TW200924221A - High-brightness light emitting diode structure - Google Patents

High-brightness light emitting diode structure Download PDF

Info

Publication number
TW200924221A
TW200924221A TW96143801A TW96143801A TW200924221A TW 200924221 A TW200924221 A TW 200924221A TW 96143801 A TW96143801 A TW 96143801A TW 96143801 A TW96143801 A TW 96143801A TW 200924221 A TW200924221 A TW 200924221A
Authority
TW
Taiwan
Prior art keywords
layer
type
emitting diode
island
electrode
Prior art date
Application number
TW96143801A
Other languages
Chinese (zh)
Inventor
xiang-ping Zheng
Chang-Yi Yang
Hou-Run Wu
Original Assignee
Tekcore Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tekcore Co Ltd filed Critical Tekcore Co Ltd
Priority to TW96143801A priority Critical patent/TW200924221A/en
Publication of TW200924221A publication Critical patent/TW200924221A/en

Links

Abstract

The invention provides a high-brightness light emitting diode structure which utilizes an island structure layer made of heavily doped n-type AlInP to cover a partial surface of an AlGaInP epitaxial structure for current blocking. The island structure layer is covered by a p-type window layer and is beneath an ohmic p-electrode. As the injection current is thereby directed to the part of the AlGaInP epitaxial structure not blocked by the p-electrode on the light emitting surface, the current distribution in the light emitting diode is optimized and the lighting efficiency is enhanced.

Description

200924221 九、發明說明: 【發明所屬之技術領域】 本案係有關一種高亮度發光二極體結構,尤指一種 以η型填化紹銦作為電流阻隔結構,加強輸入的電流流 向非出光面電極所遮蔽的磷化鋁鎵銦半導體疊層區 域,藉此使電流分佈達到最佳狀態,進而提高發光效率。 【先前技術】 發光二極體(Light Emitting Diode,LED)的基本原 理係藉由電子與電洞的結合而產生光,就PN接面而 言,在順向偏壓時,電子與電洞分別注入空乏區域 (depletion region),這些注入的電子與電洞相互結合, 其能量即以光的形式放出。 且自從有機金屬化學氣相磊晶系統(Metal-Organic Chemical Vapor Deposition,MOCVD)技術的快速發 展,普遍被應用在生長磷化鋁鎵銦(AlGalnP)之材料, 並得到優良品質的結晶,因此已被用來大量生產高亮度 的發光二極體。 在習知發光二極體的磷化鋁鎵銦(AlGalnP)雙異質 結構(double heterostructure,DH)中,包含形成於η型珅 化鎵(GaAs)基材上的η型AlGalnP束缚層(cladding layer),形成於η型束缚層上的AlGalnP活性層(active layer) ’以及形成於活性層上的p型AlGalnP束缚層。 當改變在活性層中的鋁(A1)與鎵(Ga)的比例時,可應用 於製造波長680nm至550nm之間的可見光區發光二極 體。而在活化層兩側的束缚層,具有侷限載子的功能, 可提高發光二極體的發光效率。 200924221 如圖1所示,習知技術中,如美國專利5,008,718 號的發光二極體結構,該發光二極體之結構包括:一 η 型GaAs基材10、一 η型AlGalnP束缚層11、一未摻 雜之AlGalnP活性層12、一 p型AiGalnP束缚層13、 一窗戶層14、以及一背面電極15和一正面電極16。其 主要特點在於該p型AlGalnP束缚層13上長有一層電 阻係數低、導電性佳且能隙大於該AlGalnP活性層12 的窗戶層14,藉此使電流能均勻地擴散分佈。其中該 窗戶層14的材料係砷化鋁鎵(AlGaAs)、磷砷化鎵 (GaAsP)或磷化鎵(GaP)等。 上述結構雖然使電流能均勻分佈以查到高品質 AlGalnP發光二極體,但因為AlGalnP活性層12所產 生的光將被該正面電極16遮蔽,降低發光效率。 【發明内容】 本發明之目的是提供一種高亮度發光二極體結 構’除了分佈式布拉格反射層(Distributed Bragg Reflector,DBR)加強發光二極體之光的反射外,也以n 型墙化銘钢(AllnP)作為電流阻隔結構,加強輸入的電流 流向非出光面電極所遮蔽的活性層區域,提高發光亮 度。 為了達到上述目的,本發明提出一種高亮度發光二 極體結構,其至少包括:一由砷化鎵(GaAs)所形成的n 型基板,且該η型基板底面形成一歐姆η電極。一分佈 式布拉格反射層’其形成於該η型基板上。一填化鋁鎵 銦(AlGalnP)半導體疊層結構,其形成於該分佈式布拉 格反射層上,用以回應電流之導通而產生光。一由磷化 200924221 -嫁(GaP)所形成的p型窗口層’其形成於該碌化銘鎵姻 (AlGalnP)半導體疊層結構上;一歐姆p電極,形成於 該P型窗口層上;以及一由η型罐化紹銦(Allnp)所形成 高摻雜之島狀結構層,其中磷化鋁銦為A1〇5ln〇 5p,其 形成於該磷化鋁鎵銦半導體疊層結構部分表面用以形 成電流阻隔’被該p型窗口層所包覆,且該島狀結構層 位於該歐姆p電極下方。 其中’該島狀結構層的掺雜材料選自石夕(Si)及蹄(Te) 其中之一進行’具有1〇16〜l〇20cin-3之η型摻雜程度, 厚度在0.01〜Ιμιη之間,且該島狀結構層的邊長長度為 該歐姆ρ電極相對應邊長的1/2至3/2倍。 本案的優點在於除了分佈式布拉格反射層加強發 光二極體之光的反射外,也透過η型磷化鋁銦作為電流 阻隔結構,加強輸入的電流流向非出光面電極所遮蔽的 磷化鋁鎵銦(AlGalnP)半導體疊層區域,且該島狀結構 層係對應於出光面的歐姆ρ電極,且邊長長度界於該歐 姆P電極對應邊長的1/2至3/2倍,藉此使電流分佈達 v 到最佳狀態’進而提高發光效率。 【實施方式】 茲有關本發明的詳細内容及技術說明,現以實施例 來作進一步說明’但應瞭解的是,該等實施例僅為例示 說明之用’而不應被解釋為本發明實施之限制。 請參閱圖2’本案提出一種高亮度發光二極體結構, 其至少包括:一由砷化鎵(GaAs)m形成的η型基板1〇〇, 且其底面形成—歐姆η電極150。一分佈式布拉格反射層 110 ’該分佈式布拉格反射層110形成於該η型基板1〇〇 200924221 上;該分佈式布拉格反射層110 一般可由 AlxGai_xAs/AlyGai-yAs 材料所構成,其中(XxSi, 〇 S y S 1,且 X爹y。 一磷化鋁鎵銦(AlGalnP)半導體疊層結構12〇,形成於 該分佈式布拉格反射層110上’於發光二極體結構中用以 回應電流之導通而產生光。其中該碟化紹錄鋼半導體疊層 結構120至少包含一由η型磷化鋁銦鎵所形成的η型束缚 層121,該η型束缚層121形成於該分佈式布拉格反射層 110上,一由墙化銘銦錄所形成未推雜的活性層122,該 活性層122形成於該η型束縛層121上;一由ρ型碟化銘 銦鎵所形成的ρ型束缚層123 ’該ρ型束缚層123形成於 該活性層122上。 實施上該η型基板1〇〇的厚度為100〜300μιη,該η型 束缚層121係由5xl017〜l〇20cm_3之摻雜程度且厚度在 0.3〜2μιη 之間的 n 型(AlxGaJo.sIno.sP (0.5SxSl)所構 成。該活性層122係由未摻雜程度且厚度小於ιμη1的 (AlxGauVsIno.sP (OSx^o.5)所形成的單層結構;或亦可 由厚度小於 3μιη 的(AlxGa^-ylnyP/CALGapxDmlnyP (OSxSO.5,0.4Syg〇.0,與 〇.5gxigl,〇.4gylg0.6) 所形成的多重量子井結構。該p型束缚層123係由 5χ1016〜1018cnT3之摻雜程度且厚度在〇 3〜2μιη之間的p型 (AlxGa^o.sIno.sP (0.5$χ$ 1)所構成。 然後形成一由η型磷化鋁銦(Α1ΙηΡ)所形成高摻雜之島 狀結構層140,其中磷化鋁銦為A1〇5ln〇5P,該島狀結構層 140形成於該磷化鋁鎵銦半導體疊層結構12〇的ρ型束缚 層123部分表面用以形成電流阻隔。然後再形成由ρ塑磷 200924221 - 化鎵(GaP)所形成的一 p型窗口層130,其形成於該鱗化鋁 嫁姻(AlGalnP)半導體疊層結構120的p型束缚層123上, 且包覆該島狀結構層140。以及一歐姆p電極16〇,形成 於該P型窗口層130上,且該島狀結構層140位於該歐姆 p電極160下方。 其中’該島狀結構層140的摻雜材料選自矽(Si)及碲 - (Te)其中之一進行,用以使該島狀結構層140形成具有 1016〜102Gcm_3之η型摻雜程度,厚度在0.01〜Ιμ!η之間的η , 型Alx Ini-xP (OSxSl)所形成。且該島狀結構層140邊長 長度L2為該歐姆p電極160相對應邊長長度L1的1/2至 3/2倍,即(1/2)1^1$1^2^(3/2)1^1。 本案的主要特徵在於,除了該分佈式布拉格反射層 110加強發光二極體之光的反射外,該磷化鋁鎵銦半導體 疊層結構120與該P型窗口層130之接觸面,被該p型窗 口層130包覆的η型礙化紹銦(AllnP)所形成高摻雜的島狀 結構層140,藉由該n型磷化鋁銦所形成的島狀結構層140 作為電流阻隔、结構,加強輸入的電流流向非出光面電極(歐 I ; 姆p電極16〇)所遮蔽的該填化紹鎵錮半導體疊層結構120 的活性層122區威,用以集中電流,不浪費電流在被該歐 姆p電極160所遮威的的發光區域上,用以提南發光'一極 體的發光亮度。 惟上述僅為本發明之較佳實施例而已,並非用來限 定本發明實施之範圍。即凡依本發明申請專利範圍所做 的均等變化與修飾’皆為本發明專利範圍所涵蓋。 200924221 【圖式簡單說明】 圖1為習知一種發光二極體的結構示意圖。 圖2為本案之發光二極體的結構示意圖。 【主要元件符號說明】 <習知> 10 : η型GaAs基材 11 : η型AlGalnP束缚層 12 : AlGalnP 活性層 13 : p型AlGalnP束缚層 14 :窗戶層 15 :背面電極 16 :正面電極 <本發明> 100 : η型基板 110 :分佈式布拉格反射層 120 :磷化鋁鎵銦半導體疊層結構 121 : η型束缚層 122 :活性層 123 : ρ型束缚層 130 : ρ型窗口層 140 :島狀結構層 150 :歐姆η電極 160 :歐姆ρ電極200924221 IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a high-brightness light-emitting diode structure, and more particularly to an η-type filling of indium as a current blocking structure to enhance the input current to the non-light-emitting surface electrode. The masked aluminum gallium indium semiconductor stacked region is thereby optimized for current distribution, thereby improving luminous efficiency. [Prior Art] The basic principle of a Light Emitting Diode (LED) is to generate light by combining electrons with a hole. For a PN junction, when the forward bias is applied, the electron and the hole are respectively separated. Inject into the depletion region, these injected electrons and holes are combined with each other, and the energy is released in the form of light. And since the rapid development of the Metal-Organic Chemical Vapor Deposition (MOCVD) technology, it has been widely used in the growth of aluminum gallium indium arsenide (AlGalnP) materials, and has obtained excellent quality crystallization, so It is used to mass produce high-brightness light-emitting diodes. In a conventional aluminum gallium indium (AlGalnP) double heterostructure (DH) of a light-emitting diode, an n-type AlGalnP binding layer formed on an n-type gallium antimonide (GaAs) substrate is included. An AlGalnP active layer formed on the n-type tie layer and a p-type AlGalnP tie layer formed on the active layer. When the ratio of aluminum (A1) to gallium (Ga) in the active layer is changed, it can be applied to the production of a visible light emitting diode having a wavelength of 680 nm to 550 nm. The binding layer on both sides of the active layer has the function of limiting the carrier, which can improve the luminous efficiency of the light-emitting diode. As shown in FIG. 1 , in the prior art, as in the light-emitting diode structure of U.S. Patent No. 5,008,718, the structure of the light-emitting diode comprises: an n-type GaAs substrate 10, an n-type AlGalnP binding layer 11, and a An undoped AlGalnP active layer 12, a p-type AiGalnP binding layer 13, a window layer 14, and a back electrode 15 and a front electrode 16. The main feature is that the p-type AlGalnP tie layer 13 has a window layer 14 having a low resistivity, good conductivity and a larger energy gap than the AlGalnP active layer 12, whereby the current can be uniformly diffused and distributed. The material of the window layer 14 is AlGaAs, GaAsP or GaP. Although the above structure allows the current to be uniformly distributed to find a high-quality AlGalnP light-emitting diode, since the light generated by the AlGalnP active layer 12 is shielded by the front electrode 16, the luminous efficiency is lowered. SUMMARY OF THE INVENTION An object of the present invention is to provide a high-brightness light-emitting diode structure 'in addition to a distributed Bragg reflector (DBR) to enhance the reflection of light from a light-emitting diode, and also to n-type wall As a current blocking structure, the steel (AllnP) strengthens the input current to the active layer region shielded by the non-light-emitting surface electrode, thereby improving the luminance of the light. In order to achieve the above object, the present invention provides a high-brightness light emitting diode structure including at least an n-type substrate formed of gallium arsenide (GaAs), and an ohmic n-electrode is formed on the bottom surface of the n-type substrate. A distributed Bragg reflection layer ' is formed on the n-type substrate. A filled aluminum gallium indium (AlGalnP) semiconductor stacked structure is formed on the distributed Bragg reflective layer for generating light in response to conduction of current. a p-type window layer formed by phosphating 200924221 - grafting (GaP) formed on the AlGalnP semiconductor laminate structure; an ohmic p-electrode formed on the P-type window layer; And a highly doped island structure layer formed by n-type cans of indium (Allnp), wherein the aluminum indium phosphide is A1〇5ln〇5p, which is formed on the surface of the aluminum gallium indium semiconductor stacked structure portion The current blocking is used to be covered by the p-type window layer, and the island structure layer is located under the ohmic p-electrode. Wherein the doping material of the island-like structural layer is selected from one of Shi Xi (Si) and hoof (Te) to carry out an n-type doping degree of 1〇16~l〇20cin-3, and the thickness is 0.01~Ιμιη Between the two, and the length of the side of the island structure layer is 1/2 to 3/2 times the length of the corresponding side of the ohmic ρ electrode. The advantage of the present invention is that in addition to the reflection of the light of the distributed Bragg reflection layer to enhance the light-emitting diode, the η-type aluminum indium phosphide is also used as a current blocking structure to enhance the input current to the aluminum gallium arsenide shielded by the non-light-emitting surface electrode. An indium (AlGalnP) semiconductor stacked region, wherein the island-shaped structural layer corresponds to an ohmic ρ electrode of the light-emitting surface, and the length of the side length is 1/2 to 3/2 times the length of the corresponding side of the ohmic P electrode, thereby Bring the current distribution up to the optimum state' to increase the luminous efficiency. DETAILED DESCRIPTION OF THE INVENTION The detailed description and technical description of the present invention will be further described by the embodiments of the present invention. It should be understood that the embodiments are merely illustrative and not construed as The limit. Referring to FIG. 2', a high-brightness light emitting diode structure is proposed, which comprises at least an n-type substrate 1 formed of gallium arsenide (GaAs) m and a bottom surface forming an ohmic n-electrode 150. A distributed Bragg reflector layer 110' is formed on the n-type substrate 1〇〇200924221; the distributed Bragg reflector layer 110 is generally composed of AlxGai_xAs/AlyGai-yAs material, wherein (XxSi, 〇 S y S 1, and X 爹 y. An aluminum gallium indium arsenide (AlGalnP) semiconductor stacked structure 12 〇 is formed on the distributed Bragg reflection layer 110 'in the light emitting diode structure for responding to current conduction And generating the light, wherein the disc-recording steel semiconductor stacked structure 120 comprises at least an n-type tie layer 121 formed of n-type aluminum indium gallium arsenide, and the n-type tie layer 121 is formed on the distributed Bragg reflection layer 110, an unimplanted active layer 122 is formed by a walled indium recording, the active layer 122 is formed on the n-type binding layer 121; a p-type binding layer formed by a p-type dish of indium gallium 123' The p-type tie layer 123 is formed on the active layer 122. The thickness of the n-type substrate 1 is 100-300 μm, and the n-type tie layer 121 is doped by 5×10 17 1 to 10 cm 3 N-type (A) with a thickness between 0.3 and 2 μm The active layer 122 is a single layer structure formed by (AlxGauVsIno.sP (OSx^o.5)) having an undoped degree and a thickness less than ιμη1; or may be smaller than the thickness A multi-quantum well structure formed of 3μιη (AlxGa^-ylnyP/CALGapxDmlnyP (OSxSO.5, 0.4Syg〇.0, and 〇.5gxigl, 〇.4gylg0.6). The p-type binding layer 123 is composed of 5χ1016~1018cnT3 a p-type (AlxGa^o.sIno.sP (0.5$χ$1)) having a doping degree and a thickness of between 〜3 and 2μηη. Then a high formation of η-type aluminum indium phosphide (Α1ΙηΡ) is formed. a doped island structure layer 140, wherein the aluminum indium phosphide is A1〇5ln〇5P, and the island structure layer 140 is formed on a surface of the p-type binding layer 123 of the aluminum gallium indium semiconductor stacked structure 12〇 To form a current barrier, a p-type window layer 130 formed of p-type phosphorus 200924221 - gallium (GaP) is formed, which is formed in the p-type bond of the scaled aluminum dowry (AlGalnP) semiconductor stacked structure 120. On the layer 123, and covering the island structure layer 140, and an ohmic p electrode 16A, formed on the P-type window layer 130, and the island junction The formation layer 140 is located under the ohmic p-electrode 160. The material of the doped material of the island-like structure layer 140 is selected from one of bismuth (Si) and strontium (Te) for forming the island structure layer 140. It has an n-type doping degree of 1016 to 102 Gcm_3 and a thickness of 0.01 to Ιμ!η between η and Alx Ini-xP (OSxSl). The side length L2 of the island structure layer 140 is 1/2 to 3/2 times the length L1 of the corresponding side length of the ohmic p electrode 160, that is, (1/2) 1^1$1^2^(3/2 ) 1^1. The main feature of the present invention is that, in addition to the reflection of the light of the distributed Bragg reflector layer 110 to enhance the light emitting diode, the contact surface of the aluminum gallium indium hydride semiconductor stacked structure 120 and the P-type window layer 130 is The highly doped island structure layer 140 formed by the n-type barrier indium (AllnP) coated by the window layer 130, the island structure layer 140 formed by the n-type aluminum indium phosphide as a current barrier, structure The input current is increased to the non-light-emitting surface electrode (European I; the p-electrode 16〇), and the active layer 122 of the filled-gate gallium semiconductor stacked structure 120 is used to concentrate the current without wasting current. The light-emitting area that is shielded by the ohmic p-electrode 160 is used to enhance the luminance of the light emitted by the south electrode. The above is only the preferred embodiment of the invention, and is not intended to limit the scope of the invention. That is, the equivalent changes and modifications made by the scope of the present invention are covered by the scope of the invention. 200924221 [Simplified Schematic Description] FIG. 1 is a schematic structural view of a conventional light-emitting diode. 2 is a schematic structural view of a light-emitting diode of the present invention. [Explanation of main component symbols] <General knowledge> 10 : η-type GaAs substrate 11 : n-type AlGalnP binding layer 12 : AlGalnP active layer 13 : p-type AlGalnP binding layer 14 : window layer 15 : back electrode 16 : front electrode <Invention> 100: n-type substrate 110: distributed Bragg reflection layer 120: aluminum gallium indium semiconductor stacked structure 121: n-type tie layer 122: active layer 123: p-type tie layer 130: p-type window Layer 140: island structure layer 150: ohmic η electrode 160: ohmic ρ electrode

Claims (1)

200924221 十、申請專利範圍: 1. 一種高亮度發光二極體結構’其至少包括: 一 η型基板,其係由砷化鎵(GaAs)所形成,且其底面 形成一歐姆η電極; 一分佈式布拉格反射層(Distributed Bragg Reflector DBR),其形成於該η型基板上; 一磷化鋁鎵銦(AlGalnP)半導體疊層結構,其形成於該 分佈式布拉格反射層上,用以回應電流之導通而產生 光; 一 P型窗口層,其係由磷化鎵(GaP)所形成,形成於 該磷化鋁鎵銦(AlGalnP)半導體疊層結構上; 一歐姆P電極,形成於該p型窗口層上;以及 兩換雜之島狀結構層’該島狀結構層係由η型碟化 紹銦(AllnP)所形成,其中磷化鋁銦為Α1〇 5Ιη〇 *,其 形成於該磷化鋁鎵銦半導體疊層結構部分表面用^ 形成電流阻隔,被該p型窗口層所包覆,且該島狀結 構層位於該歐姆P電極下方。 2·如申請專利範圍第1項所述之高亮度發光二極體結 構,其中,該島狀結構層具有10〗6〜102〇cnr3 : 摻雜程度。 型 專利範圍,2項所述之高亮度發光二極體結 :具中,该摻雜材料係選自矽(Si)及碲(Te)其中 一進行。 ^ 4·如申請專利範圍第古 弟1項所述之问冗度發光二極體结 、中該島狀結構層厚度在〇·〇1〜1 μηι之間。 •清專魏圍第1項所述之高亮度發光二極體結構, 200924221 其中,該島狀結構層邊長長度為該歐姆P電極相對應邊 長的1/2至3/2倍。 12200924221 X. Patent application scope: 1. A high-brightness light-emitting diode structure comprising at least: an n-type substrate formed of gallium arsenide (GaAs) and having an ohmic η electrode formed on a bottom surface thereof; a Bragg Reflector (DBR) formed on the n-type substrate; an aluminum gallium indium phosphide (AlGalnP) semiconductor stacked structure formed on the distributed Bragg reflector for responding to current Turning on to generate light; a P-type window layer formed by gallium phosphide (GaP) formed on the aluminum gallium indium phosphide (AlGalnP) semiconductor stacked structure; an ohmic P electrode formed on the p-type On the window layer; and two alternate island-like structural layers 'the island-like structural layer is formed by n-type dishing indium (AllnP), wherein the aluminum indium phosphide is Α1〇5Ιη〇*, which is formed in the phosphorus The surface of the aluminum gallium indium semiconductor stacked structure portion is formed by a current barrier, covered by the p-type window layer, and the island-shaped structural layer is located under the ohmic P electrode. 2. The high-brightness light-emitting diode structure according to claim 1, wherein the island-shaped structural layer has a degree of doping: 10:6 to 102 〇cnr3. In the high-brightness light-emitting diode junction described in the above, the doping material is selected from one of bismuth (Si) and tellurium (Te). ^ 4· As claimed in the patent application No. 1 of the application of the luminosity diode junction, the thickness of the island structure layer is between 〇·〇1~1 μηι. • The high-brightness light-emitting diode structure described in item 1 of Weiwei Weiwei, 200924221, wherein the length of the side of the island-shaped structural layer is 1/2 to 3/2 times the length of the corresponding side of the ohmic P electrode. 12
TW96143801A 2007-11-20 2007-11-20 High-brightness light emitting diode structure TW200924221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96143801A TW200924221A (en) 2007-11-20 2007-11-20 High-brightness light emitting diode structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96143801A TW200924221A (en) 2007-11-20 2007-11-20 High-brightness light emitting diode structure

Publications (1)

Publication Number Publication Date
TW200924221A true TW200924221A (en) 2009-06-01

Family

ID=44728921

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96143801A TW200924221A (en) 2007-11-20 2007-11-20 High-brightness light emitting diode structure

Country Status (1)

Country Link
TW (1) TW200924221A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI422065B (en) * 2010-08-03 2014-01-01 Ind Tech Res Inst Light emitting diode chip, package structure of the same, and fabricating method thereof
US9178107B2 (en) 2010-08-03 2015-11-03 Industrial Technology Research Institute Wafer-level light emitting diode structure, light emitting diode chip, and method for forming the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI422065B (en) * 2010-08-03 2014-01-01 Ind Tech Res Inst Light emitting diode chip, package structure of the same, and fabricating method thereof
US8759865B2 (en) 2010-08-03 2014-06-24 Industrial Technology Research Institute Light emitting diode chip, light emitting diode package structure, and method for forming the same
US9178107B2 (en) 2010-08-03 2015-11-03 Industrial Technology Research Institute Wafer-level light emitting diode structure, light emitting diode chip, and method for forming the same

Similar Documents

Publication Publication Date Title
US8653552B2 (en) Semiconductor light-emitting device
US5153889A (en) Semiconductor light emitting device
EP1849193B1 (en) LED with current confinement structure and surface roughening
TWI673889B (en) Light-emitting diode and manufacturing method of tunneling bonding layer
TWM260003U (en) Light-emitting diode to increase the light-emitting efficiency of spontaneous emission
JP2007150066A (en) Nitride semiconductor light-emitting element
US20090146163A1 (en) High brightness light emitting diode structure
JPH02224282A (en) Semiconductor light emitting device
JP5608589B2 (en) Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
JP2013065785A (en) Light-emitting diode and method of manufacturing the same
JP3251603B2 (en) Semiconductor light emitting device
JP6088132B2 (en) Light emitting diode and manufacturing method thereof
Tsai et al. Carrier Transportation and Internal Quantum Efficiency of Blue InGaN Light-Emitting Diodes With $ P $-Doped Barriers
JP5935178B2 (en) Semiconductor light emitting device
TW200924221A (en) High-brightness light emitting diode structure
TW201017929A (en) Semiconductor light emitting device including graded region
US8742395B2 (en) Semiconductor light emitting device
TW201806180A (en) Light-emitting diode
CN101452976B (en) High-brightness LED construction
JP7373435B2 (en) semiconductor light emitting device
JPH0786637A (en) Semiconductor light emitting device
JPH05218498A (en) Light emitting diode provided with transverse junction
TW200417066A (en) Semiconductor light emitting device and the manufacturing method thereof
JPH07169992A (en) Semiconductor light emitter
JP2004103709A (en) Semiconductor light emitting element