TW200908115A - Method of cleaning a semiconductor substrate - Google Patents

Method of cleaning a semiconductor substrate Download PDF

Info

Publication number
TW200908115A
TW200908115A TW96129616A TW96129616A TW200908115A TW 200908115 A TW200908115 A TW 200908115A TW 96129616 A TW96129616 A TW 96129616A TW 96129616 A TW96129616 A TW 96129616A TW 200908115 A TW200908115 A TW 200908115A
Authority
TW
Taiwan
Prior art keywords
cleaning
semiconductor substrate
solvent
cleaning method
washing process
Prior art date
Application number
TW96129616A
Other languages
Chinese (zh)
Inventor
Zhi-Qiang Sun
Tien-Cheng Lan
Hua-Kuo Lee
Jing-Hao Chen
Wen-Chun Huagn
Run-Shun Wang
Jing-Ling Wang
Da-Jiang Yang
Chee-Siang Ong
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW96129616A priority Critical patent/TW200908115A/en
Publication of TW200908115A publication Critical patent/TW200908115A/en

Links

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)

Abstract

A semiconductor substrate is first provided. The semiconductor substrate includes a material layer and a patterned photoresist layer disposed on the material layer. Subsequently, a contact etching process is performed on the material layer by utilizing the patterned photoresist layer as an etching mask so to form an etched hole in the material layer. Thereafter, a solvent cleaning process is carried out on the semiconductor substrate by utilizing a cleaning solvent. Next, a water cleaning process is performed on the semiconductor substrate by utilizing deionized water. The temperature of the deionized water is in a range from 30DEG C to 99DEG C.

Description

200908115 九、發明說明: 【發明所屬之技術領域】 尤指一種利用水洗製程來清潔半 本發明提供-歸洗方法, 導體基底的清洗方法。 【先前技術】 姆形成與_移。舉例來說,在製 將未被圖案化光_覆如^難化光阻層作為侧硬遮罩, 光阻層去除,接著__=料·刻移除後,再將圖案化 成接觸插塞。、插塞孔财形成所要的金屬材料層,以完 意 圖知方― 步驟101 :先想徂—a向 八日日圓,晶圓上包含有一介電材料層; 步驟1CB :在介 、,|電材科層上形成-光阻層,並對光阻層進行—黃 光製程,以將一預定圖案投射至光阻層上; 4 105.將未被曝光的光阻層去除,而於晶圓上留下—個 化光阻層; 固茶 步驟1〇7 .對晶圓進行一敍刻製程,通常是賴乾银刻製程或者 活性離+_(reactive ion eiching,卿技術,將圖案化 200908115 光阻層的圖案轉移至下方的介電材料層中,以於介電 材料層中形成所需之插塞孔洞; 步驟109 ·進行一氧氣電漿灰化製程,以清除圖案化光阻層; 广驟111 ·進行一溶劑清洗製程(s〇lventcleaningprocess)j_ — 鬲溫清洗溶劑,例如70°C的羥胺類(hydroxylamine)溶 d,去除位於介電材料層表面、插塞孔洞内壁與插塞 孔洞底部的側壁高分子與殘餘物; 步驟113 ··彻—25。⑶去離子水伽。此心啊m她雜一 .步去除餅介紐卿上的繼高分子財洗溶劑; /驟15於晶圓表面形成—層阻障層,覆蓋於介電材料層表 面、插塞孔洞内壁與插塞孔洞底部; 步驟於晶圓表_成_層金屬層,覆胁轉層上,並填 充於插塞孔洞中;以及 步驟119 :進行一研磨製程’以去除多餘的阻障層與多餘的金屬 層,藉此於介電材料層中形成一插塞。 崎峨*成分會與光 可H自Μ 除_朗產物,其組成成分 體。這此的基材、基材上的材料層、細層以及触刻氣 產物亦可能隨著不同_機台、製程條件以及不 #、午射^麵㈣,而業界就將這齡氧《漿灰化 月除掉_刻副產_爯為侧壁高分子。 200908115 晶圓表_料度實際上對缝q率的雜碰 被影響,在沉積阻障層之前,這些= 已形成好的1=θθ圓表面上絲’但是卻又必須同時不影響到 y ^屬線路或半導體農置。因此 之後’晶圓會送人料㈣W 〃 、祕《灰化製程 溶劑等之气式 中接受前述70。。羥胺類 進行後續=的^接著接受25t去離子水的歧,之後再 當這些晶圓接受最終的產品_職時,測試結果顯 二= 率卻仍可能不如預期。根據產品良率測試的_ 圓製程參數下操作,由不同的機台所處理的晶 =相:幾台所處理之不同批次的晶圓仍然可能具有不同的產 2率。舉例來說,由特定機台所處理的晶圓可能會具有較多的 、、Ό構缺陷。縣半導體技舰人高密度 ’ 率發生歧異的狀況愈發顯著,且這些結構缺二 周圍的晶>!巾。 &生在曰曰邊 劑清== 良幅鮮獨觸嶋於溶 溶獅前。溶劑清洗製程本身顧於-制 財、前就是說,清聽_可揮發成分會在清洗的過 出,使縣洗溶齡相財漸雜高,清洗溶 而且懸浮於清洗溶射的各種副產物也越 夕。因此,當溶劑清洗製程的製程時間越長,清洗溶劑也就 200908115 更容易附著於插塞孔洞中與晶圓表面而難以去除。殘留的清洗溶 aaB ® ^^mMCwafer acceptance testing, WAT)或是結構的切面觀察而被测出,但清洗溶躺存在卻會破 壞金屬層與下方的裝置之間的電連接,導致所填入之金屬層和其 下方裝置的接面f阻值過大或電連接纽,殘㈣清洗溶劑甚至 可此會影響顺續縣或是後卿成之結構。 若長%間使用去離子水以大量清除殘餘溶劑,則會因 作用進而腐餘於插塞孔洞底部的金屬層。故為 ;力月洗溶劑的殘留,產品良率較低的必 溶劑的更換頻率。小銶9约^ 只女刀沢八/月况 糾、疋說,為了避免清洗溶劑黏度過大的情況 ^生、洗_的更換週期必須驗,由原來每 触物轉清咖。這不^ 當冒^程㈣與清洗溶劑的成本,㈣對於產品㈣的改善也相 有鑑於此 還會浪費龐大的製程成本與 ^之曰曰K而且 待改進之處。 一的m法仍具有 【發明内容】 因此,本發明係於此提供 高溫的去離子灿偷㈣ 2縣底崎洗方法,利用 夺曰1來μ除殘留於半導體基底上的 9 200908115 溶劑,以提昇產品良率。 根據本發明之一較佳實施例,本發明提供一種半導體基底的 清洗方法。首先’提供一半導體基底’半導體基底包含有一材料 層與一圖案化光阻層’且圖案化光阻層位於材料層上。之後,利 用圖案化光阻層作為一蝕刻遮罩來蝕刻材料層,以於材料層中形 成一蝕刻孔洞。接著,利用一清洗溶劑對半導體基底進行一溶劑 β洗製程(solvent cleaning process)。其後利用一去離子水對半導體 基底進行一水洗製程,其中去離子水的溫度範圍介於3〇。〇至99它 之間,反應時間範圍介於3〇秒至5分鐘之間。 根據本發明之另一較佳實施例,本發明另提供一種半導體基 底的清洗方法。首先’提供—半導體基底,半導縣底包含有一 材料層。之後,利用一清洗溶劑對半導體基底與材料層進行一溶 劑清洗製程’其巾清洗溶劑包含有—顏類成分。接著,利用一 去離子水對半導縣底進行—水洗餘,其巾去離子水的溫度範 圍介於30t S 99。(:之間’反應時間範圍介於3〇秒至5分鐘之間。 為讓本發明之上述目的、特徵、和優點能更明顯紐,下文 特舉較佳實施方式,並配合所_式,作詳細說明如下。狄而如 下之較佳實施方式與圖式健參考與說日制,並_來財發明0 加以限制者。 10 200908115 【實施方式】 β Ί 2圖至第9圖’第2圖至第8圖繪示的是本發明之一 較t實施例半導體基底之清洗方法的剖面示意圖,而第9圖繪示 的疋本發明之-較佳實施例清洗半導體基底的流程示意圖,並中 相_讀或部位仍沿__符號來表示。需注意的是圖式僅 以說明為目的’並未依照原尺寸作圖。 首先,、如第2圖與第9圖之步驟2〇1戶斤示,先提供一半導體基 底120半導體基底12〇±包含有一導體⑽、一介電材料層in 舁圖案化光阻層1H。其中如通常知識者所熟知,當要利用光阻 進行圖案軸觸鱗料,通常料將絲㈣佈在預定之材 料層表面,麵黃雜程將影像投射至雜層上之後,再經供烤 及顯影步騎未被曝光的触層缺,細形成前叙圖案 阻層114。一般而今,本道興苴疣 者矽心隨ςΤ。 & 2G可以由魏底、切基底或 夕覆職鲁InsulatGr,⑽)等半導體材料 一晶圓。介電材料層112可由梟介你七换士 、雜科所構成。圖案化光阻層114可以包含有正光阻材料或 2料。_ 146可以是任何導電物質或是半導體裝置中的導 區域,例如金屬、線路、導電插塞、金氧轉 電 ^氧半導《晶體的_域、金氧半_晶日翻_=、 -極體7G件的連接區域轉。需注意的是,於本發明之 : 辦’前述介電材料層112亦可替換為其他非介電材料層,例^ —鋁金屬層或一鋁合金鈍化層等之薄膜。 ° 200908115 、接著’如第3圖與第9圖之步驟2〇3所示,對半導體基底12〇 進仃侧製程’例如—錄_製程或者—活㈣子蚀刻製程 等將圖案化光阻層m的圖案轉移至下方的介電材料層112中, 以於)ι電材料層112巾形成所需之银刻孔、洞122,例如一接觸插塞 孔/同(contact plug hole)、—介層插塞孔洞㈣麵h〇le)或渠溝 (trench)圖案,並暴露出導體146。 ,之後如苐4圖與第9圖之步驟2〇5所示,利用一剝除(striping) 製程來清除圖案化光阻層114,例如進行—氧氣電漿灰化製程或是 -濕式化學侧製程等。其後,半導體基底12〇可以被傳送至半 體濕式化學工作站進行半導體基底的潔淨,以去除半導體 基底120表面上的蝕刻後殘餘物與側壁高分子144,如第5圖與第 9 0之v,驟207戶斤* ’接^進行一溶劑清洗製程(s〇ivent 士如㈣ process),半導體基底12〇被置入浸泡槽13〇中接受旋轉與浸泡。 π泡槽130中注入有高溫的清洗溶劑14〇,例如7〇它的羥胺類 (hydroxylamme)溶劑等’以去除位於介電材料層η2表面、蝕刻孔 洞122内壁與蝕刻孔洞122底部的側壁高分子144與殘餘物,其 浸泡日^間通常約5-30分鐘左右,例如1〇分鐘。隨後,對半導體基 底120進行一旋轉乾燥(spin_drying)製程’利用旋轉半導體基底12〇 的慣性與離心力來移除半導體基底12〇上大部分的清洗溶劑14〇。 這裡的/月洗’谷劑14〇可以為各式含胺(amine_base)溶劑或是含 200908115 氟化物(fluoride-base)等之溶劑,例如EKC-270或ACT-935。根據 本較佳實施例,浸泡槽130中的清洗溶劑140包含有EKC-270。 EKC-270清洗溶劑是一種由杜邦EKC科技公司所生產的商業化餘 刻後殘餘物去除劑(post-etch residue remover),在半導體濕式清洗 製程中常被用來清除半導體基底表面上的有機高分子成分、光阻 灰化後殘餘物以及有機金屬蝕刻殘餘物等等。EKC-270清洗溶劑 主要的成分是羥胺類物質。ACT-935清洗溶劑則是由Ashland公司 所生產的蝕·刻後殘餘物去除劑,主要的成分是單乙醇胺與羥胺類 物質。 清洗溶劑140係經由一清洗溶劑控制閥(未示於圖中)以及一清 洗溶劑之輸送管線132注入浸泡槽130中。在輸送管線132中間 可以設置有液體輸送泵浦(未示於圖中)。此外,在清洗溶劑14〇進 入浸泡槽130之前,清洗溶劑14〇可以先被容置於一容置槽中(未 不於圖中)。容置槽包含有一加熱裝置(heater),用以把清洗溶劑14〇 加熱至適當的f程溫度。糊來說,EKC_27Q清洗溶劑的彿點大 約是1贼至17Gt:,g]此這裡EKC_27(uf洗溶躺溫度不宜高於 11〇°C。實際的製程溫度可以根據半導體基底12㈣結構材料與溶 劑清洗製軸製程狀況㈣參數_整,―方面要能有效地移除 触刻副產物’另—方面必須不影響到已形成好的導體146。 隨後,如第6圖與第9 對半導體基底120進行一 圖之步驟209所示,利用一去離子水142 水洗製程,進一步去除位於介電材料層 13 200908115 112上的清洗溶劑140。水洗製程中所使用之去離子水142的溫度 範圍介於30°C至99¾之間,例如70¾,反應時間範圍介於30秒 至5分鐘之間,例如為1分鐘。於水洗製程的過程中,殘留於半 導體基底120表面、钱刻孔洞122側壁與韻刻孔洞122洞底部的 清洗溶劑〗40會受到去離子水142的加熱與溶解,因此清洗溶劑 140的黏度便會下降,且因有效縮短水洗時間,不至於過度腐蝕導 體146表面,使得清洗溶劑〗4〇較容易從半導體基底12〇表面被 移除。 另一方面,由於這裡係使用高溫的去離子水142來進行水洗 製程,因此去離子水142會比較容易與清洗溶劑14〇中的成分進 行水解反應’使清洗溶劑140更容易溶於去離子水142而被帶除。 此外,在高溫的環境之下,去離子水142與清洗溶劑14〇反應所 產生的副錄還可以幫助水洗餘移除半導縣底⑽表面的氧 化物與咼分子物質。舉例來說,當清洗溶劑14〇包含有EKC_27〇 清洗溶劑時,去離子水142與舰輸f反射產生氫氧化錢, 利用氫氧化錢來協助移除氧化物與高分子物質。 其中’前述步驟207與步驟209可以反覆交替地進行。也就 疋况,溶劑清洗製程以及水洗製程可以為多重步驟(multi_cyde)。 如此-來’半導縣底12G可於水洗製程之後再反覆進行溶劑清 洗製程以及水洗製程,朗半導縣底丨如表面的殘餘物、側壁 馬分子I44與清洗溶劑M〇幾乎都被移除為止。 14 200908115 之後’如第9圖之步驟211所示’對半導體基底120進行一 乾燥製程’例如利用氮氣來乾燥半導體基底120。接著,如第7 圖、第9圖之步驟213與步驟215所示,於半導體基底12〇表面 形成一層黏著層或阻障層124,覆蓋於介電材料層112表面、蝕刻 孔洞122側壁與蝕刻孔洞122底部,再於半導體基底12〇表面形 成一層導電層126 ’覆蓋於阻障層124上,並填充於敍刻孔洞122 中。其中,導電層126可利用鎢(W)、氮化鈦(TiN)、鎢化鈦(TiW) 等金屬材料或其混合物所構成。 其後,如第8圖與第9圖之步驟217所示,進行一平坦化製 知’例如一化學機械研磨製程,以去除多餘的阻障層124與多餘 的導電層126 ’藉此於介電材料層U2中形成一插塞128,例如一 接觸插塞或一介層插塞。 於本發明之另一實施例中,於溶劑清洗製程之前另可包含有 預水洗製私。預水洗製程同樣是利用一高溫之去離子水M2對 半導體基底120進行清洗,其巾水洗製程、溶騎洗製程與預水 洗製程可以利用同一製程機台或同一製程工具進行,也可以利用 不同製程機料抑製紅具進行。舉例來說,水洗製程、溶劑 清洗製程與預水洗製程可以於同一半導體濕式化學工作站中進 行γ而可使關製虹具包含有賴清紅具(SGlvem_ 或是刷洗工具(scrubber cleaning tool)。 15 200908115 此外,溶劑清洗製程可以接續著預水洗製程而直接進行,而 水洗製程可以緊鄰著溶劑清洗製程而直接進行。換句話說,溶劑 清洗製程與預水洗製程之間、水洗製程與溶劑清洗製程之間可以 不進行乾燥步驟等等製程。另外,溶劑清洗製程與預水洗製程之 間、水洗餘與溶黯洗製狀間也可崎據實際製程需要而進 行其他_ ’例如-雜舰卿ntennediatep()st_s()iventrii^ IPR)步驟或是一刷洗步驟。 前述實施例係使用-插塞結構為例進行本發明之說明,鈇 而’該領域具通常知識者應可理解,本㈣之轉雜在於使用 尚溫去離子水來移料導縣虹之清絲顺殘餘,因此本 :日月不必侷限於製作插塞結構,本㈣亦可用於形狀清潔一金 ^連線結構或是-連接墊結構。舉例來說,前述實施例之介電材 :=可_為任何其他_,例如—齡騎料層,圖 案化光阻層m之可叫有任何 ==其硬遮罩,例如含有氮二 的清洗製程,或是一 物,離=來!除半導體基底上之殘餘 半導體基紅之清洗___ 錄付能有效地移除 I、殘餘物,灿可从幅提昇本發明所 16 200908115 製作出之產品良率’也使得不同機台的良率差異值縮小,提昇聲 程的穩定度。其次,祕親_,mx被有效地移除,因此样 明可以增加清洗溶綱更_期,不需要每8個小時就更換新的 清洗溶劑。因此,不但可以減少更換溶液所花費的時間,增加生 產率還可以節省製程成本。再者,由於機台的良率 提高且不關台的良率差異值縮小,各機台可接受的製程參數之 差異值也更大。也就是說’本發g柯以㈣地彻多個機台來進 行同-個製程’而不必擔心不同機台所製作的產品會㈣不齊。 以上所述僅林發明讀佳實關,凡依本發明申請專利範 圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 【圖式簡單說明】 第1圖繪示的是習知方法形成—插塞的絲示意圖。 第2圖至第8圖繪示的是本發明之一較佳實施例半導體基底之清 洗方法的剖面示意圖。 第9圖繪示的是本發明之—較佳實細清洗半導縣底的流程示 意圖。 【主要元件符號說明】 101、103、105、107、109 步驟 111 ' 113 ' 115、1口、119 步驟 120 半導體基底 17 200908115 112 介電材料層 114 圖案化光阻層 122 蝕刻孔洞 124 阻障層 126 導電層 128 插塞 130 浸泡槽 132 輸送管線 140 清洗溶劑 142 去離子水 144 側壁高分子 146 導體 201 > 203 ' 205 ' 207'209 步驟 211 ' 213 > 215 步驟 18200908115 IX. Description of the invention: [Technical field to which the invention pertains] In particular, a cleaning process using a water washing process. The present invention provides a method of cleaning, a method of cleaning a conductor substrate. [Prior Art] M formation and _ shift. For example, in the process of making a photoresist layer that is not patterned, the photoresist layer is removed as a side hard mask, and the photoresist layer is removed, and then __=materials are removed, and then patterned into contact plugs. . The plug metal hole forms the desired metal material layer to complete the intention - Step 101: First think about - a to the eight-day yen, the wafer contains a layer of dielectric material; Step 1CB: in the media, | Forming a photoresist layer on the family layer and performing a yellow light process on the photoresist layer to project a predetermined pattern onto the photoresist layer; 4 105. removing the unexposed photoresist layer on the wafer Leaving a thin layer of photoresist; solid tea step 1〇7. A process of engraving on the wafer, usually Laiyin silver engraving process or active away from +_ (reactive ion eiching, Qing technology, will be patterned 200908115 photoresist layer The pattern is transferred to the underlying dielectric material layer to form a desired plug hole in the dielectric material layer; Step 109: performing an oxygen plasma ashing process to remove the patterned photoresist layer; • Perform a solvent cleaning process (j〇) 鬲 warm cleaning solvent, such as 70 ° C hydroxylamine dissolving d, remove the sidewalls on the surface of the dielectric material layer, the inner wall of the plug hole and the bottom of the plug hole Polymers and residues; Step 113 ··· 25. (3) Deionized water gamma. This heart ah, she is a miscellaneous. Step to remove the polymer solvent on the cake, and then form a barrier layer on the surface of the wafer, covering the dielectric material. The surface of the layer, the inner wall of the plug hole and the bottom of the plug hole; the step of forming a metal layer on the wafer surface, overlying the transfer layer, and filling the plug hole; and step 119: performing a grinding process to remove Excess barrier layer and excess metal layer, thereby forming a plug in the dielectric material layer. The rugged* component and the light H can be removed from the _ 朗 product, which is a component body. The material layer, the fine layer and the etched gas product on the substrate may also be removed by the industry according to different _machines, process conditions, and no-time, no-time (4). _Inscribed by-product _爯 is the sidewall polymer. 200908115 Wafer table _ material degree is actually affected by the collision of the slit q rate, these = well formed on the surface of the 1 = θ θ before depositing the barrier layer Silk 'but it must not affect the y ^ line or semiconductor farm. So after that 'wafer will send people (four) W The secret of the ashing process solvent, etc., accepts the above 70. The hydroxylamines are followed by the subsequent = ^ and then accept the 25t deionized water, and then when the wafers receive the final product _ hours, the test results show The second = rate may still be worse than expected. According to the _ round process parameters of the product yield test, the crystals processed by different machines: the different batches of wafers processed may still have different production 2 For example, wafers processed by a specific machine may have more defects, and the defects of the high-density rate of the county semiconductor technicians are more and more serious, and these structures are lacking in the surrounding environment. Crystal >! towel. & born in the edge of the agent clear == a good spot to touch the lion before dissolution. The solvent cleaning process itself takes care of - making money, before it is said, clearing _ volatile components will be washed out, so that the county washes the age of the same phase, the cleaning is dissolved and the various by-products suspended in the cleaning solution are also Eve. Therefore, the longer the process time of the solvent cleaning process, the easier it is to adhere to the plug hole and the wafer surface in 200908115. The residual cleaning aaB ® ^^mMCwafer acceptance testing, WAT) or the cross-section observation of the structure is detected, but the presence of the cleaning solution destroys the electrical connection between the metal layer and the device below, resulting in the filling The junction f of the metal layer and the device below it is too large or electrically connected, and the residual (4) cleaning solvent may even affect the structure of the Shun County or the Houqing. If deionized water is used in a long period of time to remove a large amount of residual solvent, it will be rotted to the metal layer at the bottom of the plug hole. Therefore, the residue of solvent washing, the frequency of replacement of the solvent with low product yield. Xiaoyan 9 about ^ only female knife 沢 eight / month condition Correction, 疋 said, in order to avoid excessive cleaning of the solvent solvent ^ raw, washing _ replacement cycle must be checked, from the original every touch to clear the coffee. This does not mean the cost of cleaning the solvent (4) and the cleaning solvent. (4) The improvement of the product (4) is also due to the waste of huge process cost and the need for improvement. The m method still has the content of the invention. Therefore, the present invention provides a high-temperature deionization can be used to remove the 9 200908115 solvent remaining on the semiconductor substrate. Improve product yield. According to a preferred embodiment of the present invention, the present invention provides a method of cleaning a semiconductor substrate. First, a semiconductor substrate is provided. The semiconductor substrate comprises a material layer and a patterned photoresist layer and the patterned photoresist layer is on the material layer. Thereafter, the patterned photoresist layer is used as an etch mask to etch the material layer to form an etched hole in the material layer. Next, a solvent cleaning process is applied to the semiconductor substrate using a cleaning solvent. Thereafter, the semiconductor substrate is subjected to a water washing process using a deionized water having a temperature range of 3 Torr. Between 〇 and 99, the reaction time ranges from 3 sec to 5 min. According to another preferred embodiment of the present invention, the present invention further provides a method of cleaning a semiconductor substrate. First, the semiconductor substrate is provided, and the bottom of the semi-conductor contains a material layer. Thereafter, a solvent cleaning process is performed on the semiconductor substrate and the material layer using a cleaning solvent. The towel cleaning solvent contains a coloring component. Next, a deionized water is used to wash the bottom of the semi-conducting county, and the temperature of the deionized water of the towel is between 30 t S 99 . (Between: the reaction time range is between 3 sec and 5 min. In order to make the above objects, features, and advantages of the present invention more obvious, the preferred embodiments are exemplified below, and The details are as follows. Di and the following preferred embodiment and the schema reference and the Japanese system, and _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ FIG. 8 is a schematic cross-sectional view showing a cleaning method of a semiconductor substrate according to a t embodiment of the present invention, and FIG. 9 is a schematic view showing a flow of cleaning a semiconductor substrate according to a preferred embodiment of the present invention. The middle phase _read or part is still represented by the __ symbol. It should be noted that the drawing is for illustration purposes only and is not plotted according to the original size. First, as shown in steps 2 and 9 of Figure 2〇1 A semiconductor substrate 120 is first provided with a semiconductor substrate 12 including a conductor (10) and a dielectric material layer in a patterned photoresist layer 1H. As is well known to those skilled in the art, when a photoresist is used to pattern the axis Touching the scaly, it is usually expected to cloth the silk (four) in the predetermined material. On the surface of the layer, after the image is projected onto the impurity layer by the yellow surface, the untouched contact layer is lacked by the baking and developing step, and the pattern resisting layer 114 is formed finely. Generally, the present 苴疣 苴疣 矽The heart can be followed. & 2G can be a wafer of semiconductor material such as Weidi, cut base or eve over the Lulu InsulatGr, (10)). The dielectric material layer 112 can be composed of a seven-key, miscellaneous department. The patterned photoresist layer 114 may comprise a positive photoresist material or a material. _ 146 can be any conductive material or a conductive region in a semiconductor device, such as a metal, a line, a conductive plug, a gold-oxygen transistor, a _ domain of a crystal, a gold oxide, a half-turn, a _=, - The connection area of the pole body 7G piece turns. It should be noted that, in the present invention, the dielectric material layer 112 may be replaced by another non-dielectric material layer, such as an aluminum metal layer or an aluminum alloy passivation layer. ° 200908115, then as shown in steps 2 and 3 of Figures 3 and 9, the patterned photoresist layer is formed on the semiconductor substrate 12 by a side-by-side process such as a recording process or a living (four) sub-etching process. The pattern of m is transferred to the underlying dielectric material layer 112 to form the desired silver inscribed holes, holes 122, such as a contact plug hole, a contact plug hole, The layer plugs a hole (four) face or a trench pattern and exposes the conductor 146. Then, as shown in FIG. 4 and step 2〇5 of FIG. 9, a stripping process is used to remove the patterned photoresist layer 114, for example, an oxygen plasma ashing process or a wet chemistry. Side process, etc. Thereafter, the semiconductor substrate 12A can be transferred to a half-body wet chemist to clean the semiconductor substrate to remove post-etch residues and sidewall polymer 144 on the surface of the semiconductor substrate 120, as shown in Figures 5 and 00. v, 207 households * 'Connected to a solvent cleaning process (s〇ivent Shi (4) process), the semiconductor substrate 12 〇 is placed into the immersion tank 13 接受 to receive rotation and soak. The π-bubble 130 is filled with a high-temperature cleaning solvent 14 〇, for example, 7 hydroxylame solvent, etc. to remove the sidewall polymer located on the surface of the dielectric material layer η2, etching the inner wall of the hole 122 and etching the bottom of the hole 122. 144 and the residue, the soaking day is usually about 5-30 minutes, for example 1 minute. Subsequently, a spin-drying process is performed on the semiconductor substrate 120 to remove most of the cleaning solvent 14 on the semiconductor substrate 12 by the inertia and centrifugal force of the rotating semiconductor substrate 12'. Here, the monthly rinsing agent can be a variety of amine-base solvents or solvents containing 200908115 fluoride-base, such as EKC-270 or ACT-935. According to the preferred embodiment, the cleaning solvent 140 in the dip tank 130 contains EKC-270. EKC-270 cleaning solvent is a commercial post-etch residue remover produced by DuPont EKC Technologies, which is commonly used to remove organic highs on the surface of semiconductor substrates during semiconductor wet cleaning processes. Molecular composition, residues after photoresist ashing, and organic metal etching residues, and the like. EKC-270 cleaning solvent The main component is hydroxylamine. The ACT-935 cleaning solvent is an etch and post-mortem residue remover produced by Ashland. The main components are monoethanolamine and hydroxylamine. The cleaning solvent 140 is injected into the immersion tank 130 via a cleaning solvent control valve (not shown) and a cleaning solvent delivery line 132. A liquid delivery pump (not shown) may be provided in the middle of the transfer line 132. Further, before the cleaning solvent 14 is introduced into the immersion tank 130, the cleaning solvent 14 〇 may be first accommodated in a accommodating tank (not shown). The accommodating tank includes a heater for heating the cleaning solvent 14 至 to an appropriate f-range temperature. For the paste, the EKC_27Q cleaning solvent is about 1 thief to 17Gt:, g] here EKC_27 (uf wash temperature should not be higher than 11 〇 ° C. The actual process temperature can be based on the semiconductor substrate 12 (four) structural materials and solvents The condition of the cleaning shaft process (4) parameter _ _, the aspect to be able to effectively remove the etched byproducts 'other aspects must not affect the formed conductor 146. Subsequently, as shown in Fig. 6 and the ninth pair of semiconductor substrates 120 As shown in step 209 of the figure, a deionized water 142 water washing process is utilized to further remove the cleaning solvent 140 on the dielectric material layer 13 200908115 112. The deionized water 142 used in the water washing process has a temperature range of 30. Between °C and 993⁄4, for example, 702⁄4, the reaction time ranges from 30 seconds to 5 minutes, for example, 1 minute. During the water washing process, it remains on the surface of the semiconductor substrate 120, and the side wall of the hole 122 is engraved with rhyme. The cleaning solvent 40 at the bottom of the hole 122 hole is heated and dissolved by the deionized water 142, so the viscosity of the cleaning solvent 140 is lowered, and the washing time is effectively shortened, and the corrosion is not excessively corroded. The surface of 146 makes it easier to remove the cleaning solvent from the surface of the semiconductor substrate 12. On the other hand, since the high-temperature deionized water 142 is used for the water washing process, the deionized water 142 is easier to clean. The component in the solvent 14〇 is subjected to a hydrolysis reaction. The cleaning solvent 140 is more easily dissolved in the deionized water 142 and is removed. Further, in a high-temperature environment, the deionized water 142 is reacted with the cleaning solvent 14〇. Recording can also help to remove the oxide and bismuth molecules on the surface of the bottom (10) of the semi-conducting county. For example, when the cleaning solvent 14 〇 contains EKC_27 〇 cleaning solvent, the deionized water 142 and the ship f reflect hydrogen. Oxidation money, using hydroxide money to assist in the removal of oxides and high molecular substances. [The aforementioned steps 207 and 209 can be carried out alternately and repeatedly. In other words, the solvent cleaning process and the water washing process can be multiple steps (multi_cyde) So-to-the semi-conducting bottom 12G can be repeatedly subjected to the solvent cleaning process and the water washing process after the washing process, and the residue of the surface of the semi-lead county The sidewall horse molecule I44 and the cleaning solvent M〇 are almost completely removed. 14 200908115 Thereafter, 'the semiconductor substrate 120 is subjected to a drying process as shown in step 211 of FIG. 9', for example, by using nitrogen gas to dry the semiconductor substrate 120. As shown in steps 213 and 215 of FIG. 7 and FIG. 9, an adhesive layer or barrier layer 124 is formed on the surface of the semiconductor substrate 12, covering the surface of the dielectric material layer 112, etching the sidewalls of the holes 122, and etching the holes. At the bottom of the 122, a conductive layer 126' is formed on the surface of the semiconductor substrate 12 to cover the barrier layer 124 and is filled in the hole 122. The conductive layer 126 may be formed of a metal material such as tungsten (W), titanium nitride (TiN), or titanium tungsten (TiW) or a mixture thereof. Thereafter, as shown in step 217 of FIGS. 8 and 9 , a planarization process is performed, such as a chemical mechanical polishing process to remove excess barrier layer 124 and excess conductive layer 126 ' A plug 128 is formed in the layer of electrical material U2, such as a contact plug or a via plug. In another embodiment of the present invention, pre-washing may be included prior to the solvent cleaning process. The pre-washing process also uses a high-temperature deionized water M2 to clean the semiconductor substrate 120. The towel washing process, the solvent-washing process and the pre-washing process can be performed by the same process machine or the same process tool, or different processes can be utilized. The machine inhibits the red tool. For example, the water washing process, the solvent cleaning process, and the pre-washing process can be performed in the same semiconductor wet chemical workstation to enable gamma to include a glazing tool (SGlvem_ or a scrubber cleaning tool). 15 200908115 The solvent cleaning process can be carried out directly following the pre-washing process, and the water washing process can be directly performed next to the solvent cleaning process. In other words, between the solvent cleaning process and the pre-washing process, between the water washing process and the solvent cleaning process, The drying process and the like are not carried out. In addition, between the solvent cleaning process and the pre-washing process, between the water washing and the washing and washing, the other processes can be carried out according to the actual process requirements _ 'for example - Miscellaneous ntennediatep () st_s ()iventrii^ IPR) step or a scrubbing step. The foregoing embodiment uses the plug-in structure as an example to carry out the description of the present invention, and it should be understood by those having ordinary knowledge in the field that the hybridization of this (four) is to use the still-temperature deionized water to transfer the material to the county. Silk remnants, so this: the sun and the moon are not limited to making the plug structure, this (4) can also be used for shape cleaning a gold ^ wire structure or - connection pad structure. For example, the dielectric material of the foregoing embodiment: = can be any other _, for example, an ageing riding layer, and the patterned photoresist layer m can be called any == its hard mask, for example, containing nitrogen Cleaning process, or one thing, away = come! In addition to the cleaning of the residual semiconductor base red on the semiconductor substrate ___ can effectively remove I, the residue can be improved from the width of the invention 16 200908115 The product yield rate also reduces the yield difference of different machines and improves the stability of the sound path. Secondly, the secret _, mx is effectively removed, so the sample can increase the cleaning solvency, and it is not necessary to replace the new cleaning solvent every 8 hours. Therefore, not only can the time taken to replace the solution be reduced, the productivity can be increased, and the process cost can be saved. Furthermore, since the yield of the machine is increased and the yield difference value of the unoffer is reduced, the difference in process parameters acceptable to each machine is also greater. That is to say, 'this hair g Ke uses (four) to carry out the same process for multiple machines' without worrying that the products made by different machines will be inconsistent. The above-mentioned only changes and modifications of the patent application scope of the present invention should be included in the scope of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing the formation of a plug according to a conventional method. 2 to 8 are schematic cross-sectional views showing a cleaning method of a semiconductor substrate in accordance with a preferred embodiment of the present invention. Fig. 9 is a schematic view showing the flow of the bottom of the semi-conductor of the present invention. [Main component symbol description] 101, 103, 105, 107, 109 Step 111 '113' 115, 1-port, 119 Step 120 Semiconductor substrate 17 200908115 112 Dielectric material layer 114 Patterned photoresist layer 122 Etched hole 124 Barrier layer 126 Conductive layer 128 Plug 130 Immersion tank 132 Transfer line 140 Cleaning solvent 142 Deionized water 144 Side wall polymer 146 Conductor 201 > 203 '205 '207'209 Step 211 '213 > 215 Step 18

Claims (1)

200908115 十、申請專利範圍: . L 一種半導體基底的清洗方法,包含有·· 提供-半導體基底,該半導體基底包含有—材觸與—圖案化 光阻層,且該圖案化光阻層位於該材料層上; 利用該圖案化光阻層作為一蝕刻遮罩來蝕刻該材料層,以於該 材料層中形成一飯刻孔洞; 利用一清洗溶劑對該半導體基底進行一溶劑清洗製程(s〇lvent cleaning process);以及 利用一去離子水(deionized water, DI water)對該半導體基底進 行一水洗製程,且該去離子水的溫度範圍介於30。〇至99。〇之間。 2. 如申請專利範圍第1項所述之清洗方法,其中該水洗製程的反 應時間範圍介於30秒至5分鐘之間。 3. 如申請專利範圍第1項所述之清洗方法,其中該溶劑清洗製程 以及邊水洗製程係多重步驟(multi-cycle)。 . 4·如申請專利範圍第1項所述之清洗方法,其中該清洗溶劑包含 有一技胺類(hydroxylamine)成分。 5.如申請專利範圍第1項所述之清洗方法,其中該清洗溶劑的溫 度低於110°C。 19 200908115 6. 如申請專利範圍第1項所述之清洗方法,其中該材料層包含有 一介電材料層。 7. 如申請專利範圍第1項所述之清洗方法,其中該蝕刻孔洞包含 有一接觸插塞孔洞(contact plug hole)或一介層插塞孔洞(via plug hole)。 8. 如申請專利範圍第1項所述之清洗方法,於該溶劑清洗製程之 後另包含有一旋轉乾燥(spin-dry)該半導體基底之步驟。 9. 如申請專利範圍第〗項所述之清洗方法,於該水洗製程之後另 包έ有一對該半導體基底進行一乾燥製程之步驟。 10. 如申請⑽mu第9項·之清洗絲,其愤 用氮氣來乾_轉縣底。 &amp;係利 之 清嫌,纖劑清洗製程 ^ β丨示β圖案化光阻層之步驟。 ==請專利翻第丨項所述之清洗方法,其中 與該水洗製程係於同—機台之中進行。 ‘洗製程 13·如申請專利範圍第! 與該水洗製程胁㈣知之方法,其中該_清洗製程 20 200908115 14.如申吻專利範圍第1項所述之清洗方法,於該溶劑清洗製程之 前另包含有一利用該去離子水對該半導體基底進行一預水洗製程 之步驟。 15.如申請專利範圍第14項所述之清洗方法,其中該溶劑清洗製 程與該預水洗製程係於同一機台之中進行。 16. 如申請專利範圍第14項所述之清洗方法,其中該溶劑清洗製 程與該預水洗製程係於不同機台之中進行。 17. —種半導體基底的清洗方法,包含有: 提供一半導體基底,該半導體基底包含有-材料層. ,利用-清洗溶劑對該半導體基底與該材料層進行二溶劑清洗 製私,该清洗溶劑包含有一羥胺類成分;以及 利用-去離子水_半導縣紐行—水洗知 水的溫度範圍介於3〇。〇至99。(:之間。 人 圍第17項所述之清洗方法,其中該去離子水的 反應日守間乾圍介於30秒至5分鐘之間。 其中該溶劑清洗製 19.如申請專利範圍第17項所述之清洗方法 程以及該水洗製程係多重步驟(multi-cycle)。 21 200908115 20. 如申請專利範圍第17項所述之清洗方法,於該溶劑清洗製程 之後另包含有一旋轉該半導體基底之步驟。 21. 如申請專利範圍第17項所述之清洗方法,於該水洗製程之後 另包含有一對該半導體基底進行一乾燥製程之步驟。 十一、圖式: 22200908115 X. Patent Application Range: L A method for cleaning a semiconductor substrate, comprising: providing a semiconductor substrate, the semiconductor substrate comprising a material contact and a patterned photoresist layer, wherein the patterned photoresist layer is located Using the patterned photoresist layer as an etch mask to etch the material layer to form a hole in the material layer; performing a solvent cleaning process on the semiconductor substrate using a cleaning solvent (s〇 Lvent cleaning process); and using a deionized water (DI water) to perform a water washing process on the semiconductor substrate, and the deionized water has a temperature range of 30. 〇 to 99. Between 〇. 2. The cleaning method of claim 1, wherein the washing process has a reaction time ranging from 30 seconds to 5 minutes. 3. The cleaning method of claim 1, wherein the solvent cleaning process and the side washing process are multi-cycle. 4. The cleaning method of claim 1, wherein the cleaning solvent comprises a hydroxylamine component. 5. The cleaning method of claim 1, wherein the cleaning solvent has a temperature of less than 110 °C. The cleaning method of claim 1, wherein the material layer comprises a layer of dielectric material. 7. The cleaning method of claim 1, wherein the etching hole comprises a contact plug hole or a via plug hole. 8. The cleaning method of claim 1, further comprising the step of spin-drying the semiconductor substrate after the solvent cleaning process. 9. The cleaning method of claim </ RTI> in the scope of the patent application, after the water rinsing process, a step of performing a drying process on the semiconductor substrate. 10. If you apply for the cleaning thread of item (10)mu, the anger is done with nitrogen. &amp; 利 之 , 纤 纤 纤 纤 纤 纤 纤 纤 纤 纤 纤 纤 纤 纤 纤 纤 纤 纤 纤 纤 纤 纤== Please refer to the cleaning method described in the above article, wherein the washing process is carried out in the same machine. ‘washing process 13·If you apply for patent scope! And the method for cleaning the process (4), wherein the cleaning process is as described in claim 1, wherein the cleaning method described in claim 1 further comprises using the deionized water to the semiconductor substrate before the solvent cleaning process. Perform a pre-washing process step. 15. The cleaning method of claim 14, wherein the solvent cleaning process and the pre-washing process are carried out in the same machine. 16. The cleaning method of claim 14, wherein the solvent cleaning process and the pre-washing process are carried out in different machines. 17. A method of cleaning a semiconductor substrate, comprising: providing a semiconductor substrate comprising a material layer. The semiconductor substrate and the material layer are subjected to a two-solvent cleaning process using a cleaning solvent. Contains a hydroxylamine component; and the use of deionized water _ semi-conducting county line - water wash water temperature range of 3 〇. 〇 to 99. (A. The cleaning method according to Item 17, wherein the reaction of the deionized water is between 30 seconds and 5 minutes. wherein the solvent cleaning system is 19. The cleaning method described in the item 17 and the washing process are multi-cycle. 21 200908115 20. The cleaning method according to claim 17, wherein the solvent cleaning process further comprises rotating the semiconductor The step of the substrate. 21. The cleaning method according to claim 17, further comprising the step of performing a drying process on the semiconductor substrate after the water washing process.
TW96129616A 2007-08-10 2007-08-10 Method of cleaning a semiconductor substrate TW200908115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96129616A TW200908115A (en) 2007-08-10 2007-08-10 Method of cleaning a semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96129616A TW200908115A (en) 2007-08-10 2007-08-10 Method of cleaning a semiconductor substrate

Publications (1)

Publication Number Publication Date
TW200908115A true TW200908115A (en) 2009-02-16

Family

ID=44723594

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96129616A TW200908115A (en) 2007-08-10 2007-08-10 Method of cleaning a semiconductor substrate

Country Status (1)

Country Link
TW (1) TW200908115A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112320753A (en) * 2020-10-29 2021-02-05 武汉高芯科技有限公司 MEMS wafer cleaning method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112320753A (en) * 2020-10-29 2021-02-05 武汉高芯科技有限公司 MEMS wafer cleaning method
CN112320753B (en) * 2020-10-29 2024-04-26 武汉高芯科技有限公司 MEMS wafer cleaning method

Similar Documents

Publication Publication Date Title
TW200539330A (en) Ozone vapor clean method
JP4677177B2 (en) Manufacturing method of semiconductor device
CN100578731C (en) Method for cleaning semiconductor substrate
CN105869997A (en) Amine-free post-CMP composition and using method thereof
JP2011192885A (en) Method of cleaning semiconductor substrate
US6328905B1 (en) Residue removal by CO2 water rinse in conjunction with post metal etch plasma strip
JP4012854B2 (en) Substrate cleaning method and substrate cleaning apparatus
US20100099258A1 (en) Semiconductor device cleaning method and semiconductor device manufacturing method using the same
TW200408060A (en) Method for forming ruthenium storage node of semiconductor device
TW476984B (en) A method for cleaning and treating a semiconductor wafer after chemical mechanical polishing
TWI239042B (en) Method of manufacturing semiconductor device
TW200908115A (en) Method of cleaning a semiconductor substrate
US20090042388A1 (en) Method of cleaning a semiconductor substrate
TW200305922A (en) Method of cleaning damascene structure of semiconductor wafer during fabrication of semiconductor device
JPH1187290A (en) Semiconductor substrate cleaning method and manufacture of semiconductor device using the same
JPH05102108A (en) Manufacture of semiconductor element
CN105742183B (en) The forming method of semiconductor structure
JPH10303197A (en) Manufacture of semiconductor device
JP2005183627A (en) Method and device for removing unreacted titanium film, and method for manufacturing semiconductor device
US20050247675A1 (en) Treatment of dies prior to nickel silicide formation
JPH11204491A (en) Removing method for dry etching residues
TWI281205B (en) Wafer cleaning process and method for forming an opening
KR100713345B1 (en) Method for forming a shallow trench isolation structure of the semiconductor device
JP2005353947A (en) Manufacture of semiconductor device
KR100474856B1 (en) Method of cleaning in a semiconductor device