TW200912531A - Radiation-sensitive resin composition, layer insulation film and microlens and manufacture method thereof - Google Patents

Radiation-sensitive resin composition, layer insulation film and microlens and manufacture method thereof Download PDF

Info

Publication number
TW200912531A
TW200912531A TW097128674A TW97128674A TW200912531A TW 200912531 A TW200912531 A TW 200912531A TW 097128674 A TW097128674 A TW 097128674A TW 97128674 A TW97128674 A TW 97128674A TW 200912531 A TW200912531 A TW 200912531A
Authority
TW
Taiwan
Prior art keywords
group
weight
radiation
resin composition
compound
Prior art date
Application number
TW097128674A
Other languages
Chinese (zh)
Other versions
TWI510857B (en
Inventor
Chihiro Uchiike
Masaaki Hanamura
Kenichi Hamada
Takahiro Iijima
Original Assignee
Jsr Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr Corp filed Critical Jsr Corp
Publication of TW200912531A publication Critical patent/TW200912531A/en
Application granted granted Critical
Publication of TWI510857B publication Critical patent/TWI510857B/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0047Photosensitive materials characterised by additives for obtaining a metallic or ceramic pattern, e.g. by firing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials For Photolithography (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

The invention relates to a radiosensitive resin combination, which contains [A] polymer and [B] 1,2-diazido quinone compound. The [A] polymer has the following groups: at least one group selected from carboxyl and carboxylic acid anhydride group, at least one group selected from epoxy ethyl and oxygen heterocyclic ring butyl, and n+/- group expressed by the following formula (1), (in formula (1), R is methene, alkylidene with 2 to 10 carbon atoms or alkyl methene; Y is single bond, -CO-, -O-CO-* (wherein, the connecting bond with * is bonded with the R), n is an integer from 2 to 10, X is n+/- alkyl with one or a plurality of ether linkages and 2 to 70 carbon atoms, and + expresses a connecting bond).

Description

200912531 九、發明說明 【發明所屬之技術領域】 本發明係有關敏輻射線性樹脂組成物、層間絕緣膜及 微透鏡及此等之製造方法。 【先前技術】 對於薄膜電晶體(以下稱爲「TFT」)型液晶顯示元 件或磁頭元件、積體電路元件、固體攝影元件等電子零件 ,一般爲了使層狀配置之配線間產生絕緣而設置層間絕緣 膜。形成層間絕緣膜之材料係以製得所需之圖型形狀之步 驟數較少,且具有充分平坦性者較佳,因此可廣泛使用敏 輻射線性樹脂組成物(參照日本特開200 1 -3 54822號公報 及日本特開200 1 -343743號公報)。 上述電子零件中,例如TFT型液晶顯示元件係經由在 上述層間絕緣膜上形成透明電極膜,再於其上形成液晶配 向膜之步驟來製造,因此,層間絕緣膜在形成透明電極膜 之步驟中處於高溫條件,或處於形成電極之圖型所使用之 光阻之剝離液中,因此對於這些情況必須具有充分之耐用 性。 近年,TFT型液晶顯示元件之趨勢爲大畫面化、高亮 度化、高精細化、高速應答化、薄型化等,這些所用之形 成層間絕緣膜用組成物必須爲高感度,形成之層間絕緣膜 之低介電率、高透過率等必須優於以往的高性能。 另外,傳真機、電子影印機、固體攝影元件等在晶片 -5- 200912531 上之彩色濾光片(on chip color filter)之成像光學體系或 光纖連結器之光學系材料使用具有3〜ΙΟΟμιη之透鏡直徑 之微透鏡,或這些微透鏡以規則排列之微透鏡陣列。 形成微透鏡或微透鏡陣列時,形成與透鏡相當之光阻 圖型後,藉由加熱處理使之熔融流動,該狀態下作爲透鏡 使用的方法,或使熔融流動的透鏡圖型形成光罩,利用乾 蝕刻將透鏡形狀轉印至基底上的方法等爲人所知。形成前 述透鏡圖型時,廣泛使用敏輻射線性樹脂組成物(參照曰 本特開平6-18702號公報及日本特開平6-136239號公報) 〇 但是形成如上述之微透鏡或微透鏡陣列之元件係被供 給其後爲了除去配線形成部分之接合墊片上之各種絕緣膜 ,而塗佈平坦化膜及蝕刻用光阻膜,使用所要之光罩進行 曝光、顯影去除接合墊片部分之蝕刻光阻,接著藉由蝕刻 去除平坦化膜及各種絕緣膜,使接合墊片部分露出的步驟 。因此微透鏡或微透鏡陣列在形成平坦化膜及蝕刻光阻塗 膜之步驟及飩刻步驟中,需要耐溶劑性及耐熱性。 形成這種微透鏡用之敏輻射線性樹脂組成物必須爲高 感度,且由該組成物所形成之微透鏡具有所要之彎曲率半 徑,必須具有高耐熱性、高透過率等。 如上述製得之層間絕緣膜或微透鏡在形成這些之顯影 步驟中,顯影時間稍微超過最佳時間時,顯影液會滲透至 圖型與基板之間,容易產生剝離’因此,必須嚴控顯影時 間,有產品良率的問題。 -6- 200912531 如此由敏輻射線性樹脂組成物形成層間絕緣膜或微透 鏡時’組成物被要求爲高感度,且在形成步驟之顯影步驟 中’顯影時間即使超過所設定之時間時,也不會產生圖型 剝離’顯示良好密著性,且該組成物所形成之層間絕緣膜 被要求高耐熱性、高耐溶劑性、低介電率、高透過率,形 成微透鏡時,要求微透鏡具有良好之熔融形狀(所要之彎 曲率半徑)、高耐熱性、高耐溶劑性、高透過率。但是滿 足這種要求之敏輻射線性樹脂組成物在以往仍未爲人所知 【發明內容】 〔發明之揭示〕 本發明係根據上述問題所完成者。因此本發明之目的 係提供具高敏輻射線感度,且容易形成耐熱性優異之圖型 狀薄膜之敏輻射線性樹脂組成物。 本發明之另外的目的係提供用於形成層間絕緣膜時, 可形成高耐熱性、高耐溶劑性、高透過率、低介電率之層 間絕緣膜,另外用於形成微透鏡時,可具有高透過率及良 好之熔融形狀之微透鏡的敏輻射線性樹脂組成物。 本發明之另外的目的係提供使用上述敏輻射線性樹脂 組成物形成層間絕緣膜及微透鏡的方法。 本發明之另外的目的係提供具備高耐熱性、高耐溶劑 性、低介電率、高透過性等各種特性之層間絕緣膜及顯示 良好之熔融形狀及具備高耐熱性、高耐溶劑性、高透過率 200912531 等各種特性之微透鏡。 本發明之其他目的及優點係由下述說明可知。 依據本發明時,本發明之目的及優點係第1藉由下述 敏輻射線性樹脂組成物來達成’該組成物含有: 〔A〕選自羧基及羧酸酐基所成群之至少一種的基、選自 環氧乙基及氧環丁基所成群之至少一種的基及具有下述式 (1)表示之η價基的聚合物(以下稱爲「聚合物〔A〕」 X —(-Y—rJ-S—+ ) (1 ) (式(1)中,r1係伸甲基或碳數2〜1〇之伸烷基或烷基 伸甲基,Y係單鍵、-CO-、-Ο-co-* (但是附加「*」之連 結鍵與R1鍵結)或-NHCO’(但是附加「*」之連結鍵與 R1鍵結),η爲2〜1〇之整數’ X爲可具有1個或多個醚 鍵之碳數2〜70之η價烴基或,η爲3,且χ爲下述式(2 )表示之3價基,「+」表示連結鍵,BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation sensitive linear resin composition, an interlayer insulating film, and a microlens, and a method of manufacturing the same. [Prior Art] For electronic components such as a thin film transistor (hereinafter referred to as "TFT") type liquid crystal display element, a magnetic head element, an integrated circuit element, and a solid-state imaging element, interlayers are generally provided for insulating between wirings arranged in a layered manner. Insulating film. It is preferable that the material for forming the interlayer insulating film has a small number of steps for producing a desired pattern shape, and that it has sufficient flatness, so that a sensitive radiation linear resin composition can be widely used (refer to JP-A-200 1 -3). Japanese Patent Publication No. 54822 and JP-A No. 2001-343743). In the above electronic component, for example, a TFT-type liquid crystal display device is manufactured by forming a transparent electrode film on the interlayer insulating film and forming a liquid crystal alignment film thereon, and therefore, the interlayer insulating film is in the step of forming a transparent electrode film. It is in a high temperature condition or in a stripping solution for the photoresist used to form the pattern of the electrodes, and therefore must have sufficient durability for these cases. In recent years, the trend of the TFT-type liquid crystal display device is to increase the screen size, increase the brightness, high definition, high-speed response, and thinning. The composition for forming the interlayer insulating film must have high sensitivity and form an interlayer insulating film. The low dielectric constant, high transmittance, etc. must be superior to the high performance of the past. In addition, a facsimile machine, an electronic photocopier, a solid-state imaging device, or the like, an on-chip color filter imaging optical system or an optical connector material of a fiber-optic connector on a wafer-5-200912531 uses a lens having a size of 3 to ΙΟΟμη Diameter microlenses, or microlens arrays of these microlenses in a regular arrangement. When a microlens or a microlens array is formed, a photoresist pattern corresponding to a lens is formed, and then melted and flowed by heat treatment, and a method of using the lens as a lens or a lens pattern of a molten flow is formed into a mask. A method of transferring a lens shape onto a substrate by dry etching is known. In the case of forming the above-mentioned lens pattern, a sensitive radiation linear resin composition is widely used (refer to Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. Hei. No. Hei. After the supply of the insulating film on the bonding pad of the wiring forming portion, the planarizing film and the etching photoresist film are applied, and the etching is performed by using the desired mask to remove the etching light of the bonding pad portion. The step of removing the planarization film and the various insulating films by etching to expose the bonding pad portion. Therefore, the microlens or microlens array requires solvent resistance and heat resistance in the steps of forming the planarizing film and etching the photoresist film and the etching step. The sensitive radiation linear resin composition for forming such a microlens must have high sensitivity, and the microlens formed of the composition has a desired half of the bending rate, and must have high heat resistance, high transmittance, and the like. In the development step of forming the interlayer insulating film or the microlens prepared as described above, when the development time slightly exceeds the optimum time, the developer penetrates between the pattern and the substrate, and peeling easily occurs. Therefore, development must be strictly controlled. Time, there is a problem with product yield. -6- 200912531 When the interlayer insulating film or microlens is formed of the sensitive radiation linear resin composition, the composition is required to have high sensitivity, and in the developing step of the forming step, the development time does not exceed the set time. Pattern peeling will occur, indicating good adhesion, and the interlayer insulating film formed by the composition is required to have high heat resistance, high solvent resistance, low dielectric constant, high transmittance, and microlenses are required when forming a microlens. It has a good melt shape (required bend radius), high heat resistance, high solvent resistance, and high transmittance. However, the radiation-sensitive linear resin composition satisfying such a demand has not been known in the past. [Disclosure of the Invention] The present invention has been made in view of the above problems. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a radiation sensitive linear resin composition having a high-sensitivity radiation sensitivity and easily forming a pattern-like film excellent in heat resistance. Another object of the present invention is to provide an interlayer insulating film which can form a high heat resistance, a high solvent resistance, a high transmittance, and a low dielectric property when forming an interlayer insulating film, and can also have an interlayer insulating film for forming a microlens. A radiation sensitive linear resin composition of a microlens having a high transmittance and a good melt shape. Another object of the present invention is to provide a method of forming an interlayer insulating film and a microlens using the above-described radiation sensitive linear resin composition. Another object of the present invention is to provide an interlayer insulating film having various properties such as high heat resistance, high solvent resistance, low dielectric constant, and high permeability, and a molten shape which exhibits good heat resistance and high solvent resistance. Microlenses with various characteristics such as high transmittance 200912531. Other objects and advantages of the present invention will be apparent from the description. According to the present invention, the object and the advantages of the present invention are achieved by the following photosensitive radiation linear resin composition. The composition contains: [A] a group selected from at least one of a group consisting of a carboxyl group and a carboxylic anhydride group. a group selected from at least one of an epoxy group and an oxocyclobutyl group, and a polymer having a y-valent group represented by the following formula (1) (hereinafter referred to as "polymer [A]" X - ( -Y-rJ-S-+ ) (1) (In the formula (1), r1 is a methyl group or a C 2~1〇 alkyl or alkyl methyl group, a Y single bond, -CO-, -Ο-co-* (but with the "*" link and R1) or -NHCO' (but with the "*" link and R1), η is an integer from 2 to 1' X An n-valent hydrocarbon group having 2 or 70 carbon atoms of one or more ether bonds, or η is 3, and χ is a trivalent group represented by the following formula (2), and "+" represents a linking bond,

(式(2)中,R11係各自獨立爲伸甲基或碳數2〜6之伸 -8- 200912531 烷基’ 「*」係各自表示連結鍵) 及〔B〕1,2-醌二疊氮化合物。 本發明之目的及優點係第2藉由下述層間絶緣膜或微 透鏡之形成方法來達成,該形成方法含有以下述順序之以 下的步驟, (1 )基板上形成敏輻射線性樹脂組成物之塗膜的步驟、 (2 )對該塗膜之至少一部分照射輻射線的步驟、 (3 )顯影步驟,及 (4 )加熱步驟。 本發明之目的及優點係第3藉由上述方法形成之層間 絶緣膜或微透鏡來達成。 實施發明之最佳形態 以下詳述本發明之敏輻射線性樹脂組成物。 聚合物〔A〕 聚合物〔A〕係含有選自竣基及羧酸酐基所成群之至 少—種的基、選自環氧乙基及氧環丁基所成群之至少一種 的基及上述式(〇表示之n價基的聚合物。 上述式(1)之R1之碳數2〜10之伸烷基較佳爲碳數 2〜6之伸院基,較佳爲碳數2〜6之直鏈狀之伸烷基或下 述式(3 )表示之基’ CH3 __R111——CH * ( 3 ) -9- 200912531 (式(3 )中’ Ri】1係伸甲基或碳數2〜4之直鏈之伸烷基 ’附加「*」之連結鍵與S鍵結)。尺1之碳數2〜10之烷 基伸甲基較佳爲下述式(4)表示之基。 —CH——(4) 上述式(1)之Y較佳爲-0-C0-* (但是附加「*」之 連結鍵與R1鍵結)。 上述式(1)之η較佳爲2〜8之整數,更佳爲2〜6 之整數或8,更佳爲2、3、4、6或8。 上述式(1)中,η爲2時之X爲例如碳數2〜1〇之 直鏈狀或支鏈狀之伸烷基、下述式(5 )(In the formula (2), R11 is independently a methyl group or a carbon number of 2 to 6 - 8 - 200912531. The alkyl group "*" is a linkage bond) and [B] a 1,2-anthracene stack. Nitrogen compounds. The object and the advantages of the present invention are attained by the following method for forming an interlayer insulating film or a microlens, which comprises the following steps in the following order: (1) forming a radiation sensitive linear resin composition on the substrate a step of coating the film, (2) a step of irradiating at least a portion of the coating film with radiation, (3) a developing step, and (4) a heating step. The object and advantage of the present invention are attained by the third interlayer insulating film or microlens formed by the above method. BEST MODE FOR CARRYING OUT THE INVENTION The sensitive radiation linear resin composition of the present invention will be described in detail below. Polymer [A] The polymer [A] is a group containing at least one selected from the group consisting of a fluorenyl group and a carboxylic acid anhydride group, and a group selected from at least one of an epoxy group and an oxocyclobutyl group. The polymer of the above formula (〇 represents the n-valent group. The alkylene group having 2 to 10 carbon atoms of R1 of the above formula (1) is preferably a carbon number of 2 to 6 and preferably a carbon number of 2 to 6. a linear alkyl group of 6 or a group represented by the following formula (3): CH3 __R111 - CH * (3) -9- 200912531 (in the formula (3), 'Ri] 1 is a methyl group or a carbon number The linear alkyl group of 2 to 4 is attached with a "*" bond and the S bond). The alkyl group having a carbon number of 2 to 10 of the rule 1 is preferably a group represented by the following formula (4). —CH—(4) Y of the above formula (1) is preferably -0-C0-* (but the "*" linkage is added to R1). The η of the above formula (1) is preferably 2~ An integer of 8 is more preferably an integer of 2 to 6 or 8, more preferably 2, 3, 4, 6, or 8. In the above formula (1), when η is 2, X is, for example, a carbon number of 2 to 1 Å. a linear or branched alkyl group, the following formula (5)

(式(5 )中,RIV係各自獨立爲氫原子或甲基’ ml係1 〜20之整數,「*」係各自表示連結鍵)表市之2價基等 η爲3時之X爲例如下述式(6) -10- 200912531(In the formula (5), the RIV systems are each independently an integer of a hydrogen atom or a methyl group 'ml series 1 to 20, and each of the "*" indicates a bond bond). The following formula (6) -10- 200912531

CH 2 •CH2 - Φ—C2H5 (6)CH 2 •CH2 - Φ—C2H5 (6)

CH 2 (式(6)中,「*」係各自表示連結鍵)表示之3價基等 » ^ 4、6或8時之X爲例如下述式(7) 本 CH2 *——ch2-c— ch2 本 r ^ , . ,戊0〜2之整數’「*」係各自表示連結 C 式(7)中,1«2 1糸 υ 鍵)表示之4、6或8價基等 聚合物〔A〕中之至少一種選自殘基及竣酸肝基所成 群之基的含有比例較佳爲ο·1〜1Ommol/g,更佳爲〇·5〜 5mm〇1/g。聚合物〔A〕中之至少—種選自環氧乙基及氧環 丁基所成群之基的含有比例較佳爲ο·1〜10mm〇i/g,更佳 爲1〜5mm〇l/g。上述式(1 )表示之n價的含有比例較佳 爲 0.005 〜lmmol/g,更佳爲 〇·〇1 〜〇.5mmol/g。 聚合物〔A〕之苯乙烯換算重量平均分子量(以下稱 爲「Mw」)較佳爲2xl〇3〜lxl〇5,更佳爲5χ1〇3〜5xl〇4。 ch2CH 2 (in the formula (6), "*" indicates a linkage bond), such as a trivalent group or the like. * ^ 4, 6 or 8 X is, for example, the following formula (7). This CH2 * - ch2-c — ch2 The r ^ , . , 戊 0~2 integer ''*' each means a polymer such as a 4, 6 or 8 valence group represented by a C (7), 1«2 1糸υ bond). The content of at least one selected from the group consisting of a residue and a group of citrate hepatic groups is preferably ο·1 to 10 mmol/g, more preferably 〇·5 to 5 mm〇1/g. The content of at least one of the polymers [A] selected from the group consisting of epoxyethyl and oxocyclobutyl groups is preferably ο·1 to 10 mm 〇i/g, more preferably 1 to 5 mm 〇l. /g. The content of the n-valent represented by the above formula (1) is preferably 0.005 to 1 mmol/g, more preferably 〇·〇1 to 〇.5 mmol/g. The styrene-equivalent weight average molecular weight (hereinafter referred to as "Mw") of the polymer [A] is preferably 2 x 10 〇 3 to l x l 〇 5, more preferably 5 χ 1 〇 3 to 5 x l 〇 4. Ch2

-CH2 一 〇—CH2 一 F CH;-CH2 - CH - CH2 - F CH;

CH m2 2 (7) -11 - 200912531CH m2 2 (7) -11 - 200912531

Mw未達2x10時’有時顯像容許度不足,所得之被膜之 殘膜率等會降低’或所得之層間絕緣膜或微透鏡之圖型形 狀、耐熱性等差。而Mw超過lxio5時,有時感度會降或 圖型形狀差。又’ Mw被Μη (聚苯乙烯換算數目平均分子 量)除所得之値所定義之聚合物〔A〕的分子量分布(以 下稱爲「Mw/Mn」)較佳爲5.0以下,更佳爲4 〇以下。 M w/Mn超過5 _ 0時’所得之層間絕緣膜或微透鏡的圖型形 狀差。含有上述之聚合物〔A〕的敏輻射線性樹脂組成物 在顯像時不會產生顯像殘留,可容易形成所定的圖型形狀 〇 聚合物〔A〕只要是上述聚合物時,可爲任何方法所 得者,例如 (a 1 )選自不飽和竣酸及不飽和竣酸酐所成群之至少一種 (以下稱爲「化合物(a丨)」),及 (a2)含有至少一種選自環氧乙基及氧環丁基所成群之基 之不飽和化合物(以下稱爲「化合物(a2)」)所成的不 飽和化合物,在下述式(8 ) X—f-Y—R-SH ) (8) (式(8)中,X、Y、Ri及η係各自與上述式之χ 、Y、Ri及η同義)表示之化合物的存在下,進行自由基 共聚所得之聚合物。 化合物(a 1 )係選自具有自由基聚合性之不飽和羧酸 及不飽和竣酸酐所成群之至少一種,例如有單殘酸、二竣 -12- 200912531 酸、二羧酸酐、多元羧酸之單〔(甲基)丙烯醯氧基烷基 〕酯、在兩末端具有羧基與羥基之聚合物之單(甲基)丙 烯酸酯、具有羧基之多環化合物及其酐等。 這些之具體例,單羧酸例如有丙烯酸、甲基丙烯酸、 巴豆酸等; 二羧酸例如有順丁烯二酸、反式丁烯二酸、檸康酸、 中康酸、衣康酸等; 二羧酸之酐例如有上述二羧酸例示之化合物之酐等; 多元羧酸之單〔(甲基)丙烯醯氧基烷基〕酯例如有 琥珀酸單〔2-(甲基)丙烯醯氧基乙基〕酯、苯二甲酸單 〔2-(甲基)丙烯醯氧基乙基〕酯等; 在兩末端具有羧基與羥基之聚合物之單(甲基)丙烯 酸酯例如有ω -羧基聚己內酯單(甲基)丙烯酸酯等; 具有羧基之多環化合物及其酐,例如有5 -羧基雙環〔 2.2.1〕庚-2-烯、5,6-二竣基雙環〔2.2.1〕庚-2-烯 ' 5 -竣 基-5-甲基雙環〔2.2.1〕庚-2-烯、5-羧基-5-乙基雙環〔 2.2.1〕庚-2-儲、5 -殘基-6-甲基雙環〔2.2.1〕庚-2-嫌、5-羧基-6-乙基雙環〔2.2.1〕庚-2-烯、5,6-二羧基雙環〔 2.2.1〕庚-2-烯酐等。 這些中,在共聚反應性、對於鹼水溶液之溶解性及取 得容易性的觀點’較佳爲使用單殘酸、二竣酸之酐,尤其 是丙烯酸、甲基丙烯酸、順丁烯二酸酐。這些之化合物( a 1 )可單獨或組合使用。 化合物(a2 )係具有選自由具有自由基聚合性之環氧 -13- 200912531 基及氧環丁基所成群之至少一種之基的不飽和化合物。 含有環氧基之不飽和化合物,例如有丙烯酸縮水甘油 酯、甲基丙烯酸縮水甘油酯、α-乙基丙烯酸縮水甘油醋、 α-正丙基丙烯酸縮水甘油酯、α-正丁基丙烯酸縮水甘油酯 、丙烯酸-3,4-環氧丁酯、甲基丙烯酸-3,4-環氧丁酯、丙烯 酸-6,7-環氧庚酯、甲基丙烯酸-6,7-環氧庚酯、丙烯酸_ 3,4-環氧環己酯、甲基丙烯酸-3,4-環氧環己酯、丙烯酸_ 3,4 -環氧環己基甲酯、甲基丙烯酸-3,4 -環氧環己基甲酯、 α -乙基丙嫌酸-6,7-環氧庚酯、〇 -乙燦基节基-2,3 -環氧丙醚 、m-乙烯基苄基-2,3-環氧丙醚、ρ-乙烯基苄基-2,3-環氧丙 醚等,其中甲基丙烯酸縮水甘油酯、甲基丙烯酸_3,4 -環氧 環己基甲酯、甲基丙烯酸_6,7_環氧庚酯、〇-乙烯基苄基_ 2,3 -環氧丙醚、m -乙烯基苄基-2,3 -環氧丙醚、ρ -乙烯基苄 基-2,3-環氧丙醚等在共聚反應性及提高所得之層間絶緣膜 或微透鏡之耐熱性'表面硬度的方面較佳。 具有氧環丁基的不飽和化合物,例如有3 -(丙烯醯氧 基甲基)氧環丁烷、3-(丙烯醯氧基甲基)-3 -甲基氧環丁 烷、3-(丙烯醯氧基甲基)_3_乙基氧環丁烷、3-(丙烯醯 氧基甲基)-2-三氟甲基氧環丁烷、3-(丙烯醯氧基甲基 )-2-五氟乙基氧環丁烷、3-(丙烯醯氧基甲基)-2-苯基 氧環丁烷、3-(丙烯醯氧基甲基)_2,2-二氟氧環丁烷、3-(丙嫌醯氧基甲基)_2,2,4-二氟氧環丁院、3-(丙稀酿氧 基甲基)-2,2,4,4 -四氟氧環丁烷、3- (2 -丙烯醯氧基乙基 )氧環丁院、3- (2 -丙燒酸氧基乙基)-2 -乙基氧環丁院、 -14 - 200912531 3- ( 2-丙烯醯氧基乙基)-3-乙基氧環丁烷、卜(2_丙烯酸 氧基乙基)-2-三氟甲基氧環丁院' 3- (2_丙烯醯氧基乙基 )-2-五氟乙基氧環丁烷、3-(2-丙烯醯氧基乙基)_2_苯 基氧環丁院、3- (2 -丙嫌釀氧基乙基)_2,2 -二氟氧環丁产 、3_(2_丙烯醯氧基乙基)_2,2,4 -三氟氧環丁烷、3_(2_ 丙烯醯氧基乙基)-2,2,4,4-四氟氧環丁烷、2_ (丙嫌醯氧 基甲基)氧環丁院、2-(丙嫌醯氧基甲基)_2_甲基氧環丁 烷、2-(丙烯醯氧基甲基)-3-乙基氧環丁烷、2_ (丙烯醯 氧基甲基)-2-三氟甲基氧環丁烷、2_ (丙烯醯氧基甲基 )-2 -五氟乙基氧環丁烷、2-(丙烯醯氧基甲基)-2 -苯基 氧環丁烷、2-(丙烯醯氧基甲基)-2,2 -二氟氧環丁烷、2-(丙烯醯氧基甲基)-2,2,4 -三氟氧環丁烷、2-(丙烯醯氧 基甲基)-2,2,4,4-四氟氧環丁烷、2-(2-丙烯醯氧基乙基 )氧環丁烷、2- ( 2-丙烯醯氧基乙基)-2-乙基氧環丁烷、 2-(2-丙烯醯氧基乙基)-3-乙基氧環丁烷、2-(2-丙烯醯 氧基乙基)-2-三氟甲基氧環丁烷、2-(2-丙烯醯氧基乙基 )-2-五氟乙基氧環丁烷、2- (2-丙烯醯氧基乙基)-2-苯 基氧環丁烷、2- (2-丙烯醯氧基乙基)-2,2-二氟氧環丁烷 、2-(2_丙烯醯氧基乙基)-2,2,4-三氟氧環丁烷、2_(2_ 丙烯醯氧基乙基)-2,2,4,4-四氟氧環丁烷等之丙烯酸酯; 3-(甲基丙烯醯氧基甲基)氧環丁烷、3-(甲基丙烯 醯氧基甲基)甲基氧環丁烷、3-(甲基丙烯醯氧基甲基 )-3 -乙基氧環丁烷、3-(甲基丙烯醯氧基甲基)_2·三氟 甲基氧環丁烷、3-(甲基丙烯醯氧基甲基)-2 -五氟乙基氧 -15- 200912531 環丁烷、3-(甲基丙烯醯氧基甲基)-2-苯基氧環丁烷、3-(甲基丙烯醯氧基甲基)-2,2-二氟氧環丁烷、3-(甲基丙 烯醯氧基甲基)-2,2,4-三氟氧環丁烷、3-(甲基丙烯醯氧 基甲基)-2,2,4,4-四氟氧環丁烷、3- (2-甲基丙烯醯氧基 乙基)氧環丁烷、3- (2-甲基丙烯醯氧基乙基)-2-乙基氧 環丁烷、3- (2-甲基丙烯醯氧基乙基)-3-乙基氧環丁烷、 3- (2-甲基丙烯醯氧基乙基)-2-三氟甲基氧環丁烷、3-( 2-甲基丙烯醯氧基乙基)-2-五氟乙基氧環丁烷、3- (2-甲 基丙烯醯氧基乙基)-2-苯基氧環丁烷、3- (2-甲基丙烯醯 氧基乙基)-2,2-二氟氧環丁烷、3- (2-甲基丙烯醯氧基乙 基)-2,2,4-三氟氧環丁烷、3-(2-甲基丙烯醯氧基乙基)-2,2,4,4-四氟氧環丁烷、2-(甲基丙烯醯氧基甲基)氧環丁 烷、2-(甲基丙烯醯氧基甲基)-2-甲基氧環丁烷、2-(甲 基丙烯醯氧基甲基)-3-乙基氧環丁烷、2-(甲基丙烯醯氧 基甲基)-2-三氟甲基氧環丁烷、2-(甲基丙烯醯氧基甲基 )-2-五氟乙基氧環丁烷、2-(甲基丙烯醯氧基甲基)-2-苯基氧環丁烷、3-(甲基丙烯醯氧基甲基)-2,2-二氟氧環 丁烷、2-(甲基丙烯醯氧基甲基)-2,2,4-三氟氧環丁烷、 2_ (甲基丙烯醯氧基甲基)-2,2,4,4-四氟氧環丁烷、2-( 2-甲基丙烯醯氧基乙基)氧環丁烷、2- ( 2-甲基丙烯醯氧 基乙基)-2-乙基氧環丁烷、2-(2-甲基丙烯醯氧基乙基 )-3-乙基氧環丁烷、2- (2-甲基丙烯醯氧基乙基)-2-三 氟甲基氧環丁烷、2-(2-甲基丙烯醯氧基乙基)-2-五氟乙 基氧環丁烷、2- (2-甲基丙烯醯氧基乙基)-2-苯基氧環丁 -16- 200912531 烷、2-(2-甲基丙烯醯氧基乙基)-2,2-二氟氧環丁烷、2-(2-甲基丙烯醯氧基乙基)-2,2,4_三氟氧環丁烷、2-(2-甲基丙烯醯氧基乙基)-2,2,4,4-四氟氧環丁烷等之甲基丙 烯酸酯等。這些當中,從共聚反應性的觀點,較佳爲使用 3-(丙烯醯氧基甲基)氧環丁烷、3-(丙烯醯氧基甲基)· 3-甲基氧環丁烷、3-(丙烯醯氧基甲基)-3-乙基氧環丁烷 、3-(甲基丙烯醯氧基甲基)氧環丁烷、3-(甲基丙烯醯 氧基甲基)-3-甲基氧環丁烷、3-(甲基丙烯醯氧基甲基 )-3-乙基氧環丁烷等。 這些化合物(a2 )可單獨或組合使用。 聚合物〔A〕可爲僅含有化合物(a 1 )及化合物(a2 )所成之不飽和化合物的共聚物,或化合物(a 1 )及化合 物(a2 )外,尙含有(a3 )化合物(al )、化合物(a2 ) 以外的不飽和化合物(以下有時稱爲「化合物(a3 )」) 所成之不飽和化合物的共聚物。 上述化合物(a3 )只要是化合物(a 1 )、化合物(a2 )以外具有自由基聚合性之不飽和化合物時’即無特別限 定。化合物(a3 )例如有甲基丙烯酸烷酯、丙烯酸烷酯、 甲基丙烯酸環狀烷酯、具有羥基之甲基丙烯酸酯、丙烯酸 環狀烷酯、甲基丙烯酸芳酯、丙烯酸芳醋、不飽和二殘酸 二醋、雙環不飽和化合物、順丁烯二醯亞胺化合物、不飽 和芳香族化合物、共軛二烯; 下述式(I )表示之含酚性羥基之不飽和化合物; 具有四氫呋喃骨架、呋喃骨架、四氫吡喃骨架、吡喃 -17- 200912531 骨架或下述式(II)表示之骨架的不飽和化合物’及其f 不飽和化合物。When the Mw is less than 2x10, the image forming tolerance is insufficient, the residual film ratio of the obtained film is lowered, or the resulting interlayer insulating film or microlens has a pattern shape and heat resistance. When Mw exceeds lxio5, sometimes the sensitivity will drop or the shape of the pattern will be poor. Further, the molecular weight distribution (hereinafter referred to as "Mw/Mn") of the polymer [A] defined by 所得 M ( (the polystyrene-equivalent number average molecular weight) is preferably 5.0 or less, more preferably 4 〇. the following. When the M w / Mn exceeds 5 _ 0, the resulting interlayer insulating film or microlens has a poor pattern shape. The radiation sensitive linear resin composition containing the above polymer [A] does not cause development residue upon development, and can easily form a predetermined pattern shape. The polymer [A] can be any as long as it is the above polymer. The method obtained, for example, (a 1 ) is at least one selected from the group consisting of unsaturated decanoic acid and unsaturated phthalic anhydride (hereinafter referred to as "compound (a)"), and (a2) contains at least one selected from the group consisting of epoxy An unsaturated compound formed by an unsaturated group of an ethyl group and an oxocyclobutyl group (hereinafter referred to as "compound (a2)") is represented by the following formula (8) X-fY-R-SH (8) A polymer obtained by radical copolymerization in the presence of a compound represented by the formula (8), wherein each of X, Y, Ri, and η are synonymous with χ, Y, Ri, and η of the above formula. The compound (a 1 ) is at least one selected from the group consisting of a radically polymerizable unsaturated carboxylic acid and an unsaturated phthalic anhydride, for example, a single residual acid, a diindole-12-200912531 acid, a dicarboxylic anhydride, a polycarboxylic acid. An acid mono((meth)acryloxyalkylene) ester, a mono(meth)acrylate having a polymer having a carboxyl group and a hydroxyl group at both terminals, a polycyclic compound having a carboxyl group, an anhydride thereof, and the like. Specific examples of such a monocarboxylic acid include acrylic acid, methacrylic acid, crotonic acid, etc.; and dicarboxylic acids such as maleic acid, trans-butenedioic acid, citraconic acid, mesaconic acid, itaconic acid, etc. The dicarboxylic acid anhydride is, for example, an anhydride of the compound exemplified above as the dicarboxylic acid; a mono [(meth) propylene decyloxyalkyl] ester of a polycarboxylic acid such as succinic acid mono [2-(methyl) propylene]; a methoxyethyl ester, a mono [2-(methyl) propylene methoxyethyl] phthalate, etc.; a mono(meth) acrylate having a polymer having a carboxyl group and a hydroxyl group at both terminals, for example, ω -carboxypolycaprolactone mono(meth)acrylate or the like; a polycyclic compound having a carboxyl group and an anhydride thereof, for example, 5-carboxybicyclo[2.2.1]hept-2-ene, 5,6-dimercaptobicyclo [2.2.1] Hept-2-ene ' 5-nonyl-5-methylbicyclo[2.2.1]hept-2-ene, 5-carboxy-5-ethylbicyclo[2.2.1]hept-2- Storage, 5-resyl-6-methylbicyclo[2.2.1]hept-2-pyrrol, 5-carboxy-6-ethylbicyclo[2.2.1]hept-2-ene, 5,6-dicarboxybicyclo [2.2.1] Hept-2-ene anhydride and the like. Among these, from the viewpoints of copolymerization reactivity, solubility in an aqueous alkali solution, and ease of use, it is preferred to use an anhydride of a single residual acid or a dicarboxylic acid, particularly acrylic acid, methacrylic acid or maleic anhydride. These compounds (a 1 ) can be used singly or in combination. The compound (a2) has an unsaturated compound selected from the group consisting of at least one group of a radical polymerizable epoxy-13-200912531 group and an oxocyclobutyl group. The epoxy group-containing unsaturated compound may, for example, glycidyl acrylate, glycidyl methacrylate, α-ethyl methacrylate glycerin, α-n-propyl acrylate glycidyl ester, α-n-butyl acrylate glycidol Ester, 3,4-epoxybutyl acrylate, 3,4-epoxybutyl methacrylate, -6,7-epoxyheptyl acrylate, -6,7-epoxyheptyl methacrylate, Acrylic _ 3,4-epoxycyclohexyl ester, 3,4-epoxycyclohexyl methacrylate, _ 3,4-epoxycyclohexylmethyl acrylate, methacrylic acid-3,4-epoxy ring Hexylmethyl ester, α-ethylpropionic acid-6,7-epoxyheptyl ester, oxime-ethyl benzyl-2,3-epoxypropyl ether, m-vinylbenzyl-2,3-ring Oxypropyl ether, ρ-vinylbenzyl-2,3-epoxypropyl ether, etc., wherein glycidyl methacrylate, _3,4-epoxycyclohexylmethyl methacrylate, methacrylic acid -6, 7_epoxyheptyl ester, fluorenyl-vinylbenzyl-2,3-epoxypropyl ether, m-vinylbenzyl-2,3-epoxypropyl ether, ρ-vinylbenzyl-2,3- The copolymerization reactivity of the glycidyl ether or the like and the improvement of the heat resistance of the resulting interlayer insulating film or microlens 'surface The aspect of hardness is preferred. An unsaturated compound having an oxycyclobutyl group, for example, 3-(propenyloxymethyl)oxycyclobutane, 3-(acryloxymethyl)-3-methyloxycyclobutane, 3-( Propylene methoxymethyl)_3_ethyloxycyclobutane, 3-(acryloxymethyl)-2-trifluoromethyloxetane, 3-(acryloxymethyl)-2 - pentafluoroethyloxycyclobutane, 3-(acryloxymethyl)-2-phenyloxycyclobutane, 3-(acryloxymethyl)_2,2-difluorooxocyclobutane , 3-(propyl oxalyloxymethyl)_2,2,4-difluorooxetane, 3-(propyl oxymethyl)-2,2,4,4-tetrafluorooxane Alkane, 3-(2-propenyloxyethyl)oxetane, 3-(2-propionateoxyethyl)-2-ethyloxetane, -14 - 200912531 3- ( 2 - propylene methoxyethyl)-3-ethyloxocyclobutane, bis(2-acetoxyethyl)-2-trifluoromethyloxetane' 3- (2_acryloxy) 2-pentafluoroethyloxycyclobutane, 3-(2-propenyloxyethyl)_2_phenyloxetane, 3-(2-propionyloxyethyl)_2, 2-difluorooxetane, 3_(2_propylene methoxyethyl)_2,2,4-trifluorooxetane, 3_( 2_ propylene oxiranyl ethyl)-2,2,4,4-tetrafluorooxocyclobutane, 2_(propyl decyloxymethyl) oxetane, 2-(propyl decyloxymethyl) _2_methyloxocyclobutane, 2-(acryloxymethyl)-3-ethyloxocyclobutane, 2-(propenyloxymethyl)-2-trifluoromethylcyclobutane, 2_(Propyleneoxymethyl)-2-pentafluoroethyloxycyclobutane, 2-(propylene methoxymethyl)-2-phenyloxycyclobutane, 2-(propylene methoxymethyl) -2,2-difluorooxocyclobutane, 2-(acryloxymethyl)-2,2,4-trifluorooxocyclobutane, 2-(acryloxymethyl)-2, 2,4,4-tetrafluorooxocyclobutane, 2-(2-propenyloxyethyl)oxycyclobutane, 2-(2-propenyloxyethyl)-2-ethyloxetane Alkane, 2-(2-propenyloxyethyl)-3-ethyloxycyclobutane, 2-(2-propenyloxyethyl)-2-trifluoromethyloxycyclobutane, 2- (2-propenyloxyethyl)-2-pentafluoroethyloxycyclobutane, 2-(2-propenyloxyethyl)-2-phenyloxycyclobutane, 2-(2-propene醯oxyethyl)-2,2-difluorooxocyclobutane, 2-(2-propyleneoxyethyl)-2,2,4-trifluorooxocyclobutane, 2_(2_ propylene oxime Acrylate such as ethyl)-2,2,4,4-tetrafluorooxocyclobutane; 3-(methacryloxymethyl)oxycyclobutane, 3-(methacryloxycarbonyl) Methyloxycyclobutane, 3-(methacryloxymethyl)-3-ethyloxycyclobutane, 3-(methacryloxymethyl)_2·trifluoromethyloxy Cyclobutane, 3-(methacryloxymethyl)-2-pentafluoroethyloxy-15- 200912531 cyclobutane, 3-(methacryloxymethyl)-2-phenyloxy Cyclobutane, 3-(methacryloxymethyl)-2,2-difluorooxocyclobutane, 3-(methacryloxymethyl)-2,2,4-trifluoroox Cyclobutane, 3-(methacryloxymethyl)-2,2,4,4-tetrafluorooxocyclobutane, 3-(2-methylpropenyloxyethyl)oxycyclobutane , 3-(2-methylpropenyloxyethyl)-2-ethyloxocyclobutane, 3-(2-methylpropenyloxyethyl)-3-ethyloxocyclobutane, 3 - (2-Methylpropenyloxyethyl)-2-trifluoromethyloxycyclobutane, 3-(2-methylpropenyloxyethyl)-2-pentafluoroethyloxycyclobutane , 3-(2-methacryloxyethyl)-2-phenyloxycyclobutane, 3-(2-methylpropene oxime Ethyl)-2,2-difluorooxocyclobutane, 3-(2-methylpropenyloxyethyl)-2,2,4-trifluorooxocyclobutane, 3-(2-methyl Propylene methoxyethyl)-2,2,4,4-tetrafluorooxocyclobutane, 2-(methacryloxymethyl)oxycyclobutane, 2-(methacryloxyloxymethyl) 2-methyloxycyclobutane, 2-(methacryloxymethyl)-3-ethyloxycyclobutane, 2-(methacryloxymethyl)-2-tri Fluoromethyloxycyclobutane, 2-(methacryloxymethyl)-2-pentafluoroethyloxycyclobutane, 2-(methacryloxymethyl)-2-phenyloxy Cyclobutane, 3-(methacryloxymethyl)-2,2-difluorooxocyclobutane, 2-(methacryloxymethyl)-2,2,4-trifluoroox Cyclobutane, 2-(methacryloxymethyl)-2,2,4,4-tetrafluorooxocyclobutane, 2-(2-methylpropenyloxyethyl)oxycyclobutane, 2-(2-Methylacryloxyethyl)-2-ethyloxocyclobutane, 2-(2-methylpropenyloxyethyl)-3-ethyloxocyclobutane, 2- (2-methylpropenyloxyethyl)-2-trifluoromethyloxycyclobutane, 2-(2-methylpropenyloxyethyl)-2-pentafluoroethyloxycyclobutane , 2-(2-methylpropenyloxyethyl)-2-phenyloxycyclobutane-16- 200912531 alkane, 2-(2-methylpropenyloxyethyl)-2,2-difluoro Oxycyclobutane, 2-(2-methylpropenyloxyethyl)-2,2,4-trifluorooxocyclobutane, 2-(2-methylpropenyloxyethyl)-2, A methacrylate such as 2,4,4-tetrafluorooxocyclobutane or the like. Among these, from the viewpoint of copolymerization reactivity, 3-(acryloxymethyl)oxycyclobutane, 3-(acryloxymethyl) 3-methyloxetane, 3 is preferably used. -(propylene methoxymethyl)-3-ethyloxycyclobutane, 3-(methacryloxymethyl)oxycyclobutane, 3-(methacryloxymethyl)-3 - methyloxycyclobutane, 3-(methacryloxymethyl)-3-ethyloxycyclobutane, and the like. These compounds (a2) can be used singly or in combination. The polymer [A] may be a copolymer containing only the unsaturated compound of the compound (a 1 ) and the compound (a2), or the compound (a 1 ) and the compound (a2), and the ruthenium (a3) compound (al) A copolymer of an unsaturated compound formed by an unsaturated compound other than the compound (a2) (hereinafter sometimes referred to as "the compound (a3)"). The compound (a3) is not particularly limited as long as it is a radical polymerizable unsaturated compound other than the compound (a1) or the compound (a2). The compound (a3) is, for example, an alkyl methacrylate, an alkyl acrylate, a cyclic alkyl methacrylate, a methacrylate having a hydroxyl group, a cyclic alkyl acrylate, an aryl methacrylate, an aromatic vinegar, and an unsaturated group. Di-residual acid diacetate, bicyclic unsaturated compound, maleimide compound, unsaturated aromatic compound, conjugated diene; phenolic hydroxyl group-containing unsaturated compound represented by the following formula (I); having tetrahydrofuran A skeleton, a furan skeleton, a tetrahydropyran skeleton, a pyran-17-200912531 skeleton or an unsaturated compound of the skeleton represented by the following formula (II) and an unsaturated compound thereof.

,B係, B series

R (式(I)中,R1係氫原子或碳數1〜4之烷基,R2 相同或不同爲氫原子、羥基或或碳數1〜4之烷基 單鍵、-COO-或-CONH-,m爲〇〜3之整數,但晏R‘ 中至少一個爲羥基)R (In the formula (I), R1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R2 is the same or different in a hydrogen atom, a hydroxyl group or an alkyl group having 1 to 4 carbon atoms, -COO- or -CONH -, m is an integer from 〇 to 3, but at least one of 晏R' is a hydroxyl group)

(II) (式(II )中’ R7係氫原子或甲基) 化合物(a3 )之較佳的些具體例,其中甲基柯烯酸嫁 酯例如甲基甲基丙烯酸酯、乙基甲基丙烯酸酯、正丁基甲 基丙烯酸酯、第二丁基甲基丙烯酸酯、甲基丙烯酸第三丁 酯、2 -乙基己基甲基丙烯酸酯、異癸基甲基丙烯酸醋、正 月桂基甲基丙烯酸酯、十三烷基甲基丙烯酸酯、正十八产 -18 - 200912531 基甲基丙烯酸酯等; 丙烯酸烷酯例如甲基丙烯酸酯、異丙基丙烯酸酯等; 甲基丙烯酸環狀烷酯例如環己基甲基丙烯酸酯、2 -甲 基環己基甲基丙烯酸酯、三環〔5.2.1_02.6〕癸烷-8-基甲 基丙烯酸酯、三環〔5.2.1.02.6〕癸烷-8 -基氧乙基甲基丙 烯酸酯、異冰片基甲基丙烯酸酯等; 具有羥基之甲基丙烯酸酯例如有羥甲基甲基丙烯酸酯 、2 -羥乙基丙烯酸酯、3 -羥丙基甲基丙烯酸酯、4 -羥丁基 甲基丙烯酸酯、二甘醇單甲基丙烯酸酯、2,3 -二羥丙基甲 基丙烯酸酯、2-甲基丙烯氧基乙基糖苷、4_羥苯基甲基丙 烯酸酯等; 丙烯酸環狀烷酯例如環己基丙烯酸酯、2_甲基環己基 丙烯酸酯、三環〔5_2.1_〇2.6〕癸烷I基丙烯酸酯、三環 〔5.2.1.02·6〕癸垸-8-基氧乙基丙稀酸醋、異冰片基丙稀 酸酯等; 甲基丙嫌酸方醋例如本基甲基丙燒酸酯、节基甲基丙 稀酸酯等; 节基丙烯酸酯等; 酸二乙酯、富馬酸二 乙酯 丙烯酸芳酯例如苯基丙烯酸酯、 不飽和二羧酸二酯例如順丁烯二 、衣康酸二乙酯等; 雙環不飽和化合物例如雙環〔2.2.1〕庚_2_嫌、5甲 基雙環〔2.2.1〕庚-2-烯、5-乙基雙環〔221〕庚_2_烯、 5-甲氧基雙環〔2_2_1〕庚-2-烯' 5_乙氧基雙環〔2 2 ι〕 庚-2-烯、5,6-二甲氧基雙環〔2.2.丨〕庚_2_烯、二乙氧 -19- 200912531 基雙環〔2.2.1〕庚-2_烯、5-第三丁氧基羰基雙環〔2.2.1 〕庚-2-烯、5-環己氧基羰基雙環〔2.2.1〕庚-2-烯、5-苯 氧基羰基雙環〔2.2.1〕庚-2-烯、5,6_二(第三丁氧基羰基 )雙環〔2.2.1〕庚-2-烯、5,6-二(環己氧基羰基)雙環〔 2.2.1〕庚-2-烯、5- (2,-羥乙基)雙環〔2.2.1〕庚-2-烯、 5,6_二羥基雙環〔2.2.1〕庚-2-烯、5,6-二(羥甲基)雙環 〔2.2.1〕庚-2-烯、5,6-二(2’-羥甲基)雙環〔2.2.1〕庚-2-烯、5-羥基-5-甲基雙環〔2.2.1〕庚-2-烯、5-羥基-5-乙 基雙環〔2.2.1〕庚-2-烯、5-羥甲基-5-甲基雙環〔2.2.1〕 庚-2-烯等; 順丁烯二醯亞胺化合物例如N-苯基順丁烯二醯亞胺 、N-環己基順丁烯二醯亞胺、N-苄基順丁烯二醯亞胺、N-(4-羥苯基)順丁烯二醯亞胺、N- ( 4-羥基苄基)順丁烯 二醯亞胺、N-琥珀醯亞胺基-3-順丁烯二醯亞胺苯甲酸酯 、N-琥珀醯亞胺基-4-順丁烯二醯亞胺丁酸酯、N-琥珀醯 亞胺基-6-順丁烯二醯亞胺己酸酯、N-琥珀醯亞胺基-3-順 丁烯二醯亞胺丙酸酯、N- ( 9-吖啶基)順丁烯二醯亞胺等 » 不飽和芳香族化合物例如苯乙烯、α -甲基苯乙烯、 間-甲基苯乙烯、對-甲基苯乙烯、乙烯基甲苯、對-甲氧基 苯乙烯等;共軛二烯例如有1,3-丁二烯、異戊二烯、2,3-二甲基-1,3-丁二烯等; 含有上述式(I)表示之酚骨架之不飽和化合物,例 如有下述式(1-1 )〜(1-5 )表示之化合物等; -20- 200912531 R1 Ο(II) (R7-based hydrogen atom or methyl group in the formula (II)) Preferred specific examples of the compound (a3), wherein the methyl keto acid graft ester such as methyl methacrylate or ethyl methyl group Acrylate, n-butyl methacrylate, second butyl methacrylate, tert-butyl methacrylate, 2-ethylhexyl methacrylate, isodecyl methacrylate, n-lauryl methacrylate, Tridecyl methacrylate, yoke 18 - 200912531 methacrylate, etc.; alkyl acrylate such as methacrylate, isopropyl acrylate, etc.; alkyl methacrylate such as cyclohexyl Methacrylate, 2-methylcyclohexyl methacrylate, tricyclo [5.2.1_02.6] decane-8-yl methacrylate, tricyclo [5.2.1.02.6] decane-8 - Ethoxyethyl methacrylate, isobornyl methacrylate, etc.; methacrylate having a hydroxyl group such as methylol methacrylate, 2-hydroxyethyl acrylate, 3-hydroxypropylmethyl Acrylate, 4-hydroxybutyl methacrylate, diethylene glycol monomethacrylate, 2, 3-dihydroxypropyl methacrylate, 2-methacryloxyethyl glycoside, 4-hydroxyphenyl methacrylate, etc.; cyclic alkyl acrylate such as cyclohexyl acrylate, 2-methylcyclohexyl Acrylate, tricyclo[5_2.1_〇2.6]decane I acrylate, tricyclo[5.2.1.02·6]癸垸-8-yloxyethyl acrylate vinegar, isobornyl acrylate Etc.; methyl propyl sulphuric acid vinegar such as benzyl propyl acrylate, benzyl propyl acrylate, etc.; aryl acrylate, etc.; diethyl acrylate, diethyl fumarate aryl acrylate, for example Phenyl acrylate, unsaturated dicarboxylic acid diester such as maleic acid, diethyl itaconate, etc.; bicyclic unsaturated compounds such as bicyclo [2.2.1] heptane 2 _, 5 methyl bicyclo [2.2. 1]hept-2-ene, 5-ethylbicyclo[221]hept-2-ene, 5-methoxybicyclo[2_2_1]hept-2-ene'5-ethoxybicyclo[2 2 ι]g- 2-ene, 5,6-dimethoxybicyclo[2.2.丨]hept-2-ene, diethoxy-19-200912531 bisbicyclo[2.2.1]hept-2-ene,5-butoxy Carbonylbicyclo[2.2.1]hept-2-ene, 5-cyclohexyloxycarbonylbicyclo[2.2.1 Hept-2-ene, 5-phenoxycarbonylbicyclo[2.2.1]hept-2-ene, 5,6-bis(t-butoxycarbonyl)bicyclo[2.2.1]hept-2-ene, 5 ,6-bis(cyclohexyloxycarbonyl)bicyclo[2.2.1]hept-2-ene, 5-(2,-hydroxyethyl)bicyclo[2.2.1]hept-2-ene, 5,6-di Hydroxybicyclo[2.2.1]hept-2-ene, 5,6-bis(hydroxymethyl)bicyclo[2.2.1]hept-2-ene, 5,6-bis(2'-hydroxymethyl)bicyclo[ 2.2.1] hept-2-ene, 5-hydroxy-5-methylbicyclo[2.2.1]hept-2-ene, 5-hydroxy-5-ethylbicyclo[2.2.1]hept-2-ene, 5-hydroxymethyl-5-methylbicyclo[2.2.1]hept-2-ene; etc.; maleimide compound such as N-phenyl maleimide, N-cyclohexyl cis Equinone imine, N-benzyl maleimide, N-(4-hydroxyphenyl) maleimide, N-(4-hydroxybenzyl)butylene Amine, N-succinimide-3-oxenimide benzoate, N-succinimide-4-butyleneimine butyrate, N-amber Amino-6-m-butyleneimine hexanoate, N-succinimide-3-oxenimide propionate, N- (9- Pyridyl) maleimide, etc. » unsaturated aromatic compounds such as styrene, α-methylstyrene, m-methylstyrene, p-methylstyrene, vinyltoluene, p-methoxy a conjugated diene such as 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene or the like; and a phenol represented by the above formula (I) The unsaturated compound of the skeleton is, for example, a compound represented by the following formula (1-1) to (1-5); -20- 200912531 R1 Ο

HN \(CH2)nHN \(CH2)n

.R2 R5^V^R3 R4 (式(I-l)中,n 係 1 〜3 的整數,R1、R2、R3、R4、R5 及R6之定義係與式(I )相同).R2 R5^V^R3 R4 (In the formula (I-l), n is an integer from 1 to 3, and R1, R2, R3, R4, R5 and R6 are the same as in the formula (I))

R5^^j^^R3 R4 (式(1-2 )中,R1、R2、R3、R4、R5及R6之定義係與上 述式(I )相同) -21 - 200912531 R1R5^^j^^R3 R4 (In the formula (1-2), the definitions of R1, R2, R3, R4, R5 and R6 are the same as those of the above formula (I)) -21 - 200912531 R1

Ο 、(CH2)n R6\^\^R2 (1-3 ) R5/^V^R3 R4 (式(1-3 )中,n 係 1 〜3 的整數。R1、R2、R3 ' R4、R5 及R6之定義係與上述式(I)相同) (卜4 ) R4 (式(1-4)中,R1、R2、R3、R4、R5及R6之定義係與上 述式(I )相同) 22- 200912531Ο , (CH2)n R6\^\^R2 (1-3 ) R5/^V^R3 R4 (in the formula (1-3), n is an integer from 1 to 3. R1, R2, R3 'R4, R5 And R6 is defined as in the above formula (I)) (Bu 4) R4 (in the formula (1-4), R1, R2, R3, R4, R5 and R6 are the same as defined in the above formula (I)) 22 - 200912531

r6\^Yr2 r5^^V^^r3 R4 (式(1-5 )中,R1、R2、R3、R4 ' R5及R6之定義係與上 述式(I )相同) 具有四氫呋喃骨架之不飽和化合物例如有四氫糠基( 甲基)丙烯酸酯、2-(甲基)丙醯氧基-丙酸四氫糠酯、3-(甲基)丙醯氧基四氫呋喃-2-酮等; 具有呋喃骨架之不飽和化合物例如有2-甲基-5- ( 3-呋喃基)-1-戊烯-3-酮 '糠基(甲基)丙烯酸酯、1-呋喃-2-丁基-3-烯-2-酮、1-呋喃-2-丁基·3-甲氧基-3-烯-2-酮、 6- (2-呋喃基)-2-甲基-1-己烯-3-酮、6-呋喃-2-基-己-1-烯-3-酮、(甲基)丙烯酸2-呋喃-2-基-1-甲基-乙酯、6-( 2-呋喃基)-6-甲基-1-庚烯-3-酮等; 具有四氫吡喃骨架之不飽和化合物,例如有(四氫吡 喃-2-基)甲基(甲基)丙烯酸酯、2,6-二甲基-8-(四氫吡 喃-2-基氧基)-辛-1-烯-3-酮、2-(甲基)丙烯酸四氫吡 喃-2-基酯、1-(四氫吡喃-2-氧)-丁基-3-烯-2-酮等; 具有吡喃骨架之不飽和化合物例如有4- ( 1,4-二氧雜-5 -氧代-6-庚稀基)-6 -甲基-2-卩ϋ喃嗣、4- ( 1,5 - 一氧雑-6-氧代-7-辛烯基)-6-甲基-2-吡喃酮等; -23- 200912531 含有上述式(π)表示之骨架之不飽和化 有聚乙二醇(n = 2〜10)單(甲基)丙烯酸酯 (n = 2〜1〇)單(甲基)丙烯酸酯等; 其他不飽和化合物例如有丙烯腈、甲基丙 乙稀、氯化次乙嫌、丙稀醯胺、甲基丙稀醯胺 酯、4-丙烯醯氧基嗎啉、4-甲基丙烯醯氧基嗎Rf 這些當中,較佳爲使用甲基丙烯酸烷酯、 環狀烷酯、丙烯酸環狀烷酯、順丁烯二醯亞胺 飽和芳香族化合物、共軛二烯; 上述式(I )表示之含酚性羥基之不飽和不 具有四氫呋喃骨架、呋喃骨架、四氫吡喃 骨架或上述式(II)表示之骨架的不飽和化合 反應性及對於鹼水溶液之溶解性的觀點,較佳 第三丁基甲基丙烯酸酯、三環〔5.2.1 ·〇2’6〕| 基丙烯酸酯、月桂基甲基丙烯酸酯、對甲氧基 甲基環己基丙烯酸酯、Ν -苯基順丁烯二醯亞胺 順丁烯二醯亞胺、四氫糠基(甲基)丙烯酸酯 之重複數爲2〜10之聚乙二醇單(甲基)丙烯 基苄基(甲基)丙烯酸酯、4_羥苯基(甲基) 4 -羥苯基(甲基)丙烯醯胺、鄰羥基苯乙烯、 烯、α-甲基-對羥基苯乙烯、:1,3 _丁二烯、4_丙 啉、4 -甲基丙烯酿氧基嗎啉、3-(甲基)丙酿 喃-2 -酮、1-(四氫吡喃·2_氧)-丁基-3_烯_2. 3,5-二甲基-4-經基苄基)甲基丙烯醯胺。 合物,例如 、聚丙二醇 嫌腈、氯化 、乙酸乙烯 木等。 甲基丙烯酸 化合物、不 匕合物; 骨架、吡喃 物,從共聚 爲苯乙烯、 赛烷-8-基甲 苯乙烯、2-、Ν-環己基 、乙烯單位 酸酯、4 -羥 丙烯酸酯、 對羥基苯乙 烯醯氧基嗎 氧基四氫呋 -酮或Ν-( -24- 200912531 這些化合物(a3 )可單獨或組合使用。 本發明所使用之共聚物〔A〕係依據由化合物(al ) 、(a2 )及(a3 )所衍生之重複單位之合計時,由化合物 (al )所衍生之構成單位較佳爲含有5〜40重量% ’特佳爲 含有5〜25重量%。使用此構成單位未達5重量%的共聚物 時,於顯像步驟時,難溶解於鹼水溶液,而超過40重量% 之共聚物係對於鹼水溶液之溶解性有過大的傾向。 本發明所使用之共聚物〔A〕係依據由化合物(al ) 、(a2 )及(a3 )所衍生之重複單位之合計時,由化合物 (a2 )所衍生之構成單位較佳爲含有1〇〜80重量%,特佳 爲含有3 0〜8 0重量%。此構成單位未達1 0重量%時,所得 之層間絕緣膜或微透鏡的耐熱性、表面硬度及耐剝離液性 有降低的傾向,而此構成單位的量超過80重量%時,敏輻 射線性樹脂組成物之保存安定性有降低的傾向。 本發明所使用之共聚物〔A〕係依據由化合物(al ) 、(a2 )及(a3 )所衍生之重複單位之合計時,由化合物 (a3 )所衍生之構成單位較佳爲含有1〇〜8〇重量%,特佳 爲含有15~60重量%。 本發明用之共聚物〔A〕之較佳具體例爲不飽和化合 物之組合’例如有甲基丙烯酸/三環〔5.2 · 1.0 2,6〕癸烷-8 -基甲基丙烯酸酯/4-丙烯醯氧基嗎啉/甲基丙烯酸苄酯/苯乙 稀、甲基丙烯酸/甲基丙烯酸縮水甘油酯/N-環己基順丁烯 二醯亞胺/(3-乙基氧環丁烷-3-基)甲基丙烯酸酯/心甲基-對羥基苯乙烯、甲基丙烯酸/甲基丙烯酸縮水甘油酯/!^苯 -25- 200912531 基順丁烯二醯亞胺/四氫糠基甲基丙烯酸酯/乙烯基苄基 2,3_環氧基丙醚、苯乙烯/甲基丙烯酸/甲基丙烯酸縮水甘 油酯/N- (4-羥苯基)甲基丙烯醯胺/1,3-丁二烯、苯乙烯/ 甲基丙烯酸/甲基丙烯酸縮水甘油酯/( 3 -乙基氧環丁烷- 3-基)甲基丙烯酸酯/三環〔5·2·1·〇2’6〕癸烷-8-基甲基丙烯 酸酯、甲基丙烯酸/甲基丙烯酸縮水甘油酯/三環〔 5.2.1. 〇2,6〕癸烷-8-基甲基丙烯酸酯/Ν-環己基順丁烯二醯 亞胺/η-月桂基甲基丙烯酸酯/α-甲基-對羥基苯乙烯、甲基 丙烯酸/甲基丙烯酸縮水甘油酯/苯乙烯/2-甲基環己基丙烯 酸酯/1-(四氫吡喃-2-氧)-丁基-3-烯-2-酮/4 -羥基苄基甲 基丙烯酸酯、甲基丙烯酸/三環〔5.2.1.02’6〕癸烷-8-基甲 基丙烯酸酯/2-甲基環己基丙烯酸酯/Ν- ( 3,5-二甲基-4-羥 基苄基)甲基丙烯醯胺等。 聚合物〔A〕係例如將上述各不飽和化合物所構成之 混合物在上述式(8)表示之化合物(以下稱爲「多元硫 醇化合物」)之存在下,較佳爲適當之溶劑中,聚合起始 劑之存在下,進行自由基聚合來合成。 前述多元硫醇化合物係在聚合物〔A〕之合成時,具 有連鏈轉移劑功能之成分。 前述多元硫醇化合物例如有可使用氫硫基羧酸與多元 醇之酯化合物等。 上述氫硫基羧酸例如有氫硫基乙酸、3 -氫硫基丙酸、 3-氫硫基丁酸、3-氫硫基戊酸等; 多元醇例如有乙二醇、四甘醇、丁二醇、三羥甲基丙 -26- 200912531 烷、季戊四醇、二季戊四醇、三季戊四醇、1,3,5-三(2-羥乙基)三聚氰酸酯、山梨糖醇等。 本發明使用之較佳的多元硫醇化合物之具體例,例如 三羥甲基丙烷(3-氫硫基丙酸酯)、季戊四醇四(3-氫硫 基丙酸酯)、四甘醇(3 -氫硫基丙酸酯)、二季戊四醇( 3-氫硫基丙酸酯)、季戊四醇四(氫硫基乙酸酯)、1,4-雙(3 -氫硫基丁醯氧基)丁烷、季戊四醇四(3 -氫硫基丁 酸酯)、1,3,5-三(3-氫硫基丁氧基)-l.,3,5-三嗪-2,4,6 ( 1Η, 3Η, 5Η)-三酮等。 前述多元硫醇化合物可單獨或混合兩種以上來使用。 合成聚合物〔A〕時之多元硫醇化合物之使用比例係 對於全不飽和化合物100重量份時,較佳爲0.5〜30重量 份,更佳爲1〜20重量份,特佳爲1.5〜10重量份。多元 硫醇化合物之使用比例未達0 · 5重量份時,有時無法充分 進行分子量調整。而超過3 0重量份時,有時不易得到較 局之聚合轉化率。 製造聚合物〔A〕所用之聚合起始劑一般可使用自由 基聚合引發劑。例如2,2’-偶氮雙異丁腈、2,2, _偶氮雙( 2,4-二甲基戊腈)、2,2’-偶氮雙-(4-甲氧基- 2,4-二甲基戊 腈)等之偶氮化合物;苯甲醯基過氧化物、月桂醯基過氧 化物、第三丁基過氧化戊酸酯、1,1,-雙-(第三丁基過氧 化)己纟兀寺之有機過氧化物,及過氧化氨。使用過氧化 物作爲自由基聚合起始劑時,過氧化物與還原劑一同使用 也可作爲氧化還原型起始劑。 -27- 200912531 聚合起始劑之使用比例係對於全不飽和化合物1 00重 量份時,較佳爲0 · 1〜5 0重量份,更佳爲0.1〜2 0重量份 〇 聚合物〔A〕製造時所使用之溶劑,例如有醇、醚、 乙二醇醚、乙二醇烷醚乙酸酯、二甘醇、丙二醇單烷醚、 丙二醇烷醚乙酸酯、丙二醇烷醚丙酸酯、芳香族烴、酮、 酯等。 這些具體例中’上述醇例如有甲醇、乙醇、苄醇、2-苯基乙醇、3-苯基-1-丙醇等; 醚例如有四氫呋喃等; 乙二醇醚例如有乙二醇單甲醚、乙二醇單乙醚等; 乙二醇烷醚乙酸酯例如有甲基乙二醇乙醚乙酸酯、乙 基乙二醇乙醚乙酸酯、乙二醇單丁醚乙酸酯、乙二醇單乙 醚乙酸酯等; 二甘醇醚例如二甘醇單甲醚、二甘醇單乙醚、二甘醇 二甲醚、二甘醇二乙醚、二甘醇乙基甲醚等; 丙二醇單烷醚例如丙二醇單甲醚、丙二醇單乙醚、丙 二醇單丙醚、丙二醇單丁醚等; 丙二醇烷醚丙酸酯例如丙二醇甲醚丙酸酯、丙二醇乙 醚丙酸酯、丙二醇丙醚丙酸酯、丙二醇丁醚丙酸酯等; 丙二醇單烷醚乙酸酯例如丙二醇單甲醚乙酸酯、丙二 醇單乙醚乙酸酯、丙二醇單丙醚乙酸酯、丙二醇單丁醚乙 酸酯等; 芳香族烴例如甲苯、二甲苯等; -28- 200912531 酮例如甲基乙酮、環己酮、4 -羥基-4 -甲基-2 -戊酮等 » 酯例如乙酸甲酯、乙酸乙酯、乙酸丙酯、乙酸丁酯、 2 -羥基丙酸乙酯、2 -羥基-2-甲基丙酸甲酯、2 -羥基-2-甲基 丙酸乙酯、羥基乙酸甲酯、羥基乙酸乙酯、羥基乙酸丁酯 、乳酸甲酯、乳酸乙酯、乳酸丙酯、乳酸丁酯、3 _羥基丙 酸甲酯、3 -羥基丙酸乙酯、3 -羥基丙酸丙酯、3 -羥基丙酸 丁酯、2-羥基-3-甲基丁酸甲酯、甲氧基乙酸甲酯、甲氧基 乙酸乙酯、甲氧基乙酸丙酯、甲氧基乙酸丁酯、乙氧基乙 酸甲酯、乙氧基乙酸乙酯、乙氧基乙酸丙酯、乙氧基乙酸 丁酯、丙氧基乙酸甲酯、丙氧基乙酸乙酯、丙氧基乙酸丙 酯、丙氧基乙酸丁酯、丁氧基乙酸甲酯、丁氧基乙酸乙酯 、丁氧基乙酸丙酯、丁氧基乙酸丁酯、2 -甲氧基丙酸甲酯 、2-甲氧基丙酸乙酯、2-甲氧基丙酸丙酯、2-甲氧基丙酸 丁酯、2-乙氧基丙酸甲酯、2-乙氧基丙酸乙酯、2-乙氧基 丙酸丙酯、2 -乙氧基丙酸丁酯、2 -丁氧基丙酸甲酯、2 -丁 氧基丙酸乙酯、2-丁氧基丙酸丙酯、2-丁氧基丙酸丁酯、 3-甲氧基丙酸甲酯、3-甲氧基丙酸乙酯、3-甲氧基丙酸丙 酯、3-甲氧基丙酸丁酯、3_乙氧基丙酸甲酯、3_乙氧基丙 酸乙酯、3 -乙氧基丙酸丙酯、3 -乙氧基丙酸丁酯、3 -丙氧 基丙酸甲酯、3-丙氧基丙酸乙酯、3-丙氧基丙酸丙酯、3-丙氧基丙酸丁酯、3-丁氧基丙酸甲酯、3-丁氧基丙酸乙酯 、3-丁氧基丙酸丙酯、3_ 丁氧基丙酸丁酯等之酯。 其中較佳者爲乙二醇烷醚乙酸酯、二甘醇、丙二醇單 -29- 200912531 烷醚或丙二醇烷醚乙酸酯等,特別理想爲二甘醇二 二甘醇乙基甲醚、丙二醇甲醚、丙二醇乙醚、丙二 乙酸酯或3 -甲氧基丙酸甲酯。 聚合溫度係0〜150 °C,較佳爲50〜120 Ό,聚 較佳爲1 0分鐘〜2 0小時,更佳爲3 0分鐘〜6小時 上述化合物(a 1 )及化合物(a2 )及較佳爲含 物(a3 )所成之不飽和化合物的聚合反應較佳爲其 化率爲9 0重量%以上,更佳爲9 3重量%以上,更1 重量%以上。此處的聚合轉化率係指聚合反應所得 物〔A〕之重量對於供給聚合反應之化合物(a 1 ) 物(a2 )及化合物(a3 )及聚合起始劑及連鏈轉移 計重量的比例。聚合轉化率在上述範圍內,含有聚 所得之聚合物〔A〕之溶液未經過純化供給調製敏 性樹脂組成物,也可將塗膜形成時之加熱產生之膜 低至最小限度,不影響敏輻射線性樹脂組成物之輻 度及製得之層間絶緣膜或微透鏡的耐熱性,故較佳 上述化合物(al )及化合物(a2 )及較佳爲含 物(a3 )所成之不飽和化合物的聚合反應在如上述 醇化合物之存在下進行,可容易得到較佳之聚合轉1 多元硫醇化合物之上述優異的效果係本案發明 發現的效果。 〔B〕成分 本發明使用之〔B〕成分係藉由輻射線照射產 甲醚、 醇甲醚 合時間 〇 有化合 聚合轉 妾爲95 之聚合 、化合 劑的合 合反應 輻射線 減少降 射線感 c> 有化合 多元硫 匕率。 人首先 生羧酸 -30- 200912531 之功能的1,2-醌二疊氮化合物,可使用酚性化合物或醇性 化合物(以下稱爲「母核」)與1,2-萘醌二疊氮磺酸鹵化 物的縮合物。 上述母核例如有三羥基二苯甲酮、四羥基二苯甲酮、 五羥基二苯甲酮、六羥基二苯甲酮、(聚羥基苯基)鏈烷 、其他的母核。 這些之具體例,其中三羥基二苯甲酮例如有2,3,4-三 羥基二苯甲酮、2,4,6-三羥基二苯甲酮等; 四羥基二苯甲酮例如有 2,2’,4,4’ -四羥基二苯甲酮、 2,3,4,3’-四羥基二苯甲酮、2,3,4,4’-四羥基二苯甲酮、 2,3,4,2’-四羥基-4’-甲基二苯甲酮' 2,3,4,4’-四羥基-3’-甲 氧基二苯甲酮等; 五羥基二苯甲酮例如2,3,4,2’,6’-五羥基二苯甲酮等; 六羥基二苯甲酮例如2,4,6,3’,4’,5’-六羥基二苯甲酮 、3,4,5,3’,4’,5’-六羥基二苯甲酮等; (聚羥基苯基)鏈烷例如雙(2,4-二羥基苯基)甲烷 、雙(對羥基苯基)甲烷、三(對經基苯基)甲烷、 1,1,1-三(對羥基苯基)乙烷、雙(2,3,4-三羥基苯基)甲 烷、2,2-雙(2,3,4-三羥基苯基)丙烷、1,1,3-三(2,5-二 甲基-4-羥苯基)-3-苯基丙烷、4,4’-〔 1-〔 4-〔 1-〔 4_羥苯 基〕-1-甲基乙基〕苯基〕次乙基〕雙酚、4,4’,4”-次乙基 三酚 '雙(2,5 -二甲基-4 -羥苯基)-2 -羥苯基甲烷、 3,3,3’,3’-四甲基-1,1’-螺二茚-5,6,7,5’,6’,7’-己醇、2,2,4-三甲基-7,2’,4’-三羥基黄烷等; -31 - 200912531 其他之母核例如有2 -甲基- 2-( 2,4_二羥基苯基)-4-(4-羥苯基)_7_羥基色滿、2-〔雙{ ( 5-異丙基-4-羥基- 2 -甲基)苯基}甲基〕、i-〔l-(3-{l-(4 -羥苯基)-1-甲基乙基} -4,6 -二羥基苯基)-1-甲基乙基〕-3- (1-(3-{ 1-(4 -羥苯基)-1-甲基乙基} -4,6 -二羥基苯基)-1-甲 基乙基)苯、4,6 -雙{ 1-(4 -經基苯基)·1_甲基乙基}-1,3 -二羥基苯。 也可使用將上述例示之母核之酯鍵改爲醯胺鍵之1,2-萘醌二疊氮磺酸醯胺,例如有2,3,4 -三羥基二苯甲酮-1,2-萘醌二疊氮-4-磺酸醯胺等。 這些之母核中,較佳爲2,3,4,4’-四羥基二苯甲酮、 4,4’-〔1-〔4-〔1-〔4-羥苯基〕-1-甲基乙基〕苯基〕次亞 基〕雙酚、4,4’,4” -次乙基三酚。 又’ 1,2-萘醌二疊氮磺酸鹵化物較佳爲1,2-萘醌二疊 氮磺酸氯’其具體例有1,2-萘醌二疊氮-4-磺酸氯及1,2-萘 醌二疊氮-5-磺酸氯,其中較佳爲使用1,2 -萘醌二疊氮- 5-磺酸氯。 縮合反應係對於酚性化合物或醇性化合物中之Ο Η基 的莫耳數,較佳爲使用相當於3〇〜85莫耳%,更較佳爲 50〜70莫耳%之1,2-萘醌二疊氮磺酸鹵化物。 縮合反應可使用公知的方法實施。 這些〔Β〕成分可單獨或組合2種以上使用。 〔Β〕成分之使用比例係對於聚合物〔A〕1 0 0重量份 ,使用5〜100重量份,更佳爲1〇〜5〇重量份。〔B〕成 -32- 200912531 分之比例未達5重量份時,對於成爲顯影液之鹼水溶液之 輻射線之照射部分與未照射部分之溶解度差較小,有時圖 型化困難,有時所得之層間絕緣膜或微透鏡之耐熱性或耐 溶劑性不佳。另外,〔B〕成分之比例超過1 00重量份時 ,輻射線照射部分中,對於前述記鹼水溶液之溶解度不佳 ,顯影困難。 其他成分 本發明之敏輻射線性樹脂組成物係含有上述聚合物〔 A〕及〔B〕成分爲必須成分,但是必要時可含有〔C〕感 熱性酸生成化合物、〔D〕具有至少一個乙烯性不飽和雙 鍵之聚合性化合物、〔E〕聚合物〔A〕以外之環氧樹脂、 〔F〕界面活性劑、〔G〕接著助劑等。但是本發明之敏輻 射線性樹脂組成物係含有化合物(al )及化合物(a2 )及 較佳爲含有化合物(a 3 )所成之不飽和化合物的聚合反應 所得之聚合物〔A〕的溶液供給調製敏輻射線性樹脂組成 物時,以不含有未反應之不飽和化合物之殘留於前述溶液 ,與聚合物〔A〕一同帶入組成物中者以外的化合物(a 1 )、化合物(a2 )及化合物(a3 )中任一種以上爲佳。 上述〔C〕感熱性酸生成化合物可用於提高製得之層 間絶緣膜或微透鏡之耐熱性或硬度。其具體例如鏑鹽、苯 并噻唑鑰鹽、銨鹽、銹鹽等之鐵鹽。 上述锍鹽之具體例如烷基锍鹽、苄基鏑鹽、二苄基鏑 鹽、取代苄基毓鹽等。 -33- 200912531 這些之具體例,烷基锍鹽例如有4-乙醯基苯基二甲基 锍六氟銻酸鹽、4-乙醯氧基苯基二甲基鏑六氟砷酸鹽、二 甲基-4-(苄氧基羰氧基)苯基锍六氟銻酸鹽、二甲基-4-(苯甲醯氧基)苯基锍六氟銻酸鹽、二甲基-4-(苯甲醯氧 基)苯基锍六氟砷酸鹽、二甲基-3-氯-4-乙醯氧基苯基锍 六氟銻酸鹽等; 苄基锍鹽例如有苄基-4-羥苯基甲基锍六氟銻酸鹽、苄 基-4-羥苯基甲基锍六氟磷酸鹽、4-乙醯氧基苯基苄基甲基 锍六氟銻酸鹽、苄基-4-甲氧基苯基甲基锍六氟銻酸鹽、苄 基_2_甲基-4-羥苯基甲基锍六氟銻酸鹽、苄基-3-氯-4-羥苯 基甲基毓六氟砷酸鹽、4-甲氧基苄基-4-羥苯基甲基锍六氟 磷酸鹽等; 二苄基锍鹽例如二苄基-4-羥苯基锍六氟銻酸鹽、二苄 基-4-經本基鏡六親憐酸鹽、4 -乙酸氧基苯基_卞基鏡六氣 銻酸鹽、二苄基-4-甲氧基苯基毓六氟銻酸鹽、二苄基-3-氯-4-羥苯基锍六氟砷酸鹽、二苄基-3-甲基-4-羥基-5-第三 丁基苯基锍六氟銻酸鹽、苄基-4-甲氧基苄基-4-羥苯基锍 六氟磷酸鹽等; 取代苄基鏑鹽例如對氯苄基-4-羥苯基甲基锍六氟銻酸 鹽、對硝基苄基-4-羥苯基甲基锍六氟銻酸鹽、對氯苄基-4-羥苯基甲基锍六氟磷酸鹽、對硝基苄基-3-甲基-4-羥苯 基甲基毓六氟銻酸鹽、3,5-二氯苄基-4-羥苯基甲基毓六氟 銻酸鹽、鄰-氯苄基-3-氯-4-羥苯基甲基锍六氟銻酸鹽等。 上述苯并噻唑鑰鹽之具體例有3 -苄基苯并噻唑鐵六氟 -34- 200912531 銻酸鹽、3 -苄基苯并噻唑鑰六氟磷酸鹽、3 -苄基苯并噻唑 鑰四氟硼酸鹽、3-(對·甲氧基苄基)苯并噻唑鎗六氟銻酸 鹽、3-苄基-2-甲基硫代苯并噻唑鑰六氟銻酸鹽、3-苄基-5-氯苯并噻唑鑰六氟銻酸鹽等之苄基苯并噻唑鐵。 這些當中,較佳爲使用锍鹽及苯并噻唑鎗,特別是4-乙醯氧基苹基二甲基鏑六氟砷酸鹽、苄基-4-羥苯基甲基鏑 六氟銻酸鹽、4 -乙醯氧基苯基苄基甲基毓六氟銻酸鹽、二 苄基-4-羥苯基锍六氟銻酸鹽、4-乙醯氧基苯基苄基锍六氟 銻酸鹽、3-苄基苯并噻唑鎗六氟銻酸鹽。 這些市售品例如有San-Aid SI-L85、同 SI-L110、同 SI-L145、同 SI-L150、同 SI-L160 (三新化學工業(股 )製造)等。 〔C〕成分之使用比例係對於聚合物〔a〕1 〇 〇重量份 時’理想爲使用2 0重量份以下,更理想爲5重量份以下 。使用量超過20重量份時,在塗膜形成步驟中,有時會 有析出物析出,影響塗膜形成的情形。 上述〔D〕成分之具有至少1個乙烯性不飽和雙鍵之 聚合性化合物’例如有單官能(甲基)西燦酸酯、二官能 (甲基)丙烯酸酯或三官能(甲基)丙稀酸醋。 上述單吕目t·(甲基)丙稀酸醋,例如有2_經乙基(甲 基)丙烯酸酯、卡必醇(甲基)丙烯酸酯、異冰片基(甲 基)丙烯酸酯、3 -甲氧基丁基(甲其)…^ 、干盎)丙烯酸酯、2-(甲 基)丙儲醯氧基乙基-2-經丙基苯二甲酸酯等。這些市售品 ’例如有Aronix M-101、同、同M_m (東亞合成 -35- 200912531 (股)製)、KAYARAD TC-110S、同 TC-藥(股)製造)、Viscoat 1 58、同 23 1 1 (大 業(股)製造)等。 上述二官能(甲基)丙烯酸酯例如有: )丙烯酸酯、1,6-己二醇二(甲基)丙烯酸酯、 (甲基)丙烯酸酯、聚丙二醇二(甲基)丙 醇二(甲基)丙烯酸酯、雙苯氧基甲醇莽二 苯氧基乙醇苐二丙烯酸酯等。這些的市| Aronix M-210、同 M-240、同 M-6200 (東亞 造)、KAYARAD HDDA、同 HX-22 0、同 R 藥(股)製造)、Viscoat 260、同 312、同 有機化學工業(股)製造)等。 上述三官能以上之(甲基)丙烯酸酯例 丙烷三(甲基)丙烯酸酯、季戊四醇三(甲 、三((甲基)丙烯醯氧基乙基)磷酸酯、 甲基)丙烯酸酯、二季戊四醇五(甲基)丙 戊四醇六(甲基)丙烯酸酯等,其市售品佐 M-3 09、同 M-400、同 M-405、同 M-45 0、[1 M-8030、同 M-8 060 (東亞合成(股)製) TMPTA、同 DPHA、同 DPCA-20、同 DPCA-60、同 DPCA-120(日本化藥(股)製造) 、同 3 00、同 3 60、同 GPT、同 3PA、同 400 學工業(股)製造)等。 這些較佳爲使用三官能以上之(甲基) 120S (日本化 阪有機化學工 乙二醇(甲基 1,9-壬二醇二 烯酸酯、四甘 丙烯酸酯、雙 S品例如有: 合成(股)製 .-604 (日本化 3 3 5 HP (大阪 如有三羥甲基 基)丙烯酸酯 季戊四醇四( 烯酸酯、二季 ij 如有 Aronix 0 M-7 1 00 > [WI 、KAYARAD 30、同 DPCA-、Viscoat 295 (大阪有機化 丙烯酸酯,其 -36- 200912531 中特別理想爲三羥甲基丙烷三(甲基)丙稀酸酯、 醇四(甲基)丙烯酸酯、二季戊四醇六(甲基)丙 〇 這些之單官能、二官能或三官能以上之(甲基 酸酯可單獨使用或組合使用。〔D〕成分之使用比 於聚合物〔A〕1 〇〇重量份時,理想爲使用5〇重量 ’更理想爲3 0重量份以下。本發明之敏輻射線性 成物係含有上述比例之〔D〕成分,可提高製得之 緣膜或微透鏡之耐熱性及表面硬度等。使用量超過 量份時,在基板上形成敏輻射線性樹脂組成物之塗 驟中,有時會產生塗膜粗糙的情形。 上述〔E〕成分之聚合物〔A〕以外的環氧樹脂 影響相溶性,則無特別限定。較佳爲雙酚A型環氧 酚醛清漆型環氧樹脂、甲酚酚醛清漆型環氧樹脂、 肪族環氧樹脂、縮水甘油酯型環氧樹脂、縮水甘油 環氧樹脂、雜環環氧樹脂、甲基丙烯酸縮水甘油酯 )聚合的樹脂等。其中較佳爲雙酚A型環氧樹脂、 醛清漆型環氧樹脂、縮水甘油酯型環氧樹脂等。 〔E〕成分之使用比例係對於聚合物〔A〕1 00 ,理想爲使用3 0重量份以下。本發明之敏輻射線 組成物係含有此比例之〔E〕成分,可提高製得之 緣膜之耐熱性及表面硬度等。比例超過30重量份 基板上形成敏輻射線性樹脂組成物之塗膜時,有時 塗膜之膜厚不均勻的情形。 季戊四 烯酸酯 )丙烯 例係對 份以下 樹脂組 層間絕 50重 膜之步 只要不 樹脂、 環狀脂 基胺型 經(共 甲酚酚 重量份 性樹脂 層間絶 時,在 會產生 -37- 200912531 聚合物〔A〕也可稱爲「環氧樹脂」,但是〔A〕成 分在具有鹼可溶性方面,與〔E〕成分不同。〔E〕成分爲 驗不溶性。 爲了提高本發明之敏輻射線性樹脂組成物之塗佈性, 可使用〔F〕成分之界面活性劑。可使用之〔F〕界面活性 劑’例如可使用氟系界面活性劑、聚矽氧系界面活性劑及 非離子界面活性劑。 氟系界面活性劑之具體例,例如1,1,2,2 -四氟辛基( 1,1,2,2 -四氟丙基)醚、1,2,2,2-四氟辛基己醚、八甘醇二 (1,1,2,2-四氟丁基)醚、六甘醇二(1,1,2,2,3,3-六氟戊 基)醚、八丙二醇二(1,1,2,2-四氟丁基)醚、六丙二醇 二(1,1,2,2,3,3_六氟戊基)醚、全氟十二烷基磺酸鈉、 1,1,2,2,3,3,9,9,10,10-十氟十二院、1,1,2,2,3,3-六氟癸院 等’除此之外有氟烷基苯磺酸鈉;氟烷氧基乙醚;氟烷基 銨碘鎩、氟烷基聚氧乙烯醚、全氟烷基聚氧乙醇;全氟烷 基烷氧醇酸酯;氟系烷酯類等。這些之市售品,例如有: BM-1000、BM-1100 ( BM Chemie 公司)製造)、Mega fa c F142D、同 F172、同 F173、同 F183、同 F178、同 F191、 同 F471 (大日本油墨化學工業(股)製造)、Fulorad FC-170C、FC-171、FC-430、FC-431 (住友 3M (股)製造 )、Surflon S-112、同 S-113、同 S-131、同 S-141、同 S-145 、同 S-382 、同 SC-101 、同 SC-102 、同 SC-103 、同 SC-104、同 SC-105、同 SC-106(旭玻璃(股)製造)、 F-TOP EF301、同3 03、同3 52 (新秋田化成(股)製造) -38- 200912531 等。 上述聚矽氧系界面活性劑例如有DC-3PA、DC-7PA、 FS-1265 、 SF-8428 、 SH11PA 、 SH21PA 、 SH28PA 、 SH29PA、SH30PA、S Η - 1 9 0、S Η -1 9 3、S Z - 6 0 3 2 (東麗 • Dowcorning · Silicone (股)製造)、TSF-4440、TSF-4300 、 TSF-4445 、 TSF-4446 、 TSF-4460 、 TSF-4452 ( Μ 〇 m e n t i v e p e r f 〇 r m a n c e m a t e r i a 1 s J a p a η 合同公司製)等 之商品名販售者。 上述非離子性系界面活性劑例如可使用聚氧乙烯月桂 醚、聚氧乙烯硬脂醚、聚氧乙烯油醚等之聚氧乙烯烷醚; 聚氧乙烯辛基苯醚、聚氧乙烯壬基苯醚等之聚氧乙烯芳醚 ;聚氧乙烯二月桂酯、聚氧乙烯二硬脂酯等之聚氧乙烯二 烷酯等;(甲基)丙烯酸系共聚物Poly fl〇w No.57、95 ( 共榮公司油脂化學工業(股)製造)等。 這些界面活性劑可單獨使用或組合兩種以上使用。 這些之〔F〕界面活性劑係對於聚合物〔a〕1 00重量 份時’理想爲使用5重量份以下,更理想爲〇. 1〜2重量 份的範圍。〔F〕界面活性劑之使用量超過5重量份時, 在基板上形成塗膜時,有時容易生成塗膜之膜粗糙的情形 〇 爲了提高製得之層間絶緣膜或微透鏡與基體之黏著性 ’本發明之敏輻射線性樹脂組成物中可使用〔G〕黏著助 劑。此種〔G〕黏著助劑可使用官能性矽烷偶合劑,例如 具有羧基、甲基丙烯醯基、異氰酸酯基、環氧基等之反應 200912531 性取代基之矽烷偶合劑。具體而言,例如有三甲氧基甲矽 烷基苯甲酸、γ-甲基丙烯氧基丙基三甲氧基矽烷、乙烯基 三乙醯氧基矽烷、乙烯基三甲氧基矽烷、γ-異氰酸酯丙基 三乙氧基矽烷、γ-環氧丙氧基丙基三甲氧基矽烷、β-( 3,4-環氧基環己基)乙基三甲氧基矽烷等。此種〔G〕黏 著助劑係對聚合物〔A〕1 00重量份,理想爲使用20重量 份以下,更理想爲2〜1 0重量份之比例。黏著助劑之使用 量超過2 0重量份時,有時在顯影步驟中,容易產生顯影 殘留的情形。 敏輻射線性樹脂組成物 本發明之敏輻射線性樹脂組成物係藉由均勻混合上述 聚合物〔A〕及〔B〕成分及如上述任意添加之其他成分經 均勻混合來製備。本發明之敏輻射線性樹脂組成物係溶解 於適當的溶劑’以溶液狀態來使用。例如以所定比例混合 聚合物〔A〕及〔B〕成分及任意添加之其他成分,可製備 溶液狀態之敏輻射線性樹脂組成物。 M ft本發明之敏輻射線性樹脂組成物所用的溶劑係使 用可均句溶解聚合物〔A〕及〔B〕成分及如上述任意添加 之其他成分之各成分’且不與各成分反應者。 追種溶劑例如有與製造上述聚合物〔A〕使用之溶劑 所例示者相同的溶劑。 追種溶劑中’從各成分之溶解性、與各成分之反應性 、塗膜形成之容易度的觀點,可使用例如醇、乙二醇醚、 -40- 200912531 乙二醇烷醚乙酯、酯及二甘醇。其中特別理想爲苄醇、2_ 苯基乙醇、3-苯基-卜丙醇 '乙二醇單丁醚乙酸酯、二甘醇 單乙醚乙酸酯、二甘醇二乙醚、二甘醇乙基甲醚、二甘醇 二甲醚、丙二醇單甲醚、丙二醇單甲醚乙酸酯、甲氧基汽 酸甲酯、乙氧基丙酸乙酯。 爲了提高前述溶劑及膜厚之面內均勻性,可倂用高沸 點溶劑。可倂用之高沸點溶劑例如有N-甲基甲醯胺、 Ν,Ν-二甲基甲醯胺、N-甲基醯苯胺、N-甲基乙醯胺、N,N_ 二甲基乙醯胺、N_甲基吡咯烷酮、二甲基亞颯、苄基乙n 、二己醚、乙醯基丙酮、異佛爾酮、己酸、庚酸、1-辛醇 、1 -壬醇、乙酸苄酯、苯甲酸乙酯、草酸二乙酯、順丁火希 二酸二乙酯、γ-丁內酯、碳酸乙烯酯、碳酸丙烯酯、苯基 乙二醇乙醚乙酸酯等。其中較佳者爲Ν-甲基吡咯烷酮、γ_ 丁內酯、Ν,Ν-二甲基乙醯胺。 本發明之敏輻射線性樹脂組成物之溶劑倂用高沸點胃 劑時,高沸點溶劑之使用量係對於全溶劑時,使用5 0 g 量%以下,理想爲40重量%以下,更理想爲30重量%以下 。高沸點溶劑之使用量超過此使用比例時,有時會影響塗 膜之膜均句性、感度及殘膜率。 本發明之敏輻射線性樹脂組成物以溶液狀態製備時, 溶液中所佔有之溶劑以外的成分(即聚合物〔A〕、〔 b〕 成分及任意添加之其他成分之合計量)之比例(以下此値 稱爲「固形份濃度」)可配合使用之目的或所要之膜厚之 數値等任意設定’通常爲5〜5 0重量%,理想爲1 〇〜4 〇重 -41 - 200912531 量%,更理想爲1 5〜3 5重量%。 上述製備之組成物溶液係使用孔徑〇 · 2 μ m之微孔過濾 器等過濾後,可供使用。 層間絕緣膜、微透鏡之形成 其次說明使用本發明之敏輻射線性樹脂組成物,形成 本發明之層間絕緣膜、微透鏡的形成方法。本發明之層間 絕緣膜或微透鏡的形成方法係含有以下順序之下述步驟者 > (1 )於基板上形成本發明之敏輻射線性樹脂組成物之塗 膜的步驟, (2 )將輻射線照射於該塗膜之至少一部份的步驟, (3 )顯影步驟,及 (4 )加熱步驟。 (1 )於基板上形成本發明之敏輻射線性樹脂組成物之塗 膜的步驟 上述(1 )之步驟中,在基板表面上塗佈本發明之組 成物溶液’較佳爲藉由預烘烤去除溶劑,形成敏輻射線性 樹脂組成物之塗膜。 可使用之基板的種類,例如有玻璃基板、矽基版及在 這些之表面形成各種金屬的基板。 組成物溶液之塗佈方法無特別限定,例如可使用噴塗 法、$昆塗法、旋轉塗佈法、狹縫模具式塗佈法(SIit Die -42- 200912531R6\^Yr2 r5^^V^^r3 R4 (In the formula (1-5), R1, R2, R3, R4' R5 and R6 are the same as defined in the above formula (I)) An unsaturated compound having a tetrahydrofuran skeleton For example, tetrahydroindenyl (meth) acrylate, 2-(methyl) propyl methoxy-propionic acid tetrahydrofurfuryl ester, 3-(methyl) propyl decyloxytetrahydrofuran-2- ketone, etc.; The unsaturated compound of the skeleton is, for example, 2-methyl-5-(3-furyl)-1-penten-3-one 'mercapto (meth) acrylate, 1-furan-2-butyl-3- En-2-one, 1-furan-2-butyl-3-methoxy-3-en-2-one, 6-(2-furyl)-2-methyl-1-hexene-3- Ketone, 6-furan-2-yl-hex-1-en-3-one, 2-furan-2-yl-1-methyl-ethyl (meth)acrylate, 6-(2-furanyl)- 6-Methyl-1-hepten-3-one or the like; an unsaturated compound having a tetrahydropyran skeleton, for example, (tetrahydropyran-2-yl)methyl (meth) acrylate, 2, 6 -Dimethyl-8-(tetrahydropyran-2-yloxy)-oct-1-en-3-one, 2-hydropyran-2-yl (meth)acrylate, 1-( Tetrahydropyran-2-oxo)-butyl-3-en-2-one, etc.; examples of unsaturated compounds having a pyran skeleton 4-(1,4-Dioxa-5-oxo-6-heptyl)-6-methyl-2-indolyl, 4-(1,5-monooxindole-6-oxygen -7-octenyl)-6-methyl-2-pyranone; -23- 200912531 The unsaturation of the skeleton represented by the above formula (π) is polyethylene glycol (n = 2 to 10) Mono (meth) acrylate (n = 2~1 〇) mono (meth) acrylate, etc.; other unsaturated compounds such as acrylonitrile, methyl propyl ethoxide, chlorinated chlorinated, acrylamide, Methyl acrylamide, 4-propenyloxymorpholine, 4-methylpropenyloxyl Rf Among these, alkyl methacrylate, cyclic alkyl ester, cyclic alkyl acrylate are preferably used. a maleimide saturated aromatic compound or a conjugated diene; the phenolic hydroxyl group-containing unsaturated group represented by the above formula (I) does not have a tetrahydrofuran skeleton, a furan skeleton, a tetrahydropyran skeleton or the above formula (II) From the viewpoint of the unsaturated compound reactivity of the skeleton and the solubility in an aqueous alkali solution, a third butyl methacrylate, a tricyclo [5.2.1 · 〇 2'6] acrylate, a lauryl methyl group is preferred. Acrylate, armor Polyethylene glycol having a repeating number of 2 to 10, such as oxymethylcyclohexyl acrylate, fluorene-phenylmethyleneimine, maleimide, and tetrahydroindenyl (meth) acrylate Mono(methyl)propenylbenzyl (meth) acrylate, 4-hydroxyphenyl (methyl) 4-hydroxyphenyl (meth) acrylamide, o-hydroxy styrene, alkene, α-methyl- P-hydroxystyrene,: 1,3 -butadiene, 4-propanoid, 4-methylpropenyloxymorpholine, 3-(methyl)propan-2-one, 1-(tetrahydropyridyl) ··2_oxy)-butyl-3_ene_2. 3,5-dimethyl-4-trabenzylidene)methacrylamide. Compounds such as, for example, polypropylene glycol, nitrile, chlorinated, vinyl acetate, and the like. a methacrylic compound, a non-chelate; a skeleton, a pyran, copolymerized from styrene, cetan-8-ylmethylstyrene, 2-, fluorene-cyclohexyl, ethylene unit acid ester, 4-hydroxy acrylate, P-hydroxystyrene oxiranyloxytetrahydrofuran-one or hydrazine-(-24-200912531 These compounds (a3) may be used singly or in combination. The copolymer [A] used in the present invention is based on the compound (al). And the combination of the repeating units derived from (a2) and (a3), the constituent unit derived from the compound (al) preferably contains 5 to 40% by weight, and particularly preferably contains 5 to 25% by weight. When the copolymer is less than 5% by weight of the copolymer, it is difficult to dissolve in the aqueous alkali solution in the developing step, and the copolymer having more than 40% by weight tends to have excessive solubility in the aqueous alkali solution. The compound [A] is preferably composed of the compound (a2), and the constituent unit derived from the compound (a2) is contained in an amount of from 1 to 80% by weight based on the total of the repeating units derived from the compounds (al), (a2) and (a3). Good contains 30 to 80% by weight. This constituent unit is not up to When the content is 10% by weight, the heat resistance, surface hardness, and peeling resistance of the obtained interlayer insulating film or microlens tend to decrease, and when the amount of the constituent unit exceeds 80% by weight, the storage of the sensitive radiation linear resin composition The stability is lowered. The copolymer [A] used in the present invention is derived from the compound (a3) in accordance with the total of the repeating units derived from the compounds (al), (a2) and (a3). The unit preferably contains from 1 to 8 % by weight, particularly preferably from 15 to 60% by weight. A preferred embodiment of the copolymer [A] used in the present invention is a combination of unsaturated compounds such as methacrylic acid/ Tricyclo [5.2 · 1.0 2,6]decane-8-yl methacrylate / 4-propenyl methoxy morpholine / benzyl methacrylate / styrene, methacrylic acid / glycidyl methacrylate /N-cyclohexylmethyleneimine /(3-ethyloxycyclobutane-3-yl)methacrylate / cardiomethyl-p-hydroxystyrene, methacrylic acid / glycidyl methacrylate Ester /!^Benzene-25- 200912531 cis-butenylenediamine/tetrahydrofurfuryl methacrylate/vinyl Benzyl 2,3_epoxypropyl ether, styrene/methacrylic acid/glycidyl methacrylate/N-(4-hydroxyphenyl)methacrylamide/1,3-butadiene, benzene Ethylene/methacrylic acid/glycidyl methacrylate/(3-ethyloxycyclobutane-3-yl)methacrylate/tricyclo[5·2·1·〇2'6]decane-8 -Methyl methacrylate, methacrylic acid / glycidyl methacrylate / tricyclo [5.2.1. 〇 2,6] decane-8-yl methacrylate / hydrazine - cyclohexyl maleic acid Imine/η-lauryl methacrylate/α-methyl-p-hydroxystyrene, methacrylic acid/glycidyl methacrylate/styrene/2-methylcyclohexyl acrylate/1-(tetrahydrogen) Pyran-2-oxo)-butyl-3-en-2-one/4-hydroxybenzyl methacrylate, methacrylic acid/tricyclo[5.2.1.0''6]nonane-8-ylmethyl Acrylate/2-methylcyclohexyl acrylate / Ν-(3,5-dimethyl-4-hydroxybenzyl)methacrylamide and the like. The polymer [A] is, for example, a mixture of the above unsaturated compounds in the presence of a compound represented by the above formula (8) (hereinafter referred to as "polythiol compound"), preferably in a suitable solvent. In the presence of a starter, radical polymerization is carried out to synthesize. The above polythiol compound is a component having a chain transfer agent function when the polymer [A] is synthesized. As the polyvalent thiol compound, for example, an ester compound of a hydrothiocarboxylic acid and a polyhydric alcohol can be used. The above-mentioned hydrothiocarboxylic acid is, for example, mercaptoacetic acid, 3-hydrothiopropylpropionic acid, 3-hydrothiobutyric acid, 3-hydrothiovaleric acid or the like; and the polyhydric alcohol is, for example, ethylene glycol or tetraethylene glycol. Butanediol, trimethylolpropane-26-200912531 alkane, pentaerythritol, dipentaerythritol, tripentaerythritol, 1,3,5-tris(2-hydroxyethyl) cyanurate, sorbitol, and the like. Specific examples of preferred polythiol compounds for use in the present invention, such as trimethylolpropane (3-hydrothiopropionate), pentaerythritol tetrakis(3-hydrothiopropionate), tetraethylene glycol (3) -Hexylthiopropionate), dipentaerythritol (3-hydrothiopropionate), pentaerythritol tetrakis (hydrothioacetate), 1,4-bis(3-hydrothiobutoxy)butyl Alkane, pentaerythritol tetrakis(3-hydrothiobutyrate), 1,3,5-tris(3-hydrothiobutoxy)-l.,3,5-triazine-2,4,6 (1Η , 3Η, 5Η)-trione and so on. The above polythiol compound may be used singly or in combination of two or more. The ratio of the polythiol compound used in the synthesis of the polymer [A] is preferably from 0.5 to 30 parts by weight, more preferably from 1 to 20 parts by weight, particularly preferably from 1.5 to 10 parts by weight based on 100 parts by weight of the total unsaturated compound. Parts by weight. When the ratio of use of the polythiol compound is less than 0.5 part by weight, the molecular weight adjustment may not be sufficiently performed. On the other hand, when it exceeds 30 parts by weight, it is difficult to obtain a comparative polymerization conversion ratio. As the polymerization initiator used for the production of the polymer [A], a radical polymerization initiator can be generally used. For example 2,2'-azobisisobutyronitrile, 2,2, azobis(2,4-dimethylvaleronitrile), 2,2'-azobis-(4-methoxy-2 Azo compound such as 4-dimethylvaleronitrile; benzhydryl peroxide, lauryl peroxide, t-butyl peroxy valerate, 1,1,-bis-(third Butyl peroxide, an organic peroxide of hexamidine, and ammonia peroxide. When a peroxide is used as a radical polymerization initiator, a peroxide can also be used as a redox type initiator together with a reducing agent. -27- 200912531 The use ratio of the polymerization initiator is preferably from 0.1 to 50 parts by weight, more preferably from 0.1 to 20 parts by weight, based on 100 parts by weight of the total unsaturated compound. Solvents used in the production, for example, alcohols, ethers, glycol ethers, ethylene glycol alkyl ether acetates, diethylene glycol, propylene glycol monoalkyl ethers, propylene glycol alkyl ether acetates, propylene glycol alkyl ether propionates, Aromatic hydrocarbons, ketones, esters, and the like. In these specific examples, 'the above alcohol is, for example, methanol, ethanol, benzyl alcohol, 2-phenylethanol, 3-phenyl-1-propanol or the like; an ether such as tetrahydrofuran or the like; a glycol ether such as ethylene glycol monomethyl Ether, ethylene glycol monoethyl ether, etc.; ethylene glycol alkyl ether acetate such as methyl glycol ether acetate, ethyl glycol ether acetate, ethylene glycol monobutyl ether acetate, B a diol monoethyl ether acetate or the like; a diethylene glycol ether such as diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diglyme, diethylene glycol diethyl ether, diethylene glycol ethyl methyl ether, etc.; Monoalkyl ethers such as propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, etc.; propylene glycol alkyl ether propionate such as propylene glycol methyl ether propionate, propylene glycol diethyl ether propionate, propylene glycol propyl ether propionate , propylene glycol butyl ether propionate, etc.; propylene glycol monoalkyl ether acetate such as propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, propylene glycol monobutyl ether acetate, etc.; a hydrocarbon such as toluene, xylene, etc.; -28- 200912531 a ketone such as methyl ethyl ketone, Ester, such as ketone, 4-hydroxy-4-methyl-2-pentanone, etc., such as methyl acetate, ethyl acetate, propyl acetate, butyl acetate, ethyl 2-hydroxypropionate, 2-hydroxy-2- Methyl methyl propionate, ethyl 2-hydroxy-2-methylpropionate, methyl hydroxyacetate, ethyl hydroxyacetate, butyl glycolate, methyl lactate, ethyl lactate, propyl lactate, butyl lactate , 3 - hydroxypropyl propionate, ethyl 3-hydroxypropionate, propyl 3-hydroxypropionate, butyl 3-hydroxypropionate, methyl 2-hydroxy-3-methylbutanoate, methoxyacetic acid Methyl ester, ethyl methoxyacetate, propyl methoxyacetate, butyl methoxyacetate, methyl ethoxyacetate, ethyl ethoxyacetate, propyl ethoxyacetate, butyl ethoxyacetate Ester, methyl propoxyacetate, ethyl propoxyacetate, propyl propoxyacetate, butyl propoxyacetate, methyl butoxyacetate, ethyl butoxyacetate, propyl butoxyacetate , butyl butoxyacetate, methyl 2-methoxypropionate, ethyl 2-methoxypropionate, propyl 2-methoxypropionate, butyl 2-methoxypropionate, 2- Methyl ethoxypropionate, 2-ethoxypropionic acid Ethyl ester, propyl 2-ethoxypropionate, butyl 2-ethoxypropionate, methyl 2-butoxypropionate, ethyl 2-butoxypropionate, 2-butoxypropionic acid Propyl ester, butyl 2-butoxypropionate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, propyl 3-methoxypropionate, 3-methoxypropionic acid Butyl ester, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, propyl 3-ethoxypropionate, butyl 3-ethoxypropionate, 3-propoxypropionic acid Methyl ester, ethyl 3-propoxypropionate, propyl 3-propoxypropionate, butyl 3-propoxypropionate, methyl 3-butoxypropionate, 3-butoxypropionic acid An ester of ethyl ester, propyl 3-butoxypropionate, butyl 3-butoxypropionate or the like. Preferred among them are ethylene glycol alkyl ether acetate, diethylene glycol, propylene glycol mono-29-200912531 alkyl ether or propylene glycol alkyl ether acetate, and particularly preferably diethylene glycol diethylene glycol ethyl methyl ether. Propylene glycol methyl ether, propylene glycol diethyl ether, malonate or methyl 3-methoxypropionate. The polymerization temperature is 0 to 150 ° C, preferably 50 to 120 Torr, and the polymerization is preferably 10 minutes to 20 hours, more preferably 30 minutes to 6 hours, the above compound (a 1 ) and the compound (a2) and The polymerization reaction of the unsaturated compound formed of the content (a3) is preferably 90% by weight or more, more preferably 93% by weight or more, and still more preferably 1% by weight or more. The polymerization conversion ratio herein means the ratio of the weight of the polymerization reaction product [A] to the weight of the compound (a1) (a2) and the compound (a3) to be supplied to the polymerization reaction, and the polymerization initiator and the chain transfer meter. When the polymerization conversion ratio is within the above range, the solution containing the polymer [A] obtained by the polymerization is not purified and supplied to the preparation of the photosensitive resin composition, and the film produced by heating when the coating film is formed can be minimized, and the sensitivity is not affected. The radiation of the linear resin composition and the heat resistance of the obtained interlayer insulating film or microlens are preferred, and the unsaturated compound formed by the above compound (al) and the compound (a2) and preferably the content (a3) is preferred. The polymerization reaction is carried out in the presence of the above-mentioned alcohol compound, and the above-mentioned excellent effects of the preferred polymerized polythiol compound can be easily obtained. [B] Component The component [B] used in the present invention is irradiated with radiation to produce methyl ether, and the methyl ether is combined with a polymerization polymerization of 95. The polymerization reaction of the compound reduces the radiation sensation. c> has a compound polysulfide rate. A 1,2-quinonediazide compound in which a human first produces a carboxylic acid-30-200912531, and a phenolic compound or an alcoholic compound (hereinafter referred to as "mother core") and 1,2-naphthoquinonediazide may be used. A condensate of a sulfonic acid halide. The above-mentioned mother nucleus is, for example, trihydroxybenzophenone, tetrahydroxybenzophenone, pentahydroxybenzophenone, hexahydroxybenzophenone, (polyhydroxyphenyl)alkane, or other mother nucleus. Specific examples of these, wherein the trihydroxybenzophenone is, for example, 2,3,4-trihydroxybenzophenone, 2,4,6-trihydroxybenzophenone or the like; and tetrahydroxybenzophenone has, for example, 2 , 2',4,4'-tetrahydroxybenzophenone, 2,3,4,3'-tetrahydroxybenzophenone, 2,3,4,4'-tetrahydroxybenzophenone, 2, 3,4,2'-tetrahydroxy-4'-methylbenzophenone' 2,3,4,4'-tetrahydroxy-3'-methoxybenzophenone; etc.; pentahydroxybenzophenone For example, 2,3,4,2',6'-pentahydroxybenzophenone, etc.; hexahydroxybenzophenone such as 2,4,6,3',4',5'-hexahydroxybenzophenone, 3,4,5,3',4',5'-hexahydroxybenzophenone, etc.; (polyhydroxyphenyl)alkane such as bis(2,4-dihydroxyphenyl)methane, bis(p-hydroxybenzene) Methane, tris(p-phenyl)methane, 1,1,1-tris(p-hydroxyphenyl)ethane, bis(2,3,4-trihydroxyphenyl)methane, 2,2-double (2,3,4-trihydroxyphenyl)propane, 1,1,3-tris(2,5-dimethyl-4-hydroxyphenyl)-3-phenylpropane, 4,4'-[ 1 -[4-[1-[4-hydroxyphenyl]-1-methylethyl]phenyl]ethylidene]bisphenol, 4,4',4"-sub-B Trisphenol 'bis(2,5-dimethyl-4-hydroxyphenyl)-2-hydroxyphenylmethane, 3,3,3',3'-tetramethyl-1,1'-spirobifluorene- 5,6,7,5',6',7'-hexanol, 2,2,4-trimethyl-7,2',4'-trihydroxyflavan, etc.; -31 - 200912531 Other cores For example, 2-methyl-2-(2,4-dihydroxyphenyl)-4-(4-hydroxyphenyl)-7-hydroxychroman, 2-[double{(5-isopropyl-4-hydroxy) - 2 -methyl)phenyl}methyl], i-[l-(3-{l-(4-hydroxyphenyl)-1-methylethyl}-4,6-dihydroxyphenyl)- 1-methylethyl]-3-(1-(3-{ 1-(4-hydroxyphenyl)-1-methylethyl}-4,6-dihydroxyphenyl)-1-methylethyl Benzo, 4,6-bis{ 1-(4-propionylphenyl)·1-methylethyl}-1,3-dihydroxybenzene. It is also possible to use the ester bond of the above-exemplified parent core. 1,2-naphthoquinone diazidosulfonate decylamine which is a guanamine bond, for example, 2,3,4-trihydroxybenzophenone-1,2-naphthoquinonediazide-4-sulfonic acid decylamine Among these, the parent nucleus is preferably 2,3,4,4'-tetrahydroxybenzophenone, 4,4'-[1-[4-[1-[4-hydroxyphenyl]-1 -Methylethyl]phenyl]heptylene]bisphenol, 4,4',4"-ethylidenetriol. Further, the 1,2-naphthoquinonediazidesulfonic acid halide is preferably 1,2-naphthoquinonediazidesulfonic acid chloride, and its specific example is 1,2-naphthoquinonediazide-4-sulfonic acid chloride. And 1,2-naphthoquinonediazide-5-sulfonic acid chloride, of which 1,2-naphthoquinonediazide-5-sulfonic acid chloride is preferably used. The condensation reaction is preferably a molar amount of from 3 to 85 mol%, more preferably from 50 to 70 mol%, based on the molar number of the mercapto compound in the phenolic compound or the alcohol compound. Naphthoquinonediazidesulfonic acid halide. The condensation reaction can be carried out using a known method. These [Β] components can be used individually or in combination of 2 or more types. The proportion of the component used in the [Β] is 5 to 100 parts by weight, more preferably 1 to 5 parts by weight, based on 100 parts by weight of the polymer [A]. When the ratio of [B] to -32 to 200912531 is less than 5 parts by weight, the difference in solubility between the irradiated portion and the unirradiated portion of the radiation of the aqueous alkali solution serving as the developing solution is small, and the patterning may be difficult. The resulting interlayer insulating film or microlens has poor heat resistance or solvent resistance. Further, when the ratio of the component [B] exceeds 100 parts by weight, the solubility in the above-mentioned aqueous alkali solution in the irradiated portion of the radiation is poor, and development is difficult. Other components The sensitive radiation linear resin composition of the present invention contains the above-mentioned polymers [A] and [B] as essential components, but may contain [C] a thermosensitive acid generating compound if necessary, and [D] has at least one ethylenic property. A polymerizable compound having an unsaturated double bond, an epoxy resin other than the [E] polymer [A], a [F] surfactant, and a [G] a secondary auxiliary agent. However, the sensitive radiation linear resin composition of the present invention contains a solution supply of the polymer [A] obtained by the polymerization of the compound (al) and the compound (a2) and preferably the unsaturated compound containing the compound (a3). When the linear radiation-sensitive resin composition is prepared, the compound (a1) and the compound (a2) which are not contained in the solution and which remain in the composition together with the polymer [A] are contained in the composition containing no unreacted unsaturated compound. Any one or more of the compounds (a3) is preferred. The above [C] thermosensitive acid generating compound can be used to improve the heat resistance or hardness of the obtained interlayer insulating film or microlens. Specific examples thereof include iron salts of sulfonium salts, benzothiazole key salts, ammonium salts, rust salts and the like. Specific examples of the above phosphonium salt include an alkyl phosphonium salt, a benzyl phosphonium salt, a dibenzyl phosphonium salt, a substituted benzyl phosphonium salt and the like. -33- 200912531 Specific examples of the alkyl sulfonium salt include 4-ethyl decyl phenyl dimethyl hexafluoroantimonate, 4-ethyl methoxy phenyl dimethyl hexafluoro arsenate, Dimethyl-4-(benzyloxycarbonyloxy)phenylphosphonium hexafluoroantimonate, dimethyl-4-(benzylideneoxy)phenylphosphonium hexafluoroantimonate, dimethyl-4 -(benzylideneoxy)phenylphosphonium hexafluoroarsenate, dimethyl-3-chloro-4-ethenyloxyphenylphosphonium hexafluoroantimonate, etc.; benzyl sulfonium salt, for example, benzyl- 4-hydroxyphenylmethylhydrazine hexafluoroantimonate, benzyl-4-hydroxyphenylmethylphosphonium hexafluorophosphate, 4-ethoxycarbonylphenylbenzylmethylphosphonium hexafluoroantimonate, benzyl 4-methoxyphenylmethylhydrazine hexafluoroantimonate, benzyl-2-methyl-4-hydroxyphenylmethylphosphonium hexafluoroantimonate, benzyl-3-chloro-4-hydroxyl Phenylmethyl hydrazine hexafluoroarsenate, 4-methoxybenzyl-4-hydroxyphenylmethyl sulfonium hexafluorophosphate, etc.; dibenzyl sulfonium salt such as dibenzyl-4-hydroxyphenyl fluorene Fluoroantimonate, dibenzyl-4-perylene, hexamethylene benzoate, 4-benzyloxyphenyl-fluorenyl hexafluoroantimonate, dibenzyl-4-methoxyphenylphosphonium hexafluoroantimonate Salt, dibenzyl-3-chloro 4-Hydroxyphenylphosphonium hexafluoroarsenate, dibenzyl-3-methyl-4-hydroxy-5-t-butylphenylphosphonium hexafluoroantimonate, benzyl-4-methoxybenzyl a 4-benzylphenylphosphonium hexafluorophosphate or the like; a substituted benzyl sulfonium salt such as p-chlorobenzyl-4-hydroxyphenylmethylphosphonium hexafluoroantimonate, p-nitrobenzyl-4-hydroxyphenyl Methyl hydrazine hexafluoroantimonate, p-chlorobenzyl-4-hydroxyphenylmethyl sulfonium hexafluorophosphate, p-nitrobenzyl-3-methyl-4-hydroxyphenylmethyl hexafluoroantimonic acid Salt, 3,5-dichlorobenzyl-4-hydroxyphenylmethylphosphonium hexafluoroantimonate, o-chlorobenzyl-3-chloro-4-hydroxyphenylmethylphosphonium hexafluoroantimonate, and the like. Specific examples of the above benzothiazole salt are 3-benzylbenzothiazole iron hexafluoro-34-200912531 citrate, 3-benzylbenzothiazole hexafluorophosphate, 3-benzylbenzothiazole key four Fluoroborate, 3-(p-methoxybenzyl)benzothiazole gun hexafluoroantimonate, 3-benzyl-2-methylthiobenzothiazole hexafluoroantimonate, 3-benzyl -Benzylbenzothiazole iron such as 5-chlorobenzothiazole hexafluoroantimonate. Among these, it is preferred to use a sulfonium salt and a benzothiazole gun, particularly 4-ethyl methoxy ethoxy dimethyl hexafluoro arsenate, benzyl-4-hydroxyphenyl methyl hexafluoroantimonic acid. Salt, 4-ethoxycarbonylphenylbenzylmethyl hexafluoroantimonate, dibenzyl-4-hydroxyphenylphosphonium hexafluoroantimonate, 4-ethyloxyphenylbenzylphosphonium hexafluorophosphate Citrate, 3-benzylbenzothiazole gun hexafluoroantimonate. These commercially available products include, for example, San-Aid SI-L85, the same SI-L110, the same SI-L145, the same SI-L150, and the same SI-L160 (manufactured by Sanshin Chemical Industry Co., Ltd.). The ratio of use of the component [C] is preferably 20 parts by weight or less, more preferably 5 parts by weight or less, based on the weight of the polymer [a] 1 〇 〇. When the amount is more than 20 parts by weight, in the coating film forming step, precipitates may be precipitated to affect the formation of the coating film. The polymerizable compound having at least one ethylenically unsaturated double bond of the above component [D] is, for example, a monofunctional (meth) succinic acid ester, a difunctional (meth) acrylate or a trifunctional (methyl) propyl group. Dilute vinegar. The above-mentioned mono-Lum et al. (meth) acrylate vinegar, for example, 2-ethyl (meth) acrylate, carbitol (meth) acrylate, isobornyl (meth) acrylate, 3 - methoxybutyl (methyl ketone) ... ^, dry an acrylate, 2-(methyl) propyl storage oxiranyl ethyl 2- propyl phthalate and the like. These commercially available products are, for example, Aronix M-101, Tong, M_m (East Asia Synthetic-35-200912531 (stock)), KAYARAD TC-110S, manufactured by TC-Pharma (share), Viscoat 1 58, and 23 1 1 (Daiye (share) manufacturing) and so on. The above difunctional (meth) acrylates are, for example, acrylate, 1,6-hexanediol di(meth)acrylate, (meth) acrylate, polypropylene glycol di(methyl)propanol di(a) Acrylate, bisphenoxymethanol, diphenoxyethanol oxime diacrylate, and the like. These cities | Aronix M-210, with M-240, with M-6200 (made in East Asia), KAYARAD HDDA, with HX-22 0, with the same R drug (stock), Viscoat 260, with 312, with organic chemistry Industrial (stock) manufacturing) and so on. The above trifunctional or higher (meth) acrylate is propane tri(meth) acrylate, pentaerythritol tris(methyl, tris((meth) propylene methoxyethyl) phosphate, methyl acrylate, dipentaerythritol Penta(methyl) pentylerythritol hexa(meth) acrylate, etc., which is commercially available as M-3 09, with M-400, with M-405, with M-45 0, [1 M-8030, Same as M-8 060 (manufactured by East Asia Synthetic Co., Ltd.) TMPTA, same DPHA, DPCA-20, DPCA-60, DPCA-120 (manufactured by Nippon Kayaku Co., Ltd.), same as 00, same as 3, 60. With GPT, the same 3PA, the same 400 industry (shares) manufacturing and so on. It is preferable to use a trifunctional or higher (meth) 120S (Nippon Chemicals Co., Ltd. ethylene glycol (methyl 1,9-nonanediol dibasic acid ester, tetraethylene acrylate, double S product, for example: Synthetic (stock) system.-604 (Nipponization 3 3 5 HP (Osaka has trimethylol) acrylate pentaerythritol tetra (enoate, second season ij if Aronix 0 M-7 1 00 > [WI, KAYARAD 30. Same as DPCA-, Viscoat 295 (Osaka organic acrylate, especially in -36-200912531) is preferably trimethylolpropane tri(methyl) acrylate, alcohol tetra(meth) acrylate, dipentaerythritol Heterofunctional, difunctional or trifunctional or higher of these hexamethyl (meth)propenes (methyl esters may be used singly or in combination. When the component [D] is used in a ratio of 1 part by weight to the weight of the polymer [A] It is desirable to use a weight of 5 ', more preferably 30 parts by weight or less. The linear radiation sensitive system of the present invention contains the component [D] in the above ratio, which can improve the heat resistance and surface of the obtained film or microlens. Hardness, etc. When the amount exceeds the amount, it forms a sensitive layer on the substrate. In the coating step of the radioactive resin composition, the coating film may be rough. The epoxy resin other than the polymer [A] of the component [E] is not particularly limited, and is preferably bisphenol. A type epoxy novolac type epoxy resin, cresol novolak type epoxy resin, aliphatic epoxy resin, glycidyl ester type epoxy resin, glycidyl epoxy resin, heterocyclic epoxy resin, methacrylic acid shrinkage A glycerin) polymerized resin, etc. Among them, a bisphenol A type epoxy resin, an aldehyde varnish type epoxy resin, a glycidyl ester type epoxy resin, etc. are preferable. The ratio of the [E] component is used for the polymer [A]. 100 00 is preferably used in an amount of 30 parts by weight or less. The radiation-sensitive composition of the present invention contains the component [E] in this ratio, and the heat resistance and surface hardness of the obtained film can be improved. The ratio exceeds 30 parts by weight. When a coating film of a radiation-sensitive linear resin composition is formed on a substrate, the film thickness of the coating film may be uneven. The pentaerythritol ester propylene is a step of 50 parts of the resin layer between the resin layers. Resin, ring The base amine type (co-cresol phenolic weight-retaining resin layer is inexact, and it will produce -37-200912531. The polymer [A] may also be called "epoxy resin", but the [A] component has alkali solubility. It is different from the component [E]. The component [E] is insoluble. To improve the coating property of the sensitive radiation linear resin composition of the present invention, a surfactant of the component [F] can be used. [F] interface activity can be used. For example, a fluorine-based surfactant, a polyfluorene-based surfactant, and a nonionic surfactant can be used. Specific examples of the fluorine-based surfactant, for example, 1,1,2,2-tetrafluorooctyl (1) 1,2,2-tetrafluoropropyl)ether, 1,2,2,2-tetrafluorooctyl hexyl ether, octaethylene glycol bis(1,1,2,2-tetrafluorobutyl)ether, hexamethylene Alcohol bis(1,1,2,2,3,3-hexafluoropentyl)ether, octapropylene glycol bis(1,1,2,2-tetrafluorobutyl)ether, hexapropylene glycol di(1,1,2 , 2,3,3_hexafluoropentyl)ether, sodium perfluorododecylsulfonate, 1,1,2,2,3,3,9,9,10,10-decafluoro-12, 1,1,2,2,3,3-hexafluoroindole, etc. 'In addition to sodium fluoroalkylbenzene sulfonate; fluoroalkoxy B Ether; fluoroalkyl ammonium iodonium, fluoroalkyl polyoxyethylene ether, perfluoroalkyl polyoxyethylene; perfluoroalkyl alkoxylate; fluoroalkyl esters. Commercially available products such as: BM-1000, BM-1100 (manufactured by BM Chemie), Mega fa c F142D, same as F172, same as F173, same as F183, same as F178, same as F191, same as F471 (large Japanese ink) Chemical industry (stock) manufacturing), Fulorad FC-170C, FC-171, FC-430, FC-431 (manufactured by Sumitomo 3M (share)), Surflon S-112, same S-113, same S-131, same S -141, the same S-145, the same S-382, the same SC-101, the same SC-102, the same SC-103, the same SC-104, the same SC-105, the same SC-106 (made by Asahi Glass Co., Ltd.) , F-TOP EF301, the same 3 03, the same 3 52 (new Akita Chemicals Co., Ltd.) -38- 200912531 and so on. The polyoxo-based surfactants are, for example, DC-3PA, DC-7PA, FS-1265, SF-8428, SH11PA, SH21PA, SH28PA, SH29PA, SH30PA, S Η -1 90, S Η -1 9 3, SZ - 6 0 3 2 (Dongli Dowcorning · Silicone (manufactured)), TSF-4440, TSF-4300, TSF-4445, TSF-4446, TSF-4460, TSF-4452 ( Μ 〇mentiveperf 〇rmancemateria 1 s J apa η contract company system) and other product name sellers. As the nonionic surfactant, for example, a polyoxyethylene alkyl ether such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether or polyoxyethylene oleyl ether; polyoxyethylene octylphenyl ether or polyoxyethylene fluorenyl group can be used. a polyoxyethylene aryl ether such as phenyl ether; a polyoxyethylene dialkyl ester such as polyoxyethylene dilauryl ester or polyoxyethylene distearyl ester; and a (meth)acrylic copolymer Poly fl〇w No. 57, 95 (manufactured by Co., Ltd. Oil and Fat Chemical Industry Co., Ltd.). These surfactants may be used singly or in combination of two or more. The [F] surfactant is preferably used in an amount of from 5 parts by weight or less, more preferably from 0.1 to 2 parts by weight, per 100 parts by weight of the polymer [a]. [F] When the amount of the surfactant used exceeds 5 parts by weight, when a coating film is formed on a substrate, the film of the coating film may be easily formed, and the interlayer insulating film or the adhesion of the microlens to the substrate may be improved. [G] Adhesive aid can be used in the sensitive radiation linear resin composition of the present invention. As such a [G] adhesion aid, a functional decane coupling agent such as a decane coupling agent having a carboxyl group, a methacryl fluorenyl group, an isocyanate group or an epoxy group, which reacts with a substituent of 200912531 can be used. Specific examples include, for example, trimethoxymethyl decyl benzoic acid, γ-methyl propyloxy propyl trimethoxy decane, vinyl triethoxy decane, vinyl trimethoxy decane, and γ-isocyanate propyl. Triethoxy decane, γ-glycidoxypropyltrimethoxydecane, β-(3,4-epoxycyclohexyl)ethyltrimethoxydecane, and the like. The [G] adhesion aid is preferably used in an amount of 20 parts by weight or less, more preferably 2 to 10 parts by weight, based on 100 parts by weight of the polymer [A]. When the amount of the adhesion aid used exceeds 20 parts by weight, development may be liable to occur in the development step. Sensitive Radiation Linear Resin Composition The sensitive radiation linear resin composition of the present invention is prepared by uniformly mixing the above components [A] and [B] and the other components optionally added as described above. The sensitive radiation linear resin composition of the present invention is dissolved in a suitable solvent' to be used in a solution state. For example, a mixture of the polymers [A] and [B] and any other components added in a predetermined ratio can be used to prepare a radiation sensitive linear resin composition in a solution state. M ft The solvent used in the sensitive radiation linear resin composition of the present invention is a one which can dissolve the components of the polymers [A] and [B] and the other components added as described above in a uniform manner and does not react with each component. The seeding solvent is, for example, the same solvent as that exemplified for the solvent used for the production of the above polymer [A]. In the solvent, 'from the viewpoint of the solubility of each component, the reactivity with each component, and the ease of formation of a coating film, for example, an alcohol, a glycol ether, -40-200912531 ethylene glycol alkyl ether ethyl ester, Ester and diethylene glycol. Particularly preferred among them are benzyl alcohol, 2-phenyl alcohol, 3-phenyl-propanol ethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol diethyl ether, diethylene glycol Methyl ether, diglyme, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, methyl methoxy vapor, ethyl ethoxy propionate. In order to improve the in-plane uniformity of the solvent and film thickness, a high boiling point solvent can be used. High-boiling solvents which can be used, for example, are N-methylformamide, hydrazine, hydrazine-dimethylformamide, N-methylanilinium, N-methylacetamide, N,N-dimethyl B. Indoleamine, N-methylpyrrolidone, dimethylhydrazine, benzylethyl n, dihexyl ether, etidylacetone, isophorone, caproic acid, heptanoic acid, 1-octanol, 1-nonanol, Benzyl acetate, ethyl benzoate, diethyl oxalate, diethyl sulfonate, γ-butyrolactone, ethylene carbonate, propylene carbonate, phenylethylene glycol ethyl ether acetate, and the like. Preferred among them are Ν-methylpyrrolidone, γ-butyrolactone, hydrazine, hydrazine-dimethylacetamide. When the solvent of the sensitive radiation linear resin composition of the present invention is a high-boiling-point gastric agent, the amount of the high-boiling solvent used is 50% by weight or less, preferably 40% by weight or less, more preferably 30%, based on the total solvent. Below weight%. When the amount of the high-boiling solvent used exceeds the ratio, the film uniformity, sensitivity, and residual film ratio of the film may be affected. When the sensitive radiation linear resin composition of the present invention is prepared in a solution state, the ratio of components other than the solvent occupied in the solution (i.e., the total amount of the polymer [A], [b] component, and any other components added arbitrarily) (hereinafter This nickname "solids concentration" can be arbitrarily set for the purpose of use or the desired film thickness, etc. 'usually 5 to 50% by weight, ideally 1 〇~4 〇 weight -41 - 200912531% More preferably, it is 1 5 to 3 5 wt%. The composition solution prepared above is used after being filtered using a micropore filter having a pore size of 〇 2 μm or the like. Formation of Interlayer Insulating Film and Microlens Next, a method of forming the interlayer insulating film and the microlens of the present invention by using the sensitive radiation linear resin composition of the present invention will be described. The method for forming an interlayer insulating film or a microlens of the present invention comprises the following steps of the following steps: (1) a step of forming a coating film of the radiation sensitive linear resin composition of the present invention on a substrate, and (2) a radiation. a step of irradiating at least a portion of the coating film, (3) a developing step, and (4) a heating step. (1) a step of forming a coating film of the radiation sensitive linear resin composition of the present invention on a substrate. In the step (1) above, coating the composition solution of the present invention on the surface of the substrate is preferably by prebaking The solvent is removed to form a coating film of the radiation sensitive linear resin composition. The types of substrates that can be used include, for example, a glass substrate, a ruthenium-based plate, and a substrate on which various metals are formed. The coating method of the composition solution is not particularly limited, and for example, a spray coating method, a smear coating method, a spin coating method, or a slit die coating method (SIit Die-42-200912531) can be used.

Coat )、棒塗法、噴墨法等各種方法,特佳爲旋轉塗佈法 、狹縫模具式塗佈法。預烘烤之條件係因各成分之種類、 使用比例而異。例如6 0〜1 1 〇。(:、3 0秒〜1 5分鐘。 所形成之塗膜之膜厚在預烘烤之數値,例如形成層間 絕緣膜時爲3〜6 μηι ’形成微透鏡時爲〇 . 5〜3 μπ1。 (2 )將輻射線照射於該塗膜之至少一部份的步驟 上述(2)之步驟中’如上述形成之塗膜之至少一部 份照射輻射線。塗膜之至少一部份照射輻射線時,例如介 由具有所定圖型之光罩,照射輻射線的方法。 此時所用的輻射線,例如有紫外線、遠紫外線、X射 線、何電粒子線等。 上述紫外線例如有g射線(波長4 3 6 n m i射線( 波長365nm)等。远紫外線例如有KrF準分子雷射等。χ 射線例如有同步加速器輻射線等。荷電粒子線例如有電子 線等。 其中較理想爲紫外線,特別理想爲含有g射線及/或土 射線之輻射線者。 形成層間絕緣膜時之曝光量較佳爲5〇〜1 ,5〇〇J/m2, 开夕成微透鏡時之曝光量較佳爲50〜2,〇〇〇J/m2。 (3 )顯影步驟 步驟(3 )係將如上述照射輻射線線後之塗膜使用顯 影液進行顯影處理,除去輻射線照射部分’得到圖型化之 -43- 200912531 塗膜(圖型化薄膜)。 顯影處理所用的顯影液例如可使用氫氧化鈉、氫氧化 鉀、碳酸鈉、矽酸鈉、偏矽酸鈉、氨、乙胺、正丙胺、二 乙胺、二乙基胺基乙醇、二正丙胺、三乙胺、甲基二乙胺 、二甲基乙醇胺、三乙醇胺、氫氧化四甲銨、氫氧化四乙 銨、吡略、六氫化吡啶、1 , 8 -二氮雜雙環〔5.4 · 0〕- 7 -十一 烯、1,5-二氮雜雙環〔4.3.0〕-5-壬烷等之鹼(鹼性化合物 )之水溶液。鹼性水溶液之p Η較佳爲1 0〜1 6,特佳爲1 1 〜1 5。上述鹼水溶液中添加適量之甲醇、乙醇等之水溶性 有機溶劑或界面活性劑之水溶液,或溶解本發明之組成物 之各種有機溶劑可作爲顯影液使用。 顯影方法可使用攪拌法、浸漬法、搖動浸漬法、噴灑 法等之適當方法。此時之顯影時間係因本發明之敏輻射線 性樹脂組成物之組成、顯影液之組成及採用之顯影方法而 異,通常爲30〜120秒。 (4 )加熱步驟 如上述實施之(3 )顯影步驟後,對於製得之圖型狀 S膜’ S想爲進行例如利用流水清洗之清洗處理,更理想 胃全面照射(後曝光)高壓水銀燈等之輻射線,對於該薄 膜中殘留之1,2 -萘醌二疊氮化合物進行分解處理後,此薄 _ 力a @ t反 '烘箱等加熱裝置對此薄膜實施加熱處理( 後供烤處理)’對該薄膜進行硬化處理。上述後曝光步驟 之曝光量理想爲2,000〜5,000J/m2。此硬化處理之燒結溫 -44- 200912531 度,例如120〜25 0 °C。加熱時間係因加熱機器之種類而異 ,例如在熱板上進行加熱處理時,加熱時間爲5〜3 0分鐘 ,在烘箱進行加熱處理時,加熱時間爲3 0〜9 0分鐘。此 時可使用2次以上之加熱步驟之階段烘烤法等。 如此可在基板表面上形成與目的之層間絕緣膜或微透 鏡對應之圖型狀薄膜。 上述形成之層間絕緣膜及微透鏡由下述之實施例得知 爲密著性、耐熱性、耐溶劑性及透明性等優異者。 層間絕緣膜 如上述形成之本發明之層間絕緣膜對基板之密著性良 好,且耐溶劑性及耐熱性優異,具有高透過率,低介電率 ,適用於電子零件之層間絕緣膜。 微透鏡 如上述形成之本發明之微透鏡對基板之密著性良好, 且耐溶劑性及耐熱性優異,具有高透過率及良好之熔融形 狀,適用於固體攝影元件之微透鏡。 本發明之微透鏡的形狀如圖1 ( a )所示,爲半凸透鏡 形狀。 【實施方式】 〔實施例〕 以下以合成例、實施例更具體說明本發明,本發明不 -45- 200912531 限於此以下之實施例。 聚合物〔A〕之合成例 合成例1 將2,2’-偶氮雙(2,4-二甲基戊腈)7重量份、二甘醇 乙基甲醚200重量份投入具備冷卻管與攪拌器之燒瓶中。 接著添加甲基丙烯酸15重量份、三環〔5.2.1. 〇2’6〕癸烷-8-基甲基丙烯酸酯20重量份、4-甲基丙烯醯基嗎啉5重量 份、甲基丙烯酸縮水甘油酯5 0重量份、苯乙烯1 〇重量份 及季戊四醇四(3 -氫硫基丙酸酯)3重量份進行氮取代後 ,開始緩慢攪拌。使溶液之溫度提高至70°C,保持此溫度 4小時’得到含共聚物〔A -1〕的聚合物溶液。 共聚物〔A-1〕之聚苯乙烯換算重量平均分子量(Mw )爲12,000,分子量分布(Mw/Mn)爲3.0。所得之聚合 物溶液的聚合物濃度爲3 4.8重量%。 合成例2 將2,2-偶氮雙(2,4 -二甲基戊腈)8重量份及二甘醇 乙基甲醚1 72重量份投入具備冷卻管與攪拌器之燒瓶中。 接著添加甲基丙稀酸丨2重量份、甲基丙烯酸縮水甘油酯 50重量份、N-環己基順丁烯二醯亞胺3重量份、(3_乙基 氧環丁烷-3-基)甲基丙烯酸酯13重量份、α_甲基-對羥基 苯乙烯10重量份及季戊四醇四(3_氫硫基丙酸酯)3重量 份進行氮取代後,開始緩慢攪拌。使溶液之溫度提高至 -46- 200912531 7(TC,達到7〇1後,經過20分鐘後,開始使用漏斗以40 分鐘將N-環己基順丁烯二醯亞胺之二甘醇乙基甲醚20重 量%溶液6 G重量份滴加於燒瓶內。滴加結束後’再以 7 0 °C保持4小時’得到含共聚物〔A -2〕的聚合物溶液。 共聚物〔A-2〕之聚苯乙烯換算重量平均分子量(Mw )爲1〇,0〇〇,分子量分布(Mw/Mn)爲2.8。所得之聚合 物溶液的聚合物丨辰度爲33·1重墓%° 合成例3 將2,2’-偶氮雙(2,4-二甲基戊腈)8重量份及二甘醇 乙基甲醚184重量份投入具備冷卻管與攪拌器之燒瓶中。 接著添加甲基丙燃酸15重量份、甲基丙稀酸縮水甘油醋 40重量份、Ν-苯基順丁烯二醯亞胺1重量份、四氫糠基 甲基丙烯酸酯20重量份、對乙烯基苄基-2,3-環氧基丙醚 1 5重量份及三羥甲基丙烷三(3 -氫硫基丙酸酯)3重量份 進行氮取代後,開始緩慢攪拌。使溶液之溫度提高至70 °C ,達到7 0 °C後,經過2 0分鐘的時點,將N -環己基順丁烯 二醯亞胺之二甘醇乙基甲醚2 0重量%溶液1 5重量份滴加 於燒瓶內。經過40分鐘、60分鐘的時點也同樣,將N-環 己基順丁烯二醯亞胺之二甘醇乙基甲醚20重量%溶液各 1 5重量份滴加於燒瓶內,6 〇分鐘後之添加結束後,再以 7 0 °C保持4小時,得到含共聚物〔A - 3〕的聚合物溶液。 共聚物〔A-3〕之聚苯乙烯換算重量平均分子量(Mw )爲9,800,分子量分布(Mw/Mn )爲2· 7。所得之聚合物 -47- 200912531 溶液的聚合物濃度爲3 3.4重量%。 合成例4 將2,2’-偶氮雙(2,4-二甲基戊腈)8重量份及二甘醇 乙基甲醚22 0重量份投入具備冷卻管與攪拌器之燒瓶中。 接著添加苯乙烯1〇重量份、甲基丙烯酸20重量份、甲基 丙烯酸縮水甘油酯50重量份、N- ( 4-羥苯基)甲基丙烯 醯胺15重量份及二季戊四醇六(3-氫硫基丙酸酯)3重量 份進行氮取代後,添加1,3-丁二烯5重量份,開始緩慢攪 拌。使溶液之溫度提高至70 °C,此溫度保持5小時,得到 含共聚物〔A - 4〕的聚合物溶液。 共聚物〔A-4〕之聚苯乙烯換算重量平均分子量(Mw )爲8,900,分子量分布(Mw/Mn)爲3.0。所得之聚合物 溶液的聚合物濃度爲3 2.9重量%。 比較合成例1 將2,2’-偶氮雙(2,4-二甲基戊腈)8重量份及二甘醇 乙基甲醚220重量份投入具備冷卻管與攪拌器之燒瓶中。 接者添加苯乙稀10重量份、甲基丙烯酸20重量份、甲基 丙烯酸縮水甘油酯40重量份、(3-乙基氧環丁烷-3-基) 甲基丙烯酸酯10重量份、三環〔mo2,6〕癸烷-8 _基甲 基丙烯酸酯20重量份及α_甲基苯乙烯二聚物4重量份, 進行氮取代後,開始緩慢攪拌。使溶液之溫度提高至7(rc ’此溫度保持4小時,得到含共聚物〔a -1〕的聚合物溶 -48- 200912531 液。 共聚物〔a-l〕之聚苯乙烯換算重量平均分子量(Mw )爲7,900,分子量分布(Mw/Mn)爲2.4。所得之聚合物 溶液的聚合物濃度爲3 1.6重量%。 由供給自由基聚合之各成分之重量及所得之聚合物溶 液的聚合物濃度,依據下數式算出上述各合成例之聚合轉 化率。結果如表1所示。 聚合轉化率(重量% )=聚合物溶液的聚合物濃度(重量% )X各成分(含溶劑)之投入量之合計(g )+溶劑之各成 分之投入量之合計(g) χίοο 聚合物溶液的聚合物濃度(重量% )係以已知重量之 鋁皿採取少量之製得之聚合物溶液,經秤量後,得到聚合 物溶液的重量,再於1 8 0 °C之加熱板上加熱1小時,除去 溶劑後,測定重量得到聚合物的重量,由這些數値藉由( 聚合物之重量+聚合物溶液之重量X 1 〇〇 )得到。 表1 聚合轉化率 (重量%) 合成例1 98.1 合成例2 98.7 合成例3 99.6 合成例4 98.1 比較合成例1 93.7 -49- 200912531 實施例1 〔敏輻射線性樹脂組成物之製備〕 將聚合物〔A〕:含有上述合成例1合成之共聚物〔 A-1〕之溶液之換算成相當於該溶液所含有之共聚物〔Ad 〕100重量份的量與〔B〕成分:4,4’-〔 1-(4-(1-〔4 -羥 苯基〕-1-甲基乙基)苯基)次乙基〕雙酚(1.0莫耳)與 1,2-萘醌二疊氮-5-磺酸氯(2.0莫耳)之縮合物(n) 30 重量份及(G)黏著助劑之γ-環氧丙氧基丙基三甲氧基矽 烷5重量份予以混合,添加二甘醇乙基甲醚,使固形份濃 度成爲30重量%後,以孔徑0.2μπι之薄膜過濾器過濾,製 備敏輻射線性樹脂組成物之溶液(S-1 )。 實施例2〜1 2、比較例1〜3 〔敏輻射線性樹脂組成物之製備〕 除了將聚合物〔A〕及〔Β〕成分之表2所記載的種類 使用表2所記載的量外,其餘與實施例1相同製備敏輻射 線性樹脂組成物之溶液(S-2 )〜(S-12 )及(s-i )〜( s - 3 ) 〇 實施例2、5、8、U及比較例2之〔B〕成分之記載 係表示分別倂用2種之1,2-萘醌二疊氮化合物。 實施例1 3 將聚合物〔A〕:使含有上述合成例1合成之共聚物 〔A-1〕之溶液相當於共聚物〔A-1〕100重量份的量(固 -50- 200912531 形份)與(F )界面活性劑·· SH-28PA (東麗Dowcornig ( 股)製)0.2重量份及〔g〕黏著助劑之γ-環氧丙氧基丙 基二甲氧基矽烷5重量份予以混合,再添加二甘醇乙基甲 醚及丙二醇單甲醚乙酸酯,溶劑組成爲二甘醇乙基甲醚/ 丙二醇單甲醚乙酸酯=6/4 (重量比),使固形份濃度成爲 20重量%後’以孔徑0·2μιη之薄膜過濾器過濾’製備敏輻 射線性樹脂組成物之溶液(S -1 3 )。 表2中’成分之簡稱係表示下述之化合物。 (B-l) : 4,4’-〔 1- (4- ( ΐ-〔4-羥苯基〕-卜甲基乙基) 苯基)次乙基〕雙酚(1.0莫耳)與1,2 -萘醌二疊氮-5-磺 酸氯(2.0莫耳)之縮合物 (Β-2) :4,4’,4”-次乙基三酚(1.〇莫耳)與1,2-萘醌二 疊氮-5-磺酸氯(2·〇莫耳)之縮合物 (Β-3) :2,3,4,4’-四羥基二苯甲酮(1.0莫耳)與1,2-萘 醌二疊氮-5-磺酸酯(2.44莫耳) (F-l) : SH-28PA (東麗 Dowcornig (股)製) (G-1) :γ -環氧丙氧基丙基三甲氧基矽烷 -51 - 200912531Various methods such as Coat), a bar coating method, and an inkjet method are particularly preferred as a spin coating method or a slit die coating method. The conditions for prebaking vary depending on the type of each component and the ratio of use. For example, 6 0~1 1 〇. (:, 30 seconds to 1 5 minutes. The film thickness of the formed coating film is in the number of pre-baking, for example, 3 to 6 μηι when forming an interlayer insulating film. When forming a microlens, it is 〇. 5~3 μπ1 (2) a step of irradiating the radiation to at least a portion of the coating film. In the step (2), at least a portion of the coating film formed as described above is irradiated with radiation. At least a portion of the coating film is irradiated. In the case of radiation, for example, a method of irradiating radiation through a mask having a predetermined pattern. The radiation used at this time is, for example, ultraviolet rays, far ultraviolet rays, X-rays, or electric particle lines, etc. The above ultraviolet rays are, for example, g-rays. (wavelength 4 3 6 nmi ray (wavelength 365 nm), etc. The far ultraviolet ray is, for example, a KrF excimer laser, etc. The χ ray is, for example, a synchrotron radiation, etc. The charged particle beam is, for example, an electron beam, etc. Among them, ultraviolet rays are particularly preferable. Preferably, the radiation is contained in the g-ray and/or the earth ray. The exposure amount when forming the interlayer insulating film is preferably 5 〇 〜1, 5 〇〇 J/m 2 , and the exposure amount in the case of forming the microlens is preferably 50~2, 〇〇〇J/m2. (3) Development step 3) The coating film irradiated with the radiation wire as described above is subjected to development treatment using a developing solution, and the radiation-irradiated portion is removed to obtain a pattern-patterned film (patterned film). Development for development processing For the liquid, for example, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium citrate, sodium metasilicate, ammonia, ethylamine, n-propylamine, diethylamine, diethylaminoethanol, di-n-propylamine, triethylamine can be used. , methyl diethylamine, dimethylethanolamine, triethanolamine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, pyrolipid, hexahydropyridine, 1,8-diazabicyclo [5.4 · 0]- 7 - An aqueous solution of a base (basic compound) of undecene, 1,5-diazabicyclo[4.3.0]-5-nonane, etc. The p Η of the alkaline aqueous solution is preferably from 10 to 1, preferably An aqueous solution of a water-soluble organic solvent such as methanol or ethanol or a surfactant, or various organic solvents in which the composition of the present invention is dissolved may be used as a developing solution in the above aqueous alkali solution. Suitable methods using a stirring method, a dipping method, a shaking dipping method, a spraying method, and the like The development time at this time varies depending on the composition of the sensitive radiation linear resin composition of the present invention, the composition of the developer, and the development method employed, and is usually 30 to 120 seconds. (4) The heating step is as described above (3) After the development step, it is preferable that the obtained S-shaped film S s is subjected to a cleaning treatment using, for example, a running water cleaning, and it is more preferable to irradiate (post-exposure) the radiation of a high-pressure mercury lamp or the like to the remaining 1 in the film. After the 2-naphthoquinonediazide compound is subjected to decomposition treatment, the film is subjected to heat treatment (post-bake treatment) by a heating device such as a thin oven to prevent the film from being hardened. The exposure amount in the above post-exposure step is desirably 2,000 to 5,000 J/m2. The sintering temperature of this hardening treatment is -44 - 200912531 degrees, for example, 120 to 25 0 °C. The heating time varies depending on the type of the heating machine. For example, when the heat treatment is performed on a hot plate, the heating time is 5 to 30 minutes, and when the oven is subjected to heat treatment, the heating time is 30 to 90 minutes. In this case, the stage baking method of the heating step of 2 or more times can be used. Thus, a pattern-like film corresponding to the intended interlayer insulating film or microlens can be formed on the surface of the substrate. The interlayer insulating film and the microlens formed as described above are excellent in adhesion, heat resistance, solvent resistance, transparency, and the like by the following examples. Interlayer insulating film The interlayer insulating film of the present invention formed as described above has good adhesion to a substrate, is excellent in solvent resistance and heat resistance, has high transmittance, and has a low dielectric constant, and is suitable for an interlayer insulating film of an electronic component. Microlens The microlens of the present invention formed as described above has good adhesion to a substrate, is excellent in solvent resistance and heat resistance, has high transmittance, and has a good melt shape, and is suitable for a microlens of a solid-state imaging element. The shape of the microlens of the present invention is a semiconvex lens shape as shown in Fig. 1(a). [Embodiment] [Examples] Hereinafter, the present invention will be more specifically described by way of Synthesis Examples and Examples, and the present invention is not limited to the following examples. Synthesis Example of Polymer [A] Synthesis Example 1 7 parts by weight of 2,2'-azobis(2,4-dimethylvaleronitrile) and 200 parts by weight of diethylene glycol ethyl methyl ether were placed in a cooling tube and In the flask of the stirrer. Next, 15 parts by weight of methacrylic acid, 20 parts by weight of tricyclo[5.2.1. 〇2'6]nonane-8-yl methacrylate, 5 parts by weight of 4-methylpropenylmorpholine, and methyl group were added. After 50 parts by weight of glycidyl acrylate, 1 part by weight of styrene, and 3 parts by weight of pentaerythritol tetrakis(3-hydrothiopropionate) were subjected to nitrogen substitution, stirring was started slowly. The temperature of the solution was raised to 70 ° C, and this temperature was maintained for 4 hours to obtain a polymer solution containing the copolymer [A -1]. The copolymer [A-1] had a polystyrene-equivalent weight average molecular weight (Mw) of 12,000 and a molecular weight distribution (Mw/Mn) of 3.0. The polymer solution obtained had a polymer concentration of 34.8 wt%. Synthesis Example 2 8 parts by weight of 2,2-azobis(2,4-dimethylvaleronitrile) and 17.2 parts by weight of diethylene glycol ethyl methyl ether were placed in a flask equipped with a cooling tube and a stirrer. Next, 2 parts by weight of bismuth methacrylate, 50 parts by weight of glycidyl methacrylate, 3 parts by weight of N-cyclohexylmethyleneimine, (3-ethyloxycyclobutan-3-yl group) 13 parts by weight of methacrylate, 10 parts by weight of α-methyl-p-hydroxystyrene, and 3 parts by weight of pentaerythritol tetrakis(3-hydrothiopropionate) were subjected to nitrogen substitution, and then stirring was started slowly. The temperature of the solution was raised to -46-200912531 7 (TC, after reaching 7〇1, after 20 minutes, the funnel was started using a funnel for 40 minutes to diethylene carbonate of N-cyclohexylmethyleneimine. 6 parts by weight of an ether 20% by weight solution was added dropwise to the flask, and after completion of the dropwise addition, the polymer solution containing the copolymer [A-2] was obtained by further maintaining at 70 ° C for 4 hours. The polystyrene-equivalent weight average molecular weight (Mw) is 1 〇, 0 〇〇, and the molecular weight distribution (Mw/Mn) is 2.8. The polymer enthalpy of the obtained polymer solution is 33·1 tomb %° Synthesis Example 3 8 parts by weight of 2,2'-azobis(2,4-dimethylvaleronitrile) and 184 parts by weight of diethylene glycol ethyl methyl ether were placed in a flask equipped with a cooling tube and a stirrer. 15 parts by weight of propylene ketone, 40 parts by weight of methacrylic acid glycidol vinegar, 1 part by weight of fluorene-phenyl maleimide, 20 parts by weight of tetrahydrofurfuryl methacrylate, and vinyl After 5 parts by weight of benzyl-2,3-epoxypropyl ether and 3 parts by weight of trimethylolpropane tris(3-hydrothiopropionate) were subjected to nitrogen substitution, stirring was started slowly. The temperature is raised to 70 ° C, after reaching 70 ° C, after 20 minutes, N - cyclohexyl maleimide diamine diethylene glycol ethyl methyl ether 20% by weight solution 15 parts by weight Dropped into the flask. After 40 minutes and 60 minutes, 15 parts by weight of a 20% by weight solution of N-cyclohexylmethyleneimine in diethylene glycol ethyl methyl ether was added to the flask. After the completion of the addition after 6 minutes, the mixture was further kept at 70 ° C for 4 hours to obtain a polymer solution containing the copolymer [A - 3]. The polystyrene-equivalent weight average molecular weight of the copolymer [A-3] (Mw) was 9,800, and the molecular weight distribution (Mw/Mn) was 2.7. The polymer concentration of the obtained polymer-47-200912531 solution was 33.4% by weight. Synthesis Example 4 2,2'-azobis ( 8 parts by weight of 2,4-dimethylvaleronitrile and 22 parts by weight of diethylene glycol ethyl methyl ether were placed in a flask equipped with a cooling tube and a stirrer. Then, 1 part by weight of styrene and 20 parts by weight of methacrylic acid were added. Parts, 50 parts by weight of glycidyl methacrylate, 15 parts by weight of N-(4-hydroxyphenyl)methacrylamide, and dipentaerythritol hexa(3-hydrogen sulfide After 3 parts by weight of propionate was substituted with nitrogen, 5 parts by weight of 1,3-butadiene was added, and stirring was started slowly. The temperature of the solution was raised to 70 ° C, and the temperature was maintained for 5 hours to obtain a copolymer-containing copolymer [A] The polymer solution of the copolymer [4] has a polystyrene-equivalent weight average molecular weight (Mw) of 8,900 and a molecular weight distribution (Mw/Mn) of 3.0. The polymer solution obtained has a polymer concentration of 3 2.9 wt%. Comparative Synthesis Example 1 8 parts by weight of 2,2'-azobis(2,4-dimethylvaleronitrile) and 220 parts by weight of diethylene glycol ethyl methyl ether were placed in a cooling tube and a stirrer. In the flask. 10 parts by weight of styrene, 20 parts by weight of methacrylic acid, 40 parts by weight of glycidyl methacrylate, 10 parts by weight of (3-ethyloxycyclobutane-3-yl)methacrylate, and three 20 parts by weight of a ring [mo2,6]decane-8-yl methacrylate and 4 parts by weight of an α-methylstyrene dimer were slowly stirred after nitrogen substitution. The temperature of the solution was raised to 7 (rc' for 4 hours to obtain a polymer-containing copolymer of copolymer [a-1]-48-200912531. The polystyrene-equivalent weight average molecular weight of the copolymer [al] (Mw a molecular weight distribution (Mw/Mn) of 2.4, and a polymer concentration of the obtained polymer solution of 33.6% by weight. The weight of each component supplied to the radical polymerization and the polymer concentration of the obtained polymer solution, The polymerization conversion ratio of each of the above synthesis examples was calculated according to the following formula. The results are shown in Table 1. Polymerization conversion ratio (% by weight) = polymer concentration of the polymer solution (% by weight) X input amount of each component (solvent) Total (g) + total of the components of the solvent (g) χίοο The polymer concentration (% by weight) of the polymer solution is a small amount of the polymer solution prepared by a known weight of the aluminum dish. Thereafter, the weight of the polymer solution was obtained, and further heated on a hot plate at 180 ° C for 1 hour. After removing the solvent, the weight was determined to obtain the weight of the polymer, and the weight of the polymer was + by the polymer. Weight of solution X 1 〇〇)) Table 1 Polymerization conversion ratio (% by weight) Synthesis Example 1 98.1 Synthesis Example 2 98.7 Synthesis Example 3 99.6 Synthesis Example 4 98.1 Comparative Synthesis Example 1 93.7 - 49- 200912531 Example 1 [Mens radiation linear resin composition Preparation of the product] The polymer [A]: the solution containing the copolymer [A-1] synthesized in the above Synthesis Example 1 is converted into an amount corresponding to 100 parts by weight of the copolymer [Ad] contained in the solution and [B Ingredients: 4,4'-[1-(4-(1-[4-hydroxyphenyl]-1-methylethyl)phenyl)ethylidene]bisphenol (1.0 mol) and 1,2 a condensate of naphthoquinonediazide-5-sulfonic acid chloride (2.0 mol) (n) 30 parts by weight and (G) 5 parts by weight of γ-glycidoxypropyltrimethoxydecane of the adhesion aid After mixing, diethylene glycol ethyl methyl ether was added to make the solid content concentration 30% by weight, and then filtered through a membrane filter having a pore size of 0.2 μm to prepare a solution (S-1) of the radiation-sensitive linear resin composition. ~1 2. Comparative Examples 1 to 3 [Preparation of Sensitive Radiation Linear Resin Composition] In addition to the types described in Table 2 of the polymer [A] and [Β] components, In the same manner as in Example 1, the solutions (S-2) to (S-12) and (si) to (s - 3) of the radiation sensitive linear resin composition were prepared in the same manner as in Example 1. Examples 2 and 5, 8. The description of the component [B] of U and Comparative Example 2 indicates that two kinds of 1,2-naphthoquinonediazide compounds are used in combination. Example 1 3 Polymer [A]: The above Synthesis Example 1 was contained. The solution of the synthesized copolymer [A-1] corresponds to 100 parts by weight of the copolymer [A-1] (solid-50-200912531 form) and (F) surfactant·· SH-28PA (Dongli Dow Cornig (2 parts by weight) and (g) 5 parts by weight of γ-glycidoxypropyl dimethoxy decane of the adhesion aid, and then added with diethylene glycol ethyl methyl ether and propylene glycol monomethyl ether Acetate, the solvent composition is diethylene glycol ethyl methyl ether / propylene glycol monomethyl ether acetate = 6 / 4 (weight ratio), so that the solid content concentration is 20% by weight, the membrane filter with a pore size of 0 · 2 μηη Filter 'Prepare a solution (S -1 3 ) of the sensitive radiation linear resin composition. The abbreviations of the 'components' in Table 2 indicate the following compounds. (Bl) : 4,4'-[ 1- (4-( ΐ-[4-hydroxyphenyl]- ymethylethyl)phenyl)ethylidene bisphenol (1.0 mol) and 1,2-naphthalene A condensate of quinonediazide-5-sulfonic acid chloride (2.0 mol) (Β-2): 4,4',4"-ethylidenetriol (1. 〇mol) and 1,2-naphthalene a condensate of quinonediazide-5-sulfonic acid chloride (2·〇mole) (Β-3): 2,3,4,4'-tetrahydroxybenzophenone (1.0 mol) and 1,2 -naphthoquinonediazide-5-sulfonate (2.44 mol) (Fl) : SH-28PA (manufactured by Toray Dow Cornig Co., Ltd.) (G-1): γ-glycidoxypropyltrimethoxy Baseline-51 - 200912531

__ LO LO LO m LO LO ΙΟ ΙΩ LO LO LO LO LQ LO LQ LQ 槲 _ IRW Γ~Π ο 種類 t-H I o t-H o o o τ—1 ϋ rH Ο ϋ ι—Η Ο rH 1 ο r-H o t-H o y—i o o o »—1 1 ο τΜ 1 ϋ 蘅 i CNJ _ _ o o o o ο ο ο ο ο o o o o ο ο in o Η 虼 f—J U—1 種類 \ t \ » } 1 1 1 1 1 1 t t-H 1 1 1 I § o r*H ο ι-Η Ο r—4 〇 t-H Ο τ-Η _ _ o \ o o \ LO Ο \ LO 〇 \ L〇 o 〇 \ Ο Φ 链 I-! e o CN3 Ο »—( Ο ι-Η o r~( Ο CM 種類 t—1 1 CQ CO r-H CS1 1 m C0 rH (Μ 1 PQ CO »—< (M 1 DQ CO r—< r-H CM 1 CQ CO PQ 1. ..J 1 PQ \ t—( 1 CQ 1 PQ 1 PQ \ ?-Η 1 CQ 1 PQ 1 0Q \ r—1 1 PQ 1 PQ 1 PQ \ t-H 1 PQ 1 CQ 1 PQ 1 \ rH 1 OQ 1 PQ § 〇 o o o ο ο ο ο ο 〇 O o o o ο ο r~n _ _ o o o o ο ο ο ο ο o 〇 o o o ο ο 聚合物[A _ ^^ i-H rH rH rH ι-Η ι-Η rH τ—I 1( r"H r—H 1-Η ι-Η 驟 r-H I rH | j-H | CM | CN0 1 CS1 1 00 1 C0 1 co 1 寸 I 寸 1 寸 ! t-H 1 rH 1 1 τ—I 1 < < < < < < < < < < < < < 句 ίΰ w ^ 1~H co CO 寸 LO 卜 00 o 1—( rH t-H CN3 rH CO r-H /—s r-H (Μ co 1 cn I 1 CO 1 (f) 1 tn 1 C/) 1 ίί) 1 ίΠ 1 CO 1 cn 1 cn 1 cn ! to 1 W 1 υι 1 W y—i m C<J E cn m 寸 νη m C-- οο m o s r-H ί—H CS r-H 莩 CO r-H 莩 H cn 辑 镯 辑 習 辑 辑 渴 握 辑 Ιϋ 辑 w 鎰 鎰 舾 K Λ 1¾ * Κ u IK ϋ J-J J-A -52- 200912531 實施例14-26及比較例4~6 <層間絕緣膜之性能評價> 使用上述製備之敏輻射線性樹脂組成物,如下述評價 層間絕緣膜之各種特性。 〔感度之評價〕 實施例1 4〜2 5及比較例4〜6係使用旋轉塗佈機將表 3所示之組成物塗佈於矽基板上後,在加熱板上以90。(:進 行2分鐘預烘烤,形成膜厚3.0 μπι之塗膜。實施例26係 使用狹縫模具式塗佈機塗佈,以〇.5T〇rr之減壓下除去溶 劑後,在加熱板上以90°C進行2分鐘預烘烤,形成膜厚 3 ·0μιη之塗膜。對於製得之塗膜經由具有所定圖型之圖型 光罩以Canon (股)製PLA-501F曝光機(超高壓水銀燈 ),改變曝光時間進行曝光後,分別使用顯影液爲表3之 濃度之四甲基氫氧化銨水溶液,以2 5 t進行8 0秒鐘,攪 拌法顯影。然後使用超純水以流水清洗1分鐘,經乾燥後 ’在矽基板上形成圖型。此時測定爲了使3.0 μπι之線與間 隙(1 : 1 )之空間圖型完全溶解所要之最小的曝光量。此 數値爲感度,如表3所示。 〔顯影安全係數之評價〕 實施例1 4〜2 5及比較例4〜6係使用旋轉塗佈機將表 3所示之組成物塗佈於矽基板上後,在加熱板上以9 0 °C進 行2分鐘預烘烤,形成膜厚3 〇 μιη之塗膜。實施例26係 -53- 200912531 使用狹縫模具式塗佈機塗佈,以〇.5Torr之減壓下除去溶 劑後’在加熱板上以90°C進行2分鐘預烘烤,形成膜厚 3.0μηι之塗膜。對於製得之塗膜經由具有3 〇μιη之線與間 隙(1 : 1 )之空間圖型的光罩,使用Canon (股)製PLA- 501F曝光機(超商壓水銀燈),以相當於上述「感度之 評價」所測定之感度之値的曝光量進行曝光露,分別使用 顯影液爲表3之濃度的四甲基氫氧化銨水溶液,在2 5。(:下 ,改變顯影時間進行攪拌法顯影。接著使用超純水以流水 清洗1分鐘’經乾燥後,在矽基板上形成圖型。此時,線 寬幅成爲3 · 0 μηι所需之顯影時間爲最佳顯影時間,如表2 所示。測定由最佳顯影時間再繼續顯影時,3 ·0μιη之線圖 型產生剝離爲止的時間,作爲顯影安全係數,如表3所示 。此數値爲3 0秒以上時,表示顯影安全係數佳。 〔硬化時收縮率之評價〕 實施例1 4〜2 5及比較例4〜6係使用旋轉塗佈機將表 3所示之組成物塗佈於矽基板上後,在加熱板上以9 0 °C進 行2分鐘預烘烤,形成膜厚3. Ομπι之塗膜。實施例26係 使用狹縫模具式塗佈機塗佈,以〇· 5 To rr之減壓下除去溶 劑後,在加熱板上以90 °C進行2分鐘預烘烤,形成膜厚 3.0 μηι之塗膜。測定此時所得之塗膜之膜厚(T 1 )。製得 之塗膜不經過圖型光罩,藉由<^11〇11(股)製?1^-501? 曝光機(超高壓水銀燈)使累積曝光量成爲3,0 00 J/m2進 行曝光,在潔淨烘箱內,以220°C加熱此矽基板1小時, -54- 200912531 使塗膜硬化厚,測定該硬化膜之膜厚(11 ),計算硬化之 膜厚變化率{ |tl-Tlj/Tl } X100〔 %〕。結果如表3所示。 此數値爲1 0%以下時,表示硬化時收縮率良好。 硬化時收縮率之評價係形成之膜不需要形成圖型化, 因此省略輻射線照射步驟及顯影步驟,僅以塗膜形成步驟 、後烘烤步驟及加熱步驟進行評價。 〔耐溶劑性之評價〕 實施例1 4〜25及比較例4〜6係使用旋轉塗佈機將表 3所示之組成物塗佈於矽基板上後,在加熱板上以90 °C進 行2分鐘預烘烤,形成塗膜。實施例26係使用狹縫模具 式塗佈機塗佈’以0.5Torr之減壓下除去溶劑後,在加熱 板上以90 °C進行2分鐘預烘烤,形成塗膜。製得之塗膜不 經過圖型光罩,藉由Canon (股)製PLA-501F曝光機( 超高壓水銀燈)使累積曝光量成爲3,00(U/m2進行曝光, 在潔淨烘箱內,以220 °C加熱此矽基板1小時,得到膜厚 3.0 μχη之硬化膜。測定此時所得之塗膜之膜厚(τ 2 )。將 形成此硬化膜之矽基板於溫度控制在7 0 t之二甲基亞楓中 浸漬2〇分鐘後’測定該硬化膜之膜厚(t2 ),計算由浸 漬所產生之膜厚變化率{ |t2-T2|/T2 } xlOO〔 %〕。結果如 表3所示。此數値爲5 %以下時,表示耐溶劑性良好。 耐溶劑性之評價係形成之膜不需要形成圖型化,因此 省略輻射線照射步驟及顯影步驟,僅以塗膜形成步驟、後 洪烤步驟及加熱步驟進行評價。 -55- 200912531 〔耐熱性之評價〕 與上述耐溶劑性之評價相同形成硬化膜,測定製得之 硬化膜之膜厚(T3)。將此硬化膜基板於潔淨烘箱內以 24 0°C追加烘烤1小時後,測定各該硬化膜之膜厚(t3 ) ’ 計算追加烘烤所產生之膜厚變化率{ 113 - T 3 | / T 3 } X 1 〇 〇〔 % 〕。結果如表3所示。此數値爲5 %以下時,表示耐熱性 良好。 〔透明性之評價〕 除了使用玻璃基板「Corning 7059 ( Corning公司)製 造」取代上述耐溶劑性之評價中之矽基板外,其餘同樣在 玻璃基板上形成硬化膜。使用分光光度計「1 50-20型 double beam(日立製作所製)」以400〜800nm之範圍之 波長測定具有此硬化膜之玻璃基板之光線透過率。此時之 最低透過率値如表3所示。此數値爲9 0 %以上時’表示透 明性良好。 -56- 200912531 透明性 S CNi σϊ 00 CNJ 寸 寸 in σ> CO 0¾ CO a 寸 σ> CS3 05 C^3 05 CO ⑦ ίΜ σ> 寸 寸 ο ΙΟ 耐熱性 膜厚變化率 (%) τ-Η τ—i rH r*H τ-Η τ—ί 1—i i-H rH τ—ί τΉ ι-Η t-H CO co 寸 耐熱性 膜厚變化率 i (%) 00 CO CO CO c〇 Γ0 00 Γ0 Γ〇 Γ〇 co CO CO CO 00 00 硬化時收縮率 1 膜厚變化率 (%) 00 00 00 卜 卜 卜 00 00 00 00 00 00 卜 1—i ι-Η »-Η r—i 顯影安全係數 顯影安全係數 (秒) ο CO LO 00 o 寸 ο CO LQ CO ο C0 ο co LO CO ο 寸 LO CO ο 寸 ο 寸 ο 00 o co LO co o CO 1最佳顯影時間 (秒) ο 00 o 00 o 00 ο 00 Ο 00 ο 00 ο 00 o 00 ο 00 ο 00 ο 00 ο 00 ο 00 o 00 ο 00 o 00 感度評價 感度 (J/m2) ο LO LO o o LO o o LO ο LO LO Ο Ο LO ο ο LO ο LO UD o o L〇 ο ο LO ο LO LQ ο ο LO ο ο LO ο ο iiO o LO 卜 ο ο 卜 o o 卜 顯影液濃度 (wt%) 寸 ο 寸 o 寸 o 寸 ο 寸 ο 寸 ο 寸 ο 寸 o 寸 ο 00 C0 C<1 00 CO (Μ 00 CO CM 寸 ο 寸 ο 寸 ο 寸 ο 組成物種 名稱 ι—1 1 tn CM 1 m CO 1 CO 寸 1 Π) LO 1 tn ① 1 00 卜 1 in 00 I in 05 1 (/) ο τΉ ! cn ι—1 rH I cn (Μ γΗ ι (Π CO ι—Η ι ιη N τ-Η I w C<] 1 CO co 1 w 實施例14 實施例15 實施例16 實施例17 實施例18 實施例19 實施例20 實施例21丨 _1 實施例22 ! _I 實施例23 實施例24 實施例25 實施例26 比較例4 比較例5 比較例6 -57- 200912531 實施例27〜38及比較例7〜9 <微透鏡之性能評價> 使用上述製備之敏輻射線性樹脂組成物,如下述評價 微透鏡之各種特性。耐溶劑性之評價、耐熱性之評價、透 明性之評價可參照上述層間絕緣膜之性能評價的結果。 〔感度之評價〕 使用旋轉塗佈機將表4所示之組成物塗佈於矽基板上 後,在加熱板上以90 °C進行2分鐘預烘烤,形成2.0 μιη之 塗膜。對於製得之塗膜經由具有所定圖型之圖型光罩以 NIKON (股)製NSR 1 75 5i7A縮小投影曝光機(NA = 0.50 ’ λ = 3 65ηιη),改變曝光時間進行曝光後,分別使用表4 之濃度之四甲基氫氧化銨水溶液的顯影液,以25 °C進行1 分鐘之攪拌顯影。然後以水清洗乾燥,在矽基板上形成圖 型。此時測定0.8 μιη之線與間隙圖型(1 : 1 )之間隙圖型 之寬成爲〇.8μηι所需要之最小之曝光量。此數値爲感度, 如表4所示。 〔顯影安全係數之評價〕 使用旋轉塗佈機將表3所示之組成物塗佈於矽基板上 後’在加熱板上以90 °C進行2分鐘預供烤,形成2· Ομπι之 塗膜。對於製得之塗膜經由具有所定圖型之圖型光罩以 NIKON (股)製NSR 1 7 5 5 i7A縮小投影曝光機(ΝΑ = 0·50 ’ λ = 3 6 5 ηιη ),以相當於上述〔感度之評價〕所測定之感 -58- 200912531 度値的曝光量進行曝光後,分別使用表4之濃度之 氫氧化銨水溶液之顯影液,25 °C下改變顯像時間, 拌法顯影。然後以水清洗、乾燥,在矽基板上形成 測定 0 _ 8 μηι之線間隙圖型(1 ·· 1 )之間隙圖型之 0.8 μηι所需要之顯影時間爲最佳顯影時間,如表4 測定由最佳顯影時間後,再繼續顯影時,0.8 μιη之 生剝離爲止的時間(顯影安全係數),作爲顯影安 ,如表4所示。 〔微透鏡之形成〕 使用旋轉塗佈機將表4所示之組成物塗佈於矽 後,在加熱板上以90°C進行2分鐘預烘烤,形成2· 塗膜。對於製得之塗膜經由具有4·0μιη點·2.0μιη間 之圖型光罩,以NIKON (股)製NSR1755i7A縮小 光機(ΝΑ = 0·50,λ = 3 65ηηι ),以相當於上述「〔 評價〕」所測定之感度値之曝光量進行曝光,分別 4之感度之評價之顯影液濃度之四甲基氫氧化銨水 顯影液,以2 5 °C、進行1分鐘之攪拌顯影。然後用 ,經乾燥在矽基板上形成圖型。然後使用Canon ( PLA_ 5 0 IF曝光機(超高壓水銀燈)進行曝光使累 量成爲3,000J/m2。然後再使用加熱板以16(rC加熱 鐘後,再以23 0 °C加熱10分鐘,使圖型熔融,形成 〇 形成之微透鏡之底部(接觸基板的面)之尺寸 四甲基 藉由攪 圖型。 寬成爲 所示。 圖型產 全係數 基板上 Ομιη 之 隙圖型 投影曝 感度之 使用表 溶液之 水清洗 股)製 積曝光 10分 微透鏡 (直徑 -59- 200912531 )及剖面形狀如表4所示。微透鏡之底部之尺寸超過 4·0μιη,且未達 5.0μιη時,表示良好。此尺寸超過 5.0μπι 時,相鄰之透鏡爲彼此接觸的狀態,因此不理想。剖面形 狀如圖1所示之模式圖中,如(a )之半凸透鏡形狀時, 表示良好,又如(b )之略台形狀時表示不佳。 -60- 200912531 寸揪 微透鏡形狀 剖面形狀 Ν—✓ s cd s— X—Ν c0 Nw^ /«—V cij /«—N y^S. ✓—N. cd N—✓ cd N—✓ ·/-—N S—✓ κ*-Ν Cd N cd X—N cd 底部之尺寸 (mm) LO 寸 寸 寸 CO 寸 寸 寸 CO 寸 寸 寸 寸 CO 寸 (M 寸 LO CO 寸 CO 寸 寸 寸 CO CVJ 寸 顯影安全係數 顯影安全係數 (秒) 〇 CS1 Ο (Μ LO eg LO ϊ—t ο C\J L〇 I-Η LO r~H o CM LO CM o (M in o CM L〇 t-H o CNJ o CM 最佳顯影時間 (秒) 〇 Ο CD o Ο CD ο ① Ο CO o o ① o ① 〇 o CD o CD o CO o CO 〇 CD 感度評價 If 〇 〇 r—4 rH Ο Ο Ο 1—( 〇 〇 Ο Ο Ο τ—1 ο ο σ> ο ο o o t-H rH o o o r-H o o o r—f o o r—( i-H o o o rH 〇 〇 o o LO t—( o o CO 〇 〇 CO r—*i 顯影液濃度 (wt%) 寸 〇 寸 Ο 寸 ο 寸 Ο 寸 ο 寸 ο 寸 o 寸 o 寸 o 00 CO CO 00 CO CM 00 CO CM 寸 o 寸 〇 寸 o 組成物種 名稱 r-H I CO CM 1 m CO m 寸 (/) LO I tn ① I CO 卜 00 1 cn Ci m o rH in rH t-H t CO CM r-H (/) y—N r-H 1 ζΛ C<J 1 ιο CO I w 實施例27 實施例28 實施例29 實施例30 實施例31 實施例32 _______________1 實施例33 實施例34 實施例35 實施例36 實施例37 實施例38 比較例7 比較例8 比較例9 -61 200912531 發明之效果 本發明之敏輻射線性樹脂組成物係具有高的輻射線感 度’且顯影安全係數優異,可容易形成耐熱性優之圖型狀 薄膜(層間絶緣膜或微透鏡)。 從上述組成物所形成之本發明的層間絕緣膜係耐溶劑 性及耐熱性優,具有高的透過率,介電率低者,因此可適 合作爲電子零件之層間絕緣膜使用。 又從上述組成物所形成之本發明的微透鏡係耐溶劑性 及耐熱性優,且具有高的透過率與良好的熔融形狀者,因 此可適合作爲固體攝影元件等之微透鏡使用。 【圖式簡單說明】 圖1係微透鏡之剖面形狀之模式圖。 -62 -__ LO LO LO m LO LO ΙΟ ΙΩ LO LO LO LO LQ LO LQ LQ 槲_ IRW Γ~Π ο Type tH I o tH ooo τ—1 ϋ rH Ο ϋ ι—Η Ο rH 1 ο rH o tH oy—iooo »—1 1 ο τΜ 1 ϋ 蘅i CNJ _ _ oooo ο ο ο ο ο oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo Or*H ο ι-Η Ο r—4 〇tH Ο τ-Η _ _ o \ oo \ LO Ο \ LO 〇\ L〇o 〇\ Ο Φ Chain I-! eo CN3 Ο »—( Ο ι-Η Or~( Ο CM type t-1 1 CQ CO rH CS1 1 m C0 rH (Μ 1 PQ CO »—< (M 1 DQ CO r-< rH CM 1 CQ CO PQ 1. ..J 1 PQ \ T—( 1 CQ 1 PQ 1 PQ \ ?-Η 1 CQ 1 PQ 1 0Q \ r—1 1 PQ 1 PQ 1 PQ \ tH 1 PQ 1 CQ 1 PQ 1 \ rH 1 OQ 1 PQ § 〇ooo ο ο ο ο ο 〇O ooo ο ο r~n _ _ oooo ο ο ο ο ο o 〇ooo ο ο Polymer [A _ ^^ iH rH rH rH ι-Η ι-Η rH τ—I 1( r"H r —H 1-Η ι-Η rH I rH | jH | CM | CN0 1 CS1 1 00 1 C0 1 co 1 inch I inch 1 inch! tH 1 rH 1 1 τ—I 1 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<> Tn 1 C/) 1 ίί) 1 ίΠ 1 CO 1 cn 1 cn 1 cn ! to 1 W 1 υι 1 W y—im C<JE cn m inch νη m C-- οο mos rH ί—H CS rH 莩CO rH 莩H cn Bracelet Collection Thirsty Grip Collection 镒镒舾K Λ 13⁄4 * Κ u IK ϋ JJ JA -52- 200912531 Examples 14-26 and Comparative Examples 4~6 <Interlayer insulating film Evaluation of Performance> Using the sensitive radiation linear resin composition prepared above, various characteristics of the interlayer insulating film were evaluated as follows. [Evaluation of Sensitivity] In Example 1 4 to 2 5 and Comparative Examples 4 to 6, the composition shown in Table 3 was applied onto a ruthenium substrate using a spin coater, and then 90 on a hot plate. (: Pre-baking was performed for 2 minutes to form a coating film having a film thickness of 3.0 μm. Example 26 was applied by a slit die coater, and the solvent was removed under reduced pressure of 〇5T〇rr, and then heated. The film was prebaked at 90 ° C for 2 minutes to form a film having a film thickness of 3 · 0 μm. The obtained film was passed through a PLA-501F exposure machine made of Canon with a pattern mask having a predetermined pattern ( Ultra-high pressure mercury lamp), after changing the exposure time for exposure, respectively, using a developing solution of the tetramethylammonium hydroxide aqueous solution having the concentration of Table 3, performing the stirring method for 24 seconds at 25 t, and then using ultrapure water to The water was washed for 1 minute, and after drying, the pattern was formed on the substrate. At this time, the minimum exposure amount required to completely dissolve the spatial pattern of the line of 3.0 μm and the gap (1:1) was measured. The sensitivity was as shown in Table 3. [Evaluation of development safety factor] Example 1 4 to 2 5 and Comparative Examples 4 to 6 were obtained by applying the composition shown in Table 3 to a ruthenium substrate using a spin coater. Pre-baking at 90 ° C for 2 minutes on a hot plate to form a film with a film thickness of 3 μm Example 26 was-53-200912531, which was coated with a slit die coater, and the solvent was removed under reduced pressure of Torr5 Torr, and then pre-baked on a hot plate at 90 ° C for 2 minutes to form a film thickness. 3.0μηι coating film. For the obtained coating film through the mask with a line pattern of 3 〇μιη line and gap (1:1), using the PLA-501F exposure machine made by Canon (super-compressed mercury lamp) The exposure was exposed to an exposure amount corresponding to the sensitivity measured by the above-mentioned "sensitivity evaluation", and the tetramethylammonium hydroxide aqueous solution having the concentration of the developer shown in Table 3 was used, respectively, at 25 (under: Change the development time to develop by stirring. Then use ultrapure water to wash with running water for 1 minute. After drying, the pattern is formed on the ruthenium substrate. At this time, the development time required for the line width of 3 · 0 μη is optimal. The development time is as shown in Table 2. The time until the line pattern of 3·0 μηη was peeled off was measured when the development was continued from the optimum development time, and the development safety factor was as shown in Table 3. This number was 3 0. Above the second, it means that the development safety factor is good. Evaluation of Shrinkage Ratio] Example 1 4 to 2 5 and Comparative Examples 4 to 6 were applied to a crucible substrate by using a spin coater, and then subjected to a hot plate at 90 ° C. The film was pre-baked for 2 minutes to form a film having a film thickness of 3. Ομπι. Example 26 was applied by a slit die coater, and the solvent was removed under reduced pressure of 〇·5 To rr, and then placed on a hot plate. The film was pre-baked at 90 ° C for 2 minutes to form a film having a film thickness of 3.0 μm. The film thickness (T 1 ) of the coating film obtained at this time was measured. The obtained film was not passed through the pattern mask by < ^11〇11 (shares) system? 1^-501? Exposure machine (Ultra High Pressure Mercury Lamp) exposes the cumulative exposure to 3,00 J/m2, and heats the substrate at 220 °C for 1 hour in a clean oven. -54- 200912531 The hardening thickness was measured, and the film thickness (11) of the cured film was measured, and the film thickness change rate of hardening was calculated {|tl-Tlj/Tl} X100 [%]. The results are shown in Table 3. When the number 値 is 10% or less, it means that the shrinkage rate at the time of hardening is good. Since the film formed by the evaluation of the shrinkage rate at the time of hardening does not need to be patterned, the radiation irradiation step and the development step are omitted, and evaluation is performed only by the coating film forming step, the post-baking step, and the heating step. [Evaluation of Solvent Resistance] In Example 1 4 to 25 and Comparative Examples 4 to 6, the composition shown in Table 3 was applied onto a ruthenium substrate using a spin coater, and then subjected to a hot plate at 90 ° C. Pre-bake in 2 minutes to form a coating film. Example 26 was applied by using a slit die coater. After removing the solvent under a reduced pressure of 0.5 Torr, it was prebaked on a hot plate at 90 ° C for 2 minutes to form a coating film. The obtained coating film was exposed to a pattern mask by a Canon-type PLA-501F exposure machine (ultra-high pressure mercury lamp) to make the cumulative exposure amount to 3,00 (U/m2 for exposure, in a clean oven, The substrate was heated at 220 ° C for 1 hour to obtain a cured film having a film thickness of 3.0 μχ, and the film thickness (τ 2 ) of the coating film obtained at this time was measured. The substrate on which the cured film was formed was controlled at a temperature of 70 t. After immersing for 2 minutes in dimethyl sulfoxide, the film thickness (t2) of the cured film was measured, and the film thickness change rate { |t2-T2|/T2 } xlOO [%] produced by the immersion was calculated. 3. When the number 値 is 5% or less, the solvent resistance is good. The evaluation of the solvent resistance is such that the film formed does not need to be patterned, so that the radiation irradiation step and the development step are omitted, and only the coating film is formed. Evaluation of the step, the post-boiling step, and the heating step - 55 - 200912531 [Evaluation of heat resistance] A cured film was formed in the same manner as the evaluation of the solvent resistance described above, and the film thickness (T3) of the obtained cured film was measured. The film substrate was additionally baked at 240 ° C for 1 hour in a clean oven, and each was measured. The film thickness (t3) of the cured film was calculated as the film thickness change rate {113 - T 3 | / T 3 } X 1 〇〇 [ % ] by the additional baking. The results are shown in Table 3. The number 値 is 5 When it is less than or equal to 5%, the heat resistance is good. [Evaluation of transparency] A glass substrate "Corning 7059 (manufactured by Corning)" was used instead of the ruthenium substrate in the evaluation of the solvent resistance, and a cured film was formed on the glass substrate. The light transmittance of the glass substrate having the cured film was measured by a spectrophotometer "1 50-20 type double beam (manufactured by Hitachi, Ltd.)" at a wavelength in the range of 400 to 800 nm. The minimum transmittance at this time is shown in Table 3. As shown in the figure, when the number is more than 90%, 'the transparency is good. -56- 200912531 Transparency S CNi σϊ 00 CNJ inch inch in σ> CO 03⁄4 CO a inch σ> CS3 05 C^3 05 CO 7 Μ σ&gt ; inch ο ΙΟ heat resistance film thickness change rate (%) τ-Η τ—i rH r*H τ-Η τ—ί 1—i iH rH τ—ί τΉ ι-Η tH CO co inch heat resistance film thickness change Rate i (%) 00 CO CO CO c〇Γ0 00 Γ0 Γ〇Γ〇co CO CO CO 00 00 Hardening Shrinkage rate 1 Film thickness change rate (%) 00 00 00 Bub 00 00 00 00 00 00 Bu 1—i ι-Η »-Η r—i Development safety factor development safety factor (seconds) ο CO LO 00 o Inch ο CO LQ CO ο C0 ο co LO CO ο inch LO CO ο inch ο ο 00 o co LO co o CO 1 optimal development time (seconds) ο 00 o 00 o 00 ο 00 Ο 00 ο 00 ο 00 o 00 ο 00 ο 00 ο 00 ο 00 ο 00 o 00 ο 00 o 00 Sensitivity evaluation sensitivity (J/m2) ο LO LO oo LO oo LO ο LO LO Ο Ο LO ο ο LO ο LO UD oo L〇ο ο LO ο LO LQ ο ο LO ο ο LO ο ο iiO o LO ο ο oo oo developer concentration (wt%) inch ο inch o inch o inch ο inch ο inch ο inch ο inch o inch ο 00 C0 C<1 00 CO (Μ 00 CO CM inch ο inch ο inch ο inch ο composition species name ι—1 1 tn CM 1 m CO 1 CO inch 1 Π) LO 1 tn 1 1 00 卜 1 in 00 I in 05 1 (/) τΉ ! cn ι—1 rH I cn (Μ γΗ ι (Π CO ι—Η ι ιη N τ-Η I w C<] 1 CO co 1 w Example 14 Example 15 Example 16 Example 17 Example 18 Embodiment 19 Embodiment 20 Embodiment 21丨_1 Embodiment 22 ! _I Implementation Example 23 Example 24 Example 25 Example 26 Comparative Example 4 Comparative Example 5 Comparative Example 6 - 57 - 200912531 Examples 27 to 38 and Comparative Examples 7 to 9 <Performance Evaluation of Microlens> Using Sensitive Radiation Prepared as described above The linear resin composition evaluated various characteristics of the microlens as follows. The evaluation of the solvent resistance, the evaluation of the heat resistance, and the evaluation of the transparency can be referred to the results of the performance evaluation of the above interlayer insulating film. [Evaluation of Sensitivity] The composition shown in Table 4 was applied onto a ruthenium substrate by a spin coater, and then prebaked on a hot plate at 90 ° C for 2 minutes to form a coating film of 2.0 μm. For the obtained coating film, the projection exposure machine (NA = 0.50 ' λ = 3 65 ηιη) of NSR 1 75 5i7A made by NIKON Co., Ltd. was changed by a mask having a predetermined pattern, and the exposure time was changed for exposure, respectively. The developing solution of the tetramethylammonium hydroxide aqueous solution having the concentration shown in Table 4 was stirred and developed at 25 ° C for 1 minute. It is then washed and dried with water to form a pattern on the crucible substrate. At this time, the width of the gap pattern of the line of 0.8 μιη and the pattern of the gap (1:1) is determined to be the minimum amount of exposure required for 〇.8μηι. This number is the sensitivity, as shown in Table 4. [Evaluation of development safety factor] After the composition shown in Table 3 was applied onto a crucible substrate by a spin coater, it was pre-baked on a hot plate at 90 ° C for 2 minutes to form a coating film of 2·Ομπι. . For the obtained coating film, the projection exposure machine (ΝΑ = 0·50 ' λ = 3 6 5 ηιη ) is reduced by NSK 1 7 5 5 i7A made by NIKON (manufacturing) through a pattern mask having a predetermined pattern, which is equivalent to After exposure of the above-mentioned [sensitivity evaluation], the exposure amount of -58-200912531 degree 进行 was exposed, and the developing solution of the ammonium hydroxide aqueous solution of the concentration of Table 4 was used, respectively, and the development time was changed at 25 ° C, and the development method was mixed. . Then, it is washed with water, dried, and the development time required to determine the gap pattern of the line gap pattern (1··1) of 0 _ 8 μηι is 0.8 μm, which is the optimum development time, as shown in Table 4. After the optimum development time, the time until the development was continued at 0.8 μm (development safety factor) was as shown in Table 4. [Formation of Microlens] The composition shown in Table 4 was applied to a crucible using a spin coater, and then prebaked on a hot plate at 90 ° C for 2 minutes to form a 2·coat film. For the obtained coating film, a NJ1755i7A reduction optical machine (ΝΑ = 0·50, λ = 3 65ηηι ) manufactured by NIKON Co., Ltd. is passed through a pattern mask having a dot width of 2.0 μm and 2.0 μm, corresponding to the above-mentioned " [Evaluation] The exposure amount of the sensitivity 测定 measured was subjected to exposure, and the developing solution concentration of tetramethylammonium hydroxide aqueous solution, which was evaluated for sensitivity of 4, was stirred and developed at 25 ° C for 1 minute. Then, it is dried to form a pattern on the ruthenium substrate. Then use Canon ( PLA_ 5 0 IF exposure machine (ultra-high pressure mercury lamp) for exposure to make the amount of 3,000 J / m2. Then use the heating plate to 16 (rC heating the clock, then heat at 23 ° C for 10 minutes, so that The pattern is melted, and the size of the bottom of the microlens (the surface contacting the substrate) forming the ruthenium is tetrazed by the pattern. The width is shown. The pattern of the full-coefficient substrate is Ομιη. The surface of the micro-lens (diameter -59-200912531) and the cross-sectional shape are shown in Table 4. The size of the bottom of the microlens exceeds 4·0 μιη, and it does not reach 5.0 μιη, indicating Good. When the size exceeds 5.0 μm, the adjacent lenses are in contact with each other, so it is not ideal. The cross-sectional shape is as shown in the pattern diagram of Fig. 1, and the shape of the semi-convex lens of (a) is good, as in the case of (b) The shape of the table is not good. -60- 200912531 Inch 揪 microlens shape cross-sectional shape Ν—✓ s cd s— X—Ν c0 Nw^ /«—V cij /«—N y^S. ✓ —N. cd N—✓ cd N—✓ ·/-—NS—✓ κ *-Ν Cd N cd X-N cd bottom size (mm) LO inch inch CO inch inch inch CO inch inch inch inch CO inch (M inch LO CO inch CO inch inch inch CO CVJ inch development safety factor development safety factor (seconds) 〇CS1 Ο (Μ LO eg LO ϊ—t ο C\JL〇I-Η LO r~H o CM LO CM o (M in o CM L〇tH o CNJ o CM Optimum development time (seconds) 〇Ο CD o Ο CD ο 1 Ο CO oo 1 o 1 〇o CD o CD o CO o CO 〇CD Sensitivity evaluation If 〇〇r—4 rH Ο Ο Ο 1—( 〇〇Ο Ο Ο τ—1 ο ο σ> ο ο oo tH rH ooo rH ooor—foor—( iH ooo rH 〇〇oo LO t—( oo CO 〇〇CO r—*i developer concentration (wt%) inch inch Ο inch ο inch Ο inch ο inch ο inch o inch o inch o 00 CO CO 00 CO CM 00 CO CM inch o inch inch o composition species name rH I CO CM 1 m CO m inch (/) LO I tn 1 I CO 00 1 cn Ci mo rH in rH tH t CO CM rH (/) y - N rH 1 ζΛ C < J 1 ιο CO I w Example 27 Example 28 Example 29 Example 30 Example 31 Example 32 _______________1 Example 33 Example 34 Example 35 Example 36 Example 37 Example 38 Comparative Example 7 Comparative Example 8 Comparative Example 9 -61 200912531 Effect of the Invention The sensitive radiation linear resin composition of the present invention has high radiation sensitivity and excellent development safety factor, and can be easily formed. A heat-resistant pattern film (interlayer insulating film or microlens). The interlayer insulating film of the present invention formed from the above composition is excellent in solvent resistance and heat resistance, has high transmittance, and has a low dielectric constant. Therefore, it can be suitably used as an interlayer insulating film for electronic parts. Further, the microlens of the present invention which is formed from the above-mentioned composition is excellent in solvent resistance and heat resistance, and has high transmittance and good melt shape. Therefore, it can be suitably used as a microlens such as a solid-state image sensor. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing the cross-sectional shape of a microlens. -62 -

Claims (1)

200912531 十、申請專利範圍 1 . 一種敏輻射線性樹脂組成物,其係含有: 〔A〕選自羧基及羧酸酐基所成群之至少一種的基、 選自環氧乙基及氧環丁基所成群之至少一種的基及具有下 述式(1)表示之η價基的聚合物, X—f-γ—R-S——+ ) ( 1 ) η (式(1 )中,R1係伸甲基或碳數2〜1 0之伸烷基或烷基 伸甲基,Υ係單鍵、-C0-、-0-CO/ (但是附加「*」之連 結鍵與R1鍵結)或-NHCO,(但是附加「*」之連結鍵與 R1鍵結),η爲2〜10之整數,X爲可具有1個或多個醚 鍵之碳數2〜70之η價烴基或,η爲3,且X爲下述式(2 )表τκ之3價基,「+」表示連結鍵,200912531 X. Patent application scope 1. A sensitive radiation linear resin composition comprising: [A] a group selected from at least one of a group consisting of a carboxyl group and a carboxylic anhydride group, selected from the group consisting of epoxy ethyl and oxocyclobutyl groups. a group of at least one of the groups and a polymer having a η valent group represented by the following formula (1), X—f—γ—RS—+ ) ( 1 ) η (in the formula (1), the R1 stretching a methyl group or a carbon number of 2 to 10 alkyl or an alkyl group, a hydrazine single bond, -C0-, -0-CO/ (but with a "*" linkage bonded to R1) or -NHCO , (but with the "*" linkage key bonded to R1), η is an integer from 2 to 10, and X is an η-valent hydrocarbon group having 2 or 70 carbon atoms or 1 or more ether linkages, and η is 3 And X is a trivalent group of the table τκ of the following formula (2), and "+" represents a linkage bond, (式(2)中,R11係各自獨立爲伸甲基或碳數2〜6之伸 烷基,「*」係各自表示連結鍵),及 〔B〕1,2 -醌二疊氮化合物。 -63- 200912531 2. 如申請專利範圍第1項之敏輻射線性樹脂組成物 ,其中上述式(1)中之Y爲-〇-C〇J (但是附加「*」之 連結鍵與R1鍵結)。 3. 一種敏輻射線性樹脂組成物,其特徵係含有: 〔A〕使含有(al)選自不飽和羧酸及不飽和羧酸酐 所成群之至少一種,及 (a2)含有至少一種選自環氧基及氧環丁基所成群之 基之不飽和化合物所成的不飽和化合物,在下述式(8 ) X~~(-Y—rJ-SH ) (8) (式(8)中,X'Y'R1及η係各自與上述式(1)之X 、Y、R1及η同義)表示之化合物的存在下,進行自由基 共聚所得之聚合物,及 〔Β〕1,2 -醌二疊氮化合物。 4. 如申請專利範圍第3項之敏輻射線性樹脂組成物 ,其中上述式(8)中之Υ爲-〇-C〇/ (但是附加「*」之 連結鍵與R1鍵結)。 5. 如申請專利範圍第1〜4項中任一項之敏輻射線性 樹脂組成物,其係層間絶緣膜製造用。 6 . —種層間絶緣膜之製造方法’其特徵係含有以下 述順序之以下的步驟, (1 )於基板上形成申請專利範圍第5項之敏輻射線 性樹脂組成物之塗膜的步驟、 (2 )對該塗膜之至少一部分照射輻射線的步驟、 -64- 200912531 (3)顯影步驟,及 (4 )加熱步驟。 7. 一種層間絶緣膜或微透鏡,其特徵係以申請專利 範圍第6項的方法製造。 8 ·如申請專利範圍第1〜4項中任一項之敏輻射線性 樹脂組成物’其係微透鏡製造用。 9. 一種微透鏡之製造方法’其特徵係含有以下述順 序之以下的步驟’ (1 )於基板上形成申請專利範圍第8項之敏輻射線 性樹脂組成物之塗膜的步驟、 (2 )對該塗膜之至少一部分照射輻射線的步驟、 (3)顯影步驟,及 (4 )加熱步驟。 1 0 . —種微透鏡,其特徵係以申請專利範圍第9項的 方法所形成。 1 1 . 一種聚合物之製造方法,其特徵係將 (al)選自不飽和羧酸及不飽和羧酸酐所成群之至少 〜種,及 (a2)含有至少一種選自環氧乙基及氧環丁基所成群 之基之不飽和化合物所成的不飽和化合物’在下述式(8 ) X~f-Y—R1—SH ) (8) ' / η (式(8)中,X'Y'R1及η係各自與上述式(1)之X -65- 200912531 、Y、R1及η同義)表示之化合物的存在下,進行自由基 共聚。 -66 -(In the formula (2), each of R11 is independently a methyl group or an alkyl group having 2 to 6 carbon atoms, "*" each represents a linking bond), and [B] a 1,2-quinonediazide compound. -63- 200912531 2. The sensitive radiation linear resin composition of claim 1, wherein Y in the above formula (1) is -〇-C〇J (but the "*" linkage is added to the R1 bond. ). A sensitive radiation linear resin composition comprising: [A] comprising (al) at least one selected from the group consisting of unsaturated carboxylic acids and unsaturated carboxylic anhydrides, and (a2) containing at least one selected from the group consisting of An unsaturated compound formed by an unsaturated group of an epoxy group and an oxocyclobutyl group is represented by the following formula (8) X~~(-Y-rJ-SH) (8) (Formula (8) a polymer obtained by radical copolymerization in the presence of a compound represented by X, Y'R1 and η each of the above formula (1), wherein X, Y, R1 and η are synonymous, and [Β] 1, 2 - Bismuth azide compound. 4. The sensitive radiation linear resin composition of claim 3, wherein the enthalpy in the above formula (8) is -〇-C〇/ (but a "*" linkage is added to the R1 bond). 5. The radiation sensitive linear resin composition according to any one of claims 1 to 4, which is used for the production of an interlayer insulating film. 6. A method for producing an interlayer insulating film, characterized by comprising the following steps in the following order, (1) a step of forming a coating film of a radiation-sensitive linear resin composition of claim 5 on a substrate, ( 2) a step of irradiating at least a portion of the coating film with radiation, -64-200912531 (3) developing step, and (4) heating step. An interlayer insulating film or microlens characterized by the method of claim 6 of the patent application. The sensitive radiation linear resin composition as described in any one of claims 1 to 4, which is used for the manufacture of microlenses. A method for producing a microlens, characterized by the steps of: (1) forming a coating film of a radiation-sensitive linear resin composition of claim 8 on a substrate in the following procedure: (2) a step of irradiating at least a portion of the coating film with radiation, (3) a developing step, and (4) a heating step. A microlens characterized by the method of claim 9 of the patent application. 1 1. A method for producing a polymer characterized by (al) at least one selected from the group consisting of unsaturated carboxylic acids and unsaturated carboxylic anhydrides, and (a2) containing at least one selected from the group consisting of epoxy ethyl groups and An unsaturated compound formed by an unsaturated group of a group of oxycyclobutyl groups is represented by the following formula (8) X~fY-R1-SH ) (8) ' / η (in the formula (8), X'Y The radical copolymerization is carried out in the presence of a compound represented by each of the 'R1 and η systems, which are synonymous with X-65-200912531, Y, R1 and η of the above formula (1). -66 -
TW097128674A 2007-07-30 2008-07-29 Sensitive radiation linear resin composition, and interlayer insulating film and microlens and the like TWI510857B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007197914 2007-07-30

Publications (2)

Publication Number Publication Date
TW200912531A true TW200912531A (en) 2009-03-16
TWI510857B TWI510857B (en) 2015-12-01

Family

ID=40331647

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097128674A TWI510857B (en) 2007-07-30 2008-07-29 Sensitive radiation linear resin composition, and interlayer insulating film and microlens and the like

Country Status (4)

Country Link
JP (1) JP5177404B2 (en)
KR (1) KR101462691B1 (en)
CN (1) CN101359174B (en)
TW (1) TWI510857B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI697734B (en) * 2015-09-30 2020-07-01 日商東麗股份有限公司 Negative coloring photosensitive resin composition, cured film, element and display device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101682937B1 (en) * 2009-04-01 2016-12-06 제이에스알 가부시끼가이샤 Radiation-sensitive resin composition, interlayer insulating film and method for forming the same
JP5585112B2 (en) * 2009-04-01 2014-09-10 Jsr株式会社 Radiation-sensitive resin composition, interlayer insulating film and method for forming the same
KR101729801B1 (en) * 2009-07-17 2017-05-11 제이에스알 가부시끼가이샤 Radiation-sensitive resin composition and compound
EP2479612B1 (en) * 2009-09-14 2016-12-07 Nissan Chemical Industries, Ltd. Photosensitive resin composition containing copolymer
CN102402119B (en) * 2011-11-15 2013-06-26 东南大学 Positive photoresist composition and preparation method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4240204B2 (en) * 2003-03-07 2009-03-18 日産化学工業株式会社 Positive photosensitive resin composition
JP2005070742A (en) * 2003-08-07 2005-03-17 Tokyo Ohka Kogyo Co Ltd Positive resist composition and method for forming resist pattern
CN1898605B (en) * 2004-04-08 2010-08-18 Jsr株式会社 Radiation-sensitive resin composition, interlayer insulation film, microlens and process for producing them
JP4492393B2 (en) * 2005-03-08 2010-06-30 チッソ株式会社 Photosensitive composition and display element using the same
JP2006342221A (en) * 2005-06-08 2006-12-21 Daicel Chem Ind Ltd Water-dispersible resin composition
JP4687359B2 (en) * 2005-10-03 2011-05-25 Jsr株式会社 Radiation sensitive resin composition and formation of interlayer insulating film and microlens
JP4654867B2 (en) * 2005-10-07 2011-03-23 Jsr株式会社 Radiation-sensitive resin composition, interlayer insulating film and microlens, and production method thereof
JP2007128061A (en) * 2005-10-07 2007-05-24 Jsr Corp Radiation-sensitive resin composition, method for forming interlayer insulation film and microlens, and interlayer insulation film and microlens
JP2007177199A (en) * 2005-12-02 2007-07-12 Mitsubishi Rayon Co Ltd Granular vinyl polymer, its production process and thermosetting resin composition
KR20090042341A (en) * 2007-10-26 2009-04-30 주식회사 엘지화학 Alkali-soluble resin, and negative photosensitive resin composition comprising the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI697734B (en) * 2015-09-30 2020-07-01 日商東麗股份有限公司 Negative coloring photosensitive resin composition, cured film, element and display device

Also Published As

Publication number Publication date
KR20090013086A (en) 2009-02-04
CN101359174B (en) 2012-11-28
KR101462691B1 (en) 2014-11-17
JP2009053667A (en) 2009-03-12
TWI510857B (en) 2015-12-01
CN101359174A (en) 2009-02-04
JP5177404B2 (en) 2013-04-03

Similar Documents

Publication Publication Date Title
TWI437365B (en) Sensitive radiation linear resin composition, interlayer insulating film and microlens, and the like
TW200428021A (en) Radiation-sensitive resin composition, interlayer insulating film, micro-lens and method for forming the same
KR100776121B1 (en) Radiation Sensitive Resin Composition, Inter Layer Insulating Film and Microlens and Process for Preparing the Same
TWI430025B (en) Photosensitive resin composition, interlayer insulating film, and method for processing microlens
TWI444775B (en) Sensitive radiation linear resin composition, interlayer insulating film and microlens, and the like
KR20080086390A (en) Radiation-sensitive resin composition, interlayer insulation film and microlens, and process for producing them
TW200912531A (en) Radiation-sensitive resin composition, layer insulation film and microlens and manufacture method thereof
JP4677871B2 (en) Radiation sensitive resin composition and formation of interlayer insulating film and microlens
JP4650639B2 (en) Radiation-sensitive resin composition, interlayer insulating film and microlens, and production method thereof
TWI430026B (en) Sensitive linear resin composition, interlayer insulating film and microlens, and the like
TWI451194B (en) Radiosensitive resin composition, interlayer insulation film, microlens and methods for manufacturing them
JP4687359B2 (en) Radiation sensitive resin composition and formation of interlayer insulating film and microlens
TWI326799B (en)
TWI338190B (en)
JP4670568B2 (en) Radiation sensitive resin composition and formation of interlayer insulating film and microlens
KR100806495B1 (en) Radiation Sensitive Resin Composition, Inter Layer Insulating Film and Microlens and Process for Preparing the Same
TWI425315B (en) Sensitive radiation linear resin composition, interlayer insulating film and microlens, and the like
TWI285791B (en) Radiation-sensitive resin composition, interlayer insulating film and microlens
TWI394000B (en) Radiation sensitive resin composition, radiation sensitive dry film, interlayer dielectric film and a forming method thereof, and microlens and a forming method thereof
JP2009204865A (en) Radiation sensitive resin composition, interlayer dielectric, microlens, and method of manufacturing the same
JP2007101761A (en) Radiation-sensitive resin composition and formation of interlayer insulation film and microlens