TW200916731A - Distance/speed meter, and distance/speed measuring method - Google Patents

Distance/speed meter, and distance/speed measuring method Download PDF

Info

Publication number
TW200916731A
TW200916731A TW097120253A TW97120253A TW200916731A TW 200916731 A TW200916731 A TW 200916731A TW 097120253 A TW097120253 A TW 097120253A TW 97120253 A TW97120253 A TW 97120253A TW 200916731 A TW200916731 A TW 200916731A
Authority
TW
Taiwan
Prior art keywords
distance
period
speed
candidate
measurement target
Prior art date
Application number
TW097120253A
Other languages
Chinese (zh)
Other versions
TWI366665B (en
Inventor
Tatsuya Ueno
Original Assignee
Yamatake Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamatake Corp filed Critical Yamatake Corp
Publication of TW200916731A publication Critical patent/TW200916731A/en
Application granted granted Critical
Publication of TWI366665B publication Critical patent/TWI366665B/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/36Devices characterised by the use of optical means, e.g. using infrared, visible, or ultraviolet light
    • G01P3/366Devices characterised by the use of optical means, e.g. using infrared, visible, or ultraviolet light by using diffraction of light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/093Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by photoelectric pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/50Systems of measurement based on relative movement of target
    • G01S17/58Velocity or trajectory determination systems; Sense-of-movement determination systems

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

To shorten a measuring time in a distance/speed meter and a distance/speed measuring method. The distance/speed meter has a laser driver 4-1 operating a semiconductor laser 1-1 such that first oscillation periods in which oscillation wavelength increases and second oscillation periods in which oscillation wavelength decreases alternately exist; a laser driver 4-2 operating a semiconductor laser 1-2 to oscillate in an opposite phase to the laser 1-1; photodiodes 2-1, 2-2 converting the optical output of the lasers 1-1, 1-2 into electric signals; counting means 5-1, 5-2, 6-1, 6-2, 7 counting the number of interference waveforms included in the output of the photodiodes 2-1, 2-2 on each of the photodiodes 2-1, 2-2; and an arithmetic device 8 computing a distance to a measuring object and the speed of the measuring object from the minimum oscillation wavelength and maximum oscillation wavelength of the lasers 1-1, 1-2 and the counted result.; The measuring time is shortened in measuring the speed of the measuring object as well as the distance to the measuring object at rest utilizing interference of light.

Description

200916731 i 九、發明說明 【發明所屬之技術領域】 本發明係關於一種利用光的干涉,對於與測定對象的 距離及測定對象的速度進行測量的距離•速度計及距離· 速度測量方法。 【先前技術】 利用因雷射所產生的光的干涉的距離測量因屬於非接 觸測定而不會干擾測定對象,自古以來一直被作爲高精度 的測定方法加以使用。近來,爲了實現裝置的小型化,半 導體雷射係作爲光測量用光源而被加以利用。以其代表例 而言,存在一種採用 FM外差式干涉儀(heterodyne interferometry )者。該者可進行較長距離的測量且精度良 好,但是由於在半導體雷射的外部採用干涉儀,故具有光 學系統較爲複雜的缺點。 I 相對於此,一種利用雷射的輸出光與來自測定對象的 返回光在半導體雷射內部的干涉(自耦合效應)的測量器 已被提出(參照例如非專利文獻1、非專利文獻2、非專 利文獻3 )。根據如上所示之自耦合型的雷射測量器,由 於內建光電二極體的半導體雷射兼具有發光、干涉、受光 的各功能,故可大幅簡化外部干涉光學系統。因此,感測 器部僅爲半導體雷射與透鏡,與習知技術相比較,較爲小 型。另外,具有距離測定範圍大於三角測量法的特徵。 在第40圖中顯示FP型(Fabry-Perot型)半導體雷 200916731 i 射的複合共振器模型。在第40圖中,1 〇 1係半導體雷射’ 1 02係半導體結晶的壁開面,1 03係光電二極體,1 04係測 定對象。來自測定對象1 04的反射光的一部分容易返回到 振盪區域內。返回來的微弱的光與共振器101內的雷射光 耦合,動作變得不穩定而產生噪音(複合共振器雜訊或返 回光雜訊)。即使相對輸出光的相對返回光量極其微小, 因返回光引起的半導體雷射的特性的變化仍顯著呈現。如 上所示的現象並不限於法布里-伯羅(Fabry-Perot )型( 以下稱爲FP型)半導體雷射,在垂直共振腔面射雷射( Vertical Cavity Surface Emitting Laser)型(以下稱爲 VCSEL 型)、分佈反饋雷射(Distributed Feedback Laser )型(以下稱爲DFB雷射型)等其他種類的半導體雷射 中也同樣呈現。 若將雷射的振盪波長設爲λ,由接近測定對象1 0 4的 壁開面1 02到測定對象1 〇4爲止的距離設爲L,則在滿足 以下的共振條件時,返回光和共振器1 0 1內的雷射相互加 強,雷射輸出稍稍增加。 L ~ q λ / 2 ( 1 ) 在式(1 )中,q表示整數。該現象係即便在來自測定 對象1 04的散射光極其微弱的情形下,亦可因半導體雷射 的共振器1 01內的表觀反射率增加,而產生放大作用,而 足以充分觀測。 -5- 200916731 4 在半導體雷射中,由於按照注入電流的大小而放射頻 率不同的雷射光,因此在將振盪頻率進行調變時,不需要 外部調變器,即可藉由注入電流直接進行調變。第4 1圖 係顯示在按照某個恒定的比例使半導體雷射的振盪波長改 變時的振盪波長和光電二極體1 〇 3的輸出波形的關係圖。 在滿足式(1 )所示的L = qX/2時,返回光和共振器1 01 內的雷射光的相位差變成〇 ° (同相位),返回光和共振器 101內的雷射光最爲相互加強,當L = ςλ/2十λ/4時,相位 差爲1 8 0 ° (逆相位),返回光和共振器1 0 1內的雷射光相 互最爲相互減弱。由此,如果使半導體雷射的振盪波長改 變,則雷射輸出增強的情形和減弱的情形交替反覆地出現 ,若利用設置於共振器1 0 1的光電二極體1 〇 3檢測此時的 雷射輸出時,如第4 1圖所示,獲得恒定周期的階梯狀波 形。這樣的波形一般稱爲干涉條紋。 將該階梯狀的波形,亦即干涉條紋中的一個個稱爲模 式跳躍脈衝(mode hop pulse)(以下稱之爲ΜΗΡ)。 MHP是與模式跳躍(mode hopping)現象不同的現象。例 如,在距測定對象1 04的距離爲L1時,如果MHP的數量 爲1〇個,則在一半的距離L2時,MHP的數量爲5個。亦 即,在某一定時間使半導體雷射的振盪波長改變時,MHP 的數量與測定距離成正比地改變。因此,如果利用光電二 極體103檢測MHP,並測定MHP的頻率,則可容易進行 距離測量。 在自耦合型的雷射測量器中,由於可大幅度地簡化共 -6 - 200916731 % 振器外部的干涉光學系統,故具有可使裝置小型化, 不需要高速的電路’抗擾亂光強的優點。另外,由於 測定對象的返回光也可極其微弱,故具有不影響測定 的反射率’亦即不選擇測定對象的優點。但是,在包 耦合型在內的習知的干涉型測量器中,存在的問題在 使可測量與靜止的測定對象的距離,也無法測量具有 的測定對象的距離。 因此’發明人提出一種距離•速度計(參照專利 1 ) ’其不僅可以測量與靜止的測定對象的距離,而 以測量測定對象的速度。第42圖表示該距離.速度 構成。第42圖的距離•速度計係具有··對測定對象 雷射的半導體雷射201 ;將半導體雷射2〇1的光輸出 成電β喊的光電_•極體202,透鏡203,將來自半導 射2 01的光聚光而照射在測定對象2 1 0,並且將來自 對象210的返回光聚光而使其入射至半導體雷射201 ,射驅動器2 0 4,使半導體雷射2 0 1父替反覆振邊波長 地增加的第1振盪期間和振盪波長連續地減少的第2 期間;電流-電壓轉換放大器205,將光電二極體202 出電流轉換成電壓並進行放大;訊號抽出電路206, 流-電壓轉換放大器2 0 5的輸出電壓進行2次微分; 電路207,對訊號抽出電路206的輸出電壓所包含的 的數量進行計數;運算裝置208,計算與測定對象2 1 距離及測定對象2 1 0的速度;以及顯示裝置209,顯 算裝置208的計算結果。 並且 來自 對象 括自 於即 速度 文獻 且可 計的 放射 轉換 體雷 測定 :雷 連續 振盪 的輸 對電 計數 ΜΗΡ 0的 示運 200916731 雷射驅動器2 04將關於時間以恒定的變化率反覆增減 的三角波驅動電流作爲注入電流而供給至半導體雷射20 1 。由此,半導體雷射2 0 1係以使振盪波長以恒定的變化率 連續地增加的第1振盪期間和振盪波長以恒定的變化率連 續地減少的第2振盪期間交替反覆的方式被驅動。第4 3 圖係顯示半導體雷射20 1的振盪波長的時間變化圖。在第 43圖中,P1表示第1振盪期間,P2表示第2振盪期間’ λα表示各期間的振盪波長的最小値,kb表示各期間的振 盪波長的最大値,Τ表示三角波的周期。 從半導體雷射201射出的雷射光係藉由透鏡203予以 聚光,且射入測定對象2 1 0。由測定對象2 1 0反射的光係 藉由透鏡20 3予以聚光,且射入半導體雷射201。光電二 極體202係將半導體雷射201的光輸出轉換成電流。電 流-電壓轉換放大器205係將光電二極體202的輸出電流 轉換成電壓進行放大,訊號抽出電路206係對電流-電壓 轉換放大器205的輸出電壓進行2次微分。計數電路207 係針對第1振盪期間Ρ1和第2振盪期間Ρ2的各期間,對 訊號抽出電路206的輸出電壓所包含的ΜΗΡ的數量進行 計數。運算裝置208係根據半導體雷射1的最小振盪波長 、最大振盪波長λΙ> '第1振盪期間Ρ1中的ΜΗΡ的數量 、及第2振盪期間Ρ 2中的Μ Η Ρ的數量,計算與測定對象 2 1 0的距離及測定對象2 1 0的速度。 (專利文獻1 )日本特開2 0 0 6 - 3 1 3 0 8 0號公報 (非專利文獻1 )上田正、山田諄、紫藤進,“利用 200916731 半導體雷射的自耦合效應的距離計” ,1 994年度電氣關係 學會東海支部聯合大會演講論文集,1994年 (非專利文獻2 )山田諄、紫藤進、津田紀生、上田 正’ “利用半導體雷射的自耦合效應的小型距離計的相關 硏究”,愛知工業大學硏究報告,第3 1號B,p.35至42 ,1996 年BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a distance, a speedometer, and a distance/speed measuring method for measuring a distance from a measuring object and a speed of a measuring object by interference of light. [Prior Art] The distance measurement using the interference of the light generated by the laser does not interfere with the measurement target because it is a non-contact measurement, and has been used as a highly accurate measurement method since ancient times. Recently, in order to achieve miniaturization of a device, a semiconductor laser system is utilized as a light source for light measurement. In its representative case, there is a person who uses a heterodyne interferometry. This person can measure long distances with good accuracy, but because of the use of an interferometer outside the semiconductor laser, it has the disadvantage of being complicated by the optical system. In contrast, a measuring device that uses the laser output light and the return light from the measuring object to interfere with the inside of the semiconductor laser (self-coupling effect) has been proposed (see, for example, Non-Patent Document 1, Non-Patent Document 2) Non-patent document 3). According to the self-coupling type laser measuring device as described above, since the semiconductor laser of the built-in photodiode has functions of light emission, interference, and light receiving, the external interference optical system can be greatly simplified. Therefore, the sensor portion is only a semiconductor laser and a lens, and is relatively small compared with the conventional technology. In addition, it has the feature that the distance measurement range is larger than the triangulation method. In Fig. 40, a composite resonator model of the FP type (Fabry-Perot type) semiconductor mine 200916731 is shown. In Fig. 40, a 1 〇 1 type semiconductor laser '1 02 type semiconductor crystal wall opening surface, a 1300 series photodiode, and a 10 system measuring object. A part of the reflected light from the measurement object 104 is easily returned to the oscillation area. The weak light returned is coupled with the laser light in the resonator 101, and the operation becomes unstable to generate noise (composite resonator noise or return light noise). Even if the amount of relative return light relative to the output light is extremely small, the change in the characteristics of the semiconductor laser due to the return light is remarkably exhibited. The phenomenon shown above is not limited to the Fabry-Perot type (hereinafter referred to as FP type) semiconductor laser, and is a vertical cavity cavity type laser (Vertical Cavity Surface Emitting Laser type) (hereinafter referred to as The same is true for other types of semiconductor lasers, such as the VCSEL type) and the Distributed Feedback Laser type (hereinafter referred to as DFB laser type). When the oscillation wavelength of the laser is λ and the distance from the wall opening surface 102 of the measurement target 104 to the measurement target 1 〇4 is L, the return light and resonance are satisfied when the following resonance conditions are satisfied. The lasers in the device 1 0 1 are mutually enhanced and the laser output is slightly increased. L ~ q λ / 2 ( 1 ) In the formula (1), q represents an integer. In this case, even when the scattered light from the measuring object 104 is extremely weak, the apparent reflectance in the resonator 11 of the semiconductor laser can be increased to cause amplification, which is sufficient for sufficient observation. -5- 200916731 4 In semiconductor lasers, since laser light of different frequencies is radiated according to the magnitude of the injected current, when the oscillation frequency is modulated, an external modulator is not required, and the injection current can be directly performed. Modulation. Fig. 4 is a graph showing the relationship between the oscillation wavelength and the output waveform of the photodiode 1 〇 3 when the oscillation wavelength of the semiconductor laser is changed at a constant ratio. When L = qX/2 represented by the formula (1) is satisfied, the phase difference between the return light and the laser light in the resonator 101 becomes 〇° (in-phase), and the return light and the laser light in the resonator 101 are the most Mutual reinforcement, when L = ςλ/2 λλ/4, the phase difference is 1 800 ° (reverse phase), and the return light and the laser light in the resonator 1 0 1 mutually weaken each other most. Therefore, if the oscillation wavelength of the semiconductor laser is changed, the case where the laser output is enhanced and the case where the laser is amplified alternately appear repeatedly, if the photodiode 1 〇 3 provided in the resonator 1 0 1 is detected at this time. When the laser output is output, as shown in Fig. 41, a stepped waveform of a constant period is obtained. Such waveforms are generally referred to as interference fringes. One of the staircase waveforms, i.e., the interference fringes, is referred to as a mode hop pulse (hereinafter referred to as ΜΗΡ). MHP is a phenomenon different from the mode hopping phenomenon. For example, when the distance from the measurement object 104 is L1, if the number of MHPs is one, the number of MHPs is five at half the distance L2. That is, when the oscillation wavelength of the semiconductor laser is changed for a certain period of time, the number of MHPs changes in proportion to the measured distance. Therefore, if the MHP is detected by the photodiode 103 and the frequency of the MHP is measured, the distance measurement can be easily performed. In the self-coupling type of laser measuring instrument, since the interference optical system outside the -6 - 200916731% oscilloscope can be greatly simplified, the device can be miniaturized, and a high-speed circuit is not required to disturb the light intensity. advantage. Further, since the return light of the measurement target can be extremely weak, there is an advantage that the reflectance of the measurement is not affected, i.e., the measurement target is not selected. However, in the conventional interferometric measuring instrument including the package coupling type, there is a problem in that the distance between the measurable and the stationary measurement target is not measured, and the distance to the measurement target cannot be measured. Therefore, the inventors have proposed a distance/speedometer (refer to Patent 1) which can measure not only the distance from a stationary measurement target but also the speed of the measurement target. Figure 42 shows the distance and velocity. The distance/speed meter of Fig. 42 has a semiconductor laser 201 that emits a laser for the measurement target; the light of the semiconductor laser 2〇1 is output as an electro-optical body 202 of the electric yoke, and the lens 203 will come from The light of the semi-conductive 203 is condensed to be irradiated on the measurement object 210, and the return light from the object 210 is condensed to be incident on the semiconductor laser 201, and the radiation driver 2 0 4 is made to make the semiconductor laser 2 0 a second period in which the first oscillation period and the oscillation wavelength are increased continuously for the repeated vibrational wavelength; the current-voltage conversion amplifier 205 converts the output current of the photodiode 202 into a voltage and amplifies; the signal extraction circuit 206, the output voltage of the current-voltage conversion amplifier 205 is differentiated twice; the circuit 207 counts the number of output voltages of the signal extraction circuit 206; and the arithmetic device 208 calculates the distance from the measurement object 2 1 and determines The speed of the object 2 10 0; and the display device 209, the calculation result of the display device 208. And from the object of the speed literature and the possible calculation of the radiation conversion body: the continuous transmission of the lightning oscillating power ΜΗΡ 0 of the display 200916731 laser driver 2 04 will increase or decrease with time according to a constant rate of change The triangular wave drive current is supplied to the semiconductor laser 20 1 as an injection current. Thereby, the semiconductor laser 201 is driven such that the first oscillation period in which the oscillation wavelength continuously increases at a constant rate of change and the second oscillation period in which the oscillation wavelength continuously decreases at a constant rate of change are alternately repeated. The fourth graph shows a time-varying diagram of the oscillation wavelength of the semiconductor laser 20 1 . In Fig. 43, P1 indicates the first oscillation period, P2 indicates the second oscillation period λα indicates the minimum 値 of the oscillation wavelength in each period, kb indicates the maximum 値 of the oscillation wavelength in each period, and Τ indicates the period of the triangular wave. The laser light emitted from the semiconductor laser 201 is condensed by the lens 203 and incident on the measurement object 210. The light reflected by the measuring object 210 is condensed by the lens 203 and incident on the semiconductor laser 201. Photodiode 202 converts the light output of semiconductor laser 201 into a current. The current-voltage conversion amplifier 205 converts the output current of the photodiode 202 into a voltage for amplification, and the signal extraction circuit 206 differentiates the output voltage of the current-voltage conversion amplifier 205 twice. The counting circuit 207 counts the number of turns included in the output voltage of the signal extracting circuit 206 for each period of the first oscillation period Ρ1 and the second oscillation period Ρ2. The arithmetic unit 208 calculates and measures the number of ΜΗΡ in the first oscillation period Ρ1 and the number of Μ 中 in the second oscillation period Ρ 2 based on the minimum oscillation wavelength of the semiconductor laser 1, the maximum oscillation wavelength λΙ> The distance between 2 1 0 and the speed of the measurement object 2 10 . (Patent Document 1) Japanese Patent Publication No. 2 0 0 6 - 3 1 3 0 8 0 (Non-Patent Document 1) Ueda Masahiro, Yamada Aya, and Wisteria, "Distance Meter Using Self-Coupling Effect of 200916731 Semiconductor Laser" , 1994, 1994 (Non-patent Document 2) Yamada Satoshi, Wisteria Jin, Tsuda Kisho, Ueda Masa, "Relationship of small distance meters using the self-coupling effect of semiconductor lasers Research, Aichi University of Technology Research Report, No. 31, B, p.35 to 42, 1996

(非專利文獻 3) Guido Giuliani,Michele Norgia, Silvano D ο n at i and Thierry Bosch, Laser diode s e Ifni i x i n g technique for sensing applications " ,JOURNAL OF OPTICS A : PURE AND APPLIED OPITCS,p.283 至 294 , 2002 年 【發明內容】 (發明所欲解決之課題) 根據在專利文獻1所揭示的距離•速度計’可以同時 測量與測定對象的距離和測定對象的速度。但是’在該距 離•速度計中,爲了測定距離及速度’需要例如在第1振 盪期間t-1、第2振盪期間t及第1振盪期間t + 1之至少 3次,對Μ Η P的數量進行計數,存在測定所需時間較長的 問題。 本發明係爲了解決上述課題而硏發者’其目的在於在 一種利用光的干涉,不僅可測量與靜止的測定對象的距離 ,亦可對測定對象的速度進行測量的距離•速度計及距離 •速度測量方法中縮短測定時間。 -9- 200916731 (解決課題之手段) 本發明之距離•速度計係具有:第1半導體雷射,對 測定對象放射第1雷射光;第2半導體雷射,以與前述第 1雷射光平行的方式對前述測定對象放射第2雷射光;第 1雷射驅動器,以至少振盪波長連續地單調增加的振盪期 間反覆存在的方式使前述第1半導體雷射進行動作;第2 雷射驅動器,以振盪波長的增減與前述第1半導體雷射相 反的方式使前述第2半導體雷射進行動作;第1受光器, 將前述第1雷射光與該雷射光之來自前述測定對象的返回 光轉換成電訊號;第2受光器,將前述第2雷射光與該雷 射光之來自前述測定對象的返回光轉換成電訊號;計數手 段,針對前述第1、第2受光器的輸出訊號的各個,對前 述第1、第2受光器的輸出訊號所包含之由前述第1、第2 雷射光及其返回光所産生的干涉波形的數量進行計數;以 及運算手段,根據前述第1、第2半導體雷射的最小振盪 波長及最大振盪波長與前述計數手段的計數結果’計算與 前述測定對象的距離及前述測定對象的速度的至少一者。 此外,本發明之距離•速度計係具有:第1半導體雷 射,對測定對象放射第1雷射光;第2半導體雷射,以與 前述第1雷射光平行的方式對前述測定對象放射第2雷射 光;第1雷射驅動器,以至少振盪波長連續地單調增加的 振盪期間反覆存在的方式使前述第1半導體雷射進行動作 :第2雷射驅動器,以振盪波長的增減與前述第1半導體 -10- 200916731 雷射相反的方式使前述第2半導體雷射進行動作;第1 光器,將前述第1半導體雷射的光輸出轉換成電訊號; 2受光器,將前述第2半導體雷射的光輸出轉換成電訊 :計數手段,針對前述第1、第2受光器的輸出訊號的 個,對前述第1、第2受光器的輸出訊號所包含之藉由 述第1、第2雷射光及其返回光的自耦合效應所産生的 涉波形的數量進行計數;以及運算手段,根據前述第1 第2半導體雷射的最小振盪波長及最大振盪波長與前述 數手段的計數結果,計算與前述測定對象的距離及前述 定對象的速度的至少一者。 此外,在本發明之距離·速度計之一構成例中,前 計數手段係由在短於前述振盪期間的第1計數期間中, 出與前述第I、第2半導體雷射中振盪波長正在增加的 導體雷射相對應的受光器的輸出訊號所包含的干涉波形 數量,同時在與前述第1計數期間相同時刻的第2計數 間中,求出與前述第1、第2半導體雷射中振盪波長正 減少的半導體雷射相對應的受光器的輸出訊號所包含的 涉波形的數量的手段所構成,前述運算手段係包括:距 •速度計算手段,根據前述第1、第2半導體雷射的最 振盪波長與最大振盪波長與前述計數手段的計數結果, 算與前述測定對象的距離的候補値和前述測定對象的速 的候補値;狀態判定手段,根據由該距離•速度計算手 所計算出的速度的候補値,判定前述測定對象的狀態; 及距離•速度確定手段,根據該狀態判定手段的判定結 受 第 號 各 前 干 、 計 測 述 求 半 的 期 在 干 離 小 計 度 段 以 果 -11 - 200916731 ,確定與前述測定對象的距離及前述測定對象的速度的至 少一者。 此外,在本發明之距離·速度計之一構成例中’前述 距離•速度計算手段係針對假定前述測定對象處於微小位 移狀態的情形,根據第1計數期間的計數結果和1次後的 第2計數期間的計數結果’計算速度的第1候補値和距離 的第1候補値,並且根據與已計算出該等第1候補値的第 1計數期間相同時刻的第2計數期間的計數結果和與已計 算出前述第1候補値的第2計數期間相同時刻的第1計數 期間的計數結果,計算速度的第2候補値和距離的第2候 補値,針對假定前述測定對象處於變動比前述微小位移狀 態快的位移狀態的情形,根據第1計數期間的計數結果和 1次後的第2計數期間的計數結果,計算速度的第3候補 値和距離的第3候補値,並且根據與已計算出該等第3候 補値的第1計數期間相同時刻的第2計數期間的計數結果 和與已計算出前述第3候補値的第2計數期間相同時刻的 第1計數期間的計數結果,計算速度的第4候補値和距離 的第4候補値,前述狀態判定手段係在前述速度的第1候 補値與第2候補値大致相等的情形下,判定前述測定對象 處於微小位移狀態,在前述速度的第3候補値和第4候補 値大致相等的情形下,判定前述測定對象處於位移狀態。 此外,在本發明之距離·速度計之一構成例中,前述 距離•速度確定手段係在判定出前述測定對象處於微小位 移狀態的情形下,將前述速度的第1候補値和第2候補値 -12- 200916731 的任一者設爲前述測定對象的速度,將前述距離的第1候 補値和第2候補値的任一者設爲與前述測定對象的距離, 在判定出前述測定對象處於位移狀態的情形下,將前述速 度的第3候補値和第4候補値的任一者設爲前述測定對象 的速度’將前述距離的第3候補値和第4候補値的任一者 設爲與前述測定對象的距離。 此外’在本發明之距離·速度計之一構成例中,前述 距離•速度確定手段係在判定出前述測定對象處於微小位 移狀態的情形下,將前述速度的第1候補値和第2候補値 的平均値設爲前述測定對象的速度,將前述距離的第1候 補値與第2候補値的平均値設爲與前述測定對象的距離, 在判定出前述測定對象處於位移狀態的情形下,將前述速 度的第3候補値與第4候補値的平均値設爲前述測定對象 的速度’將前述距離的第3候補値與第4候補値的平均値 設爲與前述測定對象的距離。 此外’在本發明之距離.速度計之一構成例中,前述 距離•速度確定手段係進行比較ΣΧ與ΣΥ,其中該ΣΧ爲 計算出前述速度的第i候補値的第丨計數期間的計數結果 和計算出前述速度的第2候補値的第1計數期間的計數結 果之和’該ΣΥ爲計算出前述速度的第1候補値的第2計 數期間的計數結果和計算出前述速度的第2候補値的第2 計數期間的計數結果之和,在前述ΣΧ比前述ΣΥ大的情 形下,係判定前述測定對象正接近,在前述ΣΥ比前述ΣΧ 大的情形下,則係判定前述測定對象正遠離。 -13- 200916731 此外,在本發明之距離·速度計之一構成例中,前述 運算手段係另外具備有履歷位移計算手段,其針對假定前 述測定對象處於微小位移狀態的情形和假定前述測定對象 處於位移狀態的情形的各情形,計算出爲由前述距離•速 度計算手段所計算出的距離的候補値和前次所計算出的距 離的候補値之差的履歷位移,前述狀態判定手段係在根據 前述速度的候補値無法判定前述測定對象的狀態的情形下 ,根據前述履歷位移計算手段的計算結果,判定前述測定 對象的狀態。 此外,在本發明之距離.速度計之一構成例中’前述 計數手段係包括:計數器,針對前述第1、第2受光器的 輸出訊號的各個,對前述第1、第2受光器的輸出訊號所 包含的前述干涉波形的數量進行計數;周期測定手段’針 對前述第1、第2受光器的輸出訊號的各個,在每次輸入 前述干涉波形時,即測定對前述千涉波形的數量進行計數 ί 的計數期間中的前述千涉波形的周期;頻率分佈作成手段 ,針對前述第1、第2受光器的輸出訊號的各個’根據該 周期測定手段的測定結果,作成前述計數期間中的干涉波 形的周期的頻率分佈;中位數計算手段’針對前述第1、 第2受光器的輸出訊號的各個,根據前述頻率分佈’計算 前述干涉波形的周期的中位數;補正値計算手段’根據前 述頻率分佈,求出爲前述中位數之第1預定倍數以下之等 級的頻率總和N s、和爲前述中位數的第2預定倍數以上 之等級的頻率總和Nw ’針對前述第1、第2受光器的輸 -14- 200916731 出訊號的各個,根據該等頻率Ns和NW ’補正前述計數 的計數結果;周期和計算手段,針對前述第1、第2受 器的輸出訊號的各個,根據前述周期測疋手段的測疋結 ,計算前述干涉波形的周期的總和;以及個數計算手段 針對前述第1、第2受光器的輸出訊號的各個,根據由 述補正値計算手段所補正的計數結果和由前述周期和計 手段所計算出的周期的總和,計算每單位時間的前述干 波形的數量。 此外,在本發明之距離·速度計之一構成例中,前 計數手段係包括:周期測定手段,針對前述第1、第2 光器的輸出訊號的各個,在每次輸入前述干涉波形時, 測定前述第1、第2受光器的輸出訊號所包含的一定個 的前述干涉波形的周期;頻率分佈作成手段,針對前述 1、第2受光器的輸出訊號的各個,根據該周期測定手 的測定結果,作成前述干涉波形的周期的頻率分佈;中 數計算手段,針對前述第1、第2受光器的輸出訊號的 個,根據前述頻率分佈,計算前述干涉波形的周期的中 數;補正値計算手段,根據前述頻率分佈,求出爲前述 位數之第1預定倍數以下之等級的頻率總和Ns、和爲 述中位數之第2預定倍數以上之等級的頻率總和Nw, 對前述第1、第2受光器的輸出訊號的各個,根據該等 率Ns和Nw,補正前述一定個數;周期和計算手段,針 前述第1、第2受光器的輸出訊號的各個,根據前述周 測定手段的測定結果,計算前述干涉波形的周期的總和 器 光 果 > .Λ 刖 算 涉 述 受 即 數 第 段 位 各 位 中 刖 針 頻 對 期 -15- 200916731 以及個數計算手段’針對前述第1、第2受光器的輸出訊 號的各個,根據由前述補正値計算手段所補正的干涉波形 的數量和由前述周期和計算手段所計算出的周期的總和, 計算每單位時間的前述干涉波形的數量。 此外,在本發明之距離·速度計之一構成例中,前述 補正値計算手段係當將前述計數器的計數結果或前述一定 個數設爲N時,藉由N’=N + Nw-Ns,求出補正後的値N,。 此外,在本發明之距離·速度計之一構成例中,前述 第1預定數爲0.5,前述第2預定數爲1.5。 此外,在本發明之距離·速度計之一構成例中,前述 周期測定手段係在比前述振盪期間短的第1計數期間中, 求出與前述第1、第2半導體雷射中振盪波長正在增加的 半導體雷射相對應的受光器的輸出訊號所包含的干涉波形 的周期,同時在與前述第1計數期間相同時刻的第2計數 期間中,求出與前述第1、第2半導體雷射中振盪波長正 在減少的半導體雷射相對應的受光器的輸出訊號所包含的 干涉波形的周期。 此外’在本發明之距離·速度計之一構成例中,另外 具有振幅調整手段,其以在假定前述測定對象處於微小位 移狀態時的速度的候補値和假定前述測定對象處於位移狀 態時的速度的候補値中,根據前述狀態判定手段的判定結 果’前述距離•速度確定手段判斷非爲真値而未採用的速 度的候補値’與前述距離•速度確定手段判斷爲真値而採 用的距離的候補値乘以前述第1、第2半導體雷射的波長 -16- 200916731 變化率所得的値大致相等的方式,調整由前述第1、第2 雷射驅動器被供給至前述第1、第2半導體雷射之驅動電 流中至少一者的振幅。 此外’在本發明之距離.速度計之一構成例中,另外 具有振幅調整手段,其以在假定前述測定對象處於微小位 移狀態時的速度的候補値和假定前述測定對象處於位移狀 態時的速度的候補値中’根據前述狀態判定手段的判定結 果,前述距離·速度確定手段判斷爲真値而採用的速度的 候補値,在前述第1、第2半導體雷射的波長變化進行切 換的時序前後保持連續性的方式,調整由前述第1、第2 雷射驅動器被供給至前述第1、第2半導體雷射之驅動電 流中至少一者的振幅。 此外’在本發明之距離.速度計之一構成例中,另外 具有振幅調整手段,其以在假定前述測定對象處於微小位 移狀態時的距離的候補値和假定前述測定對象處於位移狀 態時的距離的候補値中,根據前述狀態判定手段的判定結 果,前述距離·速度確定手段判斷爲真値而採用的距離的 候補値,在前述第1、第2半導體雷射的波長變化進行切 換的時序前後保持連續性的方式,調整由前述第1、第2 雷射驅動器被供給至前述第1、第2半導體雷射之驅動電 流中至少一者的振幅。 此外,本發明之距離·速度測量方法係具備有:第1 振盪步驟,以至少振盪波長連續地單調增加的振盪期間反 覆存在的方式使第1半導體雷射進行動作;第2振盪步驟 -17- 200916731 ,以振盪波長的增減與前述第1半導體雷射相反的方式使 第2半導體雷射進行動作;計數步驟’對於將由前述第1 半導體雷射所放射的第1雷射光與該雷射光之來自前述測 定對象的返回光轉換成電訊號的第1受光器的輸出訊號所 包含的因前述第1雷射光和其返回光所產生的干涉波形的 數量進行計數,同時對於將由前述第2半導體雷射所放射 的第2雷射光與該雷射光之來自前述測定對象的返回光轉 換成電訊號的第2受光器的輸出訊號所包含的因前述第2 雷射光和其返回光所產生的千涉波形的數量進行計數;以 及運算步驟,根據前述第1、第2半導體雷射的最小振盪 波長及最大振盪波長與前述計數步驟的計數結果’計算與 前述測定對象的距離及前述測定對象的速度的至少一者。 此外,本發明之距離.速度測量方法係具備有:第1 振盪步驟,以至少振盪波長連續地單調增加的振盪期間反 覆存在的方式使第1半導體雷射進行動作;第2振盪步驟 ,以振盪波長的增減與前述第1半導體雷射相反的方式使 第2半導體雷射進行動作;計數步驟’對於將前述第1半 導體雷射的光輸出轉換成電訊號的第1受光器的輸出訊號 所包含之因由前述第1半導體雷射所放射的第1雷射光和 該雷射光之來自前述測定對象的返回光的自親合效應所産 生的千涉波形的數量進行計數’並目.對於將則述第2半導 體雷射的光輸出轉換成電訊號的第2受光器的輸出訊號所 包含之因由前述第2半導體雷射所放射的第2雷射光和該 雷射光之來自前述測定對象的返回光的自稱合效應所産生 -18- 200916731 的干涉波形的數量進行計數;以及運算步驟,根據前述第 1、第2半導體雷射的最小振盪波長及最大振盪波長與前 述計數步驟的計數結果,計算與前述測定對象的距離及前 述測定對象的速度的至少一者。 (發明之效果) 由於干涉型的距離計在測定距離時,以測定對象處於 靜止爲絕對條件,故無法測定與具有速度的測定對象的距 離。相對於此,在本發明中,連與並非處於靜止的測定對 象的距離亦可測定。亦即,藉由本發明,可同時對測定對 象的速度(大小、方向)和距離進行測定。此外,在本發 明中,由振盪波長的增減成相反的第1、第2半導體雷射 ,對測定對象同時放射彼此平行的雷射光,針對第1、第 2受光器的輸出訊號的各個,對在第1、第2受光器的輸 出訊號所包含的干涉波形的數量進行計數,藉此可以比以 往更短的時間測定距離和速度。 此外,在本發明中,在根據速度的候補値無法判定測 定對象的狀態的情形下,藉由使用履歷位移計算手段的計 算結果,即可判定測定對象的狀態,並計算與測定對象的 距離及測定對象的速度。 此外,在本發明中,測定計數期間中的干涉波形的周 期,根據該測定結果,作成計數期間中的干涉波形的周期 的頻率分佈,根據頻率分佈,計算干涉波形的周期的中位 數,根據頻率分佈,求出爲中位數的第1預定倍數以下的 -19- 200916731 等級的頻率總和N s、和爲中位數的第2預定倍數以上的 等級的頻率總和Nw,根據該等頻率Ns和Nw,補正計數 手段的計數結果,藉此可免除計數時的缺漏和過剩計數的 影響,而可補正干涉波形的計數誤差,因此可提升距離及 速度的測定精度。 此外,在本發明中,取代以計數手段對干涉波形的數 量進行計數,而對第1、第2受光器的輸出訊號所包含的 一定個數的干涉波形的周期進行測定,根據該測定結果, 作成干涉波形的周期的頻率分佈,根據頻率分佈,計算干 涉波形的周期的中位數,根據頻率分佈,求出爲中位數的 第1預定倍數以下的等級的頻率總和Ns、和爲中位數的 第2預定倍數以上的等級的頻率總和Nw,根據該等頻率 Ns和Nw,補正干涉波形的一定個數,藉此可減低每單位 時間的干涉波形的數量的測定誤差,而可更進一步提升距 離及速度的測定精度。 此外,在本發明中,係以在假定前述測定對象處於微 小位移狀態時的速度的候補値和假定測定對象處於位移狀 態時的速度的候補値中,根據狀態判定手段的判定結果, 距離•速度確定手段判斷非爲真値而未採用的速度的候補 値,與距離•速度確定手段判斷爲真値而採用的距離的候 補値乘以第1、第2半導體雷射的波長變化率所得的値大 致相等的方式,調整由第1、第2雷射驅動器被供給至第 1、第2肀導體雷射之驅動電流中至少一者的振幅,藉此 可使第1、第2半導體雷射的波長變化量的絕對値相等, -20- 200916731 % 而可提升距離和速度的測定精度。 此外,在本發明中,以在假定測定對象處於微小位移 狀態時的速度或距離的候補値和假定測定對象處於位移狀 態時的速度或距離的候補値中,根據狀態判定手段的判定 結果,距離•速度確定手段判斷爲真値而採用的速度或距 離的候補値,在第1、第2半導體雷射的波長變化進行切 換的時序前後保持連續性的方式,調整由第1、第2雷射 驅動器被供給至第1、第2半導體雷射之驅動電流中至少 一者的振幅,藉此可使第1、第2半導體雷射的波長變化 量的絕對値相等,而可提升距離及速度的測定精度。 【實施方式】 (第1實施形態) 本發明係一種根據在採用波長調變的感測(sensing ) 時射出的波與由對象物反射的波的干涉訊號,來測量距離 的手法。因此,亦可適用於自耦合型以外的光學式干涉計 、光以外的干涉計。若針對採用半導體雷射的自耦合的情 形更加具體說明,當一面由半導體雷射對測定對象照射雷 射光,一面使雷射的振盪波長改變時,在振盪波長從最小 振盪波長變化爲最大振盪波長的期間(或從最大振盪波長 至最小振盪波長變化的期間)中之測定對象的位移係反映 在MHP的數量。因此,可藉由調查使振盪波長改變時的 MHP的數量,來檢測測定對象的狀態。以上爲干涉計的基 本原理。 -21 - 200916731 以下參照圖示,對本發明的第1實施形態詳加說 第1圖係顯示本發明第1實施形態的距離•速度計的 的方塊圖。第1圖的距離計係具有:對測定對象1 1 雷射光的第1、第2半導體雷射1 -1、1 -2 ;作爲分別 導體雷射1-1、1-2的光輸出轉換成電訊號之第1、第 光器的光電二極體2-1、2-2;分別將來自半導體雷射 、:I -2的光聚光而照射在測定對象1 1,並且將來自測 象11的返回光聚光而使其射入半導體雷射1-1、1-2 鏡 3-1、3-2 ;使半導體雷射1-1、1-2交替地反覆產 盪波長連續地增加的第1振盪期間和振盪波長連續地 的第2振盪期間的第1、第2雷射驅動器4-1、4-2 ; 將光電二極體2-1、2-2的輸出電流轉換成電壓並進行 的電流-電壓轉換放大器5 - 1、5 - 2 ;由電流-電壓轉換 器5-1、5-2的輸出電壓去除載波的濾波器電路6-1 ;對濾波器電路6·1、6-2的輸出電壓所包含的MHP 量進行計數的計數裝置7 ;計算與測定對象1 1的距離 定對象11的速度的運算裝置8;顯示運算裝置8的計 果的顯示裝置9 ;以及以使半導體雷射1 -1、1 -2的驅 流的振幅變得適當的方式控制雷射驅動器4-1、4-2的 調整裝置。電流-電壓轉換放大器5-1、5-2、濾波 路6 -1、6 - 2、及計數裝置7係構成計數手段。 以下爲了容易說明,假定在半導體雷射1採用不 模式跳躍(m 0 d e h 0 p P 1 n g )現象的類型(V C S E L型、 雷射型)。(Non-Patent Document 3) Guido Giuliani, Michele Norgia, Silvano D ο n at i and Thierry Bosch, Laser diode se Ifni ixing technique for sensing applications " , JOURNAL OF OPTICS A : PURE AND APPLIED OPITCS, p. 283 to 294, [Explanation of the Invention] (Problems to be Solved by the Invention) According to the distance/speedometer disclosed in Patent Document 1, the distance to the measurement target and the speed of the measurement target can be simultaneously measured. However, in the distance/speedometer, it is necessary to measure the distance and the speed, for example, at least three times in the first oscillation period t-1, the second oscillation period t, and the first oscillation period t+1, for the ΜP The number is counted, and there is a problem that the measurement takes a long time. The present invention has been made in order to solve the above problems. The purpose of the present invention is to reduce the distance to a stationary measurement target by using interference of light, and to measure the speed of the measurement target, the distance meter, and the distance. The measurement time is shortened in the speed measurement method. -9- 200916731 (Means for Solving the Problem) The distance/speed meter of the present invention includes: a first semiconductor laser that radiates first laser light to a measurement target; and a second semiconductor laser that is parallel to the first laser light The second laser beam is radiated to the measurement target; the first laser driver operates the first semiconductor laser so that the oscillation period in which the oscillation wavelength continuously monotonously increases is repeated; and the second laser driver oscillates The second semiconductor laser is operated in such a manner that the increase and decrease of the wavelength is opposite to the first semiconductor laser. The first light receiver converts the first laser light and the return light from the measurement target into the telecommunication. a second light receiver that converts the second laser beam and the return light from the measurement target into the electric signal; and the counting means for each of the output signals of the first and second photodetectors Counting the number of interference waveforms generated by the first and second laser beams and their returning light included in the output signals of the first and second photodetectors; and calculating means At least one of the distance between the measurement target and the speed of the measurement target is calculated based on the minimum oscillation wavelength of the first and second semiconductor lasers and the maximum oscillation wavelength and the counting result of the counting means. Further, the distance/speed meter of the present invention includes: a first semiconductor laser that radiates first laser light to a measurement target; and a second semiconductor laser that emits a second radiation target to the measurement target in parallel with the first laser light. Laser light; the first laser driver operates the first semiconductor laser so that the oscillation period continuously increasing monotonously at least at least the oscillation wavelength is performed: the second laser driver increases or decreases the oscillation wavelength and the first laser Semiconductor-10-200916731 The opposite method of laser strikes the second semiconductor laser; the first optical device converts the light output of the first semiconductor laser into an electrical signal; and the second optical device, the second semiconductor lightning The light output of the shot is converted into a telecommunication: the counting means for the output signals of the first and second photodetectors, and the first and second thunder included in the output signals of the first and second photodetectors Counting the number of waveforms generated by the self-coupling effect of the light and the returning light; and calculating means, according to the minimum oscillation wavelength and the maximum oscillation wavelength of the first and second semiconductor lasers, The result of counting by the number means calculates at least one of the distance from the measurement target and the speed of the predetermined object. Further, in the configuration example of the distance/speed meter of the present invention, the pre-counting means increases the oscillation wavelength in the first and second semiconductor lasers in the first counting period shorter than the oscillation period. The number of interference waveforms included in the output signal of the photodetector corresponding to the conductor laser, and the oscillation between the first and second semiconductor lasers in the second count at the same time as the first counting period The means for calculating the number of waveforms included in the output signal of the photoreceiver corresponding to the semiconductor laser having a decreasing wavelength, the calculation means comprising: distance calculation means, according to the first and second semiconductor lasers The most oscillating wavelength and the maximum oscillating wavelength and the counting result of the counting means, the candidate 値 of the distance to the measurement target and the candidate 速 of the measurement target; the state determination means is calculated based on the distance/speed calculation hand The candidate for the speed 判定 determines the state of the measurement target; and the distance/speed determination means is determined based on the determination of the state determination means The number of the first pre-drying and the half-measurement period is determined to be at least one of the distance from the measurement target and the speed of the measurement target in the dry-segmentation section -11 - 200916731. In the configuration example of the distance/speedometer of the present invention, the distance/speed calculation means is based on the result of the counting of the first counting period and the second time after the first measurement. The count result in the count period 'the first candidate 计算 of the calculation speed and the first candidate 距离 of the distance, and the count result and the second count period at the same time as the first count period in which the first candidate 已 has been calculated The count result of the first count period at the same time in the second count period of the first candidate , is calculated, and the second candidate 速度 of the speed and the second candidate 距离 of the distance are calculated, and it is assumed that the measurement target is in the variation ratio of the minute displacement In the case of the state in which the state is fast, the third candidate 速度 of the speed and the third candidate 距离 of the distance are calculated based on the counting result in the first counting period and the counting result in the second counting period after one time, and are calculated based on The count result of the second count period at the same time in the first count period of the third candidate, and the second count period in which the third candidate 已 has been calculated When the first candidate period of the time is counted, the fourth candidate 速度 of the speed and the fourth candidate 距离 of the distance are calculated, and the state determination means determines that the first candidate 値 and the second candidate 前述 of the speed are substantially equal. The measurement target is in a state of minute displacement, and when the third candidate 値 and the fourth candidate 値 of the speed are substantially equal, it is determined that the measurement target is in a displacement state. Further, in the configuration example of the distance/speedometer according to the present invention, the distance/speed determining means sets the first candidate 値 and the second candidate 前述 of the speed when the measurement target is in the minute displacement state. In any one of -12-200916731, the speed of the measurement target is set, and any one of the first candidate 値 and the second candidate 前述 of the distance is a distance from the measurement target, and it is determined that the measurement target is displaced. In the case of the state, the third candidate 値 and the fourth candidate 値 of the speed are set to the speed of the measurement target, and any of the third candidate 値 and the fourth candidate 前述 of the distance is set to The distance of the aforementioned measurement object. In the configuration example of the distance/speedometer of the present invention, the distance/speed determining means sets the first candidate 値 and the second candidate 前述 of the speed when the measurement target is in the micro displacement state. The average 値 is the speed of the measurement target, and the average 値 of the first candidate 値 and the second candidate 前述 of the distance is a distance from the measurement target, and when it is determined that the measurement target is in a displacement state, The average 値 of the third candidate 値 and the fourth candidate 前述 of the speed is the speed of the measurement target. The average 値 of the third candidate 値 and the fourth candidate 前述 of the distance is the distance from the measurement target. Further, in the configuration example of the distance and velocity meter of the present invention, the distance/speed determining means performs comparison ΣΧ and ΣΥ, wherein the ΣΧ is the counting result of the 丨 counting period of the i-th candidate 计算 calculating the speed. And the sum of the count results of the first count period of the second candidate 计算 calculating the speed, the 计数 is the count result of the second count period of the first candidate 计算 at which the speed is calculated, and the second candidate for calculating the speed The sum of the count results in the second count period of the 値 determines that the measurement target is approaching when the ΣΧ is larger than the ΣΥ, and when the ΣΥ is larger than the ΣΧ, the measurement target is determined to be far away. . Further, in the configuration example of the distance/speedometer according to the present invention, the calculation means further includes a history displacement calculation means for assuming that the measurement target is in a minute displacement state and that the measurement target is assumed to be In each case of the displacement state, the history displacement of the difference between the candidate 値 calculated by the distance/speed calculation means and the candidate 前 calculated by the previous time is calculated, and the state determination means is based on When the candidate for the speed cannot determine the state of the measurement target, the state of the measurement target is determined based on the calculation result of the history displacement calculation means. Further, in the configuration example of the distance and speed meter of the present invention, the counting means includes a counter for outputting the first and second photodetectors for each of the output signals of the first and second photodetectors. The number of the interference waveforms included in the signal is counted, and the period measuring means 'measures the number of the aforementioned thousand waveforms each time the interference waveform is input for each of the output signals of the first and second photodetectors Counting the period of the aforementioned thousand-waveform waveform in the counting period of ί; the frequency distribution generating means creates the interference in the counting period based on the measurement result of the period measuring means for each of the output signals of the first and second photodetectors The frequency distribution of the period of the waveform; the median calculation means 'calculates the median of the period of the interference waveform based on the frequency distribution 'for each of the output signals of the first and second photoreceivers; The frequency distribution is obtained as a frequency sum N s of a level equal to or less than a first predetermined multiple of the median number, and is the middle The frequency sum Nw of the level of the second predetermined multiple of the number of bits is equal to the number of the output signals of the first and second receivers, and the counting results of the counts are corrected based on the frequencies Ns and NW'; a period and a calculation means, for each of the output signals of the first and second receivers, calculating a sum of periods of the interference waveforms based on the measurement knots of the periodic measurement means; and the number calculation means for the first Each of the output signals of the second photodetector calculates the number of the dry waveforms per unit time based on the sum of the count result corrected by the complement correction means and the period calculated by the period and the means. Further, in the configuration example of the distance/speed meter of the present invention, the pre-counting means includes period measuring means for each time the input interference signal is input to each of the output signals of the first and second optical units. Measuring a period of a predetermined one of the interference waveforms included in the output signals of the first and second photodetectors, and a frequency distribution forming means for measuring the measurement of the hand based on the period of the output signals of the first and second photodetectors As a result, the frequency distribution of the period of the interference waveform is created, and the median calculation means calculates the median of the period of the interference waveform based on the frequency distribution for the output signals of the first and second photoreceivers; According to the frequency distribution, the frequency sum Ns of the level equal to or less than the first predetermined multiple of the number of bits and the frequency sum Nw of the level of the second predetermined multiple of the median number are obtained. Each of the output signals of the second photoreceiver corrects the predetermined number according to the equal ratios Ns and Nw; the period and the calculation means, the first and second receiving Each of the output signals of the device calculates the sum of the periods of the interference waveform according to the measurement result of the above-described peripheral measuring means. Λ 刖 涉 涉 涉 涉 涉 涉 涉 涉 -15 -15 -15 -15 -15 -15 -15 200916731 and the number calculation means' for each of the output signals of the first and second photoreceivers, the sum of the number of interference waveforms corrected by the correction correction means and the period calculated by the period and the calculation means , Calculate the number of the aforementioned interference waveforms per unit time. Further, in the configuration example of the distance/speed meter of the present invention, the correction 値 calculation means is configured by N'=N + Nw-Ns when the count result of the counter or the predetermined number is N. Find the corrected 値N,. Further, in one configuration example of the distance/speed meter of the present invention, the first predetermined number is 0.5, and the second predetermined number is 1.5. Further, in a configuration example of the distance/speedometer according to the present invention, the period measuring means obtains an oscillation wavelength in the first and second semiconductor lasers in the first counting period shorter than the oscillation period. The period of the interference waveform included in the output signal of the photodetector corresponding to the increased semiconductor laser is obtained, and the first and second semiconductor lasers are obtained in the second counting period at the same time as the first counting period. The period of the interference waveform included in the output signal of the receiver corresponding to the semiconductor laser whose oscillation wavelength is decreasing. In addition, in the configuration example of the distance/speedometer of the present invention, there is provided an amplitude adjustment means for the speed 的 when the measurement target is in the minute displacement state and the speed at which the measurement target is in the displacement state. According to the determination result of the state determination means, the distance/speed determining means determines the speed 的' of the speed that is not used but is not used, and the distance that the distance/speed determining means determines to be true. The candidate chirp is supplied to the first and second semiconductors by the first and second laser drivers in such a manner that the 値 obtained by multiplying the wavelengths of the first and second semiconductor lasers by the wavelength -16 - 200916731 is substantially equal. The amplitude of at least one of the laser drive currents. Further, in the configuration example of the distance and speedometer of the present invention, there is provided an amplitude adjustment means for the speed 的 when the measurement target is in the minute displacement state and the speed at which the measurement target is in the displacement state. According to the determination result of the state determination means, the candidate for the speed that the distance/speed determination means determines to be true is used before and after the timing of switching the wavelength change of the first and second semiconductor lasers The amplitude of at least one of the drive currents supplied to the first and second semiconductor lasers by the first and second laser drivers is adjusted so as to maintain continuity. Further, in the configuration example of the distance and velocity meter of the present invention, there is provided an amplitude adjustment means for the distance 的 when the measurement target is in the minute displacement state and the distance when the measurement target is in the displacement state. The candidate 距离 according to the determination result of the state determination means, the candidate 距离 of the distance used by the distance/speed determining means to determine the true distance, before and after the timing of switching the wavelength change of the first and second semiconductor lasers The amplitude of at least one of the drive currents supplied to the first and second semiconductor lasers by the first and second laser drivers is adjusted so as to maintain continuity. Further, the distance/speed measuring method of the present invention includes a first oscillation step of operating the first semiconductor laser so that at least the oscillation period in which the oscillation wavelength continuously monotonically increases is repeated; and the second oscillation step -17- 200916731, the second semiconductor laser is operated in such a manner that the increase and decrease of the oscillation wavelength is opposite to the first semiconductor laser; and the counting step is performed for the first laser light to be radiated by the first semiconductor laser and the laser light The number of interference waveforms generated by the first laser light and the return light included in the output signal of the first photodetector from which the return light of the measurement target is converted into an electric signal is counted, and the second semiconductor thunder is to be The second laser light emitted by the radiation and the output signal of the second light receiver that converts the return light from the measurement target into the electrical signal, and the second laser light and the return light thereof are included in the output signal of the second laser light. Counting the number of waveforms; and calculating steps based on the minimum oscillation wavelength and the maximum oscillation wavelength of the first and second semiconductor lasers At least one counting result of the counting step 'calculates the speed of the measurement target and the distance to the measurement target. Further, the distance and velocity measuring method of the present invention includes a first oscillation step of operating the first semiconductor laser so that at least the oscillation period in which the oscillation wavelength continuously monotonically increases is repeated, and the second oscillation step oscillates. The second semiconductor laser is operated in such a manner that the increase and decrease of the wavelength is opposite to the first semiconductor laser; and the counting step is performed on the output signal of the first photodetector that converts the optical output of the first semiconductor laser into an electrical signal. Including the number of thousands of waveforms generated by the self-affinity effect of the first laser light emitted by the first semiconductor laser and the return light from the measurement target of the laser light. The second laser light emitted by the second semiconductor laser and the return light from the measurement target included in the output signal of the second light receiver that converts the light output of the second semiconductor laser into an electric signal The number of interference waveforms generated by the self-referential effect -18-200916731 is counted; and the operation step is based on the first and second semiconductor lasers The counting result of the oscillation wavelength and a maximum oscillation wavelength of said counting step before, at least one of said front and from the measured speed of the object is calculated and the measured object. (Effect of the Invention) Since the interference type distance meter measures the distance and the measurement target is at rest, the distance to the measurement target having the velocity cannot be measured. On the other hand, in the present invention, the distance to the measurement target that is not at rest can be measured. That is, with the present invention, the speed (size, direction) and distance of the object to be measured can be simultaneously measured. Further, in the present invention, the first and second semiconductor lasers that are opposite to each other are increased and decreased by the oscillation wavelength, and the laser light parallel to each other is emitted to the measurement target, and the output signals of the first and second photodetectors are respectively By counting the number of interference waveforms included in the output signals of the first and second photodetectors, the distance and speed can be measured in a shorter time than in the past. Further, in the present invention, when the state of the measurement target cannot be determined based on the candidate of the speed, the state of the measurement target can be determined by using the calculation result of the history displacement calculation means, and the distance from the measurement target can be calculated. The speed of the object is measured. Further, in the present invention, the period of the interference waveform in the counting period is measured, and based on the measurement result, the frequency distribution of the period of the interference waveform in the counting period is calculated, and the median of the period of the interference waveform is calculated based on the frequency distribution, according to The frequency distribution is obtained as a frequency sum N s of the -19-200916731 level which is equal to or less than the first predetermined multiple of the median, and a frequency sum Nw of a level which is a second predetermined multiple or more of the median, according to the frequency Ns And Nw, the counting result of the counting means is corrected, thereby eliminating the influence of the missing and excessive counting at the time of counting, and correcting the counting error of the interference waveform, thereby improving the measurement accuracy of the distance and the speed. Further, in the present invention, instead of counting the number of interference waveforms by the counting means, the period of a certain number of interference waveforms included in the output signals of the first and second photodetectors is measured, and based on the measurement result, The frequency distribution of the period of the interference waveform is calculated, and the median of the period of the interference waveform is calculated based on the frequency distribution, and the frequency sum Ns of the level which is the first predetermined multiple of the median is obtained from the frequency distribution, and the sum is the median The frequency sum Nw of the second predetermined multiple or more of the number is used to correct a certain number of interference waveforms based on the frequencies Ns and Nw, thereby reducing the measurement error of the number of interference waveforms per unit time, and further Improve the measurement accuracy of distance and speed. Further, in the present invention, the candidate 値 of the speed when the measurement target is in the minute displacement state and the candidate 速度 of the speed at which the measurement target is in the displacement state are assumed, and the distance/speed is determined based on the determination result of the state determination means. The determination means determines the candidate speed of the speed which is not true and is not used, and the candidate 距离 of the distance which the distance/speed determination means determines to be true is multiplied by the wavelength change rate of the first and second semiconductor lasers. The first and second semiconductor lasers can be adjusted by adjusting the amplitude of at least one of the drive currents supplied to the first and second xenon conductors by the first and second laser drivers in substantially equal manner. The absolute value of the wavelength change is equal, -20- 200916731%, which can improve the measurement accuracy of distance and speed. Further, in the present invention, the candidate 値 of the speed or the distance when the measurement target is in the minute displacement state and the candidate 速度 of the speed or the distance when the measurement target is in the displacement state are assumed, and the distance is determined based on the determination result of the state determination means. • The speed/distance candidate that is determined by the speed determining means to be true, and the first and second lasers are adjusted so as to maintain continuity before and after the timing at which the wavelength changes of the first and second semiconductor lasers are switched. The driver is supplied to the amplitude of at least one of the driving currents of the first and second semiconductor lasers, whereby the absolute enthalpy of the wavelength change amount of the first and second semiconductor lasers can be made equal, and the distance and the speed can be increased. Measurement accuracy. [Embodiment] (First Embodiment) The present invention is a method for measuring a distance based on an interference signal of a wave emitted by sensing when wavelength modulation is applied and a wave reflected by an object. Therefore, it can be applied to an optical interferometer other than the self-coupling type or an interferometer other than light. More specifically, for the case of self-coupling using a semiconductor laser, when the laser beam is irradiated to the measuring object by a semiconductor laser, and the oscillation wavelength of the laser is changed, the oscillation wavelength is changed from the minimum oscillation wavelength to the maximum oscillation wavelength. The displacement of the measurement object in the period (or the period from the maximum oscillation wavelength to the minimum oscillation wavelength) is reflected in the number of MHPs. Therefore, the state of the measurement target can be detected by investigating the number of MHPs when the oscillation wavelength is changed. The above is the basic principle of the interferometer. -21 - 200916731 The first embodiment of the present invention will be described in detail with reference to the drawings. Fig. 1 is a block diagram showing a distance/speedometer according to the first embodiment of the present invention. The distance meter of Fig. 1 has the first and second semiconductor lasers 1-1 and 1-2 for the laser light to be measured, and the light output of the respective conductor lasers 1-1 and 1-2 is converted into The photodiodes 2-1 and 2-2 of the first and third optical signals of the optical signal; respectively, the light from the semiconductor laser and the I-2 are condensed and irradiated to the measuring object 1 1, and will be from the measuring object The return light of 11 is condensed to be incident on the semiconductor laser 1-1, 1-2 mirrors 3-1, 3-2; the semiconductor lasers 1-1, 1-2 are alternately repeated with the generation wavelength continuously increasing The first and second laser drivers 4-1 and 4-2 in the second oscillation period in which the first oscillation period and the oscillation wavelength are continuous; the output currents of the photodiodes 2-1 and 2-2 are converted into voltages And a current-voltage conversion amplifier 5-1, 5-2; a filter circuit 6-1 for removing the carrier from the output voltage of the current-voltage converters 5-1, 5-2; a filter circuit 6.1 a counting device 7 that counts the amount of MHP included in the output voltage of 6-2; an arithmetic unit 8 that calculates the speed of the fixed object 11 from the measurement target 11; a display device 9 that displays the result of the arithmetic unit 8; Semiconductor thunder Flooding stream amplitude becomes 1 -1, -2 appropriate controls laser drive control device 4-1, 4-2. The current-voltage conversion amplifiers 5-1 and 5-2, the filter paths 6-1, 6-2, and the counting device 7 constitute a counting means. Hereinafter, for the sake of easy explanation, it is assumed that the semiconductor laser 1 adopts a type of mode jump (m 0 d e h 0 p P 1 n g ) (V C S E L type, laser type).

明。 構成 放射 將半 2受 1-1 定對 的透 生振 減少 分別 放大 放大 、6-2 的數 及測 算結 動電 振幅 器電 具有 DFB -22- 200916731 雷射驅動器4-1、4-2係將關於時間按照恒定的變化率 而反覆增減的三角波驅動電流作爲注入電流而供給至半導 體雷射1-1、1-2。由此,半導體雷射1-1、1-2係以交替 反覆第1振盪期間和第2振盪期間的方式被驅動,該第1 振盪期間係振盪波長與注入電流的大小成正比以恒定的變 化率連續地增加,該第2振盪期間係振盪波長與注入電流 的大小成正比以恒定的變化率連續地減少。此時,雷射驅 動器4-1、4-2係以在半導體雷射1-1、1-2中振盪波長的 增減呈相反的方式供給驅動電流。亦即,在半導體雷射1 -1、1 -2中,振盪波長的變化率的絕對値相同,而變化率的 極性爲相反。因此,在半導體雷射1-1的振盪波長爲最大 値時,半導體雷射1 -2的振盪波長爲最小値,在半導體雷 射1 -1的振盪波長爲最小値時,半導體雷射1 - 2的振盪波 長爲最大値。 第2圖係顯示半導體雷射1 - 1、1 -2的振盪波長之時間 變化圖。在第2圖中,LD1表示半導體雷射1-1的振盪波 形,L D 2表示半導體雷射卜2的振盪波形,P 1表示第1振 盪期間,P2表示第2振盪期間,λα表示各期間的振盪波 長的最小値,Xba表示各期間的振盪波長的最大値’ Τ表 示三角波的周期。在本實施形態中’振盪波長的最大値Xb 及振盡波長的最小値λ a係分別恒爲一疋,該寺的差値λ b -la亦恒爲一定。 由半導體雷射1 -1、1 -2射出的雷射光係藉由透鏡3 -1 、3 - 2予以聚光而射入測定對象1 1。此時’半導體雷射1 - -23- 200916731 1、 1 - 2的雷射光係彼此平行地射出,並射入測定對象11 。由測定對象1 1反射的半導體雷射1 -1、1 - 2的光係分別 藉由透鏡3-1、3-2予以聚光,並射入半導體雷射i_i、卜 2。 其中,透鏡3-1、3-2的聚光並非爲必須。光電二極體 2 - 1、2 - 2係分別將半導體雷射1 -1、1 - 2的光輸出轉換成 電流。電流-電壓轉換放大器5-1、5-2係分別將光電二極 體2-1、2-2的輸出電流轉換成電壓並進行放大。 濾波器電路6-1、6-2具有從調變波抽出重疊訊號的功 能。第3圖(A )、第3圖(B )係分別以模式顯示電流-電壓轉換放大器5-1、5-2的輸出電壓波形圖,第3圖(C )、第3圖(D)係分別以模式顯示瀘波器電路6-1、6-2 的輸出電壓波形圖。該等圖係表示由相當於光電二極體2-1、2-2之輸出的第3圖(A )、第3圖(B )的波形(調 變波),去除第2圖的半導體雷射1 - 1、1 -2的振盪波形( 載波),以抽出第3圖(C)、第3圖(D)的MHP波形 (重疊波)的過程。 計數裝置7係針對濾波器電路6-1、6-2的各電路,隨 時地對濾波器電路6-1、6-2的輸出所包含之每單位時間的 MHP的數量進行計數。第4圖係顯示計數裝置7之構成之 一例的方塊圖,第5圖係顯示計數裝置7的動作的流程圖 。計數裝置7係由切換開關70、周期測定部71-1、7:1-2、 轉換部7 2 -1、7 2 - 2所構成。 首先,計數裝置7的切換開關係進行判定是否爲 切換時(第5圖的步驟S 1 0 〇 ),若爲切換時’則切換爐 -24- 200916731 波器電路6-1、6-2的輸出與周期測定部71-1、71-2的連 接(步驟S 1 0 1 )。切換開關7 0的切換時係在每隔三角波 的周期T的1/2的時間發生。亦即,切換開關70係在第1 振盪期間P 1中,將濾波器電路6-1的輸出與周期測定部 7 1 -1的輸入相連接,將濾波器電路6-2的輸出與周期測定 部71 -2相連接;在第2振盪期間P2中,將濾波器電路6-2的輸出與周期測定部7 1 -1的輸入相連接,將濾波器電路 6 -1的輸出與周期測定部7〗-2相連接(步驟S 1 0 1 )。 亦即,對於周期測定部7 1 · 1係經常被輸入與濾波器 電路6-1或6-2之輸出之中振盪波長正在增加的半導體雷 射1 -1或1 -2相對應的輸出,對於周期測定部7 1 -2係經常 被輸入與濾波器電路6-1或6-2之輸出之中振盪波長正在 減少的半導體雷射1 -1或1 -2相對應的輸出。其中,現在 時間點爲第1振盪期間P 1或第2振盪期間P2係由雷射驅 動器4-1、4-2被通知。切換開關70係按照來自雷射驅動 器4-1、4-2的通知來進行切換動作。 周期測定部71-1係每當在來自切換開關70的輸入產 生上升邊緣時,即對在第1計數期間內來自切換開關70 的輸入的上升邊緣的周期(亦即MHP的周期)進行測定 (第5圖的步驟S 1 02 )。同樣地,周期測定部7丨_2係每 當在來自切換開關7〇的輸入產生上升邊緣時,即對在第2 計數期間內來自切換開關7 0的輸入的上升邊緣的周期( MHP的周期)進行測定(步驟S 1 02 )。 在此採用第6圖(A)至第6圖(D),對第1、第2 -25- 200916731 計數期間進行說明。第6圖(A)、第6圖(B )係分別以 模式顯不電流-電壓轉換放大器5-1、5-2的輸出電壓波形 圖’第ό圖(C )、第ό圖(D )係分別以模式顯示濾波器 電路6-1、6-2的輸出電壓波形圖。ρη丨、Ρη2、ρη3、Ρη4 、Ρη5、Ρη6、Ρη7、Ρη8 係表示第 1 計數期間,Pml、pm2 、Pm3、Pm4、Pm5、Pm6、Pm7、Pm8 係表示第 2 計數期 严曰 1,tOa、tl、t2、tob、t3、t4、tOc、t5、t6、tOd' t7、t8 係表不第1計數期間Pn(Pnl、Pn2、Pn3、Pn4、Pn5、 Pn6、Pn7、Pn8)與第 2 計數期間 PmCPml、Pm2、Pm3、 Pm4、Pm5、Pm6、Pm7、Pm8)的開始或結束的時刻。 如第6圖(C )、第6圖(D )所示,第1計數期間 Pn ( Pnl ' Pn2、Pn3、Pn4、Pn5、Pn6、Pn7、Pn8 )係對 於濾波器電路6-1或6-2的輸出中與振盪波長增加的半導 體雷射1 - 1或1 -2相對應的輸出而設定,第2計數期間Pm (Pml、Pm2、Pm3、Pm4、Pm5、Pm6、Pm7、Pm8)係對 於濾波器電路6-1或6-2的輸出中與振盪波長減少的半導 體雷射1 -1或1 -2相對應的輸出而設定。 最好第1計數期間Pn和第2計數期間Pm係比第1振 盪期間P1和第2振盪期間P2的長度,亦即三角波的周期 T的1 /2的時間短。此外,第1計數期間Pn及與其相對應 的第2計數期間Pm係必須時刻爲相一致。但是,第1計 數期間Pn彼此可使時間部分重疊,第2計數期間Pm彼此 亦可使時間部分重疊。 被輸入至周期測定部7 I -1、7 1 -2的閘極訊號GS係在 -26- 200916731 第1計數期間Pn及第2計數期間Pm的起始上升,在第1 計數期間Pn及第2計數期間Pm的結束下降的訊號。其中 ,第1計數期間Pn及第2計數期間Pm係被設定爲除了三 角波驅動電流成爲最大的部分(由振盪期間P 1切換成P2 的部分或由P2切換成P 1的部分)以外的期間。 接著,計數裝置7的轉換部72-1係將周期測定部7 1 -1所測定到的MHP的周期的平均値轉換成第1計數期間 Pn中的每單位時間的MHP的數量X (振盪波長正在增加 的情形下半導體雷射的干涉波形的數量)’轉換部72-2 係將周期測定部7 1 - 2所測定到的Μ Η P的周期的平均値轉 換成第2計數期間Pm中的每單位時間的ΜΗΡ的數量Υ ( 振盪波長正在減少的情形下半導體雷射的干涉波形的數量 )(第5圖的步驟S 1 0 3 )。若將Μ Η P的平均周期設爲T s ,三角波的頻率設爲f,則每單位時間的ΜΗΡ的數量係可 利用{ 2/ ( fxTs ) }進行計算。此時的單位時間爲三角波 的周期T的1/2的時間。 計數裝置7係在每個第1、第2計數期間Pn、Pm進 行以上所示的處理。因此,在藉由周期測定部7 1 -1和變 換部72-1的動作計算MHP的數量X的同時,藉由周期測 定部7卜2和變換部72-2的動作計算MHP的數量Y,如此 這樣同時求出Μ Η P的數量X和Y。 接著,運算裝置8係根據半導體雷射1 -1、1 -2的最小 振盪波長、最大振盪波長Xb、與ΜΗΡ的數量X、Υ ’ 計算出與測定對象1 1的距離及測定對象1 1的速度。第7 -27- 200916731 圖係顯示運算裝置8之構成之一例的方塊圖,第8圖係顯 示該運算裝置8的動作的流程圖。運算裝置8係由以下所 構成:用以記憶由計數裝置7所計算出的MHP的數量X 、Y及運算裝置8的計算結果的記憶部80 ;根據半導體雷 射1-1、1-2的最小振盪波長、最大振盪波長λ!?和MHP 的數量X、Υ,計算與測定對象1 1的距離的候補値和測定 對象1 1的速度的候補値的距離•速度計算部8 1 ;根據距 離•速度計算部8 1的計算結果,判定測定對象Η的狀態 的狀態判定部8 2 ;根據狀態判定部8 2的判定結果’確定 測定對象11的速度的速度確定部83 ;以及根據狀態判定 部82的判定結果,確定與測定對象1 1的距離的距離確定 部84。速度確定部83和距離確定部84係構成距離·速度 確定手段。 在本實施形態中,係設成將測定對象11的狀態滿足 預定條件的微小位移狀態、或變動比微小位移狀態更大的 位移狀態中的任一者。當將計數期間Ρη和計數期間Pm的 每個期間的測定對象Η的平均位移設爲V時’所謂微小 位移狀態係指滿足(λΐ)-λα ) /lb > V/Lb的狀態’所謂位移 狀態係指滿足(λΙ)-λα ) /λΐ? S V/Lb的狀態。其中’ Lb爲 第1、第2計數期間Pn、Pm的中間時刻之與測定對象1 1 的距離。 首先,運算裝置8的記憶部80係記憶由計數裝置7 所計算出的Μ Η P的數量X、Y (第8圖的步驟S 2 0 1 ) ° 接著,運算裝置8的距離•速度計算部8 1係計算測 -28- 200916731 定對象1 1的速度的候補値及與測定對象11的距離的候補 値,並將所計算出的値儲放在記憶部80 (第8圖的步驟 S202 )。 如下式所示,距離•速度計算部81係根據第1計數 期間Ρη中的ΜΗΡ的數量X ( t )和下一時刻的第2計數期 間P m + 1中的Μ Η P的數量Y ( t + 1 )計算時刻t至t + 1中的 速度的第1候補値Veil ( t, t+Ι ),根據第2計數期間Pm 中的ΜΗΡ的數量Y ( t)和下一時刻的第1計數期間Pn+1 中的ΜΗΡ的數量X ( t+1 )計算時刻t至t+1中的速度的 第2候補値V a 2 ( t,t +1 ),根據Μ Η P的數量X ( t )和Y (t+1 )計算時刻t至t+1中的速度的第3候補値νβ3 ( t, t+1 ),和根據ΜΗΡ的數量Y ( t)和X ( t+1 )計算時刻t 至t+1中的速度的第4候補値νβ4(ί,t+1),並儲放在記 憶部80 (步驟S202 )。Bright. The radiation is reduced by a half-by-one 1-1 paired permeation vibration amplification, the number of 6-2 and the measured junction electric amplitude device have DFB-22-200916731 laser driver 4-1, 4-2 The triangular wave drive current which is repeatedly increased or decreased according to a constant rate of change is supplied as an injection current to the semiconductor lasers 1-1 and 1-2. Thereby, the semiconductor lasers 1-1 and 1-2 are driven alternately over the first oscillation period and the second oscillation period, and the oscillation period is proportional to the magnitude of the injection current with a constant change during the first oscillation period. The rate is continuously increased, and the oscillation period is continuously proportional to the magnitude of the injection current in the second oscillation period at a constant rate of change. At this time, the laser drivers 4-1, 4-2 supply the drive current in the opposite manner in the increase and decrease of the oscillation wavelength in the semiconductor lasers 1-1, 1-2. That is, in the semiconductor lasers 1-1, 1-2, the absolute enthalpy of the rate of change of the oscillation wavelength is the same, and the polarity of the rate of change is reversed. Therefore, when the oscillation wavelength of the semiconductor laser 1-1 is the maximum 値, the oscillation wavelength of the semiconductor laser 1-2 is the minimum 値, and when the oscillation wavelength of the semiconductor laser 1-1 is the minimum ,, the semiconductor laser 1 - The oscillation wavelength of 2 is the maximum 値. Fig. 2 is a graph showing the time variation of the oscillation wavelength of the semiconductor lasers 1-1 and 1-2. In Fig. 2, LD1 indicates an oscillation waveform of the semiconductor laser 1-1, LD 2 indicates an oscillation waveform of the semiconductor laser 2, P 1 indicates a first oscillation period, P2 indicates a second oscillation period, and λα indicates each period. The minimum 値 of the oscillation wavelength, Xba represents the maximum 振荡' of the oscillation wavelength in each period Τ represents the period of the triangular wave. In the present embodiment, the maximum 値Xb of the oscillation wavelength and the minimum 値λ a of the oscillation wavelength are each constant, and the difference λ b -la of the temple is also constant. The laser light emitted from the semiconductor lasers 1-1 and 1-2 is condensed by the lenses 3 -1 and 3 - 2 and is incident on the measurement object 11 . At this time, the laser light of the semiconductor lasers 1 - -23 - 200916731 1 and 1 - 2 is emitted in parallel with each other, and is incident on the measurement object 11. The light beams of the semiconductor lasers 1-1 and 1-2 reflected by the measurement object 11 are condensed by the lenses 3-1 and 3-2, respectively, and incident on the semiconductor lasers i_i and 卜2. Among them, the condensing of the lenses 3-1 and 3-2 is not essential. The photodiodes 2 - 1 and 2 - 2 convert the light output of the semiconductor lasers 1-1 and 1-2 into currents, respectively. The current-voltage conversion amplifiers 5-1 and 5-2 convert the output currents of the photodiodes 2-1 and 2-2 into voltages and amplify them, respectively. The filter circuits 6-1, 6-2 have the function of extracting overlapping signals from the modulated waves. Fig. 3(A) and Fig. 3(B) show the output voltage waveforms of the current-voltage conversion amplifiers 5-1 and 5-2, respectively, in the mode, Fig. 3(C) and Fig. 3(D). The output voltage waveforms of the chopper circuits 6-1 and 6-2 are displayed in modes. These figures show the waveforms (modulated waves) of Figs. 3(A) and 3(B) corresponding to the outputs of the photodiodes 2-1 and 2-2, and the semiconductor thunder of Fig. 2 is removed. The oscillating waveform (carrier) of 1 - 1, 1 - 2 is taken to extract the MHP waveform (overlapping wave) of Figs. 3 (C) and 3 (D). The counting means 7 counts the number of MHPs per unit time included in the outputs of the filter circuits 6-1, 6-2 with respect to the respective circuits of the filter circuits 6-1, 6-2. Fig. 4 is a block diagram showing an example of the configuration of the counting device 7, and Fig. 5 is a flow chart showing the operation of the counting device 7. The counting device 7 is composed of a changeover switch 70, period measuring units 71-1 and 7:1-2, and converting units 7 2 -1 and 7 2 -2. First, the switching on relationship of the counting device 7 determines whether or not the switching is performed (step S1 0 〇 in FIG. 5), and if it is in the switching state, the switching of the furnace-24-200916731 wave breaker circuits 6-1, 6-2 is performed. The connection to the period measuring units 71-1 and 71-2 is output (step S1 0 1 ). The switching of the changeover switch 70 occurs every 1/2 of the period T of the triangular wave. In other words, the changeover switch 70 connects the output of the filter circuit 6-1 to the input of the period measuring unit 7 1 -1 in the first oscillation period P 1 , and outputs the output and period of the filter circuit 6 - 2 . The unit 71-2 is connected to each other. In the second oscillation period P2, the output of the filter circuit 6-2 is connected to the input of the period measuring unit 7 1 -1, and the output of the filter circuit 6-1 and the period measuring unit are connected. 7 - 2 phase connection (step S 1 0 1 ). In other words, the period measuring unit 7 1 · 1 is often input with an output corresponding to the semiconductor laser 1-1 or 1-2 in which the oscillation wavelength is increasing among the outputs of the filter circuit 6-1 or 6-2. The period measuring unit 7 1 - 2 is often input with an output corresponding to the semiconductor laser 1-1 or 1-2 whose oscillation wavelength is decreasing among the outputs of the filter circuit 6-1 or 6-2. Here, the current time point is the first oscillation period P 1 or the second oscillation period P2 is notified by the laser drivers 4-1 and 4-2. The changeover switch 70 performs a switching operation in accordance with a notification from the laser drivers 4-1 and 4-2. The period measuring unit 71-1 measures the period (i.e., the period of the MHP) of the rising edge of the input from the changeover switch 70 in the first counting period whenever a rising edge is generated at the input from the changeover switch 70 ( Step S 1 02 of Fig. 5). Similarly, the period measuring unit 7丨_2 is a period of the rising edge of the input from the switching switch 70 in the second counting period every time a rising edge is generated at the input from the switching switch 7 (the period of the MHP) The measurement is performed (step S 1 02 ). Here, the first and second -25 to 200916731 counting periods will be described using Figs. 6(A) to 6(D). Fig. 6(A) and Fig. 6(B) are diagrams showing the output voltage waveforms of the mode-indicating current-voltage conversion amplifiers 5-1 and 5-2, respectively (Fig. (C) and (D) The output voltage waveform diagrams of the filter circuits 6-1 and 6-2 are respectively displayed in a mode. Ρη丨, Ρη2, ρη3, Ρη4, Ρη5, Ρη6, Ρη7, Ρη8 indicate the first counting period, Pml, pm2, Pm3, Pm4, Pm5, Pm6, Pm7, Pm8 indicate that the second counting period is severely 1, tOa, T1, t2, tob, t3, t4, tOc, t5, t6, tOd't7, t8 are not in the first counting period Pn (Pnl, Pn2, Pn3, Pn4, Pn5, Pn6, Pn7, Pn8) and the second count The time of the start or end of the period PmCPml, Pm2, Pm3, Pm4, Pm5, Pm6, Pm7, Pm8). As shown in Fig. 6(C) and Fig. 6(D), the first counting period Pn (Pnl 'Pn2, Pn3, Pn4, Pn5, Pn6, Pn7, Pn8) is for the filter circuit 6-1 or 6- The output of 2 is set to correspond to the output of the semiconductor laser 1 - 1 or 1 - 2 whose oscillation wavelength is increased, and the second counting period Pm (Pml, Pm2, Pm3, Pm4, Pm5, Pm6, Pm7, Pm8) is The output of the filter circuit 6-1 or 6-2 is set to correspond to the output of the semiconductor laser 1-1 having a reduced oscillation wavelength or 1-2. Preferably, the first counting period Pn and the second counting period Pm are shorter than the lengths of the first oscillation period P1 and the second oscillation period P2, that is, the period of the period T of the triangular wave of 1 /2. Further, the first counting period Pn and the second counting period Pm corresponding thereto are required to coincide with each other. However, the first counting period Pn can overlap each other in time, and the second counting period Pm can also overlap the time portions. The gate signal GS input to the period measuring unit 7 I -1 and 7 1 -2 is increased from the beginning of the first counting period Pn and the second counting period Pm at -26-200916731, and in the first counting period Pn and the first 2 The signal that the end of Pm falls during the counting period. In the first counting period Pn and the second counting period Pm, the period other than the portion where the triangular wave drive current is the largest (the portion where the oscillation period P 1 is switched to P2 or the portion where P2 is switched to P1) is set. Next, the conversion unit 72-1 of the counter device 7 converts the average 値 of the period of the MHP measured by the period measuring unit 7 1 -1 to the number X of the MHP per unit time in the first counting period Pn (the oscillation wavelength The number of interference waveforms of the semiconductor laser in the case of increasing "transformation unit 72-2 converts the average 値 of the period of Μ Η P measured by the period measuring unit 7 1 - 2 into the second counting period Pm The number of turns per unit time Υ (the number of interference waveforms of the semiconductor laser in the case where the oscillation wavelength is decreasing) (step S 1 0 3 of Fig. 5). If the average period of Μ Η P is set to T s and the frequency of the triangular wave is set to f, the number of enthalpy per unit time can be calculated using { 2/ ( fxTs ) }. The unit time at this time is 1/2 of the period T of the triangular wave. The counting device 7 performs the above-described processing for each of the first and second counting periods Pn and Pm. Therefore, the number X of MHPs is calculated by the operations of the period measuring unit 7 1 -1 and the converting unit 72-1, and the number Y of MHPs is calculated by the operations of the period measuring unit 7 and the converting unit 72-2. In this way, the numbers X and Y of Μ Η P are simultaneously obtained. Next, the arithmetic unit 8 calculates the distance from the measurement target 11 and the measurement target 1 1 based on the minimum oscillation wavelength of the semiconductor lasers 1-1 and 1-2, the maximum oscillation wavelength Xb, and the number X of ΜΗΡ, Υ ' speed. The seventh embodiment shows a block diagram showing an example of the configuration of the arithmetic unit 8, and Fig. 8 is a flow chart showing the operation of the arithmetic unit 8. The arithmetic unit 8 is configured by a memory unit 80 for storing the numbers X and Y of the MHP calculated by the counting unit 7 and the calculation result of the arithmetic unit 8; according to the semiconductor lasers 1-1 and 1-2 The minimum oscillation wavelength, the maximum oscillation wavelength λ!?, and the number of MHPs X and Υ, the distance 候 between the candidate 値 of the distance to the measurement target 11 and the candidate 速度 of the velocity of the measurement target 1 1 • The velocity calculation unit 8 1 ; The calculation result of the speed calculation unit 8 1 determines the state of the measurement target 8 state determination unit 8 2 , and the speed determination unit 83 that determines the speed of the measurement target 11 based on the determination result of the state determination unit 8 2 and the state determination unit As a result of the determination of 82, the distance determining unit 84 that determines the distance from the measurement target 11 is determined. The speed determining unit 83 and the distance determining unit 84 constitute a distance/speed determining means. In the present embodiment, any one of a minute displacement state in which the state of the measurement target 11 satisfies a predetermined condition or a displacement state in which the fluctuation is larger than the micro displacement state is provided. When the average displacement of the measurement target Η in each period of the counting period Ρη and the counting period Pm is V, the so-called minute displacement state means satisfying (λΐ)-λα) / lb > the state of V/Lb 'the so-called displacement The state refers to a state in which (λΙ)−λα ) /λΐ? SV/Lb is satisfied. Wherein ' Lb is the distance from the measurement target 1 1 between the intermediate times of the first and second counting periods Pn and Pm. First, the memory unit 80 of the arithmetic unit 8 memorizes the number X and Y of the Η Η P calculated by the counting device 7 (step S 2 0 1 in Fig. 8). Next, the distance/speed calculating unit of the arithmetic unit 8 8 1 calculation -28- 200916731 The candidate 値 of the speed of the fixed object 1 1 and the candidate 距离 of the distance to the measurement target 11 are placed in the memory unit 80 (step S202 of Fig. 8) . As shown in the following equation, the distance/speed calculating unit 81 is based on the number X of ΜΗΡ in the first counting period Ρη and the number of Μ Η P in the second counting period P m + 1 at the next time (t) + 1 ) Calculate the first candidate 値Veil ( t, t + Ι ) of the velocity at time t to t + 1, based on the number Y of ΜΗΡ in the second counting period Pm and the first count at the next time The number of enthalpies X ( t+1 ) in the period Pn+1 calculates the second candidate 値V a 2 ( t,t +1 ) of the velocity in the time t to t+1, according to the number of Μ Η P X ( t And Y (t+1) calculate the third candidate 値νβ3 ( t, t+1 ) of the velocity in time t to t+1, and calculate the time according to the number of ΜΗΡ Y Y ( t) and X ( t+1 ) The fourth candidate 値νβ4(ί, t+1) of the speed in t to t+1 is stored in the storage unit 80 (step S202).

Val (t, t+ 1 ) = (X(t)-Y(t+l ))χλΙ>/4 …( 2 ) Va2(t, t+l) = (Y(t)-X(t+l))xXa/4 -( 3 ) VP3(t, t+ 1 ) = (X(t) + Y(t+ 1 ))xXb/4 …( 4) Υβ4(ΐ, ί+1) = (Υ(ΐ) + Χ(ί+1))χλα/4 …( 5 ) 此外,如卜'式所示,距離•速度計算部8 1係根據第1 計數期間Ρη中的MHP的數量X ( t )和同一時刻的第2計 數期間Pm中的MHP的數量Y ( t )計算時刻t-Ι至t中的 速度的第5候補値Va5 ( t )和第6候補値Υβ6 ( t ),並 -29- 200916731 儲放在記憶部80 (步驟S202 )。Val (t, t+ 1 ) = (X(t)-Y(t+l )) χλΙ>/4 (2) Va2(t, t+l) = (Y(t)-X(t+l) )xXa/4 -( 3 ) VP3(t, t+ 1 ) = (X(t) + Y(t+ 1 ))xXb/4 (4) Υβ4(ΐ, ί+1) = (Υ(ΐ) + Χ(ί+1)) χλα/4 (5) Further, as shown in the equation, the distance/speed calculating unit 8 1 is based on the number of MHPs (t) in the first counting period Ρη and at the same time The number Y(t) of the MHP in the second counting period Pm is calculated as the fifth candidate 値Va5(t) and the sixth candidate 値Υβ6(t) at the time t-Ι to t, and -29-200916731 is stored The memory unit 80 (step S202).

Va5(t) = (X(t)-Y(t))x(Xa + Xb)/8 …(6)Va5(t) = (X(t)-Y(t))x(Xa + Xb)/8 (6)

Vp6(t) = (X(t) + Y(t))x(Xa + Xb)/8 …(7 ) 此外,如下式所示,距離•速度計算部8 1係根搨 計數期間Pn中的MHP的數量X ( t )和下一時刻的第 數期間Pm+1中的MHP的數量Y ( t+Ι )計算時刻t 3 中的距離的第1候補値La 1 ( t, t+1 ),根據第2計數 Pm中的MHP的數量Y ( t )和下一時刻的第1計數 Pn+1中的MHP的數量X ( t+Ι )計算時刻t至t+Ι中 離的第2候補値La2 ( t,t+Ι ),根據MHP的數量X 和Y ( t+1 )計算時刻t至t+1中的距離的第3候補値 (t,t+Ι ),和根據MHP的數量Y ( t )和X ( t+Ι ) 時刻t至t+l中的距離的第4候補値L04 ( t, t+1 ), 放在記憶部8 0 (步驟S 2 0 2 )。Vp6(t) = (X(t) + Y(t))x(Xa + Xb)/8 (7) Further, as shown in the following equation, the distance/speed calculating unit 8 1 is in the root-counting period Pn The number of MHPs X ( t ) and the number of MHPs in the first period Pm+1 at the next moment Y ( t + Ι ) calculates the first candidate 値 La 1 ( t, t +1 ) of the distance at time t 3 . Calculate the second candidate from the time t to t+Ι according to the number Y ( t ) of the MHP in the second count Pm and the number X ( t+Ι ) of the MHP in the first count Pn+1 at the next time.値La2 ( t,t+Ι ), calculate the third candidate 値(t,t+Ι ) of the distance from time t to t+1 according to the number of MHPs X and Y ( t+1 ), and according to the number of MHP Y ( t ) and X ( t + Ι ) The fourth candidate 値 L04 ( t, t+1 ) of the distance from time t to t + l is placed in the memory unit 80 (step S 2 0 2 ).

Lal(t, t+l) = XaxXb(X(t) + Y(t+l))/(4x(Xa-Xb))…(8) La2(t,t+l) = XaxXb(Y(t) + X(t+l))/(4x<>a4b))…(9) Lp3(t, t+Ι ) = λαχλΐ3(Χ(〇-Υ(ί+1))/(4χ(λ&-λΐ5))…(10) Lp4(t, t + l)=^a>ab(Y(t)-X(t+l))/(4x(Xa-Xb)) ."(11) 此外,如下式所示’距離•速度計算部81係根損 計數期間Pn中的MHP的數量X ( t )和同—時刻的第 :第1 2計 :t+1 期間 期間 的距 (t) Lp3 計算 並儲 第1 2計 -30- 200916731 數期間Pm中的MHP的數量Υ ( t )計算時刻t-l至 與測定對象1 1的距離的第5候補値Lct5 ( t )和第 値Lp6(t),並儲放在記憶部80(步驟S202)。Lal(t, t+l) = XaxXb(X(t) + Y(t+l))/(4x(Xa-Xb))...(8) La2(t,t+l) = XaxXb(Y(t ) + X(t+l))/(4x<>a4b))...(9) Lp3(t, t+Ι ) = λαχλΐ3(Χ(〇-Υ(ί+1))/(4χ(λ& -λΐ5))...(10) Lp4(t, t + l)=^a>ab(Y(t)-X(t+l))/(4x(Xa-Xb)) ."(11) As shown in the following equation, the distance/speed calculation unit 81 is the number of MHPs in the root loss count period Pn X ( t ) and the same time: the first time: the distance during the t+1 period (t) Lp3 Calculate and store the number of MHPs in the Pm period from time to time -30- 200916731 Υ ( t ) Calculate the 5th candidate 値Lct5 ( t ) and the 値Lp6(t) from the time t1 to the distance from the measurement object 1 1 And stored in the memory unit 80 (step S202).

La5(t) = kaxXb(X(t) + Y(t))/(4x0a-Xb))…(12)La5(t) = kaxXb(X(t) + Y(t))/(4x0a-Xb))...(12)

Lp6(t) = XaxXb(X(t)-Y(t))/(4x(Xa-Xb))…(13) 在數式(2 )至數式(1 3 )中,候補値V cx 1 ( t 、Va2(t,t+l) 、Va5(t) 、Lal(t,t+l) 、La2 )、:La5 ( t )係假設測定對象1 1處於微小位移狀 算出的値,候補値 νβ3 ( t, t+Ι ) 、νβ4 ( t,t+Ι )、 )、LP3 ( t, t+1 ) 、ίβ4 ( t,t+1 ) 、ίβ6 ( t)係假設 象1 1處於位移狀態所計算出的値。 時刻t+1係第1計數期間pn+ 1及第2計數期P 的結束時刻,時刻t係Pn+1、Pm+1的前1次的第 期間Pn及第2計數期間Pm的結束時刻,時刻 pn+l、Pm+Ι的前2次的第1計數期間Pn-1及第2 間Pm-Ι的結束時刻。X ( t+Ι )係第1計數期間Pn MHP的數量,X ( t )係第1計數期間Pn中的MHP ,Y ( t+Ι )係第2計數期間Pm+Ι中的MHP的數量 )係第2計數期間Pm中的MHP的數暈。 例如,若當前時刻設爲t+l=t2 ’則第1計 Pn+1爲第6圖(C )的Pn2,前1次的第1計數期fl Pnl,第2計數期間Pm+1爲第6圖(D )的Pm2, t中之 6候補 ,t+1) (t, t+1 態所計 νβ6 ( t 測定對 荀 Pm+1 1計數 t-ι係 計數期 + 1中的 的數量 ,γ ( t 數期間 爵ρ η爲 前1次 -31 - 200916731 的第2計數期間pm爲Pml。此外,若當前時刻設爲 t + l=t3 ’則第1計數期間Pn+1爲Pn3,前1次的第i計數 期間Pn爲Pn2,第2計數期間Pm+1爲pm3,前1次的第 2 S十數期間Pm爲Pm2。運算裝置8在每次利用計數裝置7 計算MHP的數量的時刻,即進行數式(2 )至數式(丨3 ) 的計算。 接著,運算裝置8的狀態判定部82係使用記憶在記 憶部8 0的數式(2 )至數式(5 )的計算結果,判定測定 對象1 1的狀態(第8圖的步驟S203 )。狀態判定部82 係在 Val ( t,t+1 ) =Va2 ( t,t+Ι ),亦即數式(2 )和數 式(3 )的計算結果爲相等的情形下,判定測定對象丨1處 於微小位移狀態。此外,狀態判定部8 2係在V β 3 ( t,t + 1 )=νβ4 ( t, t+ 1 ),亦即數式(4)和數式(5)的計算結 果爲相等的情形下’判定測定對象1 1處於位移狀態。其 中,狀態判定部82係在數式(2 )的計算結果和數式(3 )的計算結果的誤差位於預定的誤差範圍內的情形下,判 定該等爲相等。關於數式(4)和數式(5)的計算結果相 等與否,均同樣地可進行判定。 運算裝置8的速度確定部83係根據狀態判定部82的 判定結果’確定測定對象Η的速度的絕對値(第8圖的 步驟S 2 04 )。亦即,速度確定部8 3係在判定出測定對象 1 1處於微小位移狀態的情形下’確定記憶在記憶部80的 速度的候補値Val ( t,t+1 )和Va2 ( t,t+Ι )的平均値爲 時刻t-1至t+1中的測定對象1 1的速度的絕對値(步驟 -32- 200916731 S204 )。 此外’速度確定部8 3係在判定出測定對象1 1處於位 移狀態的情形下’確定記憶在記憶部8 0的速度的候補値 νβ3 ( I t+Ι )和νβ4 ( t, t+Ι )的平均値爲時刻t-Ι至t+1 中的測定對象1 1的速度的絕對値(步驟S 2 〇 4 )。 如上所示’藉由使用數式(2 )和數式(3 )的計算結 果的平均値或數式(4)和數式(5)的計算結果的平均値 ’即可提升耐雜訊性。其中,雖然耐雜訊性差,但速度確 定部83係可在判定出測定對象n處於微小位移狀態的情 形下,確定速度的候補値Val ( t, t+Ι )和Va2 ( t,t+Ι ) 的任一者爲測定對象1 1的速度的絕對値,亦可在判定出 測定對象1 1處於位移狀態的情形下,確定速度的候補値 νβ3 ( t,t+Ι )和νβ4 ( t,t+Ι )的任一者爲測定對象1 1的 速度的絕對値。 其中,速度確定部8 3亦可在判定出測定對象U處於 微小位移狀態的情形下,確定記憶在記億部80的速度的 候補値V a 5 ( t )爲時刻t -1至t中的測定對象1 1的速度 的絕對値(步驟S2 04 )。此外,速度確定部83亦可在判 定測定對象1 1處於位移狀態的情形下,計算出記億在記 憶部8 0的速度的候補値V β 6 ( t )作爲時刻t -1至t中的 測定對象1 1的速度的絕對値(步驟S204 ) ° 相較於使用數式(2 )至數式(5 )的計算結果的情形 ,使用數式(6 )或數式(7 )可計算出更爲正確的速度。 接著,速度確定部83係計算以下的數式(14)、數 -33- 200916731 式(15),確定測定對象11的速度的方向(第8圖的步 驟 S 2 0 5 )。 IX = X(t) + X(t+l) ··· ( 14 ) IY = Y(t) + Y(t+l) ---(15) 速度確定部83係比較數式(I4)的ΣΧ和數式(15) 的ΣΥ的大小,在ΣΧ比ΣΥ大的情形下,係判定測定對象 1 1正接近距離·速度計,在Σ Y比Σ X大的情形下,則係 判定測定對象1 1正遠離距離•速度計。 其中,在步驟S204中,速度確定部83係在使用數式 (6)或數式(7)的計算結果取代使用數式(2)至數式 (5 )的計算結果來確定速度的絕對値的情形下’比較 Μ Η P的數量X ( t )和Y ( t )的大小,在X ( t )比Y ( t ) 大的情形下,判定測定對象1 1正接近距離•速度計’在 Y ( t )比X ( t )大的情形下’判定測定對象1 1正遠離距 離·速度計(步驟S205 )。 接著,距離確定部84係根據狀態判定部82的判定結 果,確定與測定對象I1的距離(第8圖的步驟S206)。 亦即,距離確定部84係在判定出測定對象1 1處於微小位 移狀態的情形下,確定記憶在記憶部8 0的距離的候補値 Lai ( t,t+Ι )與Lct2 ( t,t+Ι )的平均値爲時刻t-Ι至t+1 中之與測定對象1 1的平均距離(步驟s 2 0 6 )。 此外,距離確定部8 4係在判定測定對象1 1處於位移 -34- 200916731 狀態的情形下’確定記憶在記憶部8 0的距離的候補値 LP3 ( t, t+Ι )與LP4 ( t,t+Ι )的平均値爲時刻t-Ι至t+1 中之與測定對象11的平均距離(步驟S206)。其中’雖 然耐雜訊性差,但距離確定部84可在判定出測定對象1 1 處於微小位移狀態的情形下’確定距離的候補値La 1 ( t, t+1 )和La2 ( t, t+1 )的任一者爲與測定對象1 1的距離, 亦可在判定出測定對象1 1處於位移狀態的情形下’確定 距離的候補値Lp3 ( t, t+Ι )和ίβ4 ( t, t+Ι )的任一者爲 與測定對象1 1的距離。 其中,距離確定部8 4亦可在判定出測定對象1 1處於 微小位移狀態的情形下,確定記憶在記憶部8 0的距離的 候補値La5 ( t )爲時刻t- 1至t中之與測定對象1 1的平均 距離(步驟S206 )。此外,距離確定部84亦可在判定出 測定對象1 1處於位移狀態的情形下,確定記憶在記憶部 80的距離的候補値LP6 ( t)爲時刻t-Ι至t中之與測定對 象1 1的平均距離(步驟S 2 0 6 )。 相較於使用數式(8 )至數式(1 1 )的計算結果的情 形,使用數式(12)或數式(13)可計算出更爲正確的距 離。 運算裝置8係在有由例如用戶(user )指示測量結束 爲止(第8圖的步驟s 2 0 7中的Y E S ),在每次利用計數 裝置7計算MHP的數量的時刻,即進行如以上所示的步 驟S201至S206的處理。 顯不裝置9係以即時(real time)顯示藉由運算裝置 -35- 200916731 8所計算出的與測定對象1 1的距離及測定對象n的速度 〇 另一方面’振幅調整裝置10係使用運算裝置8的狀 態判定部83的判定結果,以使半導體雷射1 _丨、卜2的三 角波驅動電流的振幅成爲適當的方式控制雷射驅動器4-1 、4 - 2 〇 如本實施形態所示,在使用複數個半導體雷射1 - 1、 1 -2的距離•速度計中,若在半導體雷射1 -1、i _2的波長 變化量的絕對値存在差異,就會在測定値產生誤差。第9 圖(A)至(C)係用以說明隨半導體雷射1_1、1-2的波 長變化的切換,MHP的數量X、Y的變化圖,第9圖(A )係顯示半導體雷射丨_ :!、! _2的振盪波長的時間變化圖, 第9圖(Β )係顯示半導體雷射1 - 1、1 - 2的波長變化量的 絕對値相等時的Μ Η Ρ的數量X、Υ的變化圖,第9圖(C )係顯示半導體雷射1 _ 1、1 _ 2的波長變化量的絕對値存在 差異時的ΜΗΡ的數量X、Υ的變化圖。在第9圖(Α)至 第9圖(C)中,LD1係半導體雷射1-1的振盪波形,LD2 係半導體雷射1 -2的振盪波形,X1、Χ2分別是振盪波長 正在增加的情形下的半導體雷射1 -1、1 -2的ΜΗΡ的數量 ’ Υ 1、Υ2分別是振盪波長正在減少的情形下的半導體雷 射1 -〗、1 - 2的Μ Η Ρ的數量。 在半導體雷射1 -1、1 - 2的波長變化量的絕對値爲相等 的情形下,如第9圖(Β )所示,即便在半導體雷射1 -1、 1-2的振盪波長由增加切換成減少’或由減少切換成增加 -36- 200916731 的時序SWl、SW2、SW3的前後,雖然MHP的數量X、γ 分別保持連續性,但若在半導體雷射1 -1、1 -2的波長變化 量的絕對値存在差異時,如第9圖(C )所示,ΜΗΡ的數 量X、Υ分別會失去連續性。 因此,本實施形態的振幅調整裝置1 0係使用在運算 裝置8的距離•速度計算部81所計算出的速度候補値 Val(t,t+1) 、Va2(t,t+l) 、Vp3(t, t+1) 、Vp4(t, t+ 1 )中,根據狀態判定部8 2的判定結果,速度確定部8 3 判斷出非爲真値而未採用者的速度候補値來進行振幅調整 。在判定出測定對象1 1以微小位移狀態進行運動的情形 下,速度確定部8 3未採用者的速度候補値係V β 3 ( t, t+ 1 )和νβ4 ( t, t+1 )的平均値,在判定出測定對象1 1以位 移狀態進行運動的情形下,速度確定部8 3未採用者的速 度候補値係Va 1 ( t,t+ 1 )和Va2 ( t,t+ 1 )的平均値。 振幅調整器10係透過雷射驅動器4-1、4-2來調整三 角波驅動電流的振幅,以使速度確定部8 3未採用者的速 度候補値Val ( t,t+Ι )與Va2 ( t, t+Ι )的平均値或νβ3 (t,t+1 )與νβ4 ( t, t+1 )的平均値,大致等於在距離確 定部84判斷出爲真値而採用者的距離候補値La 1 ( t, t+ 1 )與 La2(t,t+Ι)的平均値或 Lp3(t,t+Ι)與 Lp4(t, t+ 1 )的平均値乘以半導體雷射1 _丨、丨_ 2的波長變化率( λ!)-λ&) Ub的値。此時,可對於由雷射驅動器4_;1提供至 半導體雷射1 - 1的驅動電流及由雷射驅動器4_2提供至半 導體雷射1 -2的驅動電流的雙方進行振幅調整,亦可調整 -37- 200916731 任一方。在判定出測定對象1 1處於微小位移狀態的情形 下,距離確定部84採用者的距離候補値爲La 1 ( t,t+ 1 ) 與La2 ( t,t+1 )的平均値,在判定出測定對象1 1處於位 移狀態的情形下,距離確定部84採用者的距離候補値爲 Lp3 ( t, t+1 )與 Lp4(t,t+1)的平均値。 第1 〇圖係用以說明由雷射驅動器4-1、4-2被供給至 半導體雷射1 -1、1 - 2的二角波驅動電流的振幅的調整方法 的說明圖。按照來自振幅調整裝置1 〇的指示,雷射驅動 器4_1、4-2係藉由將驅動電流的最大値固定在固定値(在 第1 〇圖之例中,由半導體雷射1 -1、1 -2所規定的驅動電 流的上限値CL )的情形下直接增加或減小驅動電流的最 小値,來調整驅動電流的振幅AMP。如此一來,可將驅動 電流的振幅設定爲適當的値。 如本實施形態所示,藉由調整三角波驅動電流的振幅 ’可使半導體雷射1 -1、1 -2的波長變化量的絕對値相等, 可降低距離及速度的測定誤差。 其中,在速度確定部83使用數式(6)或數式(7) 的計算結果代替使用數式(2)至數式(5)的計算結果來 確定速度的絕對値的情形下,振幅調整裝置1 0係進行調 整三角波驅動電流的振幅,以使速度確定部8 3判斷出非 爲真値而未採用者的速度候補値V a 5 ( t )或V β 6 ( t )大 致等於在距離確定部84判斷出爲真値而採用者的距離候 補値L a 5 ( t )或L β 6 ( t )乘以半導體雷射1 -1、;! · 2的波 長變化率(Xb-Xa ) Ab的値。在判定出測定對象Π以微 -38- 200916731 小位移狀態進行運動的情形下,速度確定部83未採用者 的速度候補値係νβ6 ( t ),在判定出測定對象11以位移 狀態進行運動的情形下,速度確定部83未採用者的速度 候補値係Vot5 ( t )。在判定出測定對象U處於微小位移 狀態的情形下,距離確定部84採用者的距離候補値爲 La5 ( t ),在判定出測定對象1 1處於位移狀態的情形下 ,距離確定部84採用者的距離候補値爲ίβ6 ( t )。 此外,振幅調整器10亦可透過雷射驅動器4-1、4-2 來調整三角波驅動電流的振幅,以使根據狀態判定部82 的判定結果,速度確定部8 3判斷出爲真値而採用者的速 度候補値V α 1 ( t,t + 1 )和V a 2 ( t,t + 1 )的平均値或V β 3 ( t,t+l)和V04(t,t+1)的平均値,在半導體雷射1-1、1-2的波長變化進行切換的時序的前後保持連續性。此外, 在速度確定部83代替使用數式(2)至數式(5)的計算 結果而使用數式(6)或數式(7)的計算結果來確定速度 的絕對値的情形下,振幅調整裝置1 0亦可調整三角波驅 動電流的振幅,以使速度確定部8 3判斷出爲真値而採用 者的速度候補値V a 5 ( t )或V β 6 ( t ),在半導體雷射1 -1 、1 - 2的波長變化進行切換的時序的前後保持連續性。 其中’當前時刻爲第1振盪期間P1或爲第2振盪期 間P 2係由雷射驅動器4 - 1、4 - 2通知,半導體雷射1 -1、 1 - 2的波長變化進行切換的時序亦由雷射驅動器4 _丨、4 - 2 通知。振幅調整裝置1 0係按照來自雷射驅動器4 _丨、4 - 2 的通知來進行動作。 -39- 200916731 此外,振幅調整裝置1 〇亦可調整三角波驅動電流的 振幅,以使根據狀態判定部8 2的判定結果,距離確定部 84判斷出爲真値而採用者的距離候補値Ltxl ( t,t+Ι )和 Loi2 ( t,t+1 )的平均値或 Lp3 ( t, t+1 )和 LP4 ( t,t+1 ) 的平均値在半導體雷射1 -1、1 -2的波長變化進行切換的時 序前後保持連續性。此外,在距離確定部84使用數式( 12)或數式(13)的計算結果取代使用數式(8)至數式 (1 1 )的計算結果來確定距離的情形下,振幅調整裝置1 〇 亦可調整三角波驅動電流的振幅,以使距離確定部84判 斷出爲真値而採用者的距離候補値La5(t)或Lp6(t) 在半導體雷射1-1、1-2的波長變化進行切換的時序前後保 持連續性。 爲了在半導體雷射1 -1、1 -2的波長變化進行切換的時 序前後,使速度或距離的計算結果具有連續性,亦可使用 例如最小平方法。此外,如第1 1圖所示,振幅調整裝置 1 0亦可調整三角波驅動電流的振幅,俾以將速度(或距離 )的計算結果相連結而得的特性線VL延長至半導體雷射 1 -1、1 - 2的波長變化進行切換的時序S W之後,在相對於 該延長線的預定範圍ER內包含有時序SW之後之起始速 度(或距離)的計算結果VV。 如以上所述,在本實施形態中,使半導體雷射1 -1、 1 -2交替反覆振盪波長連續增加的第1振盪期間和振盪波 長連續減少的第2振盪期間’針對光電一極體2-1和2-2 的各二極體,對光電二極體2-1、2-2的輸出訊號所包含的 -40- 200916731 MHP的數量進行計數,根據該計數結果和半導體雷射i i 、1 -2的最小振盪波長ka以及最大振盪波長λΐ),即可計 算與測定對象1 1的距離及測定對象1 1的速度。結果,在 本貫施形態中,一面活用(a)可使裝置小型化;(b)不 需要高速的電路;(c )強抗擾亂光;(d )不選擇測定對 象之類之習知自耦合型雷射測量器的優點,一面不僅可測 量與測定對象1 1的距離,亦可測量測定對象Π的速度。 另外,根據本實施形態,可以判定測定對象1 1是進行等 速運動,還是進行等速運動以外的運動。 此外,在本實施形態中,由振盪波長的增減成相反的 半導體雷射1 - 1、1 -2,使相互平行的雷射光同時放射至測 定對象11,在比第1振盪期間和第2振盪期間短的第1計 數期間Pn,求出光電二極體2 -1或2 -2的輸出所包含的 MHP的數量X,在與第1計數期間Pn同時刻的第2計數 期間Pm,求出光電二極體2-2或2-1的輸出所包含的 MHP的數量Y,由此可以比專利文獻1所揭示的距離.速 度計更短的時間來測定距離與速度。在專利文獻1所揭示 的距離•速度計中,雖然必須經過至少3次的例如第1振 盪期間t-1、第2振盪期間t以及第1振盪期間t + 1來對 MHP的數量進行計數,但在本實施形態中,例如在第1計 數期間Pnl及第2計數期間Pml,對MHP的數量X ' Y計 數1次,另外在第1計時期間Pn2及第2計數期間Pm2, 對MHP的數量X、γ計數1次即可,藉由共2次對MHP 的數量進行計數,可求出距離與速度。 -41 - 200916731 另外,在本實施形態中,藉由使半導體雷射1 -1、1 -2 的波長變化量的絕對値相等,即可提高距離及速度的測定 精度。 (第2實施形態) 接著’說明本發明的第2實施形態。在本實施形態中 ’由於距離•速度計的整體構成與第1實施形態相同,所 以使用第1圖的元件符號進行說明。第1 2圖係顯示本發 明的第2實施形態中的計數裝置7的構成的一例的方塊圖 ’第1 3圖係顯示此計數裝置7的動作的流程圖。本實施 形態的計數裝置7係由切換開關7 0 a ;判定部7 3 -1、7 3 - 2 ;邏輯與運算部(AND ) 74-1、74-2 ;計數器75-1、75-2 ;計數結果補正部76-1、76-2 ;記憶部77 ;周期和計算部 78_1、78-2 ;及個數計算部79-1、79-2所構成。 第1 4圖係顯示計數結果補正部7 6 -1的構成的一例的 方塊圖。計數結果補正部76-1係由周期測定部760、頻率 分佈作成部761、中位數計算部762及補正値計算部763 所構成。計數結果補正部76-2的構成由於與計數結果補 正部76-1相同,故省略說明。 第1 5圖(A )至第1 5圖(F )係用以說明本實施形態 之§十數裝置7的動作圖’第1 5圖(A )係以模式顯示濾波 器電路1 1之輸出電壓的波形,亦即Μ Η P的波形的圖,第 1 5圖C Β )係顯示與第1 5圖(A )相對應的判定部7 3 - 1、 _2的輸出的圖,第15圖(C)係顯示被輸入至計數裝置 -42- 200916731 7的閘極訊號GS的圖,第15圖(D)係顯示與第15圖( B )相對應之計數器75-1的計數結果的圖,第1 5圖(E ) 係顯示被輸入至計數裝置7的時鐘訊號CLK的圖,第1 5 圖(F)係顯示與第1 5圖(B )相對應之計數結果補正部 76-1之周期測定部760之測定結果的圖。其中,在第15 圖(A)至第15圖(F)中,係顯示有關半導體雷射1-1 的振盪波長增加、半導體雷射1 -2的振盪波長減少的第1 振盪期間p1的動作。 首先,計數裝置7的切換開關70a判定是否爲切換時 (第1 3圖的步驟S 3 0 0 ),若爲切換時,則更換濾波器電 路6-1、6-2的輸出和判定部73-1、73-2的連接(步驟 S301)。切換開關70a的切換時係產生於每個三角波的周 期T的1 /2的時間。亦即,切換開關70a係在第1振盪期 間P1 ’將濾波器電路6-1的輸出與判定部73-1的輸入相 連接’將濾波器電路6-2的輸出與判定部73-2的輸入相連 接;在第2振盪期間P2,將濾波器電路6_2的輸出與判定 部73-1的輸入相連接,將濾波器電路6-1的輸出與判定部 7 3 - 2相連接(步驟S 3 0 1 )。 亦即’在判定部7 3 -1中,經常會被輸入濾波器電路 6-1或6-2的輸出中與振盪波長正在增加的半導體雷射id 或1 - 2相對應的輸出’在判定部7 3 - 2中,經常會被輸入濾 波器電路6-1或6-2的輸出中與振盪波長正在減少的半導 體雷射1 -1或1 - 2相對應的輸出。其中,當前時刻是第1 振盪期間p1或第2振盪期間係由雷射驅動器4 -1、4 - 2所 -43- 200916731 通知。切換開關70&係按照來自雷射驅動器4_】、4_2 知進行切換動作。 計數裝置7的判定部73-1係判定第1S圖(A) 的濾波器電路6-〗或6_2的輸出電壓爲高位準(H) 位準(L ) ’輸出如第1 5圖(B )所示的判定結果。 ,判疋7 3 - 1係在濾波器電路6 _丨或6 _ 2的輸出電壓 至臨限値ΤΗ 1以上時,判定爲高位準;在濾波器電龄 或6-2的輸出電壓下降至臨限値th2(TH2<TH1) 時’判定爲低位準,藉此將濾波器電路6-丨或6_2的 2値化(桌1 3圖的步驟s 3 02 )。同樣地,判定部7 3 將濾波器電路6-2或6-1的輸出2値化(步驟S302 ) AND74-1係輸出判定部73 —丨的輸出與第15圖! 所示的閘極訊號GS的邏輯與運算的結果,計數器75 如第15圖(D)所示,對AND74_1的輸出的上升進 數(第13圖步驟S303)。同樣地,AND74-2係輸出 部7 3 - 2的輸出與閘極訊號G s的邏輯與運算的結果, 器75-2係對AND7 4-2的輸出的上升進行計數(步驟 )。在此,閘極訊號GS係在第1計數期間Pn及第2 周期Pm的起始時上升,在第丨計數期間Pn及第2計 期Pm的結束時下降的訊號。因此,計數器75-1、75 對第1、第2計數期間Pn、Pm中之AND74-1、74-2 出的上升邊緣的數量(亦即MHP的上升邊緣的數量 行計數。第1計數期間Pn及第2計數期間Pm的定義 照第6圖(A)至第6圖(D)的說明。 的通 所示 或低 此時 上升 ^ 6-1 以下 輸出 係 〇 〔C ) -1係 行計 判定 計數 S303 計數 數周 -2係 的輸 )進 係按 -44 - 200916731 另一方面’計數結果補正部76-1的周 係在每次AND74-1的輸出中產生上升邊緣 計數期間Pn中的AND74-1的輸出的上升邊 即MHP的周期)進行測定(第1 3圖的步驟 ,周期測定部7 6 0係以第1 5圖(E )所示之 的周期爲1個單位來測定MHP的周期。在: 之例中,周期測定部7 6 0係依序測定Τ α、 MHP的周期。由第15圖(Ε)、第15圖 期Τα、Τβ、Τγ的大小係分別爲5時鐘、4時 時鐘訊號CLK的頻率遠大於ΜΗΡ所可取得& 同樣地,計數結果補正部76-2的周期之 在每次 AND74-2的輸出中產生上升邊緣時 數期間Pm中的AND 74-2的輸出的上升邊緣 的周期)進行測定(步驟S3〇4 )。 記憶部7 7係記憶計數器7 5 -1、7 5 - 2的 數結果補正部76-1、76-2各自的周期測定部 果。 在閘極訊號GS下降、第1計數期間Pn 數結果補正部7 6 -1的頻率分佈作成部7 6 1 記憶部77中的計數結果補正部76-1的周期 測定結果,作成第1計數期間Pn中的M H P 分佈(第1 3圖的歩驟s 3 0 5 )。同樣地’在 P m結束之後,計數結果補正部7 6 - 2的頻 7 6 1係根據計數結果補正部7 6 -2的周期測定 期測定部760 時,即對第1 緣的周期(亦 S 3 0 4 )。此時 時鐘訊號C L K 第15圖(F) Τβ、τγ作爲 (F )可知,周 F鐘、2時鐘。 勺最高頻率。 酣定部760係 ,即對第2計 的周期(Μ Η Ρ 計數結果和計 760的測定結 結束之後,計 係根據記憶在 測定部7 6 0的 的周期的頻率 第2計數期間 率分佈作成部 部7 6 0的測定 -45- 200916731 結果,作成第2計數期間Pm中的MHP的周期的頻率分佈 (步驟 S 3 0 5 )。其中,當η較小時,由於用以求取中位 數的頻率變少、求取中位數的精度降低’因此當使用比 Ρη更爲之前的周期時,求出第1計數期間Ρη中的ΜΗΡ的 周期的中位數時的頻率分佈就會在連續的雜訊下更強。 接著,計數結果補正部76-1的中位數計算部762係 根據計數結果補正部76-1的頻率分佈作成部76 1所作成 的頻率分佈,計算第1計數期間Ρη中的ΜΗΡ的周期的中 位數(median) Τ0 (第13圖步驟S306)。同樣地’計數 結果補正部7 6 - 2的中位數計算部7 6 2係根據計數結果補 正部7 6 - 2的頻率分佈作成部7 6 1所作成的頻率分佈,計 算第2計數期間P m中的Μ Η P的周期的中位數T 0 (步驟 S 3 06 ) ° 計數結果補正部7 6 -1的補正値計算部7 6 3係根據計 數結果補正部76-1的頻率分佈作成部76 1所作成的頻率 分佈,求出爲第1計數期間Ρη中的周期的中位數Τ0的 〇 . 5倍以下的等級的頻率總和N s以及爲第1計數期間ρ η 中的周期的中位數Τ 0的1 · 5倍以上的等級的頻率總和N w ,並如下式補正計數器75-1的計數結果(第1 3圖的步驟 S 3 07 ) ° N,=N + Nw-Ns ( 1 6 ) 在數式(16 )中’ N係作爲計數器75·1的計數結果 -46- 763 200916731 的MHP的數量’ Ν’係補正後的計數結果。 同樣地’計數結果補正部7 6 - 2的補正値計算部 係根據計數結果補正部76-2的頻率分佈作成部761 成的頻率分佈,求出爲第2計數期間Pm中的周期的 數T0的0.5倍以下的等級的頻率總和Ns以及爲第2 期間P m中的周期的中位數τ 0的1 .5倍以上的等級的 總和Nw,並如數式(16 )所示補正計數器75-2的計 果N (步驟S 3 0 7 )。 在第1 6圖顯示MHP的周期的頻率分佈的一例。 16圖中,Ts係MHP的周期的中位數T0的0.5倍的 値,Tw係中位數T0的1 .5倍的等級値。毫無疑問地 1 6圖中的等級是MHP的周期的代表値。其中,爲了 第1 6圖中的記載,省略中位數T 0與T s之間、以及 數T0與Tw之間的頻率分佈。 第17圖係用以說明計數器75-1、75-2之計數結 補正原理的圖,第1 7圖(A )係以模式顯示濾波器 6-1之輸出電壓的波形,亦即MHP的波形的圖,第1 (B )係顯示與第1 7圖(A )相對應之計數器75-1的 結果的圖。 原本MHP的周期係依與測定對象1 1的距離而異 是若與測定對象1 1的距離不變,則MHP係以相同的 出現。但是由於雜訊而會在MHP波形發生缺漏或產 應作爲訊號進行計數的波形,而在Μ Η P的數量產生 所作 中位 計數 頻率 數結 在第 等級 ,第 簡化 中位 果之 電路 7圖 計數 ,但 周期 生不 誤差 -47- 200916731 當發生訊號缺漏時,在已發生缺漏的部位的 周期T W係成爲原本周期的大約2倍。亦即,當 期爲中位數T 0的約2倍以上時,係可判斷在訊 生缺漏。因此,將周期T w以上之等級的頻率總 爲訊號缺漏的次數,並將該Nw加算在計數器75 結果N,藉此可補正訊號的缺漏。 此外,在將雜訊進行計數後的部位的MHP ^ 係成爲原本周期的大約0.5倍。亦即,當Μ Η Ρ的 中位數的0 · 5倍以下時,係可判斷已過剩計數訊 ’將周期Ts以下之等級的頻率總和Ns視爲過剩 的次數,並由計數器75-1的計數結果N減算該 可補正誤數的雜訊。 以上爲數式(1 6 )所示之計數結果的補正原 器75-2的計數結果亦可按相同的原理加以補正 在本實施形態中’係將Ts設爲周期中位數T0的 値,將Tw設爲中位數T0的1 .5倍的値而非中β 2倍的値,設爲1 ·5倍的理由容後陳述。 接著,計數裝置7的周期和計算部78-1係 在記憶部7 7中之計數結果補正部7 6 -1的周期測 的測定結果,計算第1計數期間Ρη中的ΜΗΡ的 和 Sum (第1 3圖步驟 S 3 0 8 )。同樣地,周期 78-2係根據計數結果補正部76-2的周期測定部 定結果,計算第2計數期間pm中的MHP的周 Sum (步驟 S 3 08 )。 MHP的 MHP的周 號中已發 和Nw視 -1的計數 i勺周期Ts 周期約爲 號。因此 計數訊號 Ns,藉此 理。計數 。其中, 0 · 5倍的 :數T0的 根據記憶 定部760 周期的總 和計算部 760的測 期的總和 -48- 200916731 計數裝置7的個數計算部79-1係計算第1計數期間 Pn中每單位時間的MHP的數量X (振盪波長正在增加的 半導體雷射的干涉波形的數量),個數計算部79-2係計 算第2計數期間Pm中的每單位時間的MHP的數量Y (振 盪波長正在減少的半導體雷射的干涉波形的數量)(第1 3 圖步驟3 09 )。個數計算部79-1係以由周期和計算部78-1 所計算出的第1計數期間中的MHP的周期的總和Sum來 除由計數結果補正部76-1的補正値計算部763所計算出 的補正後的計數結果Ν’,藉此計算第1計數期間Pn中每 單位時間的MHP的數量X。 X = N,/Sum ··· (17) 同樣地,個數計算部79-2係以由周期和計算部78-2 所計算出的第2計數期間中的MHP的周期的總和Sum來 除由計數結果補正部76-2的補正値計算部763所計算出 的補正後的計數結果N ’’藉此計算第2計數期間Pm中每 單位時間的MHP的數量Y。 計數裝置7係按每一第1、第2計數期間Pn、Pm進 行以上所示的處理。因此,以藉由判定部73-1、AND 74-1 、計數器7 5 - 1、計數結果補正部7 6 - 1、記憶部7 7、周期 和計算部78-1及個數計算部79-1的動作來計算MHP的數 量X,同時藉由判定部73-2、AND 74-2 '計數器75-2、計 數結果補正部76-2、記憶部77、周期和計算部78-2及個 -49- 200916731 數計算部79-2的動作來計算MHP的數量γ的方式同時求 出ΜΗΡ的數量X和Υ。 計數裝置7以外的構成係與第1實施形態相同。在本 實施形態中,測定計數期間中的ΜΗΡ的周期’基於此測 定結果作成計數期間中的ΜΗΡ的周期的頻率分佈’基於 頻率分佈計算ΜΗΡ的周期的中位數,基於頻率分佈求出 爲中位數的〇 . 5倍以下的等級的頻率總和N s及爲中位數 的1 .5倍以上的等級的頻率總和Nw,根據該等頻率Ns及 N w補正計算器的計數結果’由此可修正Μ Η P的計數誤差 ,因此相較於第1實施形態,可使距離及速度的測定精度 提高。 接著,在本實施形態中,說明使用周期的頻率分佈的 中位數作爲ΜΗΡ的基準周期的理由,及將求出頻率Nw時 之周期的臨限値設爲中位數的1 .5倍的理由。 首先,針對由於已誤數雜訊而將MHP的周期分割爲2 的情形下的計數結果的補正加以說明。當半導體雷射的振 盪波長變化呈線性時’ MHP的周期係以將計數期間除以 Μ Η P的數量N所得的T 0爲中心進行常態分佈(第1 8圖 )° 接著,考慮因雜訊而分割爲2的Μ Η Ρ的周期。過剩 計數雜訊的結果而分割爲2的ΜΗΡ的周期係以隨機的比 例分割爲2 ’但是分割前的周期爲以Τ0爲中心的常態分 佈,因此成爲相對於0.5T0呈對稱的頻率分佈(第1 <5圖 的a )。 -50- 200916731 針對包含該雜訊的MHP的周期的頻率分佈’假設 MHP的k%因雜訊而將周期分割爲2時’計算MHP的周期 的平均値及中位數。 所有周期的和恒爲計數期間’並不會改變,但是當 MHP的k%因雜訊而將周期分割爲2時,頻率的積分値會 成爲(l+k〔%〕)N,因此MHP的周期的平均値成爲(1/ (1+ k〔 %〕) ) TO。 另一方面,當忽略以雜訊的分佈而與常態分佈相重疊 的部分時,分割爲2的雜訊累積頻率係成爲中位數與T0 之間的等級所包含的頻率的兩倍,因此’ Μ Η P的周期的中 位數係位於第2 0圖之b的面積爲a的面積的2倍的位置 〇 在屬於Microsoft公司之軟體的Excel (註冊商標)中 有所謂 NORMSDIST ()的函數,其可利用「( 1- ( b NORMSDIST ( α ) ) χ2) χ100〔%〕」來表現由常態分佈 的平均値至αΣ間之兩側値的內部比例,若利用該函數’ 可以如下數式,表示ΜΗΡ的周期的中位數。 (l-(l-NORMSDIST((中位數- Τ0)/Σ))χ2)χ(100· k)/2 = k[%] "· (18) 根據如以上所示,若將標準偏差Σ設爲0.02T0,而計 算出Μ Η Ρ的1 0 %因雜訊而將周期分割爲2時之Μ Η Ρ之周 期的平均値TO ’及中位數TO ’,如以下所示。 -51 - 200916731 Τ0?= ( 1/ ( 1+0.1) ) Τ0 = 0·91Τ0 …(19) Τ0,= 0.995 Τ0 …(20 ) 其中,在此係將平均値、中位數均以Τ0’表示 器値(頻率的積分値)係成爲1 ·〗Ν ’計數誤差成爲 在此,考慮在某周期Ta的ΜΗΡ被分割爲2之 個周期Τ1、Τ2 (設爲τ 1 2 Τ2 )所可取得的期間的 假設雜訊是隨機産生,如第21圖所示’ Τ2係可以 機率取得〇 < Τ2 S Ta/2的値。同樣地’ Τ1亦可以 機率取得T/2 STl<Ta的値。第21圖中的T1所可 機率分佈的面積與T 2所可取得的機率分佈的面積 〇 周期T a係呈以T 0爲中心的常態分佈’因此 Ta看作集合,則T2所可取得的機率的頻率分佈係 與平均値爲〇 . 5 T0、標準偏差爲0.5 Σ的常態分佈的 率分佈相同的形狀。 此外,如第2 2圖所示,T1所可取得的機率的 佈係形成爲將平均値爲0.5T0 '標準偏差爲〇·5Σ的 佈的累積頻率分佈、與平均値爲Τ0、標準偏差爲 態分佈的累積頻率分佈相重疊的形狀。在此’ T 1、 各數量係與周期被分割爲2的ΜΗP的數量k〔 %〕 等。 若可對於因雜訊而使周期被分割爲2的Μ Η P纪 。計數 10%。 後之2 機率。 相同的 相同的 取得的 均爲1 ,若將 形成爲 累積頻 頻率分 常態分 Σ的常 Τ2的 • Ν相 )數量k -52- 200916731 〔%〕· N進行計數,即可使用以下數式’導 量N 〇 N = N,-k〔〇/〇〕· N …(21) 如第23圖所示,若可以使具有Tb以下之 的數量NS與被分割爲2之MHP的數量k〔 $ 相等的方式來設定Tb,即可藉由對於具有Tb 的MHP的數量NS進行計數,而間接地對於周 2的MHP的數量k〔 %〕· N進行計數。 在第23圖中,當具有Tb以上之周期的 T2的頻率(第23圖的c)與具有未達Tb之 的周期T1的頻率(第23圖的d)爲相同時’ 下之周期的MHP的數量係與T2的數量,亦即 爲2的MHP的數量Ns(=k〔%〕· N)成爲相 MHP的數量N係可以如下數式表示。 N = N’-k[%] · N = N,-Ns …(22) T1及T2的頻率形狀係在〇.5Ta呈對稱的 將0.5 T a作爲臨限値而進行判斷時,可正確地 割爲2的MHP的頻率Ns ( =k〔 %〕· N )進行 接著,藉由對於具有〇 . 5 T 0之下之周期K 量進行計數,可對周期被分割爲2的MHP的丨 MHP的數 周期的MHP ] · N成爲 以下之周期 丨期被分割爲 MHP的周期 周期的MHP 具有Tb以 I周期被分割 丨等。亦即, 形狀,因此 對周期被分 計數。 M IIP的數 女量k〔 %〕 -53- 200916731 • N的數量間接地進行計數,但是並無法根據包含雜訊的 MHP的周期的頻率分佈(第19圖)來計算出T0。若MHP 的母群體如第19圖的頻率分佈所示眾數(mode)愈與το 相等愈爲理想而且母體參數(population parameter)愈大 ,即可使用眾數作爲TO’。 在此記載使用平均値或中位數T0’所得之MHP的數量 k〔%〕. N的g十數。若以TO’= y· TO表不,代入TO’取代 TO以求出Ns時,比作爲周期被分割爲2之MHP的數量 所進行判斷的0.5T0’爲小的周期的頻率Ns’係成爲y · k〔 %〕 . N (第 2 4 圖)。 若使用平均値或中位數T0’,補正後的計數値Nt係以 下所示。Lp6(t) = XaxXb(X(t)-Y(t))/(4x(Xa-Xb)) (13) In the formula (2) to the formula (1 3 ), the candidate 値V cx 1 (t, Va2(t, t+l), Va5(t), Lal(t, t+l), La2), and La5(t) assume that the measurement target 1 1 is calculated in a small displacement state, and the candidate 値Νβ3 ( t, t+Ι ), νβ4 ( t,t+Ι ), ), LP3 ( t, t+1 ), ίβ4 ( t,t+1 ), ίβ6 ( t) assume that the image 1 1 is in a displacement state The calculated 値. The time t+1 is the end time of the first counting period pn+1 and the second counting period P, and the time t is the ending time of the previous period Pn and the second counting period Pm of Pn+1 and Pm+1, and the timing The first count period Pn-1 and the end time of the second interval Pm-Ι of pn+l and Pm+Ι. X ( t + Ι ) is the number of Pn MHP in the first counting period, X ( t ) is the MHP in the first counting period Pn, and Y ( t + Ι ) is the number of MHP in the second counting period Pm + )) The number of halos of the MHP in the second counting period Pm. For example, if the current time is t + l = t2 ', the first count Pn+1 is Pn2 of Fig. 6 (C), the first count period fl Pnl of the previous time, and the second count period Pm+1 is 6 (D) Pm2, 6 of t, t+1) (t, t+1 state νβ6 (t measured against 荀Pm+1 1 count t-ι count period + 1) , γ (the number of periods t ρ η is the previous time - 31 - 200916731 The second counting period pm is Pml. Further, if the current time is set to t + l = t3 ', the first counting period Pn+1 is Pn3, The first i-th count period Pn is Pn2, the second count period Pm+1 is pm3, and the previous S-th ten-digit period Pm is Pm2. The arithmetic unit 8 calculates the number of MHPs each time by the counting means 7. At the time of the calculation, the calculation of the equation (2) to the equation (丨3) is performed. Next, the state determination unit 82 of the arithmetic unit 8 uses the equation (2) to the equation (5) stored in the memory unit 80. As a result of the calculation, the state of the measurement target 11 is determined (step S203 in Fig. 8). The state determination unit 82 is in Val ( t, t+1 ) = Va2 ( t, t + Ι ), that is, the number (2) When the calculation result of the equation (3) is equal, the measurement target is determined丨1 is in a state of minute displacement. Further, state determination unit 8 2 is calculated at V β 3 ( t, t + 1 )=νβ4 ( t, t+ 1 ), that is, the calculation of equations (4) and (5) When the result is equal, the determination target 11 is in a displacement state. The state determination unit 82 is within a predetermined error range in which the error of the calculation result of the equation (2) and the calculation result of the equation (3) is within a predetermined error range. In the case where the calculation results of the equations (4) and (5) are equal or not, the determination can be made in the same manner. The speed determination unit 83 of the arithmetic unit 8 is based on the state determination unit 82. The determination result 'determines the absolute 値 of the speed of the measurement target 値 (step S 2 04 of Fig. 8). That is, the speed determination unit 8.3 determines that the measurement object 11 is in the state of minute displacement. The average 値 of the velocity 値Val ( t,t+1 ) and Va2 ( t,t+Ι ) of the velocity of the memory unit 80 is the absolute 値 of the velocity of the measurement target 1 1 at the time t-1 to t+1 (step -32- 200916731 S204) Further, the 'speed determination unit 8.3 determines that the measurement target 1 1 is in a displacement state. The average 値 of the candidate 値νβ3 ( I t+Ι ) and νβ4 ( t, t+Ι ) which determine the velocity of the memory in the memory portion 80 is the measurement object 1 1 at the time t-Ι to t+1 Absolute 値 of speed (step S 2 〇 4 ). As shown above, the noise resistance can be improved by using the average 値 of the calculation results of the equations (2) and (3) and the average 値' of the calculation results of the equations (4) and (5). . However, although the noise resistance is poor, the speed determining unit 83 can determine the speed candidates 値Val ( t, t+Ι ) and Va2 ( t, t+Ι in the case where it is determined that the measurement target n is in the minute displacement state. Any one of the absolute enthalpy of the velocity of the measurement target 1 1 may determine the candidate 値νβ3 ( t, t + Ι ) and ν β 4 ( t, in the case where the measurement target 1 1 is in the displacement state. Either t + Ι ) is the absolute 値 of the velocity of the measurement object 11. However, the speed determining unit 83 may determine that the candidate 値V a 5 ( t ) of the speed of the memory unit 80 is in the time t −1 to t when it is determined that the measurement target U is in the minute displacement state. The absolute value of the velocity of the object 11 is measured (step S2 04). Further, when the determination target 11 is in the displacement state, the speed determination unit 83 may calculate the candidate 値V β 6 ( t ) of the velocity of the memory unit 80 as the time t −1 to t. The absolute enthalpy of the velocity of the measurement object 1 1 (step S204) ° can be calculated using the equation (6) or the equation (7) as compared with the case of using the calculation results of the equations (2) to (5) More correct speed. Next, the speed determining unit 83 calculates the following equation (14) and number -33 - 200916731 (15), and specifies the direction of the speed of the measurement target 11 (step S 2 0 5 in Fig. 8). IX = X(t) + X(t+l) (14) IY = Y(t) + Y(t+l) ---(15) The speed determining unit 83 compares the equation (I4) In the case where the ΣΥ and the equation (15) are larger than ΣΧ, the measurement object 11 is determined to be close to the distance/speedometer, and when Σ Y is larger than Σ X, the measurement target is determined. 1 1 is far away from the distance • speed meter. In the step S204, the speed determining unit 83 determines the absolute value of the speed by using the calculation result of the equation (6) or the equation (7) instead of the calculation result using the equations (2) to (5). In the case of 'comparative Μ Η P number X ( t ) and Y ( t ), in the case where X ( t ) is larger than Y ( t ), it is determined that the measuring object 1 1 is approaching the distance • the speedometer 'in When Y ( t ) is larger than X ( t ), it is determined that the measurement target 11 is moving away from the distance/speedometer (step S205). Then, the distance determining unit 84 determines the distance from the measurement target I1 based on the determination result of the state determining unit 82 (step S206 in Fig. 8). In other words, the distance determining unit 84 determines the candidate 値Lai(t, t+Ι) and Lct2 (t, t+) of the distance stored in the memory unit 80 when it is determined that the measurement target 11 is in the state of minute displacement. The average 値 of Ι is the average distance from the measurement object 11 in the time t-Ι to t+1 (step s 2 0 6 ). Further, the distance determining unit 84 determines the candidates 値LP3 ( t, t+Ι ) and LP4 ( t, in the case where the measurement target 11 is in the state of displacement -34 - 200916731, in determining the distance of the memory unit 80. The average 値 of t + Ι ) is the average distance from the measurement target 11 in the time t-Ι to t+1 (step S206). Here, although the noise resistance is poor, the distance determining unit 84 can determine the candidate 値La 1 ( t, t+1 ) and La2 ( t, t+ of the distance in the case where the measurement target 1 1 is in the state of minute displacement. 1) is a distance from the measurement target 1 1 or a candidate for determining the distance 値Lp3 ( t, t+Ι ) and ίβ4 ( t, t in the case where it is determined that the measurement target 11 is in a displacement state. Either one of +Ι) is the distance from the measurement target 11. However, the distance determining unit 84 may determine that the candidate 値La5(t) of the distance stored in the memory unit 80 is the time t-1 to t when it is determined that the measurement target 11 is in the micro displacement state. The average distance of the object 11 is measured (step S206). Further, when determining that the measurement target 11 is in the displacement state, the distance determination unit 84 may determine that the candidate 値LP6(t) of the distance stored in the memory unit 80 is the time t-Ι to t and the measurement target 1 The average distance of 1 (step S 2 0 6 ). A more accurate distance can be calculated using the equation (12) or the equation (13) as compared with the case of using the calculation results of the equations (8) to (1 1 ). The arithmetic unit 8 is configured such that, for example, the user (user) instructs the measurement to be completed (YES in step s 207 of Fig. 8), and the number of MHPs is calculated by the counting device 7 each time, that is, as described above. The processing of steps S201 to S206 is shown. The display device 9 displays the distance from the measurement target 11 and the speed of the measurement target n calculated by the arithmetic unit -35-200916731 8 in real time. On the other hand, the amplitude adjustment device 10 uses the operation. As a result of the determination by the state determination unit 83 of the device 8, the laser drivers 4-1 and 4-2 are controlled such that the amplitudes of the triangular wave drive currents of the semiconductor lasers 1 _ 丨 and 2 are appropriate. In a distance/speedometer using a plurality of semiconductor lasers 1-1, 1-2, if there is a difference in the absolute enthalpy of the wavelength variation of the semiconductor lasers 1-1 and i_2, an error occurs in the measurement. . Figure 9 (A) to (C) are used to illustrate the change of the wavelength of the semiconductor lasers 1_1, 1-2, the change of the number of MHP X, Y, and the figure 9 (A) shows the semiconductor laser丨_ :!,! Time-varying diagram of the oscillation wavelength of _2, Fig. 9 (Β) shows the number of Μ Ρ X and the variation of Υ when the absolute wavelengths of the wavelength variations of the semiconductor lasers 1-1 and 1-2 are equal. Fig. 9(C) is a graph showing changes in the number of enthalpy X and Υ when there is a difference in the absolute enthalpy of the wavelength variation of the semiconductor lasers 1 _ 1 and 1 _ 2 . In Fig. 9 (Α) to Fig. 9 (C), the oscillating waveform of the LD1 semiconductor laser 1-1, the LD2 semiconductor laser 1:1 oscillation waveform, and X1 and Χ2 are the oscillation wavelengths increasing, respectively. In the case of the semiconductor lasers 1-1, 1-2, the number of '', Υ1, Υ2 are the number of semiconductor lasers 1 ->, 1 - 2 Μ Ρ 情形 in the case where the oscillation wavelength is decreasing, respectively. In the case where the absolute 値 of the wavelength variation of the semiconductor lasers 1-1 and 1-2 is equal, as shown in Fig. 9 (Β), even at the oscillation wavelengths of the semiconductor lasers 1-1 and 1-2 Increase the switching to reduce 'or reduce the number of switches to increase -36-200916731 before and after the timing SW1, SW2, SW3, although the number of MHP X, γ respectively maintain continuity, but if in the semiconductor laser 1-1, 1 -2 When there is a difference in the absolute enthalpy of the amount of change in the wavelength, as shown in Fig. 9(C), the number of enthalpies X and Υ respectively lose continuity. Therefore, the amplitude adjustment device 10 of the present embodiment uses the speed candidates 値Val(t, t+1), Va2(t, t+l), and Vp3 calculated by the distance/speed calculation unit 81 of the arithmetic unit 8. (t, t+1) and Vp4(t, t+1), based on the determination result of the state determination unit 8 2, the speed determination unit 83 determines that the speed candidate is not true and the speed candidate is not used. . When it is determined that the measurement target 1 1 is moving in the state of the minute displacement, the speed determining unit 83 does not use the average of the velocity candidate systems V β 3 ( t, t+ 1 ) and νβ4 ( t, t+1 ). In the case where it is determined that the measurement target 1 1 is moving in the displacement state, the speed determining unit 83 does not use the average of the velocity candidate systems Va 1 ( t, t + 1 ) and Va2 ( t, t + 1 ). . The amplitude adjuster 10 adjusts the amplitude of the triangular wave drive current through the laser drivers 4-1 and 4-2 so that the speed determining unit 83 does not use the speed candidates 値Val ( t, t + Ι ) and Va2 ( t The average 値 of t + Ι ) or the average 値 of νβ3 (t, t+1 ) and νβ4 ( t, t+1 ) is substantially equal to the distance candidate 采用La of the adopter determined by the distance determining unit 84 as true. The average 値 of 1 ( t, t+ 1 ) and La2(t, t+Ι) or the average 値 of Lp3(t, t+Ι) and Lp4(t, t+ 1 ) is multiplied by the semiconductor laser 1 _丨, 丨_ The wavelength change rate of 2 (λ!) - λ &) Ub 値. At this time, amplitude adjustment may be performed for both the drive current supplied to the semiconductor laser 1-1 by the laser driver 4_1 and the drive current supplied to the semiconductor laser 1-2 by the laser driver 4_2, or may be adjusted - 37- 200916731 either party. When it is determined that the measurement target 11 is in the state of minute displacement, the distance candidate 距离 of the distance determining unit 84 is the average 値 of La 1 ( t, t+ 1 ) and La2 ( t, t+1 ), and is determined. When the measurement target 11 is in the displacement state, the distance candidate 采用 of the distance determining unit 84 is the average 値 of Lp3 (t, t+1) and Lp4(t, t+1). Fig. 1 is an explanatory diagram for explaining a method of adjusting the amplitude of the dipole wave drive current supplied to the semiconductor lasers 1-1 and 1-2 by the laser drivers 4-1 and 4-2. According to the instruction from the amplitude adjusting device 1 ,, the laser drivers 4_1, 4-2 are fixed to the fixed 値 by the maximum 値 of the driving current (in the example of the first drawing, the semiconductor laser 1-1, 1 In the case of the upper limit 値CL of the drive current specified by -2, the amplitude AMP of the drive current is adjusted by directly increasing or decreasing the minimum 驱动 of the drive current. In this way, the amplitude of the drive current can be set to an appropriate value. As described in the present embodiment, by adjusting the amplitude of the triangular wave drive current, the absolute enthalpy of the wavelength change amounts of the semiconductor lasers 1-1 and 1-2 can be made equal, and the measurement error of the distance and the speed can be reduced. In the case where the speed determination unit 83 determines the absolute 値 of the velocity using the calculation result of the equation (6) or the equation (7) instead of using the calculation results of the equations (2) to (5), the amplitude adjustment is performed. The device 10 adjusts the amplitude of the triangular wave drive current so that the speed determining unit 83 determines that the speed candidate 値V a 5 ( t ) or V β 6 ( t ) is not equal to the distance. The determining unit 84 determines that the distance candidate 値L a 5 ( t ) or L β 6 ( t ) of the adopter is multiplied by the wavelength change rate (Xb-Xa ) of the semiconductor laser 1 -1; Ab's jealousy. When it is determined that the measurement target Π is moved in the micro-38-200916731 small displacement state, the speed determination unit 83 does not use the speed candidate system νβ6(t), and determines that the measurement target 11 is moving in the displacement state. In this case, the speed determining unit 83 does not use the speed candidate system Vot5(t). When it is determined that the measurement target U is in the state of minute displacement, the distance candidate 値 of the distance determining unit 84 is La5(t), and when it is determined that the measurement target 11 is in the displacement state, the distance determining unit 84 adopts The distance candidate is ίβ6 ( t ). Further, the amplitude adjuster 10 can adjust the amplitude of the triangular wave drive current by the laser drivers 4-1 and 4-2 so that the speed determining unit 83 determines that it is true based on the determination result of the state determining unit 82. The speed of the candidate 値V α 1 ( t,t + 1 ) and the average V of V a 2 ( t,t + 1 ) or V β 3 ( t,t+l) and V04(t,t+1) On average, continuity is maintained before and after the timing at which the wavelength changes of the semiconductor lasers 1-1 and 1-2 are switched. Further, in the case where the speed determination unit 83 determines the absolute 値 of the velocity using the calculation result of the equation (6) or the equation (7) instead of using the calculation results of the equations (2) to (5), the amplitude The adjusting device 10 can also adjust the amplitude of the triangular wave drive current so that the speed determining unit 83 determines that the speed candidate 値V a 5 ( t ) or V β 6 ( t ) is true, in the semiconductor laser Continuity is maintained before and after the timing at which the wavelength change of 1 -1 and 1-2 is switched. In the case where the current time is the first oscillation period P1 or the second oscillation period P 2 is notified by the laser drivers 4-1 and 4-2, and the timing of switching the wavelength changes of the semiconductor lasers 1-1 and 1-2 is also Notified by the laser driver 4 _丨, 4 - 2. The amplitude adjustment device 10 operates in accordance with a notification from the laser drivers 4_丨, 4-2. -39- 200916731 In addition, the amplitude adjustment device 1 〇 can also adjust the amplitude of the triangular wave drive current so that the distance determination unit 84 determines that the distance candidate 値Ltx1 is true based on the determination result of the state determination unit 8 2 ( The average 値 of t,t+Ι ) and Loi2 ( t,t+1 ) or the average 値 of Lp3 ( t, t+1 ) and LP4 ( t,t+1 ) in the semiconductor laser 1-1, 1 -2 The wavelength change is maintained until the timing of the switching is continuous. Further, in the case where the distance determination unit 84 uses the calculation result of the equation (12) or the equation (13) instead of using the calculation results of the equations (8) to (1 1 ) to determine the distance, the amplitude adjustment device 1 The amplitude of the triangular wave drive current may be adjusted so that the distance determining unit 84 determines that the distance candidate 値La5(t) or Lp6(t) is true at the wavelength of the semiconductor laser 1-1, 1-2. The timing of the change is switched to maintain continuity. In order to make the calculation result of the speed or the distance continuous before and after the timing of switching the wavelength changes of the semiconductor lasers 1-1 and 1-2, for example, the least square method can be used. Further, as shown in Fig. 1, the amplitude adjusting device 10 can also adjust the amplitude of the triangular wave drive current, and extend the characteristic line VL obtained by connecting the calculation results of the speed (or distance) to the semiconductor laser 1 - 1. After the timing SW at which the wavelength change of 1 - 2 is switched, the calculation result VV of the initial velocity (or distance) after the timing SW is included in the predetermined range ER with respect to the extension line. As described above, in the present embodiment, the first oscillation period in which the semiconductor lasers 1-1 and 1-2 are alternately repeated and the oscillation wavelength is continuously increased, and the second oscillation period in which the oscillation wavelength is continuously decreased 'for the photodiode 2 Each of the diodes of -1 and 2-2 counts the number of -40-200916731 MHPs included in the output signals of the photodiodes 2-1, 2-2, according to the counting result and the semiconductor laser ii, The distance between the measurement target 11 and the speed of the measurement object 11 can be calculated by the minimum oscillation wavelength ka of 1 - 2 and the maximum oscillation wavelength λ ΐ). As a result, in the present embodiment, (a) can be used to miniaturize the device; (b) no high-speed circuit is required; (c) strong anti-disturbing light; (d) no conventional object such as measurement object is selected. The advantage of the coupled laser measuring device is that it can measure not only the distance from the measuring object 11 but also the speed of the measuring object. Further, according to the present embodiment, it is possible to determine whether the measurement target 11 is performing a constant speed motion or a motion other than the constant velocity motion. Further, in the present embodiment, the laser beams which are parallel to each other are simultaneously radiated to the measurement target 11 by the increase and decrease of the oscillation wavelength to the opposite semiconductor lasers 1-1 and 1-2, and are longer than the first oscillation period and the second oscillation period. In the first counting period Pn in which the oscillation period is short, the number X of MHPs included in the output of the photodiode 2-1 or 2-1 is obtained, and the second counting period Pm simultaneously with the first counting period Pn is obtained. The number Y of MHPs included in the output of the photodiode 2-2 or 2-1 can be measured, and thus the distance and speed can be measured in a shorter time than the distance and velocity meter disclosed in Patent Document 1. In the distance/speed meter disclosed in Patent Document 1, the number of MHPs must be counted, for example, at least three times, for example, the first oscillation period t-1, the second oscillation period t, and the first oscillation period t+1. However, in the present embodiment, for example, in the first counting period Pn1 and the second counting period Pml, the number of MHPs X'Y is counted once, and in the first counting period Pn2 and the second counting period Pm2, the number of MHPs is counted. X and γ can be counted once, and the distance and speed can be obtained by counting the number of MHPs in two times. Further, in the present embodiment, by measuring the absolute 値 of the wavelength variations of the semiconductor lasers 1-1 and 1-2, the measurement accuracy of the distance and the speed can be improved. (Second embodiment) Next, a second embodiment of the present invention will be described. In the present embodiment, the overall configuration of the distance/speedometer is the same as that of the first embodiment, and the description will be made using the reference numerals of the first embodiment. Fig. 1 is a block diagram showing an example of the configuration of the counting device 7 in the second embodiment of the present invention. Fig. 1 is a flowchart showing the operation of the counting device 7. The counting device 7 of the present embodiment is composed of a changeover switch 70 a; determination sections 7 3 -1, 7 3 - 2; logical AND operation sections (AND) 74-1, 74-2; counters 75-1, 75-2. The count result correcting sections 76-1 and 76-2, the memory section 77, the cycle sum calculating sections 78_1 and 78-2, and the number calculating sections 79-1 and 79-2. Fig. 14 is a block diagram showing an example of the configuration of the count result correcting unit 76-1. The count result correcting unit 76-1 is composed of a period measuring unit 760, a frequency distribution creating unit 761, a median calculating unit 762, and a correction unit calculating unit 763. Since the configuration of the count result correcting unit 76-2 is the same as that of the count result correcting unit 76-1, the description thereof is omitted. Figs. 15(A) to 15(F) are diagrams for explaining the operation of the § tenth device 7 of the present embodiment. Fig. 15(A) shows the output of the filter circuit 1 by mode. The waveform of the voltage, that is, the waveform of the waveform of Μ Η P, Fig. 15 (C Β ) shows the output of the determination unit 7 3 - 1 and _2 corresponding to Fig. 5 (A), Fig. 15 (C) shows a map of the gate signal GS input to the counting device -42 - 200916731, and Fig. 15 (D) shows a graph of the counting result of the counter 75-1 corresponding to Fig. 15 (B). Fig. 15(E) shows a diagram of the clock signal CLK input to the counting device 7, and Fig. 15(F) shows the counting result correction unit 76-1 corresponding to the fifth figure (B). A graph showing the measurement results of the period measuring unit 760. In the fifteenth diagram (A) to the fifteenth diagram (F), the operation of the first oscillation period p1 in which the oscillation wavelength of the semiconductor laser 1-1 is increased and the oscillation wavelength of the semiconductor laser 1-2 is decreased is displayed. . First, the changeover switch 70a of the counting device 7 determines whether or not the switching is performed (step S3 0 0 of FIG. 3), and if it is switching, the output of the filter circuits 6-1 and 6-2 and the determination unit 73 are replaced. -1, 73-2 connection (step S301). The switching of the changeover switch 70a is generated at a time of 1 /2 of the period T of each triangular wave. In other words, the changeover switch 70a connects the output of the filter circuit 6-1 to the input of the determination unit 73-1 in the first oscillation period P1'. The output of the filter circuit 6-2 and the determination unit 73-2 The input phase is connected; in the second oscillation period P2, the output of the filter circuit 6_2 is connected to the input of the determination unit 73-1, and the output of the filter circuit 6-1 is connected to the determination unit 7 3 - 2 (step S). 3 0 1 ). That is, in the determination section 713, the output of the filter circuit 6-1 or 6-2 is often input to the output of the semiconductor laser id or 1-2 whose oscillation wavelength is increasing. In the section 7 3 - 2, an output corresponding to the semiconductor laser 1-1 or 1-2 whose oscillation wavelength is decreasing is often input to the output of the filter circuit 6-1 or 6-2. The current time is the first oscillation period p1 or the second oscillation period is notified by the laser driver 4-1, 4-2 -43-200916731. The changeover switch 70& performs the switching operation in accordance with the laser driver 4_], 4_2. The determining unit 73-1 of the counting device 7 determines that the output voltage of the filter circuit 6- or 6_2 of the first S-picture (A) is at a high level (H) level (L) 'output as shown in Fig. 15 (B) The result of the judgment shown. , 疋 7 3 - 1 is determined to be a high level when the output voltage of the filter circuit 6 _ 丨 or 6 _ 2 is above the threshold 値ΤΗ 1; the output voltage drops to 6 at the filter age or 6-2 Temporary 値th2 (TH2 When <TH1), it is judged to be a low level, whereby the filter circuit 6-丨 or 6_2 is turned off (step s 3 02 of the table 13). Similarly, the determination unit 73 degenerates the output of the filter circuit 6-2 or 6-1 (step S302) AND74-1 outputs the output of the determination unit 73-丨 and the fifteenth figure! As a result of the logical AND operation of the gate signal GS shown, the counter 75 increases the progression of the output of AND74_1 as shown in Fig. 15(D) (step S303 of Fig. 13). Similarly, AND74-2 is the result of the logical AND operation of the output of the output unit 7 3 - 2 and the gate signal G s , and the processor 75 - 2 counts the rise of the output of the AND 7 4-2 (step). Here, the gate signal GS is a signal that rises at the start of the first counting period Pn and the second period Pm, and falls at the end of the second counting period Pn and the second counting period Pm. Therefore, the counters 75-1, 75 count the number of rising edges of the AND 74-1, 74-2 of the first and second counting periods Pn, Pm (that is, the number of rising edges of the MHP. The first counting period Pn and the second counting period Pm are defined as shown in Fig. 6(A) to Fig. 6(D). The pass or low rises at this time ^ 6-1 The following output system 〇 [C ) -1 line Counting count S303 counts several weeks - 2 lines of input) Press -44 - 200916731 On the other hand, the circumference of the count result correcting unit 76-1 generates a rising edge count period Pn in the output of each AND74-1. The measurement of the rising edge of the output of the AND74-1, that is, the period of the MHP is measured. (Steps in Fig. 3, the period measuring unit 760 is measured in a unit of the period shown in Fig. 5 (E). In the example of the MHP, in the example, the period measuring unit 7 6 0 sequentially measures the periods of Τ α and MHP. The size of the 第 α, Τ β, and Τ γ in Fig. 15 (Ε) and the 15th graph are respectively 5 The frequency of the clock and the 4 o'clock clock signal CLK is much larger than that of the clock. The same is true for the period of the AND74-2 of the period of the count result correcting unit 76-2. The period in which the rising edge of the output of the AND 74-2 in the rising edge time period Pm is generated is measured (step S3〇4). The memory unit 7 7 is a period measuring unit for each of the number result correcting units 76-1 and 76-2 of the memory counters 7 5 -1 and 7 5 -2 . In the first counting period Pn number result correcting unit 7 6 -1 frequency distribution creating unit 7 6 1 The counting result of the counting result correcting unit 76-1 in the memory unit 77 is used to create the first counting period. The MHP distribution in Pn (step s 3 0 5 of Figure 13). Similarly, after the end of P m , the frequency 7 6 1 of the counting result correcting unit 7 6 - 2 is based on the cycle measurement period measuring unit 760 of the counting result correcting unit 7 6 - 2, that is, the period of the first edge (also S 3 0 4 ). At this time, the clock signal C L K Fig. 15 (F) Τβ and τγ are known as (F), and the clock is two clocks and two clocks. The highest frequency of the spoon. The setting unit 760 is configured to generate the second counting period (the Μ Η 计数 counting result and the measurement 760 after the measurement is completed), and the calculation is based on the frequency of the period of the period of the measurement unit 760. Measurement of the portion 760 -45 - 200916731 As a result, the frequency distribution of the period of the MHP in the second counting period Pm is generated (step S 3 0 5 ). When η is small, since the median is used for The frequency of the number is reduced, and the accuracy of the median is lowered. Therefore, when the period before the Ρη is used, the frequency distribution at the median of the period of ΜΗΡ in the first counting period Ρη is obtained. The continuous noise is stronger. The median calculation unit 762 of the count result correcting unit 76-1 calculates the first count based on the frequency distribution made by the frequency distribution creating unit 76 1 of the counting result correcting unit 76-1. The median (median) of the period of the Ρn in the period Ρ0 is (0 (step S306 in Fig. 13). Similarly, the median calculation unit 7 6 2 of the "counting result correcting unit 7.6" is based on the counting result correcting unit 7 The frequency distribution of the frequency distribution of 6 - 2 is made by the portion 7 6 1 , The median T 0 of the period of Μ Η P in the second counting period P m is calculated (step S 3 06 ) ° The correction result calculating unit 7 6 3 of the counting result correcting unit 7 6 - 1 is based on the counting result correcting unit 76 The frequency distribution prepared by the frequency distribution creating unit 76 of -1 is obtained as the median Τ0 of the period in the first counting period Ρη. The frequency sum N s of the level of 5 times or less and the first counting period. The median of the period in ρ η Τ 0 is the sum of the frequencies of the level of 1 · 5 times or more N w , and the result of the counter 75-1 is corrected as follows (step S 3 07 of Fig. 3) ° N, =N + Nw-Ns ( 1 6 ) In the equation (16), the 'N system is used as the counter 75·1 count result -46- 763 200916731 The number of MHP 'Ν' is the count result after correction. Similarly' The correction calculation unit of the counting result correction unit 7 6 - 2 is obtained by the frequency distribution of the frequency distribution creating unit 761 of the counting result correcting unit 76-2, and is obtained as 0.5 times the number T0 of the period in the second counting period Pm. The sum of the frequencies of the following levels Ns and the sum of the ranks of the median τ 0 of the period in the second period P m of 1.5 times or more Nw Further, the result N of the correction counter 75-2 is expressed as the equation (16) (step S307). An example of the frequency distribution of the period of the MHP is shown in Fig. 16. In the figure, the period of the Ts-based MHP is shown. The 値 of the median T0 is 0.5 times, and the Tw is the rank of 1.5 times the median T0. There is no doubt that the level in the figure 16 is the representative of the period of the MHP. Here, for the description in Fig. 16, the frequency distribution between the median T 0 and T s and between the numbers T0 and Tw is omitted. Figure 17 is a diagram for explaining the principle of the counter-compensation of the counters 75-1, 75-2, and Figure 17 (A) shows the waveform of the output voltage of the mode filter 6-1, that is, the waveform of the MHP. In the figure, the first (B) shows a result of the counter 75-1 corresponding to the figure (A) of Fig. 17. The period of the original MHP differs depending on the distance from the measurement object 1 1 . If the distance from the measurement object 1 1 does not change, the MHP appears in the same manner. However, due to noise, there will be a missing waveform in the MHP waveform or a waveform that should be counted as a signal, and the number of 计数 Η P generated by the number of the median counting frequency is at the first level, and the circuit of the simplified intermediate circuit is counted. However, the period is not error-47-200916731 When a signal gap occurs, the period TW of the portion where the leak has occurred is about twice the original period. That is, when the current period is about 2 times or more of the median T 0 , it is judged that the signal is missing. Therefore, the frequency of the level above the period T w is always the number of missing signals, and the Nw is added to the result N of the counter 75, thereby correcting the missing signal. Further, the MHP^ of the portion where the noise is counted is about 0.5 times the original period. That is, when the median of Μ Η 0 is less than 0. 5 times, it is judged that the excess count signal 'the frequency sum Ns of the level below the period Ts is regarded as the excess number, and is counter-counted by the counter 75-1 The count result N is used to reduce the noise of the correctable error. The counting result of the correction original 75-2 of the counting result shown by the above formula (16) can also be complemented by the same principle. In the present embodiment, the Ts is set to the period median T0. The reason why Tw is set to 1.5 times the median T0 instead of 2 2 times the middle β is set to be 1. 5 times. Next, the period of the counting device 7 and the calculation unit 78-1 are the measurement results of the period measurement by the counting result correcting unit 766-1 in the storage unit 7, and calculate the sum Sum of the 计数 in the first counting period ( 1 3 Figure S 3 0 8 ). Similarly, the cycle 78-2 calculates the cycle Sum of the MHP in the second count period pm based on the cycle measurement unit result of the count result correction unit 76-2 (step S3 08). The MHP's MHP has been issued in the week number and the Nw is -1 count. The i-spoon period Ts period is approximately the number. Therefore, the signal Ns is counted. Counting. Here, the sum of the measurement periods of the sum calculation unit 760 of the number 00 of the memory T1 is 0 - 5 times: -48 - 200916731 The number calculation unit 79-1 of the counting device 7 calculates the first counting period Pn. The number X of MHP per unit time (the number of interference waveforms of the semiconductor laser whose oscillation wavelength is increasing), and the number calculation unit 79-2 calculates the number Y of MHP per unit time in the second counting period Pm (oscillation) The number of interference waveforms of the semiconductor laser whose wavelength is decreasing) (Step 1 3 Figure 3 09). The number calculation unit 79-1 is divided by the correction 値 calculation unit 763 of the count result correction unit 76-1 by the sum Sum of the periods of the MHP in the first count period calculated by the period and calculation unit 78-1. The calculated corrected result Ν' is calculated, thereby calculating the number X of MHP per unit time in the first counting period Pn. X = N, /Sum (17) Similarly, the number calculation unit 79-2 divides the sum Sum of the periods of the MHP in the second count period calculated by the period and calculation unit 78-2. The corrected count result N'' calculated by the correction/calculation unit 763 of the count result correcting unit 76-2 calculates the number Y of MHPs per unit time in the second count period Pm. The counting device 7 performs the above-described processing for each of the first and second counting periods Pn and Pm. Therefore, the determination unit 73-1, the AND 74-1, the counter 759-1, the count result correction unit 6-1, the memory unit 7, the period and calculation unit 78-1, and the number calculation unit 79- The operation of 1 calculates the number X of MHPs, and the determination unit 73-2, the AND 74-2 'counter 75-2, the count result correction unit 76-2, the memory unit 77, the period and calculation unit 78-2, and the -49- 200916731 The operation of the number calculating unit 79-2 calculates the number X of ΜΗΡ and the Υ by calculating the number γ of MHPs. The configuration other than the counting device 7 is the same as that of the first embodiment. In the present embodiment, the period ' of the ΜΗΡ period in the count period is calculated based on the measurement result, and the frequency distribution of the period of the ΜΗΡ in the count period is calculated. The median of the period of the ΜΗΡ is calculated based on the frequency distribution, and the frequency distribution is determined as the middle based on the frequency distribution. The sum of the frequency of the number of digits 5. 5 times or less of the sum of the frequency N s and the frequency of the median of 1.5 times or more of the sum of the frequency Nw, according to the frequency Ns and N w correction calculator's counting result ' Since the counting error of Μ Η P can be corrected, the measurement accuracy of the distance and the speed can be improved as compared with the first embodiment. Next, in the present embodiment, the reason why the median of the frequency distribution of the period of use is used as the reference period of ΜΗΡ, and the threshold 周期 of the period when the frequency Nw is obtained is described as 1.5 times the median. reason. First, the correction of the count result in the case where the period of the MHP is divided into 2 due to the erroneous noise is explained. When the oscillation wavelength of the semiconductor laser changes linearly, the period of the MHP is normalized by dividing T 0 obtained by dividing the counting period by the number N of Μ Η P (Fig. 18). Next, consider the noise. And the period of Μ Ρ 分割 divided into 2. The period of the ΜΗΡ which is divided into two by the result of the excess count noise is divided into 2 ' at a random ratio, but the period before the division is a normal distribution centered on Τ0, and thus becomes a frequency distribution symmetric with respect to 0.5T0 (the first 1 <5 of the figure a). -50- 200916731 The frequency distribution of the period of the MHP containing the noise 'Assume that the K% of the MHP divides the period into 2 due to noise,' calculates the average 値 and median of the period of the MHP. The sum of all periods is constant, and the period does not change, but when the K% of the MHP divides the period into 2 due to noise, the integral of the frequency 値 becomes (l+k[%])N, so the MHP The average 値 of the period becomes (1/(1+ k[%])) TO. On the other hand, when the portion overlapping with the normal distribution is ignored by the distribution of the noise, the noise accumulation frequency divided into 2 becomes twice the frequency included in the level between the median and T0, so ' The median of the period of Μ Η P is located at twice the area of area b of the figure b, and the function of the so-called NORMSDIST () in Excel (registered trademark) belonging to the software of Microsoft Corporation. It can use "( 1- ( b NORMSDIST ( α ) ) χ 2) χ 100 [%]" to express the internal ratio of the average 値 from the normal distribution to the 値 between the two ,, if the function 'can be used as follows, Indicates the median of the period of ΜΗΡ. (l-(l-NORMSDIST((median-Τ0)/Σ))χ2)χ(100· k)/2 = k[%] "· (18) According to the above, if the standard deviation Σ is set to 0.02T0, and the average 値TO ' and the median TO ' of the period of 周期 Ρ Ρ 1 1 1 计算 计算 计算 计算 计算 计算 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 値 値 値 値 値 値 値 値 値 値-51 - 200916731 Τ0?= ( 1/ ( 1+0.1) ) Τ0 = 0·91Τ0 ...(19) Τ0,= 0.995 Τ0 ...(20 ) where, in this system, the average 値 and median are both Τ0' The indicator 値 (integral 频率 of the frequency) is 1 · Ν Ν 'The counting error is obtained here, considering that the period Ta of a certain period Ta is divided into two periods Τ1 and Τ2 (set to τ 1 2 Τ2) The hypothetical noise during the period is randomly generated, as shown in Figure 21, 'Τ2 is a probability to obtain 〇 < Τ 2 S Ta/2 値. Similarly, Τ1 can also take the chance to get T/2 STl <Ta's 値. The area of the probability distribution of T1 in Fig. 21 and the area T period T a of the probability distribution obtainable by T 2 are a normal distribution centered on T 0 'so that Ta is regarded as a set, and T2 can be obtained. The frequency distribution of the probability is the same as the average distribution of the rate distribution of the normal distribution of T. 5 T0 and the standard deviation of 0.5 Σ. Further, as shown in Fig. 2, the probability of the T1 can be obtained by forming the cumulative frequency distribution of the cloth having an average 値 of 0.5T0' standard deviation of 〇·5Σ, and the average 値 is Τ0, and the standard deviation is The cumulative frequency distribution of the state distribution overlaps the shape. Here, ' T 1 , each number, and the number k of ΜΗPs in which the period is divided into 2, etc. If it is possible to divide the period into 2 due to noise, Η 纪 P. Count 10%. The next 2 chances. The same same is obtained for all 1s. If the number of k-52-200916731 [%]· N which is formed as the cumulative frequency of the normal frequency is normal, the following equation can be used. The derivative N 〇N = N, -k [〇 / 〇] · N (21) As shown in Fig. 23, if the number NS having the Tb or less and the number of the MHP divided into 2 can be made k [ $ By setting Tb in an equal manner, it is possible to count indirectly the number k[%]·N of the MHP of week 2 by counting the number NS of MHPs having Tb. In Fig. 23, when the frequency of T2 having a period of Tb or more (c in Fig. 23) is the same as the frequency (d in Fig. 23) having a period T1 which is less than Tb, the MHP of the period below The number of the system and the number of T2, that is, the number N of MHPs of 2 (= k [%] · N) become the number of phases MHP N can be expressed by the following equation. N = N'-k[%] · N = N, -Ns (22) The frequency shape of T1 and T2 is correctly determined when 〇.5Ta is symmetric and 0.5 T a is used as a threshold. The frequency Ns (=k[%]·N) of the MHP cut to 2 is followed by 丨MHP for the MHP whose period is divided into 2 by counting the amount of period K having a value of 〇. 5 T 0 The MHP of the number of cycles] · N becomes the following cycle. The MHP that is divided into the cycle period of the MHP has Tb divided by one cycle, and the like. That is, the shape is therefore counted for the period. Number of M IIPs Female quantity k [%] -53- 200916731 • The number of N is counted indirectly, but T0 cannot be calculated from the frequency distribution of the period of the MHP containing noise (Fig. 19). If the mother group of the MHP is as shown in the frequency distribution of Fig. 19, the more the mode is equal to το, the more ideal and the larger the population parameter, the more the number can be used as TO'. Here, the number of MHPs obtained by using the average 値 or the median T0' is described as k [%]. If TO'= y· TO is not specified, and TO' is substituted for TO to obtain Ns, the frequency Ns' of 0.5T0' which is determined by the number of MHPs divided into 2 as the period is a small period. y · k[ %] . N (Fig. 2 4). If the average 値 or median T0' is used, the corrected 値Nt is shown below.

Nt = N’-Ns’=(l+k[%])N-yk[0/〇]N = (l+(l-y)k[%])N =N + (1 -y)k [%]N ... ( 23 ) 其中,作爲補正後誤差的(1 - y ) k〔 %〕N係第2 5圖 的e的部分的頻率。 在此,針對使用平均値或中位數T0’的計數器75]、 7 5 -2的計數結果的補正例進行說明。 若將標準偏差設爲2 = 0.02丁0,且^^?的1〇%因雜訊 而使周期分割爲2時(計數結果爲1 〇 %的誤差),由於 MHP的周期的平均値T0’爲0_91丁〇,中位數T0,爲 0.9949TO,因此使用平均値το’時的y爲〇_91,使用中位 -54- 200916731 數TO’的y爲0.9949,補正後的計數結果Ν’係如以下所示 予以計算。 N5 = (1+0.1 (1-0.91))Ν=1.009Ν …(24 ) Ν,= (1+0· 1(1-〇·995 ))Ν= 1 .000 5 Ν …(25) 數式(24 )係表示使用平均値TO’時的補正後的計數 結果Ν’,數式(25 )係表示使用中位數T0’時的補正後的 計數結果N ’。使用平均値T0 ’時的計數結果N ’的誤差爲 0.9%,使用中位數TO’時的計數結果Ν’的誤差爲0.05%。 接著,若將標準偏差設爲Σ = 0.05Τ0,且ΜΗΡ的20% 因雜訊而使周期分割爲2時(計數結果爲20%的誤差), 由於ΜΗΡ的周期的平均値Τ0’爲0.83Τ0,中位數Τ0’爲 0.9682T0,因此使用平均値T0’時的y爲0.83,使用中位 數T 0 ’的y爲〇 . 9 6 8,補正後的計數結果N ’係如以下所示 予以計算。 N,= ( 1+0.2( 1-0.83))N= 1.034N …(26) N! = (1+0.2(1-0.968))N-1.0064N …(27 ) 數式(2 6 )係表示使用平均値TO ’時的補正後的計數 結果Ν’,數式(27 )係表示使用中位數T0’時的補正後的 計數結果N ’。使用平均値T0 ’時的計數結果N ’的誤差爲 3.4%,使用中位數T0’時的計數結果Ν’的誤差爲0.64% ° -55- 200916731 由以上可知,若使用MHP的周期的中位數來補正計 數結果Ν,可減小補正後的計數結果Ν’的誤差。 接著說明在ΜΗΡ波形產生缺漏時的計數結果的補正 。由於ΜΗΡ的強度較小而在計數時產生缺漏時之ΜΗΡ的 周期係由於原本的ΜΗΡ的周期係以Τ0爲中心的常態分佈 ,因此成爲平均値爲2T0,標準偏差2Σ的常態分佈(第 26圖中的f)。假設缺漏j〔 %〕的ΜΗΡ,因該缺漏而周 期成爲2倍的ΜΗΡ的周期的頻率爲Nw ( 〔 %〕· Ν )。 此外,因計數時的的缺漏而減少後之大約TO之周期的頻 率爲第26圖所示的g,第26圖的h所示的頻率減小份爲 2Nw ( =2j [ % ])。因此,在計數時沒有發生ΜΗΡ缺漏 時之原本ΜΗΡ的數量Ν’係可以下式表示。 N’=N+j〔%〕=N + Nw ··· (28) 接著,考慮在對用以補正計數結果的Nw進行計數時 之周期的臨限値。在此,假設爲因計數時的缺漏而使周期 成爲2倍的MHP的周期的頻率Nw中因雜訊而將p〔 %〕 分割爲2的情形。缺漏的MHP中被分割爲2的MHP的周 期的頻率爲Nw’( · p〔 %〕· N )。再次分割爲2的 MHP的周期的頻率分佈係如第27圖所示。當將視爲Nw 的周期的臨限値設爲1.5T0時,周期爲0.5T0以下之MHP 的周期的頻率爲 〇.5Nw’( =〇.5p〔 %〕 · Nvv ),周期爲 0.5Τ0至1.5Τ0之ΜΗΡ的周期的頻率爲Nw,(=ρ〔 %〕. -56- 200916731Nt = N'-Ns'=(l+k[%])N-yk[0/〇]N = (l+(ly)k[%])N =N + (1 -y)k [%]N ( 23 ) where (1 - y ) k [ % ] N is the frequency of the portion of e of the 25th figure. Here, a correction example of the count results of the counters 75] and 7 5 -2 using the average 値 or the median T0' will be described. If the standard deviation is set to 2 = 0.02 □ 0, and 1〇% of ^^? is divided into 2 due to noise (the count result is 1 〇% error), due to the average 値T0' of the period of MHP It is 0_91 〇, the median T0 is 0.9949TO, so y when using the average 値το' is 〇_91, using the median -54- 200916731 number TO' y is 0.9949, the result of the correction is Ν' It is calculated as shown below. N5 = (1+0.1 (1-0.91))Ν=1.009Ν ...(24) Ν,= (1+0· 1(1-〇·995 ))Ν= 1 .000 5 Ν ...(25) (24) indicates the result of the correction after the correction using the average 値TO', and the equation (25) indicates the result of the correction N' after the correction using the median T0'. The error of the count result N' when the average 値T0' was used was 0.9%, and the error of the count result Ν' when the median TO' was used was 0.05%. Next, if the standard deviation is set to Σ = 0.05 Τ 0, and 20% of ΜΗΡ is divided into 2 due to noise (the count result is 20% error), since the average 値Τ0' of the period of ΜΗΡ is 0.83 Τ 0 The median Τ0' is 0.9682T0, so the y when using the average 値T0' is 0.83, and the y using the median T 0 ' is 〇. 9 6 8, the result of the correction is N' as shown below. Calculated. N,= ( 1+0.2( 1-0.83))N= 1.034N (26) N! = (1+0.2(1-0.968))N-1.0064N (27) The expression (2 6 ) is expressed When the average 値TO ' is used, the count result after correction Ν' is used, and the equation (27) indicates the count result N ' after the correction using the median T0'. The error of the count result N' when using the average 値T0' is 3.4%, and the error of the count result Ν' when using the median T0' is 0.64% ° -55- 200916731 From the above, if the period of the MHP is used, By correcting the count result by the number of digits, the error of the count result 补' after correction can be reduced. Next, the correction of the count result when the ΜΗΡ waveform is missing will be described. Since the intensity of enthalpy is small, the period of sputum at the time of counting is due to the normal distribution of ΜΗΡ0 as the original ΜΗΡ period, so it becomes a normal distribution with an average 値2T0 and a standard deviation of 2Σ (Fig. 26). In f). Assuming that the defect of j [%] is missing, the frequency of the cycle in which the cycle is doubled due to the omission is Nw ([%]·Ν). Further, the frequency of the period of about TO which is reduced by the leak at the time of counting is g shown in Fig. 26, and the frequency-reduced portion shown by h in Fig. 26 is 2Nw (=2j [%]). Therefore, the number of original flaws when no defects occur at the time of counting can be expressed by the following formula. N'=N+j[%]=N + Nw (28) Next, the threshold 周期 of the period when the Nw for correcting the counting result is counted is considered. Here, it is assumed that p[%] is divided into two due to noise in the frequency Nw of the period of the MHP in which the period is doubled due to the omission at the time of counting. The frequency of the period of the MHP divided into 2 in the missing MHP is Nw' (· p [ % ] · N ). The frequency distribution of the period of the MHP divided again to 2 is as shown in Fig. 27. When the threshold 周期 of the period regarded as Nw is set to 1.5T0, the frequency of the period of the MHP having a period of 0.5T0 or less is 〇.5Nw' (=〇.5p[%]·Nvv), and the period is 0.5Τ0 to The frequency of the period after 1.5Τ0 is Nw, (=ρ[ %]. -56- 200916731

Nw),周期爲1.5T0以上之MHP的周期的頻率 (=0 · 5 ρ〔 %〕 · N w )。 因此,所有ΜΗΡ的周期的頻率分佈成爲如: 示,若將N s的臨限値設爲0.5 Τ 0,將N w的Κ 1 . 5 Τ0,計數結果Ν係可以下式表示。 N = (N’-2Nw) + (Nw-Nw,)+ 2Nw’=N,-Nw + Nw,. 由數式(2 9 )予以補正的結果如以下所示, 出計數時未發生MHP之缺漏之情形下之原本的 量N,。 N-0_5Nw’+ ( 〇.5Nw,+ ( Nw-Nw,)) =(N-Nw + Nw,)+ ( 〇.5Nw,+ ( Nw_Nw,)) =N, 由以上可知,若將求取頻率N w時之周期的 爲中位數的1 · 5倍,即可補正計數結果N。其中 訊而將MHP的周期分割爲2的情形相同地,由 而使用中位數來進行補正,因此發生同樣的誤差 在以上說明中’係分別說明過剩計數雜訊 MHP的周期分割爲2的情形、及因計數時的 MHP的周期成爲2倍的情形,惟該等情形獨立發 若將該等情形表現爲丨個頻率分佈,即如第29 爲 0.5Nw’ g 28圖所 ;限値設爲 • ( 29 ) 可知計算 MHP的數 30 ) 丨臨限値設 1 ’與因雜 於取代T〇 〇 的結果使 缺漏而使 丨生,因此 圖所示。 -57- 200916731 若將Ns的臨限値設爲〇.5ΤΟ,將Nw的臨限値設爲1.5T0 ,計數結果N即可以下式表示。 N= ( N’-2Nw-Ns) + ( Nw-Nw’)+2Nw’ + 2Ns = N,-Nw + Nw,+ Ns ... ( 31) 由數式(3 1 )予以補正的結果如以下所示,可知計算 出計數時未發生缺漏或過剩計數之情形下之原本的Μ Η P 的數量Ν’。 N-{0.5Nw’+Ns} + {0.5Nw’ + (Nw-Nw’)} = {N-Nw + Nw’+Ns}-{0_5Nw’+Ns} + {0.5Nw,+ (Nw-Nw,)} =N, …(32 ) 其中,在本實施形態中,雖然針對MHP的缺漏的補 正,說明了因1個缺漏而使ΜΗΡ的周期成爲原來的周期 的大約2倍的情形,但是在連續產生2個以上的缺漏的情 形下亦可適用本發明。在ΜΗΡ連續缺漏2個的情形下, 中位數的3倍的周期的ΜΗΡ被認爲3個ΜΗΡ變爲1個。 此時,求出爲周期的中位數的大約3倍以上的等級的頻率 ,若將此頻率設爲2倍,即可補正ΜΗΡ的缺漏。若將如 上所示的思考模式予以一般化,則可以使用下式來取代數 式(1 6 )。 -58- 200916731 N,=N + Nwl+Nw2+Nw3 + ."-Ns …(33)Nw), the frequency of the period of the MHP with a period of 1.5 T0 or more (=0 · 5 ρ [ % ] · N w ). Therefore, the frequency distribution of all the cycles of the 成为 becomes as follows: If the threshold N of N s is set to 0.5 Τ 0, the Κ 1.5 Τ 0 of N w , the counting result can be expressed by the following formula. N = (N'-2Nw) + (Nw-Nw,) + 2Nw'=N, -Nw + Nw,. The result of correction by the formula (2 9 ) is as shown below, and no MHP occurs when counting. The original quantity N in the absence of leakage. N-0_5Nw'+ ( 〇.5Nw, + ( Nw-Nw,)) = (N-Nw + Nw,) + ( 〇 .5Nw, + ( Nw_Nw,)) = N, as can be seen from the above, if it is to be obtained The period N at the frequency N w is 1 · 5 times the median, and the count result N can be corrected. In the case where the period of the MHP is divided into two, the correction is performed using the median. Therefore, the same error occurs. In the above description, the case where the period of the excess count noise MHP is divided into two is described. And the case where the period of the MHP at the time of counting is doubled, but the situation is independent if the situation is expressed as a frequency distribution, that is, the 29th is 0.5Nw' g 28; the limit is set to • (29) It can be seen that the number of calculated MHPs is 30). The threshold is set to 1' and the result is caused by the missing T〇〇. -57- 200916731 If the threshold of Ns is set to 〇.5ΤΟ, set the threshold of Nw to 1.5T0, and the result of counting N can be expressed by the following formula. N= ( N'-2Nw-Ns) + ( Nw-Nw')+2Nw' + 2Ns = N, -Nw + Nw, + Ns ... ( 31) The result of the correction by the formula (3 1 ) As shown below, it can be seen that the number of original Η Η P in the case where no missing or excessive count occurs at the time of counting is calculated. N-{0.5Nw'+Ns} + {0.5Nw' + (Nw-Nw')} = {N-Nw + Nw'+Ns}-{0_5Nw'+Ns} + {0.5Nw,+ (Nw-Nw In the present embodiment, the correction of the missing of the MHP has been described as a case where the period of the ΜΗΡ is approximately twice as large as the original period due to one missing, but in the case of The present invention is also applicable to the case where two or more leaks are continuously generated. In the case of two consecutive 缺 missing, the ΜΗΡ of the three-fold period of the median is considered to be three ΜΗΡ. At this time, the frequency of the level which is about three times or more of the median of the period is obtained, and if the frequency is doubled, the missing defect can be corrected. If the thinking mode as shown above is generalized, the following formula can be used instead of the formula (16). -58- 200916731 N,=N + Nwl+Nw2+Nw3 + ."-Ns ...(33)

Nw 1係爲周期的中位數的1 _ 5倍以上的等級的頻率總 和,Nw2係爲周期的中位數的2.5倍以上的等級的頻率總 和,N w 3係爲周期的中位數的大約3.5倍以上的等級的頻 率總和。 (第3實施形態) 接著,說明本發明的第3實施形態。在第2實施形態 中,係在固定長度的第1計數期間Pn和第2計數期間Pm 中求取MHP的數量,但是第1計數期間Pn和第2計數期 間Pm亦可形成爲可變長度。在本實施形態中,由於距離 •速度計的構成係與第1實施形態相同,因此使用第1圖 的元件符號進行說明。 第3 0圖係顯示本實施形態之計數裝置7之構成之一 例的方塊圖,第3 1圖係顯示該計數裝置7的動作的流程 圖。本實施形態的計數裝置7係由切換開關7 0 a ;周期測 定部7 1 a - 1、7 1 a - 2 ;判定部7 3 -1、7 3 - 2 ;計數結果補正部 76a-l、76a-2 ;記憶部77 ;周期和計算部78-1、78-2 ;及 個數計算部7 9 - 1、7 9 - 2所構成。 第3 2圖係顯示計數結果補正部7 6 a_丨之構成之一例 的方塊圖。計數結果補正部7 6 a - 1係由頻率分佈作成部 7 6 1 a '中位數計算部7 6 2 a、及補正値計算部7 6 3 a所構成 。計數結果補正部76a-2的構成由於與計數結果補正部 -59- 200916731 76a-l相同,故省略說明。 首先,切換開關70a的動作係與第1 3圖的步驟 、S301相同(第31圖的步驟S400、S401),判定部 、73-2的動作係與第13圖的步驟S302相同(第31 步驟S 4 0 2 )。 周期測定部71a-l係針對該等MHP的每一個, 第15圖(B)所示的判定部73-1的輸出中的一定個 (N爲2以上的自然數)個的MHP的周期(第31圖 驟S4 03 )。同樣地,周期測定部71a-2係針對該等 的每一個,測定判定部7 3 - 2的輸出中的一定個數N MHP的周期(步驟S403 )。此時,周期測定部71 7 1 a-2係以時鐘訊號CLK的周期爲1個單位來測定 的周期。記憶部77係記憶周期測定部71a-l、71a-2 定結果。 在周期測定部7 1 a-1測定結束之後’計數結果補 76a-l的頻率分佈作成部761a係根據被記憶在記憶ΐ 的周期測定部71 a-1的測定結果,作成MHP的周期 率分佈(第3 1圖步驟S404 )。同樣地’在周期測 7 la-2測定結束之後,計數結果補正部76a-2的頻率 作成部76 1a係根據周期測定部71 a_2的測定結果, MHP的周期的頻率分佈(步驟S404 )。 接著,計數結果補正部76a-1的中位數計算部 係根據計數結果補正部76a-l的頻率分佈作成部76] 作成的頻率分佈,來計算MHP的周期的中位數T0 ( S3 00 73-1 圖的 測定 數N 的步 MHP 個的 a-Ι ' MHP 的測 正部 部77 的頻 定部 分佈 作成 762a [a所 第31 -60- 200916731 圖的步驟S 4 0 5 )。同樣地’計數結果補正部7 6 a -2的中位 數計算部762a係根據計數結果補正部76a-2的頻率分佈 作成部761a所作成的頻率分佈’來計算MHP的周期的中 位數TO (步驟S4〇5 )。 計數結果補正部7 6 a -1的捕正値計算部7 6 3 a係根據 計數結果補正部76a-1的頻率分佈作成部76 1 a所作成的 頻率分佈,求出爲計數結果補正部76a-1的中位數計算部 762a計所計算出的周期的中位數TO的0.5倍以下的等級 的頻率總和Ns、及爲該周期的中位數T0的1 _ 5倍以上的 等級的頻率總和N w ’如數式(1 6 )所示補正一定個數N (第3 1圖的步驟S 4 0 6 )。同樣地’計數結果補正部7 6 a -2的補正値計算部7 6 3 a係根據計數結果補正部7 6 a _ 2的頻 率分佈作成部7 6 1 a所作成的頻率分佈’求出爲計數結果: 補正部76a-2的中位數計算部762a所計算出的周期的中 位數T0的0.5倍以下的等級的頻率總和Ns、及爲該周期 的中位數T 0的1_ 5倍以上的等級的頻率總和Nw,如數式 (16)所示補正一定個數N (步驟S406 )。 接著,周期和計算部7 8 -1係根據記憶在記憶部7 7的 周期測定部7 1 a-1的測定結果,計算MHP的周期的總和 Sum (第31圖步驟S407)。同樣地’周期和計算部78-2 係根據周期測定部7 1 a·2的測定結果’計算MHP的周期 的總和S u m (步驟S 4 0 7 )。 個數計算部79-1係以由周期和計算部78-〗所計算出 的MHP的周期的總和Sum來除由計數結果補正部76a-l -61 - 200916731 的補正値計算部763 a所計算出的補正後的計數結果ν’, 藉此計算第1計數期間Ρη中每單位時間的ΜΗΡ的數量X (第3 1圖步驟S408 )。同樣地,個數計算部79-2係以由 周期和計算部78-2所計算出的ΜΗΡ的周期的總和Sum來 除由計數結果補正部76a-2的補正値計算部763 a所計算 出的補正後的計數結果N ’,藉此計算第2計數期間Pm中 每單位時間的MHP的數量Y (步驟S408 )。 計數裝置7係按每一第1、第2計數期間pn、pm進 行以上所示之處理。同時計算Μ Η P的數量X和Y的情形 係與第1、第2實施形態相同,但是如前所述,在本實施 形態中,第1計數期間Ρη和第2計數期間Pm會成爲可變 長度。亦即,由周期和計算部78-1所計算出的MHP的周 期的總和係相當於第1計數期間Ρη的長度,由周期和計 算部78-2所計算出的ΜΗΡ的周期的總和係相當於第2計 數期間Pm的長度。相當於第2實施形態的計數器75-1、 75-2的計數結果N的値在本實施形態中係成爲所謂一定 個數N的固定値。 其他構成係與第2實施形態相同。在第2實施形態中 ,由於第1計數期間Ρη和第2計數期間Pm爲固定長度, 因此會有由周期和計算部7 8 -1所計算出的MHP的周期的 總和與第1計數期間Ρη的長度不相一致的情形,同樣地 會有由周期和計算部78-2所計算出的ΜΗΡ的周期的總和 與第2計數期間P m的長度不相一致的情形。因此,在第 2實施形態中,存在有在由計數裝置7所求出的MHP的數 -62- 200916731 量η、m中產生測定誤差,在距離及速度中產生測定誤差 的可能性。 相對於此’在本實施形態中,由於使由周期和計算部 78-1、78-2所計算出的MHP的周期的總和與第〗計數期 間Pn、第2計數期間Pm的長度相等,因此可減低MHP 的數量η、m的測定誤差。因此,藉由本實施形態,不僅 可獲得與第2實施形態相同的效果,亦可更進一步提高距 離及速度的測定精度。 (第4實施形態) 接著說明本發明的第4實施形態。在第1至第3實施 形態中,狀態判定部8 2係在數式(2 )和數式(3 )的計 算結果爲相等時,判定出測定對象1 1處於微小位移狀態 ,在數式(4 )和數式(5 )的計算結果爲相等時,判定出 測定對象1 1處於位移狀態。但是’因雜訊等的影響,在 數式(2)和數式(3)的計算結果爲相等、且數式(4) 和數式(5 )的計算結果不相等的情形下’並無法判定測 定對象1 1的狀態,在數式(2 )和數式(3 )的計算結果 不相一致、且數式(4 )和數式(5 )的計算結果不相一致 的情形下’亦無法判定測定對象1 1的狀態。在本實施形 態中,即便在狀態判定部82無法判定測定對象11的狀態 的情形下,亦實現計算與測定對象1 1的距離及測定對象 1 1的速度。 在本實施形態中,距離.速度計的構成係與第1實施 -63- 200916731 形態相同’因此使用第1圖的元件符號進行說明。第3 3 圖係顯示本實施形態之蓮算裝置8之構成之一例的方塊圖 ’第34圖係顯示該運算裝置8的動作的流程圖。本實施 形態的運算裝置8係由:記憶部8 0 ;距離•速度計算部 8 1 ;根據距離•速度計算部8 1和後述的履歷位移計算部 的計算結果來判定測定對象1 1的狀態的狀態判定部82a ; 根據狀態判定部82a的判定結果來確定測定對象1 1的速 度的速度確定部83a ;根據狀態判定部82a的判定結果來 確定與測定對象1 1的距離的距離確定部84a ;以及計算爲 由距離•速度計算部8 1所計算出的距離的候補値和在瞬 前所計算出的距離的候補値之差的履歷位移的履歷位移計 算部85所構成。速度確定部83a和距離確定部84a係構 成距離•速度確定手段。 首先,運算裝置8的記憶部80的動作係與第8圖的 步驟S201相同(第34圖步驟S501) ’距離•速度計算 部81的動作係與第8圖的步驟S202相同(第34圖步驟 S 5 02 )。 運算裝置8的履歷位移計算部8 5係按照下式進行計 算:時刻t -1至t中之距離的第2候補値L a 2 ( t -1,t )和 時刻t-2至t-1中之距離的第1候補値Lal ( t-2,t-1 )之 差即履歷位移Vcalal ( t-2 ’ t );時刻t至t+1中之距離 的第1候補値L α 1 ( t,t +1 )和時刻t -1至t中之距離的第 2候補値La2 ( t-1,t )之差即履歷位移Vcala2 ( t-1,t+i ):時刻t-1至t中之距離的第1候補値La 1 ( t-1,t )和 -64 - 200916731 時刻t -2至t -1中之距離的第2候補値L α 2 ( t - 2 ’ t -1 )之 差即履歷位移Vcala3(t-2,t);時刻t至t+1中之距離 的第2候補値L a 2 ( t,t + 1 )和時刻t -1至t中之距離的第 1候補値Lai ( t-1,t )之差即履歷位移Vcalot4 ( t-1 ’ t+1 ):時刻t -1至t中之距離的第4候補値L β 4 ( t - 1,ί )和 時刻t-2至t-1中之距離的第3候補値Lp3 ( t-2,t-1 )之 差即履歷位移Vcalpl (t-2,t);時刻t至t+1中之距離 的第3候補値L β 3 ( t, t +1 )和時刻t -1至t中之距離的第 4候補値LP4 ( t-1,t)之差即履歷位移Vcaip2 ( t-1,t+1 ):時刻t-1至t中之距離的第3候補値ίβ3 ( t-1,t )和 時刻t-2至t-1中之距離的第4候補値ίβ4 ( t-2,t-1 )之 差即履歷位移Vcaip3 ( t-2,t );時刻t至t+1中之距離 的第4候補値ίβ4 ( t, t+1 )和時刻t_ 1至t中之距離的第 3候補値L β 3 ( t -1,t )之差即履歷位移v c a 1 β 4 ( t - 1 ’ t + 1 ),並儲放在記憶部8 0 (第3 4圖的步驟S 5 0 3 )。Nw 1 is the sum of the frequencies of the rank of 1 _ 5 times or more of the median period of the cycle, Nw2 is the sum of the frequencies of the rank of 2.5 times or more of the median of the cycle, and N w 3 is the median of the cycle. A sum of frequencies of about 3.5 times or more. (Third embodiment) Next, a third embodiment of the present invention will be described. In the second embodiment, the number of MHPs is obtained in the first counting period Pn and the second counting period Pm of a fixed length. However, the first counting period Pn and the second counting period Pm may be formed to have variable lengths. In the present embodiment, the configuration of the distance/speedometer is the same as that of the first embodiment, and therefore the description will be given using the reference numerals of the first embodiment. Fig. 30 is a block diagram showing an example of the configuration of the counting device 7 of the present embodiment, and Fig. 3 is a flow chart showing the operation of the counting device 7. The counting device 7 of the present embodiment is a changeover switch 7 0 a , a period measuring unit 7 1 a - 1 , 7 1 a - 2 , a determining unit 7 3 -1, 7 3 - 2 , a counting result correcting unit 76a-1, 76a-2; memory unit 77; period and calculation units 78-1 and 78-2; and number calculation unit 7 9 -1, 7 9 -2. Fig. 3 is a block diagram showing an example of the configuration of the counting result correcting unit 7 6 a_丨. The count result correcting unit 7 6 a - 1 is composed of a frequency distribution creating unit 7 6 1 a 'median calculating unit 7 6 2 a and a correcting unit calculating unit 7 6 3 a . Since the configuration of the count result correcting unit 76a-2 is the same as that of the counting result correcting unit -59-200916731, 76a-1, the description thereof is omitted. First, the operation of the changeover switch 70a is the same as the process of FIG. 3 and S301 (steps S400 and S401 of FIG. 31), and the operation of the determination unit and 73-2 is the same as that of step S302 of FIG. 13 (step 31). S 4 0 2 ). The cycle measuring unit 71a-1 is a cycle of a certain number of MHPs (N is a natural number of 2 or more) among the outputs of the determining unit 73-1 shown in Fig. 15(B) for each of the MHPs ( Figure 31, S4 03). Similarly, the period measuring unit 71a-2 measures the period of a certain number N MHP in the output of the determining unit 7 3 - 2 for each of these (step S403). At this time, the period measuring unit 71 7 1 a-2 is a period measured by one cycle of the clock signal CLK. The memory unit 77 determines the results of the memory cycle measuring units 71a-1 and 71a-2. After the measurement by the period measuring unit 7 1 a-1 is completed, the frequency distribution creating unit 761a of the counting result complement 76a-1 creates a cycle rate distribution of the MHP based on the measurement result of the period measuring unit 71 a-1 stored in the memory ΐ. (Step S1 in Fig. 31). Similarly, after the end of the period measurement 7 la-2 measurement, the frequency generation unit 76 1a of the count result correcting unit 76a-2 is a frequency distribution of the period of the MHP based on the measurement result of the period measuring unit 71 a_2 (step S404). Then, the median calculation unit of the count result correcting unit 76a-1 calculates the median T0 of the period of the MHP based on the frequency distribution created by the frequency distribution creating unit 76 of the counting result correcting unit 76a-1 (S3 00 73 -1 The number of steps N of the measurement N is the a-Ι 'MHP portion of the measuring portion 77 of the MHP is made 762a [a step S 4 0 5 of the 31-60-200916731 figure). Similarly, the median calculation unit 762a of the 'counting result correcting unit 7 6 a - 2 calculates the median TO of the period of the MHP based on the frequency distribution 'made by the frequency distribution creating unit 761 a of the counting result correcting unit 76 a -2 (Step S4〇5). The counting result correction unit 7 6 3 a of the counting result correcting unit 7 6 a -1 is a frequency distribution prepared by the frequency distribution creating unit 76 1 a of the counting result correcting unit 76a-1, and is obtained as the counting result correcting unit 76a. The median calculation unit 762a of -1 calculates the frequency total Ns of the level of 0.5 times or less of the median TO of the cycle calculated, and the frequency of the level of 1 _ 5 times or more of the median T0 of the cycle. The sum N w ' is corrected by a certain number N as shown in the equation (16) (step S 4 0 6 of Fig. 3). Similarly, the correction calculation unit 7 6 3 a of the 'counting result correction unit 7 6 a - 2 is determined based on the frequency distribution 'of the frequency distribution preparation unit 7 6 1 a of the counting result correction unit 7 6 a _ 2 Counting result: The sum of frequencies Ns of the level of 0.5 times or less the median T0 of the period calculated by the median calculation unit 762a of the correction unit 76a-2, and 1 to 5 times the median T 0 of the period The frequency total sum Nw of the above level is corrected by a certain number N as shown in the equation (16) (step S406). Next, the cycle and calculation unit 78-1 calculates the sum Sum of the periods of the MHP based on the measurement result of the period measuring unit 7 1 a-1 stored in the memory unit 7 (step S407 in Fig. 31). Similarly, the 'cycle and calculation unit 78-2 calculates the sum S u m of the periods of the MHP based on the measurement result of the period measuring unit 7 1 a·2 (step S 4 0 7 ). The number calculation unit 79-1 is divided by the correction 値 calculation unit 763 a of the count result correction unit 76a-l - 61 - 200916731 by the sum Sum of the periods of the MHP calculated by the period and calculation unit 78-〗. The corrected count result ν' is obtained, thereby calculating the number X of enthalpy per unit time in the first counting period Ρn (step S408 in Fig. 31). Similarly, the number calculation unit 79-2 is calculated by the correction/calculation unit 763a of the count result correction unit 76a-2 by the sum Sum of the period of the enthalpy calculated by the period and calculation unit 78-2. The corrected count result N', thereby calculating the number Y of MHP per unit time in the second count period Pm (step S408). The counting device 7 performs the above-described processing for each of the first and second counting periods pn and pm. The case where the numbers X and Y of Μ Η are simultaneously calculated is the same as in the first and second embodiments. However, as described above, in the present embodiment, the first counting period Ρη and the second counting period Pm become variable. length. In other words, the sum of the periods of the MHP calculated by the period calculating unit 78-1 corresponds to the length of the first counting period Ρη, and the sum of the periods of the enthalpy calculated by the period calculating unit 78-2 is equivalent. The length of Pm during the second counting period. In the present embodiment, the number of counts N corresponding to the counters 75-1 and 75-2 of the second embodiment is a fixed number N. The other configuration is the same as that of the second embodiment. In the second embodiment, since the first counting period Ρη and the second counting period Pm are fixed lengths, the total period of the MHP period calculated by the period and calculating unit 78-1 is the same as the first counting period Ρη. In the case where the lengths do not coincide with each other, the sum of the periods of the chirp calculated by the period and calculation unit 78-2 may not coincide with the length of the second count period P m . Therefore, in the second embodiment, there is a possibility that a measurement error occurs in the number -62 - 200916731 η, m obtained by the counting device 7, and a measurement error occurs in the distance and the speed. In the present embodiment, since the sum of the periods of the MHP calculated by the period and calculation units 78-1 and 78-2 is equal to the lengths of the first count period Pn and the second count period Pm, The measurement error of the number of MHPs η and m can be reduced. Therefore, according to the present embodiment, not only the same effects as those of the second embodiment can be obtained, but also the measurement accuracy of the distance and the speed can be further improved. (Fourth embodiment) Next, a fourth embodiment of the present invention will be described. In the first to third embodiments, when the calculation results of the equations (2) and (3) are equal, the state determination unit 8 2 determines that the measurement target 11 is in the state of minute displacement, and in the equation ( 4) When the calculation result of the equation (5) is equal, it is determined that the measurement object 11 is in the displacement state. However, 'due to the influence of noise, etc., in the case where the calculation results of the equations (2) and (3) are equal, and the calculation results of the equations (4) and (5) are not equal, The state of the measurement object 11 is determined, and in the case where the calculation results of the equations (2) and (3) are not identical, and the calculation results of the equations (4) and (5) are not identical, The state of the measurement object 11 cannot be determined. In the present embodiment, even when the state determination unit 82 cannot determine the state of the measurement target 11, the distance from the measurement target 11 and the speed of the measurement target 11 are calculated. In the present embodiment, the configuration of the distance and velocity meter is the same as that of the first embodiment -63-200916731. Therefore, the component symbol of Fig. 1 will be described. Fig. 3 is a block diagram showing an example of the configuration of the lotus calculator 8 of the present embodiment. Fig. 34 is a flowchart showing the operation of the arithmetic unit 8. The arithmetic unit 8 of the present embodiment is composed of a memory unit 80; a distance/speed calculating unit 8 1; and the state of the measuring object 1 1 is determined based on the calculation results of the distance/speed calculating unit 8 1 and a history displacement calculating unit to be described later. State determination unit 82a; speed determination unit 83a that determines the speed of measurement target 11 based on the determination result of state determination unit 82a, and distance determination unit 84a that determines the distance from measurement target 11 based on the determination result of state determination unit 82a; And a history displacement calculating unit 85 that calculates a history displacement of the difference between the candidate 値 calculated by the distance/speed calculating unit 8 1 and the candidate 在 of the distance calculated before the moment. The speed determining unit 83a and the distance determining unit 84a constitute a distance/speed determining means. First, the operation of the memory unit 80 of the arithmetic unit 8 is the same as that of step S201 of Fig. 8 (step S501 of Fig. 34). The operation of the distance/speed calculation unit 81 is the same as that of step S202 of Fig. 8 (step 34) S 5 02 ). The history displacement calculating unit 85 of the arithmetic unit 8 calculates the second candidate 値L a 2 ( t -1, t ) and the time t-2 to t-1 of the distance from time t -1 to t in accordance with the following equation: The difference between the first candidate 値Lal ( t-2, t-1 ) of the distance in the middle is the history displacement Vcalal ( t-2 ' t ); the first candidate 値L α 1 of the distance from time t to t+1 ( The difference between the second candidate 値La2(t-1, t) of the distance between t, t +1 and the time t -1 to t is the history displacement Vcala2 ( t-1, t+i ): time t-1 to The first candidate 値La 1 ( t-1,t ) of the distance in t and the second candidate 値L α 2 of the distance in time t -2 to t -1 ( t - 2 ' t -1 The difference is the history displacement Vcala3(t-2, t); the distance between the second candidate 値L a 2 ( t, t + 1 ) and the time t -1 to t in the time t to t+1 The difference between the first candidate 値Lai ( t-1, t ) is the history displacement Vcalot4 ( t-1 ' t+1 ): the fourth candidate 时刻 L β 4 ( t - 1, the distance from the time t -1 to t ί ) The difference between the third candidate 値Lp3 ( t-2, t-1 ) of the distance from time t-2 to t-1 is the history displacement Vcalpl (t-2, t); at time t to t+1 The third candidate 値L β 3 ( t, t +1 ) and the time t -1 to t The difference between the fourth candidate 値LP4 (t-1, t) of the distance is the history displacement Vcaip2 (t-1, t+1): the third candidate 时刻ίβ3 (t-1) of the distance from time t-1 to t , t ) and the difference between the fourth candidate 値ίβ4 ( t-2, t-1 ) of the distance from time t-2 to t-1 is the history displacement Vcaip3 ( t-2, t ); time t to t+1 The difference between the fourth candidate 値ίβ4 ( t, t+1 ) of the distance in the middle distance and the third candidate 値L β 3 ( t -1, t ) of the distance from time t_ 1 to t is the history displacement vca 1 β 4 ( t - 1 ' t + 1 ), and stored in the memory portion 80 (step S 5 0 3 of Fig. 34).

Vcalal ( t-2, t) = La2 (t-1, t) -Lai (t-2, t-1) ··· (34)Vcalal ( t-2, t) = La2 (t-1, t) -Lai (t-2, t-1) ··· (34)

Vcala2 ( t-1, t+1) = Lal ( t, t+1) -La2 ( t-1, t) ...(35)Vcala2 ( t-1, t+1) = Lal ( t, t+1) -La2 ( t-1, t) ... (35)

Vcala3 ( t-2, t) =La 1 ( t-1, t ) -La2 ( t-2, t-1) ··· (36)Vcala3 ( t-2, t) =La 1 ( t-1, t ) -La2 ( t-2, t-1) ··· (36)

Vcala4 (t-1, t+1 ) = La2(t,t+l) -Lai ( t-1, t ) ·· (37) -65- 200916731Vcala4 (t-1, t+1 ) = La2(t,t+l) -Lai ( t-1, t ) ·· (37) -65- 200916731

Vcaipi ( t-2, t) = Lp4 ( t-1 , t ) -ίβ3 ( t-2, t-1 ) ·· ( 38 )Vcaipi ( t-2, t) = Lp4 ( t-1 , t ) -ίβ3 ( t-2, t-1 ) ·· ( 38 )

Vcalp2 ( t-1 , t+ 1 ) = Lp3 ( t, t+1 ) -LP4 ( t-1 , t ) .·_ ( 39 )Vcalp2 ( t-1 , t+ 1 ) = Lp3 ( t, t+1 ) -LP4 ( t-1 , t ) .·_ ( 39 )

Vcalp3 ( t-2, t ) = Lp3 ( t-1, t) -ίβ4 ( t-2, t-1 ) ... (40)Vcalp3 ( t-2, t ) = Lp3 ( t-1, t) - ίβ4 ( t-2, t-1 ) ... (40)

Vcalp4 ( t-1 , t+1 ) = Lp4 ( t, t+1 ) -Lp3 ( t-1, t ) .·· ( 41 ) 履歷位移 Vcalal (t-2,t) 、Vcala2(t-1 ’ t+1)、 Vcala3 ( t-2,t ) 、Vcala4 ( t-1,t+1 )係假設測定對象 1 1處於微小位移狀態而計算出的値,履歷位移Vcaipi ( t- 2,t ) 、Vcaip2 (t-1,t+1) 、Vcaip3 (t-2,t) 、Vcaip4 (t-1,t+ 1 )係假設測定對象U處於位移狀態而計算出的 値。 履歷位移計算部8 5係在每次藉由計數裝置7來計算 MHP的數量的時刻,即進行數式(3 4 )至數式(4 1 )的計 算。其中,在數式(3 4 )至數式(4 1 )中,將測定對象1 1 接近距離•速度計的方向定爲正的速度’將遠離該距離· 速度計的方向定爲負的速度。 接著,運算裝置8的狀態判定部82a係使用記憶在記 憶部80中的數式(2 )至數式(5 )的計算結果和數式( 3 4 )至數式(41 )的計算結果,來判定測定對象1 1的狀 能(第3 4圖的步驟S 5 0 4 )。第3 5圖係顯示此狀態判定 -66- 200916731 部8 2 a的動作的流程圖。 首先,狀態判定部82a係與第1實施形態的狀態判定 部8 2相同,使用數式(2 )至數式(5 )的計箅結果來判 定測定對象Π的狀態(第3 5圖的步驟S60丨)。 在此,狀態判定部8 2 a係在數式(2 )和數式(3 )的 計算結果爲相等時,判定出測定對象1 1處於微小位移狀 態,在數式(4 )和數式(5 )的計算結果爲相等時,判定 出測定對象1 1處於位移狀態,且判斷出狀態判定已結束 (在步驟S 6 0 2中判定Y E S )而結束步驟s 5 0 4的處理。另 一方面,狀態判定邰8 2 a係在數式(2 )和數式(3 )的計 算結果爲相等、且數式(4 )和數式(5 )的計算結果亦爲 相等時,或在數式(2 )和數式(3 )的計算結果不相一致 、且數式(4 )和數式(5 )的計算結果亦不相一致時,由 於無法進行狀態判定,因此進至步驟S 60 3。 在步驟S603中,狀態判定部82a係使用數式(2 )至 數式(5)的計算結果和數式(34)至數式(41)的計算 結果來判定測定對象1 1的狀態。 如專利文獻1之記載所示,在測定對象1 1以微小位 移狀態移動(等速運動)的情形下,假定測定對象i丨爲 微小位移狀態而計算出的履歷位移Vcalα的符號爲一定, 並且假設測定對象1 1爲微小位移狀態而計算出的速度候 補値Va和履歷位移Vcalct的絕對値的平均値會變爲相等 。此外,在測定對象1 1以微小位移狀態等速運動的情形 下,假定測定對象1 1爲位移狀態而計算出的履歷位移 -67- 200916731Vcalp4 ( t-1 , t+1 ) = Lp4 ( t, t+1 ) - Lp3 ( t-1, t ) . ( 41 ) History shift Vcalal (t-2, t) , Vcala2 (t-1 't+1), Vcala3 (t-2,t), and Vcala4 (t-1,t+1) are the calculated 値, the history displacement Vcaipi (t- 2, t) ), Vcaip2 (t-1, t+1), Vcaip3 (t-2, t), and Vcaip4 (t-1, t+ 1) are 値 calculated by assuming that the measurement target U is in a displacement state. The history displacement calculating unit 85 calculates the number of MHPs by the counting means 7, that is, the calculation of the equation (34) to the equation (41). In the equation (3 4 ) to the equation (4 1 ), the direction of the measurement object 1 1 close to the distance • the speedometer is set to a positive speed 'the distance away from the distance · the speedometer is set to a negative speed . Next, the state determination unit 82a of the arithmetic unit 8 uses the calculation results of the equations (2) to (5) stored in the storage unit 80 and the calculation results of the equations (34) to (41). The shape energy of the measurement object 11 is determined (step S 5 0 4 of Fig. 4). Fig. 35 shows a flow chart showing the operation of this state determination -66-200916731 section 8 2 a. First, the state determination unit 82a determines the state of the measurement target 使用 using the calculation results of the equations (2) to (5) in the same manner as the state determination unit 8 2 of the first embodiment (step of FIG. S60丨). Here, when the calculation results of the equations (2) and (3) are equal, the state determination unit 8 2 a determines that the measurement target 11 is in a minute displacement state, and in the equation (4) and the equation ( When the calculation result of 5) is equal, it is determined that the measurement target 11 is in the displacement state, and it is judged that the state determination has ended (YES in step S610), and the processing of step s5 0 4 is ended. On the other hand, the state determination 邰8 2 a is when the calculation results of the equations (2) and (3) are equal, and the calculation results of the equations (4) and (5) are also equal, or When the calculation results of the equations (2) and (3) are not consistent, and the calculation results of the equations (4) and (5) are not consistent, since the state determination cannot be performed, the step is advanced. S 60 3. In the step S603, the state determining unit 82a determines the state of the measuring object 11 using the calculation results of the equations (2) to (5) and the calculation results of the equations (34) to (41). When the measurement target 1 1 is moved in a minute displacement state (equal motion), as shown in the patent document 1, the sign of the history displacement Vcalα calculated by the measurement target i 丨 being a minute displacement state is constant, and It is assumed that the average value of the absolute enthalpy of the velocity candidate 値Va and the history displacement Vcalct calculated by the measurement target 11 being the minute displacement state becomes equal. Further, when the measurement target 11 moves at a constant velocity in a minute displacement state, the history displacement calculated by the measurement target 11 as the displacement state is assumed -67- 200916731

Vcaip的符號係在每次計算MHP的數量的時刻即進行反轉 〇 因此,狀態判定部82a係在假定測定對象1 1處於微 小位移狀態而計算出的數式(34 )的履歷位移Veal oil ( t-2,t )和數式(35 )的履歷位移VCaI(x2 ( t-1,t+1 )的符 號相一致,並且假定測定對象Π處於微小位移狀態而計 算出的速度候補値Votl (t, t+Ι)和Va2(t, t+Ι)的平均 値、與履歷位移 Vcaltxl ( t-2,t )的絕對値和履歷位移 Vcala2 ( t-Ι,t+Ι )的絕對値的平均値爲相等的情形下, 判定測定對象1 1以微小位移狀態等速運動。 或者,狀態判定部82a係在假定測定對象1 1處於微 小位移狀態而計算出的數式(36 )的履歷位移VCala3 ( t-2,t )和數式(37 )的履歷位移 Vcala4 ( t-1,t+1 )的符 號相一致,並且假定測定對象1 1處於微小位移狀態而計 算出的速度候補値Val ( t,t + Ι )和Va2 ( U t+Ι )的平均 値、與履歷位移 Vcala3 ( t-2,t )的絕對値和履歷位移 V c a 1 a 4 ( t - 1,t + 1 )的絕對値的平均値爲相等的情形下, 判定測定對象1 1以微小位移狀態等速運動。 如專利文獻1之記載所示,在測定對象1 1以位移狀 態移動(等速運動)的情形下,假定測定對象1 1爲位移 狀態而計算出的履歷位移Vcaip的符號爲一定,並目.假定 測定對象1 1爲位移狀態而計算出的速度候補値V β和履歷 位移Vcaip的絕對値的平均値會變爲相等。此外,在測定 對象Π以位移狀態等速運動的情形下,假定測定對象1 1 -68- 200916731 爲微小位移狀態而計算出的履歷位移v C al α的符號係在每 次計算ΜΗΡ的數量的時刻即進行反轉。 因此,狀態判定部82a係在假定測定對象1 1處於位 移狀態而計算出的數式(38 )的履歷位移Vcalpl ( t-2,t )和數式(39)的履歷位移Vcalp2(t-1,t+1)的符號相 一致,並且假定測定對象1 1處於位移狀態而計算出的速 度候補値νβ3 ( t, t+Ι )和νβ4 ( t, t+Ι )的平均値、與履 歷位移Vcaipi ( t-2,t)的絕對値和履歷位移Vcalp2 ( t-1 ’ t+ 1 )的絕對値的平均値爲相等的情形下,判定爲測定 對象1 1以位移狀態等速運動。 或者,狀態判定部82a係在假定測定對象1 1處於位 移狀態而計算出的數式(4〇 )的履歷位移Vcaip3 ( t-2,t )和數式(41 )的履歷位移 Vcalp4 ( t-1,t+1 )的符號相 一致,並且假定測定對象1 1處於位移狀態而計算出的速 度候補値νβ3 ( t,t+Ι )和νβ4 ( t, t+Ι )的平均値、與履 歷位移Vcal03(t-2,t)的絕對値和履歷位移Vcaip4(t-1 ,t+ 1 )的絕對値的平均値爲相等的情形下,判定測定對 象1 1以位移狀態等速運動。 如專利文獻1之記載所示,在測定對象1 1以微小位 移狀態進行等速運動以外的運動的情形下,假定測定對象 1 1爲微小位移狀態而計算出的速度候補値v α與假定測定 對象1 1爲微小位移狀態而計算出的履歷位移V c a 1 α的絕 對値的平均値並不相一致。同樣地’假定測定對象1 1爲 位移狀態而計算出的速度候補値ν β與假定測定對象1 1爲 -69- 200916731 位移狀態而計算出的履歷位移Vcalp的絕對値的平均値亦 不相一致。 此外,在測定對象1 1以微小位移狀態進行等速運動 以外的運動的情形下,假定測定對象1 1爲微小位移狀態 而計算出的履歷位移Vcala的符號係在每次計算MHP的 數量的時刻進行反轉,在假定測定對象1 1爲位移狀態而 計算出的履歷位移V c al β中即便有符號變動,該變動亦非 在每次計算ΜΗΡ的數量的時刻產生。 因此,狀態判定部82a係在假定測定對象1 1處於微 小位移狀態而計算出的數式(34 )的履歷位移Vcalal ( t-2,t)和數式(35)的履歷位移Vcala2(t-1,t+1)的符 號不相一致,並且假定測定對象1 1處於微小位移狀態而 計算出的速度候補値Val ( t, t+Ι )和Va2 ( t, t+Ι )的平 均値、與履歷位移V c al a 1 ( t - 2,t )的絕對値和履歷位移 Veal a2 ( t-1,t + 1 )的絕對値的平均値不相一致的情形下 ,判定測定對象1 1以微小位移狀態進行等速運動以外的 運動。 或者,狀態判定部82a係在假定測定對象11處於微 小位移狀態而計算出的數式(36 )的履歷位移Veal α3 ( t-2,t)和數式(37)的履歷位移Vcala4(t-1,t+1)的符 號不相-致,並且假定測定對象1 1處於微小位移狀態而 計算出的速度候補値V a 1 ( t, t + 1 )和V a 2 ( t, t + 1 )的平 均値、與履歷位移Veal a3 ( t-2,t )的絕對値和履歷位移 Vc al a4 ( t-1 ’ t+ 1 )的絕對値的平均値不相一致的情形下 -70- 200916731 ,判定測定對象1 1以微小位移狀態進行等速運動以外的 運動。 其中,如果著眼於速度候補値νβ,貝1J νβ3 ( t,t+l ) 的絕對値和νβ4 ( t,t+1 )的絕對値爲常數,該絕對値等 於在假定測定對象1 1處於微小位移狀態而計算出的距離 候補値Lai ( t, t+l )和La2 ( t, t+l )的平均値乘以半導 體雷射1 -1、1 -2的波長變化率(Xb-λα ) ab的値。因此’ 狀態判定部8 2 a亦可在假定測定對象1 1處於位移狀態而 計算出的速度候補値νβ3 ( t,t+l )的絕對値和 νβ4 ( t, t+l )的絕對値等於在距離候補値Lai ( t,t+l )和La2 ( t, t+l )的平均値乘以波長變化率(λ1?-λ3 ) /λΐ)的値,並且 假定測定對象1 1處於微小位移狀態而計算出的速度候補 値Val ( t,t+l )和Va2 ( t,t+l )的平均値、與履歷位移 Vcalal ( t-2,t )的絕對値和履歷位移 Veal a2 ( t-1,t+l )的絕對値的平均値不相一致的情形下,判定測定對象1 1 以微小位移狀態進行等速運動以外的運動。 此外,狀態判定部82a亦可在假定測定對象1 1處於 位移狀態而計算出的速度候補値νβ3 ( t, t+ 1 )的絕對値 和VM ( t, t+l )的絕對値等於在距離候補値Lai ( t, t+l )和La2 ( t,t+ 1 )的平均値乘以波長變化率(λΙ)-λα ) Ub 的値,並且假定測定對象1 1處於微小位移狀態而計算出 的速度候補値Val ( t, t+l )和Va2 ( t, t+l )的平均値、 與履歷位移VcaU3 ( t-2,t )的絕對値和履歷位移vcala4 (t-1,t+ 1 )的絕對値的平均値不相一致的情形下,判定 -71 - 200916731 測定對象1 1以微小位移狀態進行等速運動以外的運動。 如專利文獻1之記載所示’測定對象1 1以位移狀態 進行等速運動以外的運動的情形下’假定測定對象11爲 微小位移狀態而計算出的速度候補値να和假定測定對象 1 1爲微小位移狀態而計算出的履歷位移Vcala的絕對値的 平均値不相一致,假定測定對象1 1爲位移狀態而計算出 的速度候補値νβ和假定測定對象1 1爲位移狀態而計算出 的履歷位移Vcaip的絕對値的平均値亦不相一致。此外, 在測定對象1 1以位移狀態進行等速運動以外的運動的情 形下,假定測定對象1 1爲位移狀態而計算出的履歷位移 Vcaip的符號係在每次計算MHP的數量的時刻進行反轉, 在假定測定對象1 1爲微小位移狀態而計算出的履歷位移 Vcala中即便有符號變動,該變動亦非在每次計算MHP的 數量的時刻產生。 因此,狀態判定部8 2 a係在假定測定對象1 1處於位 移狀態而計算出的數式(38 )的履歷位移Vcalpl ( t-2,t )和數式(39)的履歷位移Vcaip2(t-1,t+1)的符號不 相一致’並且假定測定對象1 1處於位移狀態而計算出的 速度候補値V β 3 ( t, t + 1 )和V β 4 ( t,t + 1 )的平均値、與 履歷位移Vcaipi ( t-2,t )的絕對値和履歷位移Vcaip2 ( t-1 ’ t+ 1 )的絕對値的平均値不相一致的情形下,判定測 定對象1 1以位移狀態進行等速運動以外的運動。 或者’狀態判定部8 2 a係在假定測定對象1 1處於位 移狀態而計算出的數式(4 0 )的履歷位移V c al β 3 ( t - 2,t -72- 200916731 )和數式(41 )的履歷位移Veal β4 ( t-1,t+1 )的符號不 相一致,並且假定測定對象1 1處於位移狀態而計算出的 速度候補値νβ3(ΐ, t+Ι)和Vp4(t, t+Ι)的平均値、與 履歷位移Vcalp3 ( t-2,t )的絕對値和履歷位移Vcaip4 ( t -1,t + 1 )的絕對値的平均値不相一致的情形下,判定測 定對象1 1以位移狀態進行等速運動以外的運動。 其中,如果著眼於速度候補値Va時,U Val ( t,t+1 )的絕對値和Va2 ( t,t+1 )的絕對値爲常數,該絕對値 等於在假定測定對象U處於位移狀態而計算出的距離候 補値Lp3 ( t, t+Ι )和Lp4 ( t,t+Ι )的平均値乘以半導體 雷射1-1、1-2的波長變化率(λΐ^-λα) /λΐ)的値。因此,狀 態判定部82a亦可在假定測定對象1 1處於微小位移狀態 而計算出的速度候補値Val ( t,t+Ι )的絕對値和Va2 ( t, t+1 )的絕對値等於在距離候補値LP3 ( t,t+1 )和ίβ4 ( t, t+1 )的平均値乘以波長變化率(Xb-Xa ) /λΐ)的値,並且 假定測定對象1 1處於位移狀態而計算出的速度候補値 νβ3 ( t, t+Ι )和 νβ4 ( t,t+Ι )的平均値、與履歷位移 Vcaipi ( t-2,t )的絕對値和履歷位移 Vcaip2 ( t-1,t+1 )的絕對値的平均値不相一致的情形下’判定測定對象1 1 以位移狀態進行等速運動以外的運動。 或者,狀態判定部82a亦可在假定測定對象1 1處於 微小位移狀態而計算出的速度候補値Vet 1 ( t,t+ 1 )的絕 對値和Va2 ( t,t+1 )的絕對値等於在距離候補値Ι_,β3 ( t, t+1 )和ίβ4 ( t, t+1 )的平均値乘以波長變化率(λΙ)-λα ) -73- 200916731 ab的値,並且假定測定對象1 1處於位移狀態而計算出的 速度候補値νβ3 ( t,t+Ι )和νβ4 ( t, t+Ι )的平均値,與 履歷位移Vcalp3 ( t-2,t )的絕對値和履歷位移Vcalp4 ( t-1,t+ 1 )的絕對値的平均値不相一致的情形下,判定測 定對象1 1以位移狀態進行等速運動以外的運動。 經過以上處理,結束步驟S 6 0 3的處理。將狀態判定 部82a的步驟S603的判定動作顯示於第36圖。 接著,運算裝置8的速度確定部8 3 a係根據狀態判定 部8 2a的判定結果,確定測定對象1 1的速度的絕對値( 第3 4圖的步驟S 5 0 5 )。亦即,速度確定部8 3 a係在判定 出測定對象11以微小位移狀態進行等速運動或等速運動 以外的運動的情形下,確定記憶在記憶部80的速度候補 値V α 1 ( t, t + 1 )和V a 2 ( t,t + 1 )的平均値爲時刻t -1至 t+Ι中的測定對象1 1的速度的絕對値(步驟S5 05 )。 此外,速度確定部8 3 a係在判定出測定對象1 1以位 移狀態進行等速運動或等速運動以外的運動的情形下,確 定記憶在記憶部80的速度候補値νβ3 ( 1,t+Ι )和νβ4 ( t, t+Ι)的平均値爲時刻t-1至t+Ι中的測定對象11的速 度的絕對値(步驟S 5 05 )。 其中,速度確定部8 3 a亦可在判定出測定對象1 1以 微小位移狀態進行等速運動或等速運動以外的運動的情形 下,確定記憶在記憶部8 0的速度候補値V a 5 ( t )爲時刻 t-1至t中的測定對象1 1的速度的絕對値(步驟S5 0 5 )。 此外,速度確定部8 3 a亦可在判定出測定對象1 1以位移 -74- 200916731 狀態進行等速運動或等速運動以外的運動的情形下,計算 出記憶在記憶部8 0的速度的候補値V β 6 ( t )作爲時刻t - 1 至t中的測定對象1 1的速度的絕對値(步驟S505 )。 接著,速度確定部83a與第8圖的步驟S205相同地 計算數式(1 4 )、數式(1 5 ),確定測定對象1 1的速度 的方向(第34圖的步驟S506)。其中,速度確定部83a 係在步驟S 5 05中使用數式(6)或數式(7)的計算結果 取代使用數式(2 )至數式(5 )的計算結果來確定速度的 絕對値的情形下,比較MHP的數X ( t )和Y ( t )的大小 ,在X ( t )比Y ( t )大的情形下,判定爲接近測定對象 1 1,在Y ( t )比X ( t )大的情形下判定爲遠離測定對象 1 1 (步驟 S 506 )。 接著,距離確定部84a係根據狀態判定部82a的判定 結果,確定與測定對象1 1的距離(第34圖的步驟S 5 07 )。亦即,距離確定部84a係當判定出測定對象1 1以微 小位移狀態進行等速運動或等速運動以外的運動的情形下 ,確定記憶在記憶部80的距離候補値Lai ( t,t+Ι )和 L α 2 ( t,t + 1 )的平均値爲時刻t -1至t + 1中之與測定對象 1 1的平均距離(步驟S 5 0 7 )。 此外,距離確定部8 4 a係當判定出測定對象1 ]以位 移狀態進行等速運動或等速運動以外的運動的情形下’確 定記憶在記憶部8 0的距離候補値L β 3 ( t, t+ 1 )和L β 4 ( t, t+1 )的平均値爲時刻t-1至t+1中之與測定對象1 1的平 均距離(步驟S507 )。 -75- 200916731 其中’距離確定部8 4 a亦可在判定出測定對象1 1以 微小位移狀態進行等速運動或等速運動以外的運動的情形 下,確定記憶在記憶部8 0的距離候補値L a 5 ( t )爲時刻 t-1至t中之與測定對象n的平均距離(步驟S507 )。此 外’距離確定部8 4 a亦可在判定出測定對象1 1以位移狀 態進行等速運動或等速運動以外的運動的情形下,確定記 憶在記憶部80的距離候補値Lp6 ( t )爲時刻t-Ι至t中之 與測定對象1 1的平均距離(步驟S 5 0 7 )。 運算裝置8係在每次藉由計數裝置7計算出MHP的 數量的時刻,即進行如以上所示之步驟S5 〇1至S5 07的處 理直到例如有自用戶指示測量結束爲止(在第34圖步驟 S5 〇8中爲YES )。運算裝置8以外的構成係與第1實施 形態相同。 在本實施形態中,即便因雜訊等影響而在第1實施形 態中無法判定測定對象1 1的狀態的情形下,亦可判定測 定對象11的狀態,而計算與測定對象1 1的距離及測定對 象1 1的速度。 (第5實施形態) 接著’說明本發明的第5實施形態。在測定對象11 進行等速運動以外的運動時,由於測定對象1 1的加速度 的符號變化時,不在運動狀態之相應區域之數式的符號即 會進行反轉’因此會產生誤判。因此,在第4實施形態中 ’運算裝置8的狀態判定部8 2 a亦可在數式(3 5 )的履歷 -76- 200916731 位移Vcala2(t-1,t+l)和數式(37)的履歷位移Vcala4 (t-1,t+ 1 )的符號相一致的情形下,判定測定對象1 1正 在等速運動,在數式(39)的履歷位移Vcaip2(t-1,t+l )和數式(41 )的履歷位移Veal β4 ( t-1,t+l )的符號相 一致的情形下,判定測定對象1 1正在進行等速運動之外 的運動。 (第6實施形態) 在第1至第5實施形態中,係針對將本發明應用於自 耦合型的干涉計的情形加以說明,但是亦可將本發明應用 於自耦合型以外的干涉計。第3 7圖係顯示本發明第6實 施形態的距離•速度計之構成的方塊圖,對與第1圖相同 的構成係標註相同的元件符號。在第37圖中’、12-2 係表示將入射光及反射光進行分離的分束鏡(beam splitter ) 0 半導體雷射1 - 1、1 -2的雷射光彼此平行地射出且射入 測定對象11係與第1實施形態相同。已通過分束鏡1 2_1 、1 2 - 2和透鏡3 -1、3 - 2的雷射光係射入測定對象1 1 °接 著,在本實施形態中,由測定對象1 1予以反射的半導體 雷射1-1、1-2的光係分別藉由分束鏡12-1、12-2 ’與射 入測定對象1 1的入射光予以分離,並導至光電一.極體2 -1 、Ί-2。 由於光電二極體2-1、2-2以後的構成係與第1至第6 實施形態相同,故省略說明。如此一來,即使在自稱合型 -77- 200916731 以外的干涉計中,亦可獲得與第1至第6實施形態相同的 效果。 第1至第6實施形態的計數裝置7和運算裝置8係可 藉由例如具有C P U、記憶裝置及介面的電腦與控制該等硬 體資源的程式來實現。用於使如上所示之電腦動作的程式 係在被記錄於軟性磁碟、CD-ROM、DVD-ROM、記憶卡等 記錄媒體的狀態下予以提供。CPU係將所讀入的程式寫入 記憶裝置,且按照該程式,執行在第1至第6實施形態中 所說明的處理。 其中,在第1至第6實施形態中,在測定對象1 1具 有非常小的位移的振動時(例如最大速度2nm ),實際的 距離的變化(振幅)爲數nm,但由於距離計算的解析度 低於位移解析度,故誤差變大。因此,當測定對象處於具 有微小位移的運動狀態時,取代計算結果,而將對位移( 速度)進行積分後的値作爲距離的變化較能提高精度。 此外,在第1至第6實施形態中係針對半導體雷射i _ 1與1-2的最小振盪波長λα爲相同,並且半導體雷射 與1 -2的最大振盪波長λΐ?爲相同的情形進行說明,但是 並不限於此’也可如第38圖所示,在半導體雷射1-1與 1 - 2之間,最小振盪波長Xa及最大振盪波長Xb爲不同。 在第3 8圖中’ λ31、λΐ) 1表示半導體雷射1 -1的最小振盪 波長、最大振盪波長’ Xa2、Xb2表示半導體雷射!_2的最 小振盪波長、最大振盪波長。此時’ 1 X >.b 1 / { 4 X ( Xb 1 - λαΐ ) }與Xa2xXb2/ { 4χ ( Xb2-Xa2 ) }恒爲相同的固定値 -78 - 200916731 即可。此時,式(2 )至式(13 )中的Xa、Xb,可採用 Xal、λΐ>1,亦可採用 ka2、Xb2。 此外,在第1至第6實施形態中係使半導體雷射1 -1 、:I -2呈三角波狀振盪,但是並不限於此,亦可如第3 9圖 所示,使半導體雷射1 - 1 ' 1 - 2呈鋸波狀振盪。亦即,在本 發明中,若以至少第1振盪期間P1反覆存在的方式使半 導體雷射1 -1動作,且以振盪波長的增減與半導體雷射1 -1成相反的方式使半導體雷射1 · 2動作即可。可以與第3 8 圖的情形相同,爲Xal#a2、ZblMb2,亦可與第2圖的情 形相同,爲 λα1=λα2 ' Xbl=Xb2 ° 第1振盪期間P1的動作與三角波振邊的情形相同。 其中,在使半導體雷射1 · 1、1 -2呈鋸波狀振盪的情形下, 計數裝置7的切換開關70、70a的輸出必須固定。亦即, 切換開關70、70a係將濾波器電路6-1的輸出恒爲與周期 測定部7 1 -1、判定部73- 1的輸入相連接,將濾波器電路 6-2的輸出恒爲與周期測定部7 1 -2、判定部73 -2的輸入相 連接。 其中’在使半導體雷射1 -1、1 -2呈三角波狀振盪的情 形下’可與測定對象11的狀態無關地進行振幅調整裝置 1 〇的振幅調整,但是在使半導體雷射1 - 1、1 _ 2呈鋸齒狀 振盪的情形下,係僅在測定對象1 1爲靜止狀態時可進行 振幅調整。 (產業上利用可能性) -79- 200916731 本發明係可適用於測量與測定對象的距離及測定對象 的速度的技術。 【圖式簡單說明】 第1圖係顯示本發明第1實施形態的距離.速度計的 構成的方塊圖。 第2圖係顯示本發明第1實施形態中的半導體雷射的 振盪波長的時間變化的一例圖。 第3圖係以模式顯示本發明第1實施形態的電流-電 壓轉換放大器的輸出電壓波形及濾波器電路的輸出電壓波 形的圖。 第4圖係顯示本發明第丨實施形態的計數裝置的構成 的一例的方塊圖。 第5圖係顯示第4圖的計數裝置的動作的流程圖。 第6圖係顯示第4圖的計數裝置的計數期間的圖。 第7圖係顯示本發明第1實施形態中的運算裝置的構 成的一例的方塊圖。 第8圖係顯示第7圖的運算裝置的動作的流程圖。 第9圖係用以說明隨著半導體雷射的波長變化的切換 ,模式跳躍脈衝的數量的變化圖。 第1 0圖係用以說明本發明第1實施形態中,由牵射 驅動器供給至半導體雷射的三角波驅動電流的振幅的調整 方法的圖。 第1 1圖係用以說明在半導體雷射的波長變化$ Θ @ -80- 200916731 換的時序的前後’使速度或距離的計算結果具有連續性的 方法的圖。 第1 2圖係顯示本發明第2實施形態的計數裝置的構 成的一例的方塊圖。 第1 3圖係顯示第1 2圖的計數裝置的動作的流程圖。 第1 4圖係顯示第1 2圖的計數裝置中的計數結果補正 部的構成的一例的方塊圖。 第1 5圖係用以說明第1 2圖的計數裝置的動作的圖。 第1 6圖係顯示模式跳躍脈衝的周期的頻率分佈的一 例圖。 第1 7圖係用以說明本發明第2實施形態中的計數器 的計數結果的補正原理圖。 第1 8圖係顯示模式跳躍脈衝之周期的頻率分佈圖。 第1 9圖係顯示包含雜訊的模式跳躍脈衝之周期的頻 率分佈圖。 第2 0圖係顯示包含雜訊的模式跳躍脈衝之周期之中 位數的圖。 第2 1圖係顯示周期經分割爲2之模式跳躍脈衝之周 期的頻率分佈圖。 第2 2圖係顯示周期經分割爲2之模式跳躍脈衝之周 期的頻率分佈圖。 第23圖係顯示周期經分割爲2之模式跳躍脈衝之周 期的頻率分佈圖。 第24圖係顯示周期經分割爲2之模式跳躍脈衝之周 -81 - 200916731 期的頻率分佈圖。 第25圖係顯示計數器値補正後的誤差的圖。 第26圖係顯示形成爲2倍之周期的模式跳躍脈衝的 周期的頻率分佈圖。 第2 7圖係顯示在計數時所缺漏的模式跳躍脈衝中經 分割爲2之模式跳躍脈衝之周期的頻率分佈圖。 第2 8圖係顯示在計數時所缺漏的模式跳躍脈衝中經 分割爲2之模式跳躍脈衝之周期的頻率分佈圖。 第2 9圖係顯示在計數時同時發生缺漏與過剩計數時 之模式跳躍脈衝之周期的頻率分佈圖。 第3 0圖係顯不本發明第3實施形態的計數裝置的構 成的一例的方塊圖。 第3 1圖係顯示第3 0圖的計數裝置的動作的流程圖。 第3 2圖係顯示第3 0圖的計數裝置中的計數結果補正 部的構成的一例的方塊圖。 第3 3圖係顯示本發明第4實施形態中的運算裝置的 構成的一例的方塊圖。 第3 4圖係顯示第3 3圖的運算裝置的動作的流程圖。 第3 5圖係顯不第3 3圖的運算裝置中的狀態判定部的 動作的流程圖。 第3 6圖係顯示第3 3圖的運算裝置中的狀態判定部的 判定動作圖。 第3 7圖係顯示本發明第6實施形態的距離.速度計 的構成的方塊圖。 -82- 200916731 第3 8圖係顯示本發明第1至第6實施形態中的半導 體雷射的振盪波長的時間變化的另一例圖。 第3 9圖係顯示本發明第1至第6實施形態中的半導 體雷射的振擾波長的時間變化的另一例圖。 第40圖係顯示習知之雷射測量器中之半導體雷射之 複合共振模型圖。 第41圖係顯示半導體雷射的振盪波長與內建光電二 極體的輸出波形的關係圖。 第42圖係顯示習知的距離•速度計的構成的方塊圖 〇 第43圖係顯示第42圖的距離·速度計中的半導體雷 射的振盪波長的時間變化的一例圖。 【主要元件符號說明】 、1-2 :半導體雷射 2_1、2-2 :光電二極體 U、3·2 :透鏡 1、4-2 :雷射驅動器 5_1、5_2 :電流-電壓轉換放大器 6·1、6_2 :濾波器電路 7 :計數裝置 8 :運算裝置 9 :顯示裝置 1 〇 :振幅調整裝置 -83- 200916731 1 1 :測定對象 70、70a :切換開關 7 1-1、7 1 -2、7 1 a-1、7 1 a-2 :周期測定部 7 2 - 1、7 2 - 2 :轉換部 73- 1 ' 7 3-2:判定部 74- 1、74-2:邏輯與運算部(AND) 75- 1 、 75-2 :計數器 76- 1、76-2、76a-l、76a-2:計數結果補正部 7 7 :記憶部 78- 1、78-2 :周期和計算部 79- 1、79-2 :個數計算部 8 0 :記憶部 8〗:距離•速度計算部 82、82a :狀態判定部 8 3、8 3 a :速度確定部 84、84a :距離確定部 8 5 :履歷位移計算部 1 0 1 :半導體雷射 102 :半導體結晶的壁開面 1 0 3 :光電二極體 104 :測定對象 2 0 1 :半導體雷射 2 0 2 :光電二極體 2 0 3 :透鏡 -84- 200916731 204 :雷射驅動器 205 :電流-電壓轉換放大器 2 0 6 :訊號抽出電路 207 :計數電路 208 :運算裝置 209 :顯示裝置 2 1 〇 :測定對象 760 :周期測定部 7 6 1 :頻率分佈作成部 762 :中位數計算部 763 :補正値計算部 7 6 1 a :頻率分佈作成部 762a :中位數計算部 763 a :補正値計算部 GS :聞極訊號 LD1 :半導體雷射1-1的振盪波形 LD2 :半導體雷射1-2的振盪波形 P1 :第1振盪期間 P2 :第2振盪期間 T :三角波的周期 :各期間的振盪波長的最小値 Xb :各期間的振盪波長的最大値The sign of the Vcaip is reversed every time the number of MHPs is calculated. Therefore, the state determination unit 82a is a history displacement Veal oil of the equation (34) calculated on the assumption that the measurement target 11 is in the minute displacement state. T-2, t) and the formula (35) of the equation (35) are coincident with the sign of the parameter VCaI(x2(t-1, t+1), and the calculated velocity candidate 値Votl (assuming the measurement target Π is in a minute displacement state) The average 値 of t, t+Ι) and Va2(t, t+Ι), and the absolute 値 of the history displacement Vcaltxl (t-2,t) and the absolute value of the historical displacement Vcala2 (t-Ι,t+Ι) When the average value is equal, it is determined that the measurement target 11 moves at a constant velocity in a minute displacement state. Alternatively, the state determination unit 82a is a history displacement of the equation (36) calculated on the assumption that the measurement target 11 is in a minute displacement state. The sign of the history displacement Vcala4 ( t-1, t+1 ) of VCala3 ( t-2, t ) and the equation (37 ) coincides, and the calculated velocity candidate 値Val is assumed to be in the minute displacement state of the measurement object 11 The average 値 of ( t,t + Ι ) and Va2 ( U t+Ι ), and the absolute 値 of the history displacement Vcala3 ( t-2,t ) When the average 値 of the absolute 値 of the history displacement V ca 1 a 4 ( t − 1, t + 1 ) is equal, it is determined that the measurement target 11 moves at a constant velocity in a minute displacement state. When the measurement target 11 moves in the displacement state (constant motion), the sign of the history displacement Vcaip calculated by the measurement target 11 as the displacement state is constant, and the measurement object 11 is assumed to be the displacement state. On the other hand, in the case where the measurement target Π is moved at the same speed as the displacement state, the measurement target 1 1 -68- 200916731 is assumed to be equal. The sign of the history displacement v C al α calculated by the small displacement state is inverted every time the number of ΜΗΡ is calculated. Therefore, the state determination unit 82a is calculated based on the assumption that the measurement target 11 is in the displacement state. The history displacement Vcalpl (t-2, t) of the equation (38) coincides with the sign of the history displacement Vcalp2(t-1, t+1) of the equation (39), and it is assumed that the measurement object 11 is in the displacement state. Calculated speed candidate The average 値 of 値νβ3 ( t, t+Ι ) and νβ4 ( t, t+Ι ), and the absolute 値 of the history displacement Vcaipi ( t-2, t) and the absolute value of the historical displacement Vcalp2 ( t-1 ' t+ 1 ) When the average 値 of the 値 is equal, it is determined that the measurement target 11 moves at the same speed in the displacement state. Alternatively, the state determination unit 82a is a history displacement Vcaip3 (t-2, t) of the equation (4〇) calculated on the assumption that the measurement target 11 is in the displacement state, and a history displacement Vcalp4 of the equation (41) (t- The symbols of 1, t+1 ) are identical, and the average 値 and history of the velocity candidates 値νβ3 ( t, t + Ι ) and νβ4 ( t, t + Ι ) calculated by the measurement object 11 are assumed to be in the displacement state. When the absolute 値 of the displacement Vcal03(t-2, t) and the average 値 of the absolute 値 of the history displacement Vcaip4(t-1, t+1) are equal, it is determined that the measurement target 11 moves at the same speed in the displacement state. As described in the patent document 1, when the measurement target 11 performs motion other than the constant velocity motion in the state of the minute displacement, the speed candidate 値v α and the assumed measurement calculated based on the measurement target 11 as the minute displacement state are assumed. The average 値 of the absolute 値 of the history displacement V ca 1 α calculated by the object 1 1 in the state of the minute displacement does not coincide. Similarly, the speed candidate 値ν β calculated on the assumption that the measurement target 11 is in the displacement state is not identical to the absolute value of the absolute 値 of the history displacement Vcalp calculated by the assumption that the measurement target 11 is in the -69-200916731 displacement state. . In the case where the measurement target 11 performs motion other than the constant velocity motion in the state of the minute displacement, the sign of the history displacement Vcala calculated by the measurement target 11 being the minute displacement state is the time at which the number of MHPs is calculated each time. When the inversion is performed, even if there is a sign change in the history displacement V c al β calculated by the measurement target 11 being in the displacement state, the fluctuation is not generated every time the number of turns is calculated. Therefore, the state determination unit 82a is a history displacement Vcalal (t-2, t) of the equation (34) calculated on the assumption that the measurement target 11 is in the minute displacement state, and a history displacement Vcala2 of the equation (35) (t- The symbols of 1, t+1) are not identical, and the average of the calculated velocity candidates 値Val ( t, t+Ι ) and Va2 ( t, t+Ι ) is assumed assuming that the measurement object 11 is in the minute displacement state, When the absolute enthalpy of the history displacement V c al a 1 ( t - 2, t ) and the average 値 of the absolute 値 of the history displacement Veal a2 ( t-1, t + 1 ) do not coincide with each other, the measurement target 1 1 is determined. Exercises other than constant velocity motion in a state of small displacement. Alternatively, the state determination unit 82a is a history displacement Veal α3 (t-2, t) of the equation (36) calculated on the assumption that the measurement target 11 is in a minute displacement state, and a history displacement Vcala4 of the equation (37) (t- The symbols of 1, t+1) are inconsistent, and the calculated velocity candidates 値V a 1 ( t, t + 1 ) and V a 2 ( t, t + 1) are assumed to be in the state of minute displacement. The average 値, which is inconsistent with the absolute 値 of the history displacement Veal a3 ( t-2, t ) and the absolute 値 of the history displacement Vc al a4 ( t-1 ' t+ 1 ) -70- 200916731 It is determined that the measurement target 11 performs motion other than constant velocity motion in a state of minute displacement. Among them, if we look at the velocity candidate 値νβ, the absolute 値 of Bay 1J νβ3 ( t,t+l ) and the absolute 値 of νβ4 ( t,t+1 ) are constant, which is equal to the assumption that the object 1 1 is tiny. The average 値 of the distance 値Lai ( t, t+l ) and La2 ( t, t+l ) calculated from the displacement state is multiplied by the wavelength change rate (Xb-λα ) of the semiconductor lasers 1-1 and 1-2. Ab. Therefore, the state determination unit 8 2 a may also determine the absolute 値 of the velocity candidate 値νβ3 ( t, t+l ) and the absolute 値 of νβ4 ( t, t+l ) calculated on the assumption that the measurement target 11 is in the displacement state. The mean 値 of the distance 値Lai ( t, t+l ) and La2 ( t, t+l ) is multiplied by the 波长 of the wavelength change rate (λ1?-λ3 ) /λΐ), and it is assumed that the measurement object 11 is in a minute displacement The average 値 of the speed candidates 値Val ( t,t+l ) and Va2 ( t,t+l ) calculated from the state, and the absolute enthalpy of the history displacement Vcalal ( t-2,t ) and the history displacement Veal a2 ( t When the average 値 of the absolute 値 of -1, t + l ) does not coincide with each other, it is determined that the measurement target 1 1 performs motion other than the constant velocity motion in the state of minute displacement. Further, the state determination unit 82a may also determine the absolute enthalpy of the velocity candidate 値νβ3 (t, t+1) and the absolute VM of VM(t, t+l) calculated on the assumption that the measurement target 11 is in the displacement state, equal to the distance candidate. The average 値 of 値Lai ( t, t+l ) and La2 ( t, t+ 1 ) is multiplied by the 波长 of the wavelength change rate (λΙ)−λα ) Ub, and the calculated velocity is determined assuming that the object 11 is in a minute displacement state. The mean 値 of the candidate 値Val ( t, t+l ) and Va2 ( t, t+l ), and the absolute 値 of the history displacement VcaU3 ( t-2, t ) and the history displacement vcala4 (t-1, t+ 1 ) When the average 値 of the absolute 値 does not match, it is determined that the measurement target 11 performs motion other than the constant velocity motion in the state of the minute displacement. In the case where the measurement target 1 1 performs motion other than the constant velocity motion in the displacement state, the speed candidate 値να calculated based on the minute displacement state and the assumed measurement target 1 1 are The average 値 of the absolute 値 of the history displacement Vcala calculated by the small displacement state does not coincide with each other, and the speed candidate 値νβ calculated by the measurement target 11 as the displacement state and the history calculated by the assumption that the measurement target 11 is the displacement state are assumed. The absolute mean 位移 of the displacement Vcaip is also inconsistent. In the case where the measurement target 11 performs motion other than the constant velocity motion in the displacement state, the sign of the history displacement Vcaip calculated by the measurement target 11 as the displacement state is reversed each time the number of MHPs is calculated. In the case where there is a sign change in the history displacement Vcala calculated on the assumption that the measurement target 11 is in the minute displacement state, the fluctuation is not generated every time the number of MHPs is calculated. Therefore, the state determination unit 8 2 a is the history displacement Vcalpl ( t-2, t ) of the equation (38 ) calculated on the assumption that the measurement target 1 1 is in the displacement state, and the history displacement Vcaip2 (t) of the equation (39). The symbols of -1, t+1) do not coincide with each other and the velocity candidates 値V β 3 ( t, t + 1 ) and V β 4 ( t, t + 1 ) calculated on the assumption that the measurement object 11 is in the displacement state are assumed. When the average 値 is not consistent with the absolute 値 of the history displacement Vcaipi ( t-2, t ) and the absolute 値 of the history displacement Vcaip2 ( t-1 ' t+ 1 ), the measurement object 1 1 is determined to be displaced. The state performs motion other than constant velocity motion. Alternatively, the state determination unit 8 2 a is a history displacement V c al β 3 ( t - 2, t - 72 - 200916731 ) and a formula of a number (4 0 ) calculated on the assumption that the measurement target 1 1 is in a displacement state. The sign of the history displacement Veal β4 ( t-1, t+1 ) of (41) does not coincide, and the calculated velocity candidates 値νβ3 (ΐ, t+Ι) and Vp4 (assuming the measurement object 11 is in the displacement state) In the case where the average 値 of t, t+Ι) does not coincide with the absolute 値 of the history displacement Vcalp3 ( t-2, t ) and the absolute 値 of the history displacement Vcaip4 ( t −1, t + 1 ), It is determined that the measurement target 11 performs a motion other than the constant velocity motion in the displacement state. Wherein, if attention is paid to the velocity candidate 値Va, the absolute 値 of U Val ( t,t+1 ) and the absolute 値 of Va2 ( t,t+1 ) are constant, and the absolute 値 is equal to the assumption that the measuring object U is in the displacement state. The calculated mean distances of the candidate 値Lp3 ( t, t+Ι ) and Lp4 ( t,t+Ι ) are multiplied by the wavelength change rate of the semiconductor lasers 1-1, 1-2 (λΐ^-λα) / ΐ ΐ). Therefore, the state determination unit 82a may also determine the absolute 値 of the velocity candidate 値Val ( t, t+Ι ) and the absolute 値 of Va2 ( t, t+1 ) calculated on the assumption that the measurement target 11 is in the minute displacement state. The mean 値 of the distance 値LP3 ( t,t+1 ) and ίβ4 ( t, t+1 ) is multiplied by the 波长 of the wavelength change rate (Xb-Xa ) /λΐ), and it is assumed that the measurement object 1 1 is in the displacement state. The average 値 of the velocity candidates 値νβ3 ( t, t+Ι ) and νβ4 ( t,t+Ι ), and the absolute enthalpy of the history displacement Vcaipi ( t-2,t ) and the history displacement Vcaip2 ( t-1,t When the average 値 of the absolute 値 of +1) does not match, it is determined that the measurement target 1 1 performs motion other than the constant velocity motion in the displacement state. Alternatively, the state determination unit 82a may also determine the absolute 値 of the velocity candidate 値Vet 1 ( t, t+ 1 ) and the absolute 値 of Va2 ( t, t+1 ) calculated on the assumption that the measurement target 11 is in the minute displacement state. The mean 値 of the distance 値Ι_, β3 ( t, t+1 ) and ίβ4 ( t, t+1 ) is multiplied by the wavelength change rate (λΙ) - λα ) -73 - 200916731 ab, and the measurement object 1 1 is assumed The average 値 of the velocity candidates 値νβ3 ( t,t+Ι ) and νβ4 ( t, t+Ι ) calculated in the displacement state, and the absolute enthalpy of the history displacement Vcalp3 ( t-2,t ) and the history displacement Vcalp4 ( When the average 値 of the absolute 値 of t-1, t+ 1 ) does not coincide with each other, it is determined that the measurement target 11 performs a motion other than the constant velocity motion in the displacement state. After the above processing, the processing of step S630 is ended. The determination operation of step S603 of the state determination unit 82a is shown in Fig. 36. Then, the speed determining unit 8 3 a of the arithmetic unit 8 determines the absolute value of the speed of the measurement target 11 based on the determination result of the state determining unit 8 2a (step S 5 0 5 of Fig. 4). In other words, when the measurement target 11 determines that the measurement target 11 performs the motion other than the constant motion or the constant velocity motion in the minute displacement state, the speed determination unit 83 3 a determines the speed candidate 値V α 1 (t t stored in the memory unit 80). The average 値 of t + 1 ) and V a 2 ( t, t + 1 ) is the absolute enthalpy of the velocity of the measurement object 1 1 at time t -1 to t + 値 (step S5 05). Further, the speed determining unit 8.3a determines the speed candidate 値νβ3 (1, t+) stored in the memory unit 80 in the case where it is determined that the measurement target 1 1 performs the motion other than the constant velocity motion or the constant velocity motion in the displacement state. The average 値 of Ι) and νβ4 (t, t+Ι) is the absolute 値 of the velocity of the measurement target 11 in the time t-1 to t+Ι (step S 5 05 ). In the case where it is determined that the measurement target 1 1 performs the motion other than the constant velocity or the constant velocity motion in the minute displacement state, the speed determination unit 83 3 a determines the speed candidate 値V a 5 stored in the memory unit 80. (t) is the absolute 速度 of the speed of the measurement target 1 1 at time t-1 to t (step S5 0 5 ). Further, the speed determining unit 83 3 a may calculate the speed of the memory unit 80 in the case where it is determined that the measurement target 1 1 performs the motion other than the constant velocity motion or the constant velocity motion in the state of the displacement -74 - 200916731. The candidate 値V β 6 ( t ) is the absolute 値 of the velocity of the measurement target 1 1 at time t − 1 to t (step S505 ). Then, the speed determining unit 83a calculates the equation (14) and the equation (15) in the same manner as step S205 in Fig. 8, and specifies the direction of the speed of the measurement target 1 (step S506 in Fig. 34). The speed determining unit 83a determines the absolute value of the velocity by using the calculation result of the equation (6) or the equation (7) instead of the calculation result using the equations (2) to (5) in step S505. In the case of comparing the numbers of the numbers X ( t ) and Y ( t ) of the MHP, when X ( t ) is larger than Y ( t ), it is determined that the object is close to the measurement object 1 1 and the ratio of Y ( t ) is X. When (t) is large, it is determined to be away from the measurement target 1 1 (step S506). Next, the distance determining unit 84a determines the distance from the measurement target 11 based on the determination result of the state determining unit 82a (step S 5 07 of Fig. 34). In other words, the distance determining unit 84a determines the distance candidate 値Lai (t, t+) stored in the memory unit 80 when it is determined that the measurement target 11 performs motion other than constant velocity or constant velocity motion in a state of minute displacement. The average 値 of Ι ) and L α 2 ( t, t + 1 ) is the average distance from the measurement object 11 in the time t -1 to t + 1 (step S 5 0 7 ). Further, the distance determining unit 8 4 a determines the distance candidate 记忆L β 3 (t stored in the memory unit 80) when it is determined that the measurement target 1 is performing motion other than constant velocity or constant velocity motion in the displacement state. The average 値 of t + 1 ) and L β 4 ( t, t+1 ) is the average distance from the measurement object 11 in the time t-1 to t+1 (step S507). -75-200916731, wherein the distance determining unit 8 4 a can determine the distance candidate stored in the memory unit 80 when it is determined that the measurement target 1 1 performs motion other than constant motion or constant velocity motion in a state of minute displacement.値L a 5 ( t ) is the average distance from the measurement target n among the times t-1 to t (step S507). Further, when the distance determining unit 8 4 a determines that the measurement target 1 1 performs the motion other than the constant velocity motion or the constant velocity motion in the displacement state, the distance candidate 値Lp6 ( t ) stored in the memory unit 80 is determined to be The average distance from the measurement object 1 1 at time t-Ι to t (step S 5 0 7 ). The arithmetic unit 8 performs the processing of steps S5 〇1 to S5 07 as shown above every time the number of MHPs is calculated by the counting means 7 until, for example, the user indicates that the measurement is ended (in the 34th figure). Step S5 〇8 is YES). The configuration other than the arithmetic unit 8 is the same as that of the first embodiment. In the present embodiment, even when the state of the measurement target 11 cannot be determined in the first embodiment due to the influence of noise or the like, the state of the measurement target 11 can be determined, and the distance from the measurement target 11 can be calculated. The speed of the object 11 is measured. (Fifth Embodiment) Next, a fifth embodiment of the present invention will be described. When the measurement target 11 performs a motion other than the constant velocity motion, when the sign of the acceleration of the measurement target 11 changes, the sign of the equation of the corresponding region that is not in the motion state is reversed, and thus an erroneous determination occurs. Therefore, in the fourth embodiment, the state determination unit 8 2 a of the arithmetic unit 8 may shift the Vcala2 (t-1, t+l) and the equation (37) in the history of the equation (3 5 ) -76 - 200916731. When the signs of the history displacement Vcala4 (t-1, t+1) match, it is determined that the measurement target 1 1 is moving at a constant speed, and the history displacement of the equation (39) is Vcaip2(t-1, t+l). When the sign of the history displacement Veal β4 ( t-1, t + l ) of the equation (41 ) coincides with each other, it is determined that the measurement target 11 is performing motion other than the constant velocity motion. (Sixth embodiment) In the first to fifth embodiments, the present invention is applied to a self-coupling type interferometer. However, the present invention can also be applied to an interferometer other than the self-coupling type. Fig. 3 is a block diagram showing the configuration of a distance/speedometer according to a sixth embodiment of the present invention, and the same components as those in Fig. 1 are denoted by the same reference numerals. In Fig. 37, '12-2 shows a beam splitter that separates incident light and reflected light. 0 The laser light of the semiconductor lasers 1-1 and 1-2 is emitted in parallel with each other and is incident. The object 11 is the same as that of the first embodiment. The laser beam that has passed through the beam splitters 1 2_1 , 1 2 - 2 and the lenses 3 -1, 3 - 2 is incident on the measurement object 1 1 °. Then, in the present embodiment, the semiconductor beam reflected by the measurement object 1 1 The light beams of the beams 1-1 and 1-2 are separated from the incident light incident on the measurement object 11 by the beam splitters 12-1 and 12-2', respectively, and are guided to the photo-electrode body 2 -1 , Ί-2. Since the configurations of the photodiodes 2-1 and 2-2 are the same as those of the first to sixth embodiments, the description thereof is omitted. As a result, even in an interferometer other than the self-prototype -77-200916731, the same effects as those of the first to sixth embodiments can be obtained. The counting device 7 and the arithmetic device 8 of the first to sixth embodiments can be realized by, for example, a computer having a CPU, a memory device, and an interface, and a program for controlling the hardware resources. The program for operating the computer as described above is provided in a state of being recorded on a recording medium such as a flexible disk, a CD-ROM, a DVD-ROM, or a memory card. The CPU writes the read program to the memory device, and executes the processing described in the first to sixth embodiments in accordance with the program. In the first to sixth embodiments, when the measurement target 11 has a vibration with a very small displacement (for example, a maximum speed of 2 nm), the actual distance change (amplitude) is several nm, but the distance calculation is analyzed. The degree is lower than the displacement resolution, so the error becomes large. Therefore, when the measurement object is in a motion state with a slight displacement, instead of the calculation result, the 値 which integrates the displacement (speed) as a change in the distance can improve the accuracy. Further, in the first to sixth embodiments, the minimum oscillation wavelength λα for the semiconductor lasers i _ 1 and 1-2 is the same, and the semiconductor laser is the same as the maximum oscillation wavelength λ ΐ 1 of 1-2. Although not limited to this, as shown in FIG. 38, between the semiconductor lasers 1-1 and 1-2, the minimum oscillation wavelength Xa and the maximum oscillation wavelength Xb are different. In Fig. 38, 'λ31, λΐ) 1 indicates the minimum oscillation wavelength of the semiconductor laser 1-1, and the maximum oscillation wavelength 'Xa2, Xb2 indicates the semiconductor laser! Minimum oscillation wavelength of _2, maximum oscillation wavelength. At this time, ' 1 X >.b 1 / { 4 X ( Xb 1 - λαΐ ) } and Xa2xXb2 / { 4χ ( Xb2-Xa2 ) } are always the same fixed 値 -78 - 200916731. In this case, Xa and Xb in the formulae (2) to (13) may be Xal, λΐ>1 or ka2 and Xb2. Further, in the first to sixth embodiments, the semiconductor lasers 1-1 and I-2 are triangular wave-shaped, but the invention is not limited thereto, and the semiconductor laser 1 may be made as shown in FIG. - 1 ' 1 - 2 oscillates in a saw wave. In other words, in the present invention, the semiconductor laser 1-1 is operated so that at least the first oscillation period P1 overlaps, and the semiconductor ray is made in such a manner that the increase and decrease of the oscillation wavelength is opposite to the semiconductor laser 1:1. Shoot 1 · 2 action. The same as in the case of Fig. 3, Xal#a2 and ZblMb2 may be the same as in the case of Fig. 2, and λα1 = λα2 ' Xbl = Xb2 ° The operation of the first oscillation period P1 is the same as the case of the triangular wave vibration edge. . However, in the case where the semiconductor lasers 1·1 and 1-2 are sawn in a wave shape, the outputs of the changeover switches 70 and 70a of the counter device 7 must be fixed. In other words, the switches 70 and 70a constantly connect the output of the filter circuit 6-1 to the input of the period measuring unit 71-1 and the determining unit 73-1, and the output of the filter circuit 6-2 is constant. It is connected to the input of the period measuring unit 7 1 - 2 and the determining unit 72-3. In the case where the semiconductor lasers 1-1 and 1-2 are caused to oscillate in a triangular wave, the amplitude adjustment of the amplitude adjustment device 1 〇 can be performed regardless of the state of the measurement target 11, but the semiconductor laser is made 1-1. When 1 _ 2 oscillates in a zigzag manner, the amplitude adjustment can be performed only when the measurement target 11 is in a stationary state. (Industrial Applicability) -79- 200916731 The present invention is applicable to a technique for measuring a distance from a measurement target and a speed of a measurement target. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a block diagram showing the configuration of a distance and a speedometer according to a first embodiment of the present invention. Fig. 2 is a view showing an example of temporal changes in the oscillation wavelength of the semiconductor laser in the first embodiment of the present invention. Fig. 3 is a view showing the output voltage waveform of the current-voltage conversion amplifier and the output voltage waveform of the filter circuit in the mode according to the first embodiment of the present invention. Fig. 4 is a block diagram showing an example of the configuration of a counting device according to a third embodiment of the present invention. Fig. 5 is a flow chart showing the operation of the counting device of Fig. 4. Fig. 6 is a view showing the counting period of the counting device of Fig. 4. Fig. 7 is a block diagram showing an example of the configuration of the arithmetic unit in the first embodiment of the present invention. Fig. 8 is a flow chart showing the operation of the arithmetic unit of Fig. 7. Fig. 9 is a diagram for explaining a change in the number of mode skip pulses as the wavelength of the semiconductor laser is switched. Fig. 10 is a view for explaining a method of adjusting the amplitude of a triangular wave drive current supplied from a radiation driver to a semiconductor laser in the first embodiment of the present invention. Fig. 1 is a view for explaining a method of making the calculation result of the velocity or the distance continuous before and after the timing change of the wavelength of the semiconductor laser $ Θ @ -80- 200916731. Fig. 1 is a block diagram showing an example of the configuration of the counting device according to the second embodiment of the present invention. Fig. 13 is a flow chart showing the operation of the counting device of Fig. 12. Fig. 14 is a block diagram showing an example of the configuration of the count result correcting unit in the counting device of Fig. 22. Fig. 15 is a view for explaining the operation of the counting device of Fig. 12. Fig. 16 is a diagram showing an example of the frequency distribution of the period of the mode skip pulse. Fig. 17 is a schematic diagram for explaining the correction of the counting result of the counter in the second embodiment of the present invention. Figure 18 shows the frequency distribution of the period of the mode skip pulse. Figure 19 shows the frequency distribution of the period of the pattern skip pulse containing noise. Figure 20 shows a graph of the median period of the pattern skip pulse containing noise. Fig. 2 is a graph showing the frequency distribution of the period of the mode skip pulse divided into two by the period. Fig. 2 is a graph showing the frequency distribution of the period of the mode skip pulse divided into two by the period. Fig. 23 is a graph showing the frequency distribution of the period of the mode skip pulse whose period is divided into two. Figure 24 shows the frequency distribution of the period -81 - 200916731 of the period skip pulse divided into 2 cycles. Figure 25 is a graph showing the error after the counter 値 is corrected. Fig. 26 is a graph showing the frequency distribution of the period of the mode skip pulse formed in a period of 2 times. Fig. 2 is a graph showing the frequency distribution of the period of the mode skip pulse divided into 2 in the mode skip pulse which is missing at the time of counting. Fig. 2 is a frequency distribution diagram showing the period of the mode skip pulse divided into 2 in the mode skip pulse which is missing at the time of counting. Fig. 29 shows a frequency distribution diagram of the period of the mode skip pulse when both the missing and the excess count occur at the time of counting. Fig. 30 is a block diagram showing an example of the configuration of the counting device according to the third embodiment of the present invention. Fig. 3 is a flow chart showing the operation of the counting device of Fig. 30. Fig. 3 is a block diagram showing an example of the configuration of the count result correcting unit in the counting device of Fig. 30. Fig. 3 is a block diagram showing an example of the configuration of the arithmetic unit in the fourth embodiment of the present invention. Fig. 34 is a flow chart showing the operation of the arithmetic unit of Fig. 3 . Fig. 35 is a flow chart showing the operation of the state determining unit in the arithmetic unit of Fig. 3 . Fig. 3 is a diagram showing the determination operation of the state determination unit in the arithmetic unit of Fig. 3 . Fig. 3 is a block diagram showing the configuration of a distance and a speedometer according to a sixth embodiment of the present invention. -82- 200916731 Fig. 3 is a view showing another example of temporal changes in the oscillation wavelength of the semiconductor laser in the first to sixth embodiments of the present invention. Fig. 3 is a view showing another example of temporal changes in the wavelength of the excitation of the semiconductor laser in the first to sixth embodiments of the present invention. Figure 40 is a diagram showing a composite resonance model of a semiconductor laser in a conventional laser measuring device. Fig. 41 is a graph showing the relationship between the oscillation wavelength of the semiconductor laser and the output waveform of the built-in photodiode. Fig. 42 is a block diagram showing the configuration of a conventional distance/speedometer. Fig. 43 is a view showing an example of temporal changes in the oscillation wavelength of the semiconductor laser in the distance/speedometer of Fig. 42. [Description of main component symbols], 1-2: Semiconductor laser 2_1, 2-2: Photodiode U, 3·2: Lens 1, 4-2: Laser driver 5_1, 5_2: Current-voltage conversion amplifier 6 - 1, 6_2: Filter circuit 7: Counting device 8: Arithmetic device 9: Display device 1 〇: Amplitude adjusting device - 83 - 200916731 1 1 : Measurement target 70, 70a: Switch 7 1-1, 7 1 - 2 7 1 a-1, 7 1 a-2 : period measuring unit 7 2 - 1 , 7 2 - 2 : converting unit 73 - 1 ' 7 3-2: determining unit 74-1, 74-2: logical AND operation Parts (AND) 75- 1 , 75-2 : Counters 76-1, 76-2, 76a-1, 76a-2: Counting result correction unit 7 7 : Memory unit 78-1, 78-2: Period and calculation section 79-1, 79-2: number calculation unit 8 0: memory unit 8: distance/speed calculation unit 82, 82a: state determination unit 8 3, 8 3 a : speed determination unit 84, 84a: distance determination unit 8 5 : History displacement calculation unit 1 0 1 : Semiconductor laser 102 : Wall opening surface of semiconductor crystal 1 0 3 : Photodiode 104 : Measurement target 2 0 1 : Semiconductor laser 2 0 2 : Photodiode 2 0 3: Lens-84- 200916731 204: Laser driver 205: current-voltage conversion amplification 2 0 6 : Signal extraction circuit 207 : Counting circuit 208 : Calculation device 209 : Display device 2 1 测定 : Measurement target 760 : Period measurement unit 7 6 1 : Frequency distribution creation unit 762 : Median calculation unit 763 : Correction calculation Part 7 6 1 a : Frequency distribution creation unit 762a : Median calculation unit 763 a : Correction calculation unit GS : audible signal LD1 : oscillation waveform LD2 of semiconductor laser 1-1 : oscillation of semiconductor laser 1-2 Waveform P1: first oscillation period P2: second oscillation period T: period of triangular wave: minimum 振荡Xb of oscillation wavelength in each period: maximum of oscillation wavelength in each period

Pn 1、Pn2、Pn3 > Pn4、Pn5、Pn6、Pn7、Pn8 :第 1 計數期間 -85- 200916731Pn 1, Pn2, Pn3 > Pn4, Pn5, Pn6, Pn7, Pn8: 1st counting period -85- 200916731

Pm 1、Pm2、Pm3、Pm4、Pm5、Pm6、Pm7、Pm8 :第 2計數期間 tOa 、 tl 、 t2 、 tOb 、 t3 、 t4 、 tOc 、 t5 、 t6 、 tOd 、 t7 、 t8 :第1計數期間Pn與第2計數期間Pm的開始或結束的時 刻 -86-Pm 1, Pm2, Pm3, Pm4, Pm5, Pm6, Pm7, Pm8: second counting period tOa, tl, t2, tOb, t3, t4, tOc, t5, t6, tOd, t7, t8: first counting period Pn At the time of the start or end of the second counting period Pm -86-

Claims (1)

200916731 十、申請專利範圍 1. 一種距離·速度計,其特徵爲具有: 第1半導體雷射,對測定對象放射第1雷射光; 第2半導體雷射,以與前述第1雷射光平行的方式對 前述測定對象放射第2雷射光; 第1雷射驅動器,以至少振盪波長連續地單調增加的 振盪期間反覆存在的方式使前述第1半導體雷射進行動作 ♦ 第2雷射驅動器,以振盪波長的增減與前述第1半導 體雷射相反的方式使前述第2半導體雷射進行動作; 第1受光器,將前述第1雷射光與該雷射光之來自前 述測定對象的返回光轉換成電訊號; 第2受光器,將前述第2雷射光與該雷射光之來自前 述測定對象的返回光轉換成電訊號; 計數手段,針對前述第1、第2受光器的輸出訊號的 各個,對前述第1、第2受光器的輸出訊號所包含之由前 述第1、第2雷射光及其返回光所産生的干涉波形的數量 進行計數;以及· 運算手段,根據前述第1、第2半導體雷射的最小振 還波長及最大振盪波長與前述計數手段的計數結果’計算 與前述測定對象的距離及前述測定對象的速度的至少一者 〇 2 —種距離•速度計’其特徵爲具有: 第1半導體雷射’對測定對象放射第1雷射光·’ -87 - 200916731 第2半導體雷射,以與前述第1雷射光平行的方式對 前述測定對象放射第2雷射光; 第1雷射驅動器,以至少振盪波長連續地單調增加的 振盪期間反覆存在的方式使前述第1半導體雷射進行動作 > 第2雷射驅動器,以振盪波長的增減與前述第1半導 體雷射相反的方式使前述第2半導體雷射進行動作; 第1受光器,將前述第1半導體雷射的光輸出轉換成 電訊號; 第2受光器,將前述第2半導體雷射的光輸出轉換成 電訊號; 計數手段,針對前述第1、第2受光器的輸出訊號的 各個,對前述第1 '第2受:光器的輸出訊號所包含·之藉由 前述第1、第2雷射光及其返回光的自丨禹合效應所産生的 干涉波形的數量進行計數;以及 運算手段,根據前述第1、第2半導體雷射的最小振 盪波長及最大振®波長與前述計數手段的計數結果’計算 與前述測定對象的距離及前述測定對象的速度的至少一者 〇 3 .如串請專利範圍第1項或第2項之距離·速度計 ,其中,前述計數手段係由在短於前述振盪期間的第1計 數期間中,求出與前述第1、第2半導體雷射中振盪波長 正在增加的半導體雷射相對應的受光器的輸出訊號所包含 的干涉波形的數量’同時在與前述第1計數期間相同時刻 -88- 200916731 的第2計數期間中,求出與前述第1、第2半導體雷射中 振盪波長正在減少的半導體雷射相對應的受光器的輸出訊 號所包含的干涉波形的數量的手段所構成, 前述運算手段係包括:距離•速度計算手段,根據前 述第1、第2半導體雷射的最小振盪波長與最大振盪波長 與前述計數手段的計數結果,計算與前述測定對象的距離 的候補値和前述測定對象的速度的候補値;狀態判定手段 ,根據由該距離•速度計算手段所計算出的速度的候補値 ,判定前述測定對象的狀態;以及距離•速度確定手段, 根據該狀態判定手段的判定結果,確定與前述測定對象的 距離及前述測定對象的速度的至少一者。 4.如申請專利範圍第3項之距離•速度計,其中, 前述距離•速度計算手段係針對假定前述測定對象處於微 小位移狀態的情形,根據第1計數期間的計數結果和1次 後的第2計數期間的計數結果,計算速度的第1候補値和 距離的第1候補値,並且根據與已計算出該等第1候補値 的第1計數期間相同時刻的第2計數期間的計數結果和與 已計算出前述第1候補値的第2計數期間相同時刻的第1 計數期間的計數結果,計算速度的第2候補値和距離的第 2候補値,針對假定前述測定對象處於變動比前述微小位 移狀態快的位移狀態的情形’根據第1計數期間的計數結 果和1次後的第2計數期間的計數結果’計算速度的第3 候補値和距離的第3候補値’並且根據與已計算出該等第 3候補値的第1計數期間相同時刻的第2計數期間的計數 -89- 200916731 結果和與已計算出前述第3候補値的第2計數期間相同時 刻的第1計數期間的計數結果,計算速度的第4候補値和 距離的第4候補値, 前述狀態判定手段係在前述速度的第1候補値與第2 候補値大致相等的情形下,判定前述測定對象處於微小位 移狀態,在前述速度的第3候補値和第4候補値大致相等 的情形下,判定前述測定對象處於位移狀態。 5 ·如申請專利範圍第4項之距離•速度計,其中, 前述距離•速度確定手段係在判定出前述測定對象處於微 小位移狀態的情形下,將前述速度的第1候補値和第2候 補値的任一者設爲前述測定對象的速度,將前述距離的第 1候補値和第2候補値的任一者設爲與前述測定對象的距 離,在判定出前述測定對象處於位移狀態的情形下,將前 述速度的第3候補値和第4候補値的任一者設爲前述測定 對象的速度,將前述距離的第3候補値和第4候補値的任 一者設爲與前述測定對象的距離。 6.如申請專利範圍第4項之距離•速度計,其中, 前述距離•速度確定手段係在判定出前述測定對象處於微 小位移狀態的情形下,將前述速度的第1候補値和第2候 補値的平均値設爲前述測定對象的速度,將前述距離的第 1候補値與第2候補値的平均値設爲與前述測定對象的距 離,在判定出前述測定對象處於位移狀態的情形下,將前 述速度的第3候補値與第4候補値的平均値設爲前述測定 對象的速度,將前述距離的第3候補値與第4候補値的平 -90- 200916731 均値設爲與前述測定對象的距離。 7. 如申請專利範圍第4項之距離•速度計,其中, 前述距離•速度確定手段係進行比較ΣΧ與ΣΥ,其中該 ΣΧ爲計算出前述速度的第1候補値的第1計數期間的計 數結果和計算出前述速度的第2候補値的第1計數期間的 計數結果之和,該ΣΥ爲計算出前述速度的第1候補値的 第2計數期間的計數結果和計算出前述速度的第2候補値 的第2計數期間的計數結果之和,在前述ΣΧ比前述ΣΥ 大的情形下,係判定前述測定對象正接近,在前述ΣΥ比 前述ΣΧ大的情形下,則係判定前述測定對象正遠離。 8. 如申請專利範圍第4項之距離•速度計,其中, 前述運算手段係另外具備有履歷位移計算手段,其針對假 定前述測定對象處於微小位移狀態的情形和假定前述測定 對象處於位移狀態的情形的各情形,計算出爲由前述距離 •速度計算手段所計算出的距離的候補値和前次所計算出 的距離的候補値之差的履歷位移, 前述狀態判定手段係在根據前述速度的候補値無法判 定前述測定對象的狀態的情形下,根據前述履歷位移計算 手段的計算結果,判定前述測定對象的狀態。 9. 如申請專利範圍第]項或第2項之距離·速度計 ,其中,前述計數手段係包括: 計數器,針對前述第1、第2受光器的輸出訊號的各 個,對前述第1、第2受光器的輸出訊號所包含的前述干 涉波形的數量進行計數; -91 - 200916731 周期測定手段,針對前述第1、第2受光器的輸出訊 號的各個’在每次輸入前述干涉波形時,即測定對前述干 涉波形的數量進行計數的計數期間中的前述干涉波形的周 期; 頻率分佈作成手段,針對前述第1、第2受光器的輸 出訊號的各個’根據該周期測定手段的測定結果,作成前 述計數期間中的干涉波形的周期的頻率分佈; 中位數計算手段,針對前述第1、第2受光器的輸出 訊號的各個’根據前述頻率分佈,計算前述干涉波形的周 期的中位數; 補正値計算手段,根據前述頻率分佈,求出爲前述中 位數之第1預定倍數以下之等級的頻率總和N s、和爲前 述中位數的第2預定倍數以上之等級的頻率總和n w,針 對前述第1、第2受光器的輸出訊號的各個,根據該等頻 率Ns和Nw,補正前述計數器的計數結果; 周期和計算手段’針對前述第1、第2受光器的輸出 訊號的各個’根據前述周期測定手段的測定結果,計算前 述干涉波形的周期的總和;以及 個數計算手段,針對前述第1、第2受光器的輸出訊 號的各個’根據由前述補正値計算手段所補正的計數結果 和由前述周期和計算手段所計算出的周期的總和,計算每 單位時間的前述干涉波形的數量。 1 °·如申請專利範圍第1項或第2項之距離·速度計 ,其中’前述計數手段係包括: -92- 200916731 周期測定手段,針對前述第1、第2受光器的輸出訊 號的各個,在每次輸入前述干涉波形時’即測定前述第1 、第2受光器的輸出訊號所包含的一定個數的前述干涉波 形的周期; 頻率分佈作成手段,針對前述第1、第2受光器的輸 出訊號的各個,根據該周期測定手段的測定結果,作成前 述干涉波形的周期的頻率分佈; 中位數計算手段,針對前述第1、第2受光器的輸出 訊號的各個,根據前述頻率分佈,計算前述干涉波形的周 期的中位數; 補正値計算手段,根據前述頻率分佈,求出爲前述中 位數之第1預定倍數以下之等級的頻率總和NS、和爲前 述中位數之第2預定倍數以上之等級的頻率總和Nw,針 對前述第1、第2受光器的輸出訊號的各個,根據該等頻 率Ns和Nw,補正前述一定個數; 周期和計算手段,針對前述第1、第2受光器的輸出 訊號的各個,根據前述周期測定手段的測定結果,計算前 述千涉波形的周期的總和;以及 個數計算手段,針對前述第1、第2受光器的輸出訊 號的各個,根據由前述補正値計算手段所補正的干涉波形 的數量和由前述周期和計算手段所計算出的周期的總和’ 計算每單位時間的前述干涉波形的數量。 1 1 .如申請專利範圍第9項或第1 0項之距離•速度 計,其中,前述補正値計算手段係當將前述計數器的計數 -93- 200916731 結果或前述一定個數設爲N時,藉由N’=N + Nw-Ns’求出 補正後的値N ’。 12. 如申請專利範圍第1 1項之距離·速度計,其中 ,前述第1預定數爲0.5,前述第2預定數爲1.5。 13. 如申請專利範圍第1 〇項之距離·速度計,其中 ,前述周期測定手段係在比前述振盪期間短的第1計數期 間中,求出與前述第1、第2半導體雷射中振盪波長正在 增加的半導體雷射相對應的受光器的輸出訊號所包含的干 涉波形的周期,同時在與前述第1計數期間相同時刻的第 2計數期間中,求出與前述第1、第2半導體雷射中振盪 波長正在減少的半導體雷射相對應的受光器的輸出訊號所 包含的干涉波形的周期。 14. 如申請專利範圍第5項或第6項之距離·速度計 ,其中,另外具有振幅調整手段,其以在假定前述測定對 象處於微小位移狀態時的速度的候補値和假定前述測定對 象處於位移狀態時的速度的候補値中,根據前述狀態判定 手段的判定結果,前述距離·速度確定手段判斷非爲真値 而未採用的速度的候補値,與前述距離•速度確定手段判 斷爲真値而採用的距離的候補値乘以前述第1、第2半導 體雷射的波長變化率所得的値大致相等的方式,調整由前 述第1、第2雷射驅動器被供給至前述第1、第2半導體 雷射之驅動電流中至少一者的振幅。 1 5.如申請專利範圍第5項或第6項之距離·速度計 ,其中,另外具有振幅調整手段,其以在假定前述測定對 -94- 200916731 象處於微小位移狀態時的速度的候補値和假定前述測定對 象處於位移狀態時的速度的候補値中,根據前述狀態判定 手段的判定結果,前述距離·速度確定手段判斷爲真値而 採用的速度的候補値,在前述第1、第2半導體雷射的波 長變化進行切換的時序前後保持連續性的方式,調整由前 述第1、第2雷射驅動器被供給至前述第1、第2半導體 雷射之驅動電流中至少一者的振幅。 16.如申請專利範圍第5項或第6項之距離·速度計 ,其中,另外具有振幅調整手段,其以在假定前述測定對 象處於微小位移狀態時的距離的候補値和假定前述測定對 象處於位移狀態時的距離的候補値中,根據前述狀態判定 手段的判定結果,前述距離·速度確定手段判斷爲真値而 採用的距離的候補値,在前述第1、第2半導體雷射的波 長變化進行切換的時序前後保持連續性的方式,調整由前 述第1、第2雷射驅動器被供給至前述第1、第2半導體 雷射之驅動電流中至少一者的振幅。 1 7 · —種距離•速度測量方法,係使用半導體雷射, 對測定對象放射雷射光的距離·速度測量方法,其特徵爲 具備有: 第1振盪步驟’以至少振盪波長連續地單調增加的振 盪期間反覆存在的方式使第1半導體雷射進行動作; 第2振盪步驟’以振盪波長的增減與前述第1半導體 雷射相反的方式使第2半導體雷射進行動作; 計數步驟,對於將由前述第1半導體雷射所放射的第 -95- 200916731 1雷射光與該雷射光之來自前述測定對象的返回光轉換成 電訊號的第1受光器的輸出訊號所包含的因前述第1雷射 光和其返回光所產生的干涉波形的數量進行計數’同時對 於將由前述第2半導體雷射所放射的第2雷射光與該雷射 光之來自前述測定對象的返回光轉換成電訊號的第2受光 器的輸出訊號所包含的因前述第2雷射光和其返回光所產 生的干涉波形的數量進行計數;以及 運算步驟,根據前述第1、第2半導體雷射的最小振 盪波長及最大振盪波長與前述計數步驟的計數結果’計算 與前述測定對象的距離及前述測定對象的速度的至少一者 〇 1 8 . —種距離•速度測量方法,係使用半導體雷射, 對測定對象放射雷射光的距離·速度測量方法,其特徵爲 具備有: 第1振盪步驟,以至少振盪波長連續地單調增加的振 盪期間反覆存在的方式使第1半導體雷射進行動作; 第2振盪步驟,以振盪波長的增減與前述第1半導體 雷射相反的方式使第2半導體雷射進行動作; 計數步驟,對於將前述第1半導體雷射的光輸出轉換 成電訊號的第]受光器的輸出訊號所包含之因由前述第1 半導體雷射所放射的第1雷射光和該雷射光之來自前述測 定對象的返回光的自耦合效應所産生的干涉波形的數量進 行計數,並且對於將前述第2半導體雷射的光輸出轉換成 電訊號的第2受光器的輸出訊號所包含之因由前述第2半 -96- 200916731 導體雷射所放射的第2雷射光和該雷射光之來自則 對象的返回光的自耦合效應所産生的干涉波形的數 計數:以及 運算步驟,根據前述第1、第2半導體雷射的 盪波長及最大振盪波長與前述計數步驟的計數結果 與前述測定對象的距離及前述測定對象的速度的至 〇 1 9 .如申請專利範圍第1 7項或第1 8項之距離 測量方法,其中’前述計數步驟係由在短於前述振 的第1計數期間中,求出與前述第1、第2半導體 振盪波長正在增加的半導體雷射相對應的受光器的 號所包含的干涉波形的數量,同時在與前述第1計 相同時刻的第2計數期間中,求出與前述第〗、第 體雷射中振盪波長正在減少的半導體雷射相對應的 的輸出訊號所包含的干涉波形的數量的步驟所構成 前述運算步驟係包括:距離•速度計算步驟, 述第1、第2半導體雷射的最小振盪波長與最大振 與前述計數步驟的計數結果,計算與前述測定對象 的候補値和前述測定對象的速度的候補値;狀態判 ’根據由該距離.速度計算步驟所計算出的速度的 ’判定前述測定對象的狀態;以及距離•速度確定 根據該狀態判定步驟的判定結果,確定與前述測定 距離及前述測定對象的速度的至少一者。 20-如申請專利範圍第1 9項之距離·速度測 述測定 量進丫了 最小振 ,計算 少一者 •速度 盪期間 雷射中 輸出訊 數期間 2半導 受光器 根據前 盪波長 的距離 定步驟 候補値 步驟, 對象的 量方法 -97- 200916731 ,其中,前述距離•速度計算步驟係針對假定前述測定對 象處於微小位移狀態的情形,根據第1計數期間的計數結 果和1次後的第2計數期間的計數結果,計算速度的第1 候補値和距離的第1候補値,並且根據與已計算出該等第 1候補値的第1計數期間相同時刻的第2計數期間的計數 結果和與已計算出前述第1候補値的第2計數期間相同時 刻的第1計數期間的計數結果,計算速度的第2候補値和 距離的第2候補値,針對假定前述測定對象處於變動比前 述微小位移狀態快的位移狀態的情形,根據第1計數期間 的計數結果和1次後的第2計數期間的計數結果,計算速 度的第3候補値和距離的第3候補値,並且根據與已計算 出該等第3候補値的第1計數期間相同時刻的第2計數期 間的計數結果和與已計算出前述第3候補値的第2計數期 間相同時刻的第1計數期間的計數結果,計算速度的第4 候補値和距離的第4候補値, 前述狀態判定步驟係在前述速度的第1候補値與第2 候補値大致相等的情形下,判定前述測定對象處於微小位 移狀態’在前述速度的第3候補値和第4候補値大致相等 的情形下’判定前述測定對象處於位移狀態。 2 1.如申請專利範圍第2 0項之距離·速度測量方法 ’其中’前述距離.速度確定步驟係在判定出前述測定對 象處於微小位移狀態的情形下,將前述速度的桌1候補値 和第2候補値的任一者設爲前述測定對象的速度,將前述 距離的第1候補値和第2候補値的任一者設爲與前述測定 -98- 200916731 對象的距離’在判定出前述測定對象處於位移狀態的情形 下,將前述速度的第3候補値和第4候補値的任一者設爲 前述測定對象的速度’將前述距離的第3候補値和第4候 補値的任一者設爲與前述測定對象的距離。 2 2.如申請專利範圍第2 0項之距離·速度測量方法 ,其中’前述距離•速度確定步驟係在判定出前述測定對 象處於微小位移狀態的情形下,將前述速度的第1候補値 和第2候補値的平均値設爲前述測定對象的速度,將前述 距離的第1候補値與第2候補値的平均値設爲與前述測定 對象的距離,在判定出前述測定對象處於位移狀態的情形 下,將前述速度的第3候補値與第4候補値的平均値設爲 前述測定對象的速度,將前述距離的第3候補値與第4候 補値之間的平均値設爲與前述測定對象的距離。 23 .如申請專利範圍第2 0項之距離·速度測量方法 ,其中,前述距離•速度確定步驟係進行比較ΣΧ與ΣΥ, 其中該ΣΧ爲計算出前述速度的第1候補値的第〗計數期 間的計數結果和計算出前述速度的第2候補値的第1計數 期間的計數結果之和,該Σ Y爲計算出前述速度的第1候 補値的第2計數期間的計數結果和計算出前述速度的第2 候補値的第2計數期間的計數結果之和’在前述ΣΧ比前 述Σ Y大的情形下,係判定前述測定對象正接近’在前述 Σ Y比前述Σ X大的情形下,則係判定前述測定對象正遠離 〇 24.如申請專利範圍第20項之距離·速度測量方法 -99- 200916731 ,其中,前述運算步驟係另外具備有履歷位移計算步 其針對假定前述測定對象處於微小位移狀態的情形和 前述測定對象處於位移狀態的情形的各情形’計算出 前述距離·速度計算步驟所計算出的距離的候補値和 所計算出的距離的候補値之差的履歷位移’ 前述狀態判定步驟係在根據前述速度的候補値無 定前述測定對象的狀態的情形下,根據前述履歷位移 步驟的計算結果’判定前述測定對象的狀態。 2 5 .如申請專利範圍第1 7項或第1 8項之距離. 測量方法,其中’前述計數步驟係包括: 干涉波形計數步驟’針對前述第1、第2受光器 出訊號的各個,對前述第1、第2受光器的輸出訊號 含的前述干涉波形的數量進行計數’ 周期測定步驟,針對前述第1、第2受光器的輸 號的各個,在每次輸入前述干涉波形時’即測定對前 涉波形的數量進行計數的計數期間中的前述干涉波形 期; 頻率分佈作成步驟,針對前述第1、第2受光器 出訊號的各個,根據該周期測定步驟的測定結果,作 述計數期間中的干涉波形的周期的頻率分佈; 中位數計算步驟,針對前述第1、第2受光器的 訊號的各個’根據前述頻率分佈’計算前述干涉波形 期的中位數; 補正値計算步驟,根據前述頻率分佈,求出爲前 驟, 假定 爲由 前次 法判 計算 速度 的輸 所包 出訊 述干 的周 的輸 成前 輸出 的周 述中 -100- 200916731 位數之第1預定倍數以下之等級的頻率總和Ns、和爲前 述中位數的第2預定倍數以上之等級的頻率總和Nw,針 對前述第1、第2受光器的輸出訊號的各個,根據該等頻 率N S和N w,補正前述干涉波形計數步驟的計數結果; 周期和計算步驟,針對前述第1、第2受光器的輸出 訊號的各個,根據前述周期測定步驟的測定結果,計算前 述干涉波形的周期的總和;以及 個數計算步驟,針對前述第1、第2受光器的輸出訊 號的各個’根據由前述補正値計算步驟所補正的計數結果 和由前述周期和計算步驟所計算出的周期的總和,計算每 單位時間的前述干涉波形的數量。 26.如申請專利範圍第1 7項或第1 8項之距離•速度 測暈方法’其中’前述計數步驟係包括: 周期測定步驟’針對前述第1、第2受光器的輸出訊 號的各個’在每次輸入前述干涉波形時,即測定前述第j 、第2受光器的輸出訊號所包含的一定個數的前述干涉波 形的周期; 頻率分佈作成步驟’針對前述第1、第2受光器的輸 出訊號的各個’根據該周期測定步驟的測定結果,作成前 述干涉波形的周期的頻率分佈; 中位數計算步驟’針對前述第丨、第2受光器的輸出 訊號的各個’根據前述頻率分佈,計算前述干涉波形的周 期的中位數; 補正値π十算步驟’根據glj述頻率分佈,求出爲前述中 -101 - 200916731 位數之第1預定倍數以下之等級的頻率總和N s、和爲前 述中位數之第2預定倍數以上之等級的頻率總和n w,針 對前述第1、第2受光器的輸出訊號的各個,根據該等頻 率Ns和Nw,補正前述一定個數; 周期和計算步驟,針對前述第1、第2受光器的輸出 訊號的各個,根據前述周期測定步驟的測定結果,計算前 述干涉波形的周期的總和;以及 個數計算步驟’針對前述第1、第2受光器的輸出訊 號的各個’根據由前述補正値計算步驟所補正的干涉波形 的個數和由前述周期和計算步驟所計算出的周期的總和, 計算每單位時間的前述干涉波形的數量。 27 如申請專利範圍第2 1項或第22項之距離•速度 測量方法,其中’另外具有振幅調整步驟,其以在假定前 述測定對象處於微小位移狀態時的速度的候補値和假定前 述測定對象處於位移狀態時的速度的候補値中,根據前述 狀態判定步驟的判定結果,在前述距離•速度確定步驟中 判斷非爲真値而未採用的速度的候補値,與在前述距離. 速度確定步驟中判斷爲真値而採用的距離的候補値乘以前 述第1、第2半導體雷射的波長變化率所得的値大致相等 的方式,調整被供給至前述第1、第2半導體雷射之驅動 電流中至少一者的振幅。 28.如申請專利範圍第21項或第22項之距離•速度 測量方法,其中’另外具有振幅調整步驟,其以在假定前 述測定對象處於微小位移狀態時的速度的候補値和假定前 -102- 200916731 述測定對象處於位移狀態時的速度的候補値中,根據前述 狀態判定步驟的判定結果,在即述距離*速度確定步驟中 判斷爲真値而採用的速度的候補値,在前述第1、第2半 導體雷射的波長變化進行切換的時序前後保持連續性的方 式,調整由被供給至前述第1、第2半導體雷射之驅動電 流中至少一者的振幅。 29.如申請專利範圍第2 1項或第2 2項之距離.速度 測量方法,其中,另外具有振幅調整步驟,其以在假定前 述測定對象處於微小位移狀態時的距離的候補値和假定前 述測定對象處於位移狀態時的距離的候補値中,根據前述 狀態判定步驟的判定結果,在前述距離•速度確定步驟中 判斷爲真値而採用的距離的候補値,在前述第1、第2半 導體雷射的波長變化進行切換的時序前後保持連續性的方 式,調整被供給至前述第1、第2半導體雷射之驅動電流 中至少一者的振幅。 -103-200916731 X. Patent Application Range 1. A distance/speedometer characterized by having: a first semiconductor laser that radiates a first laser beam to a measurement target; and a second semiconductor laser that is parallel to the first laser beam The second laser beam is radiated to the measurement target; the first laser driver operates the first semiconductor laser so that the oscillation period continuously increases at least continuously with the oscillation wavelength. ♦ The second laser driver oscillates the wavelength The second semiconductor laser is operated in a manner opposite to the first semiconductor laser, and the first light receiver converts the first laser light and the return light from the measurement target into the electric signal. a second light receiver that converts the second laser light and the return light from the measurement target into the electrical signal; and the counting means for each of the output signals of the first and second light receivers 1. Counting the number of interference waveforms generated by the first and second laser beams and their returning light included in the output signal of the second photodetector; And the calculation means calculates at least one of a distance from the measurement target and a speed of the measurement target based on a minimum oscillation wavelength and a maximum oscillation wavelength of the first and second semiconductor lasers and a counting result of the counting means. (2) The distance/speedometer is characterized in that: the first semiconductor laser emits a first laser light to the measurement target. '-87 - 200916731 The second semiconductor laser is parallel to the first laser light. The measurement target emits the second laser beam; the first laser driver operates the first semiconductor laser so that the oscillation period in which the oscillation wavelength continuously increases monotonously continues to exist. > The second laser driver has an oscillation wavelength The second semiconductor laser operates in a manner opposite to the first semiconductor laser; the first photodetector converts the light output of the first semiconductor laser into an electrical signal; and the second photoreceptor The light output of the second semiconductor laser is converted into an electrical signal; and the counting means is for each of the output signals of the first and second light receivers, The first 'second receiving: the output signal of the optical device includes: counting the number of interference waveforms generated by the self-coinciding effect of the first and second laser light and the returning light; and calculating means, At least one of the distance from the measurement target and the speed of the measurement target is calculated based on the minimum oscillation wavelength of the first and second semiconductor lasers and the maximum vibration wavelength and the counting result of the counting means .3. The distance/speedometer according to the first or second aspect of the invention, wherein the counting means obtains an oscillation wavelength from the first and second semiconductor lasers in a first counting period shorter than the oscillation period The number of interference waveforms included in the output signal of the photoreceiver corresponding to the semiconductor laser that is being increased is simultaneously obtained in the second counting period from the same time as the first counting period -88 to 200916731. The second semiconductor laser is configured by means of the number of interference waveforms included in the output signal of the photoreceiver corresponding to the semiconductor laser whose oscillation wavelength is decreasing, and the foregoing operation means The distance/speed calculation means includes a candidate 距离 of the distance to the measurement target and a speed of the measurement target based on the minimum oscillation wavelength and the maximum oscillation wavelength of the first and second semiconductor lasers and the counting result of the counting means. The state determination means determines the state of the measurement target based on the candidate 速度 of the velocity calculated by the distance/speed calculation means, and the distance/speed determination means determines the genre based on the determination result of the state determination means At least one of the distance between the measurement target and the speed of the measurement target. 4. The distance/speed meter according to item 3 of the patent application scope, wherein the distance/speed calculation means is based on a result of assuming that the measurement target is in a minute displacement state, based on a counting result in the first counting period and one after the first counting period In the count result of the count period, the first candidate 速度 of the speed and the first candidate 距离 of the distance are calculated, and the count result of the second count period at the same time as the first count period in which the first candidate 已 has been calculated is The second candidate 値 of the speed and the second candidate 距离 of the distance are calculated as the result of the counting of the first counting period at the same time as the second counting period in which the first candidate 已 is calculated, and the measurement target is assumed to be in a variation ratio In the case of the displacement state in which the displacement state is fast, 'the third candidate 速度 of the speed and the third candidate 距离 of the distance are calculated based on the counting result in the first counting period and the counting result in the second counting period after one time, and the calculation is based on The count of the second count period at the same time in the first count period of the third candidate --89-200916731 and the result of the calculation of the third candidate 値In the second count period, the count result of the first count period at the same time is calculated, and the fourth candidate 速度 of the speed and the fourth candidate 距离 of the distance are calculated, and the state determination means is substantially equal to the first candidate 値 and the second candidate 前述 of the speed. In the case where the measurement target is in a minute displacement state, and the third candidate 値 and the fourth candidate 値 of the speed are substantially equal, it is determined that the measurement target is in a displacement state. 5. The distance/speed meter according to the fourth aspect of the patent application, wherein the distance/speed determining means sets the first candidate 値 and the second candidate of the speed when the measurement target is in a minute displacement state. Any one of the first measurement target 値 and the second candidate 前述 of the distance is a distance from the measurement target, and it is determined that the measurement target is in a displacement state. In any of the third candidate 値 and the fourth candidate 前述 of the speed, the speed of the measurement target is set, and any of the third candidate 値 and the fourth candidate 前述 of the distance is set as the measurement target. the distance. 6. The distance/speed meter according to the fourth aspect of the invention, wherein the distance/speed determining means sets the first candidate 値 and the second candidate of the speed when the measurement target is in a minute displacement state. The average value of 値 is the speed of the measurement target, and the average 値 of the first candidate 値 and the second candidate 前述 of the distance is a distance from the measurement target, and when it is determined that the measurement target is in a displacement state, The average 値 of the third candidate 値 and the fourth candidate 前述 of the speed is set as the speed of the measurement target, and the third candidate 値 of the distance and the flat-90-200916731 of the fourth candidate 値 are both determined as described above. The distance of the object. 7. The distance/speed meter according to item 4 of the patent application scope, wherein the distance/speed determining means compares ΣΧ and ΣΥ, wherein the ΣΧ is a count of the first counting period of the first candidate 计算 calculating the speed As a result, the sum of the count results of the first count period of the second candidate 前述 of the speed is calculated, and the ΣΥ is the count result of the second count period of the first candidate 计算 at which the speed is calculated, and the second calculation of the speed is calculated. When the sum of the counts in the second count period of the candidate 値 is larger than the above ,, it is determined that the measurement target is approaching, and when the ΣΥ is larger than the ΣΧ, the measurement target is determined to be positive. keep away. 8. The distance/speedometer according to the fourth aspect of the patent application, wherein the calculation means further includes a history displacement calculation means for assuming that the measurement target is in a state of minute displacement and assuming that the measurement object is in a displacement state. In each case, the history displacement of the difference between the candidate 値 calculated by the distance/speed calculation means and the candidate 値 calculated by the previous time is calculated, and the state determination means is based on the speed. When the candidate 値 cannot determine the state of the measurement target, the state of the measurement target is determined based on the calculation result of the history displacement calculation means. 9. The distance/speed meter of claim 2 or 2, wherein the counting means includes: a counter for each of the output signals of the first and second photoreceivers, the first and the first (2) counting the number of the interference waveforms included in the output signal of the photodetector; -91 - 200916731 The period measuring means is for each of the output signals of the first and second photoreceivers, each time the interference waveform is input, The period of the interference waveform in the counting period in which the number of the interference waveforms is counted is measured; and the frequency distribution forming means creates, based on the measurement result of the period measuring means, the respective output signals of the first and second photodetectors a frequency distribution of a period of the interference waveform in the counting period; and a median calculating means calculating a median period of the interference waveform for each of the output signals of the first and second photodetectors based on the frequency distribution; The correction correction means calculates the level below the first predetermined multiple of the median based on the frequency distribution. The frequency sum N s and the frequency sum nw of the level equal to or greater than the second predetermined multiple of the median, and the counters for the first and second photodetectors are corrected for the respective counters Ns and Nw according to the frequencies Ns and Nw Counting result; period and calculation means 'for each of the output signals of the first and second photodetectors', the sum of the periods of the interference waveforms is calculated based on the measurement results of the period measuring means; and the number calculating means is Each of the output signals of the first and second photoreceivers calculates the number of the aforementioned interference waveforms per unit time based on the sum of the count result corrected by the aforementioned correction 値 calculation means and the period calculated by the aforementioned period and calculation means. . 1 ° · The distance/speed meter according to item 1 or item 2 of the patent application scope, wherein the 'counting means includes: -92- 200916731 period measuring means for each of the output signals of the first and second receivers Each time the interference waveform is input, that is, a predetermined number of cycles of the interference waveform included in the output signals of the first and second photodetectors are measured; a frequency distribution forming means for the first and second photoreceivers Each of the output signals is a frequency distribution of the period of the interference waveform based on the measurement result of the period measuring means; and the median calculating means is based on the frequency distribution of each of the output signals of the first and second photodetectors Calculating a median of the period of the interference waveform; and correcting the 値 calculating means, obtaining a frequency sum NS of a level equal to or less than a first predetermined multiple of the median based on the frequency distribution, and a number of the median 2, the frequency sum Nw of the predetermined multiple or more, for each of the output signals of the first and second photoreceivers, according to the frequencies Ns and Nw, Correcting the predetermined number; the period and the calculation means calculating the sum of the periods of the thousands of waveforms based on the measurement results of the period measuring means for each of the output signals of the first and second photoreceivers; and the number calculating means For each of the output signals of the first and second photoreceivers, the sum of the number of interference waveforms corrected by the correction correction means and the sum of the periods calculated by the period and the calculation means' is calculated per unit time. The number of aforementioned interference waveforms. 1 1. The distance/speed meter according to item 9 or item 10 of the patent application scope, wherein the correction correction means is when the counter-93-200916731 result of the counter or the predetermined number is set to N, The corrected 値N ' is obtained by N'=N + Nw-Ns'. 12. The distance/speedometer according to claim 1 wherein the first predetermined number is 0.5 and the second predetermined number is 1.5. 13. The distance/speed meter according to the first aspect of the invention, wherein the period measuring means obtains an oscillation in the first and second semiconductor lasers in a first counting period shorter than the oscillation period. The period of the interference waveform included in the output signal of the photodetector corresponding to the semiconductor laser having an increased wavelength, and the first and second semiconductors are obtained in the second counting period at the same time as the first counting period. The period of the interference waveform included in the output signal of the receiver corresponding to the semiconductor laser whose oscillation wavelength is decreasing in the laser. 14. The distance/speed meter according to Item 5 or Item 6 of the patent application, further comprising an amplitude adjustment means for quantifying a speed at which the measurement target is in a minute displacement state and assuming that the measurement target is In the candidate for the speed in the displacement state, the distance/speed determining means determines the candidate speed of the speed that is not true and is not used, and the distance/speed determining means determines that it is true based on the determination result of the state determining means. The first and second laser drivers are supplied to the first and second lasers so that the candidate 値 is multiplied by the wavelength change rate of the first and second semiconductor lasers. The amplitude of at least one of the drive currents of the semiconductor laser. 1 5. The distance/speed meter according to item 5 or item 6 of the patent application, wherein the amplitude adjustment means additionally has a candidate for a speed at assuming that the aforementioned measurement is in a state of a slight displacement of the -94 - 200916731 image. In the candidate 速度 of the speed when the measurement target is in the displacement state, the first and second candidates of the speed used by the distance/speed determination means to determine the true speed are based on the determination result of the state determination means. The amplitude of at least one of the drive currents supplied to the first and second semiconductor lasers by the first and second laser drivers is adjusted so that the timing at which the wavelength change of the semiconductor laser is switched is continuous. 16. The distance/speed meter according to item 5 or item 6 of the patent application, wherein the amplitude adjustment means further includes a candidate for a distance when the measurement target is in a minute displacement state, and assuming that the measurement target is In the candidate for the distance in the state of the displacement, the wavelength of the first and second semiconductor lasers is changed by the distance 速度 determined by the distance/speed determining means and determined by the determination result by the state determining means. The amplitude of at least one of the drive currents supplied to the first and second semiconductor lasers by the first and second laser drivers is adjusted such that the timing of the switching is maintained before and after the switching. In the method of measuring the distance and velocity using a semiconductor laser, the method of measuring the distance and velocity of the laser beam to be measured is characterized in that the first oscillation step is continuously monotonously increased by at least the oscillation wavelength. The first semiconductor laser is operated in such a manner that the oscillation period is repeated; the second oscillation step "operates the second semiconductor laser so that the increase and decrease of the oscillation wavelength is opposite to the first semiconductor laser; and the counting step is performed by The first laser light included in the output signal of the first light receiver that is converted into the electrical signal by the first-semiconductor laser beam emitted by the first semiconductor laser and the output light of the first light-receiver that is converted into the electrical signal by the return light from the measurement target Counting the number of interference waveforms generated by the return light and the second received light that converts the second laser light emitted by the second semiconductor laser and the return light from the measurement target into the electrical signal. Counting the number of interference waveforms generated by the aforementioned second laser light and its returning light contained in the output signal of the device; The calculation step calculates at least one of a distance from the measurement target and a speed of the measurement target based on the minimum oscillation wavelength and the maximum oscillation wavelength of the first and second semiconductor lasers and the count result of the counting step. A distance/speed measurement method using a semiconductor laser to measure a distance and a velocity of a laser beam to be measured, wherein the first oscillation step is performed by repeating an oscillation period in which at least an oscillation wavelength continuously increases monotonously. The first semiconductor laser is operated in a second oscillation step, and the second semiconductor laser is operated in such a manner that the increase and decrease of the oscillation wavelength is opposite to the first semiconductor laser; and the counting step is performed on the first The first laser light emitted by the first semiconductor laser and the self-coupling of the return light from the measurement target of the laser light included in the output signal of the photoreceptor of the semiconductor laser The number of interference waveforms generated by the effect is counted, and for the light transmission of the aforementioned second semiconductor laser The output signal of the second photoreceiver that is converted into the electrical signal includes the second laser light emitted by the second half-96-200916731 conductor laser and the self-coupling effect of the return light from the target of the laser light. The number of the generated interference waveforms and the calculation step are based on the swash wavelength and the maximum oscillation wavelength of the first and second semiconductor lasers, the distance between the counting result of the counting step and the distance between the measurement target and the speed of the measurement target The method of measuring distances according to claim 17 or claim 18, wherein the step of counting is determined by the first counting period in a first counting period shorter than the vibration. (2) the number of interference waveforms included in the number of the photodetector corresponding to the semiconductor laser whose semiconductor oscillation wavelength is increasing, and the second and the second counting period at the same time as the first meter, and the first and second bodies are obtained. The steps of the steps of the number of interference waveforms included in the output signal corresponding to the semiconductor laser whose oscillation wavelength is decreasing in the laser include: • The speed calculation step, the minimum oscillation wavelength of the first and second semiconductor lasers, and the counting result of the maximum vibration and the counting step, and the candidate 値 of the measurement target and the candidate of the measurement target speed are calculated; Determining the state of the measurement target based on the speed calculated by the distance and speed calculation step; and determining the distance/speed determination result based on the determination result of the state determination step, and determining at least one of the measurement distance and the speed of the measurement target By. 20- If the distance and speed of the patent application range is the minimum speed, the calculation is less, and the calculation is less. • During the output period of the laser during the sloshing period, the distance of the semi-conductive receiver according to the pre-wavelength wavelength is 2 The step of the step of the step, the amount of the object method -97-200916731, wherein the distance/speed calculation step is based on the assumption that the measurement target is in the state of minute displacement, based on the count result in the first counting period and the first time after the first counting period In the count result of the count period, the first candidate 速度 of the speed and the first candidate 距离 of the distance are calculated, and the count result of the second count period at the same time as the first count period in which the first candidate 已 has been calculated is The second candidate 値 of the speed and the second candidate 距离 of the distance are calculated as the result of the counting of the first counting period at the same time as the second counting period in which the first candidate 已 is calculated, and the measurement target is assumed to be in a variation ratio The case of the displacement state in which the displacement state is fast is calculated based on the counting result in the first counting period and the counting result in the second counting period after one time. The third candidate of the degree and the third candidate of the distance are calculated based on the count result of the second count period at the same time as the first count period in which the third candidate is calculated, and the third candidate is calculated. In the second counting period of the second counting period, the counting result of the first counting period at the same time, the fourth candidate 速度 of the speed and the fourth candidate 距离 of the distance are calculated, and the state determination step is the first candidate 第 and the second candidate 前述 of the speed 値When it is substantially equal, it is determined that the measurement target is in a minute displacement state. 'When the third candidate 値 and the fourth candidate 前述 of the speed are substantially equal, it is determined that the measurement target is in a displacement state. 2 1. The distance/speed measuring method of the twentieth aspect of the patent application scope, wherein the 'distance and speed determining step is a table 1 candidate for the speed in the case where it is determined that the measurement target is in a minute displacement state. In the second candidate, the speed of the measurement target is set, and the distance between the first candidate 値 and the second candidate 前述 of the distance is determined as the distance from the measurement -98 to 200916731. When the measurement target is in the displacement state, any one of the third candidate 値 and the fourth candidate 前述 of the speed is the speed of the measurement target, and any of the third candidate 値 and the fourth candidate 前述 of the distance. The distance to the measurement target is set. 2. The distance/speed measuring method according to the twentieth aspect of the patent application, wherein the distance/speed determining step is to set the first candidate 前述 of the speed in the case where it is determined that the measurement target is in a minute displacement state. The average 値 of the second candidate 値 is the speed of the measurement target, and the average 値 of the first candidate 値 and the second candidate 前述 of the distance is a distance from the measurement target, and it is determined that the measurement target is in a displacement state. In this case, the average 値 of the third candidate 値 and the fourth candidate 前述 of the speed is set as the speed of the measurement target, and the average 値 between the third candidate 値 and the fourth candidate 前述 of the distance is determined as described above. The distance of the object. 23. The distance/speed measuring method according to claim 20, wherein the distance/speed determining step compares ΣΧ and ΣΥ, wherein the 计数 is a first counting period of the first candidate 计算 calculating the speed. And the sum of the count results of the first count period of the second candidate 计算 of the speed, the Σ Y is the count result of the second count period of the first candidate 计算 at which the speed is calculated, and the speed is calculated When the sum of the count results in the second count period of the second candidate ' is larger than the Σ Y, it is determined that the measurement target is approaching 'when the Σ Y is larger than the Σ X, then It is determined that the measurement target is far away from the crucible 24. The distance/speed measurement method of the twentieth of the patent application No. 20-200916731, wherein the calculation step additionally includes a history displacement calculation step for assuming that the measurement object is in a minute displacement The case of the state and the case of the case where the aforementioned measurement object is in the displacement state 'calculate the distance calculated by the aforementioned distance/speed calculation step In the case where the state of the measurement target is not determined based on the candidate of the speed, the state determination step is based on the calculation result of the history displacement step. The state of the aforementioned measurement object. 2 5. The distance of the application of the patent range No. 17 or item 18. The measurement method, wherein the 'counting step includes: the interference waveform counting step' for each of the first and second receivers, The number of the interference waveforms included in the output signals of the first and second photodetectors is counted as a period measuring step, and each time the input waveform is input to each of the first and second receivers, The interference waveform period in the counting period in which the number of the preceding waveforms is counted is measured; and the frequency distribution creating step is performed on each of the first and second photodetector output signals based on the measurement result of the periodic measurement step. a frequency distribution of a period of the interference waveform in the period; a median calculation step of calculating a median of the interference waveform period for each of the signals of the first and second photoreceivers according to the frequency distribution; According to the frequency distribution described above, it is determined as the previous step, and it is assumed that the output of the signal is calculated by the previous method. In the case of the output, the frequency sum Ns of the level of the first predetermined multiple of the number of digits of the number of digits is equal to or greater than the frequency of the second predetermined multiple of the median number, and the first and second photoreceivers. Each of the output signals corrects the counting result of the interference waveform counting step based on the frequencies NS and N w ; the period and the calculating step, for each of the output signals of the first and second photoreceivators, according to the period measuring step a result of the measurement, calculating a total of the periods of the interference waveforms, and a number calculation step for each of the output signals of the first and second photoreceivers based on the count result corrected by the correction step and the period The sum of the aforementioned interference waveforms per unit time is calculated by summing the periods calculated by the calculation steps. 26. The distance/speed smog method of the patent application scope item 17 or item 18 wherein the 'counting step includes: the period measuring step 'for each of the output signals of the first and second receivers' Each time the interference waveform is input, the period of the predetermined number of interference waveforms included in the output signals of the jth and second photodetectors is measured. The frequency distribution is performed in the step 'for the first and second photoreceivers. Each of the output signals 'the frequency distribution of the period of the interference waveform is generated based on the measurement result of the period measurement step; and the median calculation step 'for each of the output signals of the second and second photodetectors' is based on the frequency distribution. Calculating the median of the period of the interference waveform; correcting the 値π-th calculation step', based on the frequency distribution of glj, finding the sum of frequencies N s of the level below the first predetermined multiple of the number of bits -101 - 200916731 a frequency sum nw of a level equal to or greater than a second predetermined multiple of the median, for each of the output signals of the first and second photoreceivers, The equal frequency Ns and Nw correct the predetermined number; the period and the calculation step calculate the sum of the periods of the interference waveforms based on the measurement results of the period measuring step for each of the output signals of the first and second photoreceivers; And the number calculation step 'each of the output signals of the first and second photoreceivers' is based on the sum of the number of interference waveforms corrected by the aforementioned correction 値 calculation step and the period calculated by the aforementioned period and calculation step , Calculate the number of the aforementioned interference waveforms per unit time. [27] A distance/speed measuring method according to the second or second aspect of the patent application, wherein the method further includes an amplitude adjustment step for quantifying a speed at which the measurement target is in a minute displacement state, and assuming the aforementioned measurement target In the candidate for the speed in the displacement state, based on the determination result of the state determination step, the distance 速度 speed determination step determines the candidate 速度 of the speed that is not true and is not used, and the distance. The candidate 値 of the distance that is determined to be true is multiplied by the 値 of the wavelength change rate of the first and second semiconductor lasers, and is adjusted to be supplied to the first and second semiconductor lasers. The amplitude of at least one of the currents. 28. The distance/speed measuring method according to claim 21 or 22, wherein 'there is additionally an amplitude adjusting step which is a candidate for the speed at the assumption that the aforementioned measuring object is in a minute displacement state and a pre-hypothesis-102 - 200916731 In the candidate 速度 of the speed at which the measurement target is in the displacement state, based on the determination result of the state determination step, the candidate for the speed that is determined to be true in the distance* speed determination step is the first The amplitude of at least one of the drive currents supplied to the first and second semiconductor lasers is adjusted such that the timing at which the wavelength change of the second semiconductor laser is switched is continuous. 29. The distance measuring method according to claim 2, wherein the speed measuring method further includes an amplitude adjusting step of assuming a distance of the distance when the measuring object is in a minute displacement state, and assuming the foregoing In the candidate 距离 of the distance when the measurement target is in the displacement state, based on the determination result of the state determination step, the candidate for the distance that is determined to be true in the distance/speed determination step is the first and second semiconductors. The amplitude of at least one of the drive currents supplied to the first and second semiconductor lasers is adjusted such that the timing at which the wavelength change of the laser light is switched is continuous. -103-
TW097120253A 2007-06-06 2008-05-30 Distance/speed meter, and distance/speed measuring method TW200916731A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007150102 2007-06-06
JP2008054706A JP5530070B2 (en) 2007-06-06 2008-03-05 Distance / speed meter and distance / speed measurement method

Publications (2)

Publication Number Publication Date
TW200916731A true TW200916731A (en) 2009-04-16
TWI366665B TWI366665B (en) 2012-06-21

Family

ID=40180072

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097120253A TW200916731A (en) 2007-06-06 2008-05-30 Distance/speed meter, and distance/speed measuring method

Country Status (4)

Country Link
JP (1) JP5530070B2 (en)
KR (1) KR100984295B1 (en)
CN (1) CN101319892B (en)
TW (1) TW200916731A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI667464B (en) * 2018-01-18 2019-08-01 日商歐姆龍股份有限公司 Optical measurement device and optical measurement method
TWI785103B (en) * 2018-05-24 2022-12-01 日商三菱電機股份有限公司 Optical distance measuring device and processing device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5530069B2 (en) * 2007-04-03 2014-06-25 アズビル株式会社 Distance / speed meter and distance / speed measurement method
JP5541773B2 (en) * 2009-11-12 2014-07-09 アズビル株式会社 Physical quantity sensor and physical quantity measuring method
JP5702536B2 (en) * 2010-01-05 2015-04-15 アズビル株式会社 Velocity measuring apparatus and method
JP6018662B2 (en) * 2015-03-31 2016-11-02 アズビル株式会社 Counting device, physical quantity sensor, counting method and physical quantity measuring method
EP3346287A4 (en) * 2015-09-01 2019-02-27 The University Of Tokyo Motion detection device and three-dimensional shape measurement device using same
CN108303705A (en) * 2017-12-27 2018-07-20 西安理工大学 Nd:YAG solid state lasers are from mixing velocity sensor and its speed-measuring method
CN108490206B (en) * 2018-04-04 2020-08-28 中冶长天国际工程有限责任公司 Speed measuring system for sintering trolley
JP6976371B2 (en) * 2020-03-13 2021-12-08 三菱電機株式会社 Rotation speed detector
CN115531661B (en) * 2022-10-28 2023-07-18 巨翊医疗科技(苏州)有限公司 Anti-interference intravenous infusion flow velocity measurement method, device and system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2885807B2 (en) * 1988-10-21 1999-04-26 東京航空計器株式会社 Distance detection device
JPH06242243A (en) * 1993-02-18 1994-09-02 Tokimec Inc Quay approaching speedometer and distance measuring sensor used therefor
JP2954871B2 (en) * 1996-03-25 1999-09-27 株式会社先進材料利用ガスジェネレータ研究所 Optical fiber sensor
FR2761782B1 (en) * 1997-04-02 1999-05-07 Commissariat Energie Atomique VELOCIMETER AND LASER TELEMETER USING COHERENT DETECTION
US7280220B2 (en) * 2001-09-21 2007-10-09 Yamatake Corporation Physical quantity measuring method and device therefor
US7139446B2 (en) * 2005-02-17 2006-11-21 Metris Usa Inc. Compact fiber optic geometry for a counter-chirp FMCW coherent laser radar
JP2006250853A (en) * 2005-03-14 2006-09-21 Fujitsu Ltd Object surface shape measuring method and its system
JP5172077B2 (en) * 2005-05-06 2013-03-27 アズビル株式会社 Distance / speed meter and distance / speed measurement method
JP2006322932A (en) * 2006-04-25 2006-11-30 Yamatake Corp Signal detection circuit
JP5530069B2 (en) * 2007-04-03 2014-06-25 アズビル株式会社 Distance / speed meter and distance / speed measurement method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI667464B (en) * 2018-01-18 2019-08-01 日商歐姆龍股份有限公司 Optical measurement device and optical measurement method
US11194047B2 (en) 2018-01-18 2021-12-07 Omron Corporation Optical measurement device and optical measurement method
TWI785103B (en) * 2018-05-24 2022-12-01 日商三菱電機股份有限公司 Optical distance measuring device and processing device

Also Published As

Publication number Publication date
TWI366665B (en) 2012-06-21
KR100984295B1 (en) 2010-09-30
KR20080107301A (en) 2008-12-10
CN101319892A (en) 2008-12-10
JP5530070B2 (en) 2014-06-25
JP2009014701A (en) 2009-01-22
CN101319892B (en) 2011-07-20

Similar Documents

Publication Publication Date Title
TW200916731A (en) Distance/speed meter, and distance/speed measuring method
JP5545915B2 (en) Counting device, distance meter, counting method, and distance measuring method
TWI359953B (en)
KR100945209B1 (en) Counting Device, Distance Meter, Counting Method, And Distance Measuring Method
EP2015021A2 (en) Distance/speed meter and distance/speed measuring method
US7961302B2 (en) Physical quantity sensor and physical quantity measuring method
JP5545914B2 (en) Physical quantity sensor and physical quantity measuring method
EP1978377A2 (en) Distance/speed meter and distance/speed measuring method
JP5530068B2 (en) Distance / speed meter and distance / speed measurement method
US20140303936A1 (en) Signal evaluating device and signal evaluating method
JP2010101642A (en) Physical quantity sensor and physical quantity measurement method
JP2008175602A (en) Range finder and distance measuring method
JP5545913B2 (en) Counting device, distance meter, counting method, and distance measuring method
US20120004877A1 (en) Signal evaluating device and signal evaluating method
JP2008139059A (en) Distance meter and a distance measuring method
JP2010096697A (en) Physical quantity sensor and physical quantity measurement method
JP5612240B2 (en) Distance meter and distance measuring method
JP2008175547A (en) Range finder and distance measuring method
JP5541773B2 (en) Physical quantity sensor and physical quantity measuring method
JP2013142654A (en) Physical quantity sensor and physical quantity measuring method
JP2010160138A (en) Physical quantity sensor and physical quantity measurement method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees