addition of an additive element, for example, a film surface When the reaction between the water and the oxygen as the reactive gas is not uniform, the present invention can be finally obtained by not obtaining an amorphous state in which the entire film is uniform, and a film having low resistance and excellent transparency. x is also known in the 'sputtering chamber', because the residual gas partial pressure decreases with the exhaust time, and the moisture originating when the substrate such as glass is transported into the vacuum chamber The influence of adsorption gas, etc., so that the environment will change greatly, but the change of 320653 4 200927972 in this environment, especially the residual water will have a great influence on the film formation of the amorphous film as described above, so that it becomes uneven. The reason for success. Further, it has been found that, in particular, in a large-scale sputtering apparatus, "in order to form a film on a large-sized glass substrate, the amount of water carried in transporting the substrate into the vacuum chamber is increased, and the adsorption of water in the substrate becomes In the case of unevenness, uneven reaction or temperature unevenness between the water and the reactive gas occurs, so that unevenness occurs in the residual property. According to the present invention, the present invention can be formed by controlling the partial pressure of water to a low value below a predetermined value, thereby forming a film of an amorphous crucible which is uniform throughout the crucible, thereby being capable of being etched by weak acid. Patterning is easy and uniform, and it is easier to crystallize the film. The first aspect of the present invention is a method for producing a transparent conductive film, which is characterized in that a sputtering target having an oxide sintered body containing a combination of indium oxide and tin as needed while containing an elemental oxide is used. When a film is formed, and a transparent conductive film containing indium oxide and tin is contained at the same time as needed, and an element is added and is amorphous, the partial pressure of water at the time of film formation is made into lxi〇-5pa ( Pascal) below. In the first state, since the partial pressure of water is controlled to be equal to or lower than a predetermined value, tT is formed into a film of an amorphous film in which the entire film is uniform. The second embodiment of the present invention is a method for producing a transparent conductive crucible according to the first aspect, wherein the amorphous conductive film is formed into a crystallized transparent conductive film by annealing treatment. In the second state, after the film is formed into an amorphous film, the crystallization is easily crystallization by annealing, and it is made weak in acidity. 5 320653 200927972 Transparent guide 3:! Party: such as: to the 3rd - state - since _) rotten coffee and touch group (=::tL scratch (four)), two 1 = if used "1", [Effect of the invention] The addition of %" can be used to form an amorphous film. 时 When an eight-knee amorphous transparent conductive film containing water containing indium oxide and tin at the same time is required, The film forming body is all equal to i xi = xi 〇 5pa, and can be used to create a kind of versatility, and can be easily 透明 'transparent conductive effect which can be easily patterned by weak acid etching. Crystallization, After crystallization, it has low resistance and high transmittance. [Embodiment;] 透明 Transparent conductive film used for epoxidized indium-based transparent conductive film and containing added element hypoxic steel as the main body. t : sintered body, added element, as long as it maintains the state &amp; solid bath (_d here, add elements and ί, ΎΤ to limit. etc.:: and two: can be illustrated · · bSiWLi'u, The film formation of the film." Adding the addition of elements, and achieving the amorphous mole above the indium 1 molar content is preferably 0.000 1 mole above not reached 〇1〇320653 200927972 Moer, better for Ο. Just 2 is suitable for the range. If less than this amount, up to two, the dance is more than this amount, then ^, then add The effect is not significant. In addition, the yellow condition will become the increase of the resistance of the transparent conductive enamel and the addition of the charged film; the transparent content of the yin containing #钱(四) will be the same content. ', for the sputtering target used The content of the content of the kick is based on the sputtering target of the 莫 莫 Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo The density and mobility of the G.3 Moer range: The carrier electronic control sheep with proper control of 嶋 maintains good conductivity. In addition, if it is added, it will reduce the sputtering target. The mobility of the carrier electrons is the same as that of the conductivity deterioration. Here, the transparent conductive material formed by the sputtering target described above has the same content in the touch line _. a target having a resistance value capable of being deplated by DC (direct current) magnetron (magnetr〇n) Therefore, it is possible to perform sputtering with a relatively inexpensive DC magnetron ore, and of course, a high-frequency magnetron sputtering device can be used. If such a transparent conductive film is used for a sputtering target, an indium oxide transparent layer having the same composition can be formed. Conductive film. The composition analysis of such a ruthenium oxide-based transparent conductive film can be performed by ICP (inductively coupled plasma) after all the single film is dissolved, and the film itself becomes a component. Etc., if necessary, use a FIB (focused ion beam 'focused ion beam) or the like to cut a section of a similar section 'Using 7 320653 200927972 to SEM (Scanning electron microscope) or TEM (transmissive electron) Elemental analysis device (EDS (energy dispersive spectrometer)) or WDS (wavelength dispersive spectrometer, Auger electron spectroscopy, etc.) Can be specified.氧化 The indium oxide-based transparent conductive film produced by the present invention contains a predetermined amount of a predetermined additive element, and although it varies depending on the content, it is a temperature condition lower than a crystallization temperature at room temperature or higher ( For example, a temperature condition lower than 2 & £ &gt; c is preferably formed at a lower temperature than 15 (TC is a lower temperature condition, more preferably a lower temperature condition than 100 ° C). The film is formed in a state of a crystal shape. Further, such an amorphous film has the advantage of being able to be engraved with a weakly acidic etchant. Here, in the present specification, it is included in the patterning step. And used to obtain the established round case. ❾ , and: the resistivity of the obtained transparent conductive film ((10) state kiss), although due to the type of added elements, the summer heat ^ ^ (^ ~. In the case of the crystallization temperature of the ^ 经 经 经 经 经 经 经 经 经 结晶 结晶 结晶 结晶 结晶 结晶 结晶 结晶 结晶 结晶 结晶 结晶 结晶 结晶 结晶 结晶 结晶 结晶 结晶 结晶 结晶 结晶 结晶 结晶 结晶 结晶 结晶 结晶 结晶 结晶 结晶 结晶 结晶Because of this; ^ 仃敎 processing, can be used in the case, can also be 'in the usual semiconductor In the temperature range of the manufacturing process, == crystallization in the process. In addition, in the fresh C crystallization, the (4) is better, in the 5 〇 200 to 25 (). (: crystallization is best 320653 8 200927972 The additive element for the flb to form an amorphous film may, for example, be Li [Li ' La, Ca, Mg, Y, etc. When such an element is added to form a non-曰曰-shaped film, as in When a film is formed under a predetermined water pressure, it can be prevented from occurring, and the effect of preventing the unevenness of the money can be reduced to the point where the amorphous film can be produced. Here, the annealing treatment refers to heating in a vacuum or an ambient gas at a required temperature for a certain period of time in a vacuum. The time is usually between minutes and hours, but industrial. In the process, as long as the effect is the same, it is generally preferably in a short time. The transparent conductive film crystallized by the annealing treatment is improved in transmittance on the short-wavelength side, for example, 'wavelength 400 to 50 〇 nm. The average transmittance will become above. Again, it will not be as good as in IZ. The O film has a problem that the film has a yellow color. In general, the transmittance on the short-wavelength side is preferably higher. On the other hand, the crystallized transparent conductive film is resistant to etching. Increasingly, so that the weakly acidic engraving agent of the amorphous film can not be rhymed. Therefore, the corrosion resistance, or the device environment in the subsequent step will be improved. Thus, in the present invention Since the content of the added element can be changed, the crystallization temperature after the film formation is set to a desired temperature, and the heat treatment can be performed to avoid the temperature above the crystallization temperature and the amorphous state can be maintained. Further, it may be formed by patterning after film formation, and heat-treating at a temperature equal to or higher than the temperature of the film to change the etching resistance. 320653 9 200927972 Next, the manufacturing method of the reduced-mining rod used in the present invention will be described, but the production method is not particularly limited as long as it is merely an example. First, the raw material constituting the sputtering target of the present invention is generally an oxide of a constituent element, but such a monomer, a compound, a composite oxide or the like may be used as a raw material. When a monomer or a compound is used, a process of preparing an oxide in advance is prepared. ❹

將此等原料粉’按所需要的調配率混合並成型之方法 並不特別加以限定,可採用周知之各種濕式法或乾式法。 乾式法而s ’可例舉:冷塵(cold pressing)法或熱壓 (hot pressing)法等。在冷壓法中,將混合物填充於成型 模中以製作成型體,並加以煅燒。在熱壓法中,則將混合 粉在成型模内加以锻燒而使其燒結。 濕式法而言,較佳為例如,採用過濾式成型法(參考曰 本特開平1卜286GG2號公報)。此過濾式成型法中採用一種 過濾式成型模,係為從陶瓷原料研漿(slurry)進行水分之 減壓排水後製得成型體用之非水溶性材料所成之過遽式成 塑模’其係由具有1個以上&amp;水孔之成型用下模、經載置 於該成型用下模之上之具有透水性之過㈣、及隔著密封 該過遽㈣的密封材料而從上面側夾持之成型關框所構The method of mixing and molding the raw material powders at a desired blending ratio is not particularly limited, and various wet methods or dry methods known in the art can be employed. The dry method and s ' can be exemplified by a cold pressing method or a hot pressing method. In the cold press method, the mixture is filled in a molding die to prepare a molded body, which is calcined. In the hot press method, the mixed powder is calcined in a molding die to be sintered. In the wet method, for example, a filter molding method is preferably used (refer to Japanese Patent Application Laid-Open No. Hei No. 286 GG2). In the filter molding method, a filter molding die is used, which is a mold-forming mold which is obtained by dehydrating and draining water from a ceramic raw material slurry to obtain a water-insoluble material for a molded body. It is formed by a lower mold for molding having one or more water holes, a water-permeable layer (4) placed on the lower mold for molding, and a sealing material for sealing the outer layer (four). Side clamping

