JP5161489B2 - Optical sheet and manufacturing method thereof - Google Patents

Optical sheet and manufacturing method thereof Download PDF

Info

Publication number
JP5161489B2
JP5161489B2 JP2007143386A JP2007143386A JP5161489B2 JP 5161489 B2 JP5161489 B2 JP 5161489B2 JP 2007143386 A JP2007143386 A JP 2007143386A JP 2007143386 A JP2007143386 A JP 2007143386A JP 5161489 B2 JP5161489 B2 JP 5161489B2
Authority
JP
Japan
Prior art keywords
sheet
resin composition
photocurable resin
mold
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007143386A
Other languages
Japanese (ja)
Other versions
JP2008298962A5 (en
JP2008298962A (en
Inventor
正吾 岡崎
賢二 末村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2007143386A priority Critical patent/JP5161489B2/en
Publication of JP2008298962A publication Critical patent/JP2008298962A/en
Publication of JP2008298962A5 publication Critical patent/JP2008298962A5/ja
Application granted granted Critical
Publication of JP5161489B2 publication Critical patent/JP5161489B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば、液晶表示装置のバックライトに使用されるプリズムシート、プロジェクションテレビに使用されるフレネルレンズシートやレンチキュラーレンズシート等の各種光学シート及びその製造方法に関する。更に詳しくは、本発明は、様々なレンズ構造への対応が可能で、優れた耐久性(耐磨耗性や耐光性等)を有し、光学欠陥の発生の無い高品位な光学シート及びその製造方法に関する。   The present invention relates to various optical sheets such as a prism sheet used for a backlight of a liquid crystal display device, a Fresnel lens sheet and a lenticular lens sheet used for a projection television, and a manufacturing method thereof. More specifically, the present invention is capable of adapting to various lens structures, has excellent durability (wear resistance, light resistance, etc.), and has a high-quality optical sheet free from the occurrence of optical defects. It relates to a manufacturing method.

液晶表示装置のバックライトに使用される輝度向上プリズムシート、液晶パネルに使用されるマイクロレンズアレイ、プロジェクションテレビの投射スクリーンとして使用されるフレネルレンズシートやレンチキュラーレンズシート、さらには光反射板、光拡散板、回折格子等の各種光学シートの製造においては、切削加工法、押圧成形法、射出成形法、あるいは転写成形法等の各種成形法が利用されている。   Luminance-enhancing prism sheet used for backlights of liquid crystal display devices, microlens arrays used for liquid crystal panels, Fresnel lens sheets and lenticular lens sheets used as projection screens for projection televisions, light reflectors, and light diffusion In manufacturing various optical sheets such as plates and diffraction gratings, various molding methods such as a cutting method, a press molding method, an injection molding method, or a transfer molding method are used.

切削加工法は、精密旋盤等により樹脂シート表面をレンズ形状に加工する方法である。しかしながら、この方法は加工に長時間を要するので、生産性が極めて低い。   The cutting method is a method of processing a resin sheet surface into a lens shape by a precision lathe or the like. However, since this method requires a long time for processing, productivity is extremely low.

射出成形法は、凹凸形状を有する金型内に、溶融した熱可塑性樹脂を射出して成形する方法である。この方法は、比較的小型の光学シートの大量製造に適している。しかしながら、大型の光学シートを製造する場合には、成形装置が非常に大掛かりになるので、経済的な負担が大きくなる。また、熱可塑性樹脂を用いて光学シートのレンズ部を成形するので、レンズ部の耐久性が低く、光学シートの取り扱い時にレンズ部が容易に傷付いてしまう。   The injection molding method is a method in which a molten thermoplastic resin is injected and molded into a mold having an uneven shape. This method is suitable for mass production of relatively small optical sheets. However, when a large optical sheet is manufactured, the molding apparatus becomes very large, so that an economic burden is increased. Further, since the lens portion of the optical sheet is molded using a thermoplastic resin, the durability of the lens portion is low, and the lens portion is easily damaged when the optical sheet is handled.

転写成形法は、凹凸形状を有する型内に活性エネルギー線硬化型樹脂溶液を注入し、活性エネルギー線を照射して樹脂を硬化すると同時に基材シートに転写する方法である。この方法によれば、レンズ形状を精密に賦型でき、レンズ部の耐擦傷性等の耐久性も充分である。また、特許文献1に記載のように、回転する円筒形レンズ型を用いて転写成形を行い、連続的に光学シートを製造することも可能である。ただし、昨今の光学シートのレンズ形状は更なる精密・微細化が進んでいる。その結果、活性エネルギー線硬化型樹脂溶液を型内への連続注入するに際しては、泡等の巻き込みによる不都合を避けるために注入速度を上げることが困難である。また、活性エネルギー線硬化型樹脂溶液の硬化収縮が大きいので、型形状の正確な転写が困難となり、さらに、大きな硬化収縮の影響を加味して金型設計することも困難を伴う。   The transfer molding method is a method of injecting an active energy ray-curable resin solution into a mold having an uneven shape, irradiating the active energy rays to cure the resin, and simultaneously transferring the resin to a base sheet. According to this method, the lens shape can be accurately shaped, and the durability of the lens portion such as scratch resistance is sufficient. Further, as described in Patent Document 1, it is also possible to continuously produce an optical sheet by performing transfer molding using a rotating cylindrical lens mold. However, the lens shape of recent optical sheets has been further refined and refined. As a result, when the active energy ray-curable resin solution is continuously injected into the mold, it is difficult to increase the injection speed in order to avoid inconvenience due to entrainment of bubbles and the like. In addition, since the curing shrinkage of the active energy ray-curable resin solution is large, it is difficult to accurately transfer the mold shape, and it is also difficult to design a mold in consideration of the influence of the large curing shrinkage.

また、レンチキュラーレンズシートのように両面にレンズ形状を形成する必要がある場合は、転写成形法では両面同時に樹脂溶液を注入することが不可能なので、生産性が極端に低下してしまう。さらに、円筒形レンズ型を用いた両面レンズシートの連続生産の場合も、片面のレンズ部を硬化・転写させた後は極端にシートの可撓性が低下しまうので、もう一方の面へのレンズ賦形が不可能となる。   Further, when it is necessary to form lens shapes on both sides like a lenticular lens sheet, it is impossible to inject a resin solution simultaneously on both sides by the transfer molding method, and productivity is extremely lowered. Furthermore, even in the case of continuous production of double-sided lens sheets using a cylindrical lens mold, the flexibility of the sheet is extremely reduced after the lens part on one side is cured and transferred, so the lens on the other side Shaping becomes impossible.

押圧成形法は、凹凸形状を有する押型を基材シートに押し当てることによりレンズ形状を賦型する方法である。この方法によれば、ロール金型を使用することで連続的に光学シートを大量生産することも可能である。また、基材シート両面へのレンズ形状を賦型する必要がある場合でも、同時に両面賦型することが可能である。ただし、押圧成形法で熱可塑性の基材シート表面にレンズ形状を賦型して光学シートを製造した場合は、光学シートのレンズ部の耐擦傷性が低く、傷付き易い。   The press molding method is a method of shaping a lens shape by pressing a pressing mold having an uneven shape against a base sheet. According to this method, it is possible to continuously mass-produce optical sheets by using a roll mold. Moreover, even when it is necessary to mold the lens shape on both surfaces of the base sheet, it is possible to mold both surfaces simultaneously. However, when an optical sheet is manufactured by molding a lens shape on the surface of a thermoplastic base sheet by a press molding method, the scratch resistance of the lens portion of the optical sheet is low and easily damaged.

そこで、例えば特許文献2には、15℃において固体状態である溶剤を含まない活性エネルギー線硬化型化合物を加熱し、流動性を持たせた状態で基材シート上に塗布し、押圧成形法にて塗布層に凹凸形状を付与させた状態で活性エネルギー線を照射して硬化させ、これにより光学シートを得る方法が提案されている。この方法で得られる光学シートのレンズ部は、活性エネルギー線硬化型化合物の架橋体なので、耐久性が大きく向上している。
特許3866443号公報 特開平4−358810号公報
Therefore, for example, in Patent Document 2, an active energy ray-curable compound that does not contain a solvent that is in a solid state at 15 ° C. is heated and applied on a base sheet in a fluidized state, and the pressure molding method is applied. Thus, there has been proposed a method of obtaining an optical sheet by irradiating and curing an active energy ray in a state where an uneven shape is imparted to the coating layer. Since the lens portion of the optical sheet obtained by this method is a crosslinked product of an active energy ray-curable compound, the durability is greatly improved.
Japanese Patent No. 3866443 JP-A-4-358810

しかしながら、特許文献2に記載の方法で実際に光学シートを製造しようとすると、活性エネルギー線硬化型化合物を加熱しても非常に高粘度なので、その塗布工程の生産性を上げることが困難である。また、シート表面に凹凸形状を賦型する前の積層シート(化合物は未硬化状態)は、夏場の倉庫内など高温雰囲気下では、化合物がシート端面より浸み出したり、シート同士がブロッキングを起こすので、長期間の保存安定性に欠けている。さらに、シート両面にレンズ形状を賦型するために基材シート両面に化合物を塗布する必要がある場合は、塗布しようとする化合物の熱により、既に基材シートの裏側に塗布済みの化合物が流れてしまうという不都合が生じることがある。   However, when an optical sheet is actually manufactured by the method described in Patent Document 2, it is difficult to increase the productivity of the coating process because the viscosity is very high even if the active energy ray-curable compound is heated. . In addition, the laminated sheet (compound is in an uncured state) before the irregular shape is formed on the sheet surface, the compound oozes out from the end face of the sheet in a high temperature atmosphere such as in a warehouse in summer, or the sheets cause blocking. So it lacks long-term storage stability. Furthermore, if it is necessary to apply a compound to both sides of the base sheet in order to shape the lens shape on both sides of the sheet, the compound already applied to the back side of the base sheet flows due to the heat of the compound to be applied. Inconvenience may occur.

本発明は、上述した従来技術の課題に鑑み成されたものである。すなわち、本発明の目的は、長期の保存安定性や耐久性に優れ、様々な表面凹凸形状の形成やシート両面への凹凸形状の形成が容易な光学シート及びその製造方法を提供することにある。   The present invention has been made in view of the above-described problems of the prior art. That is, an object of the present invention is to provide an optical sheet excellent in long-term storage stability and durability, and easy to form various surface uneven shapes and uneven shapes on both sides of the sheet, and a method for producing the same. .

本発明は、透光性の基材シート(B)の少なくとも一方の面に、光重合性官能基を有する熱可塑性樹脂(a−1)及び光重合開始剤(a−2)を含む光硬化性樹脂組成物(A)を用いて微細凹凸構造を形成してなる光学シートであって、光重合性官能基を有する熱可塑性樹脂(a−1)が、側鎖に光重合性官能基を有するガラス転移温度が25〜175℃であるアクリル系樹脂であり、光硬化性樹脂組成物(A)が光重合性官能基を有する熱可塑性樹脂(a−1)以外の架橋性化合物を含まない光学シートである。 The present invention is a photocuring comprising a thermoplastic resin (a-1) having a photopolymerizable functional group and a photopolymerization initiator (a-2) on at least one surface of a translucent substrate sheet (B). rESIN composition (a) I optical sheet der obtained by forming a fine uneven structure with a thermoplastic resin having a photopolymerizable functional group (a-1) is a photopolymerizable functional group in the side chain It is an acrylic resin having a glass transition temperature of 25 to 175 ° C., and the photocurable resin composition (A) contains a crosslinkable compound other than the thermoplastic resin (a-1) having a photopolymerizable functional group Ru no optical sheet der.

さらに本発明は、上記光学シートを製造する為の方法であって、透光性の基材シート(B)の少なくとも一方の面に、光硬化性樹脂組成物(A)層を形成する工程と、凹凸形状を有する型にて、光硬化性樹脂組成物(A)層を微細凹凸構造に賦型し、光照射して光硬化性樹脂組成物(A)を光硬化させる工程とを有することを特徴とする光学シートの製造方法である。   Furthermore, the present invention is a method for producing the above optical sheet, comprising a step of forming a photocurable resin composition (A) layer on at least one surface of the translucent substrate sheet (B). And a step of forming the photocurable resin composition (A) layer into a fine concavo-convex structure with a mold having an uneven shape, and photocuring the photocurable resin composition (A) by light irradiation. An optical sheet manufacturing method characterized by the above.

本発明によれば、シート表面に賦型可能な光硬化性樹脂組成物層を有し、長期間の保存安定性に優れる積層シートを用いることにより、各種プリズムやレンズ形状の微細凹凸構造を有し、かつ微細凹凸構造が磨耗や割れ等により破壊されることなく長期間保持可能である光学シートを、短い製造工程で容易に得ることが可能となる。さらに、この光学シートは、耐熱性や耐光性にも優れるため、広範な環境下で使用可能な耐久性を備えるという利点を有する。また、従来の光学シートの製造方法に比べて、シート両面に微細凹凸構造を賦型する場合にも生産性良く製造することが可能である。   According to the present invention, by using a laminated sheet having a photocurable resin composition layer that can be molded on the surface of the sheet and having excellent long-term storage stability, various prisms and lens-shaped fine concavo-convex structures are provided. In addition, it is possible to easily obtain an optical sheet that can be held for a long period of time without breaking the fine concavo-convex structure due to wear, cracks, or the like in a short manufacturing process. Furthermore, since this optical sheet is also excellent in heat resistance and light resistance, it has an advantage of having durability that can be used in a wide range of environments. In addition, as compared with a conventional method for manufacturing an optical sheet, it is possible to manufacture with high productivity even when a fine uneven structure is formed on both surfaces of a sheet.

本発明において、光学シートの微細凹凸構造とは、液晶表示装置等のバックライトに使用される輝度向上プリズムシート、液晶パネルに使用されるマイクロレンズアレイ、プロジェクションテレビ等の投射スクリーンとして使用されるフレネルレンズシート、レンチキュラーレンズシート、さらには光反射板や光拡散板、回折格子等、光学特性を意図的に調整するためにシート上に形成されるレンズやプリズム等の微細凹凸構造を指す。微細凹凸構造は、透光性の基材シート(B)の片面一方のみに形成することも、両面に形成することも可能である。また、基材シート(B)の一面の全体に形成することも、一部分のみに形成することも可能である。   In the present invention, the fine concavo-convex structure of the optical sheet means a brightness enhancement prism sheet used for a backlight of a liquid crystal display device, a microlens array used for a liquid crystal panel, and a Fresnel used as a projection screen for a projection television. A lens sheet, a lenticular lens sheet, a light reflecting plate, a light diffusing plate, a diffraction grating, and the like, such as a lens and a prism formed on the sheet in order to intentionally adjust the optical characteristics. The fine concavo-convex structure can be formed on only one side of the translucent substrate sheet (B) or on both sides. Moreover, it can be formed on the entire surface of the base sheet (B) or only on a part thereof.

本発明において、光学シートの微細凹凸構造は、光重合性官能基を有する熱可塑性樹脂(a−1)及び光重合開始剤(a−2)を含む光硬化性樹脂組成物(A)を用いて形成される。したがって、この微細凹凸構造の少なくとも一部は、光硬化性樹脂組成物(A)の硬化物から構成される。通常は、微細凹凸構造の全部が光硬化性樹脂組成物(A)の硬化物から構成されるが、例えば微細凹凸構造の凹部の底面が基材シート(B)の表面により構成される態様も可能である。   In the present invention, the fine concavo-convex structure of the optical sheet uses a photocurable resin composition (A) containing a thermoplastic resin (a-1) having a photopolymerizable functional group and a photopolymerization initiator (a-2). Formed. Therefore, at least a part of the fine concavo-convex structure is composed of a cured product of the photocurable resin composition (A). Usually, the entire fine concavo-convex structure is composed of a cured product of the photocurable resin composition (A). For example, an embodiment in which the bottom surface of the concave portion of the fine concavo-convex structure is composed of the surface of the base sheet (B) is also possible. Is possible.

光重合性官能基を有する熱可塑性樹脂(a−1)としては、1分子内に2個以上の光重合性官能基を有し、かつ、光重合反応により硬化し架橋体を形成する熱可塑性樹脂(熱可塑性ポリマー)が好ましい。光重合性官能基としては、例えば、ビニル基や(メタ)アクリル基等のラジカル重合性不飽和基、脂環式エポキシ基等の光カチオン重合機構で反応する官能基等が挙げられる。特に、光重合性官能基としてラジカル重合性不飽和基を有する熱可塑性樹脂は、脂環式エポキシ基を有する熱可塑性樹脂と比較して、耐光性や耐温水性等の耐環境特性が優れる傾向にあるので好ましい。   The thermoplastic resin (a-1) having a photopolymerizable functional group has two or more photopolymerizable functional groups in one molecule and is cured by a photopolymerization reaction to form a crosslinked product. Resins (thermoplastic polymers) are preferred. Examples of the photopolymerizable functional group include a radical polymerizable unsaturated group such as a vinyl group and a (meth) acryl group, and a functional group that reacts by a photocationic polymerization mechanism such as an alicyclic epoxy group. In particular, thermoplastic resins having radically polymerizable unsaturated groups as photopolymerizable functional groups tend to be superior in environmental resistance characteristics such as light resistance and warm water resistance compared to thermoplastic resins having alicyclic epoxy groups. Therefore, it is preferable.

熱可塑性樹脂(a−1)は、耐光性の観点から、分子内に光重合性官能基を有するアクリル系樹脂であることが好ましい。さらに、耐磨耗性、耐薬品性、耐久性の観点から、側鎖に光重合性官能基を有するアクリル系樹脂であることがより好ましい。   The thermoplastic resin (a-1) is preferably an acrylic resin having a photopolymerizable functional group in the molecule from the viewpoint of light resistance. Further, from the viewpoint of wear resistance, chemical resistance, and durability, an acrylic resin having a photopolymerizable functional group in the side chain is more preferable.

光硬化性樹脂組成物(A)は、側鎖に光重合性官能基を有する熱可塑性樹脂(a−1)を含み、かつ熱可塑性樹脂(a−1)以外の架橋性化合物(架橋性モノマー又はオリゴマー)を含まない組成物である。れにより、硬化物が著しく良好な耐磨耗性や耐薬品性を発現し、優れた耐久性を備え、且つ未硬化の状態では優れた微細凹凸構造賦型性やシートの保存安定性、タックフリー性が発現する。 The photocurable resin composition (A) includes a thermoplastic resin (a-1) having a photopolymerizable functional group in the side chain, and a crosslinkable compound (crosslinkable monomer) other than the thermoplastic resin (a-1). or oligomer) Ru composition der containing no. This ensures that the cured product expressed significantly better abrasion resistance and chemical resistance, excellent with durability, and excellent fine unevenness shaping properties and sheet storage stability in the uncured state, Tack-free properties are expressed.

特に、光硬化性樹脂組成物(A)は、40℃において液体状の架橋性モノマー又はオリゴマーや、分子量2,000以下の低分子量の架橋性モノマー又はオリゴマーを含有しない方が好ましい。このような成分を含有しなければ、微細凹凸構造賦型前の積層シートを長期にわたり保管しても表面粘着性が発現し難く、シート同士がブロッキングしない傾向にあるので取り扱い性が良好である。また、微細凹凸構造賦型時における金型の汚染の問題も生じ難い。さらに、50℃において液体状の架橋性モノマー又はオリゴマーを含有しない方がより好ましく、60℃において液体状の架橋性モノマー又はオリゴマーを含有しない方が特に好ましい。   In particular, the photocurable resin composition (A) preferably does not contain a liquid crosslinkable monomer or oligomer at 40 ° C. or a low molecular weight crosslinkable monomer or oligomer having a molecular weight of 2,000 or less. If such a component is not contained, even if the laminated sheet before forming the fine concavo-convex structure is stored for a long period of time, surface tackiness is hardly exhibited, and the handling property is good because the sheets tend not to block each other. Moreover, the problem of mold contamination at the time of forming the fine uneven structure hardly occurs. Furthermore, it is more preferable not to contain a liquid crosslinkable monomer or oligomer at 50 ° C, and it is particularly preferable not to contain a liquid crosslinkable monomer or oligomer at 60 ° C.

ポリマー中への光重合性官能基の導入は、公知の合成方法により実施できる。この合成方法としては、例えば、光重合性官能基を有する単量体を(共)重合する方法、あるいは、水酸基、エポキシ基、カルボキシル基等の第一の官能基を側鎖に有するポリマーと、その第一の官能基と反応する第二の官能基と光重合性官能を有する化合物を反応させる方法が挙げられる。   Introduction of the photopolymerizable functional group into the polymer can be carried out by a known synthesis method. As this synthesis method, for example, a method of (co) polymerizing a monomer having a photopolymerizable functional group, or a polymer having a first functional group such as a hydroxyl group, an epoxy group, or a carboxyl group in the side chain, A method of reacting a compound having a photopolymerizable function with a second functional group that reacts with the first functional group may be mentioned.

熱可塑性樹脂(a−1)が側鎖に光重合性官能基を有する場合、その光重合性官能基当量(光重合性官能基1個あたりの平均分子量)は、仕込み値からの計算値で平均3,000g/mol以下が好ましく、平均1,200g/mol以下がより好ましく、平均800g/mol以下が特に好ましい。これら範囲は、耐擦傷性、耐磨耗性、耐薬品性、微細凹凸構造耐久性などの特性向上の点で意義がある。また、光重合性官能基当量の下限値は、50g/mol以上が好ましい。   When the thermoplastic resin (a-1) has a photopolymerizable functional group in the side chain, the photopolymerizable functional group equivalent (average molecular weight per photopolymerizable functional group) is a calculated value from the charged value. The average is preferably 3,000 g / mol or less, more preferably 1,200 g / mol or less, and particularly preferably 800 g / mol or less. These ranges are significant in terms of improving properties such as scratch resistance, abrasion resistance, chemical resistance, and micro uneven structure durability. Further, the lower limit of the photopolymerizable functional group equivalent is preferably 50 g / mol or more.

このように側鎖に光重合性官能基を有する構造を導入することにより、側鎖間で架橋反応が進行する。その結果、低分子量架橋性化合物を含有させることなく良好な耐磨耗性や微細凹凸構造耐久性が発現し、かつ低分子量の架橋性化合物が存在しないことにより、微細凹凸構造賦型前のシート表面に粘着性が無く、保存安定性に優れ、効率的に微細凹凸構造物性を向上することが可能となる。   By introducing a structure having a photopolymerizable functional group in the side chain in this way, a crosslinking reaction proceeds between the side chains. As a result, the sheet before forming the fine concavo-convex structure can be obtained without developing the low molecular weight crosslinkable compound, and exhibiting good wear resistance and durability of the fine concavo-convex structure and the absence of the low molecular weight crosslinkable compound. There is no stickiness on the surface, the storage stability is excellent, and the physical properties of the fine concavo-convex structure can be improved efficiently.

熱可塑性樹脂(a−1)の数平均分子量は、5,000〜2,500,000が好ましい。さらに下限値については10,000以上がより好ましく、上限値については1,000,000以下がより好ましい。これら各範囲の下限値は、微細凹凸構造を賦型する際の金型離型性、硬化後の硬度や耐久性の点で意義がある。また、上限値は、合成の容易さ、外観の観点、基材シート(B)との密着性の点で意義がある。この数平均分子量は、GPC(ゲル・パーミエーション・クロマトグラフィー)にて、ポリスチレンを標準サンプルとして得られたものである。   The number average molecular weight of the thermoplastic resin (a-1) is preferably 5,000 to 2,500,000. Further, the lower limit is more preferably 10,000 or more, and the upper limit is more preferably 1,000,000 or less. The lower limit values of these ranges are significant in terms of mold releasability when molding a fine relief structure, hardness after curing, and durability. The upper limit is significant in terms of ease of synthesis, appearance, and adhesion with the base sheet (B). This number average molecular weight is obtained by using polystyrene as a standard sample by GPC (gel permeation chromatography).

熱可塑性樹脂(a−1)のガラス転移温度は、25〜175℃である。さらに下限値については30℃以上がより好ましく、上限値については150℃以下がより好ましい。これら各範囲の下限値は、微細凹凸構造を賦型する際の金型離型性、硬化後の硬度や耐久性の点で意義がある。また、上限値は、賦型前の積層シートの取り扱い性の点で意義がある。 The glass transition temperature of the thermoplastic resin (a-1) is from 25 to 175 ° C.. Further, the lower limit is more preferably 30 ° C. or higher, and the upper limit is more preferably 150 ° C. or lower. The lower limit values of these ranges are significant in terms of mold releasability when molding a fine relief structure, hardness after curing, and durability. The upper limit is significant in terms of the handleability of the laminated sheet before shaping.

光重合開始剤(a−2)としては、光照射によってラジカルを発生させる光ラジカル重合開始剤や、酸を生成する光カチオン重合開始剤が挙げられる。特に、熱可塑性樹脂(a−1)の光重合性官能基がラジカル重合性不飽和基の場合は光ラジカル重合開始剤を使用することが好ましく、また脂環式エポキシ基の場合は光カチオン重合開始剤を使用することが好ましい。   As a photoinitiator (a-2), the photoradical polymerization initiator which generate | occur | produces a radical by light irradiation, and the photocationic polymerization initiator which produces | generates an acid are mentioned. In particular, when the photopolymerizable functional group of the thermoplastic resin (a-1) is a radical polymerizable unsaturated group, it is preferable to use a photo radical polymerization initiator, and when it is an alicyclic epoxy group, photo cationic polymerization is used. It is preferred to use an initiator.

光硬化性樹脂組成物(A)には、さらに、光硬化後の微細凹凸構造の耐擦傷性、耐磨耗性、耐薬品性等の耐久性を向上させる目的で、無機微粒子(a−3)を添加できる。無機微粒子(a−3)は、光硬化性樹脂組成物(A)が透明となればよく、その種類、粒子径、形態は特に制限されない。無機微粒子の例としては、コロイダルシリカ、アルミナ、酸化チタン、酸化スズ、異種元素ドープ酸化スズ(ATO等)、酸化インジウム、異種元素ドープ酸化インジウム(ITO等)、酸化カドミウム、酸化アンチモン等が挙げられる。これらは単独で用いてもよいし、2種類以上組み合わせて用いてもよい。なかでも、入手の容易さや価格面、得られる光硬化性樹脂組成物層の透明性や耐磨耗性等の耐久性の観点から、特にコロイダルシリカが好ましい。   The photocurable resin composition (A) further contains inorganic fine particles (a-3) for the purpose of improving durability such as scratch resistance, abrasion resistance and chemical resistance of the fine concavo-convex structure after photocuring. ) Can be added. The inorganic fine particles (a-3) may be transparent as long as the photocurable resin composition (A) is transparent, and the type, particle diameter, and form are not particularly limited. Examples of the inorganic fine particles include colloidal silica, alumina, titanium oxide, tin oxide, foreign element doped tin oxide (ATO, etc.), indium oxide, foreign element doped indium oxide (ITO, etc.), cadmium oxide, antimony oxide, and the like. . These may be used alone or in combination of two or more. Of these, colloidal silica is particularly preferable from the viewpoints of availability, cost, and durability such as transparency and abrasion resistance of the resulting photocurable resin composition layer.

無機微粒子(a−3)の粒子径は、光硬化性樹脂組成物(A)の透明性の観点から、200nm以下が好ましく、100nm以下がより好ましく、50nm以下が特に好ましい。   The particle diameter of the inorganic fine particles (a-3) is preferably 200 nm or less, more preferably 100 nm or less, and particularly preferably 50 nm or less, from the viewpoint of the transparency of the photocurable resin composition (A).

無機微粒子(a−3)の添加量については、熱可塑性樹脂(a−1)の固形分100質量部に対して、無機微粒子(a−3)の固形分が5〜400質量部が好ましい。下限値については10質量部以上がより好ましく、上限値については200質量部以下がより好ましい。これら範囲の下限値は添加効果の点で意義がある。また上限値は、光硬化性樹脂組成物(A)の保存安定性、微細凹凸構造の賦型性の点で意義がある。   About the addition amount of an inorganic fine particle (a-3), 5-400 mass parts of solid content of an inorganic fine particle (a-3) is preferable with respect to 100 mass parts of solid content of a thermoplastic resin (a-1). The lower limit is more preferably 10 parts by mass or more, and the upper limit is more preferably 200 parts by mass or less. The lower limit of these ranges is significant in terms of the effect of addition. The upper limit is significant in terms of storage stability of the photocurable resin composition (A) and moldability of the fine concavo-convex structure.

無機微粒子(a−3)としては、各種のシラン化合物によって予め表面が処理されたものを用いてもよい。表面処理された無機微粒子を使用すると、光硬化性樹脂組成物(A)の保存安定性がさらに良好となり、また硬化後の微細凹凸構造の耐光性、硬度や耐擦傷性や耐薬品性等の耐久性等も良好となる。   As the inorganic fine particles (a-3), those whose surfaces are previously treated with various silane compounds may be used. When the surface-treated inorganic fine particles are used, the storage stability of the photocurable resin composition (A) is further improved, and the light and hardness, hardness, scratch resistance, chemical resistance, etc. of the fine uneven structure after curing are improved. Durability and the like are also good.

無機微粒子(a−3)は、例えば、熱可塑性樹脂(a−1)を溶剤に溶解し、その溶液に混合してもよい。また、熱可塑性樹脂(a−1)を構成する為のビニル重合性単量体と無機微粒子をまず混合し、その後ビニル重合性単量体を重合して熱可塑性樹脂(a−1)を得てもよい。   The inorganic fine particles (a-3) may be obtained by, for example, dissolving the thermoplastic resin (a-1) in a solvent and mixing the solution. In addition, a vinyl polymerizable monomer and inorganic fine particles for constituting the thermoplastic resin (a-1) are first mixed, and then the vinyl polymerizable monomer is polymerized to obtain a thermoplastic resin (a-1). May be.

光硬化性樹脂組成物(A)には、必要に応じて、増感剤、変性用樹脂、染料、顔料、レベリング剤、ハジキ防止剤、紫外線吸収剤、光安定剤、酸化安定剤、帯電防止剤、防曇剤、ブルーイング剤、拡散剤等の添加剤を配合できる。   If necessary, the photo-curable resin composition (A) includes a sensitizer, a modifying resin, a dye, a pigment, a leveling agent, a repellency inhibitor, an ultraviolet absorber, a light stabilizer, an oxidation stabilizer, and an antistatic agent. Additives such as agents, antifogging agents, bluing agents, and diffusing agents can be blended.

本発明において、基材シート(B)は特に限定されず、光学シートが使用される際に必要な透光性を満足するシートであればよい。また、基材シート(B)を介して光照射して光硬化性樹脂組成物(A)層を硬化させる場合は、その硬化を阻害しない程度の透光性を有するシートであればよい。基材シート(B)は、通常は、樹脂材料からなるシートである。基材シート(B)を構成する樹脂の具体例としては、塩化ビニル系樹脂、ポリスチレン系樹脂、ポリプロピレン、脂環式ポリオレフィン、ポリシクロオレフィン、環状ポリオレフィン等のポリオレフィン系樹脂、スチレン・アクリロニトリル系樹脂、セルロース系樹脂、ポリウレタン系樹脂、ナイロン等のポリアミド系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、ポリビニルアルコール系樹脂、エチレンビニルアルコール系樹脂、フッ素系樹脂、アクリル系樹脂が挙げられる。また、異なる樹脂からなる各シートの積層体を使用することもできる。さらに、光硬化性樹脂組成物(A)層との密着性を付与する為に、基材シート(B)上に接着層を設けたり、基材シート(B)表面を粗面化したりすることも可能である。   In this invention, a base material sheet (B) is not specifically limited, What is necessary is just a sheet which satisfies the translucency required when an optical sheet is used. Moreover, what is necessary is just a sheet | seat which has the light transmittance of the grade which does not inhibit the hardening | curing, when light-irradiating through a base material sheet (B) and hardening a photocurable resin composition (A) layer. The base sheet (B) is usually a sheet made of a resin material. Specific examples of the resin constituting the base sheet (B) include vinyl chloride resins, polystyrene resins, polypropylene, alicyclic polyolefins, polyolefin resins such as polycycloolefins, cyclic polyolefins, styrene / acrylonitrile resins, Examples thereof include cellulose resins, polyurethane resins, polyamide resins such as nylon, polyester resins, polycarbonate resins, polyvinyl alcohol resins, ethylene vinyl alcohol resins, fluorine resins, and acrylic resins. Moreover, the laminated body of each sheet | seat which consists of different resin can also be used. Furthermore, in order to give adhesiveness with a photocurable resin composition (A) layer, an adhesive layer is provided on a base material sheet (B), or the surface of a base material sheet (B) is roughened. Is also possible.

特に、低表面反射率や光線透過率、表面平滑性、取り扱い性を考慮すると、アクリル系樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリオレフィン系樹脂等の樹脂からなるシートが好ましい。さらに耐光性や光硬化性樹脂組成物との密着性を考慮すると、アクリル系樹脂からなるシート、特に架橋ゴム成分を含む透明熱可塑性アクリル樹脂シートが好ましい。架橋ゴム成分を含む透明熱可塑性アクリル樹脂シートとしては、例えば、特開平8−323934号公報、特開平9−263614号公報、特開平11−147237号公報、特開2001−106742号公報等に開示されているよう透明熱可塑性アクリルシートが挙げられる。市販の透明熱可塑性アクリル樹脂シートの商品名としては、例えば、アクリプレンHBX−N47、HBS−006、HBD−013(以上、三菱レイヨン(株)製)、テクノロイS001、S003、SN101(以上、住友化学工業(株)製)、サンデュレンSD007、SD009(以上、鐘淵化学工業(株)製)が挙げられる。   In particular, in consideration of low surface reflectance, light transmittance, surface smoothness, and handleability, a sheet made of a resin such as an acrylic resin, a polycarbonate resin, a polyester resin, or a polyolefin resin is preferable. Further, in consideration of light resistance and adhesiveness with the photocurable resin composition, a sheet made of an acrylic resin, particularly a transparent thermoplastic acrylic resin sheet containing a crosslinked rubber component is preferable. Examples of the transparent thermoplastic acrylic resin sheet containing a crosslinked rubber component are disclosed in JP-A-8-323934, JP-A-9-263614, JP-A-11-147237, JP-A-2001-106742, and the like. A transparent thermoplastic acrylic sheet may be mentioned. As a trade name of a commercially available transparent thermoplastic acrylic resin sheet, for example, Acryprene HBX-N47, HBS-006, HBD-013 (manufactured by Mitsubishi Rayon Co., Ltd.), Technoloy S001, S003, SN101 (all, Sumitomo Chemical) Kogyo Co., Ltd.), Sanduren SD007, SD009 (above, Kaneka Chemical Co., Ltd.).

基材シート(B)中には、必要に応じて、適宜、ポリエチレンワックス、パラフィンワックス等の滑剤、シリカ、球状アルミナ、鱗片状アルミナ等の減摩剤、ベンゾトリアゾール系、ベンゾフェノン系、トリアジン系、微粒子酸化セリウム系等の紫外線吸収剤、ヒンダードアミン系ラジカル補足剤等の光安定剤、可塑剤、酸化防止機能を有する熱安定剤、顔料、染料、帯電防止剤、防曇剤、拡散剤等の各種添加剤を、本発明の効果が損なわれない範囲において添加できる。   In the base sheet (B), if necessary, lubricants such as polyethylene wax and paraffin wax, lubricants such as silica, spherical alumina and scaly alumina, benzotriazole, benzophenone, triazine, Ultraviolet absorbers such as fine particle cerium oxides, light stabilizers such as hindered amine radical scavengers, plasticizers, thermal stabilizers having an antioxidant function, pigments, dyes, antistatic agents, antifogging agents, diffusing agents, etc. Additives can be added as long as the effects of the present invention are not impaired.

基材シート(B)中に紫外線吸収剤を添加する場合は、特に注意が必要である。前述したように、基材シート(B)を介して光照射して光硬化性樹脂組成物(A)層を硬化させる場合は、基材シート中に紫外線吸収剤が添加されていると、その添加量によっては硬化が阻害される可能性がある。そのような場合は、基材シート(B)中の紫外線吸収剤の添加量は、光硬化性樹脂組成物(A)の硬化性を考慮しながら決定する。   When adding an ultraviolet absorber in the base sheet (B), special care must be taken. As described above, when the photocurable resin composition (A) layer is cured by irradiating light through the base sheet (B), an ultraviolet absorber is added to the base sheet. Curing may be hindered depending on the amount added. In such a case, the addition amount of the ultraviolet absorber in the base sheet (B) is determined in consideration of the curability of the photocurable resin composition (A).

基材シート(B)の厚みは、1000μm以下が好ましく、5〜700μmがより好ましい。この範囲の下限値は、光学シートの剛性や取り扱い性の点で意義がある。また、これら範囲の上限値は、剛性を適度に抑えて良好な加工性を維持する点、単位面積あたりの質量を抑えて経済性を保つ点、さらに安定して積層シートを製造する点において意義がある。   The thickness of the base sheet (B) is preferably 1000 μm or less, and more preferably 5 to 700 μm. The lower limit of this range is significant in terms of the rigidity and handleability of the optical sheet. In addition, the upper limit of these ranges is significant in terms of moderately suppressing rigidity and maintaining good processability, maintaining mass by suppressing mass per unit area, and more stably producing laminated sheets. There is.

以上説明した光学シートは、例えば、透光性の基材シート(B)の少なくとも一方の面に、光硬化性樹脂組成物(A)層を形成する工程(積層シート形成工程)と、凹凸形状を有する型にて、光硬化性樹脂組成物(A)層を所望の微細凹凸構造に賦型し、光照射して光硬化性樹脂組成物(A)を光硬化させる工程(微細凹凸構造賦型工程)とを有する方法により製造できる。   The optical sheet described above includes, for example, a step of forming a photocurable resin composition (A) layer on at least one surface of a translucent base sheet (B) (laminated sheet forming step), and an uneven shape. A mold having a photocurable resin composition (A) layer in a desired fine concavo-convex structure, and photoirradiating the photocurable resin composition (A) by light irradiation (refining the fine concavo-convex structure). Mold process).

積層シート形成工程の具体例は、以下の通りである。例えば、光硬化性樹脂組成物(A)を有機溶媒等の溶剤に十分に溶解させて、光硬化性キャスト液組成物を調製する。そして、この光硬化性キャスト液組成物を、グラビア印刷法、スクリーン印刷法、オフセット印刷法等の公知の印刷方法や、ナイフコート法、コンマコート法、リバースロールコート法等の公知のコート方法により、基材シート(B)上に塗工する。次いで、加熱乾燥を行って塗膜中の溶剤を除去し、光硬化性積層シートを得る。この積層シートは、基材シート(B)上に未硬化状態でタックフリーの光硬化性樹脂組成物(A)層を有するものである。   The specific example of a lamination sheet formation process is as follows. For example, a photocurable cast liquid composition is prepared by sufficiently dissolving the photocurable resin composition (A) in a solvent such as an organic solvent. And this photocurable casting liquid composition is applied by a known printing method such as a gravure printing method, a screen printing method, an offset printing method, or a known coating method such as a knife coating method, a comma coating method, or a reverse roll coating method. And coating on the base sheet (B). Subsequently, it heat-drys and removes the solvent in a coating film, and obtains a photocurable laminated sheet. This laminated sheet has a tack-free photocurable resin composition (A) layer in an uncured state on the base sheet (B).

光硬化性樹脂組成物(A)層は、基材シート(B)のどちらか片面にのみ積層しても良いし、両面に積層することもできる。本発明で用いる光硬化性樹脂組成物は、溶剤を除去した後は未硬化状態においても完全にタックフリー性となる為に、長期間保管する際にもシート同士がブロッキングして巻き出せないといった不具合は起こらない。   A photocurable resin composition (A) layer may be laminated | stacked only on either one side of a base material sheet (B), and can also be laminated | stacked on both surfaces. Since the photocurable resin composition used in the present invention is completely tack-free even in an uncured state after removing the solvent, the sheets cannot be unwound by blocking each other even when stored for a long period of time. There is no problem.

また、未硬化の光硬化性樹脂組成物(A)層への傷付きを防ぐ為に、粘着加工を施したポリエステル系フィルム、ポリエチレン系フィルム、ポリ酢酸ビニル系フィルム等の各種フィルムを保護フィルムとして、光硬化性樹脂組成物(A)層の上に仮着することも可能である。   Moreover, in order to prevent the uncured photocurable resin composition (A) layer from being scratched, various films such as a polyester film, a polyethylene film and a polyvinyl acetate film subjected to adhesive processing are used as protective films. It is also possible to temporarily attach it onto the photocurable resin composition (A) layer.

この積層シートにおける微細凹凸構造賦型前の光硬化性樹脂組成物(A)層の厚みは、特に制限されず、光学シートの光学特性上必要な微細凹凸構造の高さを考慮して適宜設定すれば良い。また、凹凸形状を有する金型を押し当てて賦型する場合は、金型の押圧により光硬化性樹脂組成物(A)層の厚みがある程度減じる事も考慮して厚みを設定すればよい。光硬化性樹脂組成物(A)層の厚みは、通常、500μm以下が好ましく、300μm以下がより好ましい。これらの下限値は、十分な硬化反応による耐光性や耐薬品性の向上の点で意義がある。   The thickness of the photocurable resin composition (A) layer before forming the fine concavo-convex structure in this laminated sheet is not particularly limited, and is appropriately set in consideration of the height of the fine concavo-convex structure necessary for the optical characteristics of the optical sheet. Just do it. Moreover, what is necessary is just to set thickness, considering that the thickness of a photocurable resin composition (A) layer reduces to some extent by pressing of a metal mold | die, when pressing and pressing the metal mold | die which has an uneven | corrugated shape. The thickness of the photocurable resin composition (A) layer is usually preferably 500 μm or less, and more preferably 300 μm or less. These lower limits are significant in terms of improving light resistance and chemical resistance by a sufficient curing reaction.

微細凹凸構造賦型工程の具体例は、以下の通りである。例えば、積層シートの光硬化性樹脂組成物(A)層の面に、凹凸形状を有するプレス型(スタンパー)を押圧して、その凹凸形状を光硬化性樹脂組成物(A)層に転写する。なお、微細凹凸構造を形成する方法としては、精密旋盤等により表面を加工する切削加工法を用いることもできるが、上述したようにプレス型を用いて型押しの原理で微細凹凸構造を転写するプレス加工法の方が、生産性の点で最も好ましい。また、連続的にプレス加工する場合は、円筒形ロール型を使用することもできる。この場合、光硬化性樹脂組成物(A)層は未硬化状態では表面タックフリーで、かつ熱可塑性であるため、プレス加工時に型を汚染することなく型形状を精密に転写できる。   A specific example of the fine concavo-convex structure shaping step is as follows. For example, a press mold (stamper) having a concavo-convex shape is pressed on the surface of the photocurable resin composition (A) layer of the laminated sheet, and the concavo-convex shape is transferred to the photocurable resin composition (A) layer. . As a method for forming the fine concavo-convex structure, a cutting method for processing the surface with a precision lathe or the like can be used. However, as described above, the fine concavo-convex structure is transferred using a press die by the principle of embossing. The press working method is most preferable in terms of productivity. Moreover, when carrying out continuous press work, a cylindrical roll type | mold can also be used. In this case, since the photocurable resin composition (A) layer is surface tack-free and thermoplastic in an uncured state, the shape of the mold can be accurately transferred without contaminating the mold during pressing.

プレス条件は、光硬化性樹脂組成物(A)の組成によって最適値が異なる。プレス温度は、通常、50〜300℃が好ましく、50〜150℃がより好ましい。プレス圧力は、通常、20〜300MPaが好ましく、50〜200MPaがより好ましい。加圧時間は、通常、2〜300秒が好ましく、5〜60秒がより好ましい。なお、プレス条件によっては、得られる微細凹凸構造が変形(光硬化性樹脂組成物層の厚み減少など)する可能性があるので、所望の微細凹凸構造が得られるように、予めプレス条件やプレス型形状等を適宜調整しておくことが好ましい。   The optimum pressing value varies depending on the composition of the photocurable resin composition (A). The press temperature is usually preferably 50 to 300 ° C, more preferably 50 to 150 ° C. The pressing pressure is usually preferably 20 to 300 MPa, more preferably 50 to 200 MPa. The pressurization time is usually preferably 2 to 300 seconds, more preferably 5 to 60 seconds. Depending on the pressing conditions, the resulting fine concavo-convex structure may be deformed (such as a reduction in the thickness of the photocurable resin composition layer). It is preferable to adjust the mold shape and the like as appropriate.

光硬化性樹脂組成物(A)層の表面に保護フィルムが仮着されている場合には、保護フィルムを予め剥離してプレス加工しても良いし、剥離することなく保護フィルムと一緒にプレス加工しても良い。ただし、型形状の転写性の点から、前者の方がより好ましい。   When a protective film is temporarily attached to the surface of the photocurable resin composition (A) layer, the protective film may be peeled off in advance and pressed, or pressed together with the protective film without peeling off. It may be processed. However, the former is more preferable from the viewpoint of mold shape transferability.

凹凸形状を有する型(プレス型等)の素材や形状は特に限定されない。型の素材としては、例えば、金属、ガラス、合成樹脂が挙げられる。型の形状は、所望のレンズ形状を与え得る微細凹凸構造を賦型できるものであればよい。ただし、光硬化性樹脂組成物(A)層を光硬化させる際に、光の到達が妨げられない程度の深さの凹凸形状のものであることが好ましい。   There are no particular limitations on the material or shape of a mold having a concavo-convex shape (such as a press mold). Examples of the mold material include metal, glass, and synthetic resin. The shape of the mold may be any as long as it can shape a fine concavo-convex structure capable of giving a desired lens shape. However, when the photo-curable resin composition (A) layer is photo-cured, it is preferable that the photo-curing resin composition (A) layer has an uneven shape with a depth that does not hinder the arrival of light.

以上のようにして積層シート表層の光硬化性樹脂組成物(A)層に微細凹凸構造を転写した後、光照射することで硬化させ、光硬化性樹脂組成物の硬化物からなる微細凹凸構造を有する光学シートを得ることができる。光照射するタイミングは、型から積層シートを脱型した後で光照射しても良いし、型内に積層シートが存在する状態で基材シート(B)を介して光硬化性樹脂組成物(A)層に光照射しても良い。   After the fine concavo-convex structure is transferred to the photocurable resin composition (A) layer on the surface of the laminated sheet as described above, the fine concavo-convex structure made of a cured product of the photocurable resin composition is cured by light irradiation. An optical sheet having the following can be obtained. The timing of light irradiation may be light irradiation after the laminated sheet is removed from the mold, or the photocurable resin composition (through the base sheet (B) in a state where the laminated sheet exists in the mold ( A) The layer may be irradiated with light.

照射する光の具体例としては、電子線、紫外線、γ線が挙げられる。硬化速度や設備設置コストの点から、紫外線が好ましい。照射条件は、光硬化性樹脂組成物(A)層の光硬化特性に応じて定められる。照射量は、通常、500〜10,000mJ/cm2程度が好ましい。 Specific examples of the irradiated light include electron beams, ultraviolet rays, and γ rays. From the viewpoint of curing speed and equipment installation cost, ultraviolet rays are preferable. Irradiation conditions are determined according to the photocuring characteristics of the photocurable resin composition (A) layer. Usually, the irradiation amount is preferably about 500 to 10,000 mJ / cm 2 .

なお、積層シートの光硬化性樹脂組成物(A)層への微細凹凸構造の形成についてのみ説明したが、求められる光学特性によっては基材シート(B)表面にも公知の方法により微細凹凸構造を設けることができる。   In addition, although only formation of the fine concavo-convex structure on the photocurable resin composition (A) layer of the laminated sheet was described, depending on the required optical characteristics, the fine concavo-convex structure was also formed on the surface of the base sheet (B) by a known method Can be provided.

本発明において、積層シートは、光硬化性樹脂組成物(A)層が未硬化の状態では、表面タック性がなく、完全な熱可塑性である。したがって、光硬化性樹脂組成物(A)層を微細凹凸構造に賦型する際にも、金型汚染性、金型離型性、金型転写性が全く阻害されない。また、光硬化後の光硬化性樹脂組成物(A)層は、耐擦傷性や耐摩耗性、耐薬品性、耐光性等に優れるので、微細凹凸構造形成後直ちに光照射によって光硬化性樹脂組成物(A)層を硬化させることで、様々な傷付き因子や有害な薬剤、光線等による微細凹凸構造の劣化や損傷を防ぐことが可能となり、長期間、微細凹凸構造を保持することが可能となる。   In the present invention, the laminated sheet has no surface tackiness and is completely thermoplastic when the photocurable resin composition (A) layer is uncured. Therefore, even when the photocurable resin composition (A) layer is molded into a fine concavo-convex structure, mold contamination, mold releasability, and mold transferability are not hindered at all. In addition, the photo-curing resin composition (A) layer after photo-curing is excellent in scratch resistance, abrasion resistance, chemical resistance, light resistance, etc., so that the photo-curing resin is immediately irradiated with light after the formation of the fine concavo-convex structure. By curing the composition (A) layer, it becomes possible to prevent the fine concavo-convex structure from being deteriorated or damaged by various scratching factors, harmful drugs, light rays, etc., and can maintain the fine concavo-convex structure for a long period of time. It becomes possible.

また、本発明は、例えば、レンチキュラーレンズシートのように両面にレンズ形状を有する光学シートの製造に極めて有効である。光学シートの両面にレンズ形状を形成する場合、先ず基材シート(B)の両面に光硬化性樹脂組成物(A)層を積層する。この時、光硬化性樹脂組成物(A)層は溶剤除去した後は完全に表面がタックフリー性となるので、両面に塗工する際にロールに光硬化性樹脂組成物が貼り付いたり、あるいはすでに積層した裏面の光硬化性樹脂組成物層が流れたりするような不具合はなく、歩留り良く製造することが可能である。次いで、シート両面の光硬化性樹脂組成物(A)層に微細凹凸構造を賦型する。この場合にも、2枚のプレス型を使用して積層シート両面の光硬化性樹脂組成物(A)層を一度に賦型することで、高い生産性を得ることが出来る。最後に、賦型した光硬化性樹脂組成物層に光照射することで、両面に微細凹凸構造を有する光学シートを、従来の製造方法(転写成形法や特許文献2記載の方法)に比べて、効率よく製造することが可能となる。   In addition, the present invention is extremely effective for the production of an optical sheet having a lens shape on both surfaces such as a lenticular lens sheet. When forming a lens shape on both surfaces of an optical sheet, a photocurable resin composition (A) layer is first laminated | stacked on both surfaces of a base material sheet (B). At this time, since the surface of the photocurable resin composition (A) layer is completely tack-free after removing the solvent, the photocurable resin composition is attached to the roll when applied to both sides, Or there is no malfunction that the photocurable resin composition layer of the back surface already laminated | stacked flows, and it is possible to manufacture with a sufficient yield. Next, a fine concavo-convex structure is formed on the photocurable resin composition (A) layer on both sides of the sheet. Also in this case, high productivity can be obtained by forming the photocurable resin composition (A) layers on both sides of the laminated sheet at once using two press dies. Finally, by irradiating the shaped photocurable resin composition layer with light, an optical sheet having a fine concavo-convex structure on both sides is compared with conventional manufacturing methods (transfer molding method and the method described in Patent Document 2). It becomes possible to manufacture efficiently.

図1は、本発明の光学シート(両面レンチキュラーレンズシート)の連続製造工程の一例を示す概略図である。この装置は、予備加熱用赤外線ヒーター4、レンチキュラーレンズパターンを形成した一対のロール状金型6及び7、紫外線ランプ8から成り、両面積層シート1がそのラインを連続的に搬送されるよう構成されている。また、ロール状金型6及び7の間隔は任意に設定できる。   FIG. 1 is a schematic view showing an example of a continuous production process of the optical sheet (double-sided lenticular lens sheet) of the present invention. This apparatus comprises a preheating infrared heater 4, a pair of roll-shaped dies 6 and 7 formed with a lenticular lens pattern, and an ultraviolet lamp 8, and the double-sided laminated sheet 1 is continuously conveyed along the line. ing. Moreover, the space | interval of the roll-shaped metal molds 6 and 7 can be set arbitrarily.

図1に示すように、先ず、基材シー2の両面に光硬化性樹脂組成物層3を形成してなる両面積層シート1を、赤外線ヒーター4により加熱する。引き続き、両面積層シート1を、加熱されたロール状金型6及び7の間に搬送する。このロール状金型6及び7によって両面の光硬化性樹脂組成物層3がプレスされ、それぞれにレンズ形状(微細凹凸構造)が賦型される。さらに両面積層シート1を搬送することによって、ロール状金型6及び7から連続的に離型する。引き続き、紫外線ランプ8により両面に紫外線を連続的に照射して、両面の光硬化性樹脂組成物層3を硬化させる。これにより、シート両面にレンズ形状を有する両面レンチキュラーレンズシート9が得られる。 As shown in FIG. 1, first, a double-sided laminated sheet 1 obtained by forming a photo-curable resin composition layer 3 on both sides of the substrate sheet 2 is heated by an infrared heater 4. Subsequently, the double-sided laminated sheet 1 is conveyed between heated roll dies 6 and 7. The photocurable resin composition layers 3 on both sides are pressed by the roll-shaped molds 6 and 7, and each has a lens shape (fine concavo-convex structure). Further, the double-sided laminated sheet 1 is continuously released from the roll dies 6 and 7 by conveying it. Subsequently, both surfaces of the photocurable resin composition layer 3 on both sides are cured by continuously irradiating ultraviolet rays on both sides with the ultraviolet lamp 8. As a result, a double-sided lenticular lens sheet 9 having a lens shape on both sides of the sheet is obtained.

図2は、本発明の光学シート(両面レンチキュラーレンズシート)の連続製造工程の他の一例を示す概略図である。上述した図1の工程では両面の光硬化性樹脂組成物層3の微細凹凸構造賦型を同時に行なったが、図2の工程ではまず上側の光硬化性樹脂組成物層3の微細凹凸構造賦型を行い、引き続き下側の光硬化性樹脂組成物層3の微細凹凸構造賦型を行う。この装置では、上側のロール状金型6と下側の圧接ロール5が一対を成しており、ここで両面積層シート1の上側の光硬化性樹脂組成物層3にレンズ形状が賦型され、上側の紫外線ランプ8により硬化させる。その後のラインにおいて下側のロール状金型7と上側の圧接ロール5が一対を成しており、ここで両面積層シート1の下側の光硬化性樹脂組成物層3にレンズ形状が賦型され、下側の紫外線ランプ8により硬化させる。これにより、シート両面にレンズ形状を有する両面レンチキュラーレンズシート9が得られる。   FIG. 2 is a schematic view showing another example of the continuous production process of the optical sheet (double-sided lenticular lens sheet) of the present invention. In the process of FIG. 1 described above, the fine concavo-convex structure forming of the photocurable resin composition layer 3 on both sides was performed simultaneously. However, in the process of FIG. 2, the fine concavo-convex structure formation of the upper photocurable resin composition layer 3 is first performed. Then, the fine uneven structure shaping of the lower photocurable resin composition layer 3 is performed. In this apparatus, the upper roll-shaped mold 6 and the lower press-contact roll 5 form a pair, and a lens shape is formed on the upper photocurable resin composition layer 3 of the double-sided laminated sheet 1 here. Curing is performed by the upper ultraviolet lamp 8. In the subsequent line, the lower roll mold 7 and the upper press roll 5 form a pair, and the lens shape is formed on the lower photocurable resin composition layer 3 of the double-sided laminated sheet 1 here. Then, it is cured by the lower ultraviolet lamp 8. As a result, a double-sided lenticular lens sheet 9 having a lens shape on both sides of the sheet is obtained.

次に、本発明を実施例に基づいてさらに詳細に説明する。なお、実施例中の「部」は「質量部」を意味する。また、実施例中の略号は以下のとおりである。
メチルメタクリレート MMA
メチルエチルケトン MEK
グリシジルメタクリレート GMA
アゾビスイソブチロニトリル AIBN
ハイドロキノンモノメチルエーテル MEHQ
トリフェニルホスフィン TPP
アクリル酸 AA。
Next, the present invention will be described in more detail based on examples. In the examples, “part” means “part by mass”. Abbreviations in the examples are as follows.
Methyl methacrylate MMA
Methyl ethyl ketone MEK
Glycidyl methacrylate GMA
Azobisisobutyronitrile AIBN
Hydroquinone monomethyl ether MEHQ
Triphenylphosphine TPP
Acrylic acid AA.

[合成例1:側鎖にラジカル重合性不飽和基を有するアクリル樹脂Aの合成]
窒素導入口、攪拌機、コンデンサー及び温度計を備えた1Lの4つ口フラスコに、MEK50部を入れ、80℃に昇温した。さらに、窒素雰囲気下で、MMA79.9部、GMA20.1部及びAIBN0.5部の混合物を3時間かけて滴下した。その後、MEK80部とAIBN0.2部の混合物を加え、重合させた。4時間後、MEK74.4部、MEHQ0.5部、TPP2.5部及びAA10.1部を加え、空気を吹き込みながら80℃で30時間攪拌した。その後、冷却し、反応物をフラスコより取り出した。これにより、側鎖にラジカル重合性不飽和基を有するアクリル樹脂Aの溶液を得た。このアクリル樹脂Aは具体的には、MMA−GMA共重合体の側鎖のグリシジル基にAAが反応して得られた側鎖にアクリロイル基を有するアクリル樹脂である。単量体の重合率は99.5%以上、ポリマー固形分量は約35質量%、数平均分子量は約3万、ガラス転移温度は約105℃、二重結合当量は平均788g/molであった。
[Synthesis Example 1: Synthesis of acrylic resin A having radically polymerizable unsaturated group in side chain]
50 parts of MEK was put into a 1 L four-necked flask equipped with a nitrogen inlet, a stirrer, a condenser and a thermometer, and the temperature was raised to 80 ° C. Further, under a nitrogen atmosphere, a mixture of MMA 79.9 parts, GMA 20.1 parts and AIBN 0.5 parts was added dropwise over 3 hours. Thereafter, a mixture of 80 parts of MEK and 0.2 part of AIBN was added and polymerized. After 4 hours, MEK 74.4 parts, MEHQ 0.5 parts, TPP 2.5 parts and AA 10.1 parts were added and stirred at 80 ° C. for 30 hours while blowing air. Then, it cooled and the reaction material was taken out from the flask. Thereby, the solution of the acrylic resin A which has a radically polymerizable unsaturated group in a side chain was obtained. Specifically, this acrylic resin A is an acrylic resin having an acryloyl group in the side chain obtained by reacting AA with the glycidyl group in the side chain of the MMA-GMA copolymer. The polymerization rate of the monomer was 99.5% or more, the polymer solid content was about 35% by mass, the number average molecular weight was about 30,000, the glass transition temperature was about 105 ° C., and the double bond equivalent was an average of 788 g / mol. .

[合成例2:側鎖にラジカル重合性不飽和基を有するアクリル樹脂Bの合成]
MMAの量を19部、GMAの量を81部、AAの量を40.6に変更し、またMEKの3回目の添加量を74.4部から131.1部に変更したこと以外は、合成例1と同様にして側鎖にラジカル重合性不飽和基を有するアクリル樹脂Bの溶液を得た。このアクリル樹脂Bは具体的には、MMA−GMA共重合体の側鎖のグリシジル基にAAが反応して得られた側鎖にアクリロイル基を有するアクリル樹脂である。単量体の重合率は99.5%以上、ポリマー固形分量は約35質量%、数平均分子量は約5.4万、ガラス転移温度は約42℃、二重結合当量は平均249g/molであった。
[Synthesis Example 2: Synthesis of acrylic resin B having radically polymerizable unsaturated group in side chain]
Except that the amount of MMA was 19 parts, the amount of GMA was 81 parts, the amount of AA was changed to 40.6, and the third addition amount of MEK was changed from 74.4 parts to 131.1 parts, In the same manner as in Synthesis Example 1, a solution of acrylic resin B having a radical polymerizable unsaturated group in the side chain was obtained. Specifically, this acrylic resin B is an acrylic resin having an acryloyl group in the side chain obtained by reacting AA with the glycidyl group in the side chain of the MMA-GMA copolymer. The polymerization rate of the monomer is 99.5% or more, the polymer solid content is about 35% by mass, the number average molecular weight is about 54,000, the glass transition temperature is about 42 ° C., and the double bond equivalent is 249 g / mol on average. there were.

[合成例3:側鎖に脂環式エポキシ基を有するアクリル樹脂Cの合成]
合成例1と同様のフラスコに、窒素雰囲気下で、3,4−エポキシシクロヘキシルメチルメタクリレート100部、MEK60部及びAIBN0.3部を入れ、撹拌しながら湯浴の温度を75℃に上げ、その温度で2時間重合させた。次いで、AIBN0.7部を1時間おきに5回に分けて添加し、フラスコ内温を溶剤の沸点まで上昇させてその温度でさらに2時間重合させた。そして、フラスコ内温度が50℃以下になってから、MEK90部を添加して重合反応物をフラスコより取り出し、側鎖に脂環式エポキシ基を有するアクリル樹脂Cの溶液を得た。このアクリル樹脂Cは、具体的には、3,4−エポキシシクロヘキシルメチルメタクリレートの重合体であり、側鎖に3,4−エポキシシクロヘキシルメチル基を有するアクリル樹脂である。重合率は99.5%以上、ポリマー固形分量は約40重量%、数平均分子量は約1.2万、ガラス転移温度は約73℃、脂環式エポキシ当量(側鎖脂環式エポキシ基1個あたりの平均分子量)は平均196g/molであった。
[Synthesis Example 3: Synthesis of acrylic resin C having alicyclic epoxy group in side chain]
In a flask similar to Synthesis Example 1, under a nitrogen atmosphere, 100 parts of 3,4-epoxycyclohexylmethyl methacrylate, 60 parts of MEK and 0.3 part of AIBN were added, and the temperature of the hot water bath was raised to 75 ° C. while stirring. For 2 hours. Next, 0.7 part of AIBN was added in 5 portions every 1 hour, the flask internal temperature was raised to the boiling point of the solvent, and polymerization was carried out at that temperature for another 2 hours. And after the flask internal temperature became 50 degrees C or less, MEK90 part was added and the polymerization reaction material was taken out from the flask, and the solution of the acrylic resin C which has an alicyclic epoxy group in a side chain was obtained. The acrylic resin C is specifically a polymer of 3,4-epoxycyclohexylmethyl methacrylate, and is an acrylic resin having a 3,4-epoxycyclohexylmethyl group in the side chain. Polymerization rate is 99.5% or more, polymer solid content is about 40% by weight, number average molecular weight is about 12,000, glass transition temperature is about 73 ° C., alicyclic epoxy equivalent (side chain alicyclic epoxy group 1) The average molecular weight per unit) was 196 g / mol on average.

[合成例4:表面処理コロイダルシリカの合成]
攪拌機、コンデンサー及び温度計を備えたフラスコに、下記表1に記載の成分を入れ、攪拌しながら湯浴の温度を75℃に上げた。その温度で2時間反応させることにより、イソプロパノール中に分散され、表面がシラン化合物で処理されたコロイダルシリカを得た。続いて、イソプロパノールを留去した後トルエンを添加することを繰り返し、完全にイソプロパノールをトルエンに置換した。これにより、トルエン中に分散され、表面がシラン化合物で処理されたコロイダルシリカを得た。
[Synthesis Example 4: Synthesis of surface-treated colloidal silica]
The components listed in Table 1 below were placed in a flask equipped with a stirrer, a condenser and a thermometer, and the temperature of the hot water bath was raised to 75 ° C. while stirring. By reacting at that temperature for 2 hours, colloidal silica dispersed in isopropanol and having a surface treated with a silane compound was obtained. Subsequently, isopropanol was distilled off and toluene was added repeatedly to completely replace isopropanol with toluene. As a result, colloidal silica dispersed in toluene and having a surface treated with a silane compound was obtained.

Figure 0005161489
Figure 0005161489

注)数値は固形分換算のモル部である。
1)IPA−ST:イソプロパノール分散コロイダルシリカゾル(日産化学工業(株)製)、シリカ粒子径=15nm
2)KBM503:γ−メタクリロイルオキシプロピルトリメトキシシラン(信越化学工業(株)製)、分子量=248。
Note) The numerical value is the mole part in terms of solid content.
1) IPA-ST: Isopropanol-dispersed colloidal silica sol (manufactured by Nissan Chemical Industries, Ltd.), silica particle diameter = 15 nm
2) KBM503: γ-methacryloyloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.), molecular weight = 248.

[光硬化性樹脂組成物溶液の調製]
合成例1〜3で得た各樹脂、合成例4で得た表面処理コロイダルシリカ、及び表2に示す各化合物を用いて、表2の組成を有する光硬化性樹脂組成物溶液1〜6を調製した。
[Preparation of photocurable resin composition solution]
Using the resins obtained in Synthesis Examples 1 to 3, the surface-treated colloidal silica obtained in Synthesis Example 4 and the compounds shown in Table 2, photocurable resin composition solutions 1 to 6 having the compositions shown in Table 2 were prepared. Prepared.

Figure 0005161489
Figure 0005161489

注)数値は固形分換算の質量部である。
)カプロラクトン変性テトラヒドロフルフリルアクリレート(日本化薬(株)製 KAYARAD TC−120S)
)ウレタンアクリレート(日本合成化学工業(株)製 紫光UV−3000B)
)1−ヒドロキシシクロヘキシルフェニルケトン
)トリフェニルスルホニウム6フッ化アンチモネート
)ベンゾフェノン
Note) Numerical values are parts by mass in terms of solid content.
1 ) Caprolactone-modified tetrahydrofurfuryl acrylate (KAYARAD TC-120S manufactured by Nippon Kayaku Co., Ltd.)
2 ) Urethane acrylate (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., purple light UV-3000B)
3 ) 1-hydroxycyclohexyl phenyl ketone
4 ) Triphenylsulfonium hexafluoride antimonate
5 ) Benzophenone

[実施例1]
光硬化性樹脂組成物溶液1をプロペラ型ミキサーで撹拌し、基材シートとして架橋ゴム成分を含む厚さ125μmの透明軟質アクリルシート(三菱レイヨン(株)製、商品名HBX−N47)上に塗工を行った。この時、光硬化性樹脂組成物溶液1は室温でも低粘度で流動性が高い為に、短時間の攪拌で樹脂組成物溶液を均一にすることが可能であった。また、基材シート上に塗工する際にも短時間で大面積のシートに塗工することが可能であった。
[Example 1]
The photocurable resin composition solution 1 is stirred with a propeller-type mixer and coated on a transparent soft acrylic sheet (trade name HBX-N47, manufactured by Mitsubishi Rayon Co., Ltd.) having a thickness of 125 μm containing a crosslinked rubber component as a base sheet. Worked. At this time, since the photocurable resin composition solution 1 had a low viscosity and a high fluidity even at room temperature, it was possible to make the resin composition solution uniform by stirring for a short time. Moreover, it was possible to apply to a large-area sheet in a short time even when coating on the base sheet.

引き続いて、トンネル型乾燥炉を用いて溶剤を揮発させ、厚さ10μmの光硬化性樹脂組成物層を形成して、その積層シートをロールに巻き取った。溶剤を揮発させた後の光硬化性樹脂組成物層は表面が完全にタックフリー性であるため、塗工中に積層シートがロールに巻きつく等の不具合はなく、歩留り良く積層シートを得ることが出来た。   Subsequently, the solvent was volatilized using a tunnel-type drying furnace to form a photocurable resin composition layer having a thickness of 10 μm, and the laminated sheet was wound on a roll. Since the surface of the photocurable resin composition layer after volatilization of the solvent is completely tack-free, there is no problem such as the laminated sheet winding around the roll during coating, and a laminated sheet can be obtained with good yield. Was made.

引き続いて、積層シートの光硬化性樹脂組成物層面に、プレス型として、50mm×50mmの平板状表面に深さ2μmで先端間距離4μmの断面が三角形の凸状形状を配列した金型を押し当てて、100℃で30秒間、150MPaの加圧下で光硬化性樹脂組成物層の表面に微細凹凸構造を賦型し、金型を離型した。その際の光硬化性樹脂層を目視で評価したところ、割れ等の欠陥も無く、また離型後の金型表面にも汚れ等は無かった。   Subsequently, a die in which a convex shape having a triangular cross section with a depth of 2 μm and a distance between tips of 4 μm is arranged as a press die on the surface of the photocurable resin composition layer of the laminated sheet is pressed. Then, a fine concavo-convex structure was formed on the surface of the photocurable resin composition layer under a pressure of 150 MPa at 100 ° C. for 30 seconds, and the mold was released. When the photocurable resin layer at that time was visually evaluated, there were no defects such as cracks, and there was no contamination on the mold surface after release.

次に、紫外線ランプを用いて、約250mW/cm2の紫外線を約700mJ/cm2照射して光硬化性樹脂組成物を硬化させ、シート片面に微細凹凸構造を有する光学シートを得た。 Next, using a UV lamp, about 250 mW / ultraviolet rays cm 2 to about 700 mJ / cm 2 was irradiated to cure the photocurable resin composition to obtain an optical sheet having a fine uneven structure on one surface of the sheet.

この光学シートの各種物性を評価したところ、表3に示す通り、光硬化性樹脂組成物層と基材シートとの密着性は良好であり、またシート表層の微細凹凸構造の耐久性も非常に優れていた。さらに、金型転写性や耐熱性、耐光性等のその他の物性も良好であった。各評価は以下のようにして実施した。   When the various physical properties of this optical sheet were evaluated, as shown in Table 3, the adhesion between the photocurable resin composition layer and the base sheet was good, and the durability of the fine uneven structure of the sheet surface layer was also very high. It was excellent. Furthermore, other physical properties such as mold transferability, heat resistance, and light resistance were also good. Each evaluation was performed as follows.

[成形品の物性評価方法]
a)表面粘着性:
微細凹凸構造賦型前の積層シートの光硬化性樹脂組成物層表面を指で触れた際のタックの有無を評価した。
「○」:表面粘着性なし。
「△」:僅かに表面粘着性有り。
「×」:著しい表面粘着性有り。
[Method for evaluating physical properties of molded products]
a) Surface tackiness:
The presence or absence of tack when the surface of the photocurable resin composition layer of the laminated sheet before forming the fine concavo-convex structure was touched with a finger was evaluated.
“◯”: No surface tackiness.
“△”: Slight surface tackiness.
“×”: Remarkable surface tackiness.

b)金型汚染性:
微細凹凸構造賦型前の積層シートの光硬化性樹脂組成物層面に、プレス金型を押し当てて加圧下で微細凹凸構造を賦型し、金型を離型した際の金型表面の汚れの有無を目視評価した。
「○」:汚れなし。
「△」:若干汚れ有り。
「×」:金型全面に著しい汚れ有り。
b) Mold fouling:
Dirt on the mold surface when the mold is released by pressing the press mold against the photocurable resin composition layer surface of the laminated sheet before forming the micro uneven structure and molding the micro uneven structure under pressure The presence or absence of was visually evaluated.
“O”: No dirt.
“△”: Slightly dirty.
“×”: Remarkably dirty on the entire mold surface.

c)金型離型性:
微細凹凸構造賦型前の積層シートの光硬化性樹脂組成物層面に、プレス金型を押し当てて加圧下で微細凹凸構造を賦型し、金型を離型した際の作業のし易さを、次の基準で評価した。
「○」:途中で引っ掛かることなく、スムーズに金型が離型可能である。
「△」:途中で引っ掛かる等、離型するのにやや力を必要する。
「×」:途中で引っ掛かり、離型するのに多大な力を必要とする、又は多大な力を掛けて積層シートが割れる。
c) Mold releasability:
Ease of work when the mold is released by pressing the mold onto the surface of the photocurable resin composition layer of the laminated sheet before forming the micro uneven structure, forming a micro uneven structure under pressure Were evaluated according to the following criteria.
“◯”: The mold can be released smoothly without being caught on the way.
“△”: Some force is required to release the mold, such as being caught on the way.
"X": It catches on the way and requires a great force for releasing or a laminated sheet is cracked by applying a great force.

d)保存安定性:
微細凹凸構造賦型前の積層シートをロール状に100m巻き取り、そのロールを温度50℃、湿度30%RH雰囲気中に6ヶ月間静置した。その後積層シートを巻き出して、巻き出し時の作業性や巻き出した積層シートの外観を、次の基準で評価した。
「○」:シートの巻き出しが容易で、シート外観も変化が無いもの。
「△」:シート巻き出し時に途中で引っ掛かる現象が発生するもの、又は巻き出し後のシートに光硬化性樹脂組成物が裏移りしているもの。
「×」:シート巻き出し時に途中で引っ掛かり、巻き出すのに多大な力を必要とするもの、又は多大な力を掛けて積層シートが割れるもの。
d) Storage stability:
The laminated sheet before forming the fine concavo-convex structure was wound up in a roll shape by 100 m, and the roll was allowed to stand in an atmosphere of 50 ° C. and 30% humidity for 6 months. Thereafter, the laminated sheet was unwound, and the workability during unwinding and the appearance of the unwound laminated sheet were evaluated according to the following criteria.
“◯”: The sheet can be easily unwound and the sheet appearance does not change.
“Δ”: A phenomenon in which the sheet is caught in the middle when the sheet is unwound, or the photocurable resin composition is set off on the unwound sheet.
“X”: A sheet that is caught in the middle when the sheet is unwound and requires a lot of force to unwind, or a sheet that breaks the laminated sheet by applying a great force.

e)密着性:
プレス金型として、凸状形状の無い平滑な金型を使用した以外は、実施例1と同様にして光硬化性樹脂組成物層を硬化させた。この硬化後の積層シートに対して、JIS K 5400に準じて、カッターで1×1mm幅の碁盤目を100マス作製し、ニチバン製セロテープ(商標)を圧着し、その後90度の角度で剥離し、フィルム外観を目視評価した。
「○」:外観変化なし。
「△」:碁盤目周囲の剥離又は碁盤目の剥離が少し有り。
「×」:碁盤目周囲の剥離及び/又は碁盤目の剥離が著しい。
e) Adhesion:
The photocurable resin composition layer was cured in the same manner as in Example 1 except that a smooth mold having no convex shape was used as the press mold. In accordance with JIS K 5400, 100 squares of 1 × 1 mm wide grids are prepared on the laminated sheet after curing, and Nichiban cello tape (trademark) is pressure-bonded, and then peeled off at an angle of 90 degrees. The film appearance was visually evaluated.
“O”: No change in appearance.
“△”: There is little peeling around the grid or peeling of the grid.
“X”: The peeling around the grid and / or the peeling of the grid is remarkable.

f)透明性:
プレス金型として、凸状形状の無い平滑な金型を使用した以外は、実施例1と同様にして、光硬化性樹脂組成物層を硬化させた。この硬化後の積層シートの透明性を、目視評価した。
「○」:透明性良好。
「×」:濁りがあり、透明性が低い。
f) Transparency:
The photocurable resin composition layer was cured in the same manner as in Example 1 except that a smooth mold having no convex shape was used as the press mold. The transparency of the cured laminated sheet was visually evaluated.
“◯”: Excellent transparency.
"X": There is turbidity and transparency is low.

g)耐擦傷性:
得られた光学シートの微細凹凸構造を爪で引っ掻いた際の擦傷の状態を、目視評価した。
「○」:微細凹凸構造が全く破壊されなかった。
「△」:微細凹凸構造に僅かながら変形が発生した。
「×」:微細凹凸構造が破壊され、引っ掻いた軌跡が残った。
g) Scratch resistance:
The state of abrasion when the fine uneven structure of the obtained optical sheet was scratched with a nail was visually evaluated.
“◯”: The fine uneven structure was not destroyed at all.
“Δ”: Slight deformation occurred in the fine uneven structure.
“X”: The fine concavo-convex structure was destroyed and a scratched locus remained.

h)耐磨耗性:
得られた光学シートの微細凹凸構造の上にガーゼを5枚重ね、ガーゼの上から0.049MPaの荷重を掛けながら光学シートを押さえつけ、光学シートを100mmのストロークでかつ30往復/分の速さで200往復させた。その後の光学シートの外観を、目視評価した。
「○」:外観変化無し。
「△」:僅かな外観変化あり。
「×」:著しい外観変化あり。
h) Abrasion resistance:
Five sheets of gauze are stacked on the fine uneven structure of the obtained optical sheet, and the optical sheet is pressed while applying a load of 0.049 MPa from the top of the gauze. 200 round trips. The appearance of the subsequent optical sheet was visually evaluated.
“◯”: No change in appearance.
“△”: slight change in appearance.
“×”: Remarkable appearance change.

i)耐光性:
超促進耐候性試験装置((株)カトー製、装置名ダイプラ・メタルウェザー)を用い、63℃の雰囲気下でメタルハライドランプの光(約100mW/cm2)を50時間連続照射した後のシート外観(耐光性50時間)と、150時間連続照射した後のシート外観(耐光性150時間)を目視評価した。
「○」:良好。
「△」:僅かに黄変又は白化有り。
「×」:著しい黄変、白化、又はクラック有り。
i) Light resistance:
Sheet appearance after continuous irradiation of metal halide lamp light (about 100 mW / cm 2 ) for 50 hours in an atmosphere of 63 ° C using an ultra-accelerated weathering tester (manufactured by Kato Co., Ltd., equipment name: Daipura Metal Weather) (Light resistance 50 hours) and the sheet appearance after 150 hours of continuous irradiation (light resistance 150 hours) were visually evaluated.
“◯”: Good.
“△”: Slightly yellowed or whitened.
“X”: significant yellowing, whitening, or cracking.

j)耐熱性:
20cm×20cmのサイズにカットした光学シートを、微細凹凸構造側を下にして5mm厚の板ガラス(30cm×30cm)上に設置し、その上に光学シートと同じサイズの1mm厚の板ガラスを載置した。これを60℃に調温した乾燥機に12時間入れて加熱した後のシート外観を、目視評価した。
「○」:外観の変化が無く良好なもの。
「×」:白化や黄変など外観異常が生じたもの。
j) Heat resistance:
An optical sheet cut to a size of 20 cm x 20 cm is placed on a 5 mm thick plate glass (30 cm x 30 cm) with the fine relief structure side down, and a 1 mm thick plate glass of the same size as the optical sheet is placed thereon did. The sheet appearance after heating for 12 hours in a dryer adjusted to 60 ° C. was visually evaluated.
“◯”: Good with no change in appearance.
“×”: Appearance abnormality such as whitening or yellowing occurred.

k)金型転写性:
触針式表面凹凸計(KLA TECNOR社製、装置名HRP−100)を用いて、光学シート表面の微細凹凸構造を測定し、プレス型の寸法と微細凹凸構造の深さ方向の測定平均値から金型転写率を算出した。
k) Mold transferability:
Using a stylus type surface roughness tester (manufactured by KLA TECNOR, apparatus name HRP-100), the fine unevenness structure of the optical sheet surface was measured, and the press mold dimensions and the measurement average value in the depth direction of the fine unevenness structure were measured. The mold transfer rate was calculated.

l)数平均分子量の測定法:
数平均分子量は、GPC(ゲル・パーミエーション・クロマトグラフィー)にて、ポリスチレンを標準サンプルとし、以下の装置及び条件で測定した。
測定装置:高速GPC装置 HLC-8220GPC(東ソー株式会社製)
測定条件:
カラム種:TSKgel SuperHZM−M内径4.6mm、長さ15cm(東ソー株式会社製)×4本
カラム内温度:40℃
溶媒:THF(テトラヒドロフラン)
流量:0.35mL/min
注入量10μL
サンプル濃度(1〜2g/1LのTHF)
ポリスチレン換算
検量線作製用標準サンプル(3690000, 1910000, 1150000, 716000, 185000, 51100, 29800, 13500, 3240, 1200)。
l) Number average molecular weight measurement method:
The number average molecular weight was measured by GPC (gel permeation chromatography) using polystyrene as a standard sample under the following apparatus and conditions.
Measuring device: High-speed GPC device HLC-8220GPC (manufactured by Tosoh Corporation)
Measurement condition:
Column type: TSKgel SuperHZM-M inner diameter 4.6 mm, length 15 cm (manufactured by Tosoh Corporation) × 4 Column temperature: 40 ° C.
Solvent: THF (tetrahydrofuran)
Flow rate: 0.35 mL / min
Injection volume 10μL
Sample concentration (1-2g / 1L THF)
Standard sample for calibration curve preparation (3690000, 1910000, 1150000, 716000, 185000, 51100, 29800, 13500, 3240, 1200).

[実施例2〜7]
実施例1の光硬化性樹脂組成物溶液1と基材シートAを、表2に示した光硬化性樹脂組成物溶液2〜5のいずれか1種と基材シートA〜Cのいずれか1種の組合せに変更した以外は、実施例1と同様にして光学シートを製造し、同様に評価した。
[Examples 2 to 7]
The photocurable resin composition solution 1 and the base sheet A of Example 1 were prepared using any one of the photocurable resin composition solutions 2 to 5 shown in Table 2 and any one of the base sheets A to C. An optical sheet was produced in the same manner as in Example 1 except that the combination was changed to a seed combination, and evaluated in the same manner.

なお、光硬化性樹脂溶液3及び4を基材シートに塗工する際は、基材シート塗工面に予め密着性向上処理を施して使用した。また、基材シートCに光硬化性樹脂組成物溶液を塗工する際は、予め密着性向上処理を施した面に塗工した。   In addition, when apply | coating the photocurable resin solutions 3 and 4 to a base material sheet, the adhesiveness improvement process was performed previously and used for the base material sheet coating surface. Moreover, when applying the photocurable resin composition solution to the base sheet C, it was applied to the surface that had been subjected to the adhesion improving treatment in advance.

表3から判るように、得られた光学シートは、各種物性に優れていた。   As can be seen from Table 3, the obtained optical sheet was excellent in various physical properties.

[比較例1]
実施例1の光硬化性樹脂組成物溶液1を、表2に示した光硬化性樹脂組成物溶液6に変更した以外は、実施例1と同様にして透明軟質アクリルシート上に塗工した。
[Comparative Example 1]
Coating was performed on a transparent soft acrylic sheet in the same manner as in Example 1 except that the photocurable resin composition solution 1 of Example 1 was changed to the photocurable resin composition solution 6 shown in Table 2.

しかしながら、光硬化性樹脂組成物溶液6は、15℃以下では固体状態で、60℃以上で流動性を発現する為に、攪拌時や塗工時には60℃以上に加熱して流動性を付与する必要があり、塗工後に巻き取る際は15℃以下に冷却する必要がある。この為に、光硬化性樹脂組成物溶液6を大きな基材シート上に連続的に塗工する際には温度コントロールが極めて煩雑であった。また、得られた積層シートの光硬化性樹脂組成物層は温度により表面粘着性が変化する為に、50℃雰囲気下では一部ブロッキングが発生するなど、保存安定性も不良であった。   However, since the photocurable resin composition solution 6 is in a solid state at 15 ° C. or lower and exhibits fluidity at 60 ° C. or higher, it is heated to 60 ° C. or higher during stirring or coating to impart fluidity. It is necessary to cool to 15 ° C. or lower when winding after coating. For this reason, when the photocurable resin composition solution 6 is continuously applied onto a large base sheet, temperature control is extremely complicated. Moreover, since the surface adhesiveness of the photocurable resin composition layer of the obtained laminated sheet changes depending on the temperature, the storage stability was poor such that partial blocking occurred in an atmosphere at 50 ° C.

引き続いて、実施例1と同様にして、上記積層シートの光硬化性樹脂組成物層に微細凹凸構造を賦型した。しかしながら、金型を離型する際に、金型を15℃以下まで冷却しなければ、光硬化性樹脂組成物層の表面粘着性の為に金型汚染性や金型離型性、金型転写性が極めて悪化してしまう。その為に、1回の賦型工程において加熱と冷却サイクル過程が必要となり、賦型工程が極めて長時間になってしまった。   Subsequently, in the same manner as in Example 1, a fine concavo-convex structure was formed on the photocurable resin composition layer of the laminated sheet. However, if the mold is not cooled to 15 ° C. or lower when releasing the mold, mold contamination, mold releasability, mold, and the like due to the surface adhesiveness of the photocurable resin composition layer. Transferability is extremely deteriorated. Therefore, a heating and cooling cycle process is required in one molding process, and the molding process has become extremely long.

このように、光硬化性樹脂組成物として、温度によってその流動性が変化する樹脂組成物を用いる場合、微細凹凸構造賦型前の積層シートの保存安定性が低下するだけでなく、積層シート製造工程や微細凹凸構造賦型工程において非常に生産性が低下してしまう。   Thus, when using a resin composition whose fluidity changes depending on the temperature as the photocurable resin composition, not only the storage stability of the laminated sheet before forming the fine concavo-convex structure is lowered, but also the laminated sheet production Productivity is greatly reduced in the process and the micro uneven structure forming process.

また、先行文献2に記載されているように、基材シート表面の光硬化性樹脂組成物層に微細凹凸構造を賦型した後に離型することなく基材シートを介して紫外線を照射して光硬化性樹脂組成物層を硬化させれば、微細凹凸構造賦型工程の生産性に関しては改良できるものの、その場合、基材シート中の紫外線吸収剤量が限定される為に、より耐光性が求められるような用途には使用できないという不具合が生じてしまう。   Moreover, as described in the prior art document 2, after the fine concavo-convex structure is formed on the photocurable resin composition layer on the surface of the base sheet, ultraviolet rays are irradiated through the base sheet without releasing the mold. If the photocurable resin composition layer is cured, the productivity of the fine concavo-convex structure shaping process can be improved, but in this case, the amount of the ultraviolet absorber in the base sheet is limited, so that it is more light resistant. This results in a problem that it cannot be used in applications where demands are required.

[比較例2]
光硬化性樹脂組成物層を積層せずに基材シート(透明軟質アクリルシート、HBX−N47)のみを使用して、その片側の表面に実施例1と同様にして微細凹凸構造を賦型(紫外線照射なし)して光学シートを得た。
[Comparative Example 2]
Using only a base material sheet (transparent soft acrylic sheet, HBX-N47) without laminating the photocurable resin composition layer, a fine concavo-convex structure was formed on the surface of one side in the same manner as in Example 1 ( (Without UV irradiation) to obtain an optical sheet.

得られた光学シートの各種物性を評価したが、表3に示す通り、表面の微細凹凸構造部分が熱可塑性樹脂成分で構成されているため、耐久性に著しく劣るものであった。   Various physical properties of the obtained optical sheet were evaluated. As shown in Table 3, since the fine concavo-convex structure portion on the surface was composed of a thermoplastic resin component, it was extremely inferior in durability.

Figure 0005161489
Figure 0005161489

[実施例8]
実施例2と同様にして、光硬化性樹脂組成物溶液2を透明軟質アクリルシート上に塗工して溶剤を揮発させることにより、厚さ50μmの光硬化性樹脂組成物層が積層した積層シートを製造した。引き続いて、上記積層シートの裏面に対しても、同様の操作を繰り返すことにより、両面に厚さ50μmの光硬化性樹脂組成物層が積層した両面積層シートを得た。
[Example 8]
In the same manner as in Example 2, the photocurable resin composition solution 2 was applied onto a transparent soft acrylic sheet, and the solvent was volatilized to laminate the photocurable resin composition layer having a thickness of 50 μm. Manufactured. Subsequently, the same operation was repeated on the back surface of the laminated sheet to obtain a double-sided laminated sheet in which a photocurable resin composition layer having a thickness of 50 μm was laminated on both sides.

この時、光硬化性樹脂組成物溶液2は室温でも低粘度で流動性が高い為に、短時間の攪拌で樹脂組成物溶液を均一にすることが可能であり、また基材シート上に塗工する際にも短時間で大面積のシートに塗工することが可能であった。また、溶剤を揮発させた後の光硬化性樹脂組成物層は表面が完全にタックフリー性であるため、塗工中に(両面)積層シートがロールに巻きつく等の不具合はなく、歩留り良く両面積層シートを得ることが出来た。また両面積層シートの長期間の保存安定性も極めて優れていた。   At this time, since the photocurable resin composition solution 2 has low viscosity and high fluidity even at room temperature, the resin composition solution can be made uniform with a short time stirring, and can be applied onto the base sheet. It was possible to apply to a large-area sheet in a short time even when processing. In addition, since the surface of the photo-curable resin composition layer after volatilization of the solvent is completely tack-free, there is no problem such that the laminated sheet is wound around the roll during coating (both sides), and the yield is high. A double-sided laminated sheet could be obtained. Also, the long-term storage stability of the double-sided laminated sheet was extremely excellent.

この両面積層シートを用い、図1に示した工程に従って両面レンチキュラーレンズシートを製造した。すなわち、両面積層シート1を、赤外線ヒーター4により約100℃に加熱し、同じく約100℃に加熱したロール状金型6(球面レンズ径25μm)及びロール状金型7(球面レンズ径10μm)の間(間隔150μm)に搬送してプレスしてレンズ形状を賦型し、引き続き離型した。その際の光硬化性樹脂組成物層3を目視で評価したところ、割れ等の欠陥も無く、また離型後のロール状金型表面にも汚れ等は無かった。   Using this double-sided laminated sheet, a double-sided lenticular lens sheet was produced according to the process shown in FIG. That is, the double-sided laminated sheet 1 was heated to about 100 ° C. by the infrared heater 4 and was similarly heated to about 100 ° C. for the roll-shaped mold 6 (spherical lens diameter 25 μm) and the roll-shaped mold 7 (spherical lens diameter 10 μm). A lens shape was formed by conveying and pressing the sheet at intervals (interval of 150 μm), followed by release. When the photocurable resin composition layer 3 at that time was visually evaluated, there were no defects such as cracks, and the surface of the roll-shaped mold after release had no stains.

引き続き、紫外線ランプ8により約250mW/cm2の紫外線を約700mJ/cm2の照射量となるよう両面に連続的に照射して光硬化性樹脂組成物層3を硬化させて、シート両面にレンズ形状を有する両面レンチキュラーレンズシート9を、生産性良く連続的に製造することが可能であった。 Subsequently, the ultraviolet ray lamp 8 continuously irradiates the ultraviolet ray of about 250 mW / cm 2 on both sides so that the irradiation amount becomes about 700 mJ / cm 2 to cure the photocurable resin composition layer 3, and the lens is formed on both sides of the sheet. The double-sided lenticular lens sheet 9 having a shape could be continuously produced with high productivity.

この両面レンチキュラーレンズシート9の各種物性を評価したところ、光硬化性樹脂組成物層と基材シートとの密着性は良好であり、またシート両面表層のレンズ形状の耐久性も非常に優れていた。また、金型転写性や耐熱性、耐光性等のその他の物性も良好であった。   When various physical properties of this double-sided lenticular lens sheet 9 were evaluated, the adhesiveness between the photocurable resin composition layer and the base sheet was good, and the durability of the lens shape of the double-sided surface layer of the sheet was also very good. . In addition, other physical properties such as mold transfer property, heat resistance, and light resistance were also good.

また同様の条件にて、図2に示した工程に従って両面レンチキュラーレンズシート9を製造したところ、同様に各種物性が良好な両面レンチキュラーレンズシート9を、生産性良く連続的に製造することが可能であった。   Moreover, when the double-sided lenticular lens sheet 9 was manufactured according to the process shown in FIG. 2 under the same conditions, it is possible to continuously manufacture the double-sided lenticular lens sheet 9 having various good physical properties with high productivity. there were.

[比較例3]
実施例8の光硬化性樹脂組成物溶液2を光硬化性樹脂組成物溶液6に変更した以外は、実施例8と同様にして基材シート両面に光硬化性樹脂組成物層を積層した。
[Comparative Example 3]
Except having changed the photocurable resin composition solution 2 of Example 8 into the photocurable resin composition solution 6, it carried out similarly to Example 8, and laminated | stacked the photocurable resin composition layer on both surfaces of the base material sheet.

しかしながら、光硬化性樹脂組成物溶液6は、温度により流動性が大きく変化する為に、光硬化性樹脂組成物溶液6を大きな基材シートの両面に連続的に塗工する際には温度コントロールが極めて煩雑であった。また、基材シートの一方の面に光硬化性樹脂組成物層を積層した後に、その裏側の基材シート面に光硬化性樹脂組成物を塗工する際、塗工しようとする樹脂組成物溶液の熱により、すでに積層済みの樹脂組成物層が加温されて著しい表面粘着性や一部流動性を示すようになり、ロールに巻きついてしまう等、極めて生産性が低位であり、また得られた両面積層シートの光硬化性樹脂組成物層の膜厚精度も低いものであった。さらに、得られた両面積層シートの光硬化性樹脂組成物層は温度により表面粘着性が変化する為に、50℃雰囲気下では一部ブロッキングが発生するなど、保存安定性も不良であった。   However, since the fluidity of the photocurable resin composition solution 6 varies greatly depending on the temperature, temperature control is required when the photocurable resin composition solution 6 is continuously applied to both sides of a large base sheet. Was extremely cumbersome. Moreover, after laminating a photocurable resin composition layer on one side of a base sheet, when applying the photocurable resin composition to the back side of the base sheet, the resin composition to be applied is applied. Due to the heat of the solution, the already laminated resin composition layer is heated to show remarkable surface tackiness and partial fluidity, and it is extremely low in productivity, such as being wound around a roll. The film thickness accuracy of the photocurable resin composition layer of the obtained double-sided laminated sheet was also low. Furthermore, since the surface tackiness of the photocurable resin composition layer of the obtained double-sided laminated sheet varies depending on the temperature, the storage stability is poor, such as partial blocking in a 50 ° C. atmosphere.

また、実施例8と同様にして、両面の光硬化性樹脂組成物層にレンズ形状を賦型しようとしたが、ロール状金型が離型する時点での温度が高温である為に光硬化性樹脂組成物層は著しい粘着や一部流動性を示しており、金型汚染性や金型離型性、金型転写性が極めて悪化してしまい、所望のレンズ形状を両面に有する両面レンチキュラーレンズシートを得ることは出来なかった。   Further, in the same manner as in Example 8, an attempt was made to mold the lens shape on the photocurable resin composition layers on both sides, but the photocuring was performed because the temperature at the time of releasing the roll-shaped mold was high. Double-sided lenticular having a desired lens shape on both sides, because the resin composition layer exhibits remarkable adhesion and partial fluidity, and mold contamination, mold releasability, and mold transfer are extremely deteriorated. I couldn't get a lens sheet.

このように、光硬化性樹脂組成物として、温度によってその流動性が変化する樹脂組成物を用いる場合、基材シート両面に光硬化性樹脂組成物を安定して積層することが困難であるだけでなく、両面にレンズ形状を賦型することも不可能である。   Thus, when using a resin composition whose fluidity changes with temperature as the photocurable resin composition, it is only difficult to stably laminate the photocurable resin composition on both surfaces of the base sheet. In addition, it is impossible to mold the lens shape on both sides.

本発明は、様々な微細凹凸構造への対応が可能で、かつ良好な金型転写性を有する、表面粘着性のない光硬化性積層シートを用いて、優れた耐磨耗性や耐光性を備えた表面微細凹凸構造を有する光学シートを提供することができるので、産業上極めて有用である。   The present invention is capable of adapting to various fine concavo-convex structures and has a good mold transfer property, and has excellent wear resistance and light resistance by using a photocurable laminated sheet having no surface tackiness. Since the optical sheet having the provided fine surface uneven structure can be provided, it is extremely useful industrially.

本発明の光学シート(両面レンチキュラーレンズシート)の連続製造工程の一例を示す概略図である。It is the schematic which shows an example of the continuous manufacturing process of the optical sheet (double-sided lenticular lens sheet) of this invention. 本発明の光学シート(両面レンチキュラーレンズシート)の連続製造工程の他の一例を示す概略図である。It is the schematic which shows another example of the continuous manufacturing process of the optical sheet (double-sided lenticular lens sheet) of this invention.

符号の説明Explanation of symbols

1: 両面積層シート
2: 基材シート
3: 光硬化性樹脂組成物層
4: 赤外線ヒーター
5: 圧接ロール
6: ロール状金型
7: ロール状金型
8: 紫外線ランプ
9: 光学シート(両面レンチキュラーレンズシート)
1: Double-sided laminated sheet 2: Base sheet 3: Photocurable resin composition layer 4: Infrared heater 5: Press-contact roll 6: Roll mold 7: Roll mold 8: Ultraviolet lamp 9: Optical sheet (double-sided lenticular) Lens sheet)

Claims (3)

透光性の基材シート(B)の少なくとも一方の面に、光重合性官能基を有する熱可塑性樹脂(a−1)及び光重合開始剤(a−2)を含む光硬化性樹脂組成物(A)を用いて微細凹凸構造を形成してなる光学シートであって、光重合性官能基を有する熱可塑性樹脂(a−1)が、側鎖に光重合性官能基を有するガラス転移温度が25〜175℃であるアクリル系樹脂であり、光硬化性樹脂組成物(A)が光重合性官能基を有する熱可塑性樹脂(a−1)以外の架橋性化合物を含まない光学シート。 A photocurable resin composition comprising a thermoplastic resin (a-1) having a photopolymerizable functional group and a photopolymerization initiator (a-2) on at least one surface of a translucent substrate sheet (B). (A) It is an optical sheet which forms a fine concavo-convex structure using (A), Comprising: The glass transition temperature which the thermoplastic resin (a-1) which has a photopolymerizable functional group has a photopolymerizable functional group in a side chain optical sheets but Ri acrylic resin der is twenty-five to one hundred seventy-five ° C., the photocurable resin composition (a) does not contain a thermoplastic resin (a-1) other than the crosslinking compound having a photopolymerizable functional group. 光硬化性樹脂組成物(A)が、さらに無機微粒子(a−3)を含む請求項1記載の光学シート。 The optical sheet of the photocurable resin composition (A) further claim 1 Symbol placement containing inorganic fine particles (a-3). 請求項1又は2記載の光学シートを製造する為の方法であって、
透光性の基材シート(B)の少なくとも一方の面に、光硬化性樹脂組成物(A)層を形成する工程と、
凹凸形状を有する型にて、光硬化性樹脂組成物(A)層を微細凹凸構造に賦型し、光照射して光硬化性樹脂組成物(A)を光硬化させる工程と
を有することを特徴とする光学シートの製造方法。
A method for producing the optical sheet according to claim 1 or 2 ,
Forming a photocurable resin composition (A) layer on at least one surface of the translucent substrate sheet (B);
And a step of forming a photocurable resin composition (A) layer into a fine concavo-convex structure with a mold having an uneven shape, and photocuring the photocurable resin composition (A) by light irradiation. A method for producing an optical sheet.
JP2007143386A 2007-05-30 2007-05-30 Optical sheet and manufacturing method thereof Expired - Fee Related JP5161489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007143386A JP5161489B2 (en) 2007-05-30 2007-05-30 Optical sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007143386A JP5161489B2 (en) 2007-05-30 2007-05-30 Optical sheet and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2008298962A JP2008298962A (en) 2008-12-11
JP2008298962A5 JP2008298962A5 (en) 2010-06-24
JP5161489B2 true JP5161489B2 (en) 2013-03-13

Family

ID=40172555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007143386A Expired - Fee Related JP5161489B2 (en) 2007-05-30 2007-05-30 Optical sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5161489B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5521354B2 (en) * 2009-02-27 2014-06-11 三菱レイヨン株式会社 Transparent film having fine concavo-convex structure on surface and method for producing the same
JP5424116B2 (en) * 2010-01-21 2014-02-26 コニカミノルタ株式会社 Method for simultaneously forming both sides of optical element sheet and optical element sheet forming apparatus
WO2011090186A1 (en) * 2010-01-25 2011-07-28 コニカミノルタオプト株式会社 Method for continuously forming laminated optical function element sheet and apparatus for continuously forming laminated optical function element sheet
JP6069816B2 (en) * 2011-05-26 2017-02-01 凸版印刷株式会社 Optical sheet and method for manufacturing the same, EL element using optical sheet, and illumination device including the same
WO2013031196A1 (en) * 2011-08-30 2013-03-07 パナソニック株式会社 Method of manufacturing tape-like pattern medium
JP2014153490A (en) * 2013-02-07 2014-08-25 Hoya Corp Spectacle lens dye vapor deposition device and spectacle lens dye vapor deposition method
JP6076892B2 (en) * 2013-12-13 2017-02-08 株式会社アスカネット Manufacturing method of light control panel used in optical imaging apparatus
JP6550291B2 (en) * 2015-07-29 2019-07-24 東芝機械株式会社 Film pattern transfer apparatus and film pattern transfer method
GB2595310B (en) * 2020-05-22 2023-05-24 Stensborg As A method of, and apparatus for, simultaneous dual-sided imprinting

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09230112A (en) * 1996-02-27 1997-09-05 Toray Ind Inc Microlens array and its production
JP3937082B2 (en) * 1998-03-18 2007-06-27 東亞合成株式会社 Active energy ray-curable composition for sheet-like optical articles
JP3527651B2 (en) * 1999-02-16 2004-05-17 大日本印刷株式会社 Photocurable resin composition and method of forming uneven pattern
JP2003240903A (en) * 2002-02-20 2003-08-27 Dainippon Printing Co Ltd Antireflection article
JP2005283656A (en) * 2004-03-26 2005-10-13 Fuji Photo Film Co Ltd Method for manufacturing antireflection film, antireflection film, polarizing plate and image display device using the film or the plate
JP4739720B2 (en) * 2004-10-01 2011-08-03 ダイセル化学工業株式会社 Method for producing antiglare film
JP4709520B2 (en) * 2004-10-04 2011-06-22 ダイセル化学工業株式会社 Anti-glare film

Also Published As

Publication number Publication date
JP2008298962A (en) 2008-12-11

Similar Documents

Publication Publication Date Title
JP5161489B2 (en) Optical sheet and manufacturing method thereof
JP4952910B2 (en) Active energy ray-curable resin composition and use thereof
JP5747439B2 (en) Method for continuously producing acrylic resin sheet
JP5599648B2 (en) Fine pattern manufacturing method and substrate with fine pattern
KR101931212B1 (en) Optical film, anti-glare film, and polarizing plate
TWI495565B (en) To prevent the Newton ring of the sheet, and use its touch panel
TWI686240B (en) Manufacturing method of image display device
JP5235557B2 (en) Transparent multilayer sheet for display faceplate
JP2007030307A (en) Transparent sheet
CN106414570B (en) Resin
KR102097604B1 (en) Decoration film with excellent adhesion to curved surface
JP2011194757A (en) Hard coat film for decoration, decorative film, and decorative molded product
JP6908588B2 (en) Front plate of in-vehicle liquid crystal display device
JP2011152681A (en) Hard coat film
JP6361506B2 (en) (Meth) acrylic polymer, (meth) acrylic resin composition, (meth) acrylic resin sheet, (meth) acrylic resin laminate and composite sheet
KR101858328B1 (en) Resin laminate, method for producing same and display front panel
JP6597302B2 (en) Resin composition, resin sheet, and resin laminate
KR102225360B1 (en) Hard coat film and display element with surface member
JP4933801B2 (en) Molded article having surface fine uneven structure and manufacturing method thereof
JP5936395B2 (en) Laminated plate and scratch-resistant laminated plate using the same
JP5594509B2 (en) Laminate and method for producing laminate
JPS63167301A (en) Transmission type screen
JP2010066744A (en) Transparent multi-layer sheet for display plate
JP2014076556A (en) Article having fine rugged structure, and method for producing the article
JP2007305673A (en) Photoelectric sensor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121214

R151 Written notification of patent or utility model registration

Ref document number: 5161489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees