TW200417066A - Semiconductor light emitting device and the manufacturing method thereof - Google Patents

Semiconductor light emitting device and the manufacturing method thereof Download PDF

Info

Publication number
TW200417066A
TW200417066A TW093102666A TW93102666A TW200417066A TW 200417066 A TW200417066 A TW 200417066A TW 093102666 A TW093102666 A TW 093102666A TW 93102666 A TW93102666 A TW 93102666A TW 200417066 A TW200417066 A TW 200417066A
Authority
TW
Taiwan
Prior art keywords
layer
light
emitting diode
patent application
item
Prior art date
Application number
TW093102666A
Other languages
Chinese (zh)
Other versions
TWI231053B (en
Inventor
Keiichi Matsuzawa
Ryouichi Takeuchi
Junichi Yamazaki
Original Assignee
Showa Denko Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003032580A external-priority patent/JP4255710B2/en
Application filed by Showa Denko Kk filed Critical Showa Denko Kk
Publication of TW200417066A publication Critical patent/TW200417066A/en
Application granted granted Critical
Publication of TWI231053B publication Critical patent/TWI231053B/en

Links

Landscapes

  • Led Devices (AREA)

Abstract

The subject of the present invention is to provide a light emitting diode device in high light emitting efficiency and high brightness. The solution of the present invention is to compose the cover layer at the anode, and the cover layer at the anode includes: undoped AlInP layer, which is connected with the active layer and grown in depth larger than 0.5 μm; and, a middle layer having a middle energy gap with the energy gap for the undoped AlInP layer and the energy gap for the window layer, and conducting the p-type doping for connecting with the window layer; furthermore, forming the distribution electrodes on part of the surface of the current diffusion layer, configuring the transparent conductive film covering the current diffusion layer and the distribution electrode, and configuring the bottom electrodes on the transparent conductive film.

Description

200417066 (1) 玖、發明說明 【發明所屬之技術領域】 本發明是關於可發出可視光之發光二極體元件。 【先前技術】 發光二極體可使用於各種用途,主要是作爲顯示用。 如眾所週知’按發光波長短至長的順序,係有使用氮化銦 鎵(InGaN )、磷化鋁鎵銦(A1G a I η P )、砷化鋁鎵( GaAlAs )或磷砷化鎵銦(GalnAsP )之LED等。又,近年 來其亮度逐漸獲得改善,最近甚至使用在照明或液晶顯示 裝置的背光照明,再者,用以改善的硏究亦進行中。 以發光效率良好的LED而言,已知專利文獻1或專 利文獻2中記載有第5圖或第6圖所示之具備雙異質( DH )接合構造的LED。該LED的特徵是具有夾著令電子 和電洞再結合以供發光的活性層,並且配置有用以將電子 或電洞封入活性層中的封入層構造。該封入層的能帶間隙 大於活性層,而具有不會吸收其發光之覆蓋層的功能。 眾所週知,以上述方式構成的LED,其發光波長乃決 定於活性層的組成。例如,使用具有第7圖之雙異質( DH )接合構造之 AlGalnP作爲活性層的 LED,以( AUGan) G.5lnQ.5P表示其組成時,活性層之能帶間隙( Eg)係爲 0€χ$0·6 的範圍,藉由 Eg=1.91+0.61x (eV )和x的値而改變。因此,LED的發光波長係爲65 Onm 至5 4 5 nm,藉由活性層之能帶間隙,即,活性層的組成而 (2) (2)200417066 改變。又,已知隨著該x的增加,LED的輸出光會變成短 波長,且其強度會大幅降低。 該輸出光強度降低的原因,由下述各點可知悉。亦即 ,爲了以短波長發光,必須增加活性層的能帶間隙,所以 形成鎵(Ga )之組成比減少的活性層。然而,該鎵之組成 比減少,會導致活性層和封入層之能帶間隙差減少。於是 ,電洞植入活性層時,電位障壁會變得更大,電洞的植入 效率會降低。此外,對於封入在活性層中之電子的覆蓋層 障壁降低,造成電子封入性降低。於是,電子和電洞的再 結合減少,發光輸出因而降低。 因此,非專利文獻1中揭示有,以覆蓋層作爲AllnP ,俾改善電洞之植入效率和電子之封入效果的LED。 又,專利文獻3中揭示有,將連接於活性層之p覆蓋 層的一部分,以0.005至0.2//m左右的厚度形成未摻雜 層的LED。 本發明亦具有類似該未摻雜層的構造,然而,基於本 質的理由,在必須形成較厚的未摻雜層,則不同於上述之 揭示。 此外,專利文獻4中揭示有,爲了抑制p-GaP窗層和 p-AlGalnP層間,或p-AlGalnP覆蓋層和AlGalnP活性層 間,因不連續的能帶(band )所產生的缺口( notch ), 而在這些層之間重新插入具有能帶間隙的層’以降低順向 流通之電流的電阻値。 專利文獻5中揭示有重視覆蓋層構造的發光二極體元 -6 - (3) 200417066 活性 於上 型覆 接於 載子 2覆 •,形 位障 和上 覆蓋 AlGa 之比 如第 構成 且由 比該 蓋層 的發 間, 覆蓋 件,該發光二極體元件係如第8圖所示那樣地具備: 層、和配置於該活性層一邊側的η型覆蓋層、和配置 述活性層另一邊側的Ρ型覆蓋層,其特徵爲:上述η 蓋層具有鄰接於上述活性層的η型第1覆蓋層、和鄰 該第1覆蓋層的η型第2覆蓋層;上述第1覆蓋層的 濃度係低於上述第2覆蓋層’且具有厚度薄於上述第 蓋層,但是,厚於產量子力學通道效果所產生的厚度 成於價電子帶之上述活性層和上述第2覆蓋層間之電 壁的高度,係設成高於形成於價電子帶之上述活性層 述第1覆蓋層間之電位障壁的高度;上述第1及第2 層係由AlGalnP所構成;上述第1覆蓋層中In對於 之比例,係設成低於上述第2覆蓋層中In對於AlGa 例。 又,專利文獻6中揭示有發光二極體元件,其係 9圖所示那樣在積層有:由AlGalnP系化合物半導體 的 η型覆蓋層、和能帶間隙比該 η型覆蓋層小 AlGalnP系化合物半導體構成的活性層、和能帶間隙 活性層大且由P型AlGalnP系化合物半導體構成的覆 、和由GaP構成的P型窗層之積層體上,設置電極 光元件,此外,在上述ρ型覆蓋層和上述ρ型窗層之 設有中介層,而該中介層係由能帶間隙小於上述ρ型 層的材料所構成。 專利文獻7中揭示有發光二極體元件的製法,係如第 10圖所示那樣在雙異質接合構造的LED中,爲了在不使 (4) (4)200417066 P型雜質擴散至未摻雜的活性層而造成發光效率降低的狀 態下,可獲致高特性,故半導體基板上具有η型覆蓋層、 和活性層、和P型覆蓋層所構成之雙異質接合的發光二極 體的製法,其中,將上述p型覆蓋層位於上述活性層側的 一部分,實質地形成未摻雜層,而依序積層各半導體層。 專利文獻1中揭示有在磷化鋁鎵砷(AlGalnP)上設 置磷化鎵(GaP )窗層的LED構造。非專利文獻2中記載 有LED的製造方法,將該GaP窗層積層於AlGalnP上, 以製造第1 1圖所示之LED時,係令其在8 0 0 °C以上的高 溫環境下生長,以抑制結晶缺陷。 一般而言,p— AlGalnP或p— AllnP的導電率相當小 係爲已知。就針對此問題的對策而言,爲了擴大發光部分 的面積,使電流得以在不會局部集中的狀態下擴散,故使 用窗層(或電流擴散層)。然而,當該窗層的電阻値變大 時,爲了在LED流動額定的電流,所需的電壓也要變大 ,因此,該窗層以盡量使用電阻率小的物質爲佳。 再者,以往,已知下述之專利文獻8中,具有由包 含(A1 x G a! - x ) y I n i — y P ( 0 $ X S 1、0 < Y < 1 )混晶層所 構成之發光部構造的發光元件,作爲射出黃綠至紅橙色系 光之發光二極體(LED )或雷射二極體(LD)等發光元件 〇 該專利文獻8中揭示的發光元件,係在由(AlxGai_ x )yln 1 - yP混晶層所構成的發光部表面上,積層由氧化銦 錫構成的透明導電膜,並且在該透明導電膜上形成有上面 -8- (5) (5)200417066 電極,藉此構成,可令上面電極所供給的電流,經由透明 導電膜,盡量大範圍地擴散於半導體表面上。 上述習知的發光元件中,透明導電膜和發光部表面間 無法充分地獲致歐姆接觸,是造成順向電壓增加,壽命特 性降低的主要原因,已知下述專利文獻9中記載有此問題 點的改善對策。 該專利文獻9中揭示的發光元件,係藉由在發光部表 面上形成窗層,在該窗層上形成接觸層,在該接觸層上積 層由氧化銦錫構成的透明導電膜(導電透光氧化層),在 該透明導電膜上形成上面電極(上層電極)而構成者,因 此,可令上面電極所供給的電流,經由透明導電膜、接觸 層和窗層,盡量大範圍地擴散於發光部表面上。 【發明內容】 [發明所欲解決之課題] 爲了降低上述窗層(或電流擴散層)的電阻率,提昇 窗層的結晶性是有效的方法。但是,爲提昇窗層的結晶性 而增加窗層的生長溫度時,會導致元件整體曝露在高溫製 程下’使窗層以外的部分發生不良的情形,而無法實現輸 出強度大的發光二極體元件。 本發明係有鑒於上述問題而提案者,係將窗層以比以 往更高的溫度形成,並改善其導電度,而不因高溫步驟而 產生改變,以此方式改變其結構,得以在習知輸出強度顯 著降低的黃綠色波長帶區域,實現亮度較大的發光二極體 -9- (6) (6)200417066 元件。 又’上述專利文獻2中記載的發光元件中,藉由透明 導電膜和半導體層的歐姆接觸,確實可加以改善,但是, 目前的問題是,由於設有接觸層,發光會被該接觸層吸收 ,所以,無法獲致高亮度發光,故發光效率無法改善。 針對此問題,本案發明者提案有下述專利文獻1 〇中 記載的發光元件,係藉由在半導體部分表面設置分配電極 ,相較於透明導電膜和半導體層間的電阻,得以降低分配 電極和半導體層間的電阻,而且,供給自底電極之大部分 的驅動電流,係以更低的電阻,流動於底電極θ透明導電 膜-分配電極-半導體層(發光部)的路經。 該專利文獻3所揭示的發光元件中,發光部的發光得 以在分配電極的周邊進行,故底電極的正下方不會產生發 光,因此,大部分的發光不會被底電極遮蔽,而得以朝上 方取出,得以改善發光效率。再者,由於沒有設置接觸層 ,故可防止發光被接觸層吸收,基於此點得以改善發光效 率。 然而,得知上述專利文獻3所揭示的發光元件,其分 配電極係呈分散狀態且面積較小,當分配電極正下方的發 光朝上方取出時,會發生被該分配電極遮蔽的情況,此點 是造成發光效率降低的原因之一。 本發明係有鑒於上述問題而提案者,其目的在於提供 一種藉由實現電極和半導體層之良好的歐姆接觸,且發光 部的發光不會被遮蔽而得以取出,使發光效率得以改善之 -10- (7) 200417066 發光二極體元件及該製造方法。 [專利文獻1] 美國專利U S 5 0 0 8 7 1 8號 [專利文獻2] 日本特開平3 — 2 7 0 1 8 6號公報 [專利文獻3] 日本特開平8 — 3 2 1 6 3 3號公報 [專利文獻4] 日本專利第3 2 3 3 5 6 9號公報 [專利文獻5] 日本專利第3 0244 84號公報 [專利文獻6] 曰本特開2000 — 3 1 203 0號公報 [專利文獻7] 日本特開平8 — 293 62 3號公報 [專利文獻8] 日本特開平8 — 8 3 927號公報 [專利文獻9] 日本特開平1 1 — 1 7220號公報 [專利文獻10] 日本特開20 0 1 — 1 8 9493號公報 [非專利文獻Π200417066 (1) 发明 Description of the invention [Technical field to which the invention belongs] The present invention relates to a light-emitting diode element capable of emitting visible light. [Prior art] Light-emitting diodes can be used for various purposes, mainly for display purposes. As is well known, in the order of short to long emission wavelengths, there are the use of indium gallium nitride (InGaN), aluminum gallium indium phosphide (A1G a I η P), aluminum gallium arsenide (GaAlAs), or indium gallium arsenide ( GalnAsP). Moreover, its brightness has been gradually improved in recent years. Recently, it has even been used in lighting or backlighting of liquid crystal display devices. Furthermore, research into improvement is also ongoing. Regarding LEDs with good light emission efficiency, Patent Document 1 or Patent Document 2 is known as an LED having a double heterostructure (DH) junction structure as shown in Fig. 5 or Fig. 6. The LED is characterized by having an active layer sandwiching an electron and a hole for recombination to emit light, and is provided with a sealing layer structure for sealing the electron or hole in the active layer. The encapsulation layer has a band gap larger than that of the active layer, and has a function of a cover layer that does not absorb its light emission. It is well known that the light emission wavelength of an LED configured as described above depends on the composition of the active layer. For example, using an AlGalnP with a double hetero (DH) junction structure as shown in Figure 7 as the active layer of the LED, when the composition is represented by (AUGan) G.5lnQ.5P, the band gap (Eg) of the active layer is 0 € The range of χ $ 0 · 6 is changed by Eg = 1.91 + 0.61x (eV) and 値 of x. Therefore, the emission wavelength of the LED is 65 Onm to 5 4 5 nm, and (2) (2) 200417066 is changed by the band gap of the active layer, that is, the composition of the active layer. It is also known that as the x increases, the output light of the LED becomes a short wavelength, and its intensity is greatly reduced. The reason for the decrease in the output light intensity can be understood from the following points. That is, in order to emit light at a short wavelength, it is necessary to increase the band gap of the active layer, so an active layer having a reduced composition ratio of gallium (Ga) is formed. However, a decrease in the composition ratio of gallium results in a decrease in the band gap difference between the active layer and the encapsulation layer. Therefore, when the hole is implanted into the active layer, the potential barrier will become larger, and the efficiency of hole implantation will decrease. In addition, the barrier layer for the electrons enclosed in the active layer is lowered, resulting in lowered electron-encapsulation properties. As a result, the recombination of electrons and holes is reduced, and the light output is reduced. Therefore, Non-Patent Document 1 discloses an LED in which a cover layer is used as AllnP to improve the hole implantation efficiency and the electron sealing effect. Further, Patent Document 3 discloses an LED in which an undoped layer is formed at a thickness of about 0.005 to 0.2 // m to a part of the p-cladding layer connected to the active layer. The present invention also has a structure similar to this undoped layer. However, for the sake of nature, a thick undoped layer must be formed, which is different from the above disclosure. In addition, Patent Document 4 discloses that in order to suppress a gap (notch) due to a discontinuous band between a p-GaP window layer and a p-AlGalnP layer, or between a p-AlGalnP cover layer and an AlGalnP active layer, A layer with a band gap is re-inserted between these layers to reduce the resistance of the current flowing in the forward direction. Patent Document 5 discloses a light-emitting diode element -6 which attaches importance to the structure of the cover layer. (3) 200417066 Active on the upper layer and connected to the carrier 2 layer. A hair cover of a cover layer, a cover, and the light emitting diode element are provided with a layer, an n-type cover layer disposed on one side of the active layer, and the other side of the active layer as shown in FIG. 8. The P-type cover layer is characterized in that the η cover layer has an η-type first cover layer adjacent to the active layer and an η-type second cover layer adjacent to the first cover layer; and the concentration of the first cover layer It is lower than the second cover layer and has a thickness smaller than that of the first cover layer, but a thickness thicker than that of the yield submechanical channel effect is formed by an electrical wall between the active layer of the valence electron band and the second cover layer. The height is higher than the potential barrier between the first covering layer formed in the active layer of the valence electron band; the first and second layers are composed of AlGalnP; The ratio is set lower than the second overlay In the cap layer, for InGa example. In addition, Patent Document 6 discloses a light-emitting diode element, which is laminated as shown in FIG. 9. The n-type cover layer made of an AlGalnP-based compound semiconductor, and an AlGalnP-based compound having a band gap smaller than that of the n-type cover layer. An electrode optical element is provided on a laminate of an active layer made of a semiconductor, a coating having a large band gap active layer made of a P-type AlGalnP-based compound semiconductor, and a P-type window layer made of GaP. The cover layer and the p-type window layer are provided with an interposer, and the interposer is composed of a material having a band gap smaller than that of the p-type layer. Patent Document 7 discloses a method for manufacturing a light-emitting diode device. As shown in FIG. 10, in a double heterojunction LED, in order not to diffuse (4) (4) 200417066 P-type impurities to undoped In the state where the luminous efficiency is reduced due to the active layer of the semiconductor, high characteristics can be obtained. Therefore, the semiconductor substrate has a method for manufacturing a double heterojunction light emitting diode composed of an n-type cover layer, an active layer, and a P-type cover layer. Wherein, the p-type cladding layer is located at a part of the active layer side, an undoped layer is substantially formed, and each semiconductor layer is sequentially laminated. Patent Document 1 discloses an LED structure in which a gallium phosphide (GaP) window layer is provided on an aluminum gallium phosphide (AlGalnP). Non-Patent Document 2 describes a method for manufacturing an LED. When this GaP window is laminated on AlGalnP to produce the LED shown in FIG. 11, it is grown in a high temperature environment of 800 ° C or higher. To suppress crystal defects. In general, it is known that the conductivity of p-AlGalnP or p-AllnP is relatively small. As a countermeasure against this problem, in order to enlarge the area of the light emitting portion and allow current to spread without being locally concentrated, a window layer (or a current diffusion layer) is used. However, when the resistance 値 of the window layer becomes larger, in order to flow the rated current in the LED, the required voltage must also become larger. Therefore, it is better to use a material with a small resistivity as much as possible for the window layer. Furthermore, conventionally, it is known that the following Patent Document 8 has a mixed crystal layer composed of (A1 x G a!-X) y I ni — y P (0 $ XS 1, 0 < Y < 1) The light-emitting element having the light-emitting portion structure constitutes a light-emitting element such as a light-emitting diode (LED) or a laser diode (LD) that emits yellow-green to red-orange light. The light-emitting element disclosed in Patent Document 8, A transparent conductive film made of indium tin oxide is laminated on the surface of a light-emitting part composed of a (AlxGai_ x) yln 1-yP mixed crystal layer, and an upper surface is formed on the transparent conductive film -8- (5) ( 5) 200417066 electrode, with this structure, the current supplied by the upper electrode can be spread on the semiconductor surface as much as possible through the transparent conductive film. In the above-mentioned conventional light-emitting element, the ohmic contact between the transparent conductive film and the surface of the light-emitting portion cannot be sufficiently obtained, which is the main cause of the increase in forward voltage and the decrease in the life characteristics. Improvement countermeasures. The light-emitting element disclosed in Patent Document 9 is formed by forming a window layer on the surface of a light-emitting part, forming a contact layer on the window layer, and laminating a transparent conductive film (conductive light transmission) made of indium tin oxide on the contact layer. Oxide layer), formed by forming the upper electrode (upper electrode) on this transparent conductive film, so that the current supplied by the upper electrode can be diffused to the largest extent through the transparent conductive film, contact layer and window layer. Department surface. [Summary of the Invention] [Problems to be Solved by the Invention] In order to reduce the resistivity of the window layer (or the current diffusion layer), it is effective to improve the crystallinity of the window layer. However, if the growth temperature of the window layer is increased in order to improve the crystallinity of the window layer, the entire device will be exposed to a high temperature process, which will cause defects in parts other than the window layer and fail to achieve a light emitting diode with high output intensity. element. The present invention is proposed by the present invention in view of the above-mentioned problems. The window layer is formed at a higher temperature than in the past, and its conductivity is improved without changing due to the high temperature step. In this way, the structure is changed, and it is known The yellow-green wavelength band region with significantly reduced output intensity realizes a light-emitting diode-9- (6) (6) 200417066 element with greater brightness. In the light-emitting element described in the above-mentioned Patent Document 2, the ohmic contact between the transparent conductive film and the semiconductor layer can certainly be improved. However, the current problem is that, due to the contact layer, light emission is absorbed by the contact layer. Therefore, high-brightness light emission cannot be obtained, so light emission efficiency cannot be improved. In response to this problem, the inventor of the present invention proposes a light-emitting element described in Patent Document 10 below. By providing a distribution electrode on the surface of a semiconductor portion, the distribution electrode and the semiconductor can be reduced compared to the resistance between the transparent conductive film and the semiconductor layer. The resistance between the layers and the driving current supplied from most of the bottom electrode flow through the bottom electrode θ transparent conductive film-distribution electrode-semiconductor layer (light-emitting portion) with a lower resistance. In the light-emitting element disclosed in Patent Document 3, the light-emitting portion emits light around the distribution electrode, so no light is generated directly below the bottom electrode. Therefore, most of the light is not blocked by the bottom electrode, and can be directed toward the bottom electrode. Take out from the top to improve luminous efficiency. Furthermore, since no contact layer is provided, light emission can be prevented from being absorbed by the contact layer, and the light emission efficiency can be improved based on this point. However, it is known that the light-emitting element disclosed in the above-mentioned Patent Document 3 has a distributed electrode system in a dispersed state and a small area. When the light emitted directly below the distribution electrode is taken out upward, it may be blocked by the distribution electrode. This is one of the causes of the decrease in luminous efficiency. The present invention was proposed by the present invention in view of the above problems, and its object is to provide a -10 which can improve the luminous efficiency by achieving good ohmic contact between the electrode and the semiconductor layer, and the light emission of the light emitting portion is not shielded. -(7) 200417066 Light-emitting diode element and its manufacturing method. [Patent Document 1] US Patent US 5 0 0 8 7 1 8 [Patent Document 2] Japanese Patent Laid-Open No. 3 — 2 7 0 1 8 6 [Patent Document 3] Japanese Patent Laid-Open No. 8 — 3 2 1 6 3 3 [Patent Document 4] Japanese Patent No. 3 2 3 3 5 6 9 [Patent Document 5] Japanese Patent No. 3 0244 84 [Patent Document 6] Japanese Patent Laid-Open No. 2000-3 1 203 0 [ Patent Literature 7] Japanese Patent Laid-Open No. 8 — 293 62 [Patent Literature 8] Japanese Patent Laid-Open No. 8 — 8 3 927 [Patent Literature 9] Japanese Patent Laid-Open No. 1 1 — 1 7220 [Patent Literature 10] Japan Japanese Patent Laying-Open No. 20 0 1-1 8 9493 [Non-Patent Document Π

Light G.B.Stringfellow e t a 1. “High Brightness -11 - (8) (8)200417066Light G.B.Stringfellow e t a 1. "High Brightness -11-(8) (8) 200417066

Emitting Diode,,,pp. 108, pp. 162,and,pp. 168,1 99 6.Emitting Diode ,,, pp. 108, pp. 162, and, pp. 168, 1 99 6.

[非專利文獻2] J. Lin, et al., J. Crys. Growth, 142,pp. 15—20,19 9 4 [解決課題的手段] 爲了達成上述目的,本發明第1特徵爲一種發光二極 體元件,係具備:AlGalnP活性層;和陽極側覆蓋層、陰 極側覆蓋層,而活性層係夾在兩者中間,且該陽極側覆蓋 層與陰極側覆蓋層的能帶間隙大於該活性層,且窗層能帶 間隙大於形成於陽極側覆蓋層上之活性層,其特徵爲:陽 極側覆蓋層係包括:1 )未摻雜AllnP層,其與活性層連 接,且生長成0.5 // m以上的厚度,2 )中間層,其具有該 未摻雜ΑΙΙιαΡ層能帶間隙和窗層能帶間隙的中間能帶間隙 ,並且進行與窗層連接之P型摻雜。 本發明第2特徵爲一種發光二極體元件,係具備: AlGalnP活性層;和陽極側覆蓋層、陰極側覆蓋層,而活 性層係夾在兩者中間,且該陽極側覆蓋層與陰極側覆蓋層 的能帶間隙大於該活性層,且窗層能帶間隙大於形成於陽 極側覆蓋層上之活性層,其特徵爲:上述窗層係將GaP 層以7 3 0 °C以上的溫度生長而構成者,其生長速度爲每小 時7 · 8 // m以上,其摻雜物爲鋅。 此外,本發明第3特徵係除了第2特徵之外,其中, 陽極側覆蓋層係包括:1 )未摻雜AllnP層,其與活性層 連接,且生長成0.5// m以上的厚度,2)中間層,其具有 -12- (9) 200417066 該未摻雜Allnp層能帶間隙和窗層能帶間隙 隙’並且進行與窗層連接之P型摻雜。 又’本發明第4特徵爲一種發光二極體 :AlGaUP活性層;和陽極側覆蓋層、陰極 活性層係夾在兩者中間,且該陽極側覆蓋層 層的能帶間隙大於該活性層,且窗層能帶間 陽極側覆蓋層上之活性層,其特徵爲:陰極 括:與活性層連接,且厚度爲0. 1 μ m A11 η P 層。 再者,本發明第5特徵係除了第4特徵 陰極側覆蓋層係包括以陰極側連接於上述未 的η型覆蓋層,而該n型覆蓋層的摻雜物爲; 本發明第6特徵爲一種發光二極體元件 係包括下列步驟:在砷化鎵(GaAs )基板J: 衝層之步驟,和2 )在上述緩衝層上設置n 作爲反射層之步驟,和3 )在上述反射層上 石夕之η型覆蓋層的步驟,和4)在上述η型 置未摻雜AllnP層之步驟,和5)在上述未 上,設置AlGalnP活性層之步驟,和6)在 ,設置未摻雜 AllnP層之步驟,和 7 ) :? AllnP層上,設置P型中間層之步驟,和 8 中間層上,以 7 3 0 °C以上的溫度、每小時7 生長速度,生長摻雜有鋅的P型GaP層, 步驟。 的中間能帶間 元件,係具備 側覆蓋層,而 與陰極側覆蓋 隙大於形成於 側覆蓋層係包 (上的未摻雜 之外,其中, 摻雜A11 n P層 5夕。 之製造方法, :’ 1 )沉積緩 型反射層,以 ’沉積摻雜有 覆蓋層上,設 摻雜A 11 η P層 上述活性層上 £上述未摻雜 )在上述ρ型 • 8 ν m以上的 以作爲窗層之 -13- (10) (10)200417066 (l )本發明爲一種發光二極體元件,其特徵爲具備 :背面形成有第1電極的半導體基板;和形成於上述半導 體基板上,包含有由A 11 n GaP構成的發光部,同時上層具 有窗層的半導體層;和分配形成於窗層的部分表面,且與 該窗層形成歐姆接觸的分配電極;和覆蓋窗層表面和分配 電極而形成,且與該分配電極導通的透明導電膜;和形成 於透明導電膜的部分表面,且與該透明導電膜導通的底電 極0 (2 )如上述(1 )所記載之構成之外,其中,本發明 之上述半導體基板是η型,窗層是p型。 (3 )如上述(1 )或(2 )所記載之構成之外,其ψ ,本發明之上述窗層的厚度爲3//m以上。 (Ο如上述(1 )至(3 )所記載之構成之外,其φ ,本發明之上述窗層的厚度與載子濃度Ν的乘積(N. d )爲 5 X 1 0 1 4 c m - 2 以上。 (5 )如上述(1 )至(4 )所記載之構成之外,其中 ,本發明之上述窗層的表面載子濃度爲lxl〇18cm— 3以上 〇 (6 )如上述(1 )至(5 )所記載之構成之外,其中 ,本發明之上述窗層是由以鋅(Zn )或鎂(Mg )作轉雜 質之P型GaP層所構成。 (7 )如上述(1 )至(6 )所記載之構成之外,其中 ,本發明由平面觀察時,上述分配電極是形成於不與咳電 極重疊的半導體層表面。 -14- (11) (11)200417066 (8 )如上述(1 )至(7 )所記載之構成之外,其中 ,本發明之上述分配電極的面積小於底電極的面積。 (9 )如上述(1 )至(8 )所記載之構成之外’其中 ,本發明之上述分配電極合計的平面積中,有效發光面積 爲3%以上、30%以下。 (1 〇 )如上述(1 )至(9 )所記載之構成之外’其中 ,本發明之上述分配電極是金合金。 (11 )如上述(1 )至(1 〇 )所記載之構成之外,其 中,本發明之上述透明導電膜是氧化銦錫(ITO )。 (1 2 )如上述(1 )至(1 1 )所記載之構成之外,其 中,本發明由平面觀察時,上述底電極是形成於元件表面 的中心。 (13)如上述(1 )至(1 2 )所記載之構成之外,其 中’本發明之上述底電極的表面是金。 (1 4 )如上述(1 )至(1 3 )所記載之構成之外,其 中,本發明之上述底電極是由多層膜構成者,與透明導電 膜連接的層是鉻。 (1 5 )如上述(1 )至(1 4 )所記載之構成之外,其 中’本發明之上述分配電極是包圍底電極之大致四角形或 大致圓形的線狀體。 (1 6 )如上述(1 )至(1 5 )所記載之構成之外’其 中,本發明之上述分配電極是線寬度爲20 " m以下的線 狀體。 (17)本發明爲一種發光二極體元件之製造方法’其 -15- (12) (12)200417066 特徵爲具備:第1步驟,在單晶基板上,令包含有由 All n GaP構成的發光部,同時上層具有p型窗層之半導體 層磊晶生長;和第2步驟,在上述第丨步驟所形成之窗層 部分表面,形成與該窗層形成歐姆接觸之分配電極;和第 3步驟,覆蓋窗層表面與分配電極,而形成與該分配電極 導通的透明導電膜;和第4步驟,在上述透明導電膜的部 分表面,形成該透明導電膜導通的底電極。 (1 8 )如上述(1 7 )所記載之構成之外,其中,本發 明之上述半導體層是藉由有機金屬化學汽相沉積法( MOCVD法)形成者。 (1 9 )如上述(1 7 )或(1 8 )所記載之構成之外,其 中’本發明之上述透明導電膜是藉由濺鍍法形成者。 (20 )如上述(1 7 )或(1 9 )所記載之構成之外,其 中’本發明之上述底電極是藉由濺鍍法形成者。 【實施方式】 以下,參考附圖說明本發明之實施型態。 第1圖是本發明期望之一實施型態例的模式圖。第1 圖的構成是在砷化鎵(GaAs )基板 010上,利用減壓 MOCVD生長法進行成膜。所使用的基板010是摻雜矽( Si )的砷化鎵(GaAs )基板(偏1 5 °位)。在該基板上 ,使用三甲基鎵(Ga(CH3)3)、三甲基銦(In(CH3)3 )、三甲基鋁(A1(CH3)3)、二甲基鋅(Zn(CH3)2 )、乙矽烷(Si2 H6 )、胂(As H3 )、磷化氫(P H3 ), -16- (13) (13)200417066 如表1所示那樣地進行成膜。此外,AlGalnP層、AllnP 層係以在G a A s基板上,利用晶格整合之方式進行成膜爲 佳。 因此’本發明槪略的製造步驟例係如下所述。 1 )在鎵基板0 1 0上,沉積0.5 // m之摻雜矽的η型 G a A s層,作爲緩衝層〇 9。 2) 設置 η 型的 Si-Alo.5Gao.5As/Alo.9Gao.1As 積層膜 ,作爲反射層 08 ( DBR: Distributed Bragg Reflector)。 沒有設置該反射層時,輸出光會減少。 3) 在反射層08上,設置摻雜矽的AllnP層,作爲η 型覆蓋層〇 7。 4 )在η型覆蓋層07上’設置未摻雜的AllnP層06 ,作爲未摻雜的覆蓋層〇 6。該層的厚度係以形成0 . 1 μ m 以上爲佳。又,沒有設置該層時,輸出光會減少。此外, 上述η型覆蓋層07和未摻雜的AllnP層06係構成陰極側 覆蓋層。 5 )在未摻雜的 AllnP層06上,設置由未摻雜的 AlGalnP構成的活性層05。藉由該活性層05挾持於上述 未摻雜AllnP層06和下述未摻雜AllnP層04間,而形成 有助於發光的雙異質(DH)構造。 6 )在活性層0 5上,設置未摻雜A11 η P層〇 4,作爲 未摻雜的覆蓋層。該層的厚度係以形成0 · 5 V ηι以上爲佳 〇 7 )在未摻雜的AllnP層〇4上,設置由摻雜鋅(Zn ) -17 - (14) (14)200417066 之(Al〇.6Ga〇.4) InP所構成的p型中間層03。由於該( AluGau ) InP在GaP和AllnP之間具有能帶間隙(band gap ),所以在窗層〇2和未摻雜AllnP層04之間’形成 有兩個不連續性的小能帶間隙,與具有一個不連續性之能 帶間隙的情形相比較,得以抑制不連續之能帶間隙所產生 的電阻値。此外,該P型中間層〇 3的組成並不侷限於( Ai〇.6Ga〇.4 ) InP,如表2所示那樣,其組成爲(Al〇.7Ga〇.3 )InP時,亦可獲得輸出光。相較於使用AllnP時,當中 間層使用(Al〇.6Ga〇.4) InP 或(Al〇_7GaQ.3) InP 時,順向 電壓(Vf)皆得以變成一半左右,亮度得以變成2倍。導 出表2的結果之數據分布,係如第2圖(a ) 、( b )所示 。尤其,相較於使用(AlG.7Ga().3 ) InP時,使用( Al〇.6Ga〇.4) InP時,Vf減少.15V,亮度增加8.5%,是較 理想的情況。此外,未摻雜AllnP層04和p型中間層03 係構成陽極側覆蓋層。 8 )在p型中間層〇3上,設置由摻雜鋅之p型GaP 所構成的窗層02。該層的厚度以形成5 // m以上爲佳。令 該層生長時,係以73 (TC以上的溫度來進行爲佳。又,膜 生長時係施行鋅的摻雜,然而爲了提高摻雜物的密度,以 更快的速度進行生長爲佳。如下所述,藉由以每小時7.8 // m以上的速度生長,亮度得以獲得70%的改善。 9)在窗層02的表面,形成ρ —電極01;在GaAs基 板010的背面,形成η —電極011。 又,說明 V f和亮度對於陰極側覆蓋層之構成的依存 -18 - (15) 200417066 性。表3是表示陰極側覆蓋層之未摻雜AllnP層的 變時的 Vf和亮度。由該表得知,相較於沒有 A 11 η P層的情況,具有0 . 1 // m或0.2 μ m之未摻菊 層時,其Vf會降低0.2V左右,亮度則變成大致2 ,相較於形成〇·1 # m時,當未摻雜AllnP層形成 時,亮度得以改善6 %。導出表3的結果之數據分 如第3圖(a) 、 (b)所示。 說明 Vf和亮度對於窗層之生長條件的依存性 是表示窗層之生長溫度改變時的V f和亮度。由該 ,令窗層以 7 0 0 °C、每小時 2.8 // m的速度生長時 7 0 0 °C、每小時7.8 // m的速度生長時,兩者的V f 幾乎是相同的,然而,令窗層以7 3 0 °C、每小時 的速度生長時,Vf會降低0.16左右,亮度則增加 此時,雖然陰極側未摻雜 All nP層爲0.2 // m,然 表3的値可知悉,因此種不同所產生的貢獻度爲 以即使減掉該6 %後,亮度亦得以改善8 0 %以上。 4的結果之數據分布,係如第4圖(a ) 、( b )所〕 第12圖及第13圖是本發明發光二極體元件之 成的模式圖,第12圖是其平面圖,第13圖是第 I - I線的剖面圖。此外,本說明書中,由平面觀察 層表面意指,觀察第12圖所示之平面圖的意思。[Non-Patent Document 2] J. Lin, et al., J. Crys. Growth, 142, pp. 15-20, 19 9 4 [Means for Solving the Problem] In order to achieve the above object, the first feature of the present invention is a light emitting device. A diode element includes: an AlGalnP active layer; and an anode-side cover layer and a cathode-side cover layer, and the active layer is sandwiched between the two, and the band gap between the anode-side cover layer and the cathode-side cover layer is larger than that. The active layer, and the band gap of the window layer is larger than the active layer formed on the anode side cover layer, which is characterized in that the anode side cover layer system includes: 1) an undoped AllnP layer, which is connected to the active layer and grows to 0.5 // thickness above m, 2) an intermediate layer having an intermediate band gap of the band gap of the undoped ΑΙιαα layer and the band gap of the window layer, and performing P-type doping connected to the window layer. A second feature of the present invention is a light-emitting diode element, comprising: an AlGalnP active layer; and an anode-side cover layer and a cathode-side cover layer, and the active layer is sandwiched between the two, and the anode-side cover layer and the cathode side The band gap of the cover layer is larger than that of the active layer, and the band gap of the window layer is larger than that of the active layer formed on the anode-side cover layer, which is characterized in that the window layer is a GaP layer grown at a temperature of 7 3 0 ° C or more. The constituent has a growth rate of more than 7 · 8 // m per hour, and its dopant is zinc. In addition, the third feature of the present invention is in addition to the second feature, wherein the anode-side covering layer system includes: 1) an undoped AllnP layer, which is connected to the active layer and grows to a thickness of 0.5 // m or more, 2 ) An intermediate layer having -12- (9) 200417066 the band gap of the undoped Allnp layer and the band gap of the window layer, and performing P-type doping connected to the window layer. The fourth feature of the present invention is a light emitting diode: an AlGaUP active layer; sandwiched between the anode side cover layer and the cathode active layer, and the band gap of the anode side cover layer is larger than the active layer, And the active layer on the anode side covering layer between the bands of the window layer is characterized in that the cathode includes a layer connected to the active layer and having a thickness of 0.1 μm A11 η P layer. Furthermore, in addition to the fourth feature of the fifth feature of the present invention, the cathode-side cover layer includes a n-type cover layer connected to the cathode by the cathode side, and the dopant of the n-type cover layer is: the sixth feature of the present invention is A light-emitting diode element system includes the following steps: a step of forming a layer on a gallium arsenide (GaAs) substrate J, and 2) a step of providing n as a reflective layer on the buffer layer, and 3) on the reflective layer Shi Xizhi's n-type cladding step, and 4) the step of placing an undoped AllnP layer on the n-type, and 5) the step of placing an AlGalnP active layer on the above, and 6) the step of setting an undoped Steps of the AllnP layer, and 7):? Steps of setting a P-type intermediate layer on the AllnP layer, and 8 on the intermediate layer, growing at a temperature of 7 3 0 ° C or higher, at a growth rate of 7 per hour, to grow zinc-doped P-type GaP layer, step. The intermediate band device has a side cover layer, and the gap between the cathode side and the cathode side cover is larger than the undoped layer formed on the side cover layer (except the undoped layer, in which the A11 n P layer is doped). : '1) Deposition of a slow-type reflective layer to' deposit a doped cover layer, and set the doped A 11 η P layer on the above active layer (above the undoped) above the above ρ type • 8 ν m or more -13- (10) (10) 200417066 as the window layer (1) The present invention is a light-emitting diode element, which is characterized by comprising: a semiconductor substrate having a first electrode formed on a back surface thereof; and formed on the semiconductor substrate, It includes a light-emitting portion made of A 11 n GaP, and a semiconductor layer having a window layer on the upper layer; and a distribution electrode formed on a part of the surface of the window layer and forming an ohmic contact with the window layer; and covering the surface of the window layer and the distribution A transparent conductive film formed by electrodes and in communication with the distribution electrode; and a bottom electrode formed on a part of the surface of the transparent conductive film and in communication with the transparent conductive film 0 (2) except for the structure described in (1) above Wherein, the above of the present invention Η-type substrate is a conductor, a p-type window layer. (3) In addition to the structure described in the above (1) or (2), the thickness of the window layer of the present invention is ψ or more than 3 // m. (0) In addition to the constitutions described in the above (1) to (3), φ, the product (N. d) of the thickness of the window layer and the carrier concentration N of the present invention (N.d) is 5 X 1 0 1 4 cm- 2 or more. (5) In addition to the structures described in (1) to (4) above, wherein the surface carrier concentration of the window layer of the present invention is 1 × 1018 cm-3 or more. (6) As described in (1) In addition to the structures described in (5) to (5), the window layer of the present invention is composed of a P-type GaP layer using zinc (Zn) or magnesium (Mg) as an impurity. (7) As described in (1) above In addition to the structures described in (6) to (6), when the present invention is viewed from a plane, the distribution electrode is formed on the surface of a semiconductor layer that does not overlap the cough electrode. -14- (11) (11) 200417066 (8) In addition to the structures described in the above (1) to (7), the area of the distribution electrode of the present invention is smaller than the area of the bottom electrode. (9) In addition to the structures described in the above (1) to (8) 'Among them, in the total flat area of the distribution electrode of the present invention, the effective light-emitting area is 3% or more and 30% or less. (10) As described in the above (1) to (9) In addition to the constitution, the distribution electrode of the present invention is a gold alloy. (11) In addition to the constitutions described in the above (1) to (10), the transparent conductive film of the present invention is indium tin oxide ( ITO). (1 2) In addition to the structures described in the above (1) to (1 1), in the present invention, when viewed from a plane, the bottom electrode is formed at the center of the element surface. (13) As described above ( 1) In addition to the structures described in (1 2), the surface of the bottom electrode of the present invention is gold. (1 4) In addition to the structures described in (1) to (1 3) above, wherein The above-mentioned bottom electrode of the present invention is composed of a multilayer film, and the layer connected to the transparent conductive film is chromium. (1 5) In addition to the structure described in the above (1) to (1 4), wherein The distribution electrode is a substantially quadrangular or substantially circular linear body surrounding the bottom electrode. (16) In addition to the structure described in the above (1) to (15), wherein the distribution electrode of the present invention has a line width It is a linear body below 20 " m. (17) The present invention is a manufacturing of a light emitting diode element Method 'its -15- (12) (12) 200417066 is characterized by having the following steps: the first step is to make a semiconductor layer including a light-emitting portion made of All n GaP on the single crystal substrate and a p-type window layer on the upper layer; Crystal growth; and a second step, forming a distribution electrode in ohmic contact with the window layer on the surface of the window layer portion formed in the above step; and a third step, covering the surface of the window layer and the distribution electrode, and forming a distribution electrode A transparent conductive film where the distribution electrode is conductive; and a fourth step, forming a bottom electrode where the transparent conductive film is conductive on a part of the surface of the transparent conductive film. (18) In addition to the structure described in the above (17), the semiconductor layer of the present invention is formed by an organometallic chemical vapor deposition method (MOCVD method). (19) In addition to the constitution described in (17) or (18) above, wherein the above-mentioned transparent conductive film of the present invention is formed by a sputtering method. (20) In addition to the constitution described in the above (17) or (19), wherein the above-mentioned bottom electrode of the present invention is formed by a sputtering method. [Embodiment] Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram of an exemplary embodiment of the present invention. The structure of FIG. 1 is formed on a gallium arsenide (GaAs) substrate 010 by a reduced pressure MOCVD growth method. The substrate 010 used is a silicon (Si) -doped gallium arsenide (GaAs) substrate (offset by 15 °). On this substrate, trimethylgallium (Ga (CH3) 3), trimethylindium (In (CH3) 3), trimethylaluminum (A1 (CH3) 3), and dimethylzinc (Zn (CH3) ) 2), Disilane (Si2H6), Samarium (AsH3), Phosphine (PH3), -16- (13) (13) 200417066 Film formation was performed as shown in Table 1. In addition, the AlGalnP layer and the AllnP layer are preferably formed on a GaAs substrate using a lattice integration method. Therefore, an example of the manufacturing steps of the present invention is as follows. 1) On the gallium substrate 0 1 0, a 0.5 // m silicon-doped n-type G a A s layer is deposited as a buffer layer 9. 2) Set η-type Si-Alo.5Gao.5As / Alo.9Gao.1As multilayer film as the reflective layer 08 (DBR: Distributed Bragg Reflector). When this reflective layer is not provided, the output light is reduced. 3) On the reflective layer 08, a silicon-doped AllnP layer is provided as the n-type cladding layer 07. 4) On the n-type capping layer 07, an undoped AllnP layer 06 is provided as an undoped capping layer 06. The thickness of the layer is preferably 0.1 μm or more. When this layer is not provided, the output light is reduced. The n-type cladding layer 07 and the undoped AllnP layer 06 constitute a cathode-side cladding layer. 5) On the undoped AllnP layer 06, an active layer 05 composed of undoped AlGalnP is provided. This active layer 05 is held between the undoped AllnP layer 06 and the undoped AllnP layer 04 described below to form a double heterostructure (DH) structure that contributes to light emission. 6) On the active layer 05, an undoped A11 η P layer 04 is provided as an undoped cover layer. The thickness of the layer is preferably 0.5 V η or more. On the undoped AllnP layer 04, a doped zinc (Zn) -17-(14) (14) 200417066 (Al 0.6Ga 0.4) p-type intermediate layer 03 composed of InP. Since this (AluGau) InP has a band gap between GaP and AllnP, two discontinuous small band gaps are formed between the window layer 02 and the undoped AllnP layer 04, Compared with the case where there is a discontinuous band gap, the resistance 抑制 generated by the discontinuous band gap can be suppressed. In addition, the composition of the P-type intermediate layer 03 is not limited to (Ai0.6GaGa.4) InP. As shown in Table 2, when the composition is (Al0.7GaGa.3) InP, it may be Get the output light. Compared with the use of AllnP, when (Al〇.6Ga〇.4) InP or (Al〇_7GaQ.3) InP is used in the intermediate layer, the forward voltage (Vf) can be reduced to about half, and the brightness can be doubled. . The data distribution leading to the results in Table 2 is shown in Figure 2 (a) and (b). In particular, compared to when (AlG.7Ga (). 3) InP is used, when (Al0.6.Ga0.4) InP is used, Vf is reduced by .15V and brightness is increased by 8.5%, which is an ideal case. In addition, the undoped AllnP layer 04 and the p-type intermediate layer 03 constitute an anode-side cover layer. 8) On the p-type intermediate layer 03, a window layer 02 made of zinc-doped p-type GaP is provided. The thickness of this layer is preferably 5 m or more. When this layer is grown, it is preferably performed at a temperature of 73 ° C. or higher. In addition, zinc is doped during film growth. However, in order to increase the density of the dopant, it is better to grow at a faster rate. As described below, by growing at a speed of more than 7.8 // m per hour, the brightness can be improved by 70%. 9) On the surface of the window layer 02, ρ-electrode 01 is formed; on the back surface of the GaAs substrate 010, η is formed. —Electrode 011. In addition, the dependence of V f and brightness on the structure of the cathode-side cladding layer will be described -18-(15) 200417066. Table 3 shows the time-varying Vf and brightness of the undoped AllnP layer on the cathode-side cladding layer. According to the table, compared with the case where there is no A 11 η P layer, when there is no chrysanthemum layer of 0.1 / 1 m or 0.2 μm, its Vf will be reduced by about 0.2V, and the brightness will be approximately 2. Compared with the formation of 0.1 m, when the undoped AllnP layer is formed, the brightness is improved by 6%. The data of the results derived from Table 3 are shown in Figure 3 (a) and (b). Explanation The dependence of Vf and brightness on the growth conditions of the window layer is Vf and brightness when the growth temperature of the window layer is changed. From this, when the window layer is grown at 700 ° C at a speed of 2.8 // m per hour at 700 ° C and at a speed of 7.8 // m per hour, the V f of the two is almost the same. However, when the window layer is grown at a speed of 730 ° C per hour, the Vf will decrease by about 0.16, and the brightness will increase at this time, although the non-doped All nP layer on the cathode side is 0.2 // m, but Table 3 It is known that the contribution caused by this difference is that even after the 6% is subtracted, the brightness can be improved by more than 80%. The data distribution of the result of 4 is as shown in Fig. 4 (a) and (b). Fig. 12 and Fig. 13 are schematic diagrams of the composition of the light-emitting diode element of the present invention, and Fig. 12 is a plan view thereof. 13 is a sectional view taken along the line I-I. In addition, in the present specification, the observation of the surface of the plane means to observe the plan view shown in FIG. 12.

此等圖中,本發明發光二極體元件丨〇的特徵 ••半導體基板1,其背面形成有第1電極5 ;和半 3 ’其係形成於半導體基板1上,包含有Alin GaP ί厚度改 未摻雜 I Alin? 倍。又 0.2 μ 瓜 •布,係 。表4 表得知 ,與以 和亮度 7.8 // m 8 8%。 而,從 6%,所 導出表 槪略構 1 2圖之 半導體 係具有 導體層 所構成 -19- (16) (16)200417066 的發光部2a,同時其上層具有窗層2b;和分配電極7, 其係分配形成於窗層2b (半導體層3 )部分表面’且與該 窗層2 b形成歐姆接觸;和透明導電膜4,其係覆蓋窗層 2b的表面和分配電極7而形成者,且與該分配電極7導 通;和底電極6,其係形成於透明導電膜4表面的一部分 ,且與該透明導電膜4導通。 此外,發光部 2a以形成週知的雙異質(double h e t e r 〇 )構造、多重子井(multiple quantum well · MQ W )構造之發光效率高的構造爲佳。於此,如第1 2圖所示 ,由平面觀察半導體層3表面時,分配電極7係以配置在 沒有與底電極6重疊的部分爲佳,又,與底電極6重疊的 部分不進行配置更爲理想。又,分配電極7和窗層2b間 的接合,形成良好的歐姆接觸’故其間的電阻較小;另一 邊之透明導電膜4和窗層2b之間的接合,無法獲致充分 的歐姆接觸,故其間的電阻較大。 以上述方式構成的發光二極體元件10,係在窗層2b 表面的一部分,設置於其形成歐姆接觸的分配電極7,藉 此構成,相較於透明導電膜4和窗層2b間的電阻,分配 電極7和窗層2b間的電阻得以大幅變小。供給自底電極 6之大部分的驅動電流係如第1 3圖的箭號所示’以更低 的電阻,流通於底電極6—透明導電膜分配電極7 — 窗層2 b —發光部2 a的路經。從分配電極7流進窗層2 b 的電流會在窗層2b適當地擴散,故發光部2a的發光是在 以分配電極7爲中心的周邊進行。所以’發光部2 a的發 -20- (17) (17)200417066 光被分配電極7遮蔽的部分較少,可將大部分的發光朝上 方取出,因此,可改善發光效率。 上述的窗層2b,不論是η型或p型,皆有助於改善 發光效率。一般而言,雖然ρ型的移動度低,從分配電極 7流進的電流較難擴散,但是,本發明發現,該Ρ型係滿 足特定條件,譬如,藉由將層厚、該層厚和載子濃度的乘 積、表面載子濃度、材質最形成適當化,可大幅助於局売 度化。 亦即,得知當窗層2b爲ρ型時,層厚若爲3 μ m以 上,則會引起充分的電流擴散。然而,當層厚過厚時,則 會導致表面狀態的劣化,故層厚以形成2 0 # m以下爲佳 ,而爲了達成低成本化,又以形成1 〇 “ m以下更爲理想 〇 又,亦知窗層2 b厚度與載子濃度的乘積係攸關高亮 度化,而高亮度化之效果較大的範圍係爲5χ 1 014cm — 2以 上。 再者,窗層2b表面的載子濃度,形成! x丨〇i8cm~ 3 以上時,會降低與分配電極7接觸的電阻,從而促使電流 擴散,而獲致高亮度化。 窗層2b的材質則以對於發光,形成透明且可充分地 擴散電流之材質爲佳,例如GaP不僅可藉由有機金屬汽 相沉積法(Μ 0 C V D法)來生長,也可容易地進行低電阻 化、厚膜化,是最合適作爲窗層的材料之一。 第12圖中,分配電極7是包圍底電極6之大致圓形 -21 - (18) (18)200417066 的線狀體,該線狀體是以圓形狀態朝四邊延伸。線狀體的 寬度以形成20 μ m以下爲宜。藉由此種分配電極7的平 面配置,上述窗層2b的電流擴散得以更有效地進行’並 且得以將來自底電極6之驅動電流擴散於窗層2 b表面之 較廣的範圍。 如上所述,由於分配電極7是以不與底電極6重疊之 方式配置,故底電極6正下方的發光較弱’而大部分的發 光得以在不會被底電極6遮蔽’而得以從上方取出,所以 可大幅改善發光效率,達成高亮度化。 再者,以該發光效率來說,因爲將分配電極7的面積 形成比底電極6的面積更小,所以與以往的發光二極體元 件相比較,得以令光高效率地朝外部取出,故得以令發光 效率更進一步提昇。 此外,因爲分配電極7和半導體層3間的電阻係如上 所述那樣地,藉由形成歐姆接觸而變小,所以可抑制發光 二極體元件1 〇之順向電壓的上昇,可提升壽命特性。 透明導電膜4係由例如氧化銦錫(I τ 〇 )所構成而具 有良好的透光性,尤其’以濺鍍法形成的膜,可製得低電 阻、透過率佳的膜質。發光部2a輸出的發光,通過該透 明導電膜4時,大部分不會被吸收,而得以高效率地從透 明導電膜4朝上方取出。 底電極6係爲了連接發光二極體元件1 〇和外部電性 電路時,供進行引線銲接的電極。因此,必須具備某程度 大小的面積,但是,以往根據從該底電極6流到正下方之 -22- (19) 200417066 驅動電流所產生發光,會被底電極6遮蔽而無法朝外部取 出。所以,以往採用的對策是在底電極6和發光部2a之 間設置絕緣層等,強制防止驅動電流從底電極6往正下方 流動,然而,本發明中,可將驅動電流分配引導至分配電 極7,因此,不需設置絕緣層,藉由更簡單的結構成,即 可防止驅動電流流到底電極6的正下方。 於此,透明導電膜4的表面(或者半導體層3的表面 )中可令其有效發光之面(有效發光面)的面積,係以透 明導電膜4的面積,減掉底電極6的面積(第1 2圖中從 平面觀察的面積)所得的面積,而該面積係稱爲有效發光 面積S。底電極6對其正下方發光之取出造成妨害的現象 ,有時也發生在分配電極7。因此,本發明中,分配電極 7合計的平面積(從平面觀察的面積),是以形成有效發 光面積S的3 %以上、3 0 %以下,得以防止分配電極7之 面積太大時,過度妨害發光的取出,反之,面積太小時, 造成順向電壓(Vf)增大而發生不良的情形。 此外,就分配電極7妨害其正下方之發光取出的現象 來說,若窗層2 b的擴散的狀態越良好越適當,則越可降 低光取出所受到妨害的機率。In these figures, the features of the light-emitting diode element of the present invention are: • a semiconductor substrate 1 having a first electrode 5 formed on its back surface; and a half 3 ′ formed on the semiconductor substrate 1 and including Alin GaP thickness Change the undoped I Alin? Times. Another 0.2 μ melon • cloth, Department. Table 4 shows that the brightness is 7.8 // m 8 8%. However, from 6%, the semiconductor system derived from the structure shown in Figure 12 is provided with a light-emitting portion 2a composed of a conductor layer and a light-emitting portion 2a (16) (16) 200417066, and a window layer 2b on the upper layer; and a distribution electrode 7 Which is formed on a portion of the surface of the window layer 2b (semiconductor layer 3) and forms an ohmic contact with the window layer 2b; and a transparent conductive film 4, which is formed by covering the surface of the window layer 2b and the distribution electrode 7, And is in communication with the distribution electrode 7; and the bottom electrode 6 is formed on a part of the surface of the transparent conductive film 4 and is in communication with the transparent conductive film 4. In addition, the light-emitting portion 2a preferably has a structure having a well-known double-height structure and a multiple quantum well (MQW) structure with high luminous efficiency. Here, as shown in FIG. 12, when the surface of the semiconductor layer 3 is viewed from a plane, the distribution electrode 7 is preferably arranged at a portion that does not overlap with the bottom electrode 6, and the portion that overlaps with the bottom electrode 6 is not arranged. More ideal. In addition, the bonding between the distribution electrode 7 and the window layer 2b forms a good ohmic contact, so the resistance between them is small; the bonding between the transparent conductive film 4 and the window layer 2b on the other side cannot obtain a sufficient ohmic contact, so The resistance between them is large. The light-emitting diode element 10 configured as described above is attached to a part of the surface of the window layer 2b and is provided on the distribution electrode 7 which forms an ohmic contact, thereby constituting a resistance which is smaller than that between the transparent conductive film 4 and the window layer 2b The resistance between the distribution electrode 7 and the window layer 2b can be greatly reduced. Most of the driving current supplied from the bottom electrode 6 is shown by the arrow in FIG. 13. 'With a lower resistance, it flows through the bottom electrode 6—the transparent conductive film distribution electrode 7—the window layer 2b—the light-emitting portion 2 The path of a. Since the current flowing from the distribution electrode 7 into the window layer 2b is appropriately diffused in the window layer 2b, the light emission of the light-emitting portion 2a is performed around the distribution electrode 7. Therefore, the light-emitting portion 2a emits less -20- (17) (17) 200417066 light, which is shielded by the distribution electrode 7, and most of the light emission can be taken upward. Therefore, the light emission efficiency can be improved. The window layer 2b described above, whether it is an n-type or a p-type, contributes to improving the light emitting efficiency. In general, although the ρ-type has a low degree of mobility, the current flowing from the distribution electrode 7 is difficult to diffuse, but the present invention has found that the P-type system meets certain conditions, such as by changing the layer thickness, the layer thickness, and The product of carrier concentration, surface carrier concentration, and material are most appropriately optimized, which can greatly contribute to localization. That is, it was found that when the window layer 2b is of a p-type, if the layer thickness is 3 μm or more, sufficient current diffusion will be caused. However, if the layer thickness is too thick, the surface state will be deteriorated. Therefore, the layer thickness is preferably formed below 20 # m, and in order to achieve low cost, it is more desirable to form a layer below 10 m. It is also known that the product of the thickness of the window layer 2 b and the carrier concentration is related to high brightness, and the larger range of the effect of high brightness is 5χ 1 014cm-2 or more. Furthermore, the carriers on the surface of the window layer 2b Concentration, formation! When the height is more than 8cm ~ 3, the resistance of the contact with the distribution electrode 7 will be reduced, which will cause the current to spread and achieve high brightness. The material of the window layer 2b is transparent to light and can be fully formed. The material of the diffusion current is preferred. For example, GaP can not only be grown by an organic metal vapor deposition method (M 0 CVD method), but also can be easily reduced in resistance and thickened. It is the most suitable material for the window layer. 1. In FIG. 12, the distribution electrode 7 is a linear body of a substantially circular shape -21-(18) (18) 200417066 surrounding the bottom electrode 6, and the linear body extends to four sides in a circular state. The linear body The width is preferably less than 20 μm. With this distribution of electricity 7 in the planar configuration, the current diffusion of the window layer 2b can be performed more effectively 'and the driving current from the bottom electrode 6 can be spread over a wide range of the surface of the window layer 2b. As described above, since the distribution electrode 7 is It is arranged so as not to overlap with the bottom electrode 6, so the light emission directly below the bottom electrode 6 is weak, and most of the light emission can be taken out from above without being shielded by the bottom electrode 6, so the light emission efficiency can be greatly improved. In addition, in terms of this luminous efficiency, since the area of the distribution electrode 7 is smaller than that of the bottom electrode 6, it is possible to make light more efficiently than in conventional light emitting diode elements. It is taken out to the outside, so that the luminous efficiency can be further improved. In addition, since the resistance between the distribution electrode 7 and the semiconductor layer 3 is reduced as described above by forming an ohmic contact, the light-emitting diode element can be suppressed. An increase in forward voltage of 10 can improve the life characteristics. The transparent conductive film 4 is made of, for example, indium tin oxide (I τ 〇) and has good light transmittance, especially ' The film formed by the sputtering method can produce a film having low resistance and good transmittance. The light emitted from the light emitting portion 2a will not be absorbed by the transparent conductive film 4 and can be efficiently conducted from the transparent conductive film. The film 4 is taken upward. The bottom electrode 6 is an electrode for wire bonding in order to connect the light-emitting diode element 10 and an external electrical circuit. Therefore, it must have an area of a certain size. -22- (19) 200417066 where the electrode 6 flows directly below the driving current will be shielded by the bottom electrode 6 and cannot be taken out to the outside. Therefore, the conventionally adopted countermeasure is to place the bottom electrode 6 and the light-emitting portion 2a. The insulating layer and the like forcibly prevent the driving current from flowing from the bottom electrode 6 directly below. However, in the present invention, the driving current can be distributed to the distribution electrode 7. Therefore, it is not necessary to provide an insulating layer. With a simpler structure, That is, the driving current can be prevented from flowing directly under the bottom electrode 6. Here, the area of the surface of the transparent conductive film 4 (or the surface of the semiconductor layer 3) that can make it effectively emit light (effective light-emitting surface) is the area of the transparent conductive film 4 and subtracts the area of the bottom electrode 6 ( Figure 12 shows the area obtained from the plane), and this area is called the effective light emitting area S. The phenomenon that the bottom electrode 6 interferes with the light emission immediately below it may also occur in the distribution electrode 7. Therefore, in the present invention, the total flat area (area viewed from the plane) of the distribution electrode 7 is 3% or more and 30% or less of the effective light emitting area S, which prevents excessive distribution of the area of the distribution electrode 7 when the area is too large. Obstructs the extraction of light. On the contrary, the area is too small, which causes the forward voltage (Vf) to increase and cause failure. In addition, as for the phenomenon that the distribution electrode 7 interferes with light emission extraction immediately below it, the better the diffusion state of the window layer 2b is, the more appropriate it is, and the probability of interference with light extraction can be reduced.

繼之,參考第14圖至第Continue with reference to Figures 14 to

18 圖, 依序說明本發明發光 第14圖及第15圖是表示本發明發光二極體元件之第 1構成例的圖,第14圖是其平面圖,第15圖是表示第14 圖之Π - 11線的剖視圖。此等圖中,本發明之發光二極體 -23- (20) (20)200417066 元件20是射出黃綠色系光的發光二極體(LED )。 在晶面方位(0 0 1 )偏1 5度的S i摻雜η型G a A s單晶 基板21上,形成有半導體層23。該半導體層23係積層 於基板2 1上,其結構依序包括:由S i摻雜η型G a A s所 構成的緩衝層231、和Si摻雜η型 AlQ.5GaQ.5As/Al0.9 Gao.iAs多層膜所構成的DBR反射層2 3 2、和Si摻雜η型 與未摻雜AlG.5iri().5P所構成的下部覆蓋層2 3 3 '和調整組 成之未摻雜AlGalnP混晶所構成且發光波長爲570nm的 發光層 22、和未摻雜 AU.5lnG.5P與 Zn摻雜 p型 AU.5Ga().5P所構成的上部覆蓋層2 3 4、和Zn摻雜p型 GaP 窗層 2 3 5。 構成半導體層23之各層231、232、233、22、234和 235是以三甲基鋁((CH3) 3 A1)、三甲基鎵((CH3) 3 Ga)和二甲基銦((CH3) 3 In)作爲III族結構元素的 原料,並利用減壓Μ 0 C V D法成膜於基板2 1上。在鋅( Ζη )的摻雜原料上,利用二甲基鋅((Ch3 ) 2 Ζη )。在 η型摻雜原料上使用乙矽烷(Si2 Η6 )。又,以ν族元素 的原料而言,係使用磷化氫(Ρ Η3 )或胂(As Η3 )。各 層2 3 1、2 3 2、2 3 3、2 2、2 3 4和2 3 5的成膜溫度統一爲 7 3 5 〇C。 緩衝層231的載子濃度約爲2xl〇18cm-3,又,層厚 約爲〇 . 5 // m。反射層2 3 2的載子濃度約爲2 χ丨〇 1 8 c m - 3, 又’層約爲 1 . 2 // πι。下ρ卩覆盖層2 3 3的載子濃度約爲7 X 1 0 1 8 c m ’層厚係在大約1 . 3 // m的S i摻雜η型層上, -24- (21) (21)200417066 形成0 · 2 // m之未摻雜層。發光層2 2的層厚約爲1 // m。 上部覆蓋層2 3 4之未摻雜層的層厚約爲〇 . 5 μ m ’而該未 摻雜層上方之Zri摻雜p型層的層厚約爲0.5 μ m。該Zn 摻雜P型層的載子濃度約爲6xl017cm 3。 P型窗層2 3 5的載子濃度約爲3 X 1018cm— 3,層厚約 爲6 β m。在此情況下,窗層2 3 5的厚度d與載子濃度N 的乘積,N · d 約爲 1 . 8 X 1 0 15 c m - 2。 在此,下部覆蓋層233、發光層22和上部覆蓋層234 構成該發光二極體元件20的發光部。因此,發光部係由 AlGaluP構成的雙異質(double hetero)構造。 該發光二極體元件20中,爲了形成分配電極27,首 先,利用一般的真空蒸鍍法,令膜厚約5 Onm之金·鈹合 金(An 9 9重量% — B e 1重量% )膜一次附著於窗層2 3 5表 面的整面,繼之,令膜厚約100 nm之金(Au )膜附著於 該金·鈹合金膜的表面上。 接著,利用一般的光微影術機構,將金·鈹合金所構成 的第1膜、和金所構成的第2膜之雙層構造的疊層膜,實 施圖案化,以形成分配電極2 7的形狀,而該分配電極2 7係 由寬度約6 // m之線狀體所構成之一邊爲1 5 0 // m的大致 正方形框形。分配電極27的面積約爲0.36xl〇-4cm— 2。 由該第1膜和第2膜構成之分配電極2 7係如第1 4圖所示 那樣地,在窗層2 3 5表面上除了底電極2 6正下方區域以 外的部分’以包圍該底電極26之方式形成,且由平面觀 察時,該分配電極2 7係呈左右對稱之大致四角形。 -25- (22) (22)200417066 另一方面,在單晶基板2 1的背面,積層約0.3 // m的 金·鍺合金,又於該金·鍺合金的下面,積層約0.3 μ m 的金,而形成η型歐姆電極2 5。然後,在氮氣流中,以 4 5 0 °C實施1 0分鐘的合金化熱處理,以形成分配電極2 7 與窗層2 3 5的歐姆接觸、和η型歐姆電極2 5與單晶基板 2 1的歐姆接觸。 繼之,利用眾所週知的磁控管濺鍍(magnetron sputtering )法,令氧化銦錫(ITO )透明導電膜 24,附 著於窗層2 3 5和其表面的分配電極27上。透明導電膜24 的電阻率爲4 X 1(Τ 4 Ω · Cm,層厚約爲5 0 0nm。透過率對 於發光波長,係大約95 %的良好膜質。 利用眾所週知的磁控管潑鍍(magnetron sputtering)法 ,在透明導電膜24上,形成由3 Onm的鉻(Cr)和1 // m的 金所構成的層疊膜。塗佈一般的有機光抗蝕劑之後,利用 週知的光微影技術,將預設置底電極2 6的區域施以圖案 化,而形成直徑約1 1 〇 # m的圓形底電極2 6。底電極2 6 的平面積約爲4xl〇- 4Cm2。 如第1 4圖所示那樣地從平面觀察,底電極2 6的預定 設置區域,係位於發光二極體元件表面的中心,即,包含 四角形發光二極體元件表面之對角線焦點的區域。此係由 於當底電極2 6位於發光二極體元件表面的中心時,具有 電流較容易均勻地流動於發光二極體元件整體,又,在底 電極2 6進行引線銲接(w i 1· e b ο n d i n g )時,晶片較不易傾 斜的優點。 •26- (23) (23)200417066 然後,利用一般的切割法,以2 3 0 g m間隔切除一邊 ,以分離成正方形的元件形狀,而形成發光二極體元件 20。透明導電膜24的平面積約爲4 X 1 (T 4Cm2,以該透明 導電膜2 4之平面積減掉底電極2 6之平面積所獲致的有效 發光面積S約爲3 X 1 (T 4 Cm2。再者,分配電極27合計的 平面積約爲0.36 X 1 0_ 4 Cm2,而該面積相對於有效發光面 積S,所佔的比例約爲1 2 %。 將電流順向流通於以上述方式製得之發光二極體元件 2 0的歐姆電極2 5和底電極2 6間時,會從透明導電膜2 4 的表面,射出波長約5 7 0 n m的黃綠色光。流通2 0 m A電流 時的順向電壓(Vf: 20mA左右),反映各分配電極 27 良好的歐姆特性、和電流在窗層2b的擴散效果時,大約 爲2V。 此外,藉由將具歐姆特性之分配電極2 7,配置於發 光二極體元件2 0周緣部的效果、和窗層2 b的效果,在發 光二極體元件2 0周緣的區域亦可辨識出發光,並且,在 晶片狀態下簡易測得的發光強度約爲40毫燭光(me d ) 。再者,驅動電流藉由分配電極2 7和窗層2 b而形成更均 勻地分配,因此,由透明導電膜24表面所觀察的發光強 度係呈大致均勻的分布。 上述第1構成例中’係使用Zn、S i作爲摻雜物,然 而,使用週知的鎂(MS)、碲(Te)、硒(Se)等摻雜 物時,亦可獲致同樣的效果。又,發光層2 2是形成雙異 質構造,但是,形成多量子井(M Qw )構造時,亦可獲 -27- (24) (24)200417066 致同樣的效果。 如上所述’該第1構成例所製得之發光二極體元件 2 〇係如上所述那樣,窗層2 3 5的層厚約爲6 /z m,載子濃 度約爲3 X 1 0 18 c m - 3,層厚d與載子濃度N的乘積,n · d 約爲1·8 X 1 0 15 cm~ 2,而將該發光二極體元件2〇係作爲實 施例1 °如表5所示,將該窗層的層厚和載子濃度進行各 種變更’其他條件則與實施例1相同,藉此方式,另形成 5種發光二極體元件,而將該發光二極體元件作爲實施例 2、3、4、5、6。測試該實施例1至6之各發光二極體元 件的V f値和發光強度,可獲致表5所示之結果。 (比較例) 爲了與上述實施例1至6之發光二極體元件所具有的 Vf値和發光強度相比較,比較例的發光二極體元件未設 置窗層’其他部分則與實施例相同,而將以此方式構成的 發光二極體元件(LED )作爲比較用元件。其比較結果係 如表5所示。 表5中,比較例的Vf値(20mA左右)約爲2.2 V, 比實施例1至6之發光二極體元件20的Vf値,1.99V至 2.02V還高。另一方面’比較例的發光只產生於歐姆特性 電極的正下方和其週邊,有相當比例的發光被電極遮蔽, 而導致無法取出外部的情形。於是,亮度極低,未滿 15mcd。相對於此,實施例1 一 6的亮度爲30mcd至 4 2 m c d ° -28- (25) 200417066 對照該本較例和本發明的實施例,得知本發明之發光 二極體元件得以在不增加Vf的狀態下實現高亮度化。Fig. 18 is a diagram for explaining the light emission of the present invention in sequence. Figs. 14 and 15 are diagrams showing a first configuration example of the light emitting diode element of the present invention. Fig. 14 is a plan view thereof. Fig. 15 is a view showing the 14th diagram. -Sectional view of line 11. In these figures, the light-emitting diode -23- (20) (20) 200417066 of the present invention is a light-emitting diode (LED) emitting yellow-green light. A semiconductor layer 23 is formed on a Si-doped n-type G a A s single crystal substrate 21 with a crystal plane orientation (0 0 1) shifted by 15 degrees. The semiconductor layer 23 is laminated on the substrate 21, and its structure sequentially includes: a buffer layer 231 composed of Si-doped n-type G a A s, and Si-doped n-type AlQ.5GaQ.5As / Al0. 9 DBR reflective layer 2 3 composed of Gao.iAs multilayer film, and a lower cover layer 2 3 3 ′ composed of Si-doped n-type and undoped AlG.5iri (). 5P, and undoped with adjusted composition Light-emitting layer 22 composed of AlGalnP mixed crystal and emitting wavelength of 570 nm, and an upper cover layer 2 3 4 composed of undoped AU.5lnG.5P and Zn-doped p-type AU.5Ga (). 5P, and Zn-doped Hetero-p-type GaP window layer 2 3 5. The layers 231, 232, 233, 22, 234, and 235 constituting the semiconductor layer 23 are made of trimethylaluminum ((CH3) 3 A1), trimethylgallium ((CH3) 3 Ga), and dimethylindium ((CH3 ) 3 In) is used as a raw material of the group III structural element, and is formed on the substrate 21 by a reduced pressure M 0 CVD method. On the doping material of zinc (Zη), dimethylzinc ((Ch3) 2Zη) was used. Disilane (Si2Η6) was used as the n-type doping material. As the raw material of the group ν element, phosphine (P Η3) or osmium (As Η3) is used. The film formation temperature of each layer 2 3 1, 2, 3 2, 2 3 3, 2 2, 2 3 4 and 2 3 5 was uniformly 7 3 5 ° C. The carrier concentration of the buffer layer 231 is about 2 × 1018 cm-3, and the layer thickness is about 0.5 // m. The carrier concentration of the reflective layer 2 3 2 is about 2 χ 丨 〇 1 8 c m-3, and the 'layer is about 1.2 // πm. The carrier concentration of the lower ρ 卩 cladding layer 2 3 3 is about 7 X 1 0 1 8 cm 'The layer thickness is on a Si-doped n-type layer of about 1.3 m, -24- (21) ( 21) 200417066 An undoped layer of 0 · 2 // m is formed. The thickness of the light-emitting layer 22 is about 1 // m. The layer thickness of the undoped layer of the upper cladding layer 234 is about 0.5 μm, and the layer thickness of the Zri-doped p-type layer above the undoped layer is about 0.5 μm. The carrier concentration of the Zn-doped P-type layer is about 6 × 1017 cm 3. The carrier concentration of the P-type window layer 2 3 5 is about 3 X 1018 cm—3, and the layer thickness is about 6 β m. In this case, the product of the thickness d of the window layer 2 3 5 and the carrier concentration N, N · d is approximately 1.8 X 1 0 15 c m-2. Here, the lower cladding layer 233, the light emitting layer 22, and the upper cladding layer 234 constitute a light emitting portion of the light emitting diode element 20. Therefore, the light emitting portion is a double hetero structure made of AlGaluP. In this light-emitting diode element 20, in order to form the distribution electrode 27, first, a gold-beryllium alloy (An 9.9 wt%-Be 1 wt%) film having a film thickness of about 5 Onm is formed by a general vacuum evaporation method. At one time, the entire surface of the window layer 235 was adhered, and then a gold (Au) film having a thickness of about 100 nm was attached to the surface of the gold-beryllium alloy film. Next, using a general photolithography mechanism, a multilayer film having a double-layer structure of the first film made of gold-beryllium alloy and the second film made of gold was patterned to form a distribution electrode 27. The distribution electrode 27 is a substantially square frame shape with a side of 1 5 0 // m formed by a linear body having a width of about 6 // m. The area of the distribution electrode 27 is about 0.36 × 10-4 cm-2. The distribution electrode 2 7 composed of the first film and the second film is a portion of the surface of the window layer 2 3 5 except the area directly below the bottom electrode 26 as shown in FIG. 14 to surround the bottom. The electrode 26 is formed in such a manner that, when viewed from a plane, the distribution electrode 27 has a substantially quadrangular shape which is symmetrical to the left and right. -25- (22) (22) 200417066 On the other hand, a gold-germanium alloy with a thickness of about 0.3 // m is laminated on the back surface of the single crystal substrate 21, and a thickness of 0.3 μm is laminated under the gold-germanium alloy. Of gold to form n-type ohmic electrodes 25. Then, in a nitrogen flow, an alloying heat treatment is performed at 45 ° C. for 10 minutes to form an ohmic contact between the distribution electrode 27 and the window layer 2 35, and the n-type ohmic electrode 25 and the single crystal substrate 2 1 ohmic contact. Next, a well-known magnetron sputtering method is used to attach an indium tin oxide (ITO) transparent conductive film 24 to the window layer 235 and the distribution electrode 27 on the surface thereof. The resistivity of the transparent conductive film 24 is 4 × 1 (T 4 Ω · Cm, the layer thickness is about 500 nm. The transmittance is about 95% of the good film quality for the emission wavelength. The well-known magnetron sputtering (magnetron A sputtering method is used to form a laminated film composed of 3 Onm of chromium (Cr) and 1 // m of gold on the transparent conductive film 24. After coating a general organic photoresist, a well-known photomicrograph is used. In the shadow technology, the area where the bottom electrode 26 is pre-set is patterned to form a circular bottom electrode 26 with a diameter of about 110 mm. The flat area of the bottom electrode 26 is about 4 × 10-4 cm2. When viewed from a plane as shown in FIG. 14, the predetermined setting area of the bottom electrode 26 is located at the center of the surface of the light emitting diode element, that is, an area including the diagonal focus of the surface of the quadrangular light emitting diode element. This is because when the bottom electrode 26 is located at the center of the surface of the light-emitting diode element, it is easier for the current to flow uniformly throughout the entire light-emitting diode element, and wire bonding (wi 1 · eb ο nding) is performed on the bottom electrode 2 6. ), The advantage of the chip is not easy to tilt. 26- ( 23) (23) 200417066 Then, using a general cutting method, cut one side at an interval of 230 gm to separate it into a square element shape to form a light emitting diode element 20. The flat area of the transparent conductive film 24 is about 4 X 1 (T 4 Cm2, the effective light-emitting area S obtained by subtracting the flat area of the bottom electrode 26 from the flat area of the transparent conductive film 24 is about 3 X 1 (T 4 Cm2. Furthermore, the total distribution electrode 27 The flat area is about 0.36 X 1 0_ 4 Cm2, and this area accounts for about 12% of the effective light-emitting area S. Current is passed through the light-emitting diode element 20 obtained in the above manner in the forward direction. Between the ohmic electrode 25 and the bottom electrode 26, yellow-green light with a wavelength of about 570 nm is emitted from the surface of the transparent conductive film 24. The forward voltage (Vf: 20mA when a current of 20 m A flows) Left and right), reflecting the good ohmic characteristics of each distribution electrode 27 and the diffusion effect of current in the window layer 2b, it is about 2 V. In addition, the distribution electrodes 27 having ohmic characteristics are arranged on the light-emitting diode element 2 The effect of the peripheral portion 0 and the effect of the window layer 2 b on the light emitting diode element 2 0 Luminescence can also be recognized in the peripheral area, and the luminous intensity measured in the wafer state is about 40 millicandles (me d). In addition, the driving current is formed by distributing the electrode 27 and the window layer 2b. Evenly distributed, therefore, the luminous intensity observed from the surface of the transparent conductive film 24 is approximately uniformly distributed. In the first configuration example described above, 'system uses Zn and Si as dopants, however, well-known magnesium ( MS), tellurium (Te), selenium (Se) and other dopants can also achieve the same effect. The light-emitting layer 22 has a double heterostructure. However, when a multi-quantum well (M Qw) structure is formed, the same effect can be obtained as -27- (24) (24) 200417066. As described above, the light-emitting diode element 20 obtained in the first configuration example is as described above, and the layer thickness of the window layer 2 3 5 is approximately 6 / zm, and the carrier concentration is approximately 3 X 1 0 18 cm-3, the product of the layer thickness d and the carrier concentration N, n · d is about 1 · 8 X 1 0 15 cm ~ 2, and the light emitting diode device 20 is used as an example 1 ° as shown in Table 5 As shown in the figure, the layer thickness and carrier concentration of the window layer are variously changed. Other conditions are the same as in Example 1. In this way, five other types of light-emitting diode elements are formed, and this light-emitting diode element is used as Examples 2, 3, 4, 5, 6. The results shown in Table 5 were obtained by testing V f 値 and the luminous intensity of each of the light-emitting diode elements of Examples 1 to 6. (Comparative Example) In order to compare with the Vf 値 and light emission intensity of the light-emitting diode elements of Examples 1 to 6 described above, the light-emitting diode element of the comparative example is not provided with a window layer. The other parts are the same as the examples. A light-emitting diode element (LED) configured in this manner is used as a comparison element. The comparison results are shown in Table 5. In Table 5, the Vf 値 (about 20 mA) of the comparative example is about 2.2 V, which is higher than the Vf 値 of the light-emitting diode element 20 of Examples 1 to 6 from 1.99 V to 2.02 V. On the other hand, the light emission of the 'comparative example' occurred only under the ohmic characteristic electrode and its surroundings, and a considerable proportion of the light emission was blocked by the electrode, making it impossible to take out the outside. Therefore, the brightness is extremely low, less than 15mcd. In contrast, the brightness of Examples 1 to 6 is from 30 mcd to 4 2 mcd ° -28- (25) 200417066 In comparison with this comparative example and the embodiment of the present invention, it is known that the light-emitting diode element of the present invention can be used in various applications. High brightness is achieved with an increase in Vf.

第1 6圖至第1 9圖係從平面觀察分配電極之其他配置 例的圖。上述說明中,係令分配電極以線狀體連續分布於 底電極週邊,然而,係可如第1 6圖所示那樣,令分配電 極7個別獨立分散地配置於底電極6周圍。亦可如第1 7 圖所示那樣,形成令線狀體組合成圖形的分配電極7。亦 可如第1 8圖所示那樣,將線狀體配置成格子狀以構成分 配電極7。又,亦可如第1 9圖所示那樣,以線狀體和獨 立之個別電極的組合,構成分配電極7。 如上所述,分配電極7不僅可以個別分散的方式來配 置,也將其形成連續配置成帶狀、線狀的構造,再者’亦 可行成將其配置成面狀構造。Figures 16 to 19 are diagrams illustrating other arrangement examples of the distribution electrodes viewed from a plane. In the above description, the distribution electrodes are linearly distributed around the bottom electrode. However, as shown in FIG. 16, the distribution electrodes 7 may be individually and separately arranged around the bottom electrode 6. Alternatively, as shown in FIG. 17, a distribution electrode 7 in which the linear bodies are combined into a pattern may be formed. Alternatively, as shown in FIG. 18, the linear bodies may be arranged in a grid to form the distribution electrode 7. Further, as shown in Fig. 19, the distribution electrode 7 may be constituted by a combination of a linear body and an independent individual electrode. As described above, the distribution electrodes 7 can be arranged not only in a discrete manner but also in a continuous configuration in a band-like or linear configuration, and it can also be configured in a planar configuration.

此外,令分配電極7個別分散地配置時,或令其形成 連續的帶狀、線狀時,彼等形狀亦可形成正方形、長方形 、圓形、橢圓形、多角形等任意的形狀,而分散時的圖案 亦可形成放射狀、圓周狀、螺旋狀、其他任意的圖案° (實施例7 ) 在樣本1之元件的窗層上,利用實施例1的條件形成 分配電極、透明導電膜、底電極,並利用與樣本1相胃白勺 條件,來測試Vf、亮度、發光波長。將其結果顯示於表έ 。相較於樣本1,可獲致亮度進一步提升和Vf的降低° -29- (26) (26)200417066 [發明的效果] 由於本發明是以上述方式構成,故得以具備以下說明 的效果。 如上所述,具有本發明A 1 G a I η P活性層的雙異質型發 光一極體兀件中’陽極側覆蓋層係包括:1 )未摻雜 A11 η Ρ層,其與活性層連接,且生長成〇 . 5从❿以上的厚 度’ 2)中間層,其具有該未摻雜 AllnP層能帶間隙和窗 層能帶間隙的中間能帶間隙,並且進行與窗層連接之p型 摻雜’故Vf可變成一半左右,亮度變成2倍左右。 又,藉由令窗層在高溫環境下生長,得以改善其結晶 性,同時,藉由一邊摻雜,一邊令其高速生長,可令Vf 降低0.1 6V左右,且亮度可改善8〇%。 藉由在陰極側覆蓋層活性層側設置未摻雜層,可令 Vf降低0.2V左右,亮度變成大約2倍。 再者,藉由以矽作爲陰極側半導體層的摻雜物,因製 造過程中溫度上昇所引起的問題得以獲得抑制,且不會發 生。 此外,本發明之發光二極體元件中,係在窗層表面的 一部分,設置形成歐姆接觸的分配電極,故相較於透明導 電膜和窗層間的電阻,分配電極和窗層之間的電阻得以大 幅變小。並且,供給自底電極之大部分的驅動電流’是以 更低的電,流動於底電極—透明導電膜—分配電極—窗層 —發光部的路經。並且,從分配電極流進窗層的電流會適 當地擴散於窗層,故發光部的發光是在以分配電極爲中心 -30- (27) 200417066 的周邊進行。所以,發光部的發光被分配電極遮 較少’可將大部分的發光朝上方取出,因此,可 效率。 又,當窗層爲P型時,層厚是形成3 μ m以 產生充分的電流擴散。 當窗層爲P型時,層厚與載子濃度的乘積是 1 0 1 4 c m — 2以上,故可有效地助於窗層高亮度化。 當窗層爲P型時’其表面的載子濃度爲lx 以上,故與分配電極接觸的電阻會降低,從而促 散’而獲致®売度化。 該窗層是由以Zn或Mg爲雜質之p型GaP 故相對於發光’係形成透明而可將電流充分地擴 ’可容易地進行低電阻化、厚膜化,亦可容易地 適當化。 【圖式簡單說明】 第1圖是表示本發明一實施型態例之模式圖 第2圖是表示本發明LED之中間層組成依 〇 第3圖是表示本發明l E D之陰極側未摻雜 厚依存性的圖。 第4圖是表示本發明LED之窗層生長條件 圖。 第5圖是表示習知發光二極體之剖面的模式 蔽的部分 改善發光 上,故可 形成5 X 1 0 1 8cm~ 3 進電流擴 形成者, 散,再者 將窗層最 〇 存性的圖 A 11 η P 層 依存性的 圖。 -31 - (28) (28)200417066 第6圖是表示習知發光二極體之剖面的模式圖。 第7圖是表示習知發光二極體之剖面的模式圖。 第8圖是表示習知發光二極體之剖面的模式圖。 第9圖是表示習知發光二極體之剖面的模式圖。 第10圖是表示習知發光二極體之剖面的模式圖。 第11圖是表示習知發光二極體之剖面的模式圖。 第1 2圖是本發明發光二極體元件之槪略構成的模式 平面圖 ° 第1 3圖是本發明發光二極體元件之槪略構成的模式 圖’表示第1 2圖之I 一 ί線的剖面圖。 第14圖是表示本發明發光二極體元件之實施例的平 面圖。 第1 5圖是本發明發光二極體元件之實施例的圖,表 不桌1 4圖之11 一 11線的剖面圖。 第1 6圖是本發明分配電極之其他配置例的圖。 第1 7圖是本發明分配電極之其他配置例的圖。 第1 8圖是本發明分配電極之其他配置例的圖。 第1 9圖是本發明分配電極之其他配置例的圖。 【主要元件對照表】 0 1 ρ -電極 02窗層 03 ρ型中間層 04 未摻雜AllηΡ層 -32、 (29) (29)200417066 〇 5活性層 06未摻雜AllnP層 0 7 η型覆蓋層 〇 8反射層 〇 9緩衝層 〇 1 〇基板 Oil η —電極 1半導體基板 2 a發光部 2 b窗層 3半導體層 4透明導電膜 5第1電極 6 底電極 7分配電極 1 〇發光二極體元件 2 0發光二極體元件 2 1單晶基板 2 2發光層 23半導體層 2 3 1緩衝層 2 3 2反射層 2 3 3下部覆蓋層 234上部覆蓋層 (30) (30)200417066 235窗層 24透明導電膜 25 η型歐姆電極 2 6 底電極 2 7分配電極 -34 (31) 200417066 【表1】 名稱 膜厚 (μιη) CV載子 密度(c3) 化學式 窗層 5 ^ 2〜4x10丨8 p(Zn)-GaP P型中間層 0.5 5〜10x10" p(Zn)-(Al0.6Ga0.4)InP 未摻雜 AllnP 層 0.5 - u η - A 11 η P 活性層 1 .0 un-AlGalnP 未摻雜 A11 η P 層 0.2 - u n - A 11 n p η型覆蓋層 1.3 0.5 〜3χ1〇ΐ8 n(Si)-AllnP 反射層 1 .0〜1 .5 0.5 〜3χ1018 n(Si-Al〇.5Ga〇.5As/Al〇.9Ga〇iAs) 緩衝層 0.5 0.5〜3χ1018 n ( S i ) - G a A s 基板 280 Si-doped GaAs (偏 15。) 【表2】 [Vf、亮度對於p型中間層3的依存性] 樣本 生長條件 Vf(V@20mA) 亮 度 (mcd@20mA) 發光波 長 A u η - A 11 η Ρ 3.99 4.9 574 B pAl〇.7Ga〇.3InP 2.14 9.4 573 C pAl〇6G^o.4lnP 1.99 10.2 5 73 窗層:GaP厚度= 5μιη、載子密度=2xl〇18 未摻雜AllnP層:層厚= 0.5μΓη -35- (32) (32)200417066 【表3】 [Vf、亮度對於陰極側覆蓋層之構成的依存性] 樣品 生長條件 VF (V@20mA) 亮度(mcd@20mA) 發光波長 D 沒有未摻雜層AllnP層 2.32 5.1 573 E 未摻雜層AllnP層0.1 // m 2.13 10.8 574 F 未摻雜層ΑΠηΡ層0.2 // m 2.14 11.5 573 生長溫度:ri型覆蓋層7 = 700°C、未摻雜AllnP層6、4及活性層5 = 730°C、 P型中間層3 = 700°C p型中間層3層:組成Al〇.7Ga〇.3InP、厚度= 0.5"m、載子密度= 7xl017cm—3 陽極側未摻雜AllnP層:厚度= 0.5 //m 窗層:組成GaP、厚度= 、載子密度= 2.5xl018cm—3 -36- (33) 200417066 [表4】 樣品 生長條件 VF(V@20mA) 亮度(mcd@20mA) 發光波長 G GaP 700°C 2.8//m/h 2.14 9.4 573 Η GaP700°C 7.8^m/h 2.14 9.0 573 I GaP 730〇C 7.8//m/h 1.98 16.9 573 生長溫度:η型覆蓋層7 = 700°C、未摻雜AlkiP層6、4層及活性層5 = 730°C、 P型中間層3 = 700°C 陰極側覆蓋層的未摻雜AllnP層:厚度=0.1 /z m (I係0.2 v m ) P型中間層:組成Ala7Gaa3InP、厚度= 、載子密度= 7xl017cm一3 窗層:組成GaP、厚度= 5^01、載子密度= 2.5xlOI8cm_3 [V f和亮度對於窗層之生長條件的依存性] 【表5】 電流擴散層 特性 厚度 載子濃 N · d 亮度 Vf(V)@2 0mA (μπι) 度(cm-3) (cm·2) (m c d ) 6 3.0E+ 1 8 1 .8E+1 5 40 1 .99 實施例1 3 3.0E+1 8 9E+ 1 4 〇 o J J 2.02 實施例2 10 3.0E+ 1 8 3E+1 5 42 1 .99 實施例3 6 1 .0E+1 8 6E+ 1 4 32 2.02 實施例4 10 1 .0E+1 8 1E+15 39 1.99 實施例5 10 5.0E+1 7 5E+ 1 4 30 2.02 實施例6 _ - 1 2 2.24 比較例 本發明與習知例之比較 -37- 200417066 (34) 【表6】 亮度(mcd ) 波長(n m ) Vf ( V ) 實施例7 5 1 573 1.94 -38-In addition, when the distribution electrodes 7 are arranged individually and dispersedly, or when they are formed into continuous strips or lines, their shapes can be formed into arbitrary shapes such as squares, rectangles, circles, ovals, and polygons, and dispersed. The pattern at this time can also be formed into radial, circumferential, spiral, or other arbitrary patterns. (Example 7) On the window layer of the element of Sample 1, a distribution electrode, a transparent conductive film, and a substrate were formed under the conditions of Example 1. The electrode was used to measure Vf, brightness, and emission wavelength using conditions similar to those of sample 1. The results are shown in the table. Compared to Sample 1, further improvement in brightness and reduction in Vf can be obtained. -29- (26) (26) 200417066 [Effects of the Invention] Since the present invention is constituted as described above, the effects described below can be obtained. As described above, the 'anode-side covering layer system of the double hetero-type light-emitting monolithic element with the A 1 G a I η P active layer of the present invention includes: 1) an undoped A11 η P layer, which is connected to the active layer And grow to a thickness of 0.5 or more from ❿ '2) an intermediate layer having an intermediate band gap of the undoped AllnP layer band gap and a window layer band gap, and performing a p-type connection with the window layer Doping, so Vf can be about half, and the brightness can be doubled. In addition, the window layer can be grown in a high temperature environment to improve its crystallinity. At the same time, by doping and growing at a high speed, Vf can be reduced by about 0.1 6V, and the brightness can be improved by 80%. By providing an undoped layer on the active layer side of the cathode-side cladding layer, Vf can be reduced by about 0.2V, and the brightness can be approximately doubled. Furthermore, by using silicon as a dopant for the semiconductor layer on the cathode side, problems caused by temperature rise during the manufacturing process can be suppressed without occurring. In addition, in the light-emitting diode element of the present invention, a distribution electrode forming an ohmic contact is provided on a part of the surface of the window layer, so the resistance between the distribution electrode and the window layer is higher than that between the transparent conductive film and the window layer Can be greatly reduced. Further, most of the driving current 'supplied from the bottom electrode is passed through the bottom electrode-transparent conductive film-distribution electrode-window layer-light-emitting section at a lower power. In addition, the current flowing from the distribution electrode into the window layer will be appropriately diffused in the window layer. Therefore, the light emission of the light-emitting part is performed around the distribution electrode as a center -30- (27) 200417066. Therefore, since the light emission from the light emitting portion is less covered by the distribution electrode ', most of the light emission can be taken upward, and therefore, the efficiency can be improved. When the window layer is a P-type, the layer thickness is formed to be 3 μm to generate sufficient current diffusion. When the window layer is a P-type, the product of the layer thickness and the carrier concentration is more than 10 4 cm −2, so it can effectively help the window layer to have higher brightness. When the window layer is P-type, its carrier concentration on the surface is 1x or more, so the resistance of the contact with the distribution electrode will be reduced, which will promote the dispersion and increase the density. This window layer is made of p-type GaP with Zn or Mg as an impurity, so that it is transparent to the light-emission system and can sufficiently expand the current. The resistance can be easily reduced, the thickness can be increased, and the window layer can be easily optimized. [Brief description of the drawings] FIG. 1 is a schematic diagram showing an implementation example of the present invention. FIG. 2 is a diagram showing the composition of the intermediate layer of the LED of the present invention. Thick dependency graph. Fig. 4 is a graph showing the growth conditions of the window layer of the LED of the present invention. Fig. 5 shows the pattern of the cross section of the conventional light-emitting diode to improve the luminescence, so it can form 5 X 1 0 1 8cm ~ 3 into the current spreading, spread, and then the window layer has the most existence. Figure 11 A diagram of the dependence of the η P layer. -31-(28) (28) 200417066 Fig. 6 is a schematic diagram showing a cross section of a conventional light emitting diode. Fig. 7 is a schematic view showing a cross section of a conventional light emitting diode. Fig. 8 is a schematic view showing a cross section of a conventional light emitting diode. Fig. 9 is a schematic view showing a cross section of a conventional light emitting diode. Fig. 10 is a schematic view showing a cross section of a conventional light emitting diode. Fig. 11 is a schematic view showing a cross section of a conventional light emitting diode. Fig. 12 is a schematic plan view of a schematic structure of a light-emitting diode element of the present invention. Fig. 13 is a schematic view of a schematic structure of a light-emitting diode element of the present invention. Section view. Fig. 14 is a plan view showing an embodiment of a light emitting diode element according to the present invention. Fig. 15 is a view showing an embodiment of a light emitting diode element according to the present invention, and is a cross-sectional view taken along line 11-11 of Fig. 14; Fig. 16 is a diagram showing another arrangement example of the distribution electrode of the present invention. Fig. 17 is a diagram showing another arrangement example of the distribution electrode of the present invention. Fig. 18 is a diagram showing another arrangement example of the distribution electrode of the present invention. Fig. 19 is a diagram showing another arrangement example of the distribution electrode of the present invention. [Comparison table of main components] 0 1 ρ-electrode 02 window layer 03 ρ-type intermediate layer 04 undoped AllηP layer-32, (29) (29) 200417066 〇5 active layer 06 undoped AllnP layer 0 7 n-type cover Layer 08 reflective layer 09 buffer layer 0 substrate 0 n-electrode 1 semiconductor substrate 2 a light-emitting portion 2 b window layer 3 semiconductor layer 4 transparent conductive film 5 first electrode 6 bottom electrode 7 distribution electrode 1 light-emitting diode Body element 2 0 Light-emitting diode element 2 1 Single crystal substrate 2 2 Light-emitting layer 23 Semiconductor layer 2 3 1 Buffer layer 2 3 2 Reflective layer 2 3 3 Lower cover layer 234 Upper cover layer (30) (30) 200417066 235 window Layer 24 Transparent conductive film 25 η-type ohmic electrode 2 6 Bottom electrode 2 7 Distribution electrode -34 (31) 200417066 [Table 1] Name Film thickness (μιη) CV carrier density (c3) Chemical formula window layer 5 ^ 2 ~ 4x10 丨8 p (Zn) -GaP P-type intermediate layer 0.5 5 to 10x10 " p (Zn)-(Al0.6Ga0.4) InP undoped AllnP layer 0.5-u η-A 11 η P active layer 1.0 un- AlGalnP undoped A11 η P layer 0.2-un-A 11 np η-type cladding layer 1.3 0.5 to 3χ1〇ΐ8 n (Si) -AllnP reflective layer 1.0 to 1.5 0.5 to 3x1018 n (Si-Al .5Ga〇.5As / Al〇.9Ga〇iAs) Buffer layer 0.5 0.5 ~ 3χ1018 n (S i)-G a A s Substrate 280 Si-doped GaAs (biased 15.) [Table 2] [Vf, brightness for p Dependence of Type Intermediate Layer 3] Sample Growth Conditions Vf (V @ 20mA) Brightness (mcd @ 20mA) Luminous Wavelength A u η-A 11 η P 3.99 4.9 574 B pAl0.7.GaIn.2InP 2.14 9.4 573 C pAl〇 6G ^ o.4lnP 1.99 10.2 5 73 Window layer: GaP thickness = 5μιη, carrier density = 2xl018 Undoped AllnP layer: layer thickness = 0.5μΓη -35- (32) (32) 200417066 [Table 3] [ Dependence of Vf and brightness on the composition of the cathode-side cladding layer] Sample growth conditions VF (V @ 20mA) Brightness (mcd @ 20mA) Emission wavelength D No undoped layer AllnP layer 2.32 5.1 573 E Undoped layer AllnP layer 0.1 // m 2.13 10.8 574 F undoped layer AΠηP layer 0.2 // m 2.14 11.5 573 growth temperature: ri-type cladding layer 7 = 700 ° C, undoped AllnP layers 6, 4 and active layer 5 = 730 ° C, P-type intermediate layer 3 = 700 ° C p-type intermediate layer 3 layers: composition Al0.77Ga0.3InP, thickness = 0.5 " m, carrier density = 7xl017cm-3 Undoped AllnP layer on anode side: thickness = 0.5 // m Window layer: Composition Ga P, thickness =, carrier density = 2.5xl018cm—3 -36- (33) 200417066 [Table 4] Sample growth conditions VF (V @ 20mA) Brightness (mcd @ 20mA) Luminous wavelength G GaP 700 ° C 2.8 // m / h 2.14 9.4 573 Η GaP700 ° C 7.8 ^ m / h 2.14 9.0 573 I GaP 730 ° C 7.8 // m / h 1.98 16.9 573 Growth temperature: n-type cladding layer 7 = 700 ° C, undoped AlkiP layer 6 , 4 layers and active layer 5 = 730 ° C, P-type intermediate layer 3 = 700 ° C Undoped AllnP layer on the cathode side cover layer: thickness = 0.1 / zm (I series 0.2 vm) P-type intermediate layer: composition Ala7Gaa3InP , Thickness =, carrier density = 7xl017cm-3 window layer: composition GaP, thickness = 5 ^ 01, carrier density = 2.5xlOI8cm_3 [dependence of V f and brightness on the growth conditions of the window layer] [Table 5] Current diffusion Layer characteristics Thickness Carrier concentration N · d Brightness Vf (V) @ 2 0mA (μπι) Degree (cm-3) (cm · 2) (mcd) 6 3.0E + 1 8 1 .8E + 1 5 40 1.99 Implementation Example 1 3 3.0E + 1 8 9E + 1 4 〇o JJ 2.02 Example 2 10 3.0E + 1 8 3E + 1 5 42 1 .99 Example 3 6 1 .0E + 1 8 6E + 1 4 32 2.02 Example 4 10 1.0 E + 1 8 1E + 15 39 1.99 Example 5 10 5.0E + 1 7 5E + 1 4 30 2.02 Example 6 _- 1 2 2.24 Comparative Example Comparison between the present invention and a conventional example -37- 200417066 (34) [Table 6] Brightness (mcd) Wavelength (n m) Vf (V) Example 7 5 1 573 1.94 -38-

Claims (1)

(1) (1)200417066 拾、申請專利範圍 1. 一種發光二極體元件,係具備:磷化鋁鎵銦( AlGalnP )活性層;和陽極側覆蓋層、陰極側覆蓋層,而 活性層係夾在兩者中間,且該陽極側覆蓋層與陰極側覆蓋 層的能帶間隙大於該活性層,且窗層能帶間隙大於形成於 陽極側覆蓋層上之活性層,其特徵爲: 陽極側覆蓋層係包括·· 1 )未摻雜鋁銦磷(AllnP )層 ’其與活性層連接’且生長成〇 . 5 m以上的厚度,2 )中 間層’其具有該未摻雜鋁銦磷(AllnP )層能帶間隙和窗 層能帶間隙的中間能帶間隙,並且進行與窗層連接之P型 摻雜。 2 · —種發光二極體元件,係具備:磷化鋁鎵銦( AlGalnP )活性層;和陽極側覆蓋層、陰極側覆蓋層,而 活性層係夾在兩者中間,且該陽極側覆蓋層與陰極側覆蓋 層的能帶間隙大於該活性層,且窗層能帶間隙大於形成於 陽極側覆蓋層上之活性層,其特徵爲: 上述窗層係將磷化鎵(GaP )層以7 3 0 °C以上的溫度 生長而構成者,其生長速度爲每小時7.8 // m以上,其摻 雜物爲鋅。 3 ·如申請專利範圍第2項所記載之發光二極體元件, 其中,陽極側覆蓋層係包括:1 )未摻雜鋁銦磷(Alin P ) 層,其與活性層連接,且生長成〇.5//m以上的厚度,2) 中間層,其具有該未摻雜鋁銦磷(AllnP )層能帶間隙和 窗層能帶間隙的中間能帶間隙,並且進行與窗層連接之P -39- (2) (2)200417066 型摻雜。 4 . 一種發光二極體元件,係具備:磷化鋁鎵銦( AlGalnP ):和陽極側覆蓋層、陰極側覆蓋層,而活性層 係夾在兩者中間,且該陽極側覆蓋層與陰極側覆蓋層的能 帶間隙大於該活性層,且窗層能帶間隙大於形成於陽極側 覆蓋層上之活性層,其特徵爲: 陰極側覆蓋層係包括:與活性層連接,且厚度爲〇 . 1 V m以上的未摻雜鋁銦磷(a 11 η P )層。 5 .如申請專利範圍第4項所記載之發光二極體元件, 其中’陰極側覆蓋層係包括以陰極側連接於上述未摻雜鋁 銦磷(AllnP )層的η型覆蓋層,而該^型覆蓋層的摻雜 物爲矽。 6 . —種發光二極體元件之製造方法,其特徵係包括下 列步驟: 在砷化鎵(GaAs )基板上, 1 )沉積緩衝層之步驟,和 2 )在上述緩衝層上設置n型反射層,以作爲反射層 之步驟,和 3)在上述反射層上,沉積摻雜有矽之η型覆蓋層的 步驟,和 4 )在上述η型覆蓋層上,設置未摻雜鋁銦磷(ah ηρ )層之步驟,和 5 )在上述未摻雜鋁銦磷(a 11 η P )層上,設置碟化鋁 鎵銦(A 1 G a I η Ρ )活性層之步驟,和 -40- (3) (3)200417066 6 )在上述活性層上,設置未搶雑銘絪磷(a 11 η P ) _ 之步驟,和 7)在上述未摻雜鋁銦磷(AllnP)層上,設置p型中 間層之步驟,和 8 )在上述Ρ型中間層上,以73 (TC以上的溫度、每 小時7.8 // m以上的生長速度,生長摻雜有鋅的ρ型磷化 鎵(GaP )層,以作爲窗層之步驟。 7 . —種發光二極體元件,其特徵爲具備: 背面形成有第1電極的半導體基板;和 形成於上述半導體基板上,包含有由磷化鋁鎵銦( AlGalnP)構成的發光部,同時上層具有窗層的半導體層 ;和 分配形成於窗層的部分表面,且與該窗層形成歐姆接 觸的分配電極;和 覆蓋窗層表面和分配電極而形成,且與該分配電極導 通的透明導電膜;和 形成於透明導電膜的部分表面,且與該透明導電膜導 通的底電極。 8 ·如申請專利範圍第7項所記載之發光二極體元件, 其中,上述半導體基板是η型,電流擴散層是p型。 9.如申請專利範圍第7或8項所記載之發光二極體元 件,其中,上述窗層的厚度爲3//m以上。 1 0 ·如申請專利範圍第7或8項所記載之發光二極體 元件,其中,上述窗層的厚度與載子濃度N的乘積(N. -41 - (4) (4)200417066 d )爲 5 x 1 0 1 4 c m — 2 以上。 1 1 ·如申請專利範圍第7或8項所記載之發光二極體 元件,其中,上述窗層的表面載子濃度爲lxl〇18cm-3以 上。 1 2 ·如申請專利範圍第7或8項所記載之發光二極體 元件,其中,上述電流擴散層是由以鋅(Ζ η)或鎂(Mg )作爲雜質之P型磷化鎵(GaP )層所構成。 1 3 ·如申請專利範圍第7或8項所記載之發光二極體 元件,其中,由平面觀察時,上述分配電極是形成於不與 底電極重疊的半導體層表面。 1 4 ·如申請專利範圍第7或8項所記載之發光二極體 元件,其中,上述分配電極的面積小於底電極的面積。 1 5 .如申請專利範圍第7或8項所記載之發光二極體 元件,其中,上述分配電極合計的平面積中,有效發光面 積爲3 %以上、3 0 %以下。 1 6 .如申請專利範圍第7或8項所記載之發光二極體 元件,其中,上述分配電極是金合金。 1 7 ·如申請專利範圍第7或8項所記載之發光二極體 元件,其中,上述透明導電膜是氧化銦錫(ITO )。 1 8 ·如申請專利範圍第7或8項所記載之發光二極體 元件,其中,由平面觀察時,上述底電極是形成於元件表 面的中心。 1 9 .如申請專利範圍第7或8項所記載之發光二極體 元件,其中,上述底電極的表面是金。 -42- (5) (5)200417066 20·如申請專利範圍第7或8項所記載之發光二極體 元件,其中,上述底電極是由多層膜構成者,與透明導電 膜連接的層是鉻。 21. 如申請專利範圍第7或8項所記載之發光二極體 元件,其中’上述分配電極是包圍底電極之大致四角形或 大致圓形的線狀體。 22. 如申請專利範圍第7或8項所記載之發光二極體 元件,其中’上述分配電極是線寬度爲2 0 // m以下的線 狀體。 23. —種發光二極體元件的製造方法,其特徵爲具備 下列步驟: 第1步驟’在單晶基板上,令包含有由磷化鋁鎵銦( AlGalnP)構成的發光部,同時上層具有p型窗層之半導 體層磊晶生長;和 第2步驟’在上述第1步驟所形成之窗層部分表面, 形成與該窗層形成歐姆接觸之分配電極;和 第3步驟’覆蓋窗層表面與分配電極,而形成與該分 配電極導通的透明導電膜;和 第4步驟’在上述透明導電膜的部分表面,形成該透 明導電膜導通的底電極。 2 4 ·如申請專利範圍第2 3項所記載之發光二極體元件 的製造方法,其中’上述半導體層是藉由有機金屬化學汽 相沉積法(MOCVD法)形成者。 2 5 ·如申請專利範圍第2 3或2 4項所記載之發光二極 -43- (6) (6)200417066 體元件的製造方法,其中,上述透明導電膜是藉由濺鍍法 形成者。 26.如申請專利範圍第23或24項所記載之發光二極 體元件的製造方法,其中,上述底電極是藉由濺鍍法形成 者。 2 7 .如申請專利範圍第1至5項中任一項所記載之發 光二極體元件’其中,具備·· 分配形成於窗層的部分表面,且與該窗層形成歐姆接 觸的分配電極,和 覆蓋窗層表面和分配電極而形成,且與該分配電極導 通的透明導電膜;和 形成於透明導電膜的部分表面,且與該透明導電膜導 通的底電極。 2 8 .如申請專利範圍第2 7項所記載之發光二極體元件 ,其中,窗層的厚度爲以上。 2 9 .如申請專利範圍第2 7或2 8項所記載之發光二極 體元件,其中,窗層的厚度與載子濃度N的乘積(N.d )爲 5xl014cm-2 以上。 3 0 ·如申請專利範圍第2 7或2 8項所記載之發光二極 體元件,其中,窗層表面的載子濃度爲lxl018cm_3以上 〇 3 1 ·如申請專利範圍第2 7或2 8項所記載之發光二極 體元件,其中,由平面觀察時,分配電極是形成於不與底 電極重疊的半導體層表面。 -44- (7) (7)200417066 3 2 .如申請專利範圍第2 7或2 8項所記載之發光二極 體元件,其中,分配電極的面積小於底電極的面積。 3 3 .如申請專利範圍第2 7或2 8項所記載之發光二極 體元件,其中,分配電極合計的平面積中,有效發光面積 爲3%以上、30%以下。 3 4 .如申請專利範圍第2 7或2 8項所記載之發光二極 體元件,其中,分配電極是金合金。 3 5 ·如申請專利範圍第2 7或2 8項所記載之發光二極 體元件,其中,透明導電膜是氧化銦錫(ITO )。 36.如申請專利範圍第27或28項所記載之發光二極 體元件,其中,底電極由平面觀察時,是形成於元件表面 的中心。 3 7 ·如申請專利範圍第2 7或2 8項所記載之發光二極 體元件,其中,底電極的表面是金。 3 8 ·如申請專利範圍第2 7或2 8項所記載之發光二極 體元件’其中,底電極是由多層膜構成者,與透明導電膜 連接的層是鉻。 3 9 ·如申請專利範圍第2 7或2 8項所記載之發光二極 體元件’其中,分配電極是包圍底電極之大致四角形或大 致圓形的線狀體。 4〇·如申請專利範圍第27或28項所記載之發光二極 體元件’其中,分配電極是線寬度爲20 μ m以下的線狀 體。 -45-(1) (1) 200417066 Scope of patent application 1. A light emitting diode device comprising: an aluminum gallium indium phosphide (AlGalnP) active layer; and an anode side cover layer and a cathode side cover layer, and the active layer system Sandwiched between the two, and the band gap between the anode side cover layer and the cathode side cover layer is larger than the active layer, and the window layer band gap is larger than the active layer formed on the anode side cover layer, which is characterized by: The cover layer system includes: 1) an undoped aluminum indium phosphorus (AllnP) layer 'which is connected to the active layer' and grown to a thickness of 0.5 m or more, 2) an intermediate layer 'which has the undoped aluminum indium phosphorus The (AllnP) layer band gap and the middle band gap of the window layer band gap are P-type doped connected to the window layer. 2 · A light-emitting diode element, comprising: an active layer of aluminum gallium indium (AlGalnP); and an anode-side cover layer and a cathode-side cover layer, and the active layer is sandwiched between the two, and the anode-side cover The band gap between the layer and the cathode side cover layer is larger than the active layer, and the window layer band gap is larger than the active layer formed on the anode side cover layer, which is characterized in that: the window layer is formed by gallium phosphide (GaP) layer to It is composed by growing at a temperature above 7 3 0 ° C, its growth rate is above 7.8 // m per hour, and its dopant is zinc. 3. The light-emitting diode element as described in item 2 of the scope of the patent application, wherein the anode-side cover layer includes: 1) an undoped aluminum indium phosphorus (Alin P) layer, which is connected to the active layer and grows into A thickness of 0.5 // m or more, 2) an intermediate layer having an intermediate band gap between the band gap of the undoped aluminum indium phosphorus (AllnP) layer and the band gap of the window layer, and connecting the window layer P -39- (2) (2) 200417066 type doping. 4. A light-emitting diode element comprising: AlGalnP: and an anode-side covering layer and a cathode-side covering layer, and an active layer is sandwiched between the two, and the anode-side covering layer and the cathode The band gap of the side cover layer is larger than the active layer, and the band gap of the window layer is larger than the active layer formed on the anode side cover layer, which is characterized in that the cathode side cover layer includes: connected to the active layer, and has a thickness of 0. . Undoped aluminum indium phosphorus (a 11 η P) layer above 1 V m. 5. The light-emitting diode element as described in item 4 of the scope of the patent application, wherein the 'cathode-side cover layer includes an n-type cover layer connected to the aforementioned undoped aluminum indium phosphorus (AllnP) layer by the cathode side, and the The dopant of the ^ -type capping layer is silicon. 6. A method for manufacturing a light-emitting diode element, which is characterized by the following steps: on a gallium arsenide (GaAs) substrate, 1) a step of depositing a buffer layer, and 2) setting an n-type reflection on the buffer layer Layer, as a reflective layer step, and 3) a step of depositing a silicon-doped n-type cover layer on the reflective layer, and 4) on the n-type cover layer, disposing an undoped aluminum indium phosphorus ( ah ηρ) step, and 5) a step of disposing an aluminum gallium indium (A 1 G a I η ρ) active layer on the undoped aluminum indium phosphorus (a 11 η P) layer, and -40 -(3) (3) 200417066 6) on the above active layer, a step of arranging unidentified phosphorous (a 11 η P) _, and 7) on the above undoped aluminum indium phosphorus (AllnP) layer, Steps of setting a p-type intermediate layer, and 8) On the above P-type intermediate layer, grow p-type gallium phosphide doped with zinc at a temperature of 73 (TC or higher and a growth rate of 7.8 // m per hour or more) (GaP) layer as a step of the window layer. 7. A light emitting diode device, comprising: a semiconductor substrate having a first electrode formed on a back surface thereof; And a semiconductor layer formed on the semiconductor substrate and containing a light-emitting portion composed of aluminum gallium indium phosphide (AlGalnP) and having a window layer on the upper layer; and a portion of the surface formed on the window layer and forming an ohmic layer with the window layer A contacting distribution electrode; and a transparent conductive film formed by covering the surface of the window layer and the distribution electrode and communicating with the distribution electrode; and a bottom electrode formed on a part of the surface of the transparent conductive film and communicating with the transparent conductive film. 8 · The light-emitting diode device described in item 7 of the scope of patent application, wherein the semiconductor substrate is of an n-type and the current diffusion layer is p-type. 9. The light-emitting diode described in item 7 or 8 of the scope of patent application. A device in which the thickness of the window layer is 3 // m or more. 1 0 · The light-emitting diode device described in item 7 or 8 of the scope of patent application, wherein the thickness of the window layer and the carrier concentration N The product (N. -41-(4) (4) 200417066 d) is 5 x 1 0 1 4 cm — 2 or more. 1 1 · The light-emitting diode element as described in item 7 or 8 of the scope of patent application, where The surface of the window layer The sub-concentration is 1 × 1018 cm-3 or more. 1 2 · The light-emitting diode device as described in item 7 or 8 of the scope of patent application, wherein the current diffusion layer is made of zinc (Z η) or magnesium (Mg) It is composed of a P-type gallium phosphide (GaP) layer as an impurity. 1 3 · The light-emitting diode device as described in item 7 or 8 of the scope of patent application, wherein the distribution electrode is formed on a surface when viewed from a plane. The surface of the semiconductor layer overlapping the bottom electrode. 1 4 · The light-emitting diode element according to item 7 or 8 of the scope of patent application, wherein the area of the distribution electrode is smaller than the area of the bottom electrode. 15. The light-emitting diode element according to item 7 or 8 of the scope of patent application, wherein the effective light-emitting area of the total flat area of the distribution electrode is 3% or more and 30% or less. 16. The light-emitting diode element according to item 7 or 8 of the scope of patent application, wherein the distribution electrode is a gold alloy. 17 · The light-emitting diode device according to item 7 or 8 of the scope of patent application, wherein the transparent conductive film is indium tin oxide (ITO). 18 · The light-emitting diode device according to item 7 or 8 of the scope of patent application, wherein the bottom electrode is formed at the center of the surface of the device when viewed from a plane. 19. The light-emitting diode element according to item 7 or 8 of the scope of the patent application, wherein the surface of the bottom electrode is gold. -42- (5) (5) 200417066 20 · The light-emitting diode element described in item 7 or 8 of the scope of the patent application, wherein the bottom electrode is composed of a multilayer film, and the layer connected to the transparent conductive film is chromium. 21. The light-emitting diode element according to item 7 or 8 of the scope of patent application, wherein 'the distribution electrode is a substantially quadrangular or substantially circular linear body surrounding the bottom electrode. 22. The light-emitting diode element as described in item 7 or 8 of the scope of the patent application, wherein 'the distribution electrode is a linear body having a line width of 20 / m or less. 23. A method for manufacturing a light-emitting diode device, comprising the following steps: Step 1 'On a single crystal substrate, a light-emitting portion composed of aluminum gallium indium phosphide (AlGalnP) is provided, and the upper layer has epitaxial growth of the semiconductor layer of the p-type window layer; and step 2 'forming a distribution electrode forming an ohmic contact with the window layer on the surface of the window layer portion formed in the above step 1; and step 3' covering the surface of the window layer And a distribution electrode to form a transparent conductive film in communication with the distribution electrode; and a fourth step 'forming a bottom electrode in which the transparent conductive film is conductive on a part of the surface of the transparent conductive film. 2 4 · The method for manufacturing a light-emitting diode device according to item 23 of the scope of the patent application, wherein the above-mentioned semiconductor layer is formed by an organic metal chemical vapor deposition method (MOCVD method). 2 5 · The manufacturing method of the light-emitting diode -43- (6) (6) 200417066 as described in item 23 or 24 of the scope of patent application, wherein the transparent conductive film is formed by a sputtering method. . 26. The method for manufacturing a light-emitting diode device as described in claim 23 or 24, wherein the bottom electrode is formed by a sputtering method. 2 7. The light-emitting diode element according to any one of claims 1 to 5 in the patent application scope, wherein the light-emitting diode element includes a distribution electrode that is formed on a part of the surface of the window layer and forms an ohmic contact with the window layer. A transparent conductive film formed by covering the surface of the window layer and the distribution electrode and communicating with the distribution electrode; and a bottom electrode formed on a part of the surface of the transparent conductive film and communicating with the transparent conductive film. 28. The light-emitting diode element as described in item 27 of the scope of patent application, wherein the thickness of the window layer is greater than or equal to. 29. The light-emitting diode device as described in item 27 or 28 of the scope of patent application, wherein the product (N.d) of the thickness of the window layer and the carrier concentration N is 5xl014cm-2 or more. 3 0 · The light-emitting diode element described in item 27 or 28 of the scope of patent application, wherein the carrier concentration on the surface of the window layer is lxl018cm_3 or more. 3 · As item 27 or 28 of the scope of patent application In the light-emitting diode element according to the description, the distribution electrode is formed on a surface of the semiconductor layer that does not overlap the bottom electrode when viewed from a plane. -44- (7) (7) 200417066 3 2. The light-emitting diode element described in item 27 or 28 of the patent application scope, wherein the area of the distribution electrode is smaller than the area of the bottom electrode. 3 3. The light-emitting diode element described in item 27 or 28 of the scope of patent application, wherein the effective light-emitting area of the total flat area of the distribution electrode is 3% or more and 30% or less. 34. The light-emitting diode element as described in item 27 or 28 of the scope of patent application, wherein the distribution electrode is a gold alloy. 3 5 · The light-emitting diode device as described in item 27 or 28 of the patent application scope, wherein the transparent conductive film is indium tin oxide (ITO). 36. The light-emitting diode element as described in claim 27 or 28, wherein the bottom electrode is formed at the center of the surface of the element when viewed from a plane. 37. The light-emitting diode element according to item 27 or 28 in the scope of patent application, wherein the surface of the bottom electrode is gold. 38. The light-emitting diode element described in item 27 or 28 of the scope of patent application, wherein the bottom electrode is composed of a multilayer film, and the layer connected to the transparent conductive film is chromium. 39. The light-emitting diode element described in item 27 or 28 of the scope of the patent application, wherein the distribution electrode is a substantially quadrangular or substantially circular linear body surrounding the bottom electrode. 40. The light-emitting diode element according to item 27 or 28 of the scope of patent application, wherein the distribution electrode is a linear body having a line width of 20 m or less. -45-
TW093102666A 2003-02-10 2004-02-05 Semiconductor light emitting device and the manufacturing method thereof TWI231053B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003032580A JP4255710B2 (en) 2003-02-10 2003-02-10 Semiconductor light emitting device
JP2003067362 2003-03-12

Publications (2)

Publication Number Publication Date
TW200417066A true TW200417066A (en) 2004-09-01
TWI231053B TWI231053B (en) 2005-04-11

Family

ID=36086372

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093102666A TWI231053B (en) 2003-02-10 2004-02-05 Semiconductor light emitting device and the manufacturing method thereof

Country Status (2)

Country Link
KR (1) KR100644151B1 (en)
TW (1) TWI231053B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4553891B2 (en) 2006-12-27 2010-09-29 シャープ株式会社 Semiconductor layer manufacturing method
KR101403918B1 (en) * 2012-11-09 2014-06-09 광전자 주식회사 AlGaInP light emitting diode with undoped AlInP hole blocking layer
KR102101356B1 (en) * 2013-06-18 2020-04-17 엘지이노텍 주식회사 Light emitting device, and lighting system
KR101776917B1 (en) 2015-05-14 2017-09-08 이민우 Composite light-emitting element of the sandwich-type fine pattern
KR102707280B1 (en) 2021-10-22 2024-09-20 삼성물산 주식회사 Outdoor cooling tower basic structure and construction method of outdoor cooling tower using the same

Also Published As

Publication number Publication date
KR100644151B1 (en) 2006-11-13
TWI231053B (en) 2005-04-11
KR20050106426A (en) 2005-11-09

Similar Documents

Publication Publication Date Title
TW419871B (en) Light-emitting diode device and method for fabricating the same
JP6701385B2 (en) Method for using remote plasma chemical vapor deposition and sputtering deposition to grow layers in light emitting devices
US7528417B2 (en) Light-emitting diode device and production method thereof
TWI517431B (en) Method for forming the light-emitting diode
JP3697609B2 (en) Semiconductor light emitting device
KR20150139630A (en) Contact for a semiconductor light emitting device
TWI409973B (en) Light emitting diode and light emitting diode lamp, and lighting equipment
JP2008282851A (en) Semiconductor light-emitting element
KR100700529B1 (en) Light emitting diode with current spreading layer and manufacturing method thereof
JP2001148511A (en) Semiconductor light-emitting diode
TWI231053B (en) Semiconductor light emitting device and the manufacturing method thereof
US6169298B1 (en) Semiconductor light emitting device with conductive window layer
KR101761310B1 (en) Light emitting device and method of manufacturing the same
KR101734091B1 (en) Transparent electrode for lateral light emitting diode and led using the same
JP4439645B2 (en) AlGaInP light emitting diode
JP4255710B2 (en) Semiconductor light emitting device
JP3700767B2 (en) Semiconductor light emitting device
JP2001144330A (en) Semiconductor light-emitting diode
WO2004070851A1 (en) Light-emitting diode device and production method thereof
JP2001168395A (en) Iii-v compound semiconductor light emitting diode
JP4050435B2 (en) AlGaInP light emitting diode
JPH09172198A (en) Light emitting diode and its manufacture
JP3723314B2 (en) Semiconductor light emitting device
JP3777869B2 (en) Gallium nitride compound semiconductor light emitting device
KR20110081650A (en) Light emitting device and method of manufacturing the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees