TW200902191A - Metal particle and fabricating method thereof, and metal particle dispersion solution and fabricating method thereof - Google Patents

Metal particle and fabricating method thereof, and metal particle dispersion solution and fabricating method thereof Download PDF

Info

Publication number
TW200902191A
TW200902191A TW097109904A TW97109904A TW200902191A TW 200902191 A TW200902191 A TW 200902191A TW 097109904 A TW097109904 A TW 097109904A TW 97109904 A TW97109904 A TW 97109904A TW 200902191 A TW200902191 A TW 200902191A
Authority
TW
Taiwan
Prior art keywords
metal
organic solvent
producing
metal compound
compound
Prior art date
Application number
TW097109904A
Other languages
Chinese (zh)
Other versions
TWI499466B (en
Inventor
Yasushi Kumashiro
Kazunori Yamamoto
Shunya Yokozawa
Yoshinori Ejiri
Youichi Machii
Masashi Wada
Eitaro Yasuda
Takafumi Iwamoto
Shigeyuki Kimura
Osamu Kajita
Ayu Onishi
Mitsuo Kawasaki
Original Assignee
Hitachi Chemical Co Ltd
Fukuda Metal Foil Powder
Univ Kyoto
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Fukuda Metal Foil Powder, Univ Kyoto filed Critical Hitachi Chemical Co Ltd
Publication of TW200902191A publication Critical patent/TW200902191A/en
Application granted granted Critical
Publication of TWI499466B publication Critical patent/TWI499466B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/30Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0545Dispersions or suspensions of nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/056Submicron particles having a size above 100 nm up to 300 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/02Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

A fabricating method of nano-sized metal particle dispersed in an organic solvent without surfactant and its dispersion solution are provided. The metal particle and fabricating method thereof includes a core/shell structure of which a central part is metal and a coat part is metal oxide and further includes the following steps: dispersing a metal compound into an organic solvent showing no reduction and irradiating laser beam to the metal compound in the organic solvent at stirring condition.

Description

200902191 九、發明說明: 【發明所屬之技術領域】 本發明是關於一種金屬微粒子與其製造方法、以 屬微粒子分散液與其製造方法。 【先前技術】 猎由照射雷射光束(laser beam )來獲得奈米李BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal fine particle and a method for producing the same, a microparticle dispersion liquid, and a method for producing the same. [Prior Art] hunting by irradiating a laser beam (laser beam) to obtain nano plum

、、(nanosize )的金屬微粒子或此金屬微粒子之分散'^的= 法,已報告有如下非專利文獻以及專利文獻。例如, ,利文獻1中記載了如下方法:使氧化銅(Cu〇)粉末八 ,於表現出還原作用之有機溶劑即異丙醇(2_丙醇)々中: 並對異丙醇中之氧化銅照射雷射光束,以此獲 鋼微粒谓體。 于-木級的 人另外,在非專利文獻2中記載了如下方法:對配置在 =有界面活性劑之水溶液中的金板照射雷射光束,以此 知奈米級的金微粒子。 & K八ί專利文獻1中記載丁如下方法:使作為原料的銅箔 =放於水·醇混合溶劑中,並對水.醇混合溶劑中的銅箔 照射雷射光束,以此獲得奈米級的銅微粒子。 【非專利文獻 1】j. Phys· chem. Β, 103, 6851(1999) 【非專利文獻 2】J. Phys. Chem· B, 105, 5114(2001) 【專利文獻丨】國際公開WO 2006/030605 A1號小册 子 於非專利文獻1中所記載的使氧化銅(CuO)粉末分散 ;表現出退原仙之有機溶劑即異丙醇(2_丙醇)中,教 200902191 對異丙醇中的氧化銅照射雷射光束的方法 的奈米級的銅微粒子產生凝聚,故而無法二由於所生成 中較為穩定的銅微粒子。 …'a得在有機溶劑 w: tit外#專利文獻2中所記载的對配置在 性劑的水溶液中的金板照射雷射光束的方3有界面活 金微粒子的表面由界面活性劑包覆著,故而,由於各個 Γ 侧用以去除包覆著的界面 須聚光以提高能量密度。 田射先束時,必 水.醇 於 射光束的方法中,由於原料使用鋼落片I導照射雷 微粒子的生成效率下降。 不米級的銅 【發明内容】 本發明之課題在於提供一種不含界面活性 ==劑中的奈米級的金屬微粒子及其分散=時 ==備’高效率地製造上—及其 本發明是-種财中心部為麵、表皮部為 物之核/殼結構的金屬微粒子的製造方法以及金屬 1液:製造方法,此金屬微粒子的製造方法以及金二: ㈣造方法包括如下步驟:使金屬化合物= =々糊性的有機溶齡的步驟;以及 二 劑中的上述销化合触財射縣的步驟。作為 200902191 金屬硫化 屬較好的是使用 金屬化合物的種類較好的是使用金 物、金屬氮化物、金屬鹽,另外,氧化物' 過渡金屬。 本發明之金屬微粒子可藉由如下方 原料之金屬化合物及不表現還原作=來製造:將作為 雷射光束穿透的容器中,於雜下^機溶劑裝入至有 的金屬化合物照射雷射光束。此時』=散於有機溶劑中 為分散於有機溶劑中的狀態,形成的金屬微粒子成 態的分散液,亦可藉由用其他狀 離子製造巾所使用的有機溶劑的 =等將該金屬微 加其他有機溶劑或水等,而製備金部置換、或添 :所使用之有機落劑不同之分散介質中的金 原子金二 的能量,粉碎成 米級的金>1微好。 _有機_冷卻’形成奈 ==金^^式=得的奈米級的金屬微粒子具有 嗖結槎,3二 皮部由金屬氧化物所形成的核/ ^即=金屬原子彼此直接接觸形成金屬鍵, 制金屬微粒子產〉Γ劑Γ,亦可無須添加界面活性劑等而抑 並且金屬微粒子分舰表現出優 著的因此’在應用方面,無須耗費用以去除包覆 者的”面活性劑之南溫下進行處理等的巨大能量,故而期 200902191 待將此金屬微粒子分散液應用於電子電路裝置之導 用油墨等各種各樣的用途。 為讓本發明之上述和其他目的、特徵和優點能更明顯 易懂’下文特舉較佳實施例,並配合所附圖式,作詳」、 明如下。 、’、呪 【實施方式】 f 本發明之金屬微粒子之特徵在於:具有中心部為金 屬、表皮部為金屬氧化物的核/殼結構,並且是藉由於攪掉 :’對分散於不表現還原作用之有機溶劑中的金屬化合物 照射雷射先束而製造的。可藉由對金屬化合物的種類 ^ , 5物的粒從、金屬化合物的量、有機溶劑的種類、雷 間先雷射光束的輸出功率、雷射光束的照射; 氣體::氣體狀態、導入至有機溶劑中的 條件進行適當選Ϊ亦=氣體的量、以及添加物等各種 作為金屬微粒子料之金_粒子的特性。 =物、金屬硫化物、金屬氮化物可!:金屬氧 使用,亦可使用多種。對:金屬鹽。這些既可單獨 使作為原料之金屬化合物分散=物的量並無特別限定。 表現還原性之有機溶劑㈣機溶劑較好的是使用不 並無限制,較好喊使賤使溶劑。射射的波長 的波長,此波長由於補金屬粒子的生成效率提高 慮到金屬微粒子的生成效率,二物之種類而不同。若考 較高,當照射小於等於3600 、ij較好的是雷射的輸出功率 彳、於等於200 mJ/pulse,脈 200902191 3〇分鐘)的+射=為1〇nS’1〇HZ’光束直徑為忉咖, 減」讀光束時,無法獲得金屬微粒子。當昭射大 _,光束直經為1()麵,3()分鐘/^^日1^’ 照射時間並無限制,照射時間越長田金屬::子:: 生成里越多。對使金屬化合物分散 】 制。較好的是在照射雷射峨度: blade^ ;;gnetiC ^} ^^ ( bating 物反覆循壤,而使作為原料之金屬化合 屬微粒子Si均二二f用用以控制金 Ο r、量並無特別限===::: 的種類、目標金屬微粒子的平均粒徑或形狀等γ… 接著’就本發明之金屬微粒子㈣造方法進行說明。 束^對f實施本發明較為重要之條件,即·、雷射光 束還原作用的有機溶劑追加一般性說明。 化物原:ί金屬:合物’例如可使用金屬氧化物、金屬疏 、产全金屬鹽。金屬化合物中,較好的是過 =上合物’例如,可較好地使用過渡金屬氧化物、過 a金屬硫化物、過渡金屬I化物、過渡金屬鹽。 -體片而σ 了使用.氧化銅、氧化亞銅(哪訓S 0X1 e)、氧化銀、氧化鎳、氧化始、氧化敍、氧化麵、氧 10 200902191 化鉬、硫化銀、硫化鋼、垆 銀、氯化銅、氯化銀、氯化^、硫化、辛酸銅、辛酸 以及其他金屬化合物。,、氧化釕、氯化鈀、氮化鈕、 就形狀方面而言,金屬 ,當為例 的生成效率降低 在於,如上所述 者 化合物較好的是粉體。其原因 田為例如H狀時,會導致奈米級的粒子The metal microparticles of (nanosize) or the dispersion method of the metal microparticles have been reported as follows. Non-patent literature and patent documents have been reported. For example, Patent Document 1 describes a method in which copper oxide (Cu〇) powder is used in isopropyl alcohol (2-propanol) which is an organic solvent exhibiting reduction: The copper oxide illuminates the laser beam to obtain the steel particle precursor. In the non-patent document 2, a non-patent document 2 discloses a method in which a gold plate disposed in an aqueous solution having a surfactant is irradiated with a laser beam, thereby knowing the nano-sized gold particles. Patent Document 1 discloses a method in which a copper foil as a raw material is placed in a water/alcohol mixed solvent, and a copper beam in a water-alcohol mixed solvent is irradiated with a laser beam to obtain a naphthalene. Rice-grade copper particles. [Non-Patent Document 1] j. Phys. Chem. Β, 103, 6851 (1999) [Non-Patent Document 2] J. Phys. Chem. B, 105, 5114 (2001) [Patent Document 丨] International Publication WO 2006/ 030605 A1 pamphlet disperses copper oxide (CuO) powder as described in Non-Patent Document 1; in the isopropanol (2-propanol) which is an organic solvent which repels the original, teaches 200902191 in isopropanol. The nano-sized copper particles in the method of irradiating the laser beam with copper oxide cause agglomeration, so that it is impossible to produce copper particles which are relatively stable in the formation. In the case where the organic solvent w: tit is used, the surface of the gold plate in which the gold plate disposed in the aqueous solution of the agent is irradiated with the laser beam is bonded to the surface of the active gold particles by the surfactant package. Covering, therefore, the energy needs to be concentrated by the respective sides to remove the coated interface to increase the energy density. When the field is first beamed, it will be water. In the method of irradiating the beam, the efficiency of the formation of the lightning particles by the steel sheet I is reduced. Non-meter-grade copper [Invention] The object of the present invention is to provide a metal microparticle containing no nano-level in the interface activity == agent and its dispersion = time == ready to manufacture efficiently - and the present invention A method for producing metal fine particles having a core/shell structure in which the seed center portion is a surface and a skin portion, and a metal 1 liquid: a manufacturing method, a method for producing the metal fine particles, and a gold method: (4) The method includes the steps of: The step of metal compound = = measurable organic solute; and the above-mentioned step of the two-agent singapore. As the 200902191 metal vulcanization, it is preferred to use a metal compound which is preferably a metal, a metal nitride or a metal salt, and an oxide 'transition metal. The metal microparticles of the present invention can be produced by a metal compound of the following raw materials and without exhibiting a reduction = = in a container penetrating as a laser beam, and a solvent is introduced into the metal compound to irradiate the laser beam. At this time, the dispersion of the metal fine particles formed in a state in which the organic solvent is dispersed in the organic solvent may be dispersed in the organic solvent used for the production of the towel by other ions. Adding another organic solvent, water, or the like to prepare gold portion replacement, or adding: the energy of the gold atom gold in the dispersion medium different in the organic falling agent used, and pulverizing into the rice grade gold > _Organic_Cooling' form Nai==金^^==================================================================================== The key, the metal microparticle production> Γ Γ Γ, can also be used without the addition of surfactants and the metal micro-particle sub-ships show excellent, so in terms of application, no need to cost to remove the coated surfactant At the south temperature, the enormous energy such as processing is performed. Therefore, the metal fine particle dispersion is applied to various applications such as the ink for guiding the electronic circuit device. The above and other objects, features and advantages of the present invention are obtained. It can be more clearly understood. The following is a detailed description of the preferred embodiment and is described in detail with reference to the drawings. ′′, 呪 [Embodiment] f The metal microparticles of the present invention are characterized in that they have a core/shell structure in which the center portion is a metal and the skin portion is a metal oxide, and is agglomerated by: The metal compound in the active organic solvent is irradiated by irradiating the laser beam. The type of the metal compound, the particle size of the substance, the amount of the metal compound, the type of the organic solvent, the output power of the first laser beam, and the irradiation of the laser beam; gas: gas state, introduction to The conditions in the organic solvent are appropriately selected, such as the amount of gas, and the characteristics of various gold particles as metal fine particles. = objects, metal sulfides, metal nitrides! : Metal oxygen can be used or used in a variety of ways. Yes: metal salt. The amount of the metal compound to be dispersed as a raw material is not particularly limited. The organic solvent which exhibits reductive properties (4) is preferably a solvent which is preferably used without limitation. The wavelength of the wavelength to be emitted is increased by the type of the two kinds of particles due to the increase in the production efficiency of the metal-rich particles. If the test is higher, when the illumination is less than or equal to 3600, ij is better than the output power of the laser 于, equal to 200 mJ/pulse, the pulse is 200902191 3〇 minutes) + shot = 1〇nS'1〇HZ' beam When the diameter is 忉, minus the reading beam, metal particles cannot be obtained. When the AO _ _, the beam straight through is 1 () surface, 3 () minutes / ^ ^ day 1 ^ ' irradiation time is not limited, the longer the irradiation time, the metal: :::: The more the generation. For the dispersion of metal compounds. It is better to irradiate the laser enthalpy: blade^;;gnetiC^} ^^ (bating material repeatedly follows the soil, and the metal compound as a raw material is a microparticle Si is used to control the gold Ο There is no particular limitation on the type of ===:::, the average particle diameter or shape of the target metal fine particles, etc. Next, the method for producing the metal fine particles (four) of the present invention will be described. , that is, the organic solvent for the reduction of the laser beam is added to the general description. Phosphate: ί metal: compound 'for example, metal oxide, metal sparse, and all-metal salt can be used. Among metal compounds, it is better = upper compound ' For example, a transition metal oxide, a metal sulfide, a transition metal compound, a transition metal salt can be preferably used. - Body sheet and σ are used. Copper oxide, cuprous oxide (Which training S 0X1 e), silver oxide, nickel oxide, oxidation start, oxidation, oxidation, oxygen 10 200902191 Molybdenum, silver sulfide, sulfurized steel, bismuth silver, copper chloride, silver chloride, chlorination, vulcanization, copper octoate , octanoic acid and other metal compounds., In terms of shape, the metal, in terms of shape, is reduced in productivity, and the compound is preferably a powder. The reason is, for example, H-shaped. Nanoparticles

