TW200915744A - Transmitter and receiver for reducing local oscillation leakage and I/Q mismatch and adjusting method thereof - Google Patents

Transmitter and receiver for reducing local oscillation leakage and I/Q mismatch and adjusting method thereof Download PDF

Info

Publication number
TW200915744A
TW200915744A TW096135951A TW96135951A TW200915744A TW 200915744 A TW200915744 A TW 200915744A TW 096135951 A TW096135951 A TW 096135951A TW 96135951 A TW96135951 A TW 96135951A TW 200915744 A TW200915744 A TW 200915744A
Authority
TW
Taiwan
Prior art keywords
signal
adjustment
phase
control signal
adjustment direction
Prior art date
Application number
TW096135951A
Other languages
Chinese (zh)
Inventor
Hong-Ta Hsu
Ying-Hsi Lin
Original Assignee
Realtek Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Realtek Semiconductor Corp filed Critical Realtek Semiconductor Corp
Priority to TW096135951A priority Critical patent/TW200915744A/en
Priority to US12/237,827 priority patent/US9490858B2/en
Priority to US12/286,107 priority patent/US8280327B2/en
Publication of TW200915744A publication Critical patent/TW200915744A/en
Priority to US13/174,975 priority patent/US8515379B2/en
Priority to US13/942,887 priority patent/US8849228B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/30Circuits for homodyne or synchrodyne receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0002Modulated-carrier systems analog front ends; means for connecting modulators, demodulators or transceivers to a transmission line
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0018Arrangements at the transmitter end

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Superheterodyne Receivers (AREA)

Abstract

The instant invention provides an adjusting method and an apparatus for reducing local oscillation leakage or I/Q mismatch of a transmitter or a receiver. The level of local oscillation leakage or I/Q mismatch is reduced by means of detecting the local oscillation leakage or I/Q mismatch and reversing an adjusting direction when the detected level becomes larger. A control signal associated with the local oscillation leakage or I/Q mismatch is also provided according to the adjusting direction.

Description

200915744 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種發射機及接收機及其調整方法, 特別是指一種降低本地振盪洩漏及同相/正交相不匹配之發 射機及接收機及其調整方法。 【先前技術】 請參閱圖1 ’圖1係繪示一種習知的直接升頻式( direct up-conversion)發射機,其包含二數位至類比轉換器 11、12、二低通濾波器13、14、二混頻器15、16、一加總 器17、一功率放大器18及一天線19。其中,—數位基頻 信號BBIt依序進行數位至類比轉換、低通濾波及與一同相 (in-phase)本地振盪信號L〇It混頻,以產生一類比同相射 頻信號RFIt,而另一數位基頻信號BBQt則依序進行數位至 類比轉換、低通濾波及與一正交相(quadrature-phase )本 地振盈彳s號L0Qt混頻,以產生一類比正交相射頻信號尺卩仏 。此二射頻信號RFIt、RFQt將進行加總及功率放大,以發 射到外界。 所述之本地振盪信號L0It& 1^0(^的理想相位差是9〇 度’但實際上會存在一相位偏移et ’且同相路徑上的方塊( 包括數位至類比轉換器11和低通濾波器13)及正交相路徑 上的方塊(包括數位至類比轉換器12和低通濾波器14)也 會存有增益偏移(在圖1中以一振幅偏移叫來表示),此種 現象稱為同相/正交相不匹配(I/Q mismatch )或同相/正交 相不平衡(I/Q imbalance)。此外,此二本地振盪信號L〇It 200915744 及LOQt有可能會分別從相對應之二混頻器15、16洩漏到 二射頻信號RFIt、RFQt,此種現象稱為本地振盪洩漏( local oscil丨ation leakage)或本地振逢饋通(local oscillation feedthrough )。所述之同相/正交相不匹配及本地振盪洩漏將 會降低此發射機所發射信號的信噪比,且很可能導致資料 漏失。 請參閱圖2,此為美國專利第6970689號所揭露之一種 用於降低本地振盪洩漏的發射機。此發射機包含一混頻器 21、一功率放大器22、一信號強度測量電路23及一控制信 號產生電路24。混頻器21具有多個操作狀態,且所述之操 作狀態分別對應到不同的本地振盪洩漏程度。信號強度測 量電路23是用來測量功率放大器22的輸出信號中本地振 盪洩漏成分的強度,其包括一整流器(Rectifier )(圖未示 )及一比較為(圖未示)。控制信號產生電路24則輸出一 控制信號來改變混頻器21的操作狀態。 在校正混頻器21的期間,功率放大器22將會提高其 增益,而控制信號產生電路24會改變混頻器21的操作狀 態,並儲存操作狀態的資訊及信號強度測量電路Μ測量到 的強度’並重複上述步驟直到混頻器21的所有操作狀態都 被使用過’然後再將混頻器21設定在使本地振衫漏程度 最小的操作狀態。 或者是在权正混頻器21的坤間,说、玄κ丄 J期間功率放大器22將會 提高其増益’而控制信號產生雷改24姓 王土电路24待續改變混頻器21 的操作狀態,直到信號強度測量雷故? 又』里电路23測量到的強度小於 200915744 一預設的臨界值’然後再固定混頻器21的操作狀態。 請參閱圖 3,圖 3 係 ISSCC 2006 / SESSION 20 / WLAN/WPAN / 20.4 “A Highly Linear Direct-Conversion Transmit Mixer Trans conductance Stage with Local Oscillation Feedthrough and I/Q imbalance Cancellation Scheme”所揭露的一種用於降低本地振蘯泡漏及同相/正交相 不匹配的發射機。此發射機包含二數位至類比轉換器301、 302、二低通濾波器303、304、二互導級305、306、二混 頻器307、308、一加總器309、一功率放大器310、一天線 311、一包跡檢測器(envelope detector ) 312及一可變增益 放大器313。二數位的基頻信號BBIt、BBQt分別被轉換成 二類比的射頻信號RFIt、RFQt,再被加總及功率放大以發 射到外界。 包跡檢測器312及可變增益放大器313依序對功率放 大器3 10的輸出信號進行包跡檢測及放大,以產生一基頻 漣波。當二基頻信號BBIt、BBQt為弦波信號且頻率為Fbb 時,基頻漣波的頻譜成分則出現在Fbb處(由於本地振盪洩 漏)及2xFBB處(由於同相/正交相不匹配),且其頻譜分析 可以顯示出本地振盪洩漏的程度及同相/正交相不匹配的程 度。 本地振盪洩漏可被分為兩種:基頻本地振盪洩漏及射 頻本地振盪洩漏。基頻本地振盪洩漏導因於二數位至類比 轉換器301、302、二低通濾波器303、304及二互導級305 、306中的元件偏移(device offset),而射頻本地振盪洩漏 200915744 導因於寄生電容或互感的直接耦合。其中,這兩種本地振 盪洩漏需要各自被降低。 然而所述isscc論文並沒有說明如何調整二互導級 305、306及二基頻#號BBIt、BBQt的相位及振幅來降低發 射機的本地振盈戌漏和同相/正交相不匹配,也沒有提及如 何降低接收機的本地振盪洩漏和同相/正交相不匹配的問題 〇 【發明内容】 因此,本發明之目的即在提供一種降低發射機或接收 機的本地振盈泡漏的調整方法及一種降低發射機或接收機 的同相/正交相不匹配的調整方法。 於是,本發明降低發射機或接收機的本地振盪洩漏的 調整方法,包含以下步驟: 檢測本地振盪洩漏的程度; 判斷一第一調整方向是否正確,如果是,則維持該第 一調整方向,否則,使該第一調整方向反向;及 根據該第一調整方向調整一第一控制信號。 本發明降低發射機或接收機的同相/正交相不匹配的調 整方法,包含以下步驟: 檢測同相/正交相不匹配的程度; 丄判斷第一调整方向是否正確,如果是,則維持該第 凋整方向’否%,使該第一調整方向反向;及 Ί亥第一調整方向調整一第一控制信號。 而本發明之另-目的即在提供一種發射機及_種接收 200915744 機,可以降低本地振盪茂漏。 於是’本發明發射機包含: -第-混頻器’將—基頻信號與一本地振盪信號混頻 ,以產生一射頻信號; 一檢測單兀,根據該射頻信號產生反應本地振盪洩漏 程度的一檢測信號;及 一調整單元,輸出一控制信號來改變該第一混頻器的 操作狀態,且根據該檢測信號判斷該控制信號的一調整方 向是否使本地漏的程度變小,如果本地㈣茂漏的 程度變小,則維持該調整方向,否則,使該調整方向反向 ,並根據該調整方向調整該控制信號。 本發明接收機包含: 一混頻器,將一射頻信號與一本地振盪信號混頻,以 產生一基頻信號; 檢則單元根據該基頻信號產生反應本地振盪洩漏 程度的一檢測信號;及 ^調整單兀,輸出一控制信號來改變該混頻器的操作 狀悲’且根據該檢測信號判斷該控制信號的一調整方向是 使本地振盪洩漏程度變小,如果本地振盪洩漏程度變小 ^則維持该調整方肖,否則,使該調整方向反向,並根據 '^調整方向’調整該控制信號。 而本發日月> £ 为—目的即在提供一種發射機及一種接收 機’可:降低同相/正交相不匹配。 於是,本發明發射機包含: 200915744 -補償單元,對—第—基_號及n 行相位及振幅補償,以產生二輸出信號,· 土, D〜 二數位至類比轉換器,分別對該補償單元的二輸出信 號進行數位至類比轉換; 二低通濾波器,分別對該二數位 信號進行低《波; 二混頻器’將該二低通渡波器的輸出信號分別與一同 相本地振盪信號及一正交相本地 射頻信號; ㈣遽混頻,以產生二 一第一加總器,對該二射頻信號進行加總; 一檢測單元’根據該第一加嫡 门4 , 加…态的輪出信號產生反應 同相/正交相不匹配程度的一檢測信號;及 。-調:單元,輸出至少一控制信號來改變該補償單元 的操作狀悲,且根據該檢測信號判 ^ μ 。现刘辦母—控制信號的每一 调正方向是否使同相/正交相不匹配的程度變小,如果同相/ 正交相不匹配的程度變小,則維持該等調整方向,否則, 至少使該專調整方向之盆中夕 r-, 门之/、中之一反向,並根據該等調整方 向調整該等控制信號。 本發明接收機包含: '一混頻器,其中一去技 At lt3-.. 、 、—射頻^號與—同相本地振盪 ^號混頻,以產生一基頻传轳 J。唬’而其中另-者將該射頻信 就與-正父相本地録信號混頻,以產生另—基頻信號; 二低通遽波器,分別斜号_ 才。玄一混頻益的輪出信號進行低 通濾波; - 10 200915744 一類比至數位轉換器,分別對該二低通濾波器的輪出 信號進行類比至數位轉換’以產生一第一基頻信號及—第 二基頻信號; 一補彳Μ单元,對該第一基頻信號及該第二基頻信號進 行相位及振幅補償,以產生二輸出信號; 一檢測皁元,根據該補償單元的二輸出信號,產生反 應同相/正交相不匹配程度的一檢測信號;及 凋玉單元,輸出至少一控制信號來改變該補償單元 的操作狀態,且根據該檢測信號判斷每一控制信號的每— 調整方向是否使同相/正交相不匹配的程度變小,如果同相/ 正交相不匹配的程度變小,則維持該等調整方向,否則, 至少使該等調整方向之其中之一反向,並根據該調整方向 調整該等控制信號。 【實施方式】 有關本發明之前述及其他技術内容、特點與功效,在 、下配口參考圖式之二個較佳實施例的詳細說明中,將可 清楚地呈現。 凊參閱圖4 ’所示係本發明發射機之一較佳實施例,包 3 „„補償單凡4〇、二數位至類比轉換器41、42、二低通濾、 波斋43、44、二混頻器45、%、―加總_ 4丄及-調整單元49。所述之補償單元仙對二數位的基頻 =號BBIt、BBQt進行相位及振幅補償,且具有多個操作狀 〜’、中不同的操作狀態對應到不同程度的同相/正交相 不匹配。在本實施例中,補償單元4Q包括二增益級彻、 200915744 =: 增益級401將基頻信號卿乘以-可 為補償單元4°的一輸出信號。增益級將 虎卿乘以-可變因數Yt,而加總器彻將基頻信 唬BBQt與增益級4〇2的輪 耵掏出4唬加總,以當作補償單元4〇 的另一輸出信號。二數位至類比轉換器41、42分別對增益 級4〇1及加總器403的輸出信號進行數位至類比轉換,而 二低通遽波器43、44分別對二數位至類比轉換器4卜42 的輸出信號進行低通遽波。混頻器45將低通滤波器43的 輸出信號與-同相本地振盪信號咖混頻,以產生一同相 射頻信號RFIt ’而混頻器46將低通濾波器44的輸出信號 與正交相本地振璗信號L〇Qt混頻,以產生—正交相射頻 ^虎RFQt。每-混頻器45、46皆具有多個操作狀態,且不 同操作狀態對應到不同程度的本地振盪浪漏。加總器47對 二混頻器45、46的輪出信號進行加總,檢測單元48再根 據加總器47的輸出信號’產生位於基頻的—反應本地振盈 洩漏程度的檢測信號及另一反應同相/正交相不匹配程度的 檢測信號。在本實施例中,檢測單元48包括一混頻器48ι '—可變增盈放大器482、一類比至數位轉換器483及—快 速傅利葉轉換器484,以依序對加總器47的輸出信號進行 自身混頻、放大、類比至數位轉換及快速傅利葉轉換,來 產生檢測信號。當二基頻信號BBlt、BBQt是弦波信號且其 頻率是FBB時,混頻器481的輸出信號將在ρΒΒ處(由於本 地振盪洩漏)及在2xFBB處(由於同相/正交相不匹配)具 有頻譜成分’且其頻譜分析可以顯示出本地振盪洩漏的程 12 200915744 度及同相/正交相不匹配的程度。在另一實施例中,混頻器 481也可以被替換為一包跡檢測器,且在其它實施例中,可 變增益放大器482在不那麼需要時也可以被省略。調整單 元49輸出四控制信號I(n)、Q(n)、χ(η)、γ(η)來分別改變 二混頻器45、46的操作狀態及二可變因素Xt、Yt,以降低 本地振盪洩漏及同相/正交相不匹配的程度。 請參閱圖5 ’所示係本實施例用以改變每一控制信號 I(n)、Q(n)、χ(η)、γ⑻的調整方法,包含以下步驟·· 步驟50,該檢測單元48產生反應本地振盪洩漏程度的 檢測信號或反應同相/正交相不匹配程度的檢測信號。 步驟51,該調整單元49根據先前調整方向所得到之檢 測信號,判斷控制信號的調整方向是否正確,如果是,跳 到步驟53,否則,跳到步驟52。在本實施例中,對於二混 頻器45、46的控制信號I(n)、Q(n),是根據所檢測的本地 振盪洩漏程度’如果變小,表示調整方向正確,而對於補 償單元40的控制信號x(n)、Y(n),是根據所檢測的同相/正 交相不匹配程度,如果變小,表示調整方向正確。 步驟52,該調整單元49使調整方向反向。 步驟53,該調整單元49根據調整方向,調整控制信號 。在本實施例中,對於二混頻器45、46的控制信號Ι(η)、 Q(n)及補償單元40的控制信號Χ(η)、Υ(η),其中每—控制 信號的調整量與控制信號的調整方向及控制信號的調整級 距(step )成正比。 除以上步驟之外,本實施例用以改變每一控制信號1(幻 13 200915744 、Q(n)、X(n)、Υ(η)的調整方法更可以包含以下步驟: 步驟54,該調整單元49判斷是否滿足一結束條件,如 果是,則固定控制信號並結束調整,否則,跳到步驟5〇以 重覆步驟50〜53。在一實施例中,是否滿足結束條件可以是 根據執行步驟50〜53的次數來決定,也就是說,當重覆步 驟50〜53達到一預設次數時,即滿足結束條件。然而在另 一實施例中’是否滿足結束條件也可以是根據本地振盪浪 漏程度及同相/正交相不匹配程度來決定,意即當本地振盈 浪漏程度及同相/正交相不匹配程度分別小於所對應之預設 程度時’即滿足結束條件。 在本實施例中,可進行步驟50〜53來分別調整控制信 號Ι(η)、控制信號Q(n)、控制信號χ(η)及控制信號Υ(η), 最後再進行步驟54以判斷是否繼續調整。 請參閱圖6,所述係本發明接收機之一較佳實施例,包 含二混頻器61、62、二低通濾波器63、64、二類比至數位 轉換器65、66、一補償單元67、一檢測單元68及一調整 單元69。 混頻器61將一類比的射頻信號與一同相本地振盪信號 L〇Ir混頻,以產生一基頻信號,而混頻器62將射頻信號與 一正交相本地振盈信號L〇Qr》、昆頻,以產生另一基頻信號。 每—混頻器6卜62具有多個操作狀態,且不同操作狀態對 應到不同程度的本地振m二低通濾波器63、64分別 對二混頻H 61、62的輸出信號進行低㈣波。二類比至數 位轉換器65、66分別料-似, 方J對—低通濾波态63、64的輸出信號 14 200915744 轉換。補償單元67對二類比至數位轉換器 ’輪出信號進行相位及振幅補償,且具有多個操作 ‘…、中’不同操作狀態對應到不同程度的同相/正交相 不匹配。在本實施例中,補償單元67包括二增益級671、 力〜、器673。增益級671將類比至數位轉換 的輸㈣號乘以-可變因數&,增益級672將類比至數位 轉換器66的輸出信號乘以—可變因數 ',而加總器673將 ’曰'血、.及671、672的輸出信號加總,以輸出一基頻信號 BBIr。=償單元67將類比至數位轉換器66的輸出信號二 輸出,#作另—基頻信號BBQr。檢測單it 68根據二基頻信 號BBIr、BBQr,產生一反應本地振堡沒漏程度的檢測信號 及另一反應同相/正交相不匹配程度的檢測信號。在一實施 例中★測單元68可包括—快速傅利葉轉換器68卜快速 傅利葉轉換器可將二基頻信號BBIr、BBQr視為一複數信號 BBIr+jxBBQr,來進行快速傅利葉轉換,以產生檢測信號。 有理心之射頻k號是沒有本地振盡沒漏及同相/正交相 不匹配的情形時’例如:當此射頻信號是調整後的發射機 所產生,且二基頻信號BBIt、BBQt是弦波信號且頻率是 fbb時,則二基頻信號BBIr、BBQr具有在Dc處(由於本 地振盪洩漏)及在·Fbb處(由於同相/正交相不匹配)的頻 譜成分’且其頻譜分析可以顯示出本地振盪洩漏的程度及 同相7正交相不匹配的程度。調整單元69可輸出四控制信號 I(n)、Q⑻、X(n)、Y(n)來分別改變二混頻器61、62的操作 狀態及二可變因素Xr、Yr,以降低本地振盪洩漏及同相/正 15 200915744 父相不匹配的程度。調整早元69的動作與發射機的調整單 元49的動作類似,此處將不再多加說明。值得注意的是, 在發射機及接收機的實施例中,調整單元49、69可分別接 收位於基頻用以反應本地振盪洩漏程度及同相/正交相不匹 配程度的檢測信號’且是以數位方式來實現,因此將具有 容易實現的優點。 惟以上所述者,僅為本發明之較佳實施例而已,當不 能以此限定本發明實施之範圍,即大凡依本發明申請專利 範圍及發明說明内容所作之簡單的等效變化與修飾,皆仍 屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 圖1是一習知的發射機之方塊圖; 圖2是另一習知的發射機之方塊圖; 圖3是又一習知的發射機之方塊圖; 圖4是本發明發射機的較佳實施例之方塊圖; 圖5是本發明調整方法的較佳實施例之流程圖;及 16是本發明接收機的較佳實施例之方塊圖。 16 200915744 【主要元件符號說明】 40·· 補償單元 器 401 ....... 增益級 49·· 調整單元 402 增益級 5 0〜54 — 步驟 403 加總器 61、 62 ·· 混頻器 41、 42 ·· 數位至類比轉換 63 ' 64 · · 低通濾波器 器 65、 66 ·· 類比至數位轉換 43、 44 · 低通濾波器 器 45、 46 ·· 混頻器 67·· 補償單元 47·· 加總器 671 增益級 48·· 檢測單元 672 增益級 481 混頻器 673 加總器 482 可變增益放大器 68.· 檢測單元 483 類比至數位轉換 681 快速傅利葉轉換 器 器 484 快速傅利葉轉換 69·· 調整單元 17200915744 IX. Description of the Invention: [Technical Field] The present invention relates to a transmitter and a receiver and an adjustment method thereof, and more particularly to a transmitter and receiver for reducing local oscillation leakage and in-phase/quadrature phase mismatch Machine and its adjustment method. [Prior Art] Please refer to FIG. 1. FIG. 1 illustrates a conventional direct up-conversion transmitter including two-bit to analog converters 11, 12 and two low-pass filters 13. 14. Two mixers 15, 16, a summaster 17, a power amplifier 18, and an antenna 19. Wherein, the digital baseband signal BBIt is sequentially digital-to-analog converted, low-pass filtered, and mixed with an in-phase local oscillating signal L〇It to generate an analog in-phase RF signal RFIt, and another digit The baseband signal BBQt is sequentially digital-to-analog-converted, low-pass filtered, and mixed with a quadrature-phase local 彳sL0Qt to produce an analog quadrature-phase RF signal size. The two RF signals RFIt and RFQt will be summed and amplified to be transmitted to the outside world. The local oscillation signal L0It& 1^0 (the ideal phase difference of ^ is 9 ' degrees but there will actually be a phase offset et ' and the blocks on the in-phase path (including the digital to analog converter 11 and the low pass) The filter 13) and the blocks on the quadrature phase path (including the digital to analog converter 12 and the low pass filter 14) also have a gain offset (indicated by an amplitude offset in Figure 1). This phenomenon is called I/Q mismatch or I/Q imbalance. In addition, the two local oscillator signals L〇It 200915744 and LOQt may be separately The corresponding two mixers 15, 16 leak to the two RF signals RFIt, RFQt, and this phenomenon is called local oscillation leakage or local oscillation feedthrough. / Orthogonal phase mismatch and local oscillator leakage will reduce the signal-to-noise ratio of the signal transmitted by this transmitter, and may result in data loss. Please refer to Figure 2, which is one of the methods disclosed in U.S. Patent No. 6,970,689. Local oscillator leaking transmitter The transmitter comprises a mixer 21, a power amplifier 22, a signal strength measuring circuit 23 and a control signal generating circuit 24. The mixer 21 has a plurality of operating states, and the operating states respectively correspond to different operating states. The local oscillation leakage level. The signal strength measuring circuit 23 is for measuring the intensity of the local oscillation leakage component in the output signal of the power amplifier 22, and includes a rectifier (not shown) and a comparison (not shown). The control signal generating circuit 24 then outputs a control signal to change the operational state of the mixer 21. During the correction of the mixer 21, the power amplifier 22 will increase its gain, and the control signal generating circuit 24 will change the mixer 21. The operating state, and store the information of the operating state and the signal strength measuring circuit Μ the measured strength 'and repeat the above steps until all operating states of the mixer 21 have been used' and then set the mixer 21 to local The operating state with the least degree of vibration leakage. Or in the middle of the right mixer 21, the power amplifier 22 will increase during the period.増益' and the control signal produces a lightning reform 24 surname Wang Tu circuit 24 to continue to change the operating state of the mixer 21 until the signal strength measurement is thunder? The power measured by the circuit 23 is less than 200915744 a preset threshold value ' Then, the operating state of the mixer 21 is fixed. Please refer to FIG. 3, which is ISSCC 2006 / SESSION 20 / WLAN/WPAN / 20.4 "A Highly Linear Direct-Conversion Transmit Mixer Trans conductance Stage with Local Oscillation Feedthrough and I/Q The imbalance Cancellation Scheme discloses a transmitter for reducing local vibrating bubble leakage and in-phase/quadrature phase mismatch. The transmitter includes two digits to analog converters 301, 302, two low pass filters 303, 304, two mutual transconductance stages 305, 306, two mixers 307, 308, a totalizer 309, a power amplifier 310, An antenna 311, an envelope detector 312 and a variable gain amplifier 313. The two-digit baseband signals BBIt and BBQt are respectively converted into two analog RF signals RFIt, RFQt, which are summed and amplified to be transmitted to the outside world. The envelope detector 312 and the variable gain amplifier 313 sequentially detect and amplify the output signal of the power amplifier 3 10 to generate a fundamental frequency chop. When the two fundamental frequency signals BBIt and BBQt are sinusoidal signals and the frequency is Fbb, the spectral components of the fundamental frequency chopping appear at Fbb (due to local oscillation leakage) and 2xFBB (due to in-phase/quadrature phase mismatch). And its spectrum analysis can show the degree of local oscillation leakage and the degree of in-phase/quadrature phase mismatch. Local oscillation leakage can be divided into two types: fundamental frequency local oscillation leakage and RF local oscillation leakage. The fundamental frequency local oscillation leakage is caused by the component offset of the binary to analog converters 301, 302, the two low pass filters 303, 304 and the two transconductance stages 305, 306, and the RF local oscillation leakage 200915744 Direct coupling due to parasitic capacitance or mutual inductance. Among them, the two local oscillation leakages need to be reduced each. However, the isscc paper does not explain how to adjust the phase and amplitude of the two mutual transconductance stages 305, 306 and the two fundamental frequency #BBIt, BBQt to reduce the local excitation leakage and the in-phase/quadrature phase mismatch of the transmitter. There is no mention of how to reduce the local oscillation leakage of the receiver and the problem of in-phase/quadrature phase mismatch. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide an adjustment for reducing the local vibration bubble of a transmitter or receiver. The method and an adjustment method for reducing the in-phase/quadrature phase mismatch of the transmitter or receiver. Therefore, the method for adjusting the local oscillation leakage of the transmitter or the receiver includes the following steps: detecting the degree of local oscillation leakage; determining whether a first adjustment direction is correct, and if yes, maintaining the first adjustment direction, otherwise And reversing the first adjustment direction; and adjusting a first control signal according to the first adjustment direction. The invention reduces the in-phase/quadrature phase mismatch adjustment method of the transmitter or the receiver, and includes the following steps: detecting the degree of in-phase/quadrature phase mismatch; determining whether the first adjustment direction is correct, and if so, maintaining the The first direction is 'n%, the first adjustment direction is reversed; and the first adjustment direction is adjusted by the first adjustment direction. Another object of the present invention is to provide a transmitter and a receiver for the 200915744, which can reduce local oscillation leakage. Thus, the transmitter of the present invention comprises: - a first mixer - mixing a baseband signal with a local oscillating signal to generate a radio frequency signal; and a detecting unit for generating a degree of local oscillation leakage according to the radio frequency signal a detection signal; and an adjustment unit, outputting a control signal to change an operation state of the first mixer, and determining, according to the detection signal, whether an adjustment direction of the control signal makes a local leakage degree smaller, if local (4) If the degree of leakage becomes small, the adjustment direction is maintained. Otherwise, the adjustment direction is reversed, and the control signal is adjusted according to the adjustment direction. The receiver of the present invention comprises: a mixer that mixes a radio frequency signal with a local oscillating signal to generate a baseband signal; and the detecting unit generates a detection signal that reflects the degree of local oscillation leakage according to the baseband signal; ^Adjusting the single 兀, outputting a control signal to change the operational sorrow of the mixer' and determining an adjustment direction of the control signal according to the detection signal is to make the local oscillation leakage become smaller, if the local oscillation leakage becomes smaller ^ Then, the adjustment mode is maintained. Otherwise, the adjustment direction is reversed, and the control signal is adjusted according to the '^ adjustment direction'. And the present day &month; £ is for the purpose of providing a transmitter and a receiver' to: reduce the in-phase/quadrature phase mismatch. Thus, the transmitter of the present invention comprises: 200915744 - compensation unit, phase-and-amplitude compensation for -first base_number and n-line to generate two output signals, earth, D~two digits to analog converter, respectively for the compensation The two output signals of the unit are digital-to-analog conversion; the second low-pass filter respectively performs low-waves on the two-digit signals; the two mixers respectively output the output signals of the two low-pass ferrites with an in-phase local oscillation signal And a quadrature phase local RF signal; (4) 遽 mixing to generate a second first adder, summing the two radio signals; a detecting unit 'according to the first twisting gate 4, adding The turn-off signal produces a detection signal that reflects the degree of in-phase/quadrature phase mismatch; - a modulation unit that outputs at least one control signal to change the operational sorrow of the compensation unit, and judges μ according to the detection signal. Now, if the positive direction of the control signal is such that the in-phase/orthogonal phase mismatch becomes smaller, if the degree of in-phase/orthogonal phase mismatch becomes smaller, the adjustment direction is maintained. Otherwise, at least The one of the gates of the special adjustment direction is reversed, and one of the gates is reversed, and the control signals are adjusted according to the adjustment directions. The receiver of the present invention comprises: 'a mixer, wherein one of the techniques At lt3-.., - the RF number and the in-phase local oscillation number are mixed to generate a fundamental frequency.唬' and the other one mixes the RF signal with the --father-local recording signal to generate another-baseband signal; the second low-pass chopper, slash _. The round-off signal of Xuanyi Mixing is low-pass filtered; - 10 200915744 A class-to-digital converter that performs analog-to-digital conversion on the round-out signal of the two low-pass filters respectively to generate a first fundamental frequency signal And a second fundamental frequency signal; a complementary unit, phase and amplitude compensation of the first fundamental frequency signal and the second fundamental frequency signal to generate two output signals; a detecting soap element, according to the compensation unit a second output signal, generating a detection signal that reflects the degree of mismatch between the in-phase/quadrature phase; and the fading unit, outputting at least one control signal to change an operation state of the compensation unit, and determining each control signal according to the detection signal – whether the adjustment direction makes the degree of mismatch between the in-phase/orthogonal phases become smaller. If the degree of mismatch between the in-phase/orthogonal phases becomes smaller, the adjustment direction is maintained. Otherwise, at least one of the adjustment directions is reversed. And adjust the control signals according to the adjustment direction. [Embodiment] The foregoing and other technical contents, features, and advantages of the present invention will be apparent from the detailed description of the preferred embodiments of the present invention. Referring to Figure 4', there is shown a preferred embodiment of the transmitter of the present invention. The package 3 „„compensation unit 4〇, the second digit to analog converter 41, 42 , the second low pass filter, the wave fast 43 , 44 , The second mixer 45, %, "total_4" and - adjustment unit 49. The compensation unit performs phase and amplitude compensation on the fundamental frequency of the two digits = BBIt, BBQt, and has a plurality of operational states ~', and the different operational states correspond to different degrees of in-phase/quadrature phase mismatch. In the present embodiment, the compensation unit 4Q includes two gain stages, 200915744 =: the gain stage 401 multiplies the fundamental frequency signal by - and can be an output signal of the compensation unit 4°. The gain stage multiplies Tiger Qing by the -variable factor Yt, and the adder adds the baseband signal BBQt and the gain of the gain stage 4〇2 to 4唬 to be the other of the compensation unit 4〇 output signal. The two-bit to analog converters 41 and 42 respectively perform digital-to-analog conversion on the output signals of the gain stage 4〇1 and the adder 403, and the two low-pass choppers 43 and 44 respectively pair the two-digit to analog converters. The output signal of 42 is low pass chopped. The mixer 45 mixes the output signal of the low pass filter 43 with the in-phase local oscillating signal to generate an in-phase RF signal RFIt' and the mixer 46 localizes the output signal of the low pass filter 44 to the quadrature phase. The vibrating signal L〇Qt is mixed to generate a quadrature phase radio frequency RFQt. Each of the mixers 45, 46 has a plurality of operational states, and the different operational states correspond to different degrees of local oscillation leakage. The adder 47 sums the rounding signals of the two mixers 45, 46, and the detecting unit 48 generates a detection signal of the local vibration leakage level at the fundamental frequency according to the output signal of the adder 47 and another A detection signal that reflects the degree of mismatch between the in-phase/orthogonal phases. In the present embodiment, the detecting unit 48 includes a mixer 48'', a variable gain amplifier 482, an analog-to-digital converter 483, and a fast Fourier transformer 484 for sequentially outputting the output signal of the adder 47. Perform self-mixing, amplification, analog to digital conversion, and fast Fourier transform to generate the detection signal. When the two fundamental frequency signals BBlt, BBQt are sine wave signals and their frequency is FBB, the output signal of the mixer 481 will be at ρΒΒ (due to local oscillation leakage) and at 2xFBB (due to in-phase/quadrature phase mismatch) It has a spectral component' and its spectral analysis can show the degree of local oscillation leakage and the degree of in-phase/quadrature phase mismatch. In another embodiment, the mixer 481 can also be replaced with an envelope detector, and in other embodiments, the variable gain amplifier 482 can be omitted when not needed. The adjusting unit 49 outputs four control signals I(n), Q(n), χ(η), γ(η) to change the operating states of the two mixers 45, 46 and the two variable factors Xt, Yt, respectively, to reduce Local oscillation leakage and the degree of in-phase/quadrature phase mismatch. Referring to FIG. 5', the method for adjusting each control signal I(n), Q(n), χ(η), γ(8) is included in the embodiment, and includes the following steps: Step 50, the detecting unit 48 A detection signal that reflects the degree of local oscillation leakage or a detection signal that reflects the degree of in-phase/orthogonal phase mismatch. In step 51, the adjusting unit 49 determines whether the adjustment direction of the control signal is correct according to the detection signal obtained by the previous adjustment direction. If yes, the process goes to step 53, otherwise, the process goes to step 52. In the present embodiment, the control signals I(n), Q(n) for the two mixers 45, 46 are based on the detected degree of local oscillation leakage 'if it is smaller, indicating that the adjustment direction is correct, and for the compensation unit. The control signals x(n) and Y(n) of 40 are based on the detected in-phase/quadrature phase mismatch, and if they become smaller, the adjustment direction is correct. In step 52, the adjusting unit 49 reverses the adjustment direction. In step 53, the adjusting unit 49 adjusts the control signal according to the adjustment direction. In the present embodiment, the control signals Ι(η), Q(n) for the two mixers 45, 46 and the control signals Χ(η), Υ(η) of the compensation unit 40, wherein each control signal is adjusted The amount is proportional to the adjustment direction of the control signal and the adjustment step of the control signal. In addition to the above steps, the adjustment method for changing each control signal 1 (Fantasy 13 200915744, Q(n), X(n), Υ(η) in this embodiment may further include the following steps: Step 54, the adjustment The unit 49 determines whether an end condition is satisfied, and if so, fixes the control signal and ends the adjustment; otherwise, it jumps to step 5 to repeat steps 50 to 53. In an embodiment, whether the end condition is satisfied may be according to the execution step. The number of times 50 to 53 is determined, that is, when the repeating steps 50 to 53 reach a preset number of times, the end condition is satisfied. However, in another embodiment, whether the end condition is satisfied or not may be based on the local oscillation wave. The degree of leakage and the degree of in-phase/orthogonal phase mismatch are determined, that is, when the local vibration leakage degree and the in-phase/orthogonal phase mismatch degree are respectively less than the corresponding preset degree, the end condition is satisfied. In the example, steps 50 to 53 may be performed to separately adjust the control signal η(η), the control signal Q(n), the control signal χ(η), and the control signal Υ(η), and finally step 54 is performed to determine whether to continue adjusting. Please refer to Figure 6 The preferred embodiment of the receiver of the present invention comprises two mixers 61, 62, two low pass filters 63, 64, two analog to digital converters 65, 66, a compensation unit 67, and a detection The unit 68 and an adjusting unit 69. The mixer 61 mixes an analog RF signal with an in-phase local oscillation signal L〇Ir to generate a baseband signal, and the mixer 62 combines the RF signal with a quadrature phase. The local vibration signal L〇Qr′′ and the Kun frequency are used to generate another fundamental frequency signal. Each mixer 6 has 62 operating states, and different operating states correspond to different degrees of local oscillator m low pass filtering. The outputs 63 and 64 respectively perform low (four) waves on the output signals of the two mixing frequencies H 61 and 62. The two analog-to-digital converters 65 and 66 respectively generate a similar signal, and the output signals of the low-pass filtered states 63 and 64 are 14 200915744 Conversion. The compensation unit 67 performs phase and amplitude compensation on the two analog-to-digital converter 'round-off signal, and has multiple operations '..., medium' different operational states corresponding to different degrees of in-phase/quadrature phase mismatch. In this embodiment, the compensation unit 67 includes two gain stages 67. 1. Force ~, 673. Gain stage 671 multiplies the analog-to-digital conversion of the input (four) by the -variable factor & the gain stage 672 multiplies the output signal analogous to the digital converter 66 by the -variable factor', The adder 673 sums the output signals of the '曰' blood, and the 671 and 672 to output a fundamental frequency signal BBIr. The compensation unit 67 outputs the analog output to the output signal of the digital converter 66. - a baseband signal BBQr. The detection unit it 68 generates a detection signal reflecting the degree of no leakage of the local Zhenbao and another detection signal reflecting the degree of mismatch of the in-phase/orthogonal phase according to the two fundamental frequency signals BBIr, BBQr. In an embodiment, the measuring unit 68 may include a fast Fourier converter 68, and the fast Fourier converter may treat the two fundamental frequency signals BBIr and BBQ as a complex signal BBIr+jxBBQr for fast Fourier transform to generate a detection signal. . The rational RF k number is when there is no local vibration and no leakage and in-phase/orthogonal phase mismatch. For example: when the RF signal is generated by the adjusted transmitter, and the two fundamental signals BBIt and BBQ are strings When the wave signal and the frequency is fbb, the two fundamental frequency signals BBIr and BBQr have spectral components at Dc (due to local oscillation leakage) and at ·Fbb (due to in-phase/quadrature phase mismatch) and their spectrum analysis can Shows the degree of local oscillation leakage and the degree of mismatch in the in-phase 7 orthogonal phase. The adjusting unit 69 can output four control signals I(n), Q(8), X(n), Y(n) to change the operating states of the two mixers 61, 62 and the two variable factors Xr, Yr, respectively, to reduce local oscillation. Leakage and in-phase/positive 15 200915744 The degree of parental mismatch. The action of adjusting early element 69 is similar to the action of adjustment unit 49 of the transmitter and will not be described again here. It should be noted that in the transmitter and receiver embodiments, the adjusting units 49, 69 can respectively receive the detection signals at the fundamental frequency to reflect the degree of local oscillation leakage and the degree of in-phase/quadrature phase mismatch, and are digital. The way to achieve this will therefore have the advantage of being easy to implement. The above is only the preferred embodiment of the present invention, and the scope of the invention is not limited thereto, that is, the simple equivalent changes and modifications made by the scope of the invention and the description of the invention are All remain within the scope of the invention patent. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of a conventional transmitter; FIG. 2 is a block diagram of another conventional transmitter; FIG. 3 is a block diagram of still another conventional transmitter; Figure 4 is a block diagram of a preferred embodiment of the adjustment method of the present invention; and 16 is a block diagram of a preferred embodiment of the receiver of the present invention. 16 200915744 [Description of main component symbols] 40·· Compensation unit 401 ....... Gain stage 49·· Adjustment unit 402 Gain stage 5 0~54 — Step 403 Adder 61, 62 ·· Mixer 41, 42 ·· Digital to analog conversion 63 ' 64 · · Low-pass filter 65, 66 ·· Analog to digital conversion 43, 44 · Low-pass filter 45, 46 ·· Mixer 67·· Compensation unit 47·· Adder 671 Gain stage 48·· Detection unit 672 Gain stage 481 Mixer 673 Adder 482 Variable gain amplifier 68.· Detection unit 483 Analog to digital conversion 681 Fast Fourier converter 484 Fast Fourier transform 69·· Adjustment unit 17

Claims (1)

200915744 、申請專利範圍: 洩漏的調整方法, 一種降低發射機或接收機的本地振盪 包含以下步驟: 檢測本地振盪洩漏的程度; 判斷一第一調整方向 第一吶敕古—X 確如果是,則維持該 調正方向,否則,使該第一調整方向反向’ ·及 :據該第一調整方向調整一第一控制信號。 .依據申請專利範圍第!項所述之 第_ 士固敕士 θ &其令判斷該 — 方向疋否正確是根據本地_漏的程… 疋,如果本地振盪茂漏的程度變小 -。 方向正確。 j表不忒弟一調整 3.::康申請專利範圍第〗項所述之調整方法 -押制制信號的調整方向及該第 &制h旎的調整級距成正比。 弟 4·,據中請專利範圍第i項所述之調整方法, 5 足-結束條件時,重覆所有步驟。 …不滿 依據申請專利範圍第4項所述之調整方法’ 條件是會It郎· 士血 ’、中6亥結束 6 覆斤有步驟的次數達到一預設次數。 “康申請專利範圍帛4項所述之調整方 ^是本地振㈣漏的程度小於一預二’其中該結束 又據申睛專利範圍第! 步驟: 正万去,更包含以下 檢測同相/正交相不匹配的程度; 判斷一第 調整方向是否正確’如果是,則維持該 18 200915744 第二調整方向,否則,使該第二調整方向反向;及 根據該第二調整方向調整一第二控制信號。 8·:據申請專利範圍第7項所述之調整方法,其中判斷該 整方向是否正確是根據同相/正交相不匹配的程度 =決疋’如果同相/正交相不匹配的程度變小,則表示該 第二調整方向正確。 9·依據申請專利範圍第7項所述之調整方法,其中該第二 控制信號的調整量與該第二控制信號的調整方向及該第 二控制信號的調整級距成正比。 10 ·依據申請專利蘇囹笛7 ^ 靶圍弟7項所述之調整方法,其中當不滿 足、、’η束條件時,重覆所有步驟。 11. 依據申請專利範圍第10項所述之調整方法,纟中該結束 條件是重覆所有步驟的次數達到—第二預設次數。 12. 依據申叫專利圍第i〇項所述之調整方法,其中該結束 條件疋同相/正交相不匹配程度小於一第二預設程度。 13. 種降低發射機或接收機的同相/正交相不匹配的調整方 法’包含以下步驟: 檢測同相/正交相不匹配的程度; 判斷一第一調整方向是否正確,如果是,則維持該 第一調整方向’否則,使該第-調整方向反向;及 根據該第—調整方向調整一第一控制信號。 14.依據申請專利範圍第13項所述之調整方法,其中判斷該 第"周'方向疋否正確是根據同相/正交相不匹配的裎度 而决定,如果同相/正交相不匹配的程度變小,則表示該 19 200915744 第一調整方向正確。 15. 依據申請專利範圍第13項所述之調整方法,其中該第一 控制信號的調整量與該第一控制信號的調整方向及該第 一控制信號的調整級距成正比。 16. 依據申請專利範圍第13項所述之調整方法,其中當不滿 足一結束條件時,重覆所有步驟。 17. 依據申凊專利範圍第16項所述之調整方法,其中該結束 條件是重覆所有步驟的次數達到一預設次數。 1 8.依據申請專利範圍第〗6項所述之調整方法,其中該結束 條件是同相/正交相不匹配程度小於一預設程度。 1 9. 一種發射機,包含: 一第一混頻器,將一基頻信號與一本地振盪信號混 頻,以產生一射頻信號; 一檢測單元,根據該射頻信號產生反應本地振盪洩 漏程度的一檢測信號;及 -調整單元,輸出-控制信號來改變該第一混頻器 的操作狀態,1根據該檢測信號判冑該控制信號的一調 整方向是否使本地振盪洩漏的程度變小; 如果本地振盪洩漏的程度變小 敕古a 則維持該調 ’ Μ ’使該調整方向反向,並根據該調整方向 调整该控制信號。 2〇.依據申請專利範圍第19項所述之發 ::具有多個操作狀態,其中該等操作狀態對= 盪茂漏的不同_。 丁愿本地相 20 200915744 21·依據t 4專利範圍第19項所述之發射機,其巾該檢 號位於基頻。 15 22.依據巾4專利範圍第19項所述之發射機,其中該控制 號的調整量與該控制信號的調整方向及該控制信 整級距成正比。 的調 23.依據申請專利範 元更在不滿足一 整該控制信號。 圍第19項所述之發射機,其中該調整單 結束條件時,重覆判斷該調整方向並調 24·依财請專㈣圍第23項所述之發射機,其中該結束條 件是判斷該調整以並職職制信號所執行次數達 一預設次數。 25·依據申請專利範圍第9q 月乾阗弟23項所述之發射機,其中該結束條 件是本地振盪洩漏的程度小於一預設程度。 、 26. 依據申請專利範圍箆T Q 貢所述之發射機,其中該檢測單 兀包括一第二混頻器、-類比至數位轉換器及-快速傅 利葉轉換器,使該射頻信號進行自身混頻、類比至數位 轉換及快速傅利葉轉換,以產生該檢測信號。 27. 依據巾請專利第26項所述之發射機,其中該檢测單 元更i括Hi曰赶放大器,該可變增益放大器用於適 度放大信號。 8.依據中1專利範圍第i 9項所述之發射機,其中該檢測單 元匕括包跡m、一類比至數位轉換器及一快速傅 利葉轉換H,使4射頻信號進行包跡檢測、類比至數位 轉換及快速傅利葉轉換,以產生該檢測信號。 21 200915744 29. 依據申請專利範圍第28項所述之發射機,其中該檢測單 元更包括一可變增益放大器,該可變增益放大器用於適 度放大信號。 30. —種接收機,包含: 一混頻器,將一射頻信號與一本地振盪信號混頻, 以產生一基頻信號; 一檢測單元,根據該基頻信號產生反應本地振盪洩 漏程度的一檢測信號;及 一調整單元’輸出一控制信號來改變該混頻器的操 作狀態,且根據該檢測信號判斷該控制信號的一調整方 向是否使本地振盪洩漏程度變小; 其中’如果本地振盪洩漏程度變小,則維持該調整 方向,否則,使該調整方向反向,並根據該調整方向, 調整該控制信號。 η·依據中ef專利範m第3G項所述之接收機其中該混頻器 /? \, :、有多個刼作狀態’其中該等操作狀態對應本地振盪洩 漏的不同程度。 3 〇項所述之接收機,其中該控制信 信號的調整方向及該控制信號的調 3 2.依據申請專利範圍第 號的調整量與該控制 整級距成正比。 3 3 ·依據申請專利範 元更在不滿足— 整該控制信號。 園第30項所述之接收機,其中該調整單 、、’。束條件時,重覆判斷該調整方向並調 項所述之接收機,其中該結束條 34·依據申請專利範圍第33 22 200915744 件是判斷該調整#向並調整該控制信號所執行次數達 一預設次數。 1 35. 依據巾請專利範圍第33項所述之接收機,其^结束條 件疋本地振盪洩漏的程度小於一預設程度。 ' 36. 依據申請專利範圍第3G項所述之接收機,更包含一低通 濾波器及一類比至數位轉換器,使該基頻信號進行低通 濾波及類比至數位轉換,以作為該檢測單元產生該檢測 信號的依據。 < 37. 依據申請專㈣圍第36項所述之接收機,其巾該檢測單 元包括一快速傅利葉㈣器,該快速傅利葉轉換器對該 類比至數位轉換器的輸出信號進行快速傅利葉轉換,以 產生該檢測信號。 38. —種發射機,包含: -補償單元,對—第一基頻信號及—第二基頻信號 進行相位及振幅補償,以產生二輸出信號; 二數位至類比轉換器,分別對該補償單元的二輸出 k 5虎進行數位至類比轉換; 二低通濾纟器,&別對該三數位至類比轉換器的輸 出信號進行低通濾、波; 二混頻器,將該二低通濾波器的輸出信號分別與一 同相本地振盪信號及一正交相本地振盪信號混頻,以產 生二射頻信號; 弟一加總器’對§亥二射頻信號進行加總; 一檢測單元,根據該第一加總器的輸出信號產生反 23 200915744 應同相/正交相不匹配程度的一檢測信號;及 一調整單元,輸出至少一控制信號來改變該補償單 兀的操作狀態,且根據該檢測信號判斷每一控制信號的 每凋整方向是否使同相/正交相不匹配的程度變小; 其中,如果同相 該調整方向,否則, 方向調整該控制信號 39. 依據申請專利範圍第 元具有多個操作狀態 相不匹配的不同程度 40. 依據申請專利範圍第 號位於基頻。 /正交相不匹配的程度變小,則維持 使該調整方向反向’並根據該調整 〇 38項所述之發射機,其中該補償單 ,其中該等操作狀態對應同相/正交 〇 38項所述之發射機,其中該檢測信 41.:據中請專利範圍第38項所述之發射機其中該 42^調整量與所對應之調整方向及調整級距成正比。 •元^㈣利範圍第38項所述之發射機,其中該調整單 在不滿足一結束條件時,重 整該控制信號。 ⑽调整方向並調 42項所述之發射機 並調整該控制信號 ’其中该結束條 所執行次數達到 43·依據申請專利範圍第 件是判斷該調整方向 —預設次數。 κ ”丨处 < 赞射機,其 =相/正交相不匹配程度小於-預設程度 .依據申請專利範圍第 45仗姑士 〇你反〜、狖—預設程度。 •依據申請專利範圍第@ J礼囷弟8項所述之發 元包括: ,其中該補償單 24 200915744 一第一增益級’用以將該第一基頻信號乘以一第一 可變因數,以產生該補償單元之一第一輸出信號; 一第二增益級,用以將該第一基頻信號乘以一第二 可變因數;及 一第二加總器’用以將該第二基頻信號與該第二增 盈級的輸出信號加總,以產生該補償單元之一第二輸出 信號; 其令,該調整單元輸出二控制信號來分別改變該第 一可變因數及該第二可變因數。 46. —種接收機,包含: 二混頻器,其中一者將一射頻信號與一同相本地振 盪信號混頻,以產生一基頻信號,而其中另一者將該射 頻信號與一正交相本地振盪信號混頻,以產生另一基頻 信號; ' 二低通濾;皮器’分別對該二混頻器的輸出信號進行 低通濾波; 二類比至數位轉換器,分別對該二低通濾波器的輸 出信號進行類比至數位轉換,以產生一第一基頻信號及 一第二基頻信號; ~ 一補償單元,對該第一基頻信號及該第二基頻信號 進行相位及振幅補償,以產生二輪出信號; -檢測單元,根據該補償單元的二輸出信號,產生 反應同相/正父相不匹配程度的—檢測信號;及 -調整單it,輸出至少-控制信號來改變該補償單 25 200915744 疋的操作狀態,且根據該檢測信號判斷每一控制信號的 每—調整方向是否使同相/正交相不匹配的程度變小; 其中’如果同相/正交相不匹配的程度變小,則維持 3亥调整方向,否則’使該調整方向反向’並根據該調整 方向調整該控制信號。 47·依據申請專利範圍第46項所述之接收機,其中該補償單 兀具有多個操作狀態,其中該等操作狀態對應同相/正交 相不匹配的不同程度。 48·依據申請專利範圍第46項所述之接收機,其中該控制信 號的調整量與所對應之調整方向及調整級距成正比。 49. 依據申請專利範圍第46項所述之接收機,其中該調整單 兀更在不滿足一結束條件時,重覆判斷該調整方向並調 整該控制信號。 W 50. 依據申請專利範圍第的項所述之接收機,其中該結束條 件是判斷該調整方向並調整該控制信號所執行次數達 一預設次數。 51·依據申請專利範圍第49項所述之接收機其中該結束條 件是同相/正交相不匹配程度小於一預設程度。 ” 52.依據巾請專利範圍第46項所述之接收機,其中該補償單 元將該第二基頻信號當作其一第一輸出信號,且包括:半 一第一增益級,用以將該第一基頻信號乘以—第一 可變因數; ~~ 一第二增益級 可變因數;及 用以將該第二基頻信號乘以—第 26 200915744 一加總器,用以將該第一及第二增益級的輸出信號 加總,以產生該補償單元之一第二輸出信號; 其中,該調整單元輸出二控制信號來分別改變該第 一可變因數及該第二可變因數。 27200915744, patent application scope: leakage adjustment method, a method of reducing the local oscillation of the transmitter or receiver includes the following steps: detecting the degree of local oscillation leakage; judging a first adjustment direction first - X if true, then Maintaining the adjustment direction, otherwise, the first adjustment direction is reversed and the first control signal is adjusted according to the first adjustment direction. According to the scope of the patent application! The _ 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士 士The direction is correct. j is not adjusted by the younger brother. 3.:: The adjustment method described in the application scope of the patent application section - The adjustment direction of the tampering signal is proportional to the adjustment step of the metric system. Brother 4, according to the adjustment method described in item i of the patent scope, repeat all steps when the 5 foot-end condition. ... Dissatisfaction According to the adjustment method described in item 4 of the scope of application for patents, the condition is that It Lang Shishi blood, the end of the 6th Hai 6th step, the number of steps has reached a preset number of times. "The scope of the application for the scope of patent application 帛4 is the local vibration (four) leakage is less than a pre-two', and the end is according to the scope of the patent patent! Step: Zheng Wan go, including the following detection in phase / positive Degree of mismatch; determine whether the first adjustment direction is correct 'If yes, then maintain the 18 200915744 second adjustment direction, otherwise, reverse the second adjustment direction; and adjust a second according to the second adjustment direction Control signal. 8. The adjustment method according to item 7 of the patent application scope, wherein judging whether the whole direction is correct is based on the degree of in-phase/orthogonal phase mismatch=decision 'if the in-phase/orthogonal phase does not match If the degree is small, the second adjustment direction is correct. 9. The adjustment method according to claim 7 , wherein the adjustment amount of the second control signal and the adjustment direction of the second control signal and the second The adjustment step of the control signal is directly proportional. 10 · According to the adjustment method described in the 7th application of the patent Susie 4 ^ target siblings, when the condition of the 'η beam is not satisfied, repeat the Step 11. According to the adjustment method described in claim 10 of the patent application, the end condition is that the number of times of repeating all steps reaches - the second preset number. 12. According to the claim patent claim The adjustment method, wherein the end condition 疋 in-phase/quadrature phase mismatch is less than a second preset degree. 13. The method for reducing the in-phase/quadrature phase mismatch of the transmitter or receiver' includes the following steps: Detecting the degree of inconsistency/orthogonal phase mismatch; determining whether a first adjustment direction is correct, and if so, maintaining the first adjustment direction 'otherwise, causing the first adjustment direction to be reversed; and adjusting according to the first adjustment direction a first control signal. 14. The adjustment method according to claim 13 of the patent application, wherein determining whether the "circumference" direction is correct or not is determined according to the in-phase/orthogonal phase mismatch, if the phase is in phase / The degree of quadrature phase mismatch becomes smaller, indicating that the first adjustment direction of the 19 200915744 is correct. 15. The adjustment method according to claim 13 of the patent application scope, wherein the first control letter The adjustment amount is proportional to the adjustment direction of the first control signal and the adjustment step of the first control signal. 16. The adjustment method according to claim 13, wherein when an end condition is not satisfied, 17. The method of adjusting according to claim 16, wherein the end condition is that the number of times of repeating all steps reaches a predetermined number of times. 1 8. According to the scope of claim 6 The adjustment method, wherein the end condition is that the in-phase/quadrature phase mismatch is less than a preset degree. 1 9. A transmitter comprising: a first mixer that mixes a baseband signal with a local oscillator signal Frequency, to generate a radio frequency signal; a detecting unit, generating a detection signal according to the radio frequency signal to reflect the degree of local oscillation leakage; and - adjusting unit, output-control signal to change the operating state of the first mixer, 1 according to The detection signal determines whether an adjustment direction of the control signal makes the degree of local oscillation leakage small; if the degree of local oscillation leakage becomes small, the maintenance is maintained. Tone 'Μ' such that the adjustment direction is reversed, and adjusting the control signal according to the adjustment direction. 2. According to the scope of claim 19, the invention has a plurality of operational states, wherein the operational states are different from each other. Ding local phase 20 200915744 21· The transmitter according to item 19 of the t 4 patent range, the towel is located at the fundamental frequency. The transmitter of claim 19, wherein the adjustment amount of the control number is proportional to the adjustment direction of the control signal and the control signal step. The adjustment 23. According to the patent application model, the control signal is not satisfied. The transmitter according to Item 19, wherein when the adjustment order is over, the direction of the adjustment is repeatedly determined and adjusted according to the fourth paragraph of the fourth (4), wherein the termination condition is to determine the Adjust the number of executions of the combined professional system signal for a preset number of times. 25. The transmitter according to the 23rd of the patent application scope of the 9th month of the patent application, wherein the end condition is that the degree of local oscillation leakage is less than a predetermined level. 26. The transmitter according to the scope of the patent application 箆TQ, wherein the detection unit includes a second mixer, an analog to digital converter, and a fast Fourier converter, such that the RF signal is self-mixed Analog to digital conversion and fast Fourier transform to generate the detection signal. 27. The transmitter of claim 26, wherein the detection unit further comprises a Hi rush amplifier for moderately amplifying the signal. 8. The transmitter according to item i9 of the patent scope of the first aspect, wherein the detecting unit comprises an envelope m, an analog-to-digital converter and a fast Fourier transform H, so that the 4 radio frequency signals are subjected to envelope detection and analogy. To digital conversion and fast Fourier transform to generate the detection signal. The transmitter of claim 28, wherein the detection unit further comprises a variable gain amplifier for moderately amplifying the signal. 30. A receiver comprising: a mixer for mixing a radio frequency signal with a local oscillating signal to generate a baseband signal; and a detecting unit for generating a degree of response local oscillation leakage according to the baseband signal a detection signal; and an adjustment unit 'outputting a control signal to change an operation state of the mixer, and determining, according to the detection signal, whether an adjustment direction of the control signal causes a local oscillation leakage to be small; wherein 'if the local oscillation leaks If the degree is small, the adjustment direction is maintained. Otherwise, the adjustment direction is reversed, and the control signal is adjusted according to the adjustment direction. η· According to the receiver described in the third GF patent class 3G, wherein the mixer /? \, : has a plurality of operating states, wherein the operating states correspond to different degrees of local oscillation leakage. The receiver of claim 3, wherein the direction of adjustment of the control signal and the adjustment of the control signal are 2. The adjustment amount according to the patent application scope is proportional to the control pitch. 3 3 · According to the patent application model, it is not satisfied - the control signal is completed. The receiver described in item 30 of the Park, wherein the adjustment sheet, ,'. In the beam condition, the adjustment direction is repeatedly determined and the receiver is adjusted, wherein the end bar 34· according to the patent application scope 33 22 200915744 is to determine the adjustment # to adjust and control the number of times the control signal is executed The preset number of times. 1 35. According to the receiver of the scope of the patent application, the degree of local oscillation leakage is less than a predetermined level. 36. The receiver according to claim 3G of the patent application scope further includes a low pass filter and an analog to digital converter, wherein the baseband signal is subjected to low pass filtering and analog to digital conversion as the detection. The unit generates the basis for the detection signal. < 37. The receiver according to claim 36, wherein the detecting unit comprises a fast Fourier (four) device, and the fast Fourier converter performs fast Fourier transform on the output signal of the analog to digital converter, To generate the detection signal. 38. A transmitter, comprising: - a compensation unit for phase-and amplitude-compensating the first fundamental frequency signal and the second fundamental frequency signal to generate two output signals; and a two-digit to analog converter for respectively compensating The unit's two outputs k 5 tiger perform digital to analog conversion; two low pass filters, & do not low pass filter, wave the output signal of the three digit to analog converter; two mixers, the two low The output signal of the pass filter is respectively mixed with an in-phase local oscillation signal and a quadrature phase local oscillation signal to generate two radio frequency signals; the brother-plus-collector 'to sum up the two radio frequency signals; a detection unit, Generating, according to an output signal of the first adder, a detection signal of a degree of mismatch between the phase 23 and the quadrature phase; and an adjusting unit that outputs at least one control signal to change an operation state of the compensation unit, and according to The detection signal determines whether the direction of each of the control signals causes the in-phase/quadrature phase mismatch to become smaller; wherein, if the phase is adjusted in the same phase, otherwise, the direction adjustment The different levels of control signal 39. A first patent application element has a plurality of operating range state of the phase mismatch 40. baseband located Patent Application No. based on the first range. /the extent of the quadrature phase mismatch becomes smaller, maintaining the transmitter that reverses the direction of adjustment 'and according to the adjustment, item 38, wherein the compensation sheet, wherein the operational states correspond to in-phase/orthogonal 〇 38 The transmitter of the item, wherein the detection signal is 41. The transmitter according to claim 38 of the patent scope, wherein the 42^ adjustment amount is proportional to the corresponding adjustment direction and the adjustment step. • The transmitter of claim 38, wherein the adjustment sheet re-reforms the control signal when an end condition is not met. (10) Adjust the direction and adjust the transmitter described in item 42 and adjust the control signal 'where the number of executions of the end bar reaches 43. According to the patent application, the adjustment direction is determined by the preset number of times. κ 丨 丨 赞 赞 赞 赞 赞 赞 赞 赞 赞 赞 赞 赞 赞 赞 赞 赞 赞 赞 赞 赞 赞 赞 赞 赞 赞 赞 赞 赞 赞 赞 赞 赞 赞 赞 赞 赞 赞 赞 赞 赞 赞 赞 赞 赞 赞 赞 赞The hair element described in the scope of the present invention includes: wherein the compensation unit 24 200915744 a first gain stage is used to multiply the first fundamental frequency signal by a first variable factor to generate the a first output signal of the compensation unit; a second gain stage for multiplying the first fundamental frequency signal by a second variable factor; and a second adder 'for the second fundamental frequency signal And summing the output signals of the second gain stage to generate a second output signal of the compensation unit; wherein the adjustment unit outputs two control signals to respectively change the first variable factor and the second variable 46. A receiver comprising: a second mixer, one of which mixes a radio frequency signal with an in-phase local oscillator signal to generate a baseband signal, and the other of the radio frequency signals Orthogonal phase local oscillating signal mixing to generate another The fundamental frequency signal; 'two low pass filtering; the skin device' respectively low-pass filtering the output signal of the two mixers; the second analog to digital converter, respectively analogizing the output signal of the two low-pass filters to digital Converting to generate a first fundamental frequency signal and a second fundamental frequency signal; a compensation unit for phase and amplitude compensation of the first fundamental frequency signal and the second fundamental frequency signal to generate a second round-out signal; The detecting unit generates a detection signal that reflects the degree of mismatch of the in-phase/father-family phase according to the two output signals of the compensation unit; and - adjusts the single it, and outputs at least the control signal to change the operation state of the compensation sheet 25 200915744 ,, And determining, according to the detection signal, whether each adjustment direction of each control signal makes the degree of in-phase/quadrature phase mismatching smaller; wherein 'if the degree of in-phase/quadrature phase mismatch becomes smaller, maintaining the 3-Hay adjustment direction , otherwise 'reverse the adjustment direction' and adjust the control signal according to the adjustment direction. 47. The receiver according to claim 46, wherein the compensation The 兀 has a plurality of operational states, wherein the operational states correspond to different degrees of in-phase/quadrature phase mismatch. 48. The receiver according to claim 46, wherein the adjustment amount of the control signal corresponds to The adjustment direction is proportional to the adjustment step. 49. The receiver according to claim 46, wherein the adjustment unit repeatedly determines the adjustment direction and adjusts the control signal when an end condition is not satisfied. The receiver according to the claim of claim 1, wherein the end condition is determining the adjustment direction and adjusting the number of times the control signal is executed for a preset number of times. 51. According to claim 49 In the receiver, the end condition is that the degree of in-phase/quadrature phase mismatch is less than a predetermined level. The receiver according to claim 46, wherein the compensation unit regards the second fundamental frequency signal as a first output signal thereof, and includes: a first-first gain stage for The first fundamental frequency signal is multiplied by - a first variable factor; ~~ a second gain stage variable factor; and is used to multiply the second fundamental frequency signal by - 26th 200915744 a sum totalizer for The output signals of the first and second gain stages are summed to generate a second output signal of the compensation unit; wherein the adjustment unit outputs two control signals to respectively change the first variable factor and the second variable Factor. 27
TW096135951A 2007-09-27 2007-09-27 Transmitter and receiver for reducing local oscillation leakage and I/Q mismatch and adjusting method thereof TW200915744A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
TW096135951A TW200915744A (en) 2007-09-27 2007-09-27 Transmitter and receiver for reducing local oscillation leakage and I/Q mismatch and adjusting method thereof
US12/237,827 US9490858B2 (en) 2007-09-27 2008-09-25 Transmitter capable of reducing local oscillation leakage and in-phase/quadrature-phase (I/Q) mismatch and adjusting methods thereof
US12/286,107 US8280327B2 (en) 2007-09-27 2008-09-25 Receiver capable of reducing local oscillation leakage and in-phase/quadrature-phase (I/Q) mismatch and an adjusting method thereof
US13/174,975 US8515379B2 (en) 2007-09-27 2011-07-01 Receiver capable of reducing local oscillation leakage and in-phase/quadrature-phase (I/Q) mismatch and an adjusting method thereof
US13/942,887 US8849228B2 (en) 2007-09-27 2013-07-16 Receiver capable of reducing local oscillation leakage and in-phase/quadrature-phase (I/Q) mismatch and an adjusting method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096135951A TW200915744A (en) 2007-09-27 2007-09-27 Transmitter and receiver for reducing local oscillation leakage and I/Q mismatch and adjusting method thereof

Publications (1)

Publication Number Publication Date
TW200915744A true TW200915744A (en) 2009-04-01

Family

ID=40508928

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096135951A TW200915744A (en) 2007-09-27 2007-09-27 Transmitter and receiver for reducing local oscillation leakage and I/Q mismatch and adjusting method thereof

Country Status (2)

Country Link
US (4) US9490858B2 (en)
TW (1) TW200915744A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI739663B (en) * 2020-11-16 2021-09-11 瑞昱半導體股份有限公司 Method for calibrating transmitter

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011131229A1 (en) 2010-04-20 2011-10-27 Nokia Siemens Networks Oy Method and device for data processing
WO2011135807A1 (en) * 2010-04-27 2011-11-03 日本電気株式会社 Wireless communication device, high-frequency circuit system, and local leak reduction method
US9065491B2 (en) * 2012-12-21 2015-06-23 Qualcomm Incorporated Adjusting phase imbalance between in-phase (I) and quadrature-phase (Q) signals
CN104660291B (en) * 2013-11-19 2017-04-12 瑞昱半导体股份有限公司 Device and method for receiving wireless signals
TWI536779B (en) 2014-05-29 2016-06-01 瑞昱半導體股份有限公司 Calibration method and calibration apparatus for calibrating mismatch between first signal path and second signal path of transmitter/receiver
TWI601397B (en) 2015-12-31 2017-10-01 瑞昱半導體股份有限公司 Transmitter with compensating mechanism of pulling effect
TWI660593B (en) * 2017-12-06 2019-05-21 瑞昱半導體股份有限公司 Signal transmitter device, detection circuit, and signal detection method thereof
TWI685669B (en) 2018-10-29 2020-02-21 立積電子股份有限公司 Radar apparatus and leakage correction method
TWI698106B (en) 2019-02-26 2020-07-01 瑞昱半導體股份有限公司 Receiver, transmitter and correction circuit thereof
TWI713313B (en) 2019-05-09 2020-12-11 瑞昱半導體股份有限公司 Signal transmitter device and calibration method
CN115801025B (en) * 2022-07-04 2023-07-11 上海星思半导体有限责任公司 Up-conversion mixing method and digital transmitter

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3139909B2 (en) * 1994-03-15 2001-03-05 株式会社東芝 Hierarchical orthogonal frequency multiplexing transmission system and transmitting / receiving apparatus
JP3556047B2 (en) * 1996-05-22 2004-08-18 三菱電機株式会社 Digital broadcast receiver
US6009317A (en) * 1997-01-17 1999-12-28 Ericsson Inc. Method and apparatus for compensating for imbalances between quadrature signals
US6968166B2 (en) * 2002-01-22 2005-11-22 George L. Yang Method and apparatus of a fast digital automatic gain control circuit
US6970689B2 (en) * 2002-02-15 2005-11-29 Broadcom Corporation Programmable mixer for reducing local oscillator feedthrough and radio applications thereof
US6999744B2 (en) * 2002-09-26 2006-02-14 Broadcom Corp Measurement of local oscillation leakage in a radio frequency integrated circuit
US7463864B2 (en) * 2004-04-09 2008-12-09 Broadcom Corporation Modified dual band direct conversion architecture that allows extensive digital calibration
US7570923B2 (en) * 2004-05-18 2009-08-04 Agere Systems Inc. I/Q compensation of frequency dependent response mismatch in a pair of analog low-pass filters
US20060182197A1 (en) * 2005-02-14 2006-08-17 Freescale Semiconductor, Inc. Blind RF carrier feedthrough suppression in a transmitter
US8078123B2 (en) * 2005-03-29 2011-12-13 Broadcom Corporation RF transmission error detection and correction module
KR100740221B1 (en) * 2005-06-29 2007-07-18 삼성전자주식회사 Liquid Crystal Display manufacturing method without aging process and white balance adjustment device
US7831220B2 (en) * 2005-07-26 2010-11-09 Broadcom Corporation Methods and systems for calibrating for gain and phase imbalance and local oscillator feed-through
KR100868463B1 (en) * 2005-08-30 2008-11-12 삼성전자주식회사 Compensation apparatus and method for i/q imbalance in tdd systems
KR100710088B1 (en) * 2006-02-23 2007-04-20 지씨티 세미컨덕터 인코포레이티드 Receiving circuit and method for compensating iq mismatch
US20080014873A1 (en) * 2006-07-12 2008-01-17 Krayer Yvonne L Methods and apparatus for adaptive local oscillator nulling
US7876867B2 (en) * 2006-08-08 2011-01-25 Qualcomm Incorporated Intermodulation distortion detection and mitigation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI739663B (en) * 2020-11-16 2021-09-11 瑞昱半導體股份有限公司 Method for calibrating transmitter

Also Published As

Publication number Publication date
US8849228B2 (en) 2014-09-30
US20110261911A1 (en) 2011-10-27
US20130303100A1 (en) 2013-11-14
US20090088094A1 (en) 2009-04-02
US8280327B2 (en) 2012-10-02
US9490858B2 (en) 2016-11-08
US20090088117A1 (en) 2009-04-02
US8515379B2 (en) 2013-08-20

Similar Documents

Publication Publication Date Title
TW200915744A (en) Transmitter and receiver for reducing local oscillation leakage and I/Q mismatch and adjusting method thereof
JP4593430B2 (en) Receiving machine
CN102257734B (en) Interference cancellation in an OFDM receiver
TWI336173B (en) Method and apparatus for compensating for analog radio transmitter impairments
TWI536779B (en) Calibration method and calibration apparatus for calibrating mismatch between first signal path and second signal path of transmitter/receiver
KR101770284B1 (en) Devices and methods for reducing signal distortion in i/q modulation transceivers
US8478222B2 (en) I/Q calibration for walking-IF architectures
TWI487296B (en) Fast lo leakage calibration of direct up-conversion transmitters using three measurements
JP4106370B2 (en) Quadrature modulation apparatus calibration method, quadrature modulation apparatus, and wireless terminal test apparatus
US20080090531A1 (en) Vector modulator calibration system
JP2008524900A (en) Calibration of analog I / Q modulator amplitude and phase imbalance and DC offset in high frequency transmitters
TW201002002A (en) Transmitter, receiver and adjusting method for reducing I/Q mismatch
US20120213266A1 (en) Methods and apparatuses of calibrating i/q mismatch in communication circuit
CN101420242A (en) Transmitter, receiver and regulating method thereof
KR20080037846A (en) Method and apparatus for compensating for mismatch occurred in radio frequency quadrature transceiver using direct-conversion scheme
JP2010504678A (en) Method and system for calibrating a transmitter analog I / Q modulator
WO2012136093A1 (en) Frequency mixing circuit and method for suppressing local oscillator leakage therein
WO2017210846A1 (en) Method for suppressing local oscillator leakage in microwave chip and device thereof
JP2005295376A (en) Error compensation circuit for orthogonal modulator
WO2011081582A1 (en) Method and apparatus relating to signal control
TW527787B (en) Method and apparatus for accurate measurement of communications signals
JP4063628B2 (en) Distortion compensation device
US7433657B2 (en) Apparatus and method for dynamically clocking a loop filter in a digital communications device
US10003415B1 (en) Method to remove measurement receiver counter intermodulation distortion for transmitter calibration
JP5696668B2 (en) Receiver and image rejection ratio measuring method