成二以前述成型用下模、成型用模框、密封材料、以及 過;慮器可分別分解之方式组I 處排出㈣由认κ 採僅從該過渡器面侧減 ==聚中的水分之過滤式成型模,調製 及 水以及有機添加劑所成之研漿, 過滤式成型模中,僅從該過濾 320653 10 200927972 分以製作成型體’將所得陶瓷成型體加以乾燥脫脂後,進 行缎燒。 - 經依冷壓法或濕式法成型者的烺燒溫度,較佳為ί300 • 至1650°c,更佳為1500至1650°C ’而其環境為大氣環境、 . 氧氣環境、非氧化性環境、或真空環境等。另一方面,在 ' 熱壓法的情形’則較佳為在12〇〇。(:附近使其燒結,其環境 為非氧化性環境或真空環境等。另外,在經依各方法煅燒 ❹後,實施用以成型.加工成既定尺寸的機械加工,以製成 乾(target)。 、 [實施例] 以下,將根據實施例說明本發明内容,惟本發明並不 受實施例而有所限定。 (濺鍍靶製造例l)(Sr-iTO) (添加 Sr 之 ITO、Sr=0. 02、Sn=0. 1) 準備純度&gt;99. 99%的In2〇3粉、Sn〇2粉、及純度&gt;99. 9% ❹的SrC〇3粉。首先,按In2〇3粉65. 3重量%及SrC〇3粉34. 7 重量%的比例準備總量200g,在乾燥狀態下進行球磨(1)311 mill)混合,在大氣中12〇(TC下預煅燒3小時,製得srin2〇4 粉。 . 接著,按上述之SrIn2〇4粉2.2重量%、In2〇3粉86. 6 重量%以及Sn〇2粉11. 2重量%的比例準備總量約10kg(各 金屬原子的組成為 In=88. Oat. %、sn=i〇. 〇at. %、Sr=2. 0 ’將其進行球磨混合。其後,添加pvA(聚乙烯醇)水 '奋液作為黏合劑(binder)並混合、乾燥,實施冷壓而製得 320653 11 200927972 成型體。將此成型體,在大痛士 β n 瓶社穴礼中60(Tc下於6(TC/小時的升 溫速度下脫脂ίο小時’接著,在氧氣環境下,在15赃 下般k 8小日守,製知燒結體。锻燒條件,具體而言,係依 *從室'皿至8〇〇C為按200〇C/小時升溢,從800°C至1550°C 為按400 C/小日守升溫,保持8小時後,從155〇£&gt;c至室溫止 為按10CTC/小時的條件加以冷卻之條件。其後,加工該燒 結體以製得靶。此時的密度為7. 〇5g/cm3。 同樣方式,製造 Sr=0. 00001、Sr=0. (Π、Sr=0. 05 的濺 鍛乾。 (濺鍍靶製造例2)(Li-ITO) (添加 Li 之 ITO、Li=0· 02、Sn=0. 1) 準傷純度&gt;99. 99%的Im〇3粉、Sn〇2粉、及純度&gt;99. 9% 的 Li2C〇3 〇 首先,按I112O3粉79. 0重量%及U2CO3粉21. 0重量%的 比例,準備總量200g,在乾燥狀態下進行球磨混合,在大 ❹氣中l〇〇0°C下預煅燒3小時,製得LiIn〇2粉。 接著,除了按上述之LiIn〇2粉2. 2重量%、in2〇3粉86. 8 重量%以及SnCh粉11· 0重量%的比例準備總量約丨.0kg(;各 金屬原子的組成為 ’ In=88. Oat. %、Sn=10. Oat. %、Li=2. 0 at. %)以外,其餘則按Sr-ITO(Sr=0. 02)同樣方式製作乾。 但’锻燒温度為1450°C。又,此時的密度為6. 85g/ cm3。 (濺鍍靶製造例3)(La-IT0) (添加 La 之 IT0、La=0. 02、Sn=〇. 1) 準備純度&gt;99. 99%的Iri2〇3粉、Sn〇2粉、及純度&gt;99. 99% 320653 200927972 的 La2(C〇3)3 · 8H2O 粉。 首先,按 In2〇3粉 31. 6 重量%及 La2(C〇3)3· 8H2〇 粉 68. 4 重量%的比例,準備總量200g,在乾燥狀態下進行球磨混 . 合,在大氣中1200°C下預煅燒3小時,製得LalnOs粉。 • 接著,除了按上述之LaIn〇3粉4. 3重量%、1112〇3粉85. 0 重置%以及Sn〇2粉10· 7重置%的比例準備總量約1. 〇kg(各 金屬原子的組成為,In=88. Oat_ %、Sn=10. Oat. %、La=2. 0 at. %)以外,其餘則按Sr-ITO(Sr=0· 02)同樣方式製作乾。 ® 此時的密度為7. 04g/cm3。 (濺鍍靶製造例4)(Ca-IT0) (添加 Ca 之 ΙΤ0、Ca=0. 02、Sn=0. 1) 準備純度&gt;99. 99%的I112O3粉、Sn〇2粉、及純度&gt;99. 5% 的CaC〇3粉。 首先,按1化〇3粉73. 5重量%及CaC〇3粉26. 5重量%的 比例,準備總量200g,在乾燥狀態下進行球磨混合,在大 0 氣中1200°C下預煅燒3小時,製得CaIn2〇4粉。 接著,除了按上述之CaIn2〇4粉4. 8重量%、In2〇3粉84. 3 重量%以及Sn〇2粉10. 9重量%的比例準備總量約1. Okg(各 金屬原子的組成為,In=88. Oat. %、Sn=l〇. Oat. %、Ca=2. 0 at.%)以外,其餘則按Sr-ITO(Sr=0. 02)同樣方式製作靶。 此時的密度為6. 73g/cm3。 (濺鍍靶製造例5)(Mg-IT0) (添加 Mg 之 IT0、Mg=0. 02、Sn=0. 1) 準備純度&gt;99. 99%的Im〇3粉、Sn〇2粉、及碳酸氫氧化 13 320653 200927972 鎂粉(MgO含量41. 5重量%)。 首先,按In2〇3粉87. 3重量%及碳酸氫氧化鎂粉12. 7 . 重量%的比例,準備總量200g,在乾燥狀態下進行球磨混 , 合,在大氣中1400°C下預煅燒3小時,製得MgIn2〇4粉。 • 接著,除了按上述之MgIn2〇4粉4. 6重量%、In2〇3粉84. 5 , 重量%以及Sn〇2粉10. 9重量%的比例準備總量約1. Okg(各 金屬原子的組成為,In=88. Oat. %、Sn=10. Oat. %、Mg=2. 0 at.%)以外,其餘則按Sr-ITO(Sr=0. 02)同樣方式製作靶。 ® 此時的密度為7. 02g/cm3。 同樣方式,製作Mg=0. 05、Mg=0. 12的濺鍍靶。 (濺鍍靶製造例6)(Y-IT0) (添加 Υ 之 ΙΤ0、Υ=0. 02、Sn=0. 1) 準備純度Y&gt;99. 99%的In2〇3粉、Sn〇2粉、及純度&gt;99. 99% 的 Y2(C〇3)3 · 3H2〇 粉·。. 首先,按 In2〇3粉 40. 2 重量%及 Y2(C〇3)3 · 3H2〇 粉 59. 8 0 重量%的比例,準備總量200g,在乾燥狀態下進行球磨混 合,在大氣中1200°C下預煅燒3小時,製得Yin〇3粉。 接著,除了按上述YIin〇3粉3. 6重量%、Im〇3粉85. 6 重量%以及Sn〇2粉10.8重量%的比例準備總量1.0kg(各金 屬原子的組成為,In=88. Oat. %、Sn=l 0. Oat. %、Y=2. Oat. %) 以外,其餘則按Sr-ITO(Sr=0. 02)同樣方式製作靶。此時 的密度為7. 02g/cm3。 同樣方式,製造Y=0. 05的濺鍍靶。 (實施例1至13、比較例1至5) 14 320653 200927972 Ο 〇 如下述方+ 、、 ',實施實施例1至13、比較例1至5。上遂方式所製造之靶中,採用下述表丨組成的靶如 下述所示方式,作成實施例1至13、比較例1至5的靶, 將此分別裝載於4吋的DC磁控濺鍍裝置,並將基板溫度設 為室溫(約2〇°C ) ’使氧氣分壓在0至3. 0sccm之間變化之 下(相當於〇炱丨.1&quot;&quot;10 21^),製得實施例1至13、比較例 1至5的透明導電膜。 [表1 ] 添加 元素In the second step, the lower mold for molding, the molding die frame, the sealing material, and the filter can be separately decomposed in a group I to discharge (4) from the κ 采, only from the side of the transition device = = water in the poly The filter molding die, the slurry prepared by the water and the organic additive, and the filter molding die, only the filter body is produced from the filter 320653 10 200927972. The obtained ceramic molded body is dried and degreased, and then satin-fired. . - The calcination temperature of the person formed by cold pressing or wet molding is preferably ί300 • to 1650 ° C, more preferably 1500 to 1650 ° C ' and the environment is atmospheric environment, oxygen environment, non-oxidation Environment, or vacuum environment. On the other hand, in the case of 'hot pressing method', it is preferably 12 〇〇. (: It is sintered nearby, and its environment is a non-oxidizing environment or a vacuum environment, etc. In addition, after calcining the crucible according to each method, a machining process for forming into a predetermined size is performed to prepare a target. [Examples] Hereinafter, the present invention will be described based on examples, but the present invention is not limited by the examples. (Sp-iTO) (Sr-iTO) (Sr-added ITO, Sr) =0. 02, Sn=0. 1) Prepare purity &gt;99. 99% of In2〇3 powder, Sn〇2 powder, and purity>99.9% of ❹SrC〇3 powder. First, press In2〇 3 powder 65. 3 wt% and SrC〇3 powder 34.7 wt% ratio prepared a total amount of 200g, ball milled (1) 311 mill) in a dry state, 12 在 in the atmosphere (pre-calcined for 3 hours under TC) , srin2〇4 powder was prepared. Then, according to the above-mentioned SrIn2〇4 powder 2.2% by weight, In2〇3 powder 86.6% by weight, and Sn〇2 powder 11.2% by weight, the total amount is about 10kg (each The composition of the metal atom is In=88. Oat. %, sn=i〇. 〇at. %, Sr=2. 0 'The ball is mixed by ball milling. Thereafter, pvA (polyvinyl alcohol) water is added as the liquid Binder The mixture was dried, dried, and subjected to cold pressing to obtain a molded body of 320653 11 200927972. This molded body was 60 in the Datong Shi β bottle, and the fat was removed at a temperature of TC/hour. Next, under an oxygen atmosphere, the sintered body is produced at a temperature of 15 般, and the calcination conditions, specifically, from the chamber 'to the dish to 8 〇〇 C, are 200 〇 C / hour. Overflow, from 800 ° C to 1550 ° C for 400 C / small day to keep warming, after 8 hours, from 155 &gt; c to room temperature to be cooled at 10 CTC / hour conditions. After that, the sintered body was processed to obtain a target. The density at this time was 7. 〇 5 g / cm 3 . In the same manner, Sr = 0.0001, Sr = 0. (Π, Sr = 0.05. (Sputter target production example 2) (Li-ITO) (ITO with Li added, Li=0.02, Sn=0. 1) Quasi-injury purity> 99. 99% of Im〇3 powder, Sn〇2 powder And purity> 99.9% of Li2C〇3 〇 First, according to the ratio of I112O3 powder 79.0% by weight and U2CO3 powder 21. 0% by weight, prepare a total amount of 200g, and perform ball milling mixing in a dry state. Pre-calcined at 10 ° C for 3 hours in helium to obtain LiIn 〇2 powder. Next, in addition to the above LiIn〇2 powder 2.2% by weight, in2〇3 powder 86.8 wt% and SnCh powder 11.0 wt% ratio to prepare a total amount of about 丨.0kg (; each metal The composition of the atom was 'In=88. Oat. %, Sn = 10. Oat. %, Li = 2. 0 at. %), and the rest was dried in the same manner as Sr-ITO (Sr=0. 02). However, the calcination temperature was 1450 °C. Further, the density at this time was 6.85 g/cm3. (Spray target production example 3) (La-IT0) (IT0, La=0.02, Sn=〇. 1 added with La) Preparation of purity &gt;99. 99% of Iri2〇3 powder, Sn〇2 powder, And purity &gt;99. 99% 320653 200927972 of La2(C〇3)3 · 8H2O powder. First, according to the ratio of In2〇3 powder 31.6 wt% and La2(C〇3)3·8H2〇 powder 68.4 wt%, prepare a total amount of 200 g, and perform ball milling in a dry state, in the atmosphere. Pre-calcined at 1200 ° C for 3 hours to prepare LalnOs powder. Then, in addition to the above-mentioned LaIn〇3 powder 4.3% by weight, 1112〇3 powder 85. 0 reset % and Sn〇2 powder 10·7 reset % ratio preparation total amount about 1. 〇kg (each The composition of the metal atom was made in the same manner as Sr-ITO (Sr = 0.22) except that In = 88. Oat_%, Sn = 10. Oat. %, La = 2. 0 at. %). ® The density at this time is 7. 04g/cm3. (Sputter target production example 4) (Ca-IT0) (Addition of Ca ΙΤ0, Ca=0. 02, Sn=0. 1) Preparation of purity &gt;99. 99% of I112O3 powder, Sn〇2 powder, and purity &gt;99. 5% CaC〇3 powder. First, according to the ratio of 1 〇 3 powder 73.5 wt% and CaC 〇 3 powder 26.5 wt%, prepare a total amount of 200 g, ball mill mixing in a dry state, pre-calcination at 1200 ° C in a large gas After 3 hours, CaIn2〇4 powder was obtained. Okg( Each metal atom group is prepared in a ratio of 4.8 wt%, In2〇3 powder 84.3 wt%, and Sn〇2 powder 10.9 wt%. The target was prepared in the same manner as in the case of Sr-ITO (Sr=0. 02) except that, in the case of In = 88. Oat. %, Sn = l〇. Oat. %, Ca = 2. 0 at.%). The density at this time was 6.73 g/cm3. (Spray target production example 5) (Mg-IT0) (IT0, Mg=0. 02, Sn=0. 1 added with Mg) Preparation purity &gt;99. 99% of Im〇3 powder, Sn〇2 powder, And magnesium carbonate hydride 13 320653 200927972 magnesium powder (MgO content 41.5 wt%). First, according to the ratio of In2〇3 powder 87.3% by weight and magnesium hydroxide powder 12.7% by weight, prepare a total amount of 200g, perform ball milling in a dry state, and preheat in the atmosphere at 1400 ° C. After calcination for 3 hours, MgIn2〇4 powder was obtained. Okg( Each metal atom is prepared, in addition to the above-mentioned MgIn2〇4 powder, 4.6% by weight, In2〇3 powder, 84.5 % by weight, and Sn 〇 2 powder, 10.9% by weight. The composition was prepared in the same manner as in the case of Sr-ITO (Sr=0. 02) except that In=88. Oat.%, Sn=10. Oat.%, Mg=2. 0 at.%). ® The density at this time is 7. 02g/cm3. In the same manner, a sputtering target of Mg = 0.05 and Mg = 0.12 was produced. (sputter target production example 6) (Y-IT0) (addition of Υ ΙΤ 0, Υ = 0.22, Sn = 0.1) Preparation of purity Y > 99. 99% of In 2 〇 3 powder, Sn 〇 2 powder, And purity &gt;99. 99% of Y2(C〇3)3 · 3H2〇 powder·. First, according to the ratio of In2〇3 powder 40.2% by weight and Y2(C〇3)3 · 3H2〇 powder 59.8 wt%, a total amount of 200 g is prepared, and ball milling is carried out in a dry state in the atmosphere. Pre-calcined at 1200 ° C for 3 hours to prepare Yin 〇 3 powder. Next, a total of 1.0 kg was prepared in addition to the above-mentioned YIin〇3 powder 3.6 wt%, Im〇3 powder 85.6 wt%, and Sn〇2 powder 10.8 wt% (the composition of each metal atom is, In=88) The target was prepared in the same manner as in the case of Sr-ITO (Sr=0. 02) except for Oat. %, Sn = l 0. Oat. %, Y = 2. Oat. %). The density at this time is 7. 02g/cm3. In the same manner, a sputtering target of Y = 0.05 was produced. (Examples 1 to 13, Comparative Examples 1 to 5) 14 320653 200927972 实施 实施 Examples 1 to 13 and Comparative Examples 1 to 5 were carried out as follows. Among the targets manufactured by the above-mentioned method, the targets of the following compositions were used to form the targets of Examples 1 to 13 and Comparative Examples 1 to 5, and the DC magnetron sputtering was carried out separately. The plating apparatus and the substrate temperature is set to room temperature (about 2 〇 ° C) 'The oxygen partial pressure is changed between 0 and 3. 0sccm (equivalent to 〇炱丨.1&quot;&quot;10 21^), The transparent conductive films of Examples 1 to 13 and Comparative Examples 1 to 5 were obtained. [Table 1] Add Element

SrSr

LiLi

LaLa

CaCa

MgMg

Y 比較例1 (Sr=0.〇〇〇Ql^-- 比較例2 組成 比較例3 , (La=0.0000?^^- 實施例1 (Sr=0.01) 實施例2 (Sr=0_ 02) 實施例3 (Sr=0. 05) — 實施例4 (Li=0.02) 實施例5 (Li=0. 05) — 實施例6 (La=0.01) 實施例7 (La=0. 02) - —- — 實施例8 (Ca=0. 02) 實施例9 (Ca=0. 05) 比較例4 (Ca=0.10) — 實施例10 (Mg=0. 02) 實施例11 (Mg=0. 05) 比較例5 (Mg=0.12) 實施例12 (Y=0.02) 實施例13 (Y=0. 05) 一 濺鍍的條件’係如下所示’製得厚度1200 A的膜。 乾尺寸:C4忖,t=6mm 雜賴 排氣裝置 PUmP)+m(e3T°PUmP) 到達直空度:5,3xl(nPa] 紅(氬)《力:4上1〇-1[叫 15 320653 200927972 氧氣壓力:0至1. 0x10—2[Pa] 水壓力:5. OxlO_6[Pa] 基板溫度:室溫 . 濺鍍電力:130W(瓦特)(電力密度1. 6W/cm2) * 使用基板:Corning #1737(液晶顯示器用玻璃) ΐ=0· 8 mm 測定在各氧氣分壓下成膜之膜的電阻率、及將各膜經 250°C下退火處理後的電阻率。其結果為如第1圖至第11 ®圖所示。 由其結果獲知,在任一情形,均有最適氧氣分壓存在。 又,於實施例1至13中獲知,室溫成膜的最適氧氣分 壓、與250°C退火處理後電阻率最低的成膜時的氧氣分壓 互為不相同。表2中表示室温成膜的最適氧氣分壓及250 °C退火處理後電阻率最低的成膜時的氧氣分壓。由此,在 實施例1至13中可知,以250°C退火處理後在電阻率最低 q 的成膜時的氧氣分壓進行成膜,然後,在250°C下進行退 火之作法,較能製得電阻率最低的膜。 另一方面,在添加量過少的比較例1至3中可知,未 能獲得非晶形的膜而最適氧氣分壓不會變化之事實。又, 在添加量過多的比較例4、5則可知,雖成膜時可獲得非晶 形的膜,而250°C退火處理時最適氧氣分壓會變化,而不 會結晶化。 下列之表6中,將有最適氧氣分壓的變化者以〇表 示,將無最適氧氣分壓的變化者以X表示。 16 320653 200927972 (試驗例1) 於實施例1至13、比較例1至5中,將以室溫成膜時 .之最適氧氣分壓所製造之透明導電膜分別裁切為13mm見 ,方的大小’並將此等試樣於大氣中在25代下實施退火處 •理1小時。又,關於實施例1至13、比較例1至5,就室 /皿成膜時及250 C退火處理後的結晶狀態,將非晶形膜記 以a、結晶化膜則記…,並將此等表示於表2中。 〇 —果’在至溫成膜的實施例1至13的情形,經確認 時雖為非晶形的膜’惟因2赃!小時的退火處理 即會結晶化之事實。另一古 中,雖然在成膜時為非曰形者’在添加量多的比較例4、5 結晶化。又,此等Si: 3〇〇tT^ 例1至3中,經確認成膜時即皆二化在添加量少的比較 形的膜之成膜之事實。 “曰曰化而不能實現非晶 ❹(試驗例2) 分之各透日轉電财室溫成料之最適氧氣 電阻率Ρ(Ω,)。又,亦測定試驗例1的 2中。麵_所敎之電阻率。將料結果表示於表 電P羊為l〇4Q · cm程度。 級门•仔知’在比車父例4、5的情形’電阻率則成為10—3 級U cffl的高電阻。 320653 17 200927972 (試驗例3) 於實施例1至13、比較例1至5中,將以室溫成膜時 之最適氧氣分壓所製造之透明導電膜分別裁切為13mm見 , 方的大小’並測定透射光譜(transmission spectrum)。 ‘ 又’就試驗例1的退火處理後的膜亦同樣測定透射光譜。 又’將各實施例1至13、比較例1至5的退火處理後的平 均透射率表示於表2中。 由此等結果可知,於成膜後退火處理前之透射光譜, 係因在250°C下1小時的退火處理,而吸收端即位移至低 波長側以致此改善色味(tone )之事實。 (試驗例4) 〇 於實施例1至13、比較例1至5中,將以室溫成膜時 之最適氧氣分麼所製造之透明導電膜分別裁切為1〇咖咖 的大小,使用ITG-〇5N(草酸系,關東化學(股)製 度50g/公升)作為蝕刻液,在溫度3〇t下,就是否处、/〜 姓刻加以確認。又,就試驗例i的退火處理後進仃 同樣加以確認。將此等結果,能進行蝕刻者記以「〇,亦 能進行蝕刻者記以「X」,表示於表2中。 」,不 餘刻 其結果得知,非晶 ,惟經結晶化之膜 320653 18 200927972 [表2]Y Comparative Example 1 (Sr=0.〇〇〇Ql^--Comparative Example 2 Composition Comparative Example 3, (La=0.0000?^^- Example 1 (Sr=0.01) Example 2 (Sr=0_02) Implementation Example 3 (Sr = 0.05) - Example 4 (Li = 0.02) Example 5 (Li = 0.05) - Example 6 (La = 0.01) Example 7 (La = 0.22) - - - - Example 8 (Ca = 0.02) Example 9 (Ca = 0.05) Comparative Example 4 (Ca = 0.10) - Example 10 (Mg = 0.02) Example 11 (Mg = 0.05) Comparative Example 5 (Mg = 0.12) Example 12 (Y = 0.02) Example 13 (Y = 0.05) A sputtering condition was as follows to prepare a film having a thickness of 1200 A. Dry size: C4 忖, t=6mm Miscellaneous exhaust device PUmP)+m(e3T°PUmP) Arrival straightness: 5,3xl (nPa) Red (argon) Force: 4 on 1〇-1 [called 15 320653 200927972 Oxygen pressure: 0 to 1. 0x10-2 [Pa] Water pressure: 5. OxlO_6 [Pa] Substrate temperature: room temperature. Sputtering power: 130 W (watt) (power density 1. 6 W/cm2) * Using substrate: Corning #1737 ( Glass for liquid crystal display) ΐ=0· 8 mm The resistivity of the film formed under the partial pressure of oxygen and the resistivity after annealing each film at 250 ° C were measured. The results are as shown in Fig. 1 to As shown in the figure, it is known from the results that in any case, there is an optimum partial pressure of oxygen. Further, it is known in Examples 1 to 13 that the optimum oxygen partial pressure at room temperature is annealed at 250 ° C. The partial pressures of oxygen at the time of film formation with the lowest post-resistance are different from each other. Table 2 shows the optimum partial pressure of oxygen at room temperature and the partial pressure of oxygen at the time of film formation with the lowest resistivity after annealing at 250 °C. In Examples 1 to 13, it can be seen that the film is formed by annealing at 250 ° C and then forming a film at a partial pressure of oxygen at the lowest resistivity q, and then annealing at 250 ° C. On the other hand, in Comparative Examples 1 to 3 in which the amount of addition was too small, it was found that the amorphous film was not obtained and the optimum partial pressure of oxygen did not change. Further, a comparative example in which the amount of addition was excessive 4 and 5, it can be seen that although an amorphous film can be obtained during film formation, the optimum oxygen partial pressure will be changed during annealing at 250 ° C without crystallization. In Table 6 below, there will be an optimum oxygen partial pressure. The changer is represented by 〇, and the changer without the optimum oxygen partial pressure is represented by X. 16 320653 200927972 (Test Example 1) In Examples 1 to 13 and Comparative Examples 1 to 5, the transparent conductive films produced by the optimum oxygen partial pressure at room temperature were cut into 13 mm, respectively. The size of the sample was treated in the atmosphere for 25 hours in the atmosphere. Further, in Examples 1 to 13 and Comparative Examples 1 to 5, in the case of the film formation of the chamber/dish and the crystal state after the annealing treatment of 250 C, the amorphous film was designated as a, and the crystallized film was recorded. And etc. are shown in Table 2. In the case of Examples 1 to 13 which were formed into a film at a temperature, it was confirmed that the film was amorphous, but it was 2 赃! The hourly annealing treatment will crystallize. In another case, the non-sickness at the time of film formation was crystallized in Comparative Examples 4 and 5 in which the amount of addition was large. Further, in the cases of Si: 3〇〇tT^, in the examples 1 to 3, it was confirmed that the film formation of the comparative film having a small amount of addition was formed at the time of film formation. "The optimum oxygen resistivity Ρ (Ω,) of the room temperature conversion of the amorphous yttrium (test example 2) can not be achieved. In addition, the test 2 of the test example 1 was also measured. _ The resistivity of the 。 。 将 。 。 。 。 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻 电阻High resistance of cffl. 320653 17 200927972 (Test Example 3) In Examples 1 to 13 and Comparative Examples 1 to 5, the transparent conductive films produced by the optimum oxygen partial pressure at room temperature film formation were respectively cut into 13 mm. See the square size 'and measure the transmission spectrum. 'And' the transmission spectrum of the film after the annealing treatment of Test Example 1 was also measured. Further, each of Examples 1 to 13 and Comparative Examples 1 to 5 was used. The average transmittance after the annealing treatment is shown in Table 2. From the results, it is understood that the transmission spectrum before the post-annealing treatment is an annealing treatment at 250 ° C for 1 hour, and the absorption end is shifted to a low level. The fact that the wavelength side is such that the color tone is improved. (Test Example 4) From Examples 1 to 13 and Comparative Example 1 In the case of 5, the transparent conductive film produced by the optimum oxygen content at the time of film formation at room temperature is cut into the size of 1 〇 咖 咖, using ITG-〇 5N (oxalic acid system, Kanto Chemical Co., Ltd. 50 g / liter) As an etchant, at the temperature of 3 〇t, it is confirmed whether it is at or after the aging. Further, after the annealing treatment of the test example i, the enthalpy is confirmed in the same manner. For example, the etcher can also be marked with "X", which is shown in Table 2. The result is that amorphous, but crystallized film 320653 18 200927972 [Table 2]

能否進行 mi [〇办] 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 X X X 〇 〇 退级理後 之平均透射率 2 96.9 93.5 在· 87.8 I 92.1 1 98.3 98.8 96.2 95.1 95.5 1 94.1 93.2 93.7 97.5 95.6 98.2 89.9 79.9 退火處理後 之結晶性 (250〇〇 [a 或 c] υ ο O o 〇 u υ υ ϋ u o O ϋ O o CO CO 成琪時之 結晶性 [a 或 c] αι nt A CO ea CO to CEl A C〇 a ea· CO o o o cd 03 退火處理織 之電阻率 [χΙΟ^Ω · cm] CD Csj CO CO CD 0〇 od o csi S 〇 CO a&gt; 03 CO CO a&gt; CO c&lt;i oo aa 03 17.8 14.6 勰時之 電阻率 [χΙΟ^Ω · cm] LA 呀· Csl IA ΓΟ CO 卜 CO irS O iri CO LA 09 in 卜. CD ΙΛ in CD 〇» 卜* O) 守 CO cva CO 14.3 10.5 最適氣氣分 壓之變化 [Ο办] 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 X X X 〇 〇 相對於In 1 比例 [mol] 0.011 0.023 0.059 0.023 0.059 0-011 0.023 0.023 0.063 0.023 1 0.063 0.023 0.059 0.000011 0.000056 0.000089 0.125 0.154 碱[atX] .添加 元素 ο O c4 s O s 。 °· O csi 5 0 01 O LT) 〇 oi s 0.001 0.005 0.008 10.0 12.0 a 10.0 10.0 10.0 10,0 10.0 e 10,0 10.0 10.0 10.0 1 10.0 10.0 10.0 10.000 10.000 10.000 10.0 10.0 νΞ 89.0 88.0 85.0 88.0 o 89.0 CD ss 88.0 肌0 88.0 丨 80.0 88.0 85.0 89.999 89.995 89.998 80.0 O 添加 元素 * J3 JS δ β &gt;&lt; &gt;1 2 e 拭料名稱 Sr=0.01 Sr=a〇2 Sr=0.05 Li=0.02 Li=0.05 La=0.01 La=0.02 1 Ca=0.02 ! Ca=0.05 Mg=0.02 Mg=0.05 Y=0.02 Y=0.05 Sr=0.00001 Li=0.00005 La=0.00008 ca=o. ίο Mg=0.12 實施例/ 咏例 1 2 3 4 5 6 實施例 7 8 9 10 11 12 13 1 2 mm 3 4 5 19 320653 200927972 (比較例6) 除了採用實施例2的靶,並將水分壓作成lxl(T4Pa以 . 外,其餘則按上述之濺渡條件同樣的條件進行成膜。如此 . 所得之膜,電阻率較實施例2稍差且有蝕刻殘留物產生。 ▲ 又,於250°C 1小時的退火處理雖然結晶化,惟殘留有一 部分的非晶形部分。 另外,此結果與實施例2比較之結果,表示於表3中。 在此,姓刻速率(etching rate),係指將經室溫成膜 ® 之非晶形膜使用ITO-05N(草酸濃度50g/公升),在液溫30 °(:下進行蝕刻時的膜的蝕刻速率之意。 ❹ 20 320653 200927972 [表3]Can you carry out mi [〇] 〇〇〇〇〇〇〇〇〇〇〇〇〇 XXX 平均 退 退 退 退 退 退 退 退 2 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 97.5 95.6 98.2 89.9 79.9 Crystallinity after annealing (250 〇〇[a or c] υ ο O o 〇u υ υ ϋ uo O ϋ O o CO CO Crystallization when forming a [a or c] αι nt A CO ea CO to CEl AC〇a ea· CO ooo cd 03 Resistivity of annealed fabric [χΙΟ^Ω · cm] CD Csj CO CO CD 0〇od o csi S 〇CO a&gt; 03 CO CO a&gt; CO c&lt; i oo aa 03 17.8 14.6 Resistivity at 勰 [χΙΟ^Ω · cm] LA 呀·Csl IA ΓΟ CO 卜 CO irS O iri CO LA 09 in 卜. CD ΙΛ in CD 〇» 卜* O) 守CO cva CO 14.3 10.5 Variation of optimum gas partial pressure [Ο] 〇〇〇〇〇〇〇〇〇〇〇〇〇XXX 〇〇 Relative to In 1 ratio [mol] 0.011 0.023 0.059 0.023 0.059 0-011 0.023 0.023 0.063 0.023 1 0.063 0.023 0.059 0.000011 0.000056 0.000089 0.125 0.154 base [atX] . Add element ο O c4 s O s . °· O csi 5 0 01 O LT) 〇 oi s 0.001 0.005 0.008 10.0 12.0 a 10.0 10.0 10.0 10,0 10.0 e 10,0 10.0 10.0 10.0 1 10.0 10.0 10.0 10.000 10.000 10.000 10.0 10.0 νΞ 89.0 88.0 85.0 88.0 o 89.0 CD Ss 88.0 Muscle 0 88.0 丨80.0 88.0 85.0 89.999 89.995 89.998 80.0 O Adding element * J3 JS δ β &gt;&gt;&gt;1 2 e Swab name Sr=0.01 Sr=a〇2 Sr=0.05 Li=0.02 Li=0.05 La =0.01 La=0.02 1 Ca=0.02 ! Ca=0.05 Mg=0.02 Mg=0.05 Y=0.02 Y=0.05 Sr=0.00001 Li=0.00005 La=0.00008 ca=o. ίο Mg=0.12 Example / Example 1 2 3 4 5 6 Example 7 8 9 10 11 12 13 1 2 mm 3 4 5 19 320653 200927972 (Comparative Example 6) Except that the target of Example 2 was used, and the water was pressed into lxl (T4Pa, the rest was as described above). The film was formed under the same conditions as the sputtering conditions. Thus, the obtained film had a slightly lower resistivity than that of Example 2 and had an etching residue. ▲ In addition, the annealing treatment at 250 ° C for 1 hour was crystallized, but remained. There is a part of the amorphous portion. In addition, the result of this comparison with Example 2 is shown in Table 3. Here, the last name The etching rate refers to the etch rate of the film when ITO-05N (oxalic acid concentration: 50 g/liter) is used for the amorphous film formed at room temperature to etch at a liquid temperature of 30 ° (:). ❹ 20 320653 200927972 [Table 3]

250°C退火4理後之特14 透射率 2 93.5 90.2 弱酸 侧性 〇 X 電阻率 [χΙΟ^Ω · an] CD CQ 卜 csi 最適氡 氣分磨 之變化 〇 〇 結晶性 j 1 o C (一部 a) I 餐 侧後之 殘留物 碟 体 侧 速率 [A/sec] oo iT) Ξ· 弱酸 触]性 〇 〇 1 電阻率 [χΙΟ^Ω ·αη] Cv] LO tfi 結晶性 CO CO 祕時之 水分4 5x10^ lxitr1 相狀In 1莫耳 之比例 [mol] 0.023 0.023 添加 元素 O CM* 组成[at.X] a 10.0 •Ξ 88.0 o 00 oo 添加 元素 * 试料名稱 Sr=0.02 Sp^O. 02 實施例/ 峰例 實施例2 1 tbfe例 6 200927972 由此結果得知,如在不控制水之分壓,而可達真空度 惡化等之條件下進行非晶形的膜之成膜時,則將於面内產 生蝕刻性的不均勻、發生蝕刻不均、或因退火處理所引起 . 之結晶化不均勻而不佳之事實。 . 又,明顯可知,此種效果在製得非晶形膜時,同樣會 ' 產生。 另外,作為進行非晶形的膜之成膜之例子,將添加有 Ba之例表示於下述中,惟可容易推測如在不控制水的分 ® 壓,而到達真空度惡化之條件下進行非晶形膜之成膜時, 則面内產生蝕刻性的不均勻、發生蝕刻不均、或因退火處 理所引起之結晶化不均勻而不佳之事實。 (濺鍍靶製造例A1至A60) 準備純度&gt;99.99%的1112〇3粉、511〇2粉、及純度&gt;99.9% 的BaC〇3粉。 首先,按 BET=27m2/g 的 In2〇3粉 58. 5 重量%&amp;BET=1. 3m2 ❹ /g的BaC〇3粉41. 4重量%的比例,準備總量2〇〇§,在乾燥 狀態下進行球磨混合,在大氣中11〇(rc下預煅燒3小時, 製得BaIn2〇4粉。 、 接者’將上边BaIn2〇4粉、BET=5inV_n2〇3粉以及抓 .m g的Sn〇2粉’依相對於比i莫耳B I述表4及表5中所佔莫耳之比例,二相田於 將此進行球磨混合。1 甭〜夏1.0kg, 混合、乾燥,並實施冷 tPVA水錢作為黏合剩. 大氣中600°c下於60。^ 侍成型體。將此成型體,&gt; c/小時的升溫下脫脂10小時,接著 320653 200927972 在氧氣環境下’在1600°C下煅燒8小時,製得燒結體。锻 燒條件’具體而言,係從室溫至8 0 0 °C以1 〇 〇 °c /小時升溫, 從800°C至160(TC以400°C/小時升溫,保持8小時後,從 . 16 0 0 C至室溫止以10 0 C /小時的條件加以冷卻之條件。其 後’加工該燒結體以製得乾。此時的密度.及體電阻率(bu 1 k resistivity),係例如在A32的組成,各為&amp; 88g/ cm3、 2. 81χ10_4Ω cm,而在 A22 的組成,則各為 6. g6g/cm3、2. 87 xlO&quot;4Qcm ° ❹(實施例A1至A60) 於4时的DC磁控藏鐘裝置上分別裝载各製造例A1至 A60的濺鍍靶,並將基板溫度設為室溫(約2〇°C),使氧氣 分壓在0至3.0sccm之間變化之下(相當於〇至l.lx 10_2Pa),製得實施例A1至A60的透明導電膜。 濺鍍的條件,係如下所示,製得厚度1200 A的膜。 輕尺寸:Φ=4付’ t=6mm @ . 濺鍍方式:DC磁控濺鍍 排氣裝置:旋轉泵+低溫泵 可達真空度:5. 3xlO_6[Pa]After annealing at 250 °C, the specific transmittance is 2 93.5 90.2 weak acid side 〇X resistivity [χΙΟ^Ω · an] CD CQ 卜 csi optimum helium gas grinding change 〇〇 crystallinity j 1 o C (one Part a) I residue side velocity after meal side [A/sec] oo iT) Ξ· weak acid touch] 〇〇1 resistivity [χΙΟ^Ω ·αη] Cv] LO tfi Crystalline CO CO secret time Moisture 4 5x10^ lxitr1 Phase In 1 molar ratio [mol] 0.023 0.023 Addition element O CM* Composition [at.X] a 10.0 •Ξ 88.0 o 00 oo Add element* Sample name Sr=0.02 Sp^O 02 Example / Peak Example 2 1 tbfe Example 6 200927972 As a result, it is found that when an amorphous film is formed under conditions where the partial pressure of water is not controlled and the degree of vacuum is deteriorated, This may result in uneven etching, uneven etching, or uneven crystallization due to annealing treatment. Moreover, it is apparent that such an effect is also produced when an amorphous film is produced. In addition, as an example of forming a film of an amorphous film, an example in which Ba is added is shown below, but it is easy to estimate that the pressure is not controlled, and the degree of vacuum is deteriorated. When the film is formed into a film, unevenness in etching properties, uneven etching, or uneven crystallization due to annealing treatment may occur. (Sputter target production examples A1 to A60) A powder of &gt;99.99% of 1112〇3 powder, 511〇2 powder, and purity &gt;99.9% of BaC〇3 powder were prepared. First, according to the ratio of BET=27m2/g of In2〇3 powder 58.5 wt% & BET=1. 3m2 ❹ /g of BaC〇3 powder 41.4% by weight, the total amount of preparation 2〇〇§, The mixture was ball milled in a dry state, and pre-calcined in the atmosphere for 11 hours in the atmosphere to obtain BaIn2〇4 powder. The first one was BaIn2〇4 powder, BET=5inV_n2〇3 powder, and Sn. 〇2 powder' is compared with the molar ratio of the molars in Table 4 and Table 5, and the two phase fields are ball milled and mixed. 1 甭~ summer 1.0kg, mixed, dried, and cold tPVA Water money as a binder residue. At 600 ° C in the atmosphere at 60 ° ^ Waiting for the molded body. This molded body, degreased for 10 hours at a temperature of c / hour, followed by 320653 200927972 in an oxygen environment 'at 1600 ° C Calcination was carried out for 8 hours to obtain a sintered body. The calcining condition 'specifically, the temperature was raised from room temperature to 800 ° C at 1 ° C / hour, from 800 ° C to 160 (TC at 400 ° C / After heating for an hour, after 8 hours, the conditions were cooled from 1600 ° C to room temperature at 10 0 C / hr. Thereafter, the sintered body was processed to obtain a dry mass. The resistivity (bu 1 k resistivity) is, for example, the composition of A32, each of which is & 88g/cm3, 2. 81χ10_4Ω cm, and the composition of A22 is 6. g6g/cm3, 2.87 xlO&quot;4Qcm ° 实施 (Examples A1 to A60) The sputtering targets of the respective manufacturing examples A1 to A60 were respectively placed on the DC magneto-gear clock device at 4 o'clock, and the substrate temperature was set to room temperature (about 2 〇 ° C). The transparent conductive film of Examples A1 to A60 was obtained by subjecting the partial pressure of oxygen to a change between 0 and 3.0 sccm (corresponding to 〇1 to 10 2 Pa). The conditions of the sputtering were as follows, and the thickness was obtained. 1200 A film. Light size: Φ = 4 pay 't = 6mm @ . Sputtering method: DC magnetron sputtering exhaust device: rotary pump + cryogenic pump up to vacuum: 5. 3xlO_6 [Pa]

Ar(氬)壓力:4. OxlO_1[Pa] 氧氣壓力:0至1. lxl(T2[Pa] 水分壓:5xl(T6[Pa] 基板溫度:室溫 濺鍍電力:130W(電力密度1.6W/cm2) 使用基板:Corning #1737(液晶顯示器用玻璃) 320653 23 200927972 t=0.8mm 就實施例A1至A60 ’求出室溫下之氧氣分壓與電阻率 之間的關係之同時,測定經成膜之非晶形膜的蝕刻速率、 在250°C下之退火處理後的電阻率與成膜時的氧 間的關係、及此等的平均透射率等。 ' 下列表4及表5中,表示相對於各試樣的In i莫耳Ar (argon) pressure: 4. OxlO_1 [Pa] Oxygen pressure: 0 to 1. lxl (T2 [Pa] Moisture pressure: 5xl (T6 [Pa] substrate temperature: room temperature sputtering power: 130W (power density 1.6W / Cm2) Substrate used: Corning #1737 (glass for liquid crystal display) 320653 23 200927972 t=0.8mm For the examples A1 to A60', the relationship between the partial pressure of oxygen at room temperature and the resistivity was determined, and the measurement was carried out. The etching rate of the amorphous film of the film, the relationship between the electrical resistivity after annealing at 250 ° C and the oxygen at the time of film formation, and the average transmittance of the film, etc., and the following Tables 4 and 5 show In i molar relative to each sample

Ba及Sn的莫耳比、在室溫成膜時的結晶狀態(將非晶形祺 記以a、結晶化膜則記以c表示)’及表示非晶形膜的結曰、 化溫度。 曰曰 表4及表5中’成膜時電阻率,係、指於室溫成膜時# 最適氧氣分壓下之膜的電阻率之意。_速率,係指^ 室溫成膜之非晶形膜使用ITO-05N(草酸濃度5〇g/公升)、、 在液溫30t下進行蝕刻時的膜的蝕刻速率之意。再者,^ 线理後的平均透射率,係指經25代退火處理後j 最低電阻之氧氣分壓進行成膜,並 &quot; ❹ 的膜對波長卿至一光之平:二:意退火處理β 表4絲5中所示之結晶化溫度,係按如下述: 絲传者。將經250。(:退火處理以成為最低電阻之氧氣/ f打室溫成膜之膜,從靴至靴(需要時為45代 次大氣中退火處理1小時,並使用薄膜取 ^析該膜、。經室溫成膜之非晶形職示之繞射峰㈤ pe= ’藉由退火處理溫度之增高即可檢出繞射線。將盆聋 :的溫度定為結晶化溫度。另外,求出結晶化溫度之盆相 方法,亦可使用高溫薄膜XRDa—射線繞射)法。 320653 24 200927972 [表4]The molar ratio of Ba and Sn, the crystal state at the time of film formation at room temperature (indicated by a, the crystallized film is indicated by c), and the temperature at which the amorphous film is formed.曰曰 Tables 4 and 5 show the resistivity at the time of film formation, which means the resistivity of the film at the optimum partial pressure of oxygen at the time of film formation at room temperature. The rate of _ is the meaning of the etching rate of the film when ITO-05N (oxalic acid concentration: 5 〇g/liter) and etching at a liquid temperature of 30 ton is used for the amorphous film formed at room temperature. Furthermore, the average transmittance after the wire is the filming of the lowest partial pressure of oxygen after annealing in the 25th generation, and the film of the film is wavelength-to-wavelength: The crystallization temperature shown in the filament 5 of Table 4 was treated as follows: Silkmer. Will pass 250. (: Annealing to form the film with the lowest resistance of oxygen / f at room temperature, from the boot to the boot (if necessary, annealing in the 45th generation atmosphere for 1 hour, and using the film to extract the film, the chamber The diffraction peak of the amorphous film of the warm film (5) pe= 'The radiation can be detected by the increase of the annealing temperature. The temperature of the basin is determined as the crystallization temperature. In addition, the crystallization temperature is determined. The basin phase method can also use the high temperature film XRDa-ray diffraction method. 320653 24 200927972 [Table 4]

試樣 編號 Sn比 Ba比 結晶 狀態 結晶化 溫度 成膜時之 電阻率 (χ10—4Ωαη) 餘刻 速率 (A/sec) 退火處理後 之電阻率 (χ10'4Ωαη) 退火處理 後之平均 透射率(%) A1 0 0.1 a &gt;450〇C 19.0 22.3 21.4 79.3 A2 0.025 0.07 a 400°C 12.5 18.2 14.3 84.2 A3 0.025 0.1 a &gt;450〇C 15.2 19.8 17.5 82.8 A4 0. 05 0.002 c &lt;100°C 4.1 X 3.0 94.3 A5 0.05 0.005 c &lt;100°C 4.1 X 3.1 90.0 A6 0. 05 0.01 c &lt;100°C 4.2 X 3.4 88.6 A7 0.05 0.02 a 150°C 5.0 7.4 4.9 90.9 A8 0. 05 0.03 a 200°C 7.5 10 6.2 91.2 A9 0.05 0. 05 a 400°C 8.2 13.2 9.2 91.5 A10 0.075 0.002 c &lt;100°C 3.3 X 2.1 92.4 All 0.075 0.005 c 〈10(TC 3.3 X 2.1 92.5 A12 0.075 0.01 a 100°C 4.2 6.7 3.1 90.0 A13 0.075 0.02 a 150°C 5.1 7.5 3.5 95.5 A14 0.075 0.03 a 250〇C 6.7 8 5.1 91.8 A15 0.1 0. 0001 c &lt;100°C 4.3 X 1.8 95.2 A16 0.1 0. 0002 c &lt;100°C 4.3 X 1.8 95.2 A17 0.1 0.0005 c &lt;100。。 4.3 X 1.8 95.3 A18 0.1 0.001 c 〈loot 4.3 X 1.8 95.2 A19 0.1 0. 002 c &lt;100°C 4.3 X 1.8 94.8 A20 0.1 0.005 a 100°C 4.3 4.9 1.8 94.0 A21 0.1 0.01 a 150°C 4.7 5.4 2.3 92.2 A22 0.1 0.02 a 200°C 5.5 6.2 2.7 93.8 A23 0.1 0.03 a 250〇C 6.1 6.7 4.6 92.5 A24 0.1 0.05 a 400°C 8.6 8 10.0 86.7 A25 0.1 0.1 a &gt;450〇C 14.2 10.6 15.3 83.2 A26 0.15 0.0001 c 〈100°C 4.6 X 1.8 94.5 A27 0.15 0. 0002 c &lt;100°C 4.6 X 1.8 94.5 A28 0.15 0. 0005 c &lt;100。。 4.6 X 1.8 94.6 A29 0.15 0.001 a 150°C 4.6 3.9 1.8 94.5 A30 0.15 0.002 a 150°C 4.6 3.9 1.8 92.3 25 320653 200927972 [表5] 試樣 編號 Sn比 Ba比 結晶 狀態 結晶化 溫度 成膜時之 電阻率 (χ10'4Ωαη) #刻 速率 (A/sec: 退火處理後 之電阻率 (χ10*4Ωαη) 退火處理 後之平均 透射率(%) A31 0.15 0.005 a 150°C 4.6 4 1.8 92.1 A32 0.15 0.01 a 200°C 5.0 4.1 2.1 93.2 A33 0.15 0.02 a 250〇C 6.0 4.4 2.6 91.4 A34 0.15 0.03 a 350〇C 6.9 4.7 5.9 91.5 A35 0.15 0.05 a &gt;450〇C 8.6 4.9 8.1 84.7 A36 0.2 0. 00006 c 〈loot 4.8 X 1.9 94.5 A37 0.2 0. 0001 a 150°C 4.8 3.5 1.9 93.4 A38 0.2 0. 0002 a 150°C 4.8 3.5 1.9 93.2 A39 0.2 0. 0005 a 150°C 4.8 3.5 1.9 93.8 A40 0.2 0. 001 a 200°C 4.8 3.5 1.9 94.4 A41 0.2 0.002 a 200°C 4.8 3.5 1.9 93.6 A42 0.2 0.005 a 200°C 5.2 3.6 1.9 93.4 A43 0.2 0.01 a 200°C 5.8 4 2.4 93.5 A44 0.2 0. 02 a 250〇C 6.7 4.2 3.0 93.0 A45 0.2 0.03 a 400。。 8.0 4.5 6.2 92.0 A46 0.2 0.05 a &gt;450〇C .10.1 4.7 9.8 83.5 A47 0.22 0.00005 a loot: 4.9 3 2.0 94.3 A48 0. 22 0.033 a 400°C 8.1 4.6 6.3 89.6 A49 0. 25 0. 0001 a 250〇C 4.7 2.3 2.1 95.0 A50 0.25 0. 0002 a 250〇C 4.7 2.3 2.1 93.9 A51 0.25 0.0005 a 250〇C 4.7 2.3 2.1 94.9 A52 0. 25 0.001 a 250〇C 4.7 2.3 3.6 93.2 A53 0.3 0.0001 a 300°C 5.3 1.2 4.3 89.0 A54 0.3 0.0002 a 300°C 5.3 1.2 4.3 89.0 A55 0.3 0. 0005 a 300°C 5.3 1.2 4.3 89.0 A56 0.3 0.001 a 300°C 5.3 1.2 4.3 88.9 A57 0.3 0.002 a 300°C 5.4 1.2 4.4 87.8 A58 0.3 0.005 a 350〇C 5.7 1.3 4.7 88.9 A59 0.3 0.01 a 400°C 6.2 1.7 5.1 95.7 A60 0.3 0.02 a 450〇C 7.8 1.9 6.0 94.5 26 320653 200927972 (試驗例A1) 採用各製造例A1至A60的濺鍍靶並求出在室溫(約2〇 °C)下的氧氣分壓與在該分壓下成膜之膜的電阻率之間的 . 關係以求出最適氧氣分壓之同時’從將各氧氣分塵下成膜 • 之膜在250°C下進行退火處理後的電阻率與成膜氧氣分屢 之間的關係,將退火處理後之電阻率成為最低電阻之氧氣 分壓作為在250°C下進行成膜時的最適氧氣分壓,以判斷 兩者的最適氧氣分壓是否相異,將相異者記以鲁,略相同 ® 者記以▲,表示於第12圖。 由其結果得知,如相對於銦1莫耳之錫的莫耳比y為: 相對於錮1莫耳之鋇莫耳比以x表示時之(_2. 9xl〇-2Ln(x) -6. 7x10 2)的值以上,而(_2. 〇xi〇MLn(x)-4. 6x10—〇的值以 下並去除y=〇的範圍的情形,則成膜後的非晶形膜成為低 電阻之成膜氧氣分壓、與退火處理後的膜成為低電阻之成 膜氧氣分壓會成為相異者,或者在25(rCT之最適氧氣分 ❹壓a與在至溫下的最適氧氣分壓相異者之事實。亦即,在 此等的組成範圍,並非以從剛成膜後的電阻率所求得之最 適氧氣分壓’而是以經退火處理後結晶化之膜成為最低電 阻之氧氣分壓進行成膜之作法,在退火處理後的膜的電阻 率會較低,故係一種更佳的作法。 在此’就在此範圍内的試驗實施例的大部分的試樣而 δ ’在250。(:下的退火處理後的膜成為低電阻之氧氣分壓 係車父室溫之下者為低,因而可知在低氧氣分壓下的成膜係 較佳之事實。又’就Α58至Α60而言,在250T:下的退火 27 320653 200927972 處理後的膜成為低電阻之氧氣分壓係較在室溫之下者為 高,因而可知在高氧氣分壓下的成膜之作法係較能製得低 . 電阻的透明導電膜而為佳之事實。 • 又,關於A2、A9、A24等結晶化溫度高的試樣而言, . 不知是否因即使實施250°C退火處理仍未結晶化之故,在 250°C下實施退火處理時電阻率最低者較在室溫成膜的最 適氧氣分壓下的電阻率為高。如將在室溫成膜的最適氧氣 分壓下成膜者實施250°C退火處理,則電阻會再升高。因 ® 而,如將以在退火處理溫度下電阻會成為最低的氧氣分壓 下實施室溫成膜者進行退火處理之方式之結果而言,會成 為最低的電阻。另外,對此等而言,如在結晶化溫度,例 如在400°C下進行退火處理的情形,當然較佳為以退火處 理後的電阻率成為最低之氧氣分壓進行成膜。如考慮此種 情形,鋇的莫耳比X'較佳為未達0. 05。 於此種試驗例A1中之250°C退火處理後的膜成為低電 q 阻之氧氣分壓,可推測為係與在250°C下成膜之最適氧氣 分壓大約一致者。 在此,作為剛成膜後的膜成為低電阻之氧氣分壓與2 5 0 °C退火處理後的膜成為低電阻之氧氣分壓為同一的例子, 可舉:A4、A6、A35等。再者,對此等情況,可推測為在 室溫成膜時之最適氧氣分壓與在250°C下成膜之最適氧氣 分壓係同一者。 (試驗例A 2) 將以室溫成膜時之最適氧氣分壓所製造之透明導電膜 28 320653 200927972 分別裁切為10x50mm的大小,使用ITO-05N (草酸系,關 東化學(股)製)(草酸濃度50g/公升)作為蝕刻液,在溫度 30°C下’測定蝕刻速率,將3 A/秒以下者記以「▲」、3 A/秒以上未達4 A/秒者記以#、4 A/秒以上者記以〇, 並將結果表示於第13圖中。 從此結果得知,如相對於銦1莫耳的錫的莫耳比y為: 相對於銦1莫耳之鋇莫耳比以x表示時之(-2. 9xl〇-2Ln(x) -6. 7x10—2)的值以上’且在〇 22以下的範圍,為3 a/秒以 上,特別疋,在(5. 9x10 2Ln(x)+4. 9x1ο—1)的值以下的範圍, 則成為4 A /秒以上。 據此,將經合併試驗例A1的結果之結果表示於第Η 圖中。亦即,由其結果得知,如相對於銦丨莫耳之錫的莫 耳比y為:相對於銦1莫耳之鋇莫耳比以χ表示時之卜2 g χ10-21η(χ)-6.7χ10-)ό^,^ , „ (-2. 〇χΐ〇-lLn(x)^ βχ 〇 ΙΟ1)的值以下並去除y=0的範圍,且在〇 22以下的範圍的 情形,則在室溫與作為退域理溫度之25代下的最適氧 氣分磨會成為相異者’且钱刻速率在3 A/秒以上 在⑽χΗ)、(χΗ4·9χΐη的值以下的範圍刻 會成為4 Α/秒以上。 ^千 (試驗例A3) 就第14圖的較佳範圍内的試樣,以退火處理後會成為 低電阻之氧氣分壓進行非日日日形_之成膜,錢,測定經 退火處理而結晶化之透明導電膜的電阻率,將3 _-4 Ω cm以下者記以◎,將較此為高者記以〇。將其結果表示於 320653 29 200927972 第15圖中。 由其結果得知,如相對於錮〗莫耳之錫的莫耳比乂為 -0.08=上,而相對於銦1莫耳之鋇的莫耳比又為〇.以 下的範圍者,其電阻率極低,為3· Oxl(T4Qcm以下之事實。 又,如合併試驗例A1的結果觀察時,則可知,經以退火處 理溫度(例如,在25(TC下)的最適氧氣分壓進行室溫成膜, 然後,實施退火處理以使其結晶化之膜而言,其電阻率亦 為3. 0x1 〇_4 Q cm以下之事實。 〇 【圖式簡單說明】 第1圖(a)至(c)係表示本發明之實施例1至3的氧氣 分壓與電阻率之間的關係之圖。 第2圖(a)及(b)係表示本發明之實施例4至5的氧氣 分壓與電阻率之間的關係之圖。 第3圖(a)及(b)係表示本發明之實施例6至7的氧氣 分壓與電阻率之間的關係之圖。 〇 第4圖(a)及(b)係表示本發明之實施例8至9的氧氣 分壓與電阻率之間的關係之圖。 第5圖(a)及(b)係表示本發明之實施例10至11的氧 氣分壓與電阻率之間的關係之圖。 第6圖(a)及(b)係表示本發明之實施例12至13的氧 氣分壓與電阻率之間的關係之圖。 第7圖係表示本發明之比較例1的氧氣分壓與電阻率 之間的關係之圖。 第8圖係表示本發明之比較例2的氧氣分壓與電阻率 30 320653 200927972 之間的關係之圖。 第9圖係表示本發明之比較例3的氧氣分壓與電阻率 - 之間的關係之圖。 , 第10圖係表示本發明之比較例4的氧氣分壓與電阻率 , 之間的關係之圖。 ' 第11圖係表示本發明之比較例5的氧氣分壓與電阻率 之間的關係之圖。 第12圖係表示本發明之試驗例A1之結果之圖。 ® 第13圖係表示本發明之試驗例A2之結果之圖。 第14圖係表示本發明之試驗例A1及試驗例A2之結果 之圖。 第15圖係表示本發明之試驗例A3之結果之圖。 【主要元件符號說明】 無。 〇 31 320653The resistivity (χ10-4Ωαη) of the sample number Sn when compared with the filming temperature at the crystallization temperature of Ba (χ10-4Ωαη) Residual rate (A/sec) The resistivity after annealing (χ10'4Ωαη) The average transmittance after annealing ( %) A1 0 0.1 a &gt;450〇C 19.0 22.3 21.4 79.3 A2 0.025 0.07 a 400°C 12.5 18.2 14.3 84.2 A3 0.025 0.1 a &gt;450〇C 15.2 19.8 17.5 82.8 A4 0. 05 0.002 c &lt;100°C 4.1 X 3.0 94.3 A5 0.05 0.005 c &lt;100°C 4.1 X 3.1 90.0 A6 0. 05 0.01 c &lt;100°C 4.2 X 3.4 88.6 A7 0.05 0.02 a 150°C 5.0 7.4 4.9 90.9 A8 0. 05 0.03 a 200 °C 7.5 10 6.2 91.2 A9 0.05 0. 05 a 400°C 8.2 13.2 9.2 91.5 A10 0.075 0.002 c &lt;100°C 3.3 X 2.1 92.4 All 0.075 0.005 c <10(TC 3.3 X 2.1 92.5 A12 0.075 0.01 a 100° C 4.2 6.7 3.1 90.0 A13 0.075 0.02 a 150°C 5.1 7.5 3.5 95.5 A14 0.075 0.03 a 250〇C 6.7 8 5.1 91.8 A15 0.1 0. 0001 c &lt;100°C 4.3 X 1.8 95.2 A16 0.1 0. 0002 c &lt; 100 ° C 4.3 X 1.8 95.2 A17 0.1 0.0005 c &lt; 100. 4.3 X 1.8 95.3 A18 0.1 0.001 c 〈loot 4.3 X 1.8 95.2 A19 0.1 0. 002 c &lt;100 ° C 4.3 X 1.8 94.8 A20 0.1 0.005 a 100 ° C 4.3 4.9 1.8 94.0 A21 0.1 0.01 a 150 ° C 4.7 5.4 2.3 92.2 A22 0.1 0.02 a 200 ° C 5.5 6.2 2.7 93.8 A23 0.1 0.03 a 250〇C 6.1 6.7 4.6 92.5 A24 0.1 0.05 a 400°C 8.6 8 10.0 86.7 A25 0.1 0.1 a &gt;450〇C 14.2 10.6 15.3 83.2 A26 0.15 0.0001 c <100°C 4.6 X 1.8 94.5 A27 0.15 0. 0002 c &lt;100°C 4.6 X 1.8 94.5 A28 0.15 0. 0005 c &lt;100. . 4.6 X 1.8 94.6 A29 0.15 0.001 a 150°C 4.6 3.9 1.8 94.5 A30 0.15 0.002 a 150°C 4.6 3.9 1.8 92.3 25 320653 200927972 [Table 5] The resistance of the sample number Sn to Ba when crystallized at a crystallizing temperature Rate (χ10'4Ωαη) #刻率(A/sec: resistivity after annealing (χ10*4Ωαη) Average transmittance after annealing (%) A31 0.15 0.005 a 150°C 4.6 4 1.8 92.1 A32 0.15 0.01 a 200°C 5.0 4.1 2.1 93.2 A33 0.15 0.02 a 250〇C 6.0 4.4 2.6 91.4 A34 0.15 0.03 a 350〇C 6.9 4.7 5.9 91.5 A35 0.15 0.05 a &gt;450〇C 8.6 4.9 8.1 84.7 A36 0.2 0. 00006 c 〈loot 4.8 X 1.9 94.5 A37 0.2 0. 0001 a 150°C 4.8 3.5 1.9 93.4 A38 0.2 0. 0002 a 150°C 4.8 3.5 1.9 93.2 A39 0.2 0. 0005 a 150°C 4.8 3.5 1.9 93.8 A40 0.2 0. 001 a 200 °C 4.8 3.5 1.9 94.4 A41 0.2 0.002 a 200°C 4.8 3.5 1.9 93.6 A42 0.2 0.005 a 200°C 5.2 3.6 1.9 93.4 A43 0.2 0.01 a 200°C 5.8 4 2.4 93.5 A44 0.2 0. 02 a 250〇C 6.7 4.2 3.0 93.0 A45 0.2 0.03 a 400. 8.0 4.5 6.2 92.0 A46 0.2 0.05 a &gt;450〇C .10.1 4.7 9.8 83 .5 A47 0.22 0.00005 a loot: 4.9 3 2.0 94.3 A48 0. 22 0.033 a 400°C 8.1 4.6 6.3 89.6 A49 0. 25 0. 0001 a 250〇C 4.7 2.3 2.1 95.0 A50 0.25 0. 0002 a 250〇C 4.7 2.3 2.1 93.9 A51 0.25 0.0005 a 250〇C 4.7 2.3 2.1 94.9 A52 0. 25 0.001 a 250〇C 4.7 2.3 3.6 93.2 A53 0.3 0.0001 a 300°C 5.3 1.2 4.3 89.0 A54 0.3 0.0002 a 300°C 5.3 1.2 4.3 89.0 A55 0.3 0. 0005 a 300°C 5.3 1.2 4.3 89.0 A56 0.3 0.001 a 300°C 5.3 1.2 4.3 88.9 A57 0.3 0.002 a 300°C 5.4 1.2 4.4 87.8 A58 0.3 0.005 a 350〇C 5.7 1.3 4.7 88.9 A59 0.3 0.01 a 400 °C 6.2 1.7 5.1 95.7 A60 0.3 0.02 a 450〇C 7.8 1.9 6.0 94.5 26 320653 200927972 (Test Example A1) Using the sputtering targets of each of the manufacturing examples A1 to A60 and determining at room temperature (about 2 ° C) The relationship between the oxygen partial pressure and the resistivity of the film formed under the partial pressure to determine the optimum oxygen partial pressure while the film is formed from 250 ° C. The relationship between the resistivity after annealing and the film formation oxygen, and the resistivity after annealing is the lowest resistance oxygen. The partial pressure of gas is the optimum oxygen partial pressure at the time of film formation at 250 ° C to determine whether the optimum oxygen partial pressures of the two are different, and the difference is marked with Lu, and the same is marked with ▲, indicated by Figure 12. From the results, it is known that the molar ratio y of the tin relative to the indium 1 is: when compared with the 锢1 molar, the molar ratio is represented by x (_2. 9xl 〇 -2Ln(x) -6 When the value of 7x10 2) is greater than or equal to the value of (_2. 〇xi〇MLn(x)-4. 6x10—〇 and the range of y=〇 is removed, the amorphous film after film formation becomes low resistance. The film-forming oxygen partial pressure and the film-forming oxygen partial pressure which becomes a low resistance after annealing treatment may become different, or at 25 (the optimum oxygen partial pressure a of rCT and the optimum oxygen partial pressure at the temperature) The fact that the composition range is not the optimum oxygen partial pressure obtained from the resistivity immediately after film formation, but the film which is crystallized after annealing treatment becomes the lowest resistance oxygen. Partial pressure is used for film formation, and the resistivity of the film after annealing is lower, so it is a better practice. Here, most of the samples of the test examples within this range are δ ' At 250. (: The film after the annealing treatment becomes a low-resistance oxygen partial pressure system, the driver is low at room temperature, so it is known that under low oxygen partial pressure The film forming system is better. In the case of Α58 to Α60, the film after annealing at 250T: 27 320653 200927972 becomes a low-resistance oxygen partial pressure system higher than that at room temperature, so it is known that The method of film formation under high oxygen partial pressure is better than the fact that the transparent conductive film of resistance is good. • Also, for samples with high crystallization temperatures such as A2, A9, and A24, I don’t know if Since it is not crystallized even if it is subjected to annealing at 250 ° C, the lowest resistivity at the annealing treatment at 250 ° C is higher than the optimum oxygen partial pressure at room temperature. At the optimum oxygen partial pressure of the warm film, the film is subjected to an annealing treatment at 250 ° C, and the resistance is increased. Because of the temperature, the room temperature is the lowest at the annealing temperature. As a result of the manner in which the film formation is annealed, the lowest resistance is obtained. Further, in the case where the annealing treatment is performed at a crystallization temperature, for example, at 400 ° C, it is of course preferable to The resistivity after annealing is the lowest Oxygen partial pressure is used for film formation. If this case is considered, the molar ratio of 钡 is preferably less than 0.05. The film after annealing at 250 ° C in this test example A1 becomes low electric resistance. The partial pressure of oxygen is presumed to be approximately the same as the optimum partial pressure of oxygen formed at 250 ° C. Here, as a film immediately after film formation, the oxygen partial pressure of low resistance is annealed at 250 ° C. The treated film has the same low partial pressure of oxygen as the same, and may be, for example, A4, A6, A35, etc. Further, in these cases, it is presumed that the optimum partial pressure of oxygen at the time of film formation at room temperature is The optimum oxygen partial pressure for film formation at 250 ° C is the same. (Test Example A 2) The transparent conductive film 28 320653 200927972 manufactured by the optimum oxygen partial pressure at room temperature film formation was cut into a size of 10 x 50 mm, respectively. Using ITO-05N (oxalic acid system, manufactured by Kanto Chemical Co., Ltd.) (oxalic acid concentration: 50 g/liter) as an etching solution, the etching rate was measured at a temperature of 30 ° C, and those below 3 A/sec were recorded as "▲". Those who have not reached 4 A/sec for 3 A/sec or more are marked with #, 4 A/sec or more, and the results are shown in Fig. 13. From this result, it is known that the molar ratio y of tin relative to the indium 1 molar is: -2. 9xl 〇-2Ln(x) -6 with respect to the molar ratio of the indium 1 molar. The value of 7x10-2) is greater than or equal to 'the range of 〇22 or less, and is 3 a/sec or more, and particularly, in the range of (5. 9x10 2Ln(x) + 4. 9x1ο-1), Become 4 A / sec or more. Accordingly, the results of the results of the combined test example A1 are shown in the figure. That is, it is known from the results that the molar ratio y of tin relative to indium bismuth is: when compared with the indium 1 molar, the molar ratio is expressed by χ 2 g χ 10-21η (χ) -6.7χ10-)ό^,^ , „ (-2. 〇χΐ〇-lLn(x)^ βχ 〇ΙΟ1) below the value and remove the range of y=0, and in the case of the range below 〇22, The optimum oxygen separation at room temperature and the 25th generation as the retreat temperature will be different, and the rate of the engraving rate will be 3 A/sec or more (10) 、), and the range below the value of χΗ4·9χΐη will become 4 Α / sec. ^ thousand (Test Example A3) For the sample within the preferred range of Figure 14, after annealing, it will become a low-resistance oxygen partial pressure for non-day-day shape _ film, money The resistivity of the transparent conductive film crystallized by the annealing treatment is measured, and those below 3 _-4 Ω cm are denoted by ◎, and those higher than this are denoted by 〇. The results are shown in 320653 29 200927972 Fig. 15 It is known from the results that, for example, the molar ratio of the tin relative to the tin of the 莫 莫 莫 is -0.08 = upper, and the molar ratio relative to the indium of the indium 1 is 〇. The following range, Resistivity Low, it is 3·Oxl (the fact that T4Qcm or less. When it is observed by the result of the combined test example A1, it is understood that the room temperature is formed by the annealing treatment temperature (for example, the optimum oxygen partial pressure at 25 (TC)). The film is then subjected to an annealing treatment to crystallize the film, and the resistivity thereof is also 3. 0x1 〇 _4 Q cm or less. 〇 [Simple description of the drawing] Fig. 1 (a) to (c) Fig. 2 is a view showing the relationship between the oxygen partial pressure and the specific resistance of Examples 1 to 3 of the present invention. Fig. 2 (a) and (b) show the partial pressure of oxygen and the oxygen partial pressure of Examples 4 to 5 of the present invention. Fig. 3 (a) and (b) are diagrams showing the relationship between the oxygen partial pressure and the specific resistance of Examples 6 to 7 of the present invention. 〇 Fig. 4 (a) And (b) is a graph showing the relationship between the oxygen partial pressure and the specific resistance of Examples 8 to 9 of the present invention. Fig. 5 (a) and (b) show the oxygen of Examples 10 to 11 of the present invention. Fig. 6(a) and (b) are diagrams showing the relationship between the partial pressure of oxygen and the specific resistance of Examples 12 to 13 of the present invention. The graph shows the relationship between the oxygen partial pressure and the specific resistance of Comparative Example 1 of the present invention. Fig. 8 is a graph showing the relationship between the oxygen partial pressure of Comparative Example 2 of the present invention and the specific resistance of 30 320653 200927972. Fig. 9 is a view showing the relationship between the partial pressure of oxygen and the specific resistance of Comparative Example 3 of the present invention. Fig. 10 is a view showing the relationship between the partial pressure of oxygen and the specific resistance of Comparative Example 4 of the present invention. Fig. 11 is a graph showing the relationship between the oxygen partial pressure and the specific resistance of Comparative Example 5 of the present invention. Fig. 12 is a view showing the results of Test Example A1 of the present invention. Fig. 13 is a view showing the results of Test Example A2 of the present invention. Fig. 14 is a view showing the results of Test Example A1 and Test Example A2 of the present invention. Fig. 15 is a view showing the results of Test Example A3 of the present invention. [Main component symbol description] None. 〇 31 320653

Claims (1)

200927972 七、申請專利範圍: 1. 一種透明導電膜之製造方法,其特徵為:當使用具備有 _ 含有氧化銦與需要時之錫同時含有添加元素之氧化物 _ 燒結體之濺鍍靶以進行膜之成膜,而製造含有氧化銦與 需要時之錫同時含有添加元素且為非晶形的透明導電 • 膜時,將成膜時的水的分壓設成lxl(T5Pa以下。 2. 如申請專利範圍第1項之透明導電膜之製造方法,其 中,在使非晶形膜成膜後,藉由退火處理而作成結晶化 ❹ 之透明導電膜。 3. 如申請專利範圍第1項之透明導電膜之製造方法,其 中,該添加元素係選自Ba、Si、Sr、Li、La、Ca、Mg 以及Y所成群組之至少一種者。 4. 如申請專利範圍第2項之透明導電膜之製造方法,其 中,該添加元件係選自Ba、Si、Sr、Li、La、Ca、Mg 以及Y所成群組之至少一種者。 〇 32 320653200927972 VII. Patent Application Range: 1. A method for producing a transparent conductive film, which is characterized in that a sputtering target having an oxide containing an indium oxide and a tin containing an additive element while containing an indium oxide is used for carrying out When a film is formed into a film and a transparent conductive film containing indium oxide and an additive element and containing an additive element is formed, the partial pressure of water at the time of film formation is set to lxl (T5Pa or less). The method for producing a transparent conductive film according to the first aspect of the invention, wherein, after the amorphous film is formed, a transparent conductive film which is crystallized by annealing is formed. 3. Transparent conductive material according to claim 1 The method for producing a film, wherein the additive element is at least one selected from the group consisting of Ba, Si, Sr, Li, La, Ca, Mg, and Y. 4. The transparent conductive film of claim 2 The manufacturing method, wherein the additive element is at least one selected from the group consisting of Ba, Si, Sr, Li, La, Ca, Mg, and Y. 〇32 320653
TW97138076A 2007-10-03 2008-10-03 Method for making indium oxide tranparent conductive film TW200927972A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007260438 2007-10-03

Publications (1)

Publication Number Publication Date
TW200927972A true TW200927972A (en) 2009-07-01

Family

ID=40526311

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97138076A TW200927972A (en) 2007-10-03 2008-10-03 Method for making indium oxide tranparent conductive film

Country Status (4)

Country Link
JP (1) JPWO2009044896A1 (en)
KR (1) KR20100071091A (en)
TW (1) TW200927972A (en)
WO (1) WO2009044896A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114008237A (en) * 2019-06-28 2022-02-01 株式会社爱发科 Sputtering target and method for producing sputtering target
US11624109B2 (en) 2017-12-22 2023-04-11 Lg Chem, Ltd. Method for manufacturing transparent conductive film

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5515727B2 (en) * 2009-12-24 2014-06-11 旭硝子株式会社 Method for producing conductive film and laminated glass
JP5817327B2 (en) * 2010-09-29 2015-11-18 東ソー株式会社 Oxide sintered body, method for producing the same, oxide transparent conductive film obtained using the same, and solar cell

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4918737B2 (en) * 2001-03-23 2012-04-18 東ソー株式会社 Oxide sintered body and sputtering target
JP2005135649A (en) * 2003-10-28 2005-05-26 Mitsui Mining & Smelting Co Ltd Indium oxide based transparent conductive film and its manufacturing method
EP1950177A4 (en) * 2005-11-18 2009-02-25 Idemitsu Kosan Co Semiconductor thin film, method for producing same, and thin film transistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11624109B2 (en) 2017-12-22 2023-04-11 Lg Chem, Ltd. Method for manufacturing transparent conductive film
CN114008237A (en) * 2019-06-28 2022-02-01 株式会社爱发科 Sputtering target and method for producing sputtering target

Also Published As

Publication number Publication date
WO2009044896A1 (en) 2009-04-09
KR20100071091A (en) 2010-06-28
JPWO2009044896A1 (en) 2011-02-10

Similar Documents

Publication Publication Date Title
Ponon et al. Effect of deposition conditions and post deposition anneal on reactively sputtered titanium nitride thin films
TWI476159B (en) Composite oxide sintered body, amorphous composite oxide film manufacturing method, amorphous composite oxide film, crystal composite oxide film manufacturing method and crystalline composite oxide film
KR101789347B1 (en) Transparent conductive films
CN102159517A (en) Oxide sintered body and sputtering target
US20100189636A1 (en) Amorphous Film of Composite Oxide, Crystalline Film of Composite Oxide, Method of Producing said Films and Sintered Compact of Composite Oxide
WO2012118150A1 (en) Oxide sintered compact and sputtering target
CN101401169B (en) Transparent conductive film and method for production thereof
TW201902857A (en) Sintered oxide and semiconductor device
TW201250035A (en) In2o3-zno sputtering target
US20160111264A1 (en) Oxide sintered body and sputtering target, and method for producing same
WO2012039351A1 (en) Oxide sintered compact and sputtering target
TW201145386A (en) Corrosion-resistant member for a semiconductor manufacturing device, and manufacturing method therefor
TW201020225A (en) Oxide sintered compact for producing transparent conductive film
US7754110B2 (en) Indium-oxide-based transparent conductive film and method for producing the film
WO2010018707A1 (en) Gallium oxide-tin oxide based oxide sintered body and oxide film
TW200927972A (en) Method for making indium oxide tranparent conductive film
JPWO2009044892A1 (en) Indium oxide-based transparent conductive film and method for producing the same
Khamseh Synthesis and characterization of tungsten oxynitride films deposited by reactive magnetron sputtering
TWI387574B (en) Oxide sintered body for the manufacture of transparent conductive films
TWI361224B (en) Sputtering target and method for making a sintered member of oxide
TW200900520A (en) SnO2 sputtering target and sputtered film
TWI547441B (en) Oxide sintered body, target for sputtering, and oxide semiconductor film obtained using the same
KR102237339B1 (en) Sputtering target and method for producing same
CN108698933A (en) Oxidate sintered body and sputtering target
JP5367660B2 (en) Oxide sintered body and oxide semiconductor thin film