200902307 九、發明說明 【發明所屬之技術領域】 本發明係關於一種在至少某一邊之主面具有微細凹凸 之薄片狀成形體及其製造方法。 【先前技術】 在至少某一邊之主面具有微細凹凸之成形體係範圍廣 泛地使用於反射防止薄膜、擴散薄片、亮度提升薄片等之 光學薄膜、導光板、繞射格子、圖型化介質、光記錄媒體 、光學元件、全息照相、微型流路、建材、裝飾品及硏磨 帶等之領域。在反射防止薄膜、擴散薄片等之所代表之光 學薄膜之領域,要求凹凸形狀之更加微細化,嚴格地要求 關於成形精度等之可靠性。 在光入射之側之主面具有微細凹凸之反射防止膜( Anti- glare film),利用在凹凸表面之光散亂,更加地抑 制光之映入。此外,反射防止膜係例如藉由貼附及使用於 液晶顯示板或CRT等之顯示部而抑制外光或周邊物照入 至顯示部之照入。反射防止膜係通常包含由相對低之折射 率之材料所組成之低折射率層、折射率高於低折射率層之 高折射率層以及透光性基材,這些係成爲由光之入射側開 始依照該順序地層積之構造。也有高折射率層稱爲硬塗佈 層之狀態發生。 在光入射之側之主面具有微細凹凸之反射防止膜係能 夠更加地抑制光之映入,相反地,印刷其整體而正如玻璃 -4- 200902307 地看見白色,因此,具有降低顯不於顯不部之畫像之鮮明 度之缺點。但是,有所謂藉由凹凸形狀之間距成爲可見光 波長以下之次微米級而得到良好之反射防止功能之報告( 參考非專利文獻〖等),進行藉由凹凸形狀之更加微細化 而還更加提高反射防止功能之操作。 形成具有微細凹凸形狀之表面之方法係有各種’但是 ,使用在表面具有凹凸形狀之模具之方法係簡便且經濟。 作爲該方法係提議使用下列之壓印滾輪而連續地製造具有 凹凸表面之薄片狀成形體之方法。 在薄片狀成形體之製造方法之某一例子,於薄片狀之 透明基材上,供應包含活化能射線硬化型樹脂組成物之塗 料。接著,將這些搬送至具有凹凸表面之壓印滾輪和支持 滾輪之間,前述基材上之活化能射線硬化型樹脂組成物, 抵壓於壓印滾輪。在該狀態之活化能射線硬化型樹脂組成 物,照射活化能射線,硬化活化能射線硬化型樹脂(例如 專利文獻1 )。 在薄片狀成形體之製造方法之其他例子,於具有凹凸 表面之壓印滾輪之前述凹凸表面上,塗佈包含活化能射線 硬化型樹脂組成物之塗料。接著,以薄片狀之基材重疊於 塗佈在壓印滾輪之活化能射線硬化型樹脂組成物之狀態, 在活化能射線硬化型樹脂組成物,照射活化能射線,硬化 活化能射線硬化型樹脂組成物(例如參考專利文獻2 )。 在專利文獻1及2 ’記載由塗佈作業性之觀點來看的 話,則最好是使用比較低黏度之塗料;作爲黏度之調整方 -5- 200902307 法係揭示使用活化能射線硬化型樹脂組成物、例如 之溶劑。 在前述活化能射線硬化型樹脂,也使用由胺基 酯丙烯酸酯寡聚物和二季戊四醇六丙烯酸酯所組成 高黏度之樹脂(例如參考專利文獻3 )。此外,也 之活化能射線硬化型樹脂,使用黏度400mPa · s之 脂或黏度100〜5 000mPa . s之環氧樹脂等之紫外線 脂(例如專利文獻4 )。此外,在具有凹凸表面之 粧版之製造過程,作爲成爲能量射線硬化型樹脂之 子之電子線硬化型樹脂係使用黏度3 00mPa · s之丙 (例如專利文獻5 )。 在專利文獻3,記載在塗料之黏度變低時,不 制塗膜之厚度,並且,流動於支持薄膜上,因此, 理想。在專利文獻4、5,具體地揭示理想之樹脂之 圍,但是,皆成爲高黏度。 微細之凹凸形狀係也利用在光碟。光碟係具有 級之凹凸形狀之軌道溝。在光碟,藉由在該軌道溝 由微小之光點所組成之訊坑列,而記錄資訊。爲了 錄密度,因此,要求光點之更加微小化之以及軌道 加微細化。此外,具有前述軌道溝之基板係藉由使 之射出成形法等而進行製作。 [非專利文獻 l]P.B.Clapham and M.C.Hutley 著 (倫敦)244,282 — 282 ( 1973) [專利文獻1]日本專利第3 0 1 663 8號公報 乙醇等 甲酸乙 之比較 在前述 丙烯樹 硬化樹 消光化 某一例 烯樹脂 容易控 變得不 黏度範 次微米 ,形成 提高記 溝之更 用模具 、自然 200902307 [專利文獻2]日本專利第3490099號公報 [專利文獻3]日本專利第26 1 0463號公報 [專利文獻4]日本特開2002— 225133號公報 [專利文獻5]日本特開平1 1 一 1 15 140號公報 【發明內容】 [發明之揭示] [發明所欲解決之課題] 但是’在專利文獻1〜5所記載之製造方法,微細凹 凸形狀之成形精度係不充分。 在本發明,提供一種成形精度良好且具有微細凹凸形 狀之薄片狀成形體。 [用以解決課題之手段] 本發明之薄片狀成形體之製造方法,係具備支持體以 及配置在前述支持體某一邊之主面側而前述支持體側之面 之相反面具有凹凸形狀之樹脂層的薄片狀成形體之製造方 法,其特徵爲,包含:在含有包含放射線硬化性樹脂之放 射線硬化性樹脂組成物之塗料層和支持體呈重疊之狀態下 ,在前述塗料層抵接於具有凹凸表面之成形模而使得前述 成形模之前述凹凸面之凹凸形狀轉印於前述塗料層之後, 藉由硬化包含於前述塗料層之前述放射線硬化性樹脂而使 得前述塗料層成爲前述樹脂層的樹脂層形成步驟;未硬化 狀態之前述放射線硬化性樹脂係包含由單官能乙烯單體或 200902307 單官能(甲基)丙烯單體所組成之群組選出之至少一種單 體A以及由多官能(甲基)丙烯單體和多官能(甲基)丙 烯寡聚物所組成之群組選出之至少一種,於2 5 °C,前述放 射線硬化性樹脂組成物之黏度係3〜1 00mPa · s。 本發明之薄片狀成形體’係具備支持體以及配置在前 述支持體某一邊之主面側而前述支持體側之面之相反面具 有凹凸形狀之樹脂層的薄片狀成形體,其特徵爲:前述樹 脂層係在含有包含放射線硬化性樹脂之放射線硬化性樹脂 組成物之塗料層和支持體呈重疊之狀態下’在前述塗料層 抵接於具有凹凸表面之成形模而使得前述成形模之前述凹 凸面之凹凸形狀轉印於前述塗料層之後’藉由硬化包含於 前述塗料層之前述放射線硬化性樹脂而得到樹脂層,未硬 化狀態之前述放射線硬化性樹脂係包含由單官能乙烯單體 或單官能(甲基)丙烯單體所組成之群組選出之至少一種 單體A以及由多官能(甲基)丙烯單體和多官能(甲基) 丙烯寡聚物所組成之群組選出之至少一種,於25 °C,前述 放射線硬化性樹脂組成物之黏度係3〜1 OOmPa · s。 [發明之效果] 如果藉由本發明的話,則提供一種成形精度良好且具 有微細凹凸形狀之薄片狀成形體。 【實施方式】 [發明之最佳實施形態] -8- 200902307 爲了得到具有微細凹凸形狀之薄片狀成形體’因此’ 包含於塗料層之放射線硬化性樹脂組成物係必須進入至成 形模之各個角落爲止。此外,爲了形成微細之凹凸形狀’ 因此,最好是形成薄塗料層。但是,正如專利文獻3〜5 所記載的,在高黏度之塗料,不容易形成薄塗料層。此外 ,正如專利文獻1〜2所記載的,如果是使用溶媒而稀釋 放射線硬化性樹脂組成物來降低塗料之黏度的話,則改善 塗料之適性。但是,就乾燥及除去溶媒之塗料之黏度、也 就是包含於塗料層之放射線硬化性樹脂組成物之黏度而言 ,並無排除考慮,因此,就在成形加工時之氣泡之咬入之 問題或者是放射線硬化性樹脂組成物並無普及至成形模之 各個角落爲止等之問題而言,無法進行改善。 本發明人們係爲了製造成形精度良好且具有微細凹凸 之薄片狀成形體,因此,全心地進行檢討,結果,藉由選 擇放射線硬化性樹脂組成物中之放射線硬化性樹脂之種類 ’並且,使得,包含於成形即刻前之塗料層之放射線硬化 性樹脂組成物之黏度成爲既定値,而解決前述之問題。 在以下’使用圖1〜4而說明本發明之薄片狀成形體 之某一例子及其製造方法之某一例子。 正如圖1 ( a )所示’本實施形態之薄片狀成形體i 〇 係具備支持體11和配置於支持體11上之樹脂層12。樹脂 層1 2之支持體1 1側之主面之相反面係具有凹凸。 該薄片狀成形體10之製造方法係包含樹脂層形成步 驟。在樹脂層形成步驟’在含有包含放射線硬化性樹脂之 -9- 200902307 放射線硬化性樹脂組成物之塗料層和支持體呈重疊之狀態 下’該塗料層抵接於具有凹凸表面之成形模而使得成形模 之凹凸面之凹凸形狀轉印於塗料層。接著,藉由硬化包含 於塗料層之放射線硬化性樹脂而使得塗料層成爲樹脂層。 作爲成形模係最好是例如能夠連續地製造帶狀之薄片狀成 形體且能夠效率良好地製造薄片狀成形體的壓印滾輪。前 述之樹脂層形成步驟係例如正如圖2〜圖4所示之例子而 進行。 在圖2所示之例子,帶狀之支持體2係藉由送出滾輪 1而依序地送出,接著,在支持體2上,由塗佈器3開始 供應包含放射線硬化性樹脂組成物之塗料,在支持體2之 某一邊之主面,塗佈前述之塗料。在塗料包含稀釋用溶媒 之狀態下,將塗佈塗料之支持體2搬送至乾燥機(並未圖 示)內,由塗料來除去稀釋用溶媒。 像這樣,在包含未硬化狀態之放射線硬化性樹脂組成 物之塗料層和支持體呈重疊之狀態下,在塗料層,抵壓壓 印滾輪4之凹凸面,轉印壓印滾輪4之凹凸面之凹凸形狀 。在該狀態下,藉由放射線照射裝置5而照射經過支持體 2至塗料層之紫外線等之放射線,硬化包含於塗料層之放 射線硬化性樹脂而使得塗料層成爲樹脂層。 抵壓壓印滾輪4至塗料層之抵壓係藉由進行配置來夾 住壓印滾輪4之1對之支持滾輪6而進行。在放射線照射 裝置5之附近,配置遮蔽板7,因此,抑制照射在無法照 射放射線之部位。 -10- 200902307 此外,可以不使用支持滾輪6而利用支持體2之張力 ,抵壓於壓印滾輪4至塗料層,但是,使用支持滾輪6係 形狀比較穩定,因此,變得理想。在由於放射線之照射之 所產生之熱對於支持體2造成損傷之狀態下,可以配合於 需要而在壓印滾輪4及/或支持滾輪6,具有冷卻功能。 在圖3所示之例子,於壓印滾輪4之凹凸面上,由塗 佈器3來供應塗料,在該凹凸面上,形成塗料層。在該塗 料層和藉由送出滾輪1而依序地送出之帶狀之支持體2呈 重疊之狀態下,藉由支持滾輪6而將壓印滾輪4之凹凸面 抵壓在塗料層,在塗料層,轉印壓印滾輪4之凹凸形狀。 在該狀態下,藉由放射線照射裝置5而照射經過支持體2 至塗料層之紫外線等之放射線,硬化包含於塗料層之放射 線硬化性樹脂而使得塗料層成爲樹脂層。 在圖4所示之例子,壓印滾輪係由透過放射線之材料 而形成,在其內部,配置放射線照射裝置5。在本例子, 透過壓印滾輪4而在塗料層等,照射放射線,因此,即使 是在支持體2由不透過放射線之材料所形成之狀態下,也 可以硬化塗料層。 接著’就使用於本實施形態之薄片狀成形體之製造方 法之塗料之細節而進行說明。 塗料層係在塗佈包含放射線硬化性樹脂組成物和配合 於需要之稀釋用溶媒的塗料後,藉著利用乾燥,由塗膜來 除去稀釋用溶媒,而得到塗料層。此外,稀釋放射線硬化 性樹脂組成物之稀釋用溶劑係有爲了使得塗料之塗佈適性 -11 - 200902307 變得更加良好而進行添加之狀態發生,但是,不一定需要 〇 前述之放射線硬化性樹脂組成物係除了放射線硬化性 樹脂以外,還可以配合於需要而包含光起始劑、增感劑、 促進劑、聚合禁制劑、矯平劑、離模劑、色材或塡料等。 此外,爲了使得塗佈適性變得更加良好,因此,塗料係可 以配合於需要而包含稀釋放射線硬化性樹脂組成物之稀釋 用溶劑。 放射線硬化性樹脂係包含由單官能乙烯單體或單官能 (甲基)丙烯單體所組成之群組選出之至少一種單體A以 及由多官能(甲基)丙烯單體和多官能(甲基)丙烯寡聚 物所組成之群組選出之至少一種。於2 5 °C,放射線硬化性 樹脂組成物之黏度係3〜lOOmPa . s。 一般之放射線硬化性樹脂係由單官能單體和多官能單 體或多官能寡聚物所組成。接著,一般主要支配放射線硬 化性樹脂之硬化物之特性係多官能單體或多官能寡聚物。 就單官能單體而言,使用作爲黏度調整用稀釋劑。於是, 如果像這樣降低放射線硬化性樹脂之黏度的話,則就樹脂 層而言,不容易確保要求之強度、具體地根據JIS K 5 60 0 —5— 4而測定之鉛筆硬度等。 在本實施形態之薄片狀成形體之製造方法,使用包含 由單官能乙烯單體或單官能(甲基)丙烯單體所組成之群 組選出之至少一種單體A以及由多官能(甲基)丙烯單體 和多官能(甲基)丙烯寡聚物所組成之群組選出之至少一 -12- 200902307 種的放射線硬化性樹脂。此外,包含於塗料層之放射線硬 化性樹脂組成物之黏度係3〜1 0 0 m P a . s。 如果像這樣進行放射線硬化性樹脂之選擇而使得放射 線硬化性樹脂組成物之黏度成爲既定値的話,則放射線硬 化性樹脂組成物可以進入至成形模之各個角落爲止,並且 ,無貼附至成形模,能夠順暢地進行離模。接著,正如在 後面敘述之實施例之所顯示的,能夠同時成立硬化物(樹 脂層)之強度和放射線硬化性樹脂之低黏度化,可以得到 成形精度良好且具有微細凹凸形狀之成形體。 包含放射線硬化性樹脂組成物之塗料之25 °C之黏度係 最好是3〜lOOmPa · s。如果塗料之黏度位處於該範圍內 的話,則例如即使是在形成厚度1 0 μ m以下之塗料層之狀 態下,也能夠良好地進行塗料之塗佈,並且,可以抑制起 因於矯平不良等之所造成之塗佈線條、未塗佈部(空隙) 等之產生。由於相同之理由,因此,塗料之25 °C之黏度係 最好是5〜50mPa · s。此外,在塗料之2 5 °C之黏度爲 1 OOmPa . s以下之時,即使是轉印速度變快,也可以除去 塗料中之氣泡,壓印滾輪之凹凸面轉印至塗料層之轉印性 也變得良好,因此,不容易引起成形不良。 作爲樹脂層之厚度係爲了得到具有微細凹凸形狀之成 形體,因此,最好是50μιη以下、更加理想是3〇μιη以下 、甚至最好是ΙΟμιη以下。 作爲控制包含於塗料層之放射線硬化性樹脂組成物之 黏度之方法係列舉控制單體Α以及由多官能(甲基)丙烯 -13- 200902307 單體和多官能(甲基)丙烯寡聚物所組成之群組選出之至 少一種之混合比例之方法。 接著’就由包含於放射線硬化性樹脂組成物之單官能 乙烯單體或單官能(甲基)丙烯單體所組成之群組選出之 至少一種單體A、多官能(甲基)丙烯單體和多官能(甲 基)丙烯寡聚物之具體例而進行說明。 作爲單官能乙烯單體係列舉乙烯基吡咯烷酮、乙烯基 甲醯胺等。作爲單官能(甲基)丙烯單體係列舉丙烯醯基 嗎啉、四氫糠基(甲基)丙烯酸酯、羥乙基(甲基)丙烯 酸酯、二甲基丙烯醯胺、異冰片基(甲基)丙烯酸酯、羥 丙基(甲基)丙烯酸酯、羥丁基(甲基)丙烯酸酯、乙氧 基二乙二醇(甲基)丙烯酸酯、甲氧基三乙二醇(甲基) 丙烯酸酯、甲氧基二丙二醇(甲基)丙烯酸酯等。這些單 體A係具有雜環、醯胺基、氫氧基或甲氧基等之官能基, 因此,硬化包含這些單體之塗料層所得到之樹脂層對於支 持體之接著性係良好。即使是在其中,也在考慮放射線硬 化性樹脂組成物之黏度、硬化性、樹脂層之硬度及對於支 持體之接著性等之時,更加理想是乙烯基吡略烷酮、二甲 基丙烯醯胺、丙烯醯基嗎啉以及四氫糠基丙烯酸酯。關於 黏度、硬化性、硬化物之硬度以及對於支持體之接著性之 全部而言,特別最好是平衡良好且優良之乙烯基吡咯烷酮 、二甲基丙烯醯胺、丙烯醯基嗎啉。 作爲多官能(甲基)丙烯單體係列舉2 _羥基- 3 -( 甲基)丙烯醯基丙基三(甲基)丙烯酸酯、丨,6 —己烷地 -14- 200902307 洛(dilol)二(甲基)丙烯酸酯、新戊二醇二(甲基)丙 烯酸酯、三羥甲基丙烷三(甲基)丙烯酸酯、季戊四醇二 (甲基)丙烯酸酯、季戊四醇四(甲基)丙烯酸酯或者是 二季戊四醇六(甲基)丙烯酸酯等。 作爲多官能(甲基)丙烯寡聚物係列舉例如共榮社化 學公司製之ah— 600、UA306H、新中村化學公司製之U — 4HA、U— 6HA、U— 6LPA等之(甲基)丙烯寡聚物° 在包含於用以形成樹脂層之放射線硬化性樹脂組成物 之時,良好地進行硬化。此外’由多官能(甲基)丙嫌單 體和多官能(甲基)丙烯寡聚物所組成之群組選出之至少 一種係有助於樹脂層硬度之提升。即使是在這些當中’也 在考慮硬化性、樹脂層之硬度以及樹脂層對於支持體之接 著性等之時,特別最好是季戊四醇三丙烯酸酯、二季戊四 醇六丙嫌酸酯和丙嫌寡聚物。由多官能(甲基)丙嫌單體 和多官能(甲基)丙烯寡聚物所組成之群組選出之至少一 種係具有3個以上之反應性官能基,因此,硬化性更加良 好,藉由硬化而得到高交聯密度,所以,能夠更加地提高 硬化物之硬度。 單體A以及由多官能(甲基)丙烯單體和多官能(甲 基)丙烯寡聚物所組成之群組選出之至少一種之混合比例 係最好是例如以重量比成爲1 〇 : 90〜80 : 20而使得放射 線硬化性樹脂組成物之25°C之黏度成爲3〜lOOmPa.s。 在該狀態下,壓印滾輪之凹凸面對於塗料層之轉印性良好 ,樹脂層之機械強度也充分地確保,因此’變得理想。 -15- 200902307 包含於放射線硬化性樹脂組成物中之放射線硬化性樹 脂之含有量係由於放射線硬化性樹脂之種類而不同’但是 ,通常在放射線硬化性樹脂組成物成爲100重量份之狀態 下,最好是80〜99重量份程度。 在放射線硬化性樹脂之選擇時,由生產性之觀點來看 的話,則最好是藉由300mJ/ cm2以下之紫外線光量而進 行硬化,更加理想是藉由cm2以下而進行硬化, 甚至更加理想是藉由5 OmJ/ cm2以下而進行硬化。 放射線硬化性樹脂之起火點係最好是7〇°C以上。因爲 在起火點低於70°C時,起火之危險性變高之緣故。 光起始劑之必要性之程度係由於照射在塗料層之放射 線之種類而不同。特別是在紫外線或可見光使用作爲硬化 反應之能量源之狀態下,放射線硬化性樹脂組成物係最好 是包含光起始劑。 在光起始劑,並無特別限制,但是,可以使用一般者 。作爲光起始劑係最好是光自由基聚合劑,作爲光自由基 聚合劑係列舉例如苄基、二乙醯基等之α -雙酮類、苯偶 因等之偶姻類、苯偶因甲基醚、苯偶因乙基醚、苯偶因異 丙基醚等之偶姻醚類、噻噸酮、2,4一二乙基噻噸酮、2-氯噻噸酮、噻噸酮- 4-磺酸等之噻噸酮類、二苯甲酮、 4,4 一雙(二甲胺基)二苯甲酮、4,4,一雙(二乙胺基)二 苯甲酮等之二苯甲酮類、米蚩酮類、乙醯苯' 2— (4 —甲 苯磺醯羥基)一 2-苯基乙醯苯、ρ 一二甲胺基乙醯苯、α ,〇:,一二甲氧基乙酸基二苯甲酮、2,2,一二甲氧基一 2 —苯 -16- 200902307 基乙醯苯、P —甲氧基乙醯苯、2一甲基[4一 (甲硫基)苯 基]一 嗎啉一 1 一丙酮、2 一苄基一 2 一二甲胺基一 1—( 4_嗎啉苯基)一丁烷—1—酮等之乙醯苯類、蒽醌、;!,4 一萘醌等之醌類、苯醯甲基氯化物、三鹵甲基苯基楓、三 (三鹵甲基)一 s —三嗪等之鹵素化合物、醯基膦氧化物 類、二—t- 丁基過氧化物等之過氧化物等。這些係可以 單獨使用,也可以混合2種以上而使用。 紫外線照射至塗料層之照射係也經過支持體而進行, 因此’最好是配合於透過支持體之光波長而選擇適當之起 始劑。最好是具體地選擇在不重複於支持體之吸收波長之 波長區域來吸收光的光起始劑。例如在支持體之材料成爲 聚乙烯對苯二甲酸酯或聚乙烯苯二甲酸酯之狀態下,最好 是選擇2-苄基一2-二甲胺基一 1 一(4 一嗎啉苯基)—丁 酮一 1、雙(2,4,6—三甲基苯醯)一苯基膦氧化物、2—甲 基—1 一(4一(甲硫基)苯基)—2 —嗎啉丙烷_1 一酮等 之光起始劑。作爲市面販賣品係列舉IRG A CURE 3 69 ( 2 —苄基一 2 —二甲胺基一 1一 (4 —嗎啉苯基)一丁酮—I) 、IRGACURE 819(雙(2,4,6 —三甲基苯醯)一苯基膦氧 化物)、IRGACURE 907 (2-甲基—1一(4—(甲硫基) 苯基)—2 —嗎啉丙烷—1—酮)(皆CIBA.GEIKIE公司 製)。特別是在倂用2 —甲基一 1一(4一 (甲硫基)苯基 )_2—嗎啉丙烷—1 一酮和2,4-二乙基噻噸酮或2 —氯 噻噸酮之時,具有效果。 在塗料包含稀釋放射線硬化性樹脂組成物之稀釋用溶 -17- 200902307 媒之狀 黏度成 無特別 甲醯胺 作 法、自 流動塗 成方法 塗佈法 關 2 0m/ I 係並無 ,因此 使 進行放 定,列 ,也最 作 物燈或 熱損傷 射線硬 在藉由 氛下。 樹 態下’最好是添加稀釋用溶媒而使得塗料之2 5。(:之 爲3〜lOOmPa · s。就稀釋用溶媒之種類而言,並 限制’例如可以使用甲基乙基甲嗣、甲苯、二甲基 等之向來習知之稀釋用溶媒。 爲塗料層之形成方法係列舉滾輪塗佈法、簾幕塗佈 動洗滌法、模塗佈法、刮板塗佈法、棒棍塗佈法、 佈法、噴射塗佈法等。即使是在其中,塗料層之形 係也最好是塗料變薄且能夠進行高速度塗佈之滾輪 、簾幕塗佈法、自動洗滌法、模塗佈法。 於塗佈速度而言,最好是1 0 m / m i η以上、理想是 nin、更加理想是50m/ min以上。塗佈速度之上限 特別限定’但是’由於所謂兼顧於硬化速度之理由 ,通常適合爲200m/min以下。 用於放射線硬化樹脂之硬化之放射線係如果是能夠 射線硬化樹脂之硬化之放射線的話,則並無特別限 舉例如電子線、紫外線、可見光等。即使是在其中 好是高能量値之紫外線、電子線。 爲紫外線之光源係使用例如高壓水銀燈、金屬鹵化 LED等。LED係高能量效率,賦予至支持體等之 少’因此,變得理想。紫外線之照射係爲了提高放 化樹脂之硬化性’因此,最好是配合於需要而進行 氮來進行清洗而調整氧濃度成爲300ppm以下之氣 脂層之凹凸面之理想形狀係由於薄片狀成形體之用 -18- 200902307 途而不同,但是,本實施形態係有用於具備凹凸之平均一 週期長度(D)爲Ο.ΟΙμηι〜50μιη、凸部之平均高度(H) 爲Ο.ΟΙμηι〜50μπι、凹凸之平均一週期長度(D)和平均高 度(Η)之比値(D/Η)爲0.0 1〜100之樹脂層的薄片狀 成形體之製造。作爲具有此種凹凸形狀係列舉例如擴散薄 片、亮度提升薄片等之光學薄片、圖型化介質、光記錄媒 體等。特別是有用於具備凹凸之平均一週期長度(D)爲 Ο.ΟΙμιη 〜30μηι、平均高度(Η)爲 Ο.ΟΙμιη〜30μιη、比値 (D/Η)爲0.01〜100之樹脂層的薄片狀成形體之製造。 樹脂層之凹凸面之平均一週期長度(D)及平均高度 (Η )係由薄片狀成形體之表面以及剖面之電子線顯微鏡 (日立公司製SEM EDX— 4500Η)之攝影圖像而求出之値 (攝影倍率:2 0 0 0倍、攝影視野:4 5 μ m X 4 5 μ m )。在凹凸 形狀成爲規則圖型之狀態下,正如圖1 ( a )及(b )所示 ,以d爲一週期長度、h爲凹凸之高度,分別測定20點而 求出其平均,來作爲平均一週期長度(D)和平均尚度( Η )。在凹凸形狀成爲不規則之狀態下’正如圖1 ( c )所 示,在凹凸形狀之各個頂部,附加Αι、Α2、Α3、…Αη之 名稱,在各個底部,附加Β!、Β2、Β3、…Βη之名稱,求 出各點之(x,y)座標。在Αι之座標成爲(xai,yai)而Βι 之座標成爲()時’ A!和B!之間隔D,係藉由D! =xb! — xa!而求出。在該狀態下之凹凸形狀之平均一週期 長度(D)係藉由(¢^.+ 02+(13 +…+ dn) / η而求出 。同樣地,Αι和Βι之高度差Hi係藉由 -19- 200902307 求出,凹凸形狀之平均高度H係藉由H= (hi+h2+h3 + …+ hn) /η而求出。 樹脂層12之平均厚度(Ρ)和凹凸之平均高度(Η) 之比値(P / Η )係並無特別限定’但是’在經濟上,最好 是1〜1000、更加理想是1〜200。在(p/Η)超過1000 時,在樹脂層中不構成微細凹凸形狀之支持體側之部分之 厚度係變厚,使用不必要之樹脂。在此,樹脂層12之平 均厚度(p )係正如下列之敘述而進行測定之値。 重疊10片之薄片狀成形體而測定其層積體X之平均 厚度。另一方面,僅重疊10片之支持體而測定其層積體 Υ之平均厚度。使用這些測定値,藉由下列之公式而算出 薄片狀成形體之平均厚度(Ρ)。但是,層積體X及層積 體Υ之平均厚度係使用測微計(最小刻度:0.1 ΖΖ m ),分 別測定10點之層積體X及層積體Y之厚度,平均該値而 求出平均厚度。 (公式1 ) 薄片狀成形體之平均厚度(P) = (層積體X之平均厚度-層積體Y之平均厚度)/1〇 最好是控制塗佈厚度而使得樹脂層之厚度最好是 5 0μηι以下、更加理想是30μηι以下、最佳理想是1 〇μηι以 下。 在支持體11,使用例如向來習知之具有可彎曲性之透 光性薄膜等。作爲支持體11之材料係列舉例如聚乙烯對 苯一甲酸酯、聚乙稀苯二甲酸酯、聚醯胺、聚聚醯胺、聚 -20- 200902307 醯亞胺、聚碳酸醋、聚苯硫酸、聚颯'聚丙燦、聚甲基甲 基丙烯酸酯、聚乙烯醇、三乙酸纖維素、環烯烴聚合物等 。即使是在其中’由機械強度、尺寸穩定性和耐熱性等之 觀點來看的話,則支持體1 1係也最好是包含聚乙烯對苯 二甲酸酯。 支持體11之厚度係並無特別限制,配合於用途而不 同’但是,通常最好是1〜2〇〇μπι。特別是在支持體11之 厚度成爲3〜2 0 μιη之狀態下,本實施形態之薄片狀成形體 之製造方法係變得有用。 爲了提高對於鄰接在樹脂層1 2之層之接著性,因此 ,例如可以在支持體Π接合於樹脂層12之表面,進行電 暈、電漿處理等之表面處理,並且,也可以使得支持體11 具備由聚胺基甲酸乙酯、聚酯等之所組成之易接著層。 樹脂層12之根據JIS Κ 5 600 — 5 - 4所測定之鉛筆硬 度係最好是F以上、更加理想是Η以上。因爲如果是F以 上的話,則即使是轉印速度例如變快至50〜200m/ min程 度,也不容易在樹脂層12之表面,造成傷痕之緣故。 對於樹脂層所鄰接之層之接著性係在根據JIS 5 600 _ 5 — 6以交叉切割法而進行評價之狀態下,最好是分類〇或 1、更加理想是分類〇。 在以下,根據實施例而更加詳細地說明本發明’但是 ,本發明係並非限定於實施例。 [實施例] -21 - 200902307 <實施例1〜1 0、比較例1〜3 > 製作表1所示之組成之塗料Α〜J。關於塗料Α〜J之 組成之數値係表示重量份。在使用圖2而進行說明之薄片 狀成形體之製造方法之某一例子,製造實施例1〜10和比 較例1〜3之薄片狀成形體。 各種組成之詳細係正如下面之敘述。 乙烯基吡咯烷酮(單官能丙烯單體) 二甲基丙烯基醯胺(單官能丙烯單體) 甲基甲基丙烯酸酯(單官能甲基丙烯單體) 丙烯醯基嗎啉(單官能甲基丙烯單體) 季戊四醇三丙烯酸酯(3官能丙烯單體) 二季戊四醇六丙烯酸酯(6官能丙烯單體) 胺基甲酸乙酯丙烯酸酯UA- 3 06 (共榮社化學公司製 、季戊四醇三丙烯酸酯六亞甲基二異氫酸酯胺基甲酸乙酯 聚合物、6官能寡聚物) IRGACURE 1 84 (光起始劑、CIBA . GEIKIE 公司製 、1—羥基—環己基一苯基一酮) IRGACURE 907 (光起始劑、CIBA . GEIKIE 公司製 、2 —甲基一1 一 (4一 (甲硫基)苯基)一2-嗎啉丙烷一 1 一酮) 2,4—二乙基噻噸酮(光起始劑) 首先,在厚度1〇 μηι之PET薄膜之某一邊之主面,藉 由滾輪塗佈法而塗佈塗料,形成塗料層。就塗佈速度而言 ,在實施例1〜8及比較例丨、2,成爲20m /min,在實施 -22- 200902307 例9’成爲40m/min’在實施例1〇,成爲80ni/min,在 比較3,成爲i〇m/min。塗佈塗料而使得塗料層之厚度成 爲大約1〜5 μ m。然後’在塗料層,擠壓壓印滾輪,轉印 壓印滾輪之凹凸面之凹凸形狀,接著,藉由紫外線照射機 而照射紫外線於塗料層,硬化包含於塗料層之放射線硬化 樹脂。紫外線之照射量係3 00mJ/em2。 此外’在塗料之塗佈,使用廉井精機公司製之φ 20mm、斜線型、單元角度45°、250線/英吋之微型照相 凹版印刷滾輪。此外,在壓印滾輪,使用平均一週期長度 (D)爲0·8μηι'平均凹凸高度(H)爲0.05μιη且具有對 應於圖1 (a)所示之形態之凹凸之凹凸表面的金屬滾輪。 正如以下而評價放射線硬化性樹脂組成物之黏度、樹 脂層之厚度、薄片狀成形體之凹凸面之鉛筆硬度、樹脂層 和支持體之接著性、硬化性及成形性,將其結果顯示於表 <放射線硬化性樹脂組成物之黏度> 放射線硬化性樹脂組成物之黏度之2 5 °C黏度係藉由東 機產業公司製之E型黏度計(旋轉數1 〇 rpm )而進行測定 <樹脂層之厚度> 樹脂層之厚度係藉由前述之(公式1)而算出。 -23- 200902307 <鉛筆硬度> 根據 JIS K 5600 — 5—4 度。 <接著性> 樹脂層對於支持體之接i 藉由交叉切割法而進行測定。 階段而進行評價。「〇」係表 越大而剝離之程度越大。 <硬化性> 在支持體上使用東洋精器 條上捲繞線條)而形成塗料 1 88μιη厚度之PET薄膜,透 照射。藉由照度計(EIT公司 定直到黏著性消失爲止之所需 示紫外線光量越少而硬化性越 接觸而進行確認。 <缺陷及成形性> 藉由目視而以20個視要 ,來觀察薄片狀成形體之有無 顯微鏡而以20個視野(測定 45μηιχ45μιη),來觀察微細成 測定薄片狀成形體之鉛筆硬 :性係根據 Π S 5 6 0 0 - 5 — 6, 剝離之程度係藉由0〜5之6 示無觀察到剝離,表示數字 :公司製之桿條塗佈器(在桿 層之後,於該塗料層,貼附 過該PET薄膜而進行紫外線 製之UV Power Puck)而測 '要之紫外線光量。此外,表 ;高。有無黏著性係藉由手指 ;(測定視野:1 0 c m X 1 〇 c m ) 塗佈缺陷,並且,藉由電子 倍率:2 0 0 0倍、測定視野: 形上之有無缺陷(起因於矯 -24- 200902307 平不良等之所造成之塗佈線條、未塗佈部(空隙)等), 藉由下列之基準而進行評價。 〇:無缺陷(在各個20視野、無觀察到缺陷) △:有極爲少之缺陷(在各個20視野中、於1〜2視 野、觀察到缺陷) X :有缺陷(在各個2 0視野中、於3〜2 0視野、觀察 到缺陷) -25- 200902307 比較例 3 o o ον 00 o o OS 00 (N (N ΙΤί ο 〇 (N 〇 »Τί — Ο X X 比較例 2 i g o o »n o o yn CN CN r··^ ο (N 00 ο |300以上1 | 2B以下| 寸 ο χ 比較例 1 o o ON 00 o o Os 00 CN (N r·^ ο 〇 <N 一 〇 寸 X m ο X X 丨實施例 .10 < o o JO o o JO (N (N ό ο !-Η § (Ν 〇 X CN ο 〇〇 實施例 9 C o o jn o o CN (N ο § o 00 (Ν 〇 X cn ο 〇〇 j«施例 X !〇 o o 00 (N o o 00 m CN CN in ο R ΓΛ g X m ο 〇〇 實施例 7 ο Ο o 芝 3 o o S (N (N r—< ό ο s 0 (N ao 0 卜 X ο 〇〇 丨實施例 1 6 Ο o o o 1—H Ό (N CN U^i 0 0 cn 00 〇 ο 〇〇 丨實施例 5 ω ο o o o 3 CN CN in 0 C^i cn X cs ο 〇〇 丨實施例 丨4 Q οο ο o 00 卜 o o 卜 (N CN i〇 ο 00 ο ο 〇〇 實施例 3 Ο ο o 00 m o o 00 cn CN (N in ο »—Η 〇 CO d § X ο 〇〇 丨實施例 2 CQ ο o S o o s fN (N T^H ο in cn 00 (N ο 〇〇 實施例 1 < ο o JO o o JO CN (N 0 § Os (N 〇 寸 ffi cn ο 〇〇 實施例 塗料 few 菡遐 a no f ίππ nmL K1 ft Μ Γ-. a m If gl m ΙφΕ 宴Sf HH?裝 11 f {nn fe * 装起 線單官能單體之合計 x)rn i—i I螂 ft-i- Ip-» Π1 m pb 4ΠΕ 题 ^ s it r p* In np &E P7 4GE fit mu X g ΓΛ < 2JIH 1—1 II is m. N3 £5 滋fnc K _ df m is 似你 EEC 1—4 px多官能丙烯單體之合計 cL^r· - - ----- - rJ IRGACURE 184 | 1 IRGACURE 907 | 2,4-二乙基噻噸酮 起始劑之合計 單官能+多官能+起始劑 黏度[mPa.s](3-100) 速度[m/min] 樹脂層厚度[μπι] S ηή/ 鉛筆硬度 附著性 m 滙 囬藜 鼴 ifiim) ΙρΓ 湮 Μ 鹦 劁 -26- 200902307 在使用包含由單官能乙烯單體或單官能(甲基)丙烯 單體所組成之群組選出之至少一種單體A以及由多官能( 甲基)丙烯單體和多官能(甲基)丙烯寡聚物所組成之群 組選出之至少一種且25 t之黏度位處於3〜lOOmPa . s之 範圍內的放射線硬化性樹脂組成物之實施例1〜1 〇,皆藉 由40〜150mJ/ cm2之紫外線光量而進行硬化,硬化性變 得良好。此外,藉由鉛筆硬度及交叉切割法之所造成之附 著性試驗之結果係也良好。此外,藉由電子顯微鏡而觀察 成形性,結果,在實施例1〜1〇之薄片狀成形體,精度良 好地形成凹凸形狀。此外,即使是在塗佈速度40m/ min 之實施例9以及塗佈速度80m/ min之實施例10之薄片狀 成形體,也精度良好地成形凹凸形狀。 相對於此,在放射線硬化性樹脂之黏度高於1 OOmPa • s之比較例1之薄片狀成形體,看見在塗佈時之線條認 爲是原因之塗佈缺陷或氣泡之咬入等之成形缺陷。此外’ 正如關於比較例3之結果所示,在放射線硬化性樹脂之黏 度高於1 00mPa · s之狀態下,即使是塗佈速度例如變遲成 爲1 Om / min,也看到塗佈缺陷或成形缺陷。此外,在放 射線硬化性樹脂之黏度低於3 mP a · s之比較例2之薄片狀 成形體,鉛筆硬度成爲2 B以下’藉由交叉切割法之所造 成之附著性試驗之結果’觀察到剝離,硬度及附著性係皆 不充分。此外,硬化性也不良,在觀察成形體之成形性時 ,並無看到塗佈缺陷’看到硬化不良認爲是原因之成形不 良。 -27- 200902307 正如以上,在本發明之薄片狀成形體之製造方法,放 射線硬化性樹脂係包含由單官能乙烯單體或單官能(甲基 )丙烯單體所組成之群組選出之至少一種單體A以及由多 官能(甲基)丙烯單體和多官能(甲基)丙烯寡聚物所組 成之群組選出之至少一種,於25 °C,放射線硬化性樹脂組 成物之黏度係3〜lOOmPa · s,因此,塗料之塗佈性、成 形性及硬化性係全部良好,可以藉此而以高速且精度良好 地製造具有微細凹凸之成形體。 如果藉由本發明的話,則能夠提供一種成形精度良好 且具有微細凹凸形狀之薄片狀成形體,因此,本發明之薄 片狀成形體及其製造方法係有用於反射防止薄膜、擴散薄 片、亮度提升薄片等之光學薄膜、導光板、繞射格子、圖 型化介質、光記錄媒體、光學元件、全息照相、微型流路 、建材、裝飾品及硏磨帶等之領域。 【圖式簡單說明】 圖1(a)〜(c)係顯示本發明之薄片狀成形體之某 一例子之槪念圖。 圖2係說明本發明之薄片狀成形體之製造方法之某一 例子之槪念圖。 圖3係說明本發明之薄片狀成形體之製造方法之其他 例子之槪念圖。 圖4係說明本發明之薄片狀成形體之製造方法之另外 其他例子之槪念圖。 -28- 200902307 【主要元件符號說明】 A η ·頂部 A 1 ·頂部 A 2 _頂部 a3 :頂部 B n :底部 B i :底部 B2 :底部 B 3 :底部 d : —週期長度 h :凹凸之高度 1 :送出滾輪 2、1 1 :支持體 3 :塗佈器 4 :壓印滾輪 5 =放射線照射裝置 6 :支持滾輪 7 :遮蔽板 1 〇 :薄片狀成形體 1 2 :樹脂層 -29-BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sheet-like formed body having fine irregularities on at least one of its main faces and a method of manufacturing the same. [Prior Art] A molding system having fine concavities and convexities on at least one of the sides is widely used for an optical film such as an antireflection film, a diffusion sheet, and a brightness enhancement sheet, a light guide plate, a diffraction grating, a patterned medium, and a light. Recording media, optical components, holograms, micro flow paths, building materials, decorative items, and honing belts. In the field of an optical film represented by a reflection preventing film, a diffusion sheet, or the like, the uneven shape is required to be more fine, and reliability such as molding precision is strictly required. An anti-glare film having fine irregularities on the main surface on the side where light is incident is used, and the light is scattered on the surface of the uneven surface to further suppress the reflection of light. Further, the anti-reflection film suppresses the irradiation of the external light or the peripheral material onto the display portion by, for example, attaching and using it to a display portion such as a liquid crystal display panel or a CRT. The anti-reflection film system generally comprises a low refractive index layer composed of a material having a relatively low refractive index, a high refractive index layer having a higher refractive index than the low refractive index layer, and a light transmissive substrate, which are formed by the incident side of the light. The construction of the layer stacking in accordance with this order is started. There is also a state in which a high refractive index layer is called a hard coating layer. The anti-reflection film having fine concavities and convexities on the main surface on the side where the light is incident can more suppress the reflection of light, and conversely, the whole is printed and white is seen as in the glass-4-200902307, and therefore, the display is reduced. The shortcomings of the sharpness of the portrait of the no part. However, there is a report that a good reflection prevention function is obtained by a submicron order in which the distance between the concavo-convex shapes is equal to or less than the wavelength of visible light (see Non-Patent Document, etc.), and the reflection is further refined by further refining the concavo-convex shape. Prevent function operations. The method of forming the surface having the fine uneven shape is various. However, the method of using a mold having a concave-convex shape on the surface is simple and economical. As this method, a method of continuously producing a sheet-like formed body having a concave-convex surface by using the following embossing roller is proposed. In one example of the method for producing a sheet-like formed body, a coating containing an active energy ray-curable resin composition is supplied onto a sheet-like transparent substrate. Then, these are transferred between the embossing roller having the uneven surface and the supporting roller, and the active energy ray-curable resin composition on the substrate is pressed against the embossing roller. The active energy ray-curable resin composition in this state is irradiated with an active energy ray to cure the active energy ray-curable resin (for example, Patent Document 1). In another example of the method for producing a sheet-like formed body, a coating material containing an active energy ray-curable resin composition is applied onto the uneven surface of the platen roller having the uneven surface. Then, the sheet-like substrate is superposed on the active energy ray-curable resin composition applied to the impression roller, and the active energy ray-curable resin composition is irradiated with an active energy ray to harden the active energy ray-curable resin. The composition (for example, refer to Patent Document 2). In Patent Documents 1 and 2', it is preferable to use a coating having a relatively low viscosity from the viewpoint of coating workability; as a measure of viscosity, the method of using an active energy ray-curable resin is disclosed. A solvent such as a substance. In the above-mentioned active energy ray-curable resin, a resin having a high viscosity composed of an amino ester acrylate oligomer and dipentaerythritol hexaacrylate is also used (for example, refer to Patent Document 3). Further, as the active energy ray-curable resin, a grease having a viscosity of 400 mPa·s or an epoxy resin having a viscosity of 100 to 5,000 mPa·s of epoxy resin (for example, Patent Document 4) is used. In addition, in the manufacturing process of the make-up plate having the uneven surface, C is an electron beam curable resin which is a member of the energy ray-curable resin, and has a viscosity of 300 mPa·s (for example, Patent Document 5). Patent Document 3 describes that when the viscosity of the coating material is lowered, the thickness of the coating film is not required and it flows on the support film. In Patent Documents 4 and 5, the ideal resin is specifically disclosed, but both have high viscosity. The fine concavo-convex shape is also used on the disc. A disc is a track groove having a stepped shape. On a disc, information is recorded by a pit train consisting of tiny spots of light in the track. In order to record density, it is required to further miniaturize the light spot and to refine the track. Further, the substrate having the above-described track grooves is produced by an injection molding method or the like. [Non-Patent Document 1] PBClapham and MCHutley (London) 244, 282 - 282 (1973) [Patent Document 1] Japanese Patent No. 3 0 1 663 8 A comparison of formic acid B such as ethanol in the aforementioned propylene tree hardening tree extinction In the case of a certain example, the olefin resin is easily controlled to have a non-viscosity of a micron, and a mold for improving the groove is formed. Naturally, the product is exemplified in Japanese Patent No. 349 00 307 [Patent Document 2] Japanese Patent No. 3490099 [Patent Document 3] Japanese Patent No. 26 1 0463 [ [Patent Document 5] JP-A-2002-225133 [Patent Document 5] Japanese Laid-Open Patent Publication No. Hei No. Hei. In the manufacturing method described in 1 to 5, the molding precision of the fine uneven shape is insufficient. According to the present invention, there is provided a sheet-like formed body which is excellent in molding precision and has a fine uneven shape. [Means for Solving the Problem] The method for producing a sheet-like formed article of the present invention includes a support and a resin having a concave-convex shape disposed on a side opposite to a main surface side of one side of the support and on a side of the support side In the method of producing a sheet-like formed article of a layer, the coating layer and the support in a state in which the radiation curable resin composition containing the radiation curable resin are superposed, and the coating layer is brought into contact with a resin for causing the coating layer to become the resin layer by curing the radiation curable resin contained in the coating layer after the coating film of the concave-convex surface is transferred to the coating layer a layer forming step; the aforementioned radiation curable resin in an uncured state comprising at least one monomer A selected from the group consisting of a monofunctional ethylene monomer or a 200902307 monofunctional (meth) propylene monomer, and a polyfunctional (A) At least one selected from the group consisting of a propylene monomer and a polyfunctional (meth) propylene oligomer, 2 5 ° C, the discharge viscosity of the radiation curable resin-based composition of 3~1 00mPa · s. The sheet-like molded body of the present invention includes a support and a sheet-like formed body having a resin layer having a concave-convex shape on the opposite side of the support surface side of the support side, and is characterized in that: In the resin layer in which the coating layer containing the radiation curable resin composition containing the radiation curable resin and the support are overlapped, the coating layer is brought into contact with the molding die having the uneven surface so that the aforementioned molding die is formed. After the uneven shape of the uneven surface is transferred to the coating layer, the resin layer is obtained by curing the radiation curable resin contained in the coating layer, and the radiation curable resin in an uncured state contains a monofunctional ethylene monomer or Selecting at least one monomer A selected from the group consisting of monofunctional (meth) propylene monomers and a group consisting of a polyfunctional (meth) propylene monomer and a polyfunctional (meth) propylene oligomer At least one of the above-mentioned radiation curable resin compositions has a viscosity of 3 to 100 mPa·s at 25 °C. [Effects of the Invention] According to the present invention, a sheet-like formed body having excellent molding precision and having a fine uneven shape is provided. [Embodiment] [Best Embodiment of the Invention] -8- 200902307 In order to obtain a sheet-like formed body having a fine uneven shape, the radiation curable resin composition contained in the coating layer must enter every corner of the forming mold. until. Further, in order to form a fine uneven shape, it is preferable to form a thin coating layer. However, as described in Patent Documents 3 to 5, it is not easy to form a thin coating layer in a high-viscosity coating. Further, as described in Patent Documents 1 to 2, if the radiation-curable resin composition is diluted with a solvent to lower the viscosity of the coating material, the suitability of the coating material is improved. However, the viscosity of the coating for drying and removing the solvent, that is, the viscosity of the radiation curable resin composition contained in the coating layer, is not excluded, and therefore, the problem of biting of the bubble during the forming process or It is not possible to improve the radiation curable resin composition until it spreads to the corners of the molding die. In order to produce a sheet-like molded article having excellent fineness and unevenness, the inventors of the present invention have conducted a thorough review, and as a result, by selecting the type of the radiation curable resin in the radiation curable resin composition, The viscosity of the radiation curable resin composition contained in the coating layer immediately before the forming is a predetermined defect, and the above problems are solved. In the following, a certain example of the sheet-like formed body of the present invention and a method for producing the same will be described with reference to Figs. The sheet-like molded body i of the present embodiment, as shown in Fig. 1 (a), includes a support 11 and a resin layer 12 disposed on the support 11. The opposite surface of the main surface on the side of the support 1 1 of the resin layer 12 has irregularities. The method of producing the sheet-like formed body 10 includes a resin layer forming step. In the resin layer forming step 'in the state in which the coating layer containing the radiation curable resin composition containing the radiation curable resin and the support are overlapped, the coating layer abuts against the molding die having the uneven surface. The uneven shape of the uneven surface of the forming mold is transferred to the coating layer. Next, the coating layer is made into a resin layer by curing the radiation curable resin contained in the coating layer. As the molding die, for example, it is preferable to continuously manufacture a belt-shaped sheet-like formed body and to efficiently produce a sheet-shaped molded body. The resin layer forming step described above is carried out, for example, as shown in Figs. 2 to 4 . In the example shown in Fig. 2, the strip-shaped support 2 is sequentially fed by the feed roller 1, and then, on the support 2, the coating containing the radiation curable resin composition is started by the applicator 3. Applying the aforementioned coating to the main surface of one side of the support 2. In the state where the coating material contains the solvent for dilution, the support 2 for coating the coating material is transferred to a dryer (not shown), and the solvent for dilution is removed by the coating material. In the state in which the coating layer and the support including the radiation-curable resin composition in the uncured state are overlapped, the unevenness of the impression roller 4 is pressed against the coating layer, and the uneven surface of the impression roller 4 is transferred. Concave shape. In this state, radiation such as ultraviolet rays passing through the support 2 to the coating layer is irradiated by the radiation irradiation device 5, and the radiation-curable resin contained in the coating layer is cured to make the coating layer a resin layer. The pressing of the pressing of the embossing roller 4 to the coating layer is carried out by arranging a pair of supporting rollers 6 of the embossing roller 4. Since the shielding plate 7 is disposed in the vicinity of the radiation irradiation device 5, it is suppressed that the irradiation is performed on a portion where the radiation cannot be irradiated. -10-200902307 In addition, the tension of the support 2 can be used without using the support roller 6, and the press roller 4 can be pressed against the paint layer. However, the shape of the support roller 6 is relatively stable, which is preferable. In the state where the heat generated by the irradiation of the radiation causes damage to the support 2, the roller 4 and/or the support roller 6 can be provided with a cooling function in accordance with the need. In the example shown in Fig. 3, the coating material is supplied from the applicator 3 on the uneven surface of the platen roller 4, and a coating layer is formed on the uneven surface. In the state in which the coating layer and the strip-shaped support 2 which are sequentially fed by the delivery roller 1 are overlapped, the uneven surface of the impression roller 4 is pressed against the coating layer by the support roller 6, and the coating is applied. The layer and the uneven shape of the transfer embossing roller 4. In this state, radiation such as ultraviolet rays passing through the support 2 to the coating layer is irradiated by the radiation irradiation device 5, and the radiation curable resin contained in the coating layer is cured to make the coating layer a resin layer. In the example shown in Fig. 4, the embossing roller is formed of a material that transmits radiation, and a radiation illuminating device 5 is disposed inside the embossing roller. In the present example, since the radiation is applied to the paint layer or the like through the platen roller 4, the paint layer can be cured even in a state where the support 2 is formed of a material that does not transmit radiation. Next, the details of the paint used in the method for producing a sheet-like formed body of the present embodiment will be described. In the coating layer, after coating a coating containing a radiation curable resin composition and a solvent for diluting required, the coating layer is obtained by removing the solvent for dilution by drying with a coating film. In addition, the solvent for diluting the radiation curable resin composition is added in order to improve the coating suitability of the coating material -11 - 200902307. However, the radiation curable resin composition described above is not necessarily required. The material may contain, in addition to the radiation curable resin, a photoinitiator, a sensitizer, an accelerator, a polymerization inhibitor, a leveling agent, a release agent, a color material, or a tanning material. In addition, in order to make the coating suitability more favorable, the coating material may contain a solvent for dilution which dilutes the radiation curable resin composition as needed. The radiation curable resin is composed of at least one monomer A selected from the group consisting of a monofunctional ethylene monomer or a monofunctional (meth) propylene monomer, and a polyfunctional (meth) propylene monomer and a polyfunctional (A) At least one selected from the group consisting of propylene oligomers. At 25 ° C, the viscosity of the radiation curable resin composition is 3 to 100 mPa·s. A general radiation curable resin is composed of a monofunctional monomer and a polyfunctional monomer or polyfunctional oligomer. Next, the properties of the cured product mainly supporting the radiation-hardening resin are generally polyfunctional monomers or polyfunctional oligomers. As the monofunctional monomer, it is used as a diluent for viscosity adjustment. Then, when the viscosity of the radiation curable resin is lowered in this manner, it is not easy to secure the required strength, specifically the pencil hardness measured in accordance with JIS K 5 60 0-5-4, and the like. In the method for producing a sheet-like formed article of the present embodiment, at least one monomer A selected from the group consisting of a monofunctional ethylene monomer or a monofunctional (meth) propylene monomer is used, and a polyfunctional (methyl group) is used. A radiation curable resin of at least one of -12 to 200902307 selected from the group consisting of a propylene monomer and a polyfunctional (meth) propylene oligomer. Further, the viscosity of the radiation-hardening resin composition contained in the coating layer is 3 to 100 m P a .s. When the radiation curable resin is selected in such a manner that the viscosity of the radiation curable resin composition is a predetermined enthalpy, the radiation curable resin composition can enter the respective corners of the molding die, and is not attached to the molding die. , can smoothly release the mold. Then, as shown in the examples described later, the strength of the cured product (the resin layer) and the low viscosity of the radiation curable resin can be simultaneously established, and a molded body having a high molding precision and having a fine uneven shape can be obtained. The viscosity at 25 ° C of the coating containing the radiation curable resin composition is preferably from 3 to 100 mPa · s. When the viscosity of the coating material is within this range, for example, even in the state in which the coating layer having a thickness of 10 μm or less is formed, the coating can be favorably applied, and the leveling failure or the like can be suppressed. The resulting coating lines, uncoated portions (voids), and the like are produced. For the same reason, the viscosity of the coating at 25 ° C is preferably 5 to 50 mPa · s. In addition, when the viscosity of the coating at 25 ° C is less than 100 mPa·s, even if the transfer speed becomes faster, the bubbles in the paint can be removed, and the uneven surface of the impression roller is transferred to the transfer of the paint layer. The sex also becomes good, and therefore, it is not easy to cause formation failure. The thickness of the resin layer is preferably 50 μm or less, more preferably 3 μm or less, even more preferably ΙΟμηη or less, in order to obtain a molded body having a fine uneven shape. As a method for controlling the viscosity of a radiation curable resin composition contained in a coating layer, a series of control monomers and a polyfunctional (meth) propylene-13-200902307 monomer and a polyfunctional (meth) propylene oligomer are used. A method of mixing a mixture of at least one of the selected groups. Then, at least one monomer A, polyfunctional (meth) propylene monomer selected from the group consisting of a monofunctional ethylene monomer or a monofunctional (meth) propylene monomer contained in the radiation curable resin composition Specific examples of the polyfunctional (meth) propylene oligomer will be described. As the monofunctional vinyl monomer series, vinyl pyrrolidone, vinyl formamide, and the like are mentioned. As a monofunctional (meth) propylene monomer series, acryloyl morpholine, tetrahydrofurfuryl (meth) acrylate, hydroxyethyl (meth) acrylate, dimethyl methacrylate, isobornyl ( Methyl) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, ethoxy diethylene glycol (meth) acrylate, methoxy triethylene glycol (methyl ) acrylate, methoxydipropylene glycol (meth) acrylate, and the like. Since these monomer A has a functional group such as a hetero ring, a guanamine group, a hydroxyl group or a methoxy group, the resin layer obtained by curing the coating layer containing these monomers is excellent in adhesion to the support. In addition, in consideration of the viscosity, the hardenability, the hardness of the resin layer, and the adhesion to the support, etc. of the radiation curable resin composition, vinyl pyrrolidone or dimethyl methacrylate is more preferable. Amine, acryloyl morpholine and tetrahydrofurfuryl acrylate. With regard to the viscosity, the hardenability, the hardness of the cured product, and the adhesion to the support, it is particularly preferable to have a well-balanced and excellent vinylpyrrolidone, dimethylacrylamide, and acryloylmorpholine. As a series of polyfunctional (meth) propylene monomers, 2 -hydroxy-3-(methyl)propenylpropyltri(meth)acrylate, hydrazine, 6-hexane-14-200902307 dilol Di(meth)acrylate, neopentyl glycol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, pentaerythritol di(meth)acrylate, pentaerythritol tetra(meth)acrylate Or it may be dipentaerythritol hexa (meth) acrylate or the like. As a series of polyfunctional (meth) propylene oligomers, for example, ah-600, UA306H manufactured by Kyoeisha Chemical Co., Ltd., U-4HA, U-6HA, U-6LPA, etc., manufactured by Shin-Nakamura Chemical Co., Ltd. The propylene oligomer is well cured when it is contained in the radiation curable resin composition for forming a resin layer. Further, at least one selected from the group consisting of a polyfunctional (meth)acrylic monomer and a polyfunctional (meth)acryl oligomer contributes to an increase in hardness of the resin layer. Even in these cases, when considering the hardenability, the hardness of the resin layer, and the adhesion of the resin layer to the support, etc., it is particularly preferable that pentaerythritol triacrylate, dipentaerythritol hexa-propyl acrylate, and propylene oligomerization Things. At least one selected from the group consisting of a polyfunctional (meth)acrylic monomer and a polyfunctional (meth)acryl oligomer has three or more reactive functional groups, and therefore, the hardenability is further improved. Since the high crosslink density is obtained by hardening, the hardness of the cured product can be further increased. The mixing ratio of the monomer A and at least one selected from the group consisting of a polyfunctional (meth) propylene monomer and a polyfunctional (meth) propylene oligomer is preferably, for example, in a weight ratio of 1 〇: 90 ~80 : 20 and the viscosity of the radiation curable resin composition at 25 ° C is 3 to 100 mPa·s. In this state, the unevenness of the uneven surface of the platen roller is good for the transfer property of the coating layer, and the mechanical strength of the resin layer is sufficiently ensured. -15-200902307 The content of the radiation curable resin contained in the radiation curable resin composition is different depending on the type of the radiation curable resin. However, in general, the radiation curable resin composition is 100 parts by weight. It is preferably 80 to 99 parts by weight. In the selection of the radiation-curable resin, it is preferable to cure by the amount of ultraviolet light of 300 mJ/cm 2 or less from the viewpoint of productivity, and more preferably, it is hardened by cm 2 or less, and even more preferably Hardening is performed by 5 OmJ/cm2 or less. The ignition point of the radiation curable resin is preferably 7 〇 ° C or more. Because the risk of fire is higher when the fire point is below 70 °C. The degree of necessity of the photoinitiator differs depending on the kind of radiation that is irradiated on the coating layer. In particular, in the case where ultraviolet light or visible light is used as an energy source for the curing reaction, the radiation curable resin composition preferably contains a photoinitiator. The photoinitiator is not particularly limited, but a general one can be used. The photo-initiator is preferably a photo-radical polymerization agent, and examples of the photo-radical polymerization agent include α-diketones such as a benzyl group and a diacetyl group, and acetoins such as benzoin. Acryl ethers such as methyl ether, benzoin ethyl ether, benzoin isopropyl ether, thioxanthone, 2,4-diethyl thioxanthone, 2-chlorothioxanthone, thioxanthene Keto-4-ketosulfonate, benzophenone, benzophenone, 4,4 bis(dimethylamino)benzophenone, 4,4, mono-(diethylamino)benzophenone And other benzophenones, Michler's ketones, acetophenone '2-(4-toluenesulfonyl hydroxy)- 2-phenylethyl benzene, ρ-dimethylaminoethyl benzene, α, 〇: ,-dimethoxyoxyacetoxybenzophenone, 2,2,monodimethoxy-2-phenylene-16- 200902307 phenyl benzene, P-methoxy acetophenone, 2-methyl [4 Ethyl hydrazide such as mono(methylthio)phenyl]monomorpholine-1-one acetone, 2-benzyl-2-didimethylamino- 1-(4-morpholinylphenyl)-butane-1-one Benzene, anthracene, ;!, 4-naphthoquinone, etc., phenylhydrazine methyl chloride, trihalomethylphenyl maple, tris (trihalogen) Yl) a s - triazine compound of halo, acyl phosphine oxides, di -t- butyl peroxide the peroxide. These systems may be used singly or in combination of two or more. Since the irradiation of the ultraviolet ray to the coating layer is also carried out via the support, it is preferable to select an appropriate starting agent in accordance with the wavelength of light transmitted through the support. It is preferable to specifically select a photoinitiator which absorbs light in a wavelength region which does not repeat the absorption wavelength of the support. For example, in the state where the material of the support is polyethylene terephthalate or polyvinyl phthalate, it is preferred to select 2-benzyl- 2-dimethylamino-1-(4-morpholine). Phenyl)-butanone-1, bis(2,4,6-trimethylphenylhydrazine)-phenylphosphine oxide, 2-methyl-1 (4-(methylthio)phenyl)-2 a photoinitiator such as morpholinopropan-1-one. As a series of commercial products, IRG A CURE 3 69 (2-benzyl-2-dimethylamino-1-yt(4-morpholinylphenyl)-butanone-I), IRGACURE 819 (double (2, 4, 6-trimethylphenylhydrazine)-phenylphosphine oxide), IRGACURE 907 (2-methyl-1 -(4-(methylthio)phenyl)-2-morpholinepropane-1-one) CIBA.GEIKIE company). Especially in the use of 2-methyl-l-(4-(methylthio)phenyl)-2-morpholinepropan-1-one and 2,4-diethylthioxanthone or 2-chlorothioxanthone At the time, it has an effect. In the coating, the viscosity of the diluted solution of the radiation-curable resin composition is diluted to -17-200902307, and the viscosity of the solvent is no specific methamine, and the method of coating by the flow coating method is not 20 m/I. The set, column, and most crop lights or heat damage rays are hard under the atmosphere. In the tree state, it is preferable to add a solvent for dilution to make the coating 2 5 . (: 3 to 100 mPa · s. The type of the solvent for dilution is limited to, for example, a solvent for dilution which is conventionally used such as methyl ethylformamidine, toluene or dimethyl group. The forming method series is a roller coating method, a curtain coating moving method, a die coating method, a blade coating method, a stick coating method, a cloth method, a spray coating method, etc. Even in the coating layer thereof The shape is also preferably a roller which is thin and capable of high-speed coating, a curtain coating method, an automatic washing method, and a die coating method. In terms of coating speed, it is preferably 10 m / mi. η or more, preferably nin, more preferably 50 m/min or more. The upper limit of the coating speed is particularly limited to 'but'. It is usually 200 m/min or less for the reason of the curing speed. It is used for curing of radiation hardening resin. The radioactive system is not particularly limited to, for example, an electron beam, an ultraviolet ray, a visible ray, or the like, if it is a radiation capable of curing the ray-curable resin. Even a high-energy ray of ultraviolet light or an electron beam is used. For example, high-pressure mercury lamps, metal halide LEDs, etc. LEDs have high energy efficiency and are provided to a small amount of support, etc. Therefore, it is preferable to irradiate ultraviolet rays in order to improve the hardenability of the radioactive resin. The ideal shape of the concave-convex surface of the gas-fat layer which is adjusted to have an oxygen concentration of 300 ppm or less, which is required to be cleaned, is different from that of the sheet-like molded body -18 to 200902307. However, this embodiment is intended to have irregularities. The average one-period length (D) is Ο.ΟΙηηι~50μιη, the average height (H) of the convex portion is Ο.ΟΙηηι~50μπι, the ratio of the average one-period length (D) and the average height (Η) of the concavities and convexities (D) Η Η 制造 制造 0.0 0.0 0.0 0.0 0.0 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 It is an average period length (D) for embossing, Ο.ΟΙμιη~30μηι, average height (Η) is Ο.ΟΙιη~30μιη, and 値(D/Η) is 0.01~100. The production of the sheet-like formed body of the resin layer. The average one-period length (D) and the average height (Η) of the uneven surface of the resin layer are electron beam microscopes (surface electron microscopes of the surface and the cross section of the sheet-like formed body (SEM EDX, manufactured by Hitachi, Ltd.) Η Η Η 値 摄影 摄影 摄影 摄影 摄影 摄影 摄影 摄影 摄影 摄影 摄影 摄影 摄影 摄影 摄影 摄影 摄影 摄影 摄影 摄影 摄影 摄影 摄影 摄影 摄影 摄影 摄影 摄影 摄影 摄影 摄影 摄影 摄影 摄影 摄影 摄影 摄影 摄影 摄影 摄影 摄影 摄影 摄影 摄影 摄影 摄影As shown in a) and (b), d is a period length and h is the height of the unevenness, and 20 points are measured and the average is obtained as the average one-cycle length (D) and the average degree (Η). In the state where the uneven shape is irregular, as shown in Fig. 1 (c), the names of Αι, Α2, Α3, ... Αη are added to the tops of the uneven shape, and Β!, Β2, Β3 are added to the respective bottoms. ...the name of Βη, find the (x,y) coordinates of each point. When the coordinate of Αι becomes (xai, yai) and the coordinate of Βι becomes (), the interval D between A! and B! is obtained by D! = xb! - xa! The average one-period length (D) of the concavo-convex shape in this state is obtained by (¢^.+ 02+(13 +...+ dn) / η. Similarly, the height difference between Αι and Βι is borrowed. From -19 to 200902307, the average height H of the concavo-convex shape is obtained by H = (hi + h2 + h3 + ... + hn) / η. The average thickness (Ρ) of the resin layer 12 and the average height of the concavities and convexities (Η) The ratio (P / Η) is not particularly limited. 'But' economically, it is preferably 1 to 1000, more preferably 1 to 200. When (p/Η) exceeds 1000, the resin layer The thickness of the portion on the side of the support which does not constitute the fine uneven shape is thickened, and an unnecessary resin is used. Here, the average thickness (p) of the resin layer 12 is measured as described below. The sheet-like molded body was measured for the average thickness of the laminated body X. On the other hand, only the support of 10 sheets was superposed, and the average thickness of the laminated body Υ was measured. Using these measurement 値, the following formula was used to calculate The average thickness (Ρ) of the sheet-like formed body. However, the average thickness of the laminated body X and the laminated body 系 is measured using a micrometer (minimum Degree: 0.1 ΖΖ m ), the thickness of the laminated body X and the laminated body Y at 10 points were respectively measured, and the average thickness was obtained by averaging the enthalpy. (Formula 1) Average thickness of the sheet-like formed body (P) = (layer The average thickness of the integrated body X - the average thickness of the laminated body Y / 1 〇 is preferably controlled by the coating thickness so that the thickness of the resin layer is preferably 50 μm or less, more preferably 30 μηι or less, and most preferably 1 〇. In the support 11, for example, a translucent film which is conventionally known to have flexibility, or the like is used. As a material series of the support 11, for example, polyethylene terephthalate or polyethylene terephthalate , polyamine, poly-polyamine, poly-20- 200902307 醯 imine, polycarbonate, polyphenyl sulphate, poly phthalocyanine, polymethyl methacrylate, polyvinyl alcohol, cellulose triacetate, The cycloolefin polymer or the like is preferably a polyethylene terephthalate if it is 'in terms of mechanical strength, dimensional stability, heat resistance, etc.'. The thickness of 11 is not particularly limited and may vary depending on the application. In the state in which the thickness of the support 11 is 3 to 20 μm, the method for producing the sheet-like molded body of the present embodiment is particularly useful. Adjacent to the adhesion of the layer of the resin layer 12, for example, surface treatment such as corona, plasma treatment, or the like may be performed on the surface of the support layer Π bonded to the resin layer 12, and the support 11 may be provided with An easy-to-adhere layer composed of a polyurethane, a polyester, etc. The pencil hardness of the resin layer 12 measured according to JIS Κ 5 600 - 5 - 4 is preferably F or more, more preferably Η or more. If it is F or more, even if the transfer speed is, for example, as fast as 50 to 200 m/min, it is not easy to cause scratches on the surface of the resin layer 12. In the state in which the adhesion of the layer adjacent to the resin layer is evaluated by the cross-cut method according to JIS 5 600 _ 5-6, it is preferable to classify 〇 or 1, more preferably, classification 〇. Hereinafter, the present invention will be described in more detail based on the examples. However, the present invention is not limited to the examples. [Embodiment] -21 - 200902307 <Examples 1 to 10, Comparative Examples 1 to 3 > Coatings Α to J of the compositions shown in Table 1 were produced. The number of the compositions of the coatings Α~J indicates the parts by weight. A sheet-like formed body of Examples 1 to 10 and Comparative Examples 1 to 3 was produced as an example of a method for producing a sheet-shaped formed body described with reference to Fig. 2 . The details of the various components are as follows. Vinylpyrrolidone (monofunctional propylene monomer) Dimethylpropenyl decylamine (monofunctional propylene monomer) Methyl methacrylate (monofunctional methacryl monomer) Propylene decylmorpholine (monofunctional methacrylic acid) Monomer) pentaerythritol triacrylate (trifunctional propylene monomer) dipentaerythritol hexaacrylate (6-functional propylene monomer) urethane acrylate UA- 3 06 (manufactured by Kyoeisha Chemical Co., Ltd., pentaerythritol triacrylate) Methylene dihydrogenate ethyl urethane polymer, 6-functional oligomer) IRGACURE 1 84 (Photoinitiator, CIBA. Manufactured by GEIKIE, 1-hydroxy-cyclohexyl-phenyl-one) IRGACURE 907 (Photoinitiator, CIBA. Manufactured by GEIKIE Co., Ltd., 2-methyl-l-(4-(methylthio)phenyl)- 2-morpholinepropane-1-one) 2,4-diethyl thiophene Tons of Ketone (Photoinitiator) First, a coating layer is applied by a roll coating method on a main surface of one side of a PET film having a thickness of 1 μm to form a coating layer. In terms of coating speed, in Examples 1 to 8 and Comparative Examples 丨 and 2, it was 20 m / min, and in Example -22-200902307, Example 9' was 40 m/min', and in Example 1, it was 80 ni/min. In comparison 3, it becomes i〇m/min. The coating is applied such that the thickness of the coating layer is about 1 to 5 μm. Then, in the coating layer, the embossing roller is pressed to transfer the uneven shape of the uneven surface of the embossing roller, and then the ultraviolet ray is irradiated to the coating layer by an ultraviolet ray irradiator to harden the radiation-curable resin contained in the coating layer. The amount of ultraviolet radiation is 300 mJ/em2. In addition, in the coating of the coating, a micro-gravure gravure roller of φ 20 mm, a diagonal line type, a unit angle of 45°, and a line of 250 lines/inch was manufactured by Lengjing Precision Machinery Co., Ltd. Further, in the embossing roller, a metal roller having an average one-period length (D) of 0.88 μm, an average uneven height (H) of 0.05 μm, and having a concave-convex surface corresponding to the unevenness of the form shown in Fig. 1 (a) is used. . The viscosity of the radiation curable resin composition, the thickness of the resin layer, the pencil hardness of the uneven surface of the sheet-like formed body, the adhesion of the resin layer and the support, the hardenability, and the moldability were evaluated as follows, and the results are shown in the table. <Viscosity of Radiation Curable Resin Composition> The viscosity of the radiation curable resin composition was measured at 25 °C by an E-type viscometer (rotation number 1 〇 rpm) manufactured by Toki Sangyo Co., Ltd. <Thickness of Resin Layer> The thickness of the resin layer is calculated by the above (Formula 1). -23- 200902307 <Pencil hardness> According to JIS K 5600 - 5 - 4 degrees. <Adhesiveness> The resin layer was measured by a cross-cut method for the support of the support. Evaluation is carried out at the stage. The larger the "〇" is, the greater the degree of peeling. <Sclerosing property> A PET film having a thickness of 88 μm was formed by using a Toray tape on a support to form a PET film having a thickness of 88 μm. It is confirmed by the illuminometer (EIT company determines that the amount of ultraviolet light is less until the adhesiveness disappears, and the hardenability is contacted. <Defects and Formability> The presence or absence of a microscope for the sheet-like formed body was visually observed in 20 eyes, and 20 fields of view (measurement 45 μηιχ45 μm) were observed by visual observation to observe the pencil hardness of the micro-formed sheet-like molded body: According to Π S 5 6 0 0 - 5-6, the degree of peeling is shown by 0 to 5, and no peeling is observed. The number is: the company's bar coater (after the rod layer, The coating layer, which is attached to the PET film and UV-based UV Power Puck), measures the amount of ultraviolet light required. In addition, the table; high. Adhesiveness is applied by finger; (measurement field of view: 10 cm X 1 〇cm), and the defect is measured by electron magnification: 2000 times, and the field of view is determined: whether there is a defect in shape (caused by correction) 24-200902307 The coated lines, uncoated portions (voids, etc.) caused by poor flatness, etc., were evaluated by the following criteria. 〇: No defects (no defects observed in each 20 fields of view) △: There are extremely few defects (in each of 20 fields of view, 1 to 2 fields of view, defects are observed) X: Defective (in each 20 field of view , in 3 to 2 0 field of view, observed defects) -25- 200902307 Comparative Example 3 oo ον 00 oo OS 00 (N (N ΙΤί ο 〇 (N 〇»Τί — Ο XX Comparative Example 2 igoo »noo yn CN CN r ··^ ο (N 00 ο |300 or more 1 | 2B or less | inch ο χ Comparative example 1 oo ON 00 oo Os 00 CN (N r·^ ο 〇 <N 〇 inch X m ο X X 丨 embodiment .10 < oo JO oo JO (N (N ό ο !-Η § (Ν 〇 X CN ο 〇〇 Example 9 C oo jn oo CN (N ο § o 00 (Ν 〇X cn ο 〇〇j«) X !〇oo 00 (N oo 00 m CN CN in ο R ΓΛ g X m ο 〇〇 Example 7 ο Ο o 芝 3 oo S (N (N r — < ό ο s 0 (N ao 0 卜 X ο 〇〇丨 Example 1 6 Ο ooo 1 - H Ό (N CN U^i 0 0 cn 00 〇ο 〇〇丨 Example 5 ω ο ooo 3 CN CN In 0 C^i cn X cs ο 〇〇丨Example 丨4 Q οο ο o 00 oo 卜 (N CN i〇ο 00 ο ο 〇〇 Example 3 Ο ο o 00 moo 00 cn CN (N in ο »—Η 〇CO d § X ο 〇〇丨Example 2 CQ ο o S oos fN (NT^H ο in cn 00 (N ο 〇〇 Example 1 < ο o JO oo JO CN (N 0 § Os (N f s 〇〇 〇〇 涂料 〇〇 〇〇 〇〇 no no no no no no no no no no . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S S S S S S S S S S S f {nn fe * Total of monofunctional monomers in the loading line x)rn i—i I螂ft-i- Ip-» Π1 m pb 4ΠΕ Title^ s it rp* In np &E P7 4GE fit mu X g ΓΛ < 2JIH 1-1 II is m. N3 £5 滋fnc K _ df m is like your EEC 1-4 px multi-functional propylene monomer total cL^r· - - ----- - rJ IRGACURE 184 | 1 IRGACURE 907 | Total of 2,4-diethylthioxanthone starter monofunctional + polyfunctional + starter viscosity [mPa.s] (3-100) speed [m/min] resin layer thickness [μπι ] S ηή / pencil hardness adhesion m recap 藜鼹ifiim) ΙρΓ 湮Μ 劁 劁-26- 200902307 Selected in a group consisting of monofunctional ethylene monomers or monofunctional (meth) propylene monomers At least one monomer A and at least one selected from the group consisting of a polyfunctional (meth) propylene monomer and a polyfunctional (meth) propylene oligomer and having a viscosity of 25 t in the range of 3 to 100 mPa·s In each of Examples 1 to 1 of the radiation curable resin composition, the curing was performed by an amount of ultraviolet light of 40 to 150 mJ/cm 2 , and the hardenability was improved. In addition, the results of the adhesion test by the pencil hardness and the cross-cut method were also good. In addition, the formability was observed by an electron microscope, and as a result, the sheet-like formed bodies of Examples 1 to 1 were formed with irregularities with high precision. Further, even in the sheet-like molded article of Example 10 having a coating speed of 40 m/min and a coating speed of 80 m/min, the uneven shape was accurately formed. On the other hand, in the sheet-like molded body of Comparative Example 1 in which the viscosity of the radiation curable resin is higher than 100 mPa·s, the formation of the coating defect or the biting of the bubble at the time of coating is observed. defect. In addition, as shown in the results of the comparative example 3, in the state where the viscosity of the radiation curable resin is higher than 100 mPa·s, even if the coating speed becomes, for example, 1 Om / min, the coating defect or Forming defects. In addition, in the sheet-like molded body of Comparative Example 2 in which the viscosity of the radiation-curable resin is less than 3 mPa·s, the pencil hardness is 2 B or less, and the result of the adhesion test by the cross-cut method is observed. Peeling, hardness and adhesion are not sufficient. Further, the hardenability was also poor, and when the moldability of the molded body was observed, no coating defect was observed, and it was considered that the curing failure was a cause of poor molding. -27-200902307 As described above, in the method for producing a sheet-like formed article of the present invention, the radiation curable resin contains at least one selected from the group consisting of a monofunctional ethylene monomer or a monofunctional (meth) propylene monomer. The monomer A and at least one selected from the group consisting of a polyfunctional (meth) propylene monomer and a polyfunctional (meth) propylene oligomer, and a viscosity system of the radiation curable resin composition at 25 ° C ~100 mPa·s, the coating property, the moldability, and the curability of the coating are all good, and the molded body having fine irregularities can be produced at high speed and with high precision. According to the present invention, it is possible to provide a sheet-like formed body having a high precision and a fine uneven shape. Therefore, the sheet-like formed body of the present invention and the method for producing the same are used for an antireflection film, a diffusion sheet, and a brightness enhancement sheet. Such as optical films, light guides, diffraction grids, patterned media, optical recording media, optical components, holograms, micro-flow paths, building materials, decorative items and honing belts. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 (a) to (c) are views showing a exemplified example of the sheet-like formed body of the present invention. Fig. 2 is a view showing an example of a method of producing a sheet-like formed body of the present invention. Fig. 3 is a view showing another example of the method for producing a sheet-like formed body of the present invention. Fig. 4 is a view showing another example of the method for producing a sheet-like formed body of the present invention. -28- 200902307 [Description of main component symbols] A η · Top A 1 · Top A 2 _ Top a3 : Top B n : Bottom B i : Bottom B2 : Bottom B 3 : Bottom d : — Period length h : Height of the bump 1 : Feed roller 2, 1 1 : Support 3 : Applicator 4 : Imprint roller 5 = Radiation irradiation device 6 : Support roller 7 : Screening plate 1 〇: Sheet-shaped formed body 1 2 : Resin layer -29-