,产的時原:Γ大小較為重要。當照射相同能, 所使用之金屬化合物的種類而有所不;Ϊ合: 較好的是二=方左面金屬化合物的大小亦 B·雷射光束 /、人重要的疋雷射光束。雷射光束的波長較好的是 使金屬化合物的吸收係數儘量增大的波長,為抑制奈米級 的金屬微粒子的晶體成長(crystalgrowth),較好的是使用 熱線效果較低的短波長雷射光束。 例如’雷射光束可使用摻鈥釔-鋁-石榴石雷射 (Neodymium doped yttrium aluminum garnet laser,Nd : YAG laser)、準分子雷射(excimer iaser)、半導體雷射、 染料雷射(dye laser)等。另外,為於相同條件下對較多 之金屬化合物照射高能量的雷射,較好的是脈波照射。 C.有機溶劑(分散介質) 有機溶劑是用以使金屬化合物分散的分散介質,本發 11 200902191 明中使用不表_雜的有録劑,從而可獲得具有中心 :為金屬、表皮部為金屬氧化物的核/殼結構的金屬微粒 m在分散介質中較少產生凝聚。另外,在應用方面, 無輯金屬微粒子設置專⑽保護層,因此在將此金屬微 粒子用於電子電路裝置科時容易分離,故而較佳。 =用於金屬化合物之分散介質的有機溶劑而言,當 欲金屬微粒子時,較好的是使用賴、甲基The original time of production: Γ size is more important. When the same energy is irradiated, the type of the metal compound used is different; the combination: preferably, the size of the metal compound of the left side of the square is also B. The laser beam / the important laser beam of the human being. The wavelength of the laser beam is preferably a wavelength at which the absorption coefficient of the metal compound is increased as much as possible. To suppress the crystal growth of the metal particles of the nano-scale, it is preferred to use a short-wavelength laser having a lower heat line effect. beam. For example, 'a laser beam can use a neodymium doped yttrium aluminum garnet laser (Nd: YAG laser), an excimer iaser, a semiconductor laser, a dye laser (dye laser) )Wait. Further, in order to irradiate a high-energy laser to a plurality of metal compounds under the same conditions, pulse wave irradiation is preferred. C. Organic solvent (dispersion medium) The organic solvent is a dispersion medium for dispersing a metal compound, and a recording agent which does not exhibit a miscellaneous amount is used in the present invention, thereby obtaining a center having a metal and a metal portion. The metal fine particles m of the core/shell structure of the oxide are less likely to agglomerate in the dispersion medium. Further, in terms of application, since the metal microparticles are provided with a special (10) protective layer, it is preferable to use the metal microparticles for easy separation when used in an electronic circuit device. = In the case of an organic solvent for a dispersion medium of a metal compound, when metal fine particles are desired, it is preferred to use a lysine or a methyl group.

^土酮r己内酉曰、環己酮等g同系溶劑,但亦可使用二甲 2醯:、Ν·甲基吡咯烷,、丙二醇單乙醚等極性溶劑或 甲本、十四辟”㈣。若使用表現㈣原性的有機溶 劑’則此錢溶齡將形成金射核子之表層外殼的氧化 皮膜還原’使金出,㈣形成凝賴,導致金屬微粒 子的分散穩定性受到損害。 另外,有機溶劑可單獨使用一種,亦可將兩 以上混合使用。 τ 7使用上述原料及裳置,以如下方式製造本發明之金屬 微粒子以及金屬微粒子分散液。 ,百先’使作為原料之金屬化合物的粉體分散於不表現 逛原作用之有機溶斷酮系溶财。紐,於辦下 此有機溶射的綱化合滅射雷射光束。金屬化合物高 效率地吸收_光相鮮,粉碎絲子級,同時由酮系 溶劑冷卻,生成奈米級(平均粒徑為Inm至5GGnm的範 圍^的金屬微粒子,且所生·金屬微粒子穩定地分散於 酮系溶劑中。所獲得的金屬微粒子具有中心部由金屬所形 12 200902191 成、表皮部由金屬氧化物卿成的核/殼結構,無須調配界 面活性劑等用以形成金屬微粒子之保護層的添加劑,且未 觀^到凝聚.沈殿。另外,若粉碎成原子級的金屬成分在冷 部刚相互鍵結’則生成次微米級的表現出高結晶性的金屬 微粒子’此種金屬微粒子在自㈣溶射不會分散,而作為 沈殿成分被回收。 並且,於本發明中,所謂平均粒徑,是指根據於25°C 下使用貝克艾庫爾特(Beckman Coulter)公司製造的 Submicron particle Size Analyzer N5 型(商品名)進行測定 所得的強度分佈而求出的平均粒徑。 [實施例1] 、使用和光純藥工業股份有限公司製造的氧化銅試劑作 為金屬化合物,並使用和光純藥工業股份有限公司製造的 丙酮特,試劑作為不表_原作用的有機溶劑。以具備電 磁攪拌裔的内容量為5〇〇 ml的玻璃製燒杯,稱取相對於 ,』0 ml的丙酮為1 g的氧化銅。使用Spectra_phyS;jcs公司 製造的Quanta-Ray PR〇_23〇摻斂釔_鋁_石榴石雷射作為雷 射照射裝置,照射波長為1〇64nm、脈波寬度為1〇ns、脈 波頻率為10 Hz、每1脈波的照射能量為1100 mJ的雷射 ,束30分鐘。照射雷射光束後,使用Tomy Seiko製造的 间速冷卻離心分離器Suprema 23,以每分鐘4〇〇〇轉對玻 璃製燒杯内的内容物進行5分鐘離心分離,藉此將沈澱物 與銅微粒子分散液分離。 對於分散於丙酮中的銅微粒子的分散粒徑,使用 13 200902191^ ketone r hexanone, cyclohexanone and other g homologous solvents, but can also use dimethyl 2:: Ν · methyl pyrrolidine, propylene glycol monoethyl ether and other polar solvents or aben, fourteen" (four) If the performance of the (four) original organic solvent is used, then the solute age will form the oxide film of the surface of the gold nucleus to reduce the gold, and (4) form a condensate, resulting in damage to the dispersion stability of the metal particles. The organic solvent may be used singly or in combination of two or more. τ 7 The above-mentioned raw materials and skirts are used to produce the metal fine particles and the metal fine particle dispersion of the present invention in the following manner. The powder is dispersed in an organic solvent-solvent that does not exhibit the original effect. New Zealand, in this organic spray, the combination of the laser beam is emitted. The metal compound absorbs _ light phase freshly, crushing the silk grade At the same time, it is cooled by a ketone solvent to form a metal fine particle having a nanometer size (having an average particle diameter of from Inm to 5 GGnm), and the generated metal fine particles are stably dispersed in a ketone solvent. The metal microparticles have a core/shell structure in which the center portion is formed by a metal shape 12 200902191 and the epidermis portion is formed of a metal oxide, and it is not necessary to adjust an additive for forming a protective layer of metal microparticles such as a surfactant, and the condensation is not observed. In addition, if the metal components pulverized into atomic grades are just bonded to each other in the cold portion, the submicron-sized metal microparticles exhibiting high crystallinity are produced, and such metal microparticles are not dispersed in the (fourth) spray, and In the present invention, the average particle diameter is measured by using Submicron Particle Size Analyzer Model N5 (trade name) manufactured by Beckman Coulter Co., Ltd. at 25 °C. The average particle diameter obtained by the obtained intensity distribution. [Example 1] A copper oxide reagent manufactured by Wako Pure Chemical Industries Co., Ltd. was used as a metal compound, and an acetone, reagent manufactured by Wako Pure Chemical Industries Co., Ltd. was used. An organic solvent that does not function as a raw material. A glass beaker having a content of 5 〇〇ml with electromagnetic stirring is called a glass beaker. In contrast, 0 ml of acetone is 1 g of copper oxide. Spectra_phyS; Quanta-Ray PR〇_23® manufactured by JCS Corporation is used to incorporate 钇_aluminum_garnet laser as a laser irradiation device with an irradiation wavelength of 1 〇 64nm, pulse width 1 ns, pulse frequency 10 Hz, laser energy of 1100 mJ per pulse, beam 30 minutes. After irradiating the laser beam, use inter-speed cooling by Tomy Seiko The centrifugal separator Suprema 23 centrifuged the contents of the glass beaker at 4 rpm for 5 minutes to separate the precipitate from the copper fine particle dispersion. Dispersion of the copper fine particles dispersed in acetone Particle size, use 13 200902191

Beckman-Coalter 公司製造的 submicron Particle SizeSubmicron Particle Size manufactured by Beckman-Coalter

Analyzer N5進行測定,結果平均粒徑為8〇nm。另外,銅 微粒子在分散液中的比例為0.3重量%。為研究分散穩定 性而對銅微粒子平均粒徑隨時間的變化進行測定。結果示 於圖1。根據圖1,70天後平均粒徑仍約為8〇 nm,變化 較少較為穩定。同樣,關於未沈澱而分散於丙酮中的銅微 粒子固體成分的比例,將設初始之銅微粒子固體成分的濃 〇 度為1時分散液中的銅微粒子濃度以指數表示的結果示於 圖2 ’ 70天後固體成分指數約為12,變化較少較為穩定。 另外,採取於室溫下放置】小時至丨週後的銅微粒子 分散液的一部分,並用丙酮加以稀釋,使用濱松光子學 (Hamamatsu Photonics )製造的PMA-11分光光度計來測 定所獲得之稀釋分散液的可見光吸光光譜。結果示於圖 3。為加以比較,故根據最大相似估計(Maximum Likelih〇c)dAs measured by Analyzer N5, the average particle size was 8 〇 nm. Further, the ratio of the copper microparticles in the dispersion was 0.3% by weight. The change in the average particle size of the copper microparticles over time was examined in order to study the dispersion stability. The results are shown in Figure 1. According to Figure 1, the average particle size after 70 days is still about 8 〇 nm, and the change is less stable. Similarly, regarding the ratio of the solid content of the copper microparticles which are not precipitated and dispersed in acetone, the concentration of the copper microparticles in the dispersion is expressed by an index when the concentration of the initial copper microparticle solid component is 1 is shown in Fig. 2' After 70 days, the solid content index was about 12, and the change was less stable. In addition, a part of the copper fine particle dispersion which was left at room temperature for a period of one hour to the last week was diluted with acetone, and the obtained diluted dispersion was measured using a PMA-11 spectrophotometer manufactured by Hamamatsu Photonics. Visible light absorption spectrum of the liquid. The results are shown in Figure 3. For comparison, based on the maximum similarity estimate (Maximum Likelih〇c)d

Estimate,Mle)理論’計算出含有具有完整球形之銅微粒 子的丙酮分散液的理論吸光光譜(包含吸收及散射的作 U 用)’示於圖4。圖4表示將分散在丙酮中的銅微粒子的總 重量保持為固定,使粒子的粒徑(直徑)自4 nm變化^ 100 nm為止時理論吸光光譜的變化。銅微粒子的光譜包括 出現在580 nm附近的表面電漿子(piasm〇n)吸收(及散 射)波峰、與自700 nm附近向短波長逐漸增加的帶間吸 收之重疊部分。散射的作用僅對較大之粒子而言較為重 . 要,尤其是會使長波長區域的尾端(tail)上升(參照例如 • 粒徑為100nm的光譜)。由於銅微粒子的粒禋不同,表面 14Estimate, Mle) Theory 'The theoretical absorption spectrum (including absorption and scattering for U) of an acetone dispersion containing copper particles having a complete spherical shape is shown in Fig. 4. Fig. 4 is a graph showing changes in the theoretical absorption spectrum when the total weight of the copper fine particles dispersed in acetone is kept constant so that the particle diameter (diameter) of the particles changes from 4 nm to 100 nm. The spectrum of the copper microparticles includes the surface plasmon (piasm〇n) absorption (and scattering) peaks appearing near 580 nm, and the overlap between the absorption bands from the vicinity of 700 nm to the short wavelength. The effect of scattering is only heavier for larger particles. In particular, the tail of the long wavelength region is raised (see, for example, a spectrum having a particle diameter of 100 nm). Due to the different grain size of the copper particles, the surface 14

200902191 ^int^and transition) . 裝子的強度、以絲面錢子的波峰位置產生較大 計銅微粒:::Γ。目反地藉由觀測此種吸光光譜來近似估 據圖3及圖4 ’可推斷實施例1巾所獲得之銅微粒 2平均粒徑小於等於5〇 nm。圖3中,自離心分離後放 、、心1★期間光譜強度整體下降,是由於離心、分離時未被 相對較大的粒子緩慢地進行重力沈殿而狀的。在 的1週内’光譜強度的變化非常小,且表面電裝子吸 二蜂的強度幾乎未產生變化。此結果印證了罐粒子分 2稀有的敎性,即麵微粒子分散射,不僅銅微粒 曰的凝聚(如根據圖4所賴的光譜產生較大變化)受 ^制,且銅微粒子的氧化(帶際過渡及表面電衆子吸收 句顯著減少)亦受到強有力的抑制。 使用Rigaku股份有限公司製造的χ射線繞射裝置 fG(XRD)、島津/Krat〇s製造的X射線光電子光譜分 、置AXIS_165 (XPS)以及日立製作所股份有限公司製 以的穿透式電子顯微鏡财嶋NAR (TEM),來對所獲得 的鋼微粒子騎結構分析。XR〇㈣定條件如下,χ ^線 源.Cu ’電屢:40 kV ’電流:20 mA。xps的測定條件如 :,檢測角度:90。’測定面積:0.3mmx0.7mm,定性光 f PE=16〇eV’定量光譜PE=l〇eV,深度方向分析:Ar 刻。ΤΕΜ的測定條件是,加速電壓為3〇〇 kv。測定結 果示於圖5〜圖9。 15 200902191 _、θ人,5所不的XRD測定結果可明確,銅微粒子中 子著銅(Cu)與氧化亞銅(Cu20)。另外,根據圖 戶、:的刀H殿物的XRd㈣定結杲可知,此分級沈殿物 • 刀,夜^的銅微粒子並不相同。另-方面,在圖7所示 之XPS測疋結果中並未觀測到伴聲(s滅如p⑽让),據此 可月t銅微粒子中不存在二價銅(Cu〇)。另外,根據圖 8及® 8 (2)所示的沿深度方向對奈米級的銅微粒子 Ο 進行Ar飯刻日年的奥傑光譜(Auger spectra)可明確,銅微 粒子之表皮部的外殼巾存在氧化亞銅(Cu2〇) ,内部的核 子在銅(Cu)。並且’根據圖9所示的TEM觀察照片可 知,表皮部的外殼的厚度為2nm〜4nm。 ,接著,使用分配器(dispenser)在玻璃基板上形成厚 ^為的銅微粒子的配線層,於氮氣環境下以及含有 3 /〇之氫的氮氣環境下將此配線層配置於i 〇 〇亡的加熱板 上开y成厚度為1 //也的導電層,使用Dia instruments股 伤有限公司製造的電阻率計Loresta GP MCP-T610測定表 J 面電阻,結果顯示為0.1 〇/□。 [實施例2] 代替和光純藥工業股份有限公司製造的氧化銅試劑, 分別使用日本化學產業股份有限公司製造的氧化銅、和光 純藥工業股份有限公司製造的氧化亞銅試劑、和光純藥工 業股份有限公司製造的氧化銀特級試劑、和光純藥工業股 份有限公司製造的氧化鈕(V)試劑、和光純藥工業股份 有限公司製造的氧化鉞試劑、和光純藥工業股份有限公司 16 200902191 製造的氧化鎳(Π )試劑、希愛化成(C.I.KASEI)股份有 限公司製造的氧化銘Nonotek、和光純藥工業股份有限八 司製造的氧化鉬(IV) —級試劑、和光純藥工業股份有限 公司製造的氮化|巨一級試劑、Strem Chemicals, Inc.製造的 硫化鈕(IV)、Chemirite工業股份有限公司製造的高純度 氣化銅,作為貫施例1的金屬化合物。結果均可獲得相對 應的金屬微粒子。 、200902191 ^int^and transition) . The strength of the device, with the peak position of the silky money, produces a larger amount of copper particles:::Γ. Obviously, by observing the absorption spectrum to approximate the evaluation of Figs. 3 and 4', it can be inferred that the average particle diameter of the copper particles 2 obtained in the towel of Example 1 is 5 〇 nm or less. In Fig. 3, the spectral intensity is decreased as a whole during the centrifugation and after the centrifugation, and the particles are not slowly settled by the relatively large particles during centrifugation or separation. Within 1 week, the change in spectral intensity was very small, and the intensity of the surface electrical insulator was almost unchanged. This result confirms that the rareness of the can particles is 2, that is, the scattering of the surface particles, not only the aggregation of the copper particles (such as the large change according to the spectrum shown in Fig. 4), but also the oxidation of the copper particles. The transition and the surface electrician's absorption sentence are significantly reduced) are also strongly suppressed. X-ray photoelectron spectroscopy manufactured by Rigaku Co., Ltd., X-ray photoelectron spectroscopy manufactured by Shimadzu/Krat〇s, AXIS_165 (XPS), and a transmission electron microscope made by Hitachi, Ltd.嶋NAR (TEM), to analyze the structure of the obtained steel particles. The conditions of XR〇(4) are as follows, χ ^ line source. Cu ′ electric repeat: 40 kV ′ current: 20 mA. The measurement conditions of xps are as follows: detection angle: 90. 'Measurement area: 0.3 mm x 0.7 mm, qualitative light f PE = 16 〇 eV' quantitative spectrum PE = l 〇 eV, depth direction analysis: Ar engraved. The measurement condition of ΤΕΜ is that the acceleration voltage is 3 〇〇 kv. The measurement results are shown in Fig. 5 to Fig. 9. 15 200902191 _, θ person, 5 X-ray XRD measurement results can be clear, copper particles in the middle of the copper (Cu) and cuprous oxide (Cu20). In addition, according to the XRd (four) of the knives of the knives and the knives of the knives, it is known that the grading of the slabs, the knives, and the copper particles of the night are not the same. On the other hand, no accompanying sound was observed in the XPS measurement results shown in Fig. 7 (s-de-suppressed as p(10) let), whereby bivalent copper (Cu〇) was not present in the copper particles. In addition, according to the Auger spectra of the nano-sized copper microparticles 沿 in the depth direction shown in Figs. 8 and 8 (2), the outer surface of the copper micro-particles can be clearly defined. There is cuprous oxide (Cu2〇) and the inner nucleus is in copper (Cu). Further, it can be seen from the TEM observation photograph shown in Fig. 9 that the thickness of the outer shell of the skin portion is 2 nm to 4 nm. Then, a wiring layer of thick copper microparticles was formed on the glass substrate by using a dispenser, and the wiring layer was placed in a nitrogen atmosphere and a nitrogen atmosphere containing 3/〇 of hydrogen. A conductive layer having a thickness of 1 // was opened on the hot plate, and the surface resistance of the meter was measured using a resistivity meter Loresta GP MCP-T610 manufactured by Dia Instruments Co., Ltd., and the result was 0.1 〇 / □. [Example 2] In place of the copper oxide reagent manufactured by Wako Pure Chemical Industries Co., Ltd., copper oxide manufactured by Nippon Chemical Industry Co., Ltd., cuprous oxide reagent manufactured by Wako Pure Chemical Industries Co., Ltd., and Wako Pure Chemical Industries, respectively. A special silver oxide reagent manufactured by the company, a oxidizing button (V) reagent manufactured by Wako Pure Chemical Industries Co., Ltd., and a cerium oxide reagent manufactured by Wako Pure Chemical Industries Co., Ltd., and Wako Pure Chemical Industries Co., Ltd. 16 200902191 Nickel oxide (Π) reagent, oxidized Nonotek manufactured by CIKASEI Co., Ltd., and molybdenum(IV) oxide-grade reagent manufactured by Kokubu Pure Chemical Industries Co., Ltd., and manufactured by Wako Pure Chemical Industries Co., Ltd. The nitriding|macro-level reagent, the vulcanized button (IV) manufactured by Strem Chemicals, Inc., and the high-purity vaporized copper manufactured by Chemirite Industries Co., Ltd. are used as the metal compound of the first embodiment. As a result, the corresponding metal microparticles can be obtained. ,

[實施例3] 使用7 -丁内酯、環己酮代替丙酮,作為實施例1中的 不表現還原作用的有機溶劑。結果均可獲得分散穩定性優 異的奈米級(平均粒徑均為80nm)的銅微粒子。 [實施例4] 於實施例1中,使用100ml的丙酮及1〇1111的厂丁内 ,作為有機溶劑’生成金屬微粒子,之後,將作為分散介 貝的丙_去約9G ml從而將錢賴濃縮,然後添加異 =醇’製備出關成分量為〇.3重量%的銅微粒子分散 攻。結果,可獲得分散穩定性優異的奈米級的銅微粒子。 可期待將本發明之金屬微粒子用於電子電路裝置的導 =成用油墨等中。另外,可使用僅由雷射光束照射設備 的-=金屬化ί齡散於有機溶射的容^基本構成 、間易设備’來高效率地製造上述金屬微粒子。 2所述’可期待本㈣於工紅產生較大之影響效 果本發明之產業上之可利用性極大。 雖然本發明已以較佳實施例揭露如上,然其並非用以 17 200902191 限定本發明,任何熟習此技藝者, 當可作些許之更動與濁飾,因此本:=:ΐ 乾圍以見後附之申請專利範圍所界定者為準。之保暖 【圖式簡單說明】 圖1是表示分散液中的鋼微粒子的平均粒 變化^圖表,7G天後,亦與初始工、\的 nm ’據此可知,銅微粒子的分散穩定性優里。為8〇 化微r固體成分隨時間的變 雜設為!時分散液中的銅微分的 =據圖,7〇天後,成分=== 同的值’據此可知’銅微粒子的分散穩定性優里。 依:是=:分:==:放置時間相 1週内吸光光譜的變化非當 小,且表面電衆子波蜂的強度幾乎未產生變化。此 ,了銅微粒子分散液稀有的穩定性,即在銅微粒子= ;受==:的凝聚受到抑制’且銅微粒子的氧化 圖4是表示根據廳理論而計算出的球狀銅微粒子分 理极光光譜的粒徑相依性的圖,根據圖4盘圖3 實施例1中所獲得的銅微粒子的平均粒徑 料表示分散液中之奈米級的銅微粒子的獅測 果的圖,根據圖5可明確,分散液中存在Cu及Cu2〇。 18 Ο ί) 200902191 另外亦可^ ’整體上波峰之範圍變廣,產生微晶。 圖6是表不作為離心分離後的分級沈澱物而獲得之鋼 微粒子的XRD測定結果的圖,根制6可知,衍生生成 的具有大於顺粒子的粒徑的分級沈㈣中,亦存在铜 (Cu)及氧化亞銅(Cu2〇),且銅(Cu)❸比例較高。 圖7是表示奈米級的銅微粒子的xps測定結果中 =f,=進行之深度方向的定性分析結杲的圖。根^ ^。,未_到伴峰’據此可知,銅微粒子中不存在二價 光譜S1二=是ί示奈米級的銅微粒子的奥傑 時的奥傑先譜(定性分析)的結= 内部前進,逐漸=化=間增加,即隨著自表層向 冃〇 θ 銅(CU2〇)變成銅(Cu)。 圏,:據圖?可矛知奈=,子的厕觀察照片的 【主要元件符二Γ子的外殼層為2 —。 盔 19[Example 3] 7-butyrolactone and cyclohexanone were used instead of acetone, and the organic solvent which does not exhibit a reduction effect in Example 1 was used. As a result, copper microparticles having a nano-grade (average particle diameter of 80 nm) excellent in dispersion stability were obtained. [Example 4] In Example 1, 100 ml of acetone and 1 〇1111 were used as the organic solvent to generate metal fine particles, and then, as a dispersed yam, the amount of C _ was about 9 G ml, thereby Concentration, then adding iso-alcohol' to prepare a copper microparticle dispersion attack with a component content of 〇3% by weight. As a result, nano-sized copper fine particles excellent in dispersion stability can be obtained. It is expected that the metal fine particles of the present invention can be used in an ink for forming an electronic circuit device or the like. Further, it is possible to efficiently manufacture the above-mentioned metal fine particles by using a material of a laser beam irradiation apparatus-=metallization, a basic composition, and an organic device. 2 The above-mentioned expectation (4) has a large influence on the work red, and the industrial availability of the present invention is extremely large. Although the present invention has been disclosed above in the preferred embodiments, it is not intended to limit the invention to 17 200902191, and anyone skilled in the art can make some modifications and tanning, so this:=:ΐ The scope defined in the patent application is subject to change. Keeping warmer [Simplified illustration of the drawing] Fig. 1 is a graph showing the average particle change of the steel fine particles in the dispersion. After 7 days, the initial work, and the nm of the \', it is known that the dispersion stability of the copper fine particles is excellent. For the 8 〇 micro-r solid component over time is set to! In the case of the copper differential in the dispersion liquid, according to the graph, after 7 days, the composition === the same value. Thus, it can be seen that the dispersion stability of the copper microparticles is excellent. According to: Yes =: points: ==: Placement time phase The change of the absorption spectrum in 1 week is not small, and the intensity of the surface electric bees has hardly changed. Thus, the rare stability of the copper microparticle dispersion, that is, in the copper microparticles =; the aggregation of ==: is suppressed' and the oxidation of the copper microparticles is shown in Fig. 4 is a spherical copper microparticle fractional aurora calculated according to the theory of the chamber A graph of the particle size dependence of the spectrum, according to the disk of FIG. 4, the average particle size of the copper microparticles obtained in Example 1 is a graph showing the lion fruit of the nano-scale copper microparticles in the dispersion, according to FIG. It is clear that Cu and Cu2 are present in the dispersion. 18 Ο ί) 200902191 In addition, the range of peaks on the whole can be widened to produce crystallites. Fig. 6 is a graph showing the results of XRD measurement of steel fine particles obtained as a fractionated precipitate after centrifugation, and it is known from the root system 6 that copper (Cu) is also present in the fractionated sink (four) having a larger particle diameter than the cis particles. ) and cuprous oxide (Cu 2 〇), and the ratio of copper (Cu) bismuth is high. Fig. 7 is a graph showing the qualitative analysis of the depth direction in the xps measurement results of the copper-based fine particles of the nano-scale. Root ^ ^. According to this, there is no bivalent spectrum in the copper microparticles. S1 is the knot of the Aojie prologue (qualitative analysis) of the auspicious copper particles. Gradual = change = increase, that is, as the self-surface layer turns to 冃〇θ copper (CU2〇) to copper (Cu).圏,: According to the map? Can spear Zhinai =, the child's toilet observation photo [the main component of the second scorpion shell layer is 2 -. Helmet 19

Claims (1)

200902191 十、申請專利範圍: 〆1 么一種金屬微粒子的製造方法,此金屬微粒子具有中 :·、、金屬、表皮部為金屬氧化物的核/殼結構,此金屬微 包括如下步驟:使金屬化合物分散於不表 士原、的有機溶劑中的步驟;以及之後對上述有機溶劑 中的上述金屬化合物照射雷射光束的步驟。 、2’如申叫專利範圍第1項所述之金屬微粒子的製造方 ΐ趟ίΐΐ用金屬氧化物、金屬硫化物、金屬氮化物或金 屬鹽來作為上述金屬化合物。 、3·如申請專利範圍第1項所述之金屬微粒子的製造方 法,其中使用過渡金屬化合物來作為上述金屬化合物。 、4.如申請專利範圍帛3項所述之金屬微粒子的製造方 法’其中上述過渡金屬化合物為過渡金屬氧化物、過渡金 屬硫化物、過渡金屬氮化物或過渡金屬鹽。 5. 如申請專利範圍第丨項至第4項中任—項所述之金 屬微粒子的製造方法,其中上述金屬化合物為粉體。 6. 如申請專利範圍第1項至第4項中任一項所述之金 屬微粒子的f造方法,其巾不表現還原個的上述有機溶 劑為酮系有機溶劑。 7. 如申請專利範圍第1項至第4項中任一項所述之金 屬微粒子的製造方法,其中上述金屬微粒子的平均粒徑在 1 nm至500 ηΠι的範圍内,且穩定地分散於上述有機溶劑 中。 8. —種金屬微粒子分散液的製造方法,此金屬微粒子 20 200902191 ^有:心部為金屬、表皮部為金屬氧化物的核/殼結構,此 物粒子分散液的製造方法包括如下步驟:使金屬化合 刀政於有機溶劑中的步驟;以及之後對上述有機溶劑中 、上述金屬化合物照射雷射光束的步驟。 制、告9,如申請專利範圍第8項所述之金屬微粒子分散液的 4方法,其中使用金屬氧化物、金屬硫化物、金屬氮化 物或金屬鹽來作為上述金屬化合物。 10.如申请專利範圍第8項所述之金屬微粒子分散液 j製ie方法’其中使用過渡金屬化合物來作為上述金屬化 合物。 、制U.如申請專利範圍第1〇項所述之金屬微粒子分散液 的製造方法,其中上述過渡金屬化合物為過渡金屬氧化 物過渡金屬硫化物、過渡金屬氮化物或過渡金屬鹽。 入12.如申凊專利範圍第8項至第u項中任一項所述之 二屬微粒子分散_製造綠,其巾±述金屬化合物為粉200902191 X. Patent application scope: 〆1 A method for producing metal microparticles, wherein the metal microparticles have a core/shell structure in which the metal and the skin portion are metal oxides, and the metal micro includes the following steps: a step of dispersing in an organic solvent which is not a precursor; and a step of irradiating the above-mentioned metal compound in the above organic solvent with a laser beam. 2', the metal fine particles described in the first aspect of the patent application are manufactured by using a metal oxide, a metal sulfide, a metal nitride or a metal salt as the above metal compound. 3. The method for producing metal fine particles according to claim 1, wherein a transition metal compound is used as the metal compound. 4. The method for producing metal microparticles according to claim 3, wherein the transition metal compound is a transition metal oxide, a transition metal sulfide, a transition metal nitride or a transition metal salt. 5. The method for producing a metal microparticle according to any one of the preceding claims, wherein the metal compound is a powder. 6. The method for producing metal microparticles according to any one of claims 1 to 4, wherein the organic solvent in which the towel does not exhibit a reduction is a ketone organic solvent. 7. The method for producing a metal fine particle according to any one of claims 1 to 4, wherein the metal fine particles have an average particle diameter in the range of 1 nm to 500 ηΠ, and are stably dispersed in the above. In organic solvents. 8. A method for producing a metal fine particle dispersion, wherein the metal fine particle 20 200902191 has a core/shell structure in which a core portion is a metal and a skin portion is a metal oxide, and the method for producing the particle dispersion liquid comprises the steps of: a step of metallizing a knife in an organic solvent; and then irradiating the above-mentioned metal compound with a laser beam in the above organic solvent. The method of claim 4, wherein the metal fine particle dispersion according to claim 8 is a metal oxide, metal sulfide, metal nitride or metal salt as the metal compound. 10. The metal fine particle dispersion according to claim 8, wherein a transition metal compound is used as the metal compound. The method for producing a metal fine particle dispersion according to the above aspect of the invention, wherein the transition metal compound is a transition metal oxide transition metal sulfide, a transition metal nitride or a transition metal salt. 12. The two-particulate microparticle dispersion_manufacturing green according to any one of claims 8 to 5, wherein the metal compound is powder 13.如申請專利範圍第8項至第η項中任— =微粒子分散液的製造方法,其中上述有機溶劑為= 現逷原作用的有機溶劑。 表 微粒子分散液 機溶劑為酮系 14·如申請專利範圍第13項所述之金屬 的製造方法,其中不表現還原作用的上述有 有機溶劑。 15.如申請專利範圍第8項至第u項中任 至屬微粒子分散㈣麟枝,其巾上述輕微粒子^ 200902191 均粒徑在1 nm至獨nm的範_,且穩定地分散 有機溶劑中。 、上返 16. —種金屬微粒子,此金屬微粒子具有中心部 屬、表皮部為金屬氧化麵核/殼結構,此金屬微粒子是葬 由下述步’製造的:使金屬化合齡散於有機溶劑中^ ^驟;以及之後對上述有機溶劑中的上述金屬化合物照射 雷射光束的步驟。 17. 一種金屬微粒子分散液,此金屬微粒子具有中心部 =金屬、表皮部為金屬氧化物的核/殼結構,此 ^散液是藉由下述步驟而製造的:使金屬化合 ^容射的步驟;以狀賴上述錢溶射的上述金屬 化合物照射雷射光束的步驟。 2213. The method for producing a fine particle dispersion as in the eighth to seventh aspects of the patent application, wherein the organic solvent is an organic solvent which is currently active. The microparticle dispersion liquid solvent is a ketone system. The method for producing a metal according to claim 13, wherein the organic solvent does not exhibit a reduction effect. 15. As in the scope of the patent application range 8 to u, the microparticle dispersion (four) Linzhi, the above-mentioned light particles ^200902191 have a particle size ranging from 1 nm to a single nm, and are stably dispersed in an organic solvent. . And returning to a metal microparticle, the metal microparticle has a central portion, and the epidermis portion is a metal oxide surface core/shell structure, and the metal microparticle is buried by the following steps: the metallization is dispersed in an organic solvent. And the step of irradiating the above-mentioned metal compound in the above organic solvent with a laser beam. 17. A metal fine particle dispersion having a core/shell structure having a central portion = a metal and a metal oxide layer in the skin portion, the dispersion being produced by the following steps: causing the metal to be fused a step of irradiating a laser beam with the above-described metal compound dissolved in the above-mentioned money. twenty two
TW097109904A 2007-03-22 2008-03-20 Metal particle and fabricating method thereof, and metal particle dispersion solution and fabricating method thereof TWI499466B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007075471 2007-03-22

Publications (2)

Publication Number Publication Date
TW200902191A true TW200902191A (en) 2009-01-16
TWI499466B TWI499466B (en) 2015-09-11

Family

ID=39765966

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097109904A TWI499466B (en) 2007-03-22 2008-03-20 Metal particle and fabricating method thereof, and metal particle dispersion solution and fabricating method thereof

Country Status (3)

Country Link
JP (1) JP5571375B2 (en)
TW (1) TWI499466B (en)
WO (1) WO2008114866A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI476786B (en) * 2011-11-14 2015-03-11 Ishihara Chemical Co Ltd Copper particulate dispersion, conductive film forming method and circuit board

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5360595B2 (en) * 2007-07-31 2013-12-04 日立金属株式会社 Cu-based wiring film
JP2010097808A (en) * 2008-10-16 2010-04-30 Hitachi Chem Co Ltd Low-viscosity dispersion liquid, and copper nanoparticle wiring and composite material using same
JP2010209366A (en) * 2009-03-06 2010-09-24 Dic Corp Method for producing metal nanoparticle
JP5119362B2 (en) * 2009-07-30 2013-01-16 国立大学法人京都大学 Metal-based nanoparticles, dispersion containing the same, and method for producing the same
JP5866690B2 (en) * 2009-09-04 2016-02-17 国立研究開発法人産業技術総合研究所 Method for producing spherical nanoparticles and spherical nanoparticles obtained by the production method
KR101329081B1 (en) * 2011-04-12 2013-11-14 한국수력원자력 주식회사 Method for manufacturing metal nanoparticle of core-shell structure having excellent oxidation stability
JP2013129903A (en) * 2011-11-21 2013-07-04 Toyota Central R&D Labs Inc Method for producing inorganic nanoparticle and inorganic nanoparticle dispersion
JP5897437B2 (en) * 2012-09-14 2016-03-30 富士フイルム株式会社 Manufacturing method of conductive layer, printed wiring board
JP6133149B2 (en) * 2013-06-28 2017-05-24 古河電気工業株式会社 Conductive paste and manufacturing method thereof
CN110945973A (en) * 2017-06-05 2020-03-31 维纳米技术公司 Flocs of geometrically discrete metal nanoparticle compositions and methods of forming the same
JP6964898B2 (en) * 2017-10-16 2021-11-10 国立大学法人山形大学 Method for Producing Complex Containing Metal Coated with Solid Fine Particles

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259464A (en) * 2003-02-24 2004-09-16 Mitsubishi Paper Mills Ltd Copper/amine composition
JP3979344B2 (en) * 2003-05-27 2007-09-19 住友金属鉱山株式会社 Dispersed aqueous solution and dispersed organic solvent of nickel powder, method for producing them, and conductive paste using them
WO2006030605A1 (en) * 2004-09-15 2006-03-23 Kyoto University Metal microparticle and process for producing the same
JP4879473B2 (en) * 2004-10-25 2012-02-22 三井金属鉱業株式会社 Flake copper powder, method for producing flake copper powder, and conductive slurry containing flake copper powder
JP2006316311A (en) * 2005-05-12 2006-11-24 Institute Of Physical & Chemical Research Photoreduction method for metal complex ion
JP2008000654A (en) * 2006-06-21 2008-01-10 3R Corp Manufacturing method of nanoparticle with a particle size of 200 nm or less
JP5047706B2 (en) * 2006-06-30 2012-10-10 エヌ・イーケムキャット株式会社 Method for producing metal nanoparticles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI476786B (en) * 2011-11-14 2015-03-11 Ishihara Chemical Co Ltd Copper particulate dispersion, conductive film forming method and circuit board

Also Published As

Publication number Publication date
JPWO2008114866A1 (en) 2010-07-08
WO2008114866A1 (en) 2008-09-25
JP5571375B2 (en) 2014-08-13
TWI499466B (en) 2015-09-11

Similar Documents

Publication Publication Date Title
TW200902191A (en) Metal particle and fabricating method thereof, and metal particle dispersion solution and fabricating method thereof
KR101317067B1 (en) Process for producing metal, microparticle
JP5062721B2 (en) Manufacturing method of nano-sized wire
Liu et al. Precise assembly and joining of silver nanowires in three dimensions for highly conductive composite structures
Mahjoub et al. Synthesis and study of stable and size-controlled ZnO–SiO2 quantum dots: application as a humidity sensor
Amikura et al. Copper oxide particles produced by laser ablation in water
TW201118041A (en) Synthesis of silver, antimony, and tin doped bismuth telluride nanoparticles and bulk bismuth telluride to form bismuth telluride composites
Ko et al. Cu2O nanowires in an alumina template: Electrochemical conditions for the synthesis and photoluminescence characteristics
Dejene et al. Optical properties of ZnO nanoparticles synthesized by varying the sodium hydroxide to zinc acetate molar ratios using a Sol-Gel process
Rodríguez Núñez et al. Wavelength-controlled etching of silicon nanocrystals
Su et al. The surface-plasmon-resonance and band bending effects on the photoluminescence enhancement of Ag-decorated ZnO nanorods
Antolini et al. Laser-induced nanocomposite formation for printed nanoelectronics
Sagadevan Synthesis, Structural, Surface Morphology, Optical and Electrical Properties of Silver Oxide Nanoparticles.
Muthu Kumaran et al. Size dependent structural, optical and morphological properties of ZnS: Cu thin films
Haider et al. Characterization of laser dye concentrations in ZnO nanostructures for optimization of random laser emission performance
Abdelghany et al. Dielectric behavior and AC conductivity of PEO/CMC polymer blend incorporated with gold nanoparticles produced by laser ablation
Rai et al. Microwave assisted zinc sulphide quantum dots for energy device applications
Bera et al. Time-evolution of photoluminescence properties of ZnO/MgO core/shell quantum dots
Zhao et al. Assembly of two-dimensional ordered monolayers of nanoparticles by electrophoretic deposition
Alwan et al. Optimization of photoluminescence properties of Porous silicon by adding gold nanoparticles
Pathak et al. Modulation of optoelectronic properties of ZnO/PbO core/shell nanocomposite for memcapacitive application
Tung et al. Thermally assisted photoreduction of vertical silver nanowires
JP2009057594A (en) Method for manufacturing fine metal particle
Rabchinskii et al. Fluorescence enhancement of monodisperse carbon nanodots treated with aqueous ammonia and hydrogen peroxide
KR20160132730A (en) Manufacturing process of graphene coated metal fine structures

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees