TW200849611A - Dye-sensitized solar cell - Google Patents

Dye-sensitized solar cell Download PDF

Info

Publication number
TW200849611A
TW200849611A TW96120200A TW96120200A TW200849611A TW 200849611 A TW200849611 A TW 200849611A TW 96120200 A TW96120200 A TW 96120200A TW 96120200 A TW96120200 A TW 96120200A TW 200849611 A TW200849611 A TW 200849611A
Authority
TW
Taiwan
Prior art keywords
dye
layer
substrate
solar cell
sensitized solar
Prior art date
Application number
TW96120200A
Other languages
Chinese (zh)
Inventor
Han-Yi Chang
Original Assignee
Prodisc Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prodisc Technology Inc filed Critical Prodisc Technology Inc
Priority to TW96120200A priority Critical patent/TW200849611A/en
Publication of TW200849611A publication Critical patent/TW200849611A/en

Links

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

A dye-sensitized solar cell includes a first electrode substrate, a second electrode layer and a first reaction laminate layer. The first electrode substrate includes a first substrate and a first electrode layer. The first substrate comprises a first rough surface. The first electrode layer is disposed on the first rough surface. The second electrode layer is disposed opposite to the first electrode layer. The first reaction layer is disposed between the first electrode layer and the second electrode layer.

Description

200849611 — 九、發明說明: - 【發明所屬之技術領域】 本發明係關於一種太陽能電池,尤其是一種染料敏化 太陽能電池。 【先前技術】 隨著消耗性能源的耗竭危機以及全球環保意識的高 旅’有效利用各種再生能源已成為現今極為重要的課題。 由於太陽能係為生活中最顯而易見的再生能源之一,因 此’太陽能電池技術也成為現今業者發展重點之《一。依太 陽能電池的種類則可分為矽晶圓式太陽能電池(silicon wafer-based solar cells )、薄膜式太陽能電池(thin-film solar cell )及染料破化太陽能電池(Dye-Sensitized Solar Cells, DSSC)。其中,染料敏化太陽能電池由於具有成本低、製 程容易及可撓屈等特性,也逐漸成為市場主流之一。 請參照圖1所示,習知之染料敏化太陽能電池1包含 % 一第一電極基板11、一反應積層12及一第二電極基板 13 ’其中反應積層12設置於第一電極基板η及第二電極 基板13之間。第一電極基板11具有一第一基板111,其 上依序設置一第一電極層112及一金屬層113。而反應積 層12則包含一電解質層121、一染料層122及一金屬氧化 物層123 ’且三者依序設置於金屬層113之上。第二電極 基板13則包含一第二電極層131及一第二基板132,兩者 ,依序設置於金屬氧化物層123之上。 200849611 當光線L入射至染料敏化太陽能電池1後,染料層122 中的染料會吸收光線L並產生電子,電子經由金屬氧化物 層123作為導電層,並藉第二電極層131作為陰極將電子 引導至外部電路C1,而與第一電極基板11之陽極連接形 成一完整迴路。另外,失去電子的染料層122可由電解質 層121得到電子,電解質層121之電子則由第一電極基板 11中的金屬層113與電解質層121產生氧化還原反應而 來。因此,第一電極基板11與電解質層121的接觸面積 愈大,則第一電極基板11中的金屬層113與電解質層121 產生氧化還原反應的次數也愈多,故會影響染料敏化太陽 能電池1的光電轉換效率。 而習知技術中第一電極基板11與電解質層121接觸 的表面係為一平坦表面,因此,在入射光線L固定的情況 下,若欲藉由提高第一電極基板11與電解質層121的氧 化還原反應的效率,來提升染料敏化太陽能電池1的光電 轉換效率,則勢必要增加第一電極基板11的尺寸。如此 一來,則會造成製作成本的提高,以及應用範圍受到限制 等缺點。 因此,如何設計一種不需增加染料敏化太陽能電池之 尺寸大小,且可提升光電轉換效率的染料敏化太陽能電 池,實屬目前重要課題之一。 【發明内容】 有鑑於上述課題,本發明之目的為提供一種不需增加 6 200849611 染料敏化太陽能電池之尺寸大小,且可提升光電轉換效率 的染料敏化太陽能電池。 緣是,為達上述目的,依據本發明之一種染料敏化太 陽能電池包含一第一電極基板、一第二電極層及一'第一反 應積層。第一電極基板係具有一第一基板及一第一電極 層,第一基板具有一第一凹凸表面,第一電極層設置於第 一凹凸表面之上。第二電極層係與第一電極層對向設置。 第一反應積層係設置於第一電極層與第二電極層之間。 承上所述,因依據本發明之染料敏化太陽能電池係於 第一電極基板上形成一凹凸表面,使第一電極基板與第一 反應積層的接觸面積增加。與習知技術相比較,本發明之 染料敏化太陽能電池不僅第一電極基板與第一反應積層 的接觸面積大為增加,且光電轉換效率亦可得到相應的提 升。又,由於反應積層與電極基板的接觸面積增加,本發 明之染料敏化太陽能電池的面板尺寸大小不僅不需再增 加,甚至可縮小面板尺寸,從而增加本發明的應用範圍。 【實施方式】 以下將參照相關圖式,說明依據本發明複數實施例之 染料敏化太陽能電池。, 第一實施例 請參照圖2所示,染料敏化太陽能電池2包含一第一 電極基板21、一第一反應積層22及一第二電極層231。 第一電極基板21包含一第一基板211、一第一電極層 200849611 212及一第一金屬層213。其中,第一基板211例如為剛 性基板、柔性基板、玻璃基板或塑膠基板,配合不同材質 的第一基板211,可利用如模具加工、模板或研磨後加工 等等不同的技術,來於第一基板211上加工形成一第一凹 凸表面211a’且第一凹凸表面211a上的凹部與凸部之南 度差為10奈米以上。 另外,請參照圖2及圖3A至圖3D所示,第一凹凸表 面21 la除可如圖2中由隨機不規則形狀的凹部與凸部所構 成外,凹部或凸部之截面形狀可利用如半圓形(如圖3A 所示)、三角形(如圖3B所示)、山形(如圖3C所示)、 矩形、梯形、多邊形以及其他各種不同的幾何形狀,以單 一形狀重複組合形成,或不同形狀組合配合週期性(如圖 3D所示)或非週期性排列的凹部與凸部所構成。 第一電極層212係設置於第一凹凸表面211a上,第一 電極層212之材質可選自氧化銦錫(in(jiurn tin oxide, IT0)、氧化銦鋅(indium zinc oxide, IZ0)以及氧化鋁鋅 (aluminum zinc oxide,AZO )所構成的群組之至少其中之 一。另外,第一金屬層213之材質則為鉑(Pt),且第一金 屬層23係設置在第一反應積層22之上。由於本發明在第 一基板211上設置有第一凹凸表面2lla,因此沿著第一凹 凸表面211a設置的第一電極層212及第一金屬層213之表 面也形成一凹凸表面,使得第一電極基板21之表面積較 習知技術更為增加。 第一反應積層22具有一第一電解質層221、一第一染 8 200849611 料層222及—第一金屬氧化物層223。又,三者係依序設 置於第一金屬層213之上。其中,第一電解質層221之^ 料例如為碘離子(厂/13+)溶於有機溶劑中所形成,而第一 染料層222中用來吸收光線產生反應的染料則可利用有機 材料、热機材料或有機無機混合材料。第一金屬氧化物層 223之材質則可例如為二氧化鈦(η%)。第二電極層 則設置於第一金屬氧化物層223之上,且其係利用與第一 電極層212相同之材質。 因此,當光線L入射至染料敏化太陽能電池2時,第 一染料層222中染料分子的價電子受光激發後,躍昇至高 月b階怨成為自由電子,再經由第一金屬氧化物層作為 導電層’亚藉第二電極層231作為陰極將電子引至外部電 路C2,再與第一電極基板21連接形成一完整迴路。而第 木,層。222中失去電子的染料分子則經由第一電解質層 提供電子,第一電解質層221則藉由與作為陽極的第 :金屬層213產生氧化還原反應獲得電子,以此形成一循200849611 - IX. DESCRIPTION OF THE INVENTION: - Technical Field of the Invention The present invention relates to a solar cell, and more particularly to a dye-sensitized solar cell. [Prior Art] With the exhaustion of consumable energy and the global environmental awareness, the effective use of various renewable energy sources has become an extremely important issue today. Since solar energy is one of the most obvious renewable energy sources in life, solar cell technology has become the focus of today's business development. According to the type of solar cells, it can be divided into silicon wafer-based solar cells, thin-film solar cells, and Dye-Sensitized Solar Cells (DSC). . Among them, dye-sensitized solar cells have gradually become one of the mainstream in the market due to their low cost, easy process and flexibility. Referring to FIG. 1, a conventional dye-sensitized solar cell 1 includes a first electrode substrate 11, a reaction laminate 12, and a second electrode substrate 13'. The reaction laminate 12 is disposed on the first electrode substrate η and the second Between the electrode substrates 13. The first electrode substrate 11 has a first substrate 111 on which a first electrode layer 112 and a metal layer 113 are sequentially disposed. The reaction layer 12 includes an electrolyte layer 121, a dye layer 122, and a metal oxide layer 123', and the three are sequentially disposed on the metal layer 113. The second electrode substrate 13 includes a second electrode layer 131 and a second substrate 132, which are sequentially disposed on the metal oxide layer 123. 200849611 When the light L is incident on the dye-sensitized solar cell 1, the dye in the dye layer 122 absorbs the light L and generates electrons, the electrons pass through the metal oxide layer 123 as a conductive layer, and the electrons are held by the second electrode layer 131 as a cathode. It is guided to the external circuit C1 and connected to the anode of the first electrode substrate 11 to form a complete loop. Further, the electron-depleting dye layer 122 can obtain electrons from the electrolyte layer 121, and the electrons of the electrolyte layer 121 are caused by the redox reaction of the metal layer 113 and the electrolyte layer 121 in the first electrode substrate 11. Therefore, the greater the contact area between the first electrode substrate 11 and the electrolyte layer 121, the more the number of times the metal layer 113 and the electrolyte layer 121 in the first electrode substrate 11 undergo a redox reaction, thereby affecting the dye-sensitized solar cell. 1 photoelectric conversion efficiency. In the prior art, the surface of the first electrode substrate 11 in contact with the electrolyte layer 121 is a flat surface. Therefore, in the case where the incident light L is fixed, if the oxidation of the first electrode substrate 11 and the electrolyte layer 121 is to be improved. The efficiency of the reduction reaction is to increase the photoelectric conversion efficiency of the dye-sensitized solar cell 1, and it is necessary to increase the size of the first electrode substrate 11. As a result, there are disadvantages such as an increase in production costs and a limited application range. Therefore, how to design a dye-sensitized solar cell that does not need to increase the size of the dye-sensitized solar cell and improve the photoelectric conversion efficiency is one of the important topics at present. SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a dye-sensitized solar cell which does not require an increase in the size of a dye-sensitized solar cell and can improve photoelectric conversion efficiency. In order to achieve the above object, a dye-sensitized solar cell according to the present invention comprises a first electrode substrate, a second electrode layer and a 'first reaction layer. The first electrode substrate has a first substrate and a first electrode layer, and the first substrate has a first uneven surface, and the first electrode layer is disposed on the first uneven surface. The second electrode layer is disposed opposite to the first electrode layer. The first reaction laminate is disposed between the first electrode layer and the second electrode layer. As described above, the dye-sensitized solar cell according to the present invention forms an uneven surface on the first electrode substrate, so that the contact area between the first electrode substrate and the first reaction laminate is increased. Compared with the prior art, the dye-sensitized solar cell of the present invention not only greatly increases the contact area of the first electrode substrate with the first reaction laminate, but also increases the photoelectric conversion efficiency. Further, since the contact area of the reaction laminate with the electrode substrate is increased, the panel size of the dye-sensitized solar cell of the present invention does not need to be increased, and the panel size can be reduced, thereby increasing the application range of the present invention. [Embodiment] Hereinafter, a dye-sensitized solar cell according to a plurality of embodiments of the present invention will be described with reference to the related drawings. First Embodiment Referring to FIG. 2, the dye-sensitized solar cell 2 includes a first electrode substrate 21, a first reaction laminate 22, and a second electrode layer 231. The first electrode substrate 21 includes a first substrate 211, a first electrode layer 200849611 212, and a first metal layer 213. The first substrate 211 is, for example, a rigid substrate, a flexible substrate, a glass substrate or a plastic substrate. The first substrate 211 of different materials may be combined with different technologies such as mold processing, template or post-polishing processing. A first uneven surface 211a' is formed on the substrate 211, and the southness difference between the concave portion and the convex portion on the first uneven surface 211a is 10 nm or more. In addition, referring to FIG. 2 and FIG. 3A to FIG. 3D, the first concave-convex surface 21 la may be formed by a concave portion and a convex portion having a random irregular shape as shown in FIG. 2, and the sectional shape of the concave portion or the convex portion may be utilized. Such as semicircular (as shown in FIG. 3A), triangular (as shown in FIG. 3B), mountain (as shown in FIG. 3C), rectangular, trapezoidal, polygonal, and various other geometric shapes, which are repeatedly combined in a single shape, Or a combination of different shapes and a periodic (as shown in FIG. 3D) or non-periodically arranged recesses and protrusions. The first electrode layer 212 is disposed on the first concave-convex surface 211a. The material of the first electrode layer 212 may be selected from the group consisting of indium tin oxide (IT0), indium zinc oxide (IZ0), and oxidation. At least one of the group consisting of aluminum zinc oxide (AZO). In addition, the material of the first metal layer 213 is platinum (Pt), and the first metal layer 23 is disposed on the first reaction layer 22 Since the first uneven surface 2lla is disposed on the first substrate 211, the surface of the first electrode layer 212 and the first metal layer 213 disposed along the first uneven surface 211a also forms a concave-convex surface, so that The surface area of the first electrode substrate 21 is increased more than the prior art. The first reaction layer 22 has a first electrolyte layer 221, a first dye layer 8 200849611 material layer 222, and a first metal oxide layer 223. The first electrolyte layer 221 is formed by dissolving iodide ions (factor/13+) in an organic solvent, and the first dye layer 222 is used. Dyes that absorb light to produce a reaction An organic material, a heat engine material or an organic-inorganic hybrid material. The material of the first metal oxide layer 223 may be, for example, titanium dioxide (η%). The second electrode layer is disposed on the first metal oxide layer 223, and The material is the same as that of the first electrode layer 212. Therefore, when the light L is incident on the dye-sensitized solar cell 2, the valence electrons of the dye molecules in the first dye layer 222 are excited by the light, and then jump to the high moon b. The electrons are then led to the external circuit C2 via the first metal oxide layer as the conductive layer, and the second electrode layer 231 is used as a cathode, and then connected to the first electrode substrate 21 to form a complete circuit. The dye molecules that lose electrons in 222 provide electrons through the first electrolyte layer, and the first electrolyte layer 221 obtains electrons by generating a redox reaction with the first metal layer 213 as an anode, thereby forming a cycle.

又明中,由於第一電極基板21與第一電解質 221之接觸表面為一 m几主I 習知技術詞此,兩者的接觸面積] 體光電轉換效率。 _反應的效率,進而提七 弟二實施例 "圖4所不,本發明第二實施例之染料敏化太丨 200849611 能電池3包含一第一電極基板31、一第一反應積層、 一第二電極層331及一第二基板332。其中,第一電極基 板31、第一反應積層32及第二電極層331係與第一實施 例之第一電極基板21、第一反應積層22及第二電極層231 具有相同的結構與功效,於此不再贅述。而本實施例與第 一實施例的差異在於:本實碜例之染料敏化太陽能電池3 更具有第二基板332,其設置於第二電極層331之上,第 二基板332之材質可與第一基板311相同。另外,第二基 板332面對第二電極層331之表面,亦可利用與第—基板 311相同方式形成一第二凹凸表面332a,而第二凹凸表面 332a之凹部與凸部之高度差係為1〇奈米以上。另外,第 二凹凸表面332a與第一凹凸表面311a依不同需求可以•具 有相同或者不同的表面凹凸形狀樣式。 藉由第二凹凸表面332a的設置,可使光線L入射後 產生許多不同的折射角度,進而使染料層322接收到更為 均勻的入射光,減少因光線L入射角度產生部分染料層 322無法接收入射光的問題。因此,本實施例之染料敏化 太陽能電池3的整體光電轉換效率也能更為提升。 弟二實施例 請參照圖5所示,本發明第三實施例之染料敏化太陽 能電池4包含一第一電極基板41、一第一反應積層42、 一第二電極基板43(包含一第二電極層431及一第二基板 432)、一中間電極基板44及一第二反應積層45。其中, 中間電極基板44具有一第三電極層441、中間基板442、 200849611 第四電極層443及第二金屬層444,且其係依序設置於第 一電極基板41上。而第二反應積層45則具有一第二電解 貝層451、一第二染料層452及一第二金屬氧化物層453, 且其係依序設置於中間電極基板44上。而第二電極基板 43則設置於第二反應積層45上。其中,第一電極基板41、 第〜反應積層42、第二電極基板43係與前述實施例之第 一電極基板31、第一反應積層32、第二電極基板33具有 相同的結構及材質,於此不再贅述。 本實施例與圖4之第二實施例的差異在於:利用中間 基挺44並增加第二反應積層45即可形成具有複數染料敏 化太陽能電池之疊合結構。而藉由各第一反應積層42及 二反應積層45中染料層422、452不同材料的選擇,可 使未貝施例之染料敏化太陽能電池4可同時接收不同波長 :先線L’並產生光電轉換反應,增加入射光線[的利用 :二也可提升整體光電轉換效率。本實施例係以兩個太陽 ^池登合為例,然依實際產品需求亦可疊合兩個 太陽能電池。 係^上所述,因域本發狀—種_敏化太陽能電池 板歲第於基板上設置一凹凸表面,使第一電極基 反應積層的接觸面積增加。與習知技術相比較, "月之染料敏化太陽能電池不僅可藉由增加第—電極 =與第-反應積層的接觸面積,來提升光電轉換效率, ^於第二電極基板上設置凹凸表面,來使入射光線 為均句’增加人射綠利用率。更甚者,可將複數個相 11 200849611 ' 似結構的太陽能電池疊合,籍由不同染料的選擇,使各太 ^ 陽能電池吸收不同波長光線,並產生光電轉換反應,如 此,更能大為提升本發明的光電轉換效率。又,由於反應 積層與電極基板的接觸面積增加,本發明之染料敏化太陽 能電池的面板尺寸大小不僅不需再增加,甚至可縮小面板 尺寸,從而增加本發明的應用範圍。 以上所述僅為舉例性,而非為限制性者。任何未脫離 本發明之精神與範疇,而對其進行之等效修改或變更,均 應包含於後附之申請專利範圍中。 【圖式簡單說明】 圖1為習知之染料敏化太陽能電池示意圖; 圖2為本發明第一實施例之染料敏化太陽能電池示意 圖; 圖3A至圖3D為本發明之染料敏化太陽能電池之基板 表面形狀示意圖; 圖4為本發明第二實施例之染料敏化太陽能電池示意 圖,以及 圖5為本發明第三實施例之染料敏化太陽能電池示意 圖。 元件符號說明: 一 1、2、3、4 :染料敏化太陽能電池 • 11、21、31、41 :第一電極基板 12 200849611 111、 211、311 :第一基板 211a、311a :第一凹凸表面 112、 212、312 ·•第一電極層 113 :金屬層 213、313 :第一金屬層 12 :反應積層 121 :電解質層 122 :染料層 123 ··金屬氧化物層 22、32、42 ··第一反應積層 221、 321、421 :第一電解質層 222、 322、422 :第一染料層 223、 323、423 :第一金屬氧化物層 13、33、43 :第二電極基板 131、 231、331、431 :第二電極層 132、 332、432 :第二基板 332a :第二凹凸表面 44 :中間電極基板 441 :第三電極層 442 :中間基板 443 :第四電極層 444 :第二金屬層 • 45 :第二反應積層 • 451 :第二電解質層 13 200849611 452 :第二染料層 453:第二金屬氧化物層 L :光線Further, since the contact surface of the first electrode substrate 21 and the first electrolyte 221 is one m, the contact area of the two is the photoelectric conversion efficiency of the body. The efficiency of the reaction, and the second embodiment of the seventh embodiment of the present invention, the dye-sensitized taiwan 200849611 energy source 3 of the second embodiment of the present invention comprises a first electrode substrate 31, a first reaction layer, and a The second electrode layer 331 and a second substrate 332. The first electrode substrate 31, the first reaction laminate 32, and the second electrode layer 331 have the same structure and efficacy as the first electrode substrate 21, the first reaction laminate 22, and the second electrode layer 231 of the first embodiment. This will not be repeated here. The difference between the present embodiment and the first embodiment is that the dye-sensitized solar cell 3 of the present embodiment further has a second substrate 332 disposed on the second electrode layer 331, and the material of the second substrate 332 can be The first substrate 311 is the same. In addition, the second substrate 332 faces the surface of the second electrode layer 331, and a second uneven surface 332a may be formed in the same manner as the first substrate 311, and the height difference between the concave portion and the convex portion of the second concave-convex surface 332a is 1 〇 nano or more. Further, the second uneven surface 332a and the first uneven surface 311a may have the same or different surface uneven shape patterns depending on the requirements. By the arrangement of the second concave-convex surface 332a, a plurality of different angles of refraction can be generated after the light L is incident, so that the dye layer 322 receives more uniform incident light, and the partial dye layer 322 cannot be received due to the incident angle of the light L. The problem of incident light. Therefore, the overall photoelectric conversion efficiency of the dye-sensitized solar cell 3 of the present embodiment can be further improved. As shown in FIG. 5, the dye-sensitized solar cell 4 of the third embodiment of the present invention comprises a first electrode substrate 41, a first reaction layer 42 and a second electrode substrate 43 (including a second The electrode layer 431 and a second substrate 432), an intermediate electrode substrate 44, and a second reaction layer 45. The intermediate electrode substrate 44 has a third electrode layer 441, an intermediate substrate 442, a 200849611 fourth electrode layer 443, and a second metal layer 444, which are sequentially disposed on the first electrode substrate 41. The second reaction laminate 45 has a second electrolytic cell layer 451, a second dye layer 452 and a second metal oxide layer 453, which are sequentially disposed on the intermediate electrode substrate 44. The second electrode substrate 43 is disposed on the second reaction laminate 45. The first electrode substrate 41, the first reaction layer 42 and the second electrode substrate 43 have the same structure and material as the first electrode substrate 31, the first reaction layer 32, and the second electrode substrate 33 of the above-described embodiment. This will not be repeated here. The difference between this embodiment and the second embodiment of Fig. 4 is that a laminated structure having a plurality of dye-sensitized solar cells can be formed by using the intermediate base 44 and adding the second reaction laminate 45. By selecting different materials of the dye layers 422 and 452 in each of the first reaction laminate 42 and the second reaction laminate 45, the dye-sensitized solar cell 4 of the uncoated embodiment can simultaneously receive different wavelengths: the first line L′ and the generation Photoelectric conversion reaction, increase incident light [Use: Second, it can also improve the overall photoelectric conversion efficiency. In this embodiment, two solar cells are taken as an example, and two solar cells may be stacked according to actual product requirements. According to the above, the contact surface area of the first electrode-based reaction laminate is increased by the surface of the hair-type sensitized solar cell. Compared with the conventional technology, the dye-sensitized solar cell of the month can not only improve the photoelectric conversion efficiency by increasing the contact area between the first electrode and the first-reactive layer, but also provide a concave-convex surface on the second electrode substrate. To make the incident light a uniform sentence, increase the utilization rate of human exposure. What's more, a plurality of phased solar cells can be stacked, and the selection of different dyes allows each of the solar cells to absorb light of different wavelengths and generate a photoelectric conversion reaction, so that it can be larger. In order to improve the photoelectric conversion efficiency of the present invention. Further, since the contact area of the reaction laminate with the electrode substrate is increased, the panel size of the dye-sensitized solar cell of the present invention does not need to be increased, and the panel size can be reduced, thereby increasing the application range of the present invention. The above is intended to be illustrative only and not limiting. Any equivalent modifications or alterations to the spirit and scope of the present invention are intended to be included in the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view of a conventional dye-sensitized solar cell; FIG. 2 is a schematic view of a dye-sensitized solar cell according to a first embodiment of the present invention; FIGS. 3A to 3D are diagrams of a dye-sensitized solar cell of the present invention; FIG. 4 is a schematic view of a dye-sensitized solar cell according to a second embodiment of the present invention, and FIG. 5 is a schematic view of a dye-sensitized solar cell according to a third embodiment of the present invention. DESCRIPTION OF SYMBOLS: 1, 2, 3, 4: Dye-sensitized solar cells • 11, 21, 31, 41: First electrode substrate 12 200849611 111, 211, 311: First substrate 211a, 311a: First uneven surface 112, 212, 312 ·• First electrode layer 113: metal layer 213, 313: first metal layer 12: reaction laminate 121: electrolyte layer 122: dye layer 123 · metal oxide layer 22, 32, 42 ·· a reaction laminate 221, 321, 421: a first electrolyte layer 222, 322, 422: a first dye layer 223, 323, 423: a first metal oxide layer 13, 33, 43: a second electrode substrate 131, 231, 331 431: second electrode layer 132, 332, 432: second substrate 332a: second uneven surface 44: intermediate electrode substrate 441: third electrode layer 442: intermediate substrate 443: fourth electrode layer 444: second metal layer 45: second reaction laminate • 451: second electrolyte layer 13 200849611 452: second dye layer 453: second metal oxide layer L: light

Cl、C2 :夕卜部電路Cl, C2: Xi Bu circuit

Claims (1)

200849611 : 十、申請專利範圍: - 1、一種染料敏化太陽能電池,包含: 一第一電極基板,係具有一第一基板及一第一電極 層,該第一基板具有一第一凹凸表面,該第一電極 層設置於該第一凹凸表面之上; 一第二電極層,係與該第一電極層對向設置;以及 一第一反應積層,係設置於該第一電極層與該第二電 趣層之間。 2、 如申請專利範圍第1項所述之染料敏化太陽能電池, 其中該第一凹凸表面之凹部與凸部之高度差係為10奈 米以上。 3、 如申請專利範圍第1項所述之染料敏化太陽能電池, 其中該第一基板係為剛性基板、柔性基板、玻璃基板 或塑膠基板。 4、 如申請專利範圍第1項所述之染料敏化太陽能電池, 其中該第一電極層之材質係選自氧化銦錫、氧化銦鋅 以及氧化銘辞所構成的群組之至少其中之一。 5、 如申請專利範圍第1項所述之染料敏化太陽能電池, • 其中該第一電極基板更具有一第一金屬層,該第一金 • 屬層係設置於該第一反應積層與該第一電極層之間。 15 200849611 6、 如申請專利範圍第5項所述之染料敏化太陽能電池, 其中該第一金屬層之材質係為鉑。 7、 如申請專利範圍第1項所述之染料敏化太陽能電池, 其中該第一反應積層係具有一第一電解質層、一第一 染料層及一第一金屬氧化物層。 8、 如申請專利範圍第7項所述之染料敏化太陽能電池, 其中該第一金屬氧化物層之材料係為二氧化鈦。 9、 如申請專利範圍第1項所述之染料敏化太陽能電池, 其中該第二電極層之材質係選自氧化銦錫、氧化銦鋅 以及氧化铭辞所構成的群組之至少其中之一。 10、 如申請專利範圍第1項所述之染料敏化太陽能電池, 更包含: 一第二基板,其中該第二電極層係夾設於該第二基板 與該第一反應積層之間。 11、 如申請專利範圍第10項所述之染料敏化太陽能電池, 其中該第二基板係為剛性基板、柔性基板、玻璃基板 或塑膠基板。 16 200849611 ; 12、如申請專利範圍第10項所述之染料敏化太陽能電池, ^ 其中該第二基板係具有一第二凹凸表面,該第二電極 層係設置於該第二凹凸表面之上。 13、 如申請專利範圍第12項所述之染料敏化太陽能電池, 其中該第二凹凸表面之凹部與凸部之高度差係為10奈 米以上。 14、 如申請專利範圍第1項所述之染料敏化太陽能電池, 更包含: 一中間電極基板,其係夾設於該第一反應積層與該第 二電極層之間。 15、 如申請專利範圍第14項所述之染料敏化太陽能電池, 其中該中間電極基板係具有一中間基板、一第三電極 層、一第四電極層及一第二金屬層,該第三電極層係 夾設於該中間基板與該第一反應積層之間,該第四電 極層係夾設於該中間基板與該第二金屬層之間,且該 第二金屬層係面對該第二電極層。 16、 如申請專利範圍第15項所述之染料敏化太陽能電池, 其中該中間基板係具有相對之一第三凹凸表面與一第 、 四凹凸表面,該第三凹凸表面係面對該第三電極層。 17 200849611 ; 17、如申請專利範圍第16項所述之染料敏化太陽能電池, - 其中該第三凹凸表面之凹部與凸部之高度差係為10奈 米以上。 18、 如申請專利範圍第16項所述之染料敏化太陽能電池, 其中該第四凹凸表面之凹部與凸部之高度差係為10奈 米以上。 19、 如申請專利範圍第15項所述之染料敏化太陽能電池, 其中該第三電極層及該第四電極層之材質係選自氧化 銦錫、氧化銦鋅以及氧化鋁鋅所構成的群組之至少其 中之一。 20、 如申請專利範圍第15項所述之染料敏化太陽能電池, 其中該第二金屬層之材質係為鉑。 21、 如申請專利範圍第15項所述之染料敏化太陽能電池, 其中該中間基板係為剛性基板、柔性基板、玻璃基板 或塑膠基板。 22、 如申請專利範圍第15項所述之染料敏化太陽能電池, 更包含一第二反應積層,其係夾設於該中間電極基板 ‘與該第二電極層之間。 18 200849611 ; 23、如申請專利範圍第22項所述之染料敏化太陽能電池, - 其中該第二反應積層係具有一第二電解質層、一第二 染料層及一第二金屬氧化物層。 24、如申請專利範圍第22項所述之染料敏化太陽能電池, 其中該第二金屬氧化物層之材料係為二氧化鈦。 19200849611: X. Patent application scope: - 1. A dye-sensitized solar cell comprising: a first electrode substrate having a first substrate and a first electrode layer, the first substrate having a first concave-convex surface, The first electrode layer is disposed on the first concave and convex surface; a second electrode layer is disposed opposite to the first electrode layer; and a first reactive layer is disposed on the first electrode layer and the first electrode layer Between the two electrical layers. 2. The dye-sensitized solar cell according to claim 1, wherein a difference in height between the concave portion and the convex portion of the first uneven surface is 10 nm or more. 3. The dye-sensitized solar cell of claim 1, wherein the first substrate is a rigid substrate, a flexible substrate, a glass substrate or a plastic substrate. 4. The dye-sensitized solar cell according to claim 1, wherein the material of the first electrode layer is at least one selected from the group consisting of indium tin oxide, indium zinc oxide, and oxidized inscription. . 5. The dye-sensitized solar cell according to claim 1, wherein the first electrode substrate further has a first metal layer, and the first metal layer is disposed on the first reaction layer and the Between the first electrode layers. The dye-sensitized solar cell of claim 5, wherein the material of the first metal layer is platinum. 7. The dye-sensitized solar cell of claim 1, wherein the first reactive laminate has a first electrolyte layer, a first dye layer, and a first metal oxide layer. 8. The dye-sensitized solar cell of claim 7, wherein the material of the first metal oxide layer is titanium dioxide. 9. The dye-sensitized solar cell of claim 1, wherein the second electrode layer is made of at least one selected from the group consisting of indium tin oxide, indium zinc oxide, and oxidized inscriptions. . The dye-sensitized solar cell of claim 1, further comprising: a second substrate, wherein the second electrode layer is interposed between the second substrate and the first reaction laminate. 11. The dye-sensitized solar cell of claim 10, wherein the second substrate is a rigid substrate, a flexible substrate, a glass substrate or a plastic substrate. The dye-sensitized solar cell of claim 10, wherein the second substrate has a second concave-convex surface, and the second electrode layer is disposed on the second concave-convex surface . The dye-sensitized solar cell according to claim 12, wherein a difference in height between the concave portion and the convex portion of the second uneven surface is 10 nm or more. 14. The dye-sensitized solar cell of claim 1, further comprising: an intermediate electrode substrate interposed between the first reaction laminate and the second electrode layer. The dye-sensitized solar cell of claim 14, wherein the intermediate electrode substrate has an intermediate substrate, a third electrode layer, a fourth electrode layer and a second metal layer, the third The electrode layer is interposed between the intermediate substrate and the first reaction layer, the fourth electrode layer is interposed between the intermediate substrate and the second metal layer, and the second metal layer faces the first Two electrode layers. The dye-sensitized solar cell of claim 15, wherein the intermediate substrate has a third concave-convex surface and a first and fourth concave-convex surface, the third concave-surface facing the third Electrode layer. The dye-sensitized solar cell of claim 16, wherein the height difference between the concave portion and the convex portion of the third uneven surface is 10 nm or more. The dye-sensitized solar cell according to claim 16, wherein the height difference between the concave portion and the convex portion of the fourth uneven surface is 10 nm or more. The dye-sensitized solar cell of claim 15, wherein the material of the third electrode layer and the fourth electrode layer is selected from the group consisting of indium tin oxide, indium zinc oxide, and aluminum zinc oxide. At least one of the groups. The dye-sensitized solar cell of claim 15, wherein the material of the second metal layer is platinum. The dye-sensitized solar cell according to claim 15, wherein the intermediate substrate is a rigid substrate, a flexible substrate, a glass substrate or a plastic substrate. The dye-sensitized solar cell of claim 15, further comprising a second reaction layer interposed between the intermediate electrode substrate and the second electrode layer. The dye-sensitized solar cell of claim 22, wherein the second reactive layer has a second electrolyte layer, a second dye layer and a second metal oxide layer. The dye-sensitized solar cell of claim 22, wherein the material of the second metal oxide layer is titanium dioxide. 19
TW96120200A 2007-06-05 2007-06-05 Dye-sensitized solar cell TW200849611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96120200A TW200849611A (en) 2007-06-05 2007-06-05 Dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96120200A TW200849611A (en) 2007-06-05 2007-06-05 Dye-sensitized solar cell

Publications (1)

Publication Number Publication Date
TW200849611A true TW200849611A (en) 2008-12-16

Family

ID=44824191

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96120200A TW200849611A (en) 2007-06-05 2007-06-05 Dye-sensitized solar cell

Country Status (1)

Country Link
TW (1) TW200849611A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI647861B (en) * 2017-09-01 2019-01-11 茂迪股份有限公司 Mono-facial solar cell and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI647861B (en) * 2017-09-01 2019-01-11 茂迪股份有限公司 Mono-facial solar cell and method for manufacturing the same

Similar Documents

Publication Publication Date Title
TWM368189U (en) Power saving intelligent board having solar cells
JP5539327B2 (en) Dye-sensitive solar cell module
CN102194578B (en) Dye-sensitized solar cell
JP2007299557A (en) Dye-sensitized solar cell
Xia et al. Photochemical conversion and storage of solar energy
Huang et al. Chromatic titanium photoanode for dye-sensitized solar cells under rear illumination
Yin et al. Indium-and platinum-free counter electrode for green mesoscopic photovoltaics through graphene electrode and graphene composite catalysts: interfacial compatibility
JP2013102055A (en) Transparent electrode substrate and method for manufacturing the same
JP5105764B2 (en) Dye-sensitized solar cell
JP2006210780A (en) Multilayered photoelectric transfer device
US20080072957A1 (en) Solar cell units and modules comprising the same
Hansora et al. Fully inkjet-printed large-scale photoelectrodes
Chou et al. Preparation of a Counter Electrode with P‐Type NiO and Its Applications in Dye‐Sensitized Solar Cell
CN206225411U (en) A kind of perovskite solar battery group based on zinc oxide conductive layer
JP2007048594A (en) Dye sensitized-solar cell, its photoelectrode substrate, and manufacturing method of its photoelectrode substrate
TWI426617B (en) Dye-sensitized solar cell and method for manufacturing the same
TW200849611A (en) Dye-sensitized solar cell
CN102231327A (en) Dye sensitized solar cell with metal reflecting electrode layer
Prouskas et al. A new type of architecture of dye-sensitized solar cells as an alternative pathway to outdoor photovoltaics
JP2007042494A (en) Action pole and its manufacturing method and solar cell and its manufacturing method
Park et al. Color Implementation of High-Efficiency Perovskite Solar Cells by Using Transparent Multilayered Electrodes
Liu et al. Enhanced photovoltaic performance of dye-sensitized solar cells with TiO 2 micro/nano-structures as light scattering layer
CN101330111A (en) Dye sensitization solar battery
CN101262018A (en) Dye sensitized solar battery for metal photo anode base with certain surface terrain
Zhang et al. Bifacial dye-sensitized solar cells from transparent RuSe counter electrodes