TW200913257A - Organic electroluminescence device and method for manufacturing the same - Google Patents

Organic electroluminescence device and method for manufacturing the same Download PDF

Info

Publication number
TW200913257A
TW200913257A TW097135196A TW97135196A TW200913257A TW 200913257 A TW200913257 A TW 200913257A TW 097135196 A TW097135196 A TW 097135196A TW 97135196 A TW97135196 A TW 97135196A TW 200913257 A TW200913257 A TW 200913257A
Authority
TW
Taiwan
Prior art keywords
layer
source
insulating film
organic
region
Prior art date
Application number
TW097135196A
Other languages
Chinese (zh)
Other versions
TWI455302B (en
Inventor
Yun-Sik Jeong
Joon-Young Heo
Original Assignee
Lg Display Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lg Display Co Ltd filed Critical Lg Display Co Ltd
Publication of TW200913257A publication Critical patent/TW200913257A/en
Application granted granted Critical
Publication of TWI455302B publication Critical patent/TWI455302B/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED

Abstract

An organic electroluminescence device and a method for manufacturing the same are disclosed. The organic electroluminescence device includes a transparent substrate, a semiconductor layer including a source region, a channel region and a drain region, a gate insulating film having first contact holes on the source and drain regions and formed on the substrate including the semiconductor layer, a gate electrode formed on the gate insulating film above the channel region, an interlayer insulating film having second contact holes on the source and drain regions and formed on an entire surface of the gate insulating film including the gate electrode, and a source electrode and a drain electrode formed on the interlayer insulating film to be electrically connected to the source and drain regions through the first and second contact holes, wherein at least one of the source electrode and the drain electrode is formed to cover the semiconductor layer.

Description

200913257 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種有機電激發光裝置及其製造方法,尤其係 關於種用作驅動開關之有機電激發光裝置之薄膜電晶體的電極 結構以及此有機電激發光裝置之製造方法。 【先前技術】 在夕媒體時代,需要將顯示裝置製做得更加精緻且尺寸更 ^並且其顯示色彩關接近於自然色彩。對於傳統的陰極射線 官CRT)來說,想提供40英寸或者更大的螢幕是難以實現的。 叫液晶顯示裝置(lcd)、電裝顯示面板 乂及杈衫電視等技術得以快速發展並被 晰度影像顯示領域。 。用月 光的2述置中,有機電激發光裝置是—種以如下方式發 中,成入到介於陰極與陽極之間的有機薄膜之 成子的電子與電洞將滅絕進而發光。 置可形成於如塑料之類w * , 顆電柄先裳 發光裝置她於電^ 上1且,有機電激 電歷下(W 讀械電激發钱置,能夠在低 具有相對低的功率業。此外’由於有機電激發光裝置 ,因此,有機 了#右_.,代顯4置被給予了極均注。另外,為 …激發光裝置能在低電壓下作業,而令有機薄膜具有非 200913257 常薄且均勻的厚度(大約100奈米至2〇〇奈米)以及保持裝置之 穩定性是尤為重要的。 有機電激發光裝置可分為:被動矩陣型有機電激發光裝置, 係於電訊號之_控制下作業;以及主動矩_有機電激發光裳 置’係依據子像素之驅動方法使用薄膜電晶體(TFT)進行作業。 下面將對習知的主動矩陣型有機電激發光裝置進行描述。 、在習知的絲矩_有機電激發光裝射,細電晶體係形 成於透明基板之上。這樣的話,此賊電晶體包含有:具有源極 區、汲極區及通道區之主動層,絕緣膜,閘極,層間絕緣膜 、及源極及極上述;祕區與汲極區係透過形成於層間絕緣膜 與閉極絕緣膜中的接觸孔分顺源極及汲極相接觸。 、 、卜H薄膜電晶體之基板上還形成有由有機材料構成 之平化膜另外平傾Λ還形成有陽極,伽以電性連接至没 極。此外’陽極上還形成有有機發光層,並且有機發光層上形成 有陰極。這樣,有機發井屛伤6人 尤層純含有.電洞傳輸層,紅綠藍發光 層以及電子傳輸層。 如此,電洞傳輪厚白人士 —、 曰3有電洞注入層與電洞轉移層。電子傳 輸層則包含有電子轉移層與電子注入層。 然而,上述習知的有機電激發光裝置存在以下問題: 勺動矩陣型有機電激發光裝置中,薄膜電晶體可在 200913257 陽極、發光層及陰極之沈積製程中被曝露於χ射線或類似的射線 中,因而會導致細電晶體之魏。此外,還存在—侧題,即, 會造成源極/汲極層之間的電接觸減少。 【發明内容】 口此為了彳之μ質上避免由以上習知技術之局限及缺點所導 致之個或多烟題,本㈣之目的在於提供—種減電激發光 裝置及其製造方法。 本發明之個目的在贿供—财機電絲絲置及其製造 方法此有機電激發輕置可轉護在陽極、發光層及陰極之沈 積衣私中被曝路於X射線或類似射線中的薄膜電晶體,並且可以 文良在主動矩陣型有機電激發光裝置中的源極與沒極之界面特 '本發明其他的優點、目的和特徵將在如下的說明書中部分地 加以闡述’亚且本發明其他的優點、目的和特徵對於本領域的普 通技術人貢來% ’可以透過本發明如下的制得以部分地理解或 、°、從本發日㈣錢巾得出。本發賴目的和其他優點可以透 過本發0骑記_說0轉射料魏圍以及關巾_指明的 結構得以實現和獲得。 為了獲得本發_這些目的和其他特徵,現依照本發明之目 的對本發明作具體化和概括性地描述 ’本發明之一種有機電激發 200913257 光裝置係包含:透明基板;半導體層,係包含源極區、通道區及 汲極區;閘極絕緣膜,係具有多個第一接觸孔,第一接觸孔位於 源極區與祕區之上並且形成於包含有轉體狀基板上;間 極,係形成於通道區上方的_絕_之上;層職緣膜,係具 有夕個第—接觸孔’第二接觸孔位於源極區與没極區之上並且形 成於包含有閘極之雜絕緣_整個表面之上;以及源極與沒 極,係形成於層間絕緣膜之上藉以透過第一接觸孔與第二接觸孔 電性連接至源極區與汲極區,其中源極與汲極中的至少—個係形 成為覆蓋上述半導體層。 ,依照本發日狀另-目的,本發明之—種有_激發光農置之 製造方法縣含··於基板上形成半導體層,此轉體層係包含源 極區· 、通道區及汲極區;於包含有半導體層之基板上形成間極絕 緣膜,於輕區上方的祕絕緣社上形成於包含有閑極 之閘極絕緣膜的整個表面之上形成層間絕緣膜;於_絕緣膜與 層間絕緣财形成夠第—接觸孔藉叫露出源極區與沒極區; 以及於層間絕緣膜之上形如原極與汲極,藉以透過第一接觸孔電 性連接至源麵與汲極區,其中源極與汲極中的至少—個係 為覆蓋上述半導體層。 …本發明之-種有機電激發光裝置及其製造方法具有以下之功 效: 即,在上述主動矩陣型有機電激發光裝置中,由於薄膜電晶 10 200913257 Ξ:::=:= 而且 、’由於源極與汲極_柄具有三層結構,因此能夠改 义源極與汲極之界面特性,進而增加電接觸。 可以理解的是,如上騎的本判之概括_和隨後所述的 本發明之詳細_均是具有代紐和解釋性魄明,並且是為了 進一步揭示本發明之申請專利範圍。 【實施方式】 以下,將結合®示部分對本發明之雛實施例作詳細說明。 其中在這些圖示部分中所制的相_參考標號代表拥或同類 部件。 下面’將結合附圖對本發明之一種有機電激發光裝置及其製 造方法進行詳細描述。 在這些附圖中,厚度的尺寸係被加以放大了,進而能狗清楚 地表示出若干個層及區域。但這些關巾所示的各個層的厚度比 例並非等於實際的厚度比例。同時,當一個部分,例如:一個層、 一個薄膜、一個區域及一塊板極形成或配置於其他部分〃之上夕 時’係可⑽解為這-部分可透過直接_而被直接形成於其他 部分之上,或者可以將另一個部分配置於這一部分與其他部分之 11 200913257 間。 、_」為本發明—實施例之麵電激發光裝置之橫剖面 圖與,2圖」為源極與没極之橫剖面圖。「第3圖」為本發明另 ‘ ’有機電激發光裝置之橫剖面圖。下面將結合「第1圖」 "目」對本發明貫關之有機電激發絲置加以描述。 如第1圖」至「第3圖」所示,於本發明實施例之主動矩 f車里有機電激發光裝置中,薄膜電晶體⑽係形成於透明基板漏 之上。 在此實例中’透明基板100可由玻璃、石英、藍寳石等製成。 此外,雖然附圖中未示出,但於透明基板100與薄膜電晶體110 之間可域有絕緣賊藉⑽止透明基板巾的各_質滲透到薄 膜電晶體之中。 以下將詳細說明薄膜電晶體⑽之構造。^具有源極區 : ⑴、沒極區112以及通道區113之半導體層係形成於透明基板觸 之上亚形成-個島峨形狀。閘極絕緣膜120係形成於包含上述具 有源極區m、錄區112以及通道區113之半導體層之基板的整 個表面之上。閘極114形成於通道區113上方的閘極絕緣膜⑽ 之上。層間絕緣膜130得形成於包含閘極114之基板的整個表面 之上。閘極絕緣膜120與層間絕緣膜130中形成有多個接觸孔藉 以曝露出源極區in與汲極區112。源極115與汲極116係形成^ 12 200913257 層間絕緣膜130之上藉以透過上述接觸孔分別電性連接至源極區 111與汲極區112。 在此實例中,閘極114、源極115以及沒極116中的至少一個 電極具有-個如「第2圖」所示的三層結構。也奴說,此三層 結構具有由表面活化劑層115a、導電層mb以及純化層收所 組成的堆疊結構。 在此實例中,表面活化劑層115a係由鈦(Ti)、鉬(M〇)等 形成且具有30奈米至100奈米之厚度。 導電層115b係由從鉻⑹、銅(Cu)、金(Au)、錄(Ni)、 銀(Ag)、鈕(Ta)、鋁(A1)、鋁鈥合金(A贿)所組成的組合 中選擇的材料形成。且導電層115b之厚度為奈米至鄕奈米。 、,純化層ll5c係由鈦(Ti)、鶴(w)等形成且其厚度為3〇奈 米至100奈米。並域化層收之χ射線透射率為議L%。 如此純化層115c便可防止電晶體受到在隨後的陽極、發光 層及陰極之形成過程中所產生的χ射線或類似射線的損壞。因 而,其最好能夠完全地阻擔x射線,但實際上,鈍化層115c係使 用上述之材幅彡成纽其厚度也在上述的尺寸範圍之内。 在此只例中,於確保導電率之情況下,導電層所形成的 厚度對於_與重量來說為絲至5⑻奈米。此外,表面活 化劑層115a與純化層115c均可防止導電層⑽被有機電激發光 13 200913257 裝置之沈補程帽產生的x雜魏__壞。而且’對於 源極之界轉合強度來說,麵活倾層收除了鈦 外 還可由鉬(Mo)形成。 Γ . —健賴具有的厚度為且其X魏透射率為 : 隨’並且另一俯目層所具有的厚度為彻奈米且其χ射線透 射率_娜。如絲砂化麟收細_5。係較厚地 f 戦’儘fX射叙祕效果得到,但由此產生的問題是裝 置之體積與重量也會變得更大。因此,表面活化劑層收與純化 層115c所形成的厚度應處於上述的尺寸範圍之内。 此外,如錯(Pb)這樣的材料,其雖然具有很高的χ射線之 屏蔽效果,但其界面黏合強度較低。因此,表面活化劑層115a係 由具有上述X麟賊絲_ (Mq)或_機軸。表面活 2劑層115a_4化層115e也可域他任何能射線並提 1 w界轉合強度之材料形成。*且,對於X絲屏蔽效果與體積 2說,表面活化劑層115a與鈍化層收最好是由上述厚度為3〇 奈米至100奈米之材料形成。此外,源極115或汲極116係具有 上述的X射線透射率為0.00W.0%之結構,因此能夠於提供χ射 線屏蔽效果並保護電晶體的同時減少重量及體積。如果純化層與 表面活化劑層中僅有一個層係較厚地形成,雖然仍可獲得滿意的 X射線屏蔽效果,但由此可能會在電晶體之界面黏合強度中產生 問題。 14 200913257 具有一個如上所述的三層結構的源極115與汲極ιΐ6中的至 少-個電極,係如「第丨圖」中所示,形成柄以覆蓋上述具有 源極區111、汲極區112以及通道區113的薄膜電晶體之半導體層。 此外,作為另—個實例,如「第3圖」中所示,具有一個上 述二層結構之閘極114、源極115及汲極116係形成為用來覆蓋上 述具有源極區m、汲極區112以及通道區113的薄膜電晶體之半 導體層。 此外,於包含薄膜電晶體110之基板的整個表面上還形成有 平化膜140 ’係用以使像素區平面化。在此實例中,平化膜140 可由有機絕緣㈣,如丙烯酸齡機化合物、魏亞胺、苯并環 丁烯或過氟打辟形成。而且’平化膜14G也可由無機絕緣材 料,如氮化矽形成。 另外,平化膜140中還形成有接觸孔用以曝露出汲極116的 ^疋部分。然後,於像素區中的平化膜14〇之上形成有陽極15〇 错以透過接觸孔雜連接至汲極116。在此實财,陽極15〇係 由透明導電薄膜’例如:氧化銦錫(ΠΌ)或氧化銦鋅(IZO)形 成藉以透射出光線。 介於像素區之間的平化膜140上還形成有像素隔離膜155。 匕像素卩m離膜I55可由無機絕緣材料,例如氮化碎(SiNx)或氧 化矽(Si〇2)形成。 15 200913257 於像素隔離膜ι55與陽極15G之上還依序形成有有機發光層 與陰極190。 有機發光層係透過依序堆疊電洞注入層16〇、電洞傳輸層 么光層170、電子傳輸層18〇及電子注入層而形成。另 外,有機電激發光裝置之陰極19〇係堆疊於有機發光層之上。 在此實例中,電子傳輸層180係配置於發光層170與陰極190 之間因此’注入到發光層17〇中的大部分電子從陰極⑽向陽 極150移動藉以與電洞再結合。而且,電洞傳輸層165係配置於 陽極15〇與發光層17G之間。因此’注人到發光層m中的電子 僅存在於發光層17G中而不會因為與電洞傳輸層165之界面而向 陽極150移動,由此提高了再結合之效率。 下面,將結合附圖對本發明之具有上述構造之有機電激發光 裝置之製造方法進行詳細描述。 「第4A圖」至「第4E圖」係表示了本發明一實施例之有機 電激發光裝置之製造方法。 如「弟4A圖」所示,首先製備由玻璃、石英、藍寶石等材 料形成的透明基板100。而後,透過低壓化學汽相沈積法、電漿 增強化學汽相沈積法等方法於透明基板1〇〇上形成厚度大約為 200〜800A的非晶矽膜。而且,此非晶矽膜係可藉由雷射退火法等 方法被結晶到一個多晶矽膜中。當然,此多晶矽膜也可以被直接 16 200913257 沈積以代替非晶石夕膜。 然後’多晶頻可透過光難織型樣加4以在單位像素 内形成薄膜電晶體之主騎113a。隨後,可於包含主動層咖 之基板的整個表面上沈積閘極絕緣膜120。 如「第4B圖」所示,閘極m係形成於主動層n3a上方的 閘極絕緣膜120之上。即,透舰鍍方法於難絕賴12〇上沈 積厚度大_ 15G()〜5_A _齡金。然後,透過光刻製程對 鋁斂合金進行型樣加工藉以形成閘極1M。 隧後’可使用閘極114作為光罩向主動層113&中注入雜質離 子1所注人的雜質離子係可侧發激活藉以形成薄膜電晶體之源 極區111與沒極1112。在此實例中,由於雜質離子未被注入到閘 極114下方的主動層1133中,因而可以自然地形成通道區113。 此外,於包含有閘極114之基板的整個表面上還可形成由氧 化石夕》專膜或氮化石夕薄膜構成的層間絕緣膜130。 如「第4C圖」所示,閘極絕緣膜12〇與層間絕緣膜13〇係可 被k擇性地去除藉以曝露出源極區111與沒極區112,進而形成接 觸孔。 另外’層間絕緣膜130上還沈積有至少一個金屬層(例如, 可為二層)並且此金屬層可透過光刻製程被去除藉以形成電性連 接至源極區111與汲極區112的源極115與汲極116。 17 200913257 下面’對用以形成源極115與汲極116之製程進行詳細描述。 即,首先沈積厚度為30奈米至100奈米之鈦(Ti)、翻(Mo) 或類似材料。然後,將從鉻(Cr)、銅(Cu)、金(Au)、鎳(Ni)、 銀(Ag)、鈕(Ta)、鋁、鋁鈥合金(A1Nd)所組成的組合 中所選擇之材料以2〇〇奈米至5〇〇奈米之厚度沈積於表面活化劑 層115a之上藉以形成導電層115b。而後,再於導電層U5b上沈 積厚度為30奈米至1〇〇奈米之鈦(Ti)、鎢(w)或類似材料, 進而形成鈍化層115c。 在此實例中,表面活化劑層U5a之χ射線透射率為 0.1〜0.5%。鈍化層ii5c之X射線透射率為o n 〇%。 此外,表面活化劑層ll5a、導電層115b及鈍化層115c可從 源極115與汲極116上被選擇性地去除。表面活化劑層H5a提高 了源極之界_合強度進德證了裝置的穩定性。所形成之源極 115與汲極116的X射線透射率為〇.〇〇1〜〇1%。 在此,、例中’源極II5與汲極110中的至少一個電極係形成 為覆蓋具有源極區m、汲極區112及通道區113的_電晶體之 主動層。 此外,如「第3圖」所示’作為另—實例,閘極114,極 U5以及絲伽彡成树蓋具有源麵ui、祕區ιι2及通 道區113的薄膜電晶體之主動層。 18 200913257 此外,間極114可與源極115及汲極116 一樣具有一個三層 結構。 曰 如第4D圖」所示,可於包含有薄膜電晶體110之層間絕 緣膜13㈣整個表面上形成平化膜14〇。在此實例中,平化膜刚 係用來觸_行平面化處理,且平倾⑽係透過沈積厚度大 約為1000〜5000A的有機絕緣材料或無機絕緣材料而形成。 平化膜140係透過光刻製程被钱刻藉以形成曝露出源極出 或沒極116的接觸孔。 透明導電薄膜’例如··氧化銦錫(IT〇)或氧化銦辞(ιζ〇) 係可被沈概包含有觸平傾⑽之上並可透過光刻製程 被型樣加工,藉以於像素_形成陽極15(),陽極⑽透過接觸 孔可被電性連接至汲極116。 卜於、、且σ結構之整個表面上可沈積厚度大約為 麵2000Α的由氮化石夕或氧化石夕製成的無機絕緣膜。然後,可 此無機絕緣膜進行型樣加工以健保留像無之相部分,進而 形成像素隔離膜155。 如第4Ε圖」所不,還可透過依序堆疊電洞注入層膽 洞傳輪層165、發光層170、電子傳輸層⑽及電子注入層185而 形成有機發光層。另外,有機電激發光裝置之陰極携係以1 特定的厚度職於上敝合結構之整個表面上。 19 200913257 在此κ例中’电洞庄入層160係透過沈積厚度為1〇奈米至 30不、米的細太菁(CuPC)而形成。此外,電洞傳輸層⑹係透過 =厚度為30奈絲6G奈米的4,4,·雙[正仆細·正·絲胺基] ^ ^ ( 4^Lbis[N-(l-naphthyl)-N.phenyI.amin〇]bi^^^ ,簡稱NPB) ,形成。此外,當有必要添加攙雜劑時,發光層17〇係依照紅綠 藍像素由有機發光材料形成。 在此貫例中’用以形成陽極、有機發光層及陰極之製程中的 至少-個製程係使用了電子束(χ射線)。 使用电子束域陽極、有機發光層及陰極之原因在於:透過 在相同的L至巾執仃上述製程可以有助於改良有機發光層之發光 2性。也就是說,當_續綠,沈射機魏扣及於顧 又備中沈積陰極時’此有機發光層係被曝露於空氣巾,進而會降 低發光特性或使沈積製程複雜化。 上所述雖然電子束被用於形成陽極、有機發光層及陰極 ^程中’但薄膜電晶體之主動層係被源極ιΐ5與没極ιΐ6所覆 盖。因此能夠防止_電晶體之主動層受到損壞。 ,係能 動層由 之性能 本發明所提供之—财機魏發紐置及其製造方法 =良源極與祕之界面特性并可以防止薄膜電晶體之主 射線壞。因此,能夠提高有機電激發光裝置 开延長有舰激發越置之使用壽命。 20 200913257 雖然本發明以前述之較佳實施例揭露如上,铁 定本^ ’任何《赠者,林_本翻颂神和ς艮 厂:作些許之更動麵飾’因此本發明之專利保護範圍須視 本說明書所附之申請專利範圍所界定者為準。 【圖式簡單說明】 第1圖為本發明一實施例之有機電激發光裝置之横剖面圖; 第2圖為第1圖之源極與汲極之橫剖面圖; 第3圖為本發明另一實施例之有機電激發光裝置之橫剖面 圖;以及 第4A圖至第4E圖係表示了本發明一實施例之有機電激發光 裝置之製造方法。 【主要元件符號說明】 100 透明基板 110 薄膜電晶體 111 源極區 112 没極區 113 通道區 113a 主動層 114 閘極 115 源極 21 200913257 115a 115b 115c 116 120 130 140 150 155 160 165 170 180 185 190 表面活化劑層 導電層 鈍化層 汲極 閘極絕緣膜 層間絕緣膜 平化膜 陽極 像素隔離膜 電洞注入層 電洞傳輸層 發光層 電子傳輸層 電子注入層 陰極 22BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic electroluminescent device and a method of fabricating the same, and more particularly to an electrode structure of a thin film transistor used as an organic electroluminescent device for driving a switch and A method of manufacturing such an organic electroluminescent device. [Prior Art] In the era of the media, it is necessary to make the display device more refined and more compact in size and its display color is close to natural color. For conventional cathode ray officer CRTs, it is difficult to provide a 40 inch or larger screen. Techniques such as liquid crystal display devices (lcd), electric display panels, and slings TVs have been rapidly developed and are being used in the field of image display. . In the description of the moonlight, the organic electroluminescence device is in such a manner that electrons and holes which are formed into an organic thin film between the cathode and the anode are extinguished and emit light. The device can be formed in a w* such as plastic, and the electric handle first illuminates the device on the electric device 1 and the organic electro-excitation battery (W-reading electric device excites the money, can be low in the low-voltage industry In addition, 'because of the organic electro-optic device, therefore, the organic ##.., the display 4 is given a very uniform injection. In addition, for the excitation device can operate at low voltage, and the organic film has a non- 200913257 Thin and uniform thickness (about 100 nm to 2 〇〇 nanometer) and the stability of the holding device are particularly important. Organic electroluminescent devices can be divided into: passive matrix organic electroluminescent devices, The operation of the electric signal _ control; and the active moment _ organic electro-excitation light scatter 'based on the sub-pixel driving method using thin film transistor (TFT) operation. The following will be a known active matrix type organic electroluminescent device The description is made. In the conventional wire moment _ organic electro-optic excitation, the fine electric crystal system is formed on the transparent substrate. In this case, the thief transistor includes: a source region, a drain region and a channel region. Active layer, The edge film, the gate electrode, the interlayer insulating film, and the source and the electrode; the secret region and the drain region are in contact with the source and the drain through the contact hole formed in the interlayer insulating film and the closed-electrode insulating film. a flattening film made of an organic material is further formed on the substrate of the film of the H thin film, and an anode is formed on the substrate, and the anode is electrically connected to the electrodeless electrode. Further, an organic light emitting layer is formed on the anode. A cathode is formed on the organic light-emitting layer. Thus, the organic hair well is wounded by a layer of 6 people, including a hole transport layer, a red-green-blue light-emitting layer, and an electron transport layer. Thus, the hole-passing person is thick, and the 曰3 has a hole injection layer and a hole transfer layer. The electron transport layer includes an electron transfer layer and an electron injection layer. However, the above-mentioned conventional organic electroluminescence device has the following problems: In the scattering matrix type organic electroluminescence device, The thin film transistor can be exposed to xenon rays or the like in the deposition process of the anode, the luminescent layer and the cathode in 200913257, thus causing the fine crystal of the fine crystal. In addition, there is a side problem, that is, it will cause The electrical contact between the pole/drain layer is reduced. [Invention] In order to avoid one or more of the problems caused by the limitations and disadvantages of the above-mentioned prior art, the purpose of (4) is to provide - The invention relates to a power-reducing and stimulating device and a manufacturing method thereof. The object of the invention is to provide a galvanic-electrical electromechanical wire and a manufacturing method thereof, wherein the organic electro-excitation can be transferred to the deposition coating of the anode, the luminescent layer and the cathode. A thin film transistor that is exposed to X-rays or the like, and can be used as an interface between the source and the immersion in the active matrix type organic electroluminescent device. The other advantages, objects, and features of the present invention will be as follows. In the specification, it is explained in part that 'the other advantages, objects, and characteristics of the present invention can be partially understood by the following system of the present invention, or can be partially understood from the present day (four). The towel is drawn. The purpose and other advantages of the present invention can be achieved and obtained by the structure of the present invention. In order to obtain the present invention and other features, the present invention is embodied and broadly described in accordance with the purpose of the present invention. An organic electro-excitation 200913257 optical device of the present invention comprises: a transparent substrate; a semiconductor layer comprising a source a gate region, a channel region and a drain region; the gate insulating film has a plurality of first contact holes, the first contact hole is located above the source region and the secret region and is formed on the substrate including the rotating body; , formed on the upper side of the channel region; the layer of the edge film, having a first contact hole, the second contact hole is located above the source region and the non-polar region and is formed to include the gate The impurity insulation _ is over the entire surface; and the source and the immersion are formed on the interlayer insulating film to be electrically connected to the source region and the drain region through the first contact hole and the second contact hole, wherein the source and the source At least one of the drains is formed to cover the above semiconductor layer. According to the present invention, the invention has a method for manufacturing a semiconductor device comprising a source layer, a channel region and a drain electrode. a region; forming a interlayer insulating film on the substrate including the semiconductor layer, forming an interlayer insulating film over the entire surface of the gate insulating film including the dummy electrode on the secret insulating layer above the light region; The interlayer insulating material is formed by the first contact hole exposing the source region and the non-polar region; and the first insulating layer and the drain electrode are formed on the interlayer insulating film, so as to be electrically connected to the source surface and the drain electrode through the first contact hole a region in which at least one of the source and the drain is covered by the semiconductor layer. The organic electroluminescent device of the present invention and the method of manufacturing the same have the following effects: that is, in the above-described active matrix type organic electroluminescent device, since the thin film electrocrystal 10 200913257 Ξ:::=:= and, ' Since the source and the drain have a three-layer structure, the interface characteristics between the source and the drain can be modified, thereby increasing electrical contact. It is to be understood that the generalization of the present invention as exemplified above and the details of the invention as described hereinafter are both intended to be illustrative and to illustrate the scope of the invention. [Embodiment] Hereinafter, an embodiment of the present invention will be described in detail with reference to the section indicated. The phase-reference numerals made in these illustrated parts represent the same or similar components. Hereinafter, an organic electroluminescent device of the present invention and a method of manufacturing the same will be described in detail with reference to the accompanying drawings. In these figures, the dimensions of the thickness are magnified so that the dog clearly shows a number of layers and regions. However, the thickness ratio of each layer shown by these wipes is not equal to the actual thickness ratio. At the same time, when a part, for example, a layer, a film, an area, and a plate are formed or disposed on the other side of the 〃, the system can be directly formed on the other side. On top of it, or another part can be placed between this part and the other part of 11 200913257. _" is a cross-sectional view of the surface electroluminescent device of the present invention - and Fig. 2 is a cross-sectional view of the source and the immersion. Fig. 3 is a cross-sectional view showing another 'organic electroluminescent device of the present invention. The organic electroluminescent filaments of the present invention will be described below in conjunction with "Fig. 1" " As shown in Fig. 1 to Fig. 3, in the active moment f-vehicle organic electroluminescence device of the embodiment of the invention, the thin film transistor (10) is formed on the transparent substrate drain. In this example, the transparent substrate 100 may be made of glass, quartz, sapphire or the like. Further, although not shown in the drawings, between the transparent substrate 100 and the thin film transistor 110, there is an insulating thief (10) which infiltrates into the thin film transistor. The configuration of the thin film transistor (10) will be described in detail below. The semiconductor layer having the source region: (1), the non-polar region 112, and the channel region 113 is formed on the transparent substrate to form an island shape. The gate insulating film 120 is formed over the entire surface of the substrate including the above-described semiconductor layer having the source region m, the recording region 112, and the channel region 113. The gate 114 is formed over the gate insulating film (10) above the channel region 113. The interlayer insulating film 130 is formed over the entire surface of the substrate including the gate 114. A plurality of contact holes are formed in the gate insulating film 120 and the interlayer insulating film 130 to expose the source region in and the drain region 112. The source 115 and the drain 116 are formed on the interlayer insulating film 130 to be electrically connected to the source region 111 and the drain region 112 through the contact holes, respectively. In this example, at least one of the gate 114, the source 115, and the gate 116 has a three-layer structure as shown in Fig. 2. Also, the three-layer structure has a stacked structure composed of a surfactant layer 115a, a conductive layer mb, and a purification layer. In this example, the surfactant layer 115a is formed of titanium (Ti), molybdenum (M?) or the like and has a thickness of 30 nm to 100 nm. The conductive layer 115b is composed of a combination of chromium (6), copper (Cu), gold (Au), Ni (Ni), silver (Ag), button (Ta), aluminum (A1), and aluminum-bismuth alloy (A bribe). The material selected is formed. And the thickness of the conductive layer 115b is from nanometer to nanometer. The purified layer ll5c is formed of titanium (Ti), crane (w) or the like and has a thickness of from 3 nanometers to 100 nanometers. The parallelized layer received a ray transmission rate of L%. Purifying the layer 115c in this manner prevents the transistor from being damaged by xenon rays or the like which are generated during the formation of the subsequent anode, the light-emitting layer and the cathode. Therefore, it is preferable to completely block the x-rays, but in practice, the passivation layer 115c is formed using the above-mentioned material web, and its thickness is also within the above-mentioned size range. In this example, the thickness of the conductive layer formed for the _ and weight is 5 (8) nm for ensuring the conductivity. In addition, both the surface activator layer 115a and the purification layer 115c can prevent the conductive layer (10) from being excited by the organic electroluminescence light. Moreover, for the source transition strength, the surface active layer can be formed of molybdenum (Mo) in addition to titanium.健 健 健 健 健 健 健 健 健 健 健 健 健 健 健 健 健 健 健 健 健 健 健 健 健 健 健 健 健 健 健 健 健 健 健 健 健 健 健 健 健 健. Such as silk sand lining fine _5. The thicker f 戦’ is the result of the fX narration, but the problem is that the volume and weight of the device will become larger. Therefore, the thickness of the surfactant layer and the purification layer 115c should be within the above-mentioned size range. Further, a material such as the wrong (Pb) has a high barrier effect of the ray, but has a low interface bonding strength. Therefore, the surfactant layer 115a has the above-mentioned X-ray _ _ (Mq) or _ crankshaft. The surface active layer 115a_4 layer 115e can also be formed from any material that can illuminate and increase the strength of the transition. * Further, for the X-ray shielding effect and the volume 2, the surfactant layer 115a and the passivation layer are preferably formed of the above-mentioned material having a thickness of 3 Å to 100 nm. Further, since the source 115 or the drain 116 has a structure in which the above-described X-ray transmittance is 0.00 W. 0%, it is possible to provide a ray-line shielding effect and to protect the transistor while reducing weight and volume. If only one of the purification layer and the surfactant layer is formed thickly, although satisfactory X-ray shielding effect can still be obtained, there may be a problem in the interface bonding strength of the transistor. 14 200913257 having at least one of the source 115 and the drain ι 6 of the three-layer structure as described above, as shown in the "Figure", forming a handle to cover the above-mentioned source region 111, the drain The semiconductor layer of the thin film transistor of the region 112 and the channel region 113. Further, as another example, as shown in "Fig. 3", the gate 114, the source 115, and the drain 116 having the above two-layer structure are formed to cover the above-mentioned source region m, 汲The semiconductor layer of the thin film transistor of the polar region 112 and the channel region 113. Further, a flattening film 140' is formed on the entire surface of the substrate including the thin film transistor 110 to planarize the pixel region. In this example, the flattening film 140 may be formed of an organic insulating (tetra), such as an acrylic ageing compound, Weiimine, benzocyclobutene or perfluoro. Further, the 'flattening film 14G may be formed of an inorganic insulating material such as tantalum nitride. In addition, a contact hole is formed in the flattening film 140 for exposing the ? portion of the drain 116. Then, an anode 15 is formed over the flattening film 14A in the pixel region to be connected to the drain 116 through the contact hole. In this case, the anode 15 is formed of a transparent conductive film such as indium tin oxide (ITO) or indium zinc oxide (IZO) to transmit light. A pixel isolation film 155 is also formed on the flattening film 140 between the pixel regions. The 卩 pixel 卩m is separated from the film I55 by an inorganic insulating material such as nitrided (SiNx) or yttrium oxide (Si 〇 2). 15 200913257 An organic light-emitting layer and a cathode 190 are sequentially formed on the pixel isolation film ι55 and the anode 15G. The organic light-emitting layer is formed by sequentially stacking the hole injection layer 16A, the hole transport layer, the light layer 170, the electron transport layer 18, and the electron injection layer. Further, the cathode 19 of the organic electroluminescence device is stacked on the organic light-emitting layer. In this example, the electron transport layer 180 is disposed between the light emitting layer 170 and the cathode 190 such that most of the electrons injected into the light emitting layer 17 are moved from the cathode (10) to the anode 150 to be recombined with the holes. Further, the hole transport layer 165 is disposed between the anode 15'' and the light-emitting layer 17G. Therefore, electrons injected into the light-emitting layer m exist only in the light-emitting layer 17G without moving to the anode 150 due to the interface with the hole transport layer 165, thereby improving the efficiency of recombination. Hereinafter, a method of manufacturing the organic electroluminescent device of the present invention having the above configuration will be described in detail with reference to the accompanying drawings. "4A" to "4E" show a method of manufacturing an organic electroluminescent device according to an embodiment of the present invention. As shown in Fig. 4A, a transparent substrate 100 made of a material such as glass, quartz or sapphire is first prepared. Then, an amorphous tantalum film having a thickness of about 200 to 800 A is formed on the transparent substrate by a low pressure chemical vapor deposition method or a plasma enhanced chemical vapor deposition method. Further, the amorphous ruthenium film can be crystallized into a polycrystalline ruthenium film by a laser annealing method or the like. Of course, this polycrystalline germanium film can also be deposited directly in place of the amorphous stone film. Then, the 'polycrystalline frequency permeable to the hard-to-weave pattern is added 4 to form the main riding 113a of the thin film transistor in the unit pixel. Subsequently, the gate insulating film 120 may be deposited on the entire surface of the substrate including the active layer. As shown in Fig. 4B, the gate m is formed over the gate insulating film 120 above the active layer n3a. That is, the ship plating method is difficult to smash on the 12 〇 thick thickness _ 15G () ~ 5_A _ age gold. Then, the aluminum alloy is subjected to pattern processing through a photolithography process to form a gate 1M. After the tunneling, the impurity ions implanted into the active layer 113& using the gate 114 as a mask can be laterally activated to form the source region 111 and the gate 1112 of the thin film transistor. In this example, since the impurity ions are not implanted into the active layer 1133 below the gate 114, the channel region 113 can be naturally formed. Further, an interlayer insulating film 130 composed of an oxide oxide film or a nitride film may be formed on the entire surface of the substrate including the gate 114. As shown in Fig. 4C, the gate insulating film 12A and the interlayer insulating film 13 can be selectively removed to expose the source region 111 and the non-polar region 112, thereby forming a contact hole. In addition, at least one metal layer (for example, two layers) may be deposited on the interlayer insulating film 130 and the metal layer may be removed through a photolithography process to form a source electrically connected to the source region 111 and the drain region 112. The pole 115 and the drain 116. 17 200913257 The following is a detailed description of the process for forming the source 115 and the drain 116. That is, titanium (Ti), turn (Mo) or the like having a thickness of 30 nm to 100 nm is first deposited. Then, it is selected from the group consisting of chromium (Cr), copper (Cu), gold (Au), nickel (Ni), silver (Ag), button (Ta), aluminum, and aluminum-bismuth alloy (A1Nd). The material is deposited on the surfactant layer 115a with a thickness of from 2 nanometers to 5 nanometers to form a conductive layer 115b. Then, titanium (Ti), tungsten (w) or the like having a thickness of 30 nm to 1 nm is deposited on the conductive layer U5b to form a passivation layer 115c. In this example, the surfactant layer U5a has a xenon ray transmittance of 0.1 to 0.5%. The X-ray transmittance of the passivation layer ii5c is o n 〇%. Further, the surfactant layer 1155a, the conductive layer 115b, and the passivation layer 115c may be selectively removed from the source 115 and the drain 116. The surfactant layer H5a improves the stability of the device by increasing the boundary of the source. The X-ray transmittance of the source 115 and the drain 116 formed is 〇1〇〇1%. Here, in the example, at least one of the source II5 and the drain 110 is formed to cover the active layer of the NMOS having the source region m, the drain region 112, and the channel region 113. Further, as shown in Fig. 3, as another example, the gate 114, the pole U5, and the samarium scorpion are the active layers of the thin film transistor having the source surface ui, the secret region ιι2, and the channel region 113. 18 200913257 In addition, the interpole 114 can have a three-layer structure like the source 115 and the drain 116. As shown in Fig. 4D, the flattening film 14 can be formed on the entire surface of the interlayer insulating film 13 (4) including the thin film transistor 110. In this example, the flattening film is used for the planarization process, and the flattening (10) is formed by depositing an organic insulating material or an inorganic insulating material having a thickness of about 1000 to 5000 Å. The flattening film 140 is etched through the photolithography process to form contact holes exposing the source or the gate 116. The transparent conductive film 'for example, indium tin oxide (IT〇) or indium oxide (ITO) can be covered by the flattening (10) and can be processed by the lithography process, whereby the pixel _ An anode 15 () is formed, and the anode (10) is electrically connected to the drain 116 through the contact hole. An inorganic insulating film made of nitride or oxidized enamel having a thickness of about 2000 Å can be deposited on the entire surface of the σ structure. Then, the inorganic insulating film can be subjected to pattern processing to retain the phase portion of the image, thereby forming the pixel isolation film 155. As shown in Fig. 4, the organic light-emitting layer can be formed by sequentially stacking the hole injection layer tunnel hole transfer layer 165, the light-emitting layer 170, the electron transport layer (10), and the electron injection layer 185. In addition, the cathode of the organic electroluminescent device is mounted on the entire surface of the upper composite structure at a specific thickness. 19 200913257 In this κ case, the 'holes into the layer 160' are formed by depositing a thin phthalocyanine (CuPC) having a thickness of from 1 nanometer to 30 mils. In addition, the hole transport layer (6) is transmitted through a thickness of 30 nanowires 6G nanometer 4,4,·double [positive servant fine/orthosylamine] ^ ^ ( 4^Lbis[N-(l-naphthyl) -N.phenyI.amin〇]bi^^^, referred to as NPB), formed. Further, when it is necessary to add a dopant, the light-emitting layer 17 is formed of an organic light-emitting material in accordance with red, green and blue pixels. In this example, at least one of the processes used to form the anode, the organic light-emitting layer, and the cathode uses an electron beam (radio-ray). The reason why the electron beam domain anode, the organic light-emitting layer, and the cathode are used is that the above-described process can be improved by the same L to the towel to contribute to the improvement of the light-emitting property of the organic light-emitting layer. That is to say, when the green is continued, the emitter is deducted, and the cathode is deposited in the preparation, the organic light-emitting layer is exposed to the air towel, which may lower the light-emitting characteristics or complicate the deposition process. Although the electron beam is used to form the anode, the organic light-emitting layer, and the cathode in the above, the active layer of the thin film transistor is covered by the source ιΐ5 and the immersion ΐ6. Therefore, it is possible to prevent the active layer of the _ transistor from being damaged. The performance of the active layer is provided by the present invention - the financial machine Weifa New Zealand and its manufacturing method = the interface characteristics of the good source and the secret can prevent the main radiation of the thin film transistor from being broken. Therefore, it is possible to increase the life of the organic electroluminescent device to extend the life of the ship. 20 200913257 Although the present invention has been disclosed above in the preferred embodiment of the foregoing, it is intended to be a "suggestor, Lin_本翻颂神和ς艮厂: making some changes to the face decoration" This is subject to the definition of the scope of the patent application attached to this specification. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view of an organic electroluminescent device according to an embodiment of the present invention; FIG. 2 is a cross-sectional view of a source and a drain of FIG. 1; A cross-sectional view of an organic electroluminescent device of another embodiment; and FIGS. 4A to 4E illustrate a method of fabricating an organic electroluminescent device according to an embodiment of the present invention. [Main component symbol description] 100 transparent substrate 110 thin film transistor 111 source region 112 non-polar region 113 channel region 113a active layer 114 gate 115 source 21 200913257 115a 115b 115c 116 120 130 140 150 155 160 165 170 180 185 190 Surfactant layer conductive layer passivation layer drain gate insulating film interlayer insulating film flattening film anode pixel isolation film hole injection layer hole transport layer light emitting layer electron transport layer electron injection layer cathode 22

Claims (1)

200913257 十、申請專利範圍: 1. 一種有機電激發光裝置,係包含: 一透明基板; 一半導體層,係包含—源祕一通道區及—沒極區. 所述基板之上; 一間極絕緣膜,係具有多個第-接觸孔,所述第一接觸孔 位於該源麵触汲海社並且形姐岭有财導 一間極’係形成於該通道區上方的刻極絕緣膜之上; 層間絕緣膜’係具有多個第二接觸孔,所述第二接 位於該源__汲麵之上 絕緣臈的整個表面之上;以及成於^有该間極之間極 一源極與一汲極, 述弟一接觸孔與所述第 區, 係形成於該層間絕緣膜之上藉以透過所 接觸孔電性連接至該源極區與該汲極 半導體^該源極與該難中的至少—個電極係形成為覆蓋該 2·=求項1所狀錢電崎絲置,其巾該雜與該汲極中 七一摄^ 線透射率為0.001〜0.1%並且係形成為具 有二看結構。 3·如请求項2所述之有機電 含: 戍电破炙先骏置,其中該三層結構係包 一表面活化劑層, 係由欽(Ti)或銦(M〇)製成; 23 200913257 ^屯層係’成於該表面活化劑層之上並且係由從絡 (Cr)銅(CU)、金(Au)、鎳(Ni)、銀(Ag)、組(Ta)、 鋁(A1)及鋁敍合金(A1Nd;所組& @ μ _ n 以及 鈍化層’細雜該導電層之上并且係由鈦⑺)或鎮 (W)製成。 如#求項3所述之有機電激發光裝置,其中該導電層之厚度為 2〇〇奈米至500奈来。 士明求項3所述之有機電激發光裝置,其中該鈍化層之厚度為 不米至1〇〇奈米且义射線透射率為〇2〜1〇〇乂。 如明长項3所述之有機電激發光裝置,其中該表面活化劑層之 旱:為30不来至1〇〇奈米且χ射線透射率為〇.卜〇.抓。 月求項1所ι4之有機電激發錢置,其中該半導體層係由一 閘極、-源極以及,及極所覆蓋。 .如π求項1所述之有機電激發光裝置,還包含: ^ 平化膜,係具有位於該汲極上的一第三接觸孔,並且該 、’膜係域於包含有該源極與該沒極之所述基板的整個表面 之上; :〜陽極,_成於該平化膜之上的-像素區巾,藉以透過 該弟三接觸孔紐連接至該汲極; 有機發光層,係形成於該陽極之上;以及 24 200913257 一陰極’係形成於該有機發光層之上。 9. 一種有機電激發光裝置之製造方法,係包含: 於一基板上形成一半導體層,該半導體層係包含一源極 區、一通道區及一汲極區; 於包含有該半導體層之該基板上形成一閘極絕緣膜; 於該通道區上方的該閘極絕緣膜之上形成一閘極; 於包含有該閘極之閘極絕緣膜的整個表面之上形成一層 間絕緣膜; θ 於該閘極絕緣膜與該層間絕緣膜中形成多個第一接觸孔 藉以曝露出該源極區與該汲極區;以及 於該層間絕軸之上形成—祕與—雜,藉以透過該第 一接觸孔電性連接至_極區與該汲極區, 其中,該源極與該汲極中的至少一個電極係形成為覆蓋該 半導體層。 月求項9所述之有機電激發光裝置之製造方法,其中該源極 與5亥/及極中的至少一個電極之X射線透射率為0.001〜0.1 %並且 係形成為具有三層結構。 求項10所述之有機電激發光裝置之製造方法,其中形成該 源極與該及極之步驟包含: 使用欽(Τι)或鉬(Μ〇)於該層間絕緣膜上形成一表面活 化劑層; 25 200913257 使用從鉻(Cr)、銅(〇〇、金(Au)、鎳(Ni)、銀(Ag)、 (Ta)紹(A1)及紹敛合金(Ajwd)所組成的組合中選擇 出的材料於該表面活化劑層之上形成一導電層;以及 使用鈦(Τι)或鎢(w)於該導電層之上形成一鈍化層。 !2·如請求項11所述之有機魏發鍵置之製造方法,其中該導電 層之厚度為200奈米至5〇〇奈米。 I3.如請求項11所述之有機f激發域置之製造方法,其中該純化 層之厚度為3〇奈米至100奈米且χ射線透射率為on 〇%。 Κ如請求項11所述之有機電激發光裝置之製造方法,其中該表面 活化劑層之厚度為30奈米至1〇〇奈采且χ射線透射率為 〇·1 〜0.5〇/〇。 15·如請求項9所述之有機電激發缝置之製造方法,其中該半導 體層係由-閘極、-源極以及4及極所覆蓋。 16.如請求項9所述之有機電激發缝置之製造方法,還包含: '於包含有_轉紐極之所麟板的整個表面之上形 成一平化膜; 於該平化财形成—第二接觸孔藉鱗露出該没極; w藉賤過該第 「觸孔電性連接至該汲極; 於°亥陽極之上形成—有機發光層;以及 於該有機發光層之上形成—陰極。 26 200913257 17.如請求項16所述之有機電激發光裝置之製造方法,其中該陽 極、該有機發光層及該陰極中的至少一個係透過電子束沈積方 法形成。200913257 X. Patent application scope: 1. An organic electro-optic device comprising: a transparent substrate; a semiconductor layer comprising: a source channel region and a non-polar region; said substrate; The insulating film has a plurality of first contact holes, the first contact holes are located at the source surface, and the gate electrode has a gate electrode formed by a gate insulating film formed on the channel region. The interlayer insulating film ′ has a plurality of second contact holes, the second connection is located over the entire surface of the insulating raft above the source _ 汲 surface; and a source between the interpoles a pole and a drain, the contact hole and the first region are formed on the interlayer insulating film to be electrically connected to the source region and the gate semiconductor through the contact hole At least one of the electrodes is formed to cover the 2·=1 item of the electric wire, and the transmittance of the cloth and the bucking line of the bake is 0.001 to 0.1% and is formed. In order to have a two-view structure. 3. The organic electrical component according to claim 2, wherein the three-layer structure is a surface activator layer made of chin (Ti) or indium (M〇); 200913257 ^屯 layer system is formed on top of the surfactant layer and is composed of complex (Cr) copper (CU), gold (Au), nickel (Ni), silver (Ag), group (Ta), aluminum ( A1) and an aluminum alloy (A1Nd; the group & @μ _ n and the passivation layer are finely doped on the conductive layer and are made of titanium (7)) or town (W). The organic electroluminescent device of claim 3, wherein the conductive layer has a thickness of from 2 nanometers to 500 nanometers. The organic electroluminescent device according to Item 3, wherein the passivation layer has a thickness of not more than 1 nm and a transmittance of 义2 to 1 〇〇乂. The organic electroluminescent device according to the item 3, wherein the surfactant layer has a drought of 30 Å to 1 Å and a transmittance of χ 〇. The organic electric excitation of the item 1 of the first item is excited, wherein the semiconductor layer is covered by a gate, a source, and a pole. The organic electroluminescent device of claim 1, further comprising: a flattening film having a third contact hole on the drain, and the 'membrane system domain includes the source and Above the entire surface of the substrate; the anode is formed on the flattening film, and the pixel is connected to the drain through the third contact hole; the organic light emitting layer, Formed on the anode; and 24 200913257 a cathode 'formed on the organic light-emitting layer. A method of fabricating an organic electroluminescent device, comprising: forming a semiconductor layer on a substrate, the semiconductor layer comprising a source region, a channel region and a drain region; wherein the semiconductor layer is included Forming a gate insulating film on the substrate; forming a gate over the gate insulating film over the channel region; forming an interlayer insulating film over the entire surface of the gate insulating film including the gate; θ forming a plurality of first contact holes in the gate insulating film and the interlayer insulating film to expose the source region and the drain region; and forming a secret and a miscellaneous on the axis between the layers, thereby transmitting The first contact hole is electrically connected to the _ pole region and the drain region, and at least one of the source and the drain is formed to cover the semiconductor layer. The method of manufacturing an organic electroluminescence device according to Item 9, wherein the source and the at least one of the electrodes 5 and/or have an X-ray transmittance of 0.001 to 0.1% and are formed to have a three-layer structure. The method of manufacturing the organic electroluminescent device of claim 10, wherein the step of forming the source and the gate comprises: forming a surfactant on the interlayer insulating film using a ruthenium or a molybdenum (ruthenium) Layer; 25 200913257 Using a combination of chromium (Cr), copper (yttrium, gold (Au), nickel (Ni), silver (Ag), (Ta) Shao (A1) and Shaoping alloy (Ajwd) The selected material forms a conductive layer over the surfactant layer; and a passivation layer is formed over the conductive layer using titanium or tungsten (w). The method of manufacturing the conductive layer, wherein the thickness of the conductive layer is from 200 nm to 5 nm. I3. The method for producing an organic f-excitation domain according to claim 11, wherein the thickness of the purified layer is 3〇 The method of manufacturing the organic electroluminescence device according to claim 11, wherein the thickness of the surfactant layer is from 30 nm to 1 Å by the nanometer to 100 nm. The transmittance of the krypton ray is 〇·1 ~0.5〇/〇. 15. The organic electric excitation slit described in claim 9 The manufacturing method, wherein the semiconductor layer is covered by a gate, a source, and a pole and a pole. The method for manufacturing an organic electrical excitation slit according to claim 9, further comprising: a flattening film is formed on the entire surface of the slab of the slanting pole; the second contact hole is formed by the scale to expose the immersion; w borrows the first "contact hole electrically connected to the 汲Forming an organic light-emitting layer on the anode of the nano-electrode; and forming a cathode on the organic light-emitting layer. The method of manufacturing the organic electroluminescent device according to claim 16, wherein the anode, At least one of the organic light-emitting layer and the cathode is formed by an electron beam deposition method.
TW097135196A 2007-09-13 2008-09-12 Organic electroluminescence device and method for manufacturing the same TWI455302B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20070093077 2007-09-13
KR1020080080687A KR101296657B1 (en) 2007-09-13 2008-08-19 Organic electroluminescence device and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TW200913257A true TW200913257A (en) 2009-03-16
TWI455302B TWI455302B (en) 2014-10-01

Family

ID=40477691

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097135196A TWI455302B (en) 2007-09-13 2008-09-12 Organic electroluminescence device and method for manufacturing the same

Country Status (3)

Country Link
KR (1) KR101296657B1 (en)
CN (1) CN101388404B (en)
TW (1) TWI455302B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104094386A (en) * 2012-01-31 2014-10-08 夏普株式会社 Semiconductor device and method for producing same
TWI781382B (en) * 2009-11-27 2022-10-21 日商半導體能源研究所股份有限公司 Semiconductor device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106711233B (en) * 2016-12-09 2020-07-24 清华大学 Optically modulated diode and power circuit
CN108615799B (en) * 2016-12-09 2020-07-28 清华大学 Optically modulated semiconductor field effect transistor and integrated circuit
CN110858629B (en) * 2018-08-23 2023-06-16 上海新微技术研发中心有限公司 Organic light-emitting diode structure and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4071652B2 (en) * 2002-03-04 2008-04-02 株式会社 日立ディスプレイズ Organic EL light emitting display
JP2003317971A (en) * 2002-04-26 2003-11-07 Semiconductor Energy Lab Co Ltd Light emitting device and its producing method
JP2007188936A (en) * 2006-01-11 2007-07-26 Epson Imaging Devices Corp Display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI781382B (en) * 2009-11-27 2022-10-21 日商半導體能源研究所股份有限公司 Semiconductor device
US11894486B2 (en) 2009-11-27 2024-02-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
CN104094386A (en) * 2012-01-31 2014-10-08 夏普株式会社 Semiconductor device and method for producing same
CN104094386B (en) * 2012-01-31 2017-06-23 夏普株式会社 Semiconductor device and its manufacture method

Also Published As

Publication number Publication date
TWI455302B (en) 2014-10-01
CN101388404A (en) 2009-03-18
CN101388404B (en) 2010-09-08
KR101296657B1 (en) 2013-08-14
KR20090028409A (en) 2009-03-18

Similar Documents

Publication Publication Date Title
JP6262276B2 (en) Oxide thin film transistor and method for manufacturing the same
TWI778058B (en) Transistor and display device
TWI339442B (en) Flat panel display and method of fabricating the same
CN102270656B (en) Organic light emitting diode display and manufacture method thereof
JP6594013B2 (en) Organic light emitting device and method for manufacturing the same
US9373669B2 (en) Organic light-emitting display device and method of manufacturing the same
JP2018081903A (en) Organic light-emitting display device and manufacturing method thereof
TW201030966A (en) Organic light emitting diode display and method of manufacturing the same
TWI541993B (en) Organic light emitting display and manufacturing method thereof
KR102001057B1 (en) Method of fabricating array substrate
TW201032289A (en) Method of fabricating array substrate
KR20130066290A (en) Organic light emitting display apparatus and manufacturing method of the same
US9577114B2 (en) Transistors, methods of forming transistors and display devices having transistors
TWI627744B (en) Organic light emitting display device and method of fabricating the same
TW201041430A (en) Organic electroluminescent display device and method of manufacturing the same
TWI232589B (en) Electroluminescent element, and method for fabricating the same and display apparatus
TW201114026A (en) Organic light emitting diode display and method of manufacturing the same
US20090091254A1 (en) Organic electroluminescence device and method for manufacturing the same
TW200536434A (en) Organic light-emitting display device
TW200913257A (en) Organic electroluminescence device and method for manufacturing the same
TW201227110A (en) Array substrates and methods for manufacturing the same
TW525403B (en) Electroluminescence display device
KR20140143615A (en) Oxide thin film transistor, method for fabricating tft, array substrate for display device having tft and method for fabricating the same
US8927970B2 (en) Organic electroluminescence device and method for manufacturing the same
TW200950577A (en) Display device