TW200844497A - Color filter and method of manufacturing the same, and solid-state image pickup element - Google Patents

Color filter and method of manufacturing the same, and solid-state image pickup element Download PDF

Info

Publication number
TW200844497A
TW200844497A TW97104910A TW97104910A TW200844497A TW 200844497 A TW200844497 A TW 200844497A TW 97104910 A TW97104910 A TW 97104910A TW 97104910 A TW97104910 A TW 97104910A TW 200844497 A TW200844497 A TW 200844497A
Authority
TW
Taiwan
Prior art keywords
color
pattern
layer
forming
color pattern
Prior art date
Application number
TW97104910A
Other languages
Chinese (zh)
Inventor
Mitsuji Yoshibayashi
Teruaki Kinumura
Tomoyuki Kikuchi
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of TW200844497A publication Critical patent/TW200844497A/en

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Optical Filters (AREA)
  • Liquid Crystal (AREA)

Abstract

The present invention provides a method of manufacturing a color filter, including: forming a first color pattern in a repeating pattern on a support; forming, on the support, a second color pattern in a repeating pattern in regions where the first color pattern is not formed; removing at least one portion of one of the first color pattern and the second color pattern by dry-etching, the portion being in a region where a third color pattern is to be formed; and forming, on the support, the third color pattern in the region where the portion of one of the first color pattern and the second color pattern has been removed. The present invention also provides a color filter manufactured by the method, and a solid-state image pickup element using the color filter.

Description

200844497 九、發明說明: 【發明所屬之技術領域】 本發明關於一種彩色濾光片及此彩色濾光片之製造方 法、及一種使用此彩色濾光片之固態攝影元件。 【先前技術】 近年來,作爲彩色濾光片之製造方法,其已考量製造 成本及製造容易性而使用微影術法。 此微影術法指一種其中藉旋塗器、輥塗器等將輻射敏 感性組成物(如著色硬化性組成物)塗布在基板上,而且 乾燥形成塗膜;使塗膜接受圖案曝光、顯影、及烘烤而形 成彩色像素,及對各種顏色重複此操作循環,因而製造彩 色濾光片之方法。 微影術法得到高位置準確性且已廣泛地作爲適合用於 製造大型螢幕之彩色顯示器及高解析顯示器用彩色濾光片 之方法。 一種關於微影術法之已知技術使用負型感光性組成物 ,其中其使用鹼溶性樹脂與光聚合性單體及光聚合性引發 劑之組合(例如參見日本專利申請案公開(Jp_A)第 2-181704、 2-199403、 5-273411、及 7-140654 號)° 在此參考第3 2 A至3 6 B圖敘述藉微影術法製造習知彩 色濾光片之方法的一般重點。 如第32A及32B圖所示,其藉旋塗器等將著色負型硬 化性組成物塗布在撐體1 〇上形成第一彩色層42 °在前烘 烤後,將第一彩色層經光罩4 7曝光而圖案化(即將第一彩 200844497 色層中之第一彩色像素形成區域44對紫外線曝光),如第 33A及33B圖所示。然後藉顯影處理去除第一彩色層中之 不必要區域46,繼而後烘烤處理,因而形成第一彩色像素 48,如第34A及34B圖所示。 此外藉由重複如第一彩色像素之相同程序,形成第 35A及35B圖所示之第二彩色像素50、及第36A及36B圖 所示之第三彩色像素5 2,藉此形成彩色濾光片。 在藉微影術法之習知彩色濾光片製造方法中,如第 36A圖所示,其發生使得在彩色像素角落聚集區域產生不 形成彩色像素之區域5 4的問題。此外亦有關於各彩色像素 未得到所需膜厚之問題。此外彩色像素相互接觸之區域的 膜厚未如意圖地形成(即在彩色像素邊界附近產生彩色像 素膜厚變薄之區域5 6的問題,如第3 6B圖所示)等。 雖然其已達成光罩偏差等之最適化、及在對光源曝光 時著色硬化性組成物之硬化效率改良,這些改良有限。 此外雖然已知一種在熱固時藉熱流(重流)嵌入第二 彩色像素等之技術(例如 JP-A 第 2006-2673 5 2 及 2 0 06-2 92 8 42號專利),此技術趨於受形成第二彩色像素後 所使用著色硬化性組成物之性能及方法條件影響,而且有 例如使得撐體之熱分布隨其嵌入性質而反映之問題。 此外在液晶顯示裝置或固態攝影元件中,降低像素大 小已有進展,使降低彩色濾光片之大小爲必要的。特別是 隨近來固態攝影元件之明顯縮微化,其需要使解析度大小 小於2 · 0微米之高解析技術,但是關於習知微影術法之解 200844497 析度已達界限。因此微影術法之議題越來越突出。 其已提議一種使用染料之技術,作爲將彩色濾光片進 一步縮微化及實現固態攝影元件用高解析彩色濾光片之技 然而含染料硬化性組成物通常關於如耐光性、薄膜形 成、或光譜穿透特性改變容易性之性質較顏料差。此外特 別是由於在製造用於固態攝影元件之彩色濾光片時需要 1 · 0微米或更小之膜厚,在硬化性組成物中加入大量著色劑 爲必要的,因而造成各種問題,包括圖案形成之顯著難度 ,如基板黏附性不足、硬化力不足、或曝光區域之染料洩 漏。 此外與使用微影術法製造彩色濾光片之方法相反,數 年來已知一種乾式蝕刻法作爲形成具高精細圖案之較薄膜 的有效方法。乾式蝕刻法已習知地作爲形成實質上長方形 圖案之方法。 此外亦已揭示一種使用微影術法與乾式蝕刻法之組合 的圖案形成方法(例如參見J P - A第2 0 0 1 - 2 4 9 2 1 8號專利) 〇 然而雖然可藉JP-A第2001-249218號專利所述之技術 將第一彩色像素形成長方形形式,第二及第三彩色像素之 形成因習知感光性著色組成物之性能而限制速率,而且仍 有微影術法附帶之問題。 因此在使用微影術法時,其必須維持組成物間因顯影 曝光之溶解性質差異同時增加著色劑之濃度,因此技術障 200844497 礙極高。 如上所述,在製造彩色濾光片之習知方法中,可形成 之圖案大小有一限制(下限)。 【發明內容】 本發明已關於以上之情形而完成,及提供一種製造解 決圖案形成限制且可形成較小圖案之彩色濾光片的方法。 本發明亦提供一種具有實質上長方形彩色像素之彩色 濾光片。 本發明亦提供一種具有優異彩色再現力之固態影像攝 影元件。 本發明人已發現,在首先形成重複圖案(例如條形圖 案)然後成爲分隔圖案以形成彩色像素時,其可形成具有 較在直接形成分隔圖案以形成彩色像素時更爲長方形橫切 面之彩色像素。 即依照本發明之第一態樣提供(1 ) 一種製造彩色濾光 片之方法,其包括: (a) 在撐體上以重複圖案形成第一彩色圖案; (b) 在撐體上,在不形成第一彩色圖案之區域以重複 圖案形成第二彩色圖案; (Ο藉乾式飽刻去除第,一彩色圖案與第二彩色圖案之 一的至少一部分,此部分爲欲形成第三彩色圖案 之區域;及 (d)在撐體上,在已去除部分第一彩色圖案與第二彩 色圖案之一的區域以重複圖案形成第三彩色圖案。 200844497 依照本發明之第二態樣,在第(1)項之方法中,第一彩 色圖案與第二彩色圖案各爲條形。 依照本發明之第三態樣,在第(1)項之方法中,第一彩 色圖案係藉以下任一形成: (1) 一種包括在撐體上形成第一彩色層,將第一彩色 層曝光,及將曝光所得物顯影之方法;及 (2) —種包括在撐體上形成第一彩色層,使用光阻在 第一彩色層上形成光阻圖案,及使用光阻圖案作 爲鈾刻光罩而乾式蝕刻第一彩色層之方法。 依照本發明之第四態樣,在第(1)項之方法中,第二彩 色圖案係藉以下方法(1)、或一種包括以下方法(2)及(3)至 少之一的方法形成: (1) 一種包括在形成第一彩色圖案之撐體上形成第 二彩色層,及將第二彩色層曝光,繼而顯影之方 法; (2) —種包括在形成第一彩色圖案之撐體上形成第 二彩色層,使用光阻在第二彩色層上形成光阻圖 案,及使用光阻圖案作爲蝕刻光罩而乾式蝕刻第 二彩色層之方法;及 (3) —種包括在形成第一彩色圖案之撐體上形成第 二彩色層,及實行至少第二彩色層之平坦化的方 法。 依照本發明之第五態樣,在第(1)項之方法中,第三彩 色圖案係藉以下方法(1)、或一種包括以下方法(2)及(3)至 200844497 少之一的方法形成: (1) 一種包括在形成第一彩色圖案與第二彩色圖案 之撐體上形成第三彩色層,及將第三彩色層曝光 ,繼而顯影之方法; (2) 一種包括在形成第一彩色圖案與第二彩色圖案 之撐體上形成第三彩色層,使用光阻在第三彩色 層上形成光阻圖案,及使用光阻圖案作爲蝕刻光 罩而乾式鈾刻第三彩色層之方法;及 (3) 一種包括在形成第一彩色圖案與第二彩色圖案 之撐體上形成第三彩色層,及實行至少第三彩色 層之平坦化的方法。 依照本發明之第六態樣,在依照本發明第四態樣之方 法中,平坦化包括回蝕處理(其鈾刻彩色層之全部曝光表 面)及硏磨處理(其硏磨彩色層之全部曝光表面)至少之 -· 〇 依照本發明之弟七%^樣,弟(1)項之方法進一步包括: 在(b)形成第二彩色圖案之後及在(c)去除部分彩色圖 案之前,在第一彩色圖案與第二彩色圖案上形成第二中止 層,其中: 去除部分彩色圖案包括在欲形成第三彩色圖案之區ί或 去除第一彩色圖案與第二彩色圖案至少之一的至少一部分 ,及在欲形成第三彩色圖案之區域去除第二中止層;及 形成第三彩色圖案包括在形成第一彩色圖案、第二彩 色圖案、與第二中止層之撐體上形成第三彩色層,及乾式 -10- 200844497 蝕刻第三彩色層直到暴露第二中止層。 依照本發明之第八態樣,在第(1 )項之方法中,形成第 一彩色圖案包括在撐體上形成第一彩色層,及在第一彩色 層上形成第一中止層;及 形成第二彩色圖案包括在形成第一彩色圖案之撐體上 形成第二彩色層’及乾式蝕刻第二彩色層直到暴露第一中 止層。 依照本發明之第九態樣,在第(1 )項之方法中,第一彩 色圖案與第二彩色圖案係以第一彩色圖案與第二彩色圖案 之表面彼此接觸之方式形成。 依照本發明之第十態樣,在第(1 )項之方法中,形成第 一彩色圖案、形成第二彩色圖案、或形成第三彩色圖案至 少之一,包括·· 在乾式蝕刻後對撐體施加黏著性改良處理; 在已施加黏著性改良處理之撐體上形成彩色層; 將彩色層曝光;及 將曝光所得物顯影形成彩色圖案。 依照本發明之第十一態樣,在依照本發明第十態樣之 方法中,黏著性改良處理包括加入黏附輔劑或使用電漿之 氟化處理至少之一。 依照本發明之第十二態樣,在依照本發明第十態樣之 方法中,彩色層係藉由塗布一種包括相對著色硬化性組成 物之總固體含量爲0 · 0 5至1 · 2質量%之量的有機矽烷化合 物之著色硬化性組成物而形成。 -11- 200844497 依照本發明之第十三態樣’在第(l)項之方法中’形成 第一彩色圖案、形成第二彩色圖案、或形成第三彩色圖案 至少之一,包括: 在乾式蝕刻後不對撐體施加黏著性改良處理’藉由對 撐體塗布一種包括相對著色硬化性組成物之總固體含量爲 〇 . 3至1.2質量%之量的有機矽烷化合物之著色硬化性組成 物而形成彩色層; 將彩色層曝光;及 將曝光所得物顯影形成彩色圖案。 依照本發明之第十四態樣,在第(1 )項之方法中’欲形 成第三彩色圖案之區域包括方格狀圖案區域。 依照本發明之第十五態樣,在第(1 )項之方法中’欲形 成第三彩色圖案之區域包括按與第一彩色圖案及第二彩色 圖案交叉之方向延伸之條形圖‘案。 依照本發明之第十六態樣提供一種彩色濾光片’其係 藉第(1)項之製造彩色濾光片的方法製造。 依照本發明之第十七態樣提供一種固態攝影元件’其 包括依照本發明第十六態樣之彩色濾光片。 本發明提供一種製造彩色濾光片之方法,如此解決圖 案形成之限制且可形成較精細圖案。 本發明亦提供一種具有實質上長方形彩色像素之彩色 濾光片。 本發明亦提供一種具有優異彩色再現力之固態攝影元 件。 -12- 200844497 【實施方式】 彩色濾光片及製浩彩色濾光片之方法 依照本發明之一個例示具體實施例的製造彩色濾光片 之方法至少包括: u)在撐體上以重複圖案形成第一彩色圖案; (b) 在撐體上,在不形成第一彩色圖案之區域以重複 圖案形成第二彩色圖案; (c) 藉乾式蝕刻去除第一彩色圖案與第二彩色圖案之 一的至少一部分,此部分爲欲形成第三彩色圖案 之區域;及 (d) 在撐體上,在已去除部分第一彩色圖案與第二彩 色圖案之一的區域形成第三彩色圖案。 本發明之彩色濾光片係藉此方法製造。 依照一個本發明製造彩色濾光片之方法的例示具體實 施例,第一彩色圖案與第二彩色圖案各以條形圖案形成, 使得各第一彩色圖案與第二彩色圖案之橫切面可爲實質上 長方形。在此圖案之橫切面表示按在圖案之寬度方向平行 像素且垂直撐體之平面切割彩色圖案。 以下解釋此效果之假設成因之一。 通常對於微影術法之圖案形成,重複圖案(如條形圖 案)具有較分隔圖案高之邊緣對比,而且可形成各圖案使 得其橫切面可爲實質上長方形。此外在將圖案形成條形圖 案時,圖案縱向方向之對比固定,使得不發生如形成圖案 圓角之不欲現象。 -13- 200844497 因爲這些特性,藉微影術法形成之條形第一彩色圖案 與條形第二彩色圖案在垂直圖案縱向方向之方向改良圖案 邊緣之對比,而且維持圖案橫切面之長方形形式,因而在 圖案縱向方向排除光學相鄰效應之影響。 此外條形之第一彩色圖案與第二彩色圖案亦可藉乾式 蝕刻法形成。在此情形,圖案橫切面相較於藉微影術法所 得可更接近長方形。 此外依照本發明製造彩色濾光片之方法包括藉乾式蝕 f 刻法自欲形成第三彩色圖案之區域去除第一彩色圖案與第 二彩色圖案至少之一的一部分以形成凹陷部分,及將第三 彩色圖案嵌入此凹陷部分中,而可抑制光學強度分布或圖 案變形之影響。 如上所述,圖案形成力可藉本發明製造彩色濾光片之 方法改良。特別是可抑制在彩色像素角落聚集區域不形成 彩色像素之區域的發生,亦可抑制在彩色像素邊界附近膜 厚變薄之區域的發生。結果可解決圖案形成(特別是藉微 影術法之彩色圖案形成)之限制,而可形成一種具有較精 細像素之彩色濾光片。 由於本發明之彩色濾光片係藉此方法製造,彩色濾光 片具有實質上長方形之彩色像素。 此外在本發明製造彩色濾光片之方法中,其較佳爲其 中藉乾躁蝕刻及/或硏磨形成全部彩色圖案(例如全部第一 至第三彩色圖案)之例示具體實施例,而且依照此例示具 體實施例可進一步解決圖案形成力及圖案形成限制。 -14- 200844497 在藉乾躁蝕刻及/或硏磨形成全部彩色圖案(例如全部 第一至第三彩色圖案)時,或在由以其僅形成薄膜之材料 形成之層係藉乾躁蝕刻及/或硏磨形成時,其製造較薄之彩 色濾光片。因而可改良彩色濾光片之性質,可改善如色調 缺陷之問題,或者可製造較小之固態攝影元件。 在此使用之由以其僅形成薄膜之材料形成之層指爲了 發揮其性質而具有相對大量著色劑之層,如每單位體積爲 低彩色密度之層或需要多種著色劑以實現所需穿透光譜之 層。 爲了易於解釋,其將不分成多個區域而形成之彩色膜 (固態膜)稱爲「彩色層」,及將以圖案形式分成多個區域 之彩色膜(例如圖案化成條形圖案等之膜)稱爲「彩色圖 案」。在此,藉由將分割區域形成圖案形式而得之例示具體 實施例(圖案化具體實施例)包括一個藉由將感光膜經圖 案曝光圖案化且顯影而得之例示具體實施例,及一個藉由 在彩色膜上形成光阻圖案,而且使用光阻圖案作爲蝕刻光 罩’將彩色膜經餽刻圖案化而得之例示具體實施例,及一 個藉由將彩色膜嵌入在撐體上製造之圖案化凹陷部分中, 而且去除自所得彩色膜中凹陷部分突起之部分,繼而形成 圖案等而得之例示具體實施例。 此外在彩色圖案中,其將彩色圖案(例如經圖案化成 爲方形等之彩色圖案)(其爲組成彩色濾光片陣列之元素) 稱爲「彩色像素」。 以下敘述本發明製造彩色濾光片之方法的程序及指定 -15- 200844497 例示具體實施例,隨後敘述乾式蝕刻、撐體、彩色圖案、 光阻、及中止層。 彩色圖案形成 第一彩色圖案之形成係藉由在撐體上以重複圖案(如 條形圖案)形成第一彩色圖案而實行。 形成第一彩色圖案之方法較佳爲包括但不特別地限於 (1)一種其中在撐體上形成彩色層,及將所形成彩色層曝光 且顯影之方法(在本發明中亦稱爲「微影術法」),或(2) 一種其中在基材上形成彩色層,使用光阻在所形成彩色層 上形成光阻圖案,及使用所形成光阻圖案作爲蝕刻光罩而 乾式蝕刻彩色層之方法(在本發明中亦稱爲「乾式蝕刻法 j ) ° 第二彩色圖案之形成係藉由在撐體上,在不形成第一 彩色圖案之區域(例如夾在第一彩色圖案間之區域)以重 複圖案(如條形圖案)形成第二彩色圖案而實行。 又第三彩色圖案之形成係藉由在以後述彩色圖案去除 程序去除第一彩色圖案與第二彩色圖案至少之一的區域形 成第三彩色圖案而實行。 在第一彩色圖案及第三彩色圖案之形成中,形成第二 彩色圖案與桌二彩色圖案之方法的一個實例較佳爲包括〇 ) 微影術法’(2)乾式蝕刻法,及(3 )平坦化法,其中在彩色圖 案形成撐體上形成第二彩色圖案與第三彩色圖案,及使所 形成第二彩色圖案與第三彩色圖案接受平坦化處理(在本 發明中亦稱爲「平坦化法」)。 -16- 200844497 平坦化處理之一個指定具體實施例較佳爲包 著色樹脂組成物嵌入夾在撐體上彩色圖案間之凹 (或包圍)而形成彩色層,對彩色層之全部曝光 如餓刻或硏磨之處理以去除所形成彩色層中自凹 起之過量部分的例示具體實施例。 由簡化製造方法或製造成本之觀點,平坦化 爲回蝕法,其包括乾式蝕刻使所形成第二與第三 全部曝光表面。 平坦化處理不限於回蝕法。平坦化處理之較 括硏磨處理,其包括硏磨第二與第三彩色層之全 面。硏磨處理之指定實例包括化學機械硏磨( ”CMP”)法,其中化學地及機械地硏磨第二與第 之全部曝光表面。 此外平坦化處理較佳爲包括回蝕法與硏磨法 法)之組合。 在第二彩色圖案與第三彩色圖案之形成中, 乾式飩刻法與平坦化法之組合。 相較於僅藉乾式蝕刻法形成著色圖案之情形 已藉乾式蝕刻法形成彩色圖案後,其將回蝕法進 以改良著色圖案之平坦性。 由抑制產生不形成彩色像素之區域及更有效 發明效果的觀點,第一與第二彩色圖案較佳爲以 圖案之表面彼此接觸之方式形成。 關於另外解決圖案形成之限制,第一彩色圖 括藉由將 陷部分中 表面施加 陷部分突 處理較佳 彩色層之 佳實例包 部曝光表 以下稱爲 三彩色層 (如 CMP 其可使用 ,例如在 一步處理 地得到本 相鄰彩色 案與第二 -17- 200844497 彩色圖案之寬度各獨立地較佳爲0.5微米至2.0微米,更佳 爲1.0微米至1.7微米,而且特佳爲1.2微米至1.5微米。 在下述本發明第三例示具體實施例及第四例示具體實施例 之情形,第一彩色圖案與第二彩色圖案之寬度各獨立地較 佳爲〇·5微米至2.0微米,而且更佳爲〇·7微米至1.4微米 〇 關於另外解決圖案形成之限制,第三彩色圖案之寬度 較佳爲0.5微米至2·0微米,更佳爲ι·〇微米至1.7微米, ’ 而且特佳爲1.2微米至1.5微米。在下述本發明第三例示具 體實施例及第四例示具體實施例之情形,第三彩色圖案之 寬度較佳爲0.5微米至2.0微米,而且更佳爲0.7微米至 1.4微米。 關於另外解決圖案形成之限制,各第一至第三彩色圖 案之指定厚度較佳爲0.005微米至0.9微米,更佳爲〇.〇5 微米至0.8微米,而且進一步更佳爲〇·ι微米至〇·7微米。 至於藉「微影術法」形成第一至第三彩色圖案之指定 具體實施例並無特殊限制,而且已知微影術之技術可適當 地最適化及使用。 例如首先將下述著色光硬化性組成物直接或以其他層 置於其間而塗布在撐體上,及乾燥(較佳爲進一步接受前 烘烤處理)形成彩色層。將所形成彩色層藉輻射按圖案曝 光,及將按圖案曝光之彩色層顯影(較佳爲進一步接受後 烘烤處理)而得彩色圖案。在顯影後可實行後曝光。 關於有效地得到本發明之效果,輻射之較佳實例包括 -18- 200844497 g -線、h -線及i -線,而且其中更佳爲i -線。 至於可用於顯影之顯影溶液,其可使用任何顯影溶液 ,只要其溶解未硬化部分。特別地,其可使用各種有機溶 劑或鹼性水溶液之組合。 至於在「乾式鈾刻法」中使用光阻形成光阻圖案之指 定例示具體實施例並無特殊限制,而且已知微影術之技術 可適當地最適化及使用。 例如首先將後述正型或負型感光性樹脂組成物(光阻 )塗布在彩色層上,及乾燥(較佳爲進一步接受前烘烤處 理)形成光阻層。 將所形成光阻層對輻射曝光且顯影(較佳爲進一步接 受後烘烤處理)而形成彩色圖案。由本發明目的之觀點, 用於將光阻層曝光之輻射較佳爲g-線、h-線及i-線,而且 其中更佳爲i-線。 至於可用於顯影之顯影溶液,其可使用任何顯影溶液 ’只要其不影響彩色層(包括著色劑)及溶解未硬化部分 (其在光阻爲正型作業之情形相當於硬化部分,及在光阻 爲負型作業之情形相當於未硬化部分)。特別地,其可使用 各種有機溶劑或鹼水溶液之組合。 上述之中,在第一至第三彩色圖案係藉乾式蝕刻法形 成之情形及第二與第三彩色圖案係藉回蝕處理形成之情形 ’乾式蝕刻之指定例示具體實施例並未特別地限制,而且 已知乾式触刻之例不具體實施例可合適地最適合及使用。 以下敘述乾式鈾刻之較佳具體實施例。 -19- 200844497 彩色圖案之去除 本發明中彩色圖案之去除係藉由在欲形成第三 案之區域藉乾式蝕刻去除第一彩色圖案及/或第二 案之一部分而實行。 至於欲形成第三彩色圖案之區域並無特殊限制 佳爲欲形成第三彩色像素之區域,例如方格狀圖案 如以下描述之第6A至6C圖中形成綠色像素之區域 此外欲形成第三彩色圖案之區域較佳爲條形圖 ,如第21A至21C圖中形成綠色像素之區域120, 第一彩色圖案及第二彩色圖案交叉之方向延伸。在 第三彩色圖案之區域爲條形圖案區域時,第一至第 圖案均可不形成圖案角落而形成,及可形成實質上 彩色濾光片陣列。 藉乾式蝕刻去除形成第三彩色圖案之區域的一 方法較佳爲一種包括使用光阻(即,形成第三彩色 區域曝光之光阻圖案),事先藉已知微影術技術在第 圖案及/或第二彩色圖案上形成光阻圖案,及使用光 作爲蝕刻光罩而實行乾式蝕刻處理之方法。 形成第三彩色圖案之區域的一側長度較佳爲〇 至2.0微米,更佳爲1·〇微米至1.7微米,而且特仓 微米至1.5微米。在下述本發明第三例示具體實施 四例示具體實施例之情形,形成第三彩色圖案之區 側長度較佳爲〇·5微米至2·0微米,而且更佳爲〇.7 1.4微米。 彩色圖 彩色圖 ,及較 區域, 20 〇 案區域 其按與 欲形成 三彩色 長方形 個指定 圖案之 一彩色 阻圖案 .5微米 巨爲1 · 2 例及第 域的一 微米至 -20 - 200844497 去除彩色圖案之乾式蝕刻的指定例示具體實施例並未 特別地限制,而且已知乾式触刻之例示具體實施例可合適 地最適化及使用。以下敘述乾式蝕刻之一個較佳例示具體 實施例。 中止層之形成 本發明之彩色濾光片的製造方法可包括形成中止層( 形成第一中止層及/或第二中止層)。 第一中止層之形成 在本發明中第二彩色圖案係藉乾式蝕刻(包括藉「乾 式蝕刻法」形成及藉「回蝕處理」形成;以下亦同)及/或 c Μ P處理形成之情形,第一彩色圖案之形成較佳爲包括在 撐體上形成第一彩色層及在所形成第一彩色層上形成第一 中止層(第一中止層之形成程序)。在此情形,其更佳爲第 一彩色圖案之形成包括使用光阻在第一中止層上形成光阻 圖案,及使用所形成光阻圖案作爲蝕刻光罩而乾式蝕刻第 一中止層與第一彩色層。 由於此第一彩色圖案,所形成第一彩色圖案之上表面 (彩色圖案之兩個平行撐體的表面中,遠離撐體側之表面 )被第一中止層覆蓋。因此第一彩色圖案可更有效地防止 如膜減小及被用於形成第二彩色圖案之蝕刻乾燥及/或 c ΜΡ處理損壞的現象。結果容易地控制彩色濾光片之彩色 像素的光譜穿透特性。 第二中止層之形成 在本發明中第三彩色圖案係藉乾式蝕刻(包括藉「乾 -21 - 200844497 式鈾刻法」形成及藉「回蝕處理」形成;以下亦同)2 CMP處理形成之情形,其較佳爲在形成第二彩色圖案 及在去除彩色圖案之前,在第一彩色圖案與第二彩色 上形成第二中止層。 由於以上之組態,第二中止層存在於第一與第二 圖案上(在自彩色圖案觀看時之撐體相反方向;以下 )。因此第一與第二彩色圖案可更有效地防止如膜減小 形成第三彩色圖案時受乾式蝕刻及/或CMP處理損壞 象。結果容易地控制彩色濾光片之彩色像素的光譜穿 第一中止層與第二中止層各較佳爲蝕刻速率較彩 或彩色圖案低之層,及中止層較佳爲使用對可見光透 硬化性組成物形成,如此可不完全去除中止層而製造 濾光片。在此「對可見光透明」表示可見光穿透率爲約 或更大。 加熱程序 本發明之方法較佳爲進一步包括在去除光阻圖案 括彩色圖案及彩色像素)後在約1〇〇 °C至約22(TC之溫 彩色層加熱。藉加熱可蒸發彩色層(包括彩色圖案及 像素)吸收之水分,而且可有效地抑制事後可能發生 層缺陷。 黏著性改良程序 本發明製造彩色濾光片之方法較佳爲包括改良已 乾式蝕刻之撐體表面的黏著性;在已接受黏著性改良 t /或 之後 圖案 彩色 亦同 及在 的現 透特 色層 明之 彩色 95% (包 度將 彩色 之塗 接受 之撐 -22- 200844497 體上形成彩色層;使所形成彩色層曝光;及將曝光之彩色 層顯影形成彩色圖案。 由於本發明之此製造彩色濾光片的方法,其可改良彩 色層(彩色圖案)與撐體間之黏著性,而且可有效地抑制 顯影時之彩色層(彩色圖案)剝離。例如即使是在撐體表 面因乾式蝕刻處理而變成親水性之情形(例如在撐體表面 與水之接觸角小於40°時),其不必過度曝光(以提高曝光 量)以改良黏著性而可更有效地一起得到準確之圖案大小 及黏著性處理。因而其在著色圖案小時特別有效。 在本發明製造彩色濾光片之方法中,施加黏著性改良 處理之指定例示具體實施例較佳爲包括以下兩個例示具體 實施例。這兩個具體實施例可組合使用。 第一例示具體實施例包括在去除彩色圖案之乾式蝕刻 處理後對撐體表面施加黏著性改良處理,在施加黏著性改 良處理之撐體上形成第三彩色層,將所形成第三彩色層曝 光,及將曝光層顯影形成第三彩色圖案。 依照此例示具體實施例可有效地抑制第三彩色圖案之 剝離。 第二例示具體實施例包括藉乾式蝕刻法形成第一彩色 圖案,在乾式蝕刻處理後對撐體表面施加黏著性改良處理 ,在已施加黏著性改良處理之撐體上形成第二彩色層,將 所形成第二彩色層曝光,及將曝光層顯影形成第二彩色圖 案。 依照此例示具體實施例可有效地抑制第二彩色圖案之 -23 - 200844497 剝離。 關於黏著性之改良效果,黏著性改良處理較佳爲疏水 性處理’而且更佳爲使撐體表面與水間之接觸角爲4〇。或 更大之疏水性處理。 又至於黏著性改良處理,其較佳爲加入黏附輔劑之處 理與使用電漿之氟化處理至少之一。 施加黏附輔劑 施加黏附輔劑可藉用於一般正型光阻法之方法實行, 如蒸氣處理、塗覆、噴墨塗布、印刷、或沉積。 在塗覆之情形可應用各種已知塗覆法,如縫塗、旋塗 、流延塗覆、輥塗、噴塗等。 在噴墨塗布之情形可應用使用噴墨頭藉噴墨法噴出。 噴墨頭之實例包括用於利用靜電感應力噴出墨滴之電荷控 制法、利用壓電元件之振動壓力噴出墨滴之隨需隨滴法( 即壓力脈衝法)、利用將電訊號轉換成音束且將音束施加於 墨水所得之輻射壓力噴出墨滴之音波噴墨法、及藉由將墨 水加熱因而產生氣泡且利用所產生壓力噴出墨滴之熱噴墨 法(即Bubble-Jet (註冊商標))者。 在印刷之情形可應用網版印刷法。 沉積之實例包括藉噴灑霧化、藉蒸發沉積、及浸泡。 其中較佳爲藉蒸發沉積,而且在此情形,此處理較佳爲在 約30至約600秒之低壓下實行。 在塗覆或噴墨應用之情形使用包括黏附輔劑之溶液。 溶液可藉由混合如環己酮之溶劑與所需黏附輔劑且溶解黏 -24- 200844497 附輔劑而製備。 在塗布黏附輔劑後,其較佳爲使用加熱板、烤箱等’ 將黏附輔劑在50°C至3 00°C乾燥約30至約600秒。 至於黏附輔劑,由可硬化部分(即影像)與彩色層( 特別是有機矽烷化合物)間黏著性,如下所述,及未硬化 部分之顯影性質之觀點,其可使用氮化矽、氧化矽等。特 別是由形成對撐體表面之黏著性優良之彩色圖案而不增加 未硬化部分(未曝光部分)之顯影殘渣的觀點,其較佳爲 由下式(A)表示之化合物。然而本發明不受其限制。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a color filter and a method of manufacturing the color filter, and a solid-state imaging element using the color filter. [Prior Art] In recent years, as a method of manufacturing a color filter, a lithography method has been used in consideration of manufacturing cost and ease of manufacture. The lithography method refers to a method in which a radiation-sensitive composition (such as a color hardening composition) is coated on a substrate by a spin coater, a roll coater, or the like, and dried to form a coating film; the coating film is subjected to pattern exposure and development. And baking to form a color pixel, and repeating this cycle of operation for various colors, thereby manufacturing a color filter. The lithography method achieves high positional accuracy and has been widely used as a method for manufacturing color displays for large screens and color filters for high resolution displays. A known technique for lithography uses a negative photosensitive composition in which an alkali-soluble resin is used in combination with a photopolymerizable monomer and a photopolymerizable initiator (for example, see Japanese Patent Application Laid-Open (Jp-A) No. 2-181704, 2-199403, 5-273411, and 7-140654) The general focus of the method of fabricating a conventional color filter by lithography is described herein with reference to Figures 3 2 A to 3 6 B. As shown in Figs. 32A and 32B, the colored negative-type hardenable composition is coated on the support 1 by a spin coater or the like to form a first color layer 42 °. After the front baking, the first color layer is subjected to light. The cover 47 is exposed and patterned (i.e., the first color pixel formation region 44 of the first color 200844497 color layer is exposed to ultraviolet light) as shown in Figs. 33A and 33B. The unnecessary areas 46 in the first color layer are then removed by development processing, and then baked, thereby forming the first color pixels 48 as shown in Figs. 34A and 34B. In addition, by repeating the same procedure as the first color pixel, the second color pixel 50 shown in FIGS. 35A and 35B and the third color pixel 52 shown in FIGS. 36A and 36B are formed, thereby forming color filter. sheet. In the conventional color filter manufacturing method by the lithography method, as shown in Fig. 36A, the occurrence of the problem occurs in the area where the color pixel corners are concentrated to form the region 54 where the color pixels are not formed. There is also a problem that the desired film thickness is not obtained for each color pixel. Further, the film thickness of the region where the color pixels are in contact with each other is not formed as intended (i.e., the problem of the region where the color pixel film thickness is thinned near the boundary of the color pixel, as shown in Fig. 3B), and the like. These improvements are limited, although they have been optimized for mask deviation and the like, and the curing efficiency of the colored curable composition is improved when exposed to a light source. Further, although a technique of embedding a second color pixel or the like by a heat flow (heavy flow) at the time of thermosetting is known (for example, JP-A Nos. 2006-2673 5 2 and 2 0 06-2 92 8 42), this technology tends to It is affected by the properties and method conditions of the colored curable composition used after the formation of the second color pixel, and there is, for example, a problem that the heat distribution of the support is reflected by its embedding property. Further, in the liquid crystal display device or the solid-state imaging device, the reduction in the pixel size has progressed, and it is necessary to reduce the size of the color filter. In particular, with the recent miniaturization of solid-state photographic elements, it is necessary to make the resolution of the resolution less than 2 0 micron high resolution technology, but the resolution of the conventional lithography method 200844497 has reached the limit. Therefore, the issue of lithography is becoming more and more prominent. It has proposed a technique using a dye as a technique for further miniaturizing a color filter and realizing a high-resolution color filter for a solid-state photographic element. However, a dye-containing hardenable composition is generally concerned with, for example, light resistance, film formation, or spectroscopy. The property of the change in the permeability characteristics is inferior to that of the pigment. Further, in particular, since a film thickness of 1.0 μm or less is required in manufacturing a color filter for a solid-state photographic element, it is necessary to add a large amount of coloring agent to the curable composition, thereby causing various problems including patterns. Significant difficulty in formation, such as insufficient adhesion of the substrate, insufficient hardening force, or dye leakage in the exposed area. In addition, contrary to the method of manufacturing a color filter by lithography, a dry etching method has been known for several years as an effective method for forming a relatively thin film having a high-definition pattern. Dry etching has been conventionally used as a method of forming a substantially rectangular pattern. Further, a pattern forming method using a combination of a lithography method and a dry etching method has been disclosed (for example, see JP-A No. 2 0 0 1 - 2 4 9 2 1 8), although it is possible to borrow JP-A. The technique described in the patent No. 2001-249218 forms a first color pixel into a rectangular form, and the formation of the second and third color pixels is limited by the performance of the conventional photosensitive coloring composition, and there are still problems attached to the lithography method. . Therefore, when using the lithography method, it is necessary to maintain the difference in the solubility properties of the composition due to development exposure while increasing the concentration of the colorant, so the technical barrier 200844497 is extremely high. As described above, in the conventional method of manufacturing a color filter, the pattern size which can be formed has a limit (lower limit). SUMMARY OF THE INVENTION The present invention has been accomplished in view of the above circumstances, and provides a method of fabricating a color filter that solves pattern formation limitations and that can form a smaller pattern. The present invention also provides a color filter having substantially rectangular color pixels. The present invention also provides a solid-state image capturing element having excellent color reproduction power. The inventors have discovered that when a repeating pattern (e.g., a stripe pattern) is first formed and then becomes a spacer pattern to form a color pixel, it can be formed with a color pixel having a more rectangular cross section than when the spacer pattern is directly formed to form a color pixel. . That is, according to a first aspect of the present invention, there is provided (1) a method of manufacturing a color filter comprising: (a) forming a first color pattern in a repeating pattern on a support; (b) on the support, at Forming a second color pattern in a repeating pattern without forming a region of the first color pattern; (removing at least a portion of one of the first color pattern and the second color pattern by dry saturation, the portion is intended to form a third color pattern And (d) forming, on the support, a third color pattern in a repeating pattern in a region where one of the first color pattern and the second color pattern has been removed. 200844497 In accordance with the second aspect of the present invention, In the method of the item 1), the first color pattern and the second color pattern are each strip-shaped. According to the third aspect of the invention, in the method of the item (1), the first color pattern is formed by any of the following (1) A method comprising forming a first color layer on a support, exposing the first color layer, and developing the exposed product; and (2) a method comprising forming a first color layer on the support, using The photoresist forms light on the first color layer a pattern, and a method of dry etching a first color layer using a photoresist pattern as an uranium reticle. According to a fourth aspect of the invention, in the method of (1), the second color pattern is by the following method ( 1), or a method comprising at least one of the following methods (2) and (3): (1) a method comprising forming a second color layer on a support forming a first color pattern, and exposing the second color layer And a method of developing; (2) a method comprising: forming a second color layer on the support forming the first color pattern, forming a photoresist pattern on the second color layer using the photoresist, and using the photoresist pattern as the etching light a method of dry etching a second color layer; and (3) a method comprising forming a second color layer on a support forming the first color pattern, and performing planarization of at least the second color layer. In a fifth aspect, in the method of the item (1), the third color pattern is formed by the following method (1), or a method comprising one of the following methods (2) and (3) to 200844497: 1) a method comprising forming a first color pattern Forming a third color layer on the support of the second color pattern, and exposing the third color layer, and then developing the method; (2) forming a third on the support forming the first color pattern and the second color pattern a color layer, a photoresist pattern formed on the third color layer using the photoresist, and a method of dry uranium engraving the third color layer using the photoresist pattern as an etch mask; and (3) a method of forming the first color pattern and Forming a third color layer on the support of the second color pattern, and performing a method of planarizing at least the third color layer. According to a sixth aspect of the present invention, in the method according to the fourth aspect of the present invention, planarization Including etchback treatment (the entire exposed surface of the uranium engraved color layer) and honing treatment (which hones all exposed surfaces of the colored layer) at least - 〇 according to the invention, the brother of the seven percent, the younger (1) The method further includes: forming a second stop layer on the first color pattern and the second color pattern after (b) forming the second color pattern and (c) removing the partial color pattern, wherein: removing the partial color map Included in the region where the third color pattern is to be formed or at least a portion of at least one of the first color pattern and the second color pattern is removed, and the second stop layer is removed in a region where the third color pattern is to be formed; and the third color is formed The pattern includes forming a third color layer on the support forming the first color pattern, the second color pattern, and the second stop layer, and dry--10-200844497 etching the third color layer until the second stop layer is exposed. According to an eighth aspect of the present invention, in the method of (1), the forming the first color pattern includes forming a first color layer on the support, and forming a first stop layer on the first color layer; and forming The second color pattern includes forming a second color layer on the support forming the first color pattern and dry etching the second color layer until the first stop layer is exposed. According to a ninth aspect of the invention, in the method of (1), the first color pattern and the second color pattern are formed in such a manner that surfaces of the first color pattern and the second color pattern are in contact with each other. According to a tenth aspect of the invention, in the method of (1), the first color pattern is formed, the second color pattern is formed, or at least one of the third color patterns is formed, including: · after the dry etching The body is subjected to an adhesion improving treatment; a color layer is formed on the support to which the adhesion improving treatment has been applied; the colored layer is exposed; and the exposed resultant is developed to form a color pattern. According to an eleventh aspect of the invention, in the method according to the tenth aspect of the invention, the adhesion improving treatment comprises at least one of adding an adhesion adjuvant or a fluorination treatment using a plasma. According to a twelfth aspect of the present invention, in the method according to the tenth aspect of the present invention, the color layer is coated with a total solid content including a relatively colored hardenable composition of from 0.05 to 1.25. A color-hardening composition of an organic decane compound in an amount of % is formed. -11- 200844497 According to a thirteenth aspect of the present invention, in the method of (1), the method of forming a first color pattern, forming a second color pattern, or forming at least one of the third color patterns comprises: After the etching, the adhesion improving treatment is not applied to the support. By coating the support with a colored hardening composition comprising an organic decane compound in an amount of from 0.3 to 1.2% by mass based on the total solid content of the composition. Forming a colored layer; exposing the colored layer; and developing the exposed resultant to form a colored pattern. According to a fourteenth aspect of the invention, in the method of the item (1), the region in which the third color pattern is to be formed includes a checkered pattern region. According to a fifteenth aspect of the present invention, in the method of (1), the area in which the third color pattern is to be formed includes a stripe pattern extending in a direction crossing the first color pattern and the second color pattern. . According to a sixteenth aspect of the present invention, a color filter is provided which is manufactured by the method of producing a color filter of the item (1). According to a seventeenth aspect of the present invention, a solid-state photographic element is provided which includes a color filter according to a sixteenth aspect of the present invention. SUMMARY OF THE INVENTION The present invention provides a method of fabricating a color filter that addresses the limitations of pattern formation and that forms a finer pattern. The present invention also provides a color filter having substantially rectangular color pixels. The present invention also provides a solid-state photographic element having excellent color reproduction power. -12- 200844497 [Embodiment] Method of Color Filter and Method of Making Color Filter According to an exemplary embodiment of the present invention, a method for manufacturing a color filter includes at least: u) repeating a pattern on a support Forming a first color pattern; (b) forming a second color pattern in a repeating pattern on a support without forming a first color pattern; (c) removing one of the first color pattern and the second color pattern by dry etching At least a portion of the portion that is the region in which the third color pattern is to be formed; and (d) forming a third color pattern on the support in a region where one of the first color pattern and the second color pattern has been removed. The color filter of the present invention is produced by this method. According to an exemplary embodiment of the method for fabricating a color filter of the present invention, the first color pattern and the second color pattern are each formed in a stripe pattern such that the cross-section of each of the first color pattern and the second color pattern can be substantially Upper rectangle. The cross section of the pattern indicates that the color pattern is cut in parallel with the pixels in the width direction of the pattern and the plane of the vertical support. One of the causes of the hypothesis of this effect is explained below. Typically for patterning of lithography, repeating patterns (e.g., bar patterns) have higher edge contrast than the spaced pattern, and the patterns can be formed such that the cross-section can be substantially rectangular. Further, when the pattern is formed into a strip pattern, the contrast of the longitudinal direction of the pattern is fixed so that the undesired phenomenon such as the formation of the pattern fillet does not occur. -13- 200844497 Because of these characteristics, the strip-shaped first color pattern formed by the lithography method and the strip-shaped second color pattern improve the contrast of the pattern edges in the direction of the longitudinal direction of the vertical pattern, and maintain the rectangular form of the cross-section of the pattern, The effect of optical proximity effects is thus excluded in the longitudinal direction of the pattern. Further, the stripe first color pattern and the second color pattern may also be formed by dry etching. In this case, the cross-section of the pattern is closer to a rectangle than that obtained by lithography. Further, a method of fabricating a color filter according to the present invention includes removing a portion of at least one of the first color pattern and the second color pattern from a region where the third color pattern is to be formed by a dry etching method to form a recessed portion, and The three color patterns are embedded in the recessed portion, and the influence of the optical intensity distribution or the pattern distortion can be suppressed. As described above, the pattern forming force can be improved by the method of producing a color filter of the present invention. In particular, it is possible to suppress the occurrence of a region where color pixels are not formed in the corner region of the color pixel, and it is also possible to suppress the occurrence of a region where the film thickness is thinned near the boundary of the color pixel. As a result, the limitation of pattern formation (especially by the color pattern formation by lithography) can be solved, and a color filter having finer pixels can be formed. Since the color filter of the present invention is manufactured by this method, the color filter has substantially rectangular color pixels. Further, in the method of manufacturing a color filter of the present invention, it is preferably an exemplary embodiment in which all color patterns (for example, all of the first to third color patterns) are formed by dry etching and/or honing, and This exemplary embodiment further addresses patterning forces and patterning limitations. -14- 200844497 by dry etching and/or honing to form all color patterns (for example, all of the first to third color patterns), or by layer etching formed by a layer formed of a material only forming a film thereof / or when honing is formed, it produces a thinner color filter. Therefore, the properties of the color filter can be improved, problems such as hue defects can be improved, or a small solid-state photographic element can be manufactured. As used herein, a layer formed of a material in which only a film is formed refers to a layer having a relatively large amount of coloring agent in order to exert its properties, such as a layer having a low color density per unit volume or requiring a plurality of coloring agents to achieve desired penetration. The layer of the spectrum. For ease of explanation, a color film (solid film) formed without being divided into a plurality of regions is referred to as a "color layer", and a color film (for example, a film patterned into a stripe pattern or the like) which is divided into a plurality of regions in a pattern form. It is called "color pattern". Here, an exemplary embodiment (patterning embodiment) obtained by forming a divided region into a pattern form includes an exemplary embodiment obtained by patterning and developing a photosensitive film by pattern exposure, and a borrowing An exemplary embodiment is obtained by forming a photoresist pattern on a color film, and using a photoresist pattern as an etch mask to image the color film by feed-forging, and a method of embedding the color film on the support. A specific embodiment is exemplified by patterning the depressed portion, and removing the portion of the depressed portion of the obtained colored film, and then forming a pattern or the like. Further, in the color pattern, a color pattern (e.g., a color pattern patterned into a square or the like) which is an element constituting the color filter array is referred to as a "color pixel". The procedure of the method of manufacturing a color filter of the present invention and the exemplified embodiment of -15-200844497 are described below, followed by the dry etching, the support, the color pattern, the photoresist, and the stop layer. Color Pattern Formation The formation of the first color pattern is performed by forming a first color pattern in a repeating pattern (e.g., a strip pattern) on the support. The method of forming the first color pattern preferably includes, but is not particularly limited to, (1) a method in which a color layer is formed on a support, and the formed color layer is exposed and developed (also referred to as "micro" in the present invention. Shadowing method), or (2) a method of forming a color layer on a substrate, forming a photoresist pattern on the formed color layer using a photoresist, and dry etching the color layer using the formed photoresist pattern as an etching mask The method (also referred to as "dry etching method j" in the present invention). The second color pattern is formed on the support by the region where the first color pattern is not formed (for example, sandwiched between the first color patterns) The region is formed by forming a second color pattern in a repeating pattern (such as a strip pattern). The third color pattern is formed by removing at least one of the first color pattern and the second color pattern by a color pattern removing program described later. The region is formed by forming a third color pattern. In the formation of the first color pattern and the third color pattern, an example of a method of forming the second color pattern and the table two color pattern preferably includes 〇) a lithography method (2) a dry etching method, and (3) a planarization method in which a second color pattern and a third color pattern are formed on a color pattern forming support, and a second color pattern and a third color pattern are formed The color pattern is subjected to a flattening process (also referred to as "flattening method" in the present invention). -16- 200844497 A specific embodiment of the planarization treatment is preferably that the colored resin composition is embedded in a concave (or encircled) between the colored patterns on the support to form a colored layer, and the entire exposure of the colored layer is hungry. An exemplary embodiment of the treatment of honing to remove excess portions of the formed colored layer from the recess. From the standpoint of simplifying the manufacturing method or manufacturing cost, planarization is an etch back method which includes dry etching to form the second and third entire exposed surfaces. The planarization process is not limited to the etch back method. The planarization process includes a honing process that includes honing the entire surface of the second and third color layers. A specified example of the honing treatment includes a chemical mechanical honing ("CMP") method in which the second and the first exposed surfaces are chemically and mechanically honed. Further, the planarization treatment preferably includes a combination of an etch back method and a honing method. In the formation of the second color pattern and the third color pattern, a combination of a dry engraving method and a planarization method. In contrast to the case where the colored pattern is formed by only the dry etching method, after the color pattern is formed by the dry etching method, the etch back method is applied to improve the flatness of the colored pattern. The first and second color patterns are preferably formed such that the surfaces of the patterns are in contact with each other from the viewpoint of suppressing generation of a region where color pixels are not formed and more effective effects of the invention. With regard to additionally addressing the limitations of pattern formation, the first color map includes a preferred example of a preferred color layer by applying a trapped portion of the depressed portion to a preferred color layer, hereinafter referred to as a three color layer (eg, CMP can be used, for example The width of the adjacent color pattern and the second -17-200844497 color pattern are independently obtained in one step, preferably from 0.5 μm to 2.0 μm, more preferably from 1.0 μm to 1.7 μm, and particularly preferably from 1.2 μm to 1.5. In the following description of the third embodiment of the present invention and the fourth exemplary embodiment, the widths of the first color pattern and the second color pattern are each independently preferably from 5 μm to 2.0 μm, and more preferably The thickness of the third color pattern is preferably from 0.5 μm to 2.0 μm, more preferably from ι·〇 micron to 1.7 μm, and is particularly good for the limitation of pattern formation from 7·7 μm to 1.4 μm. 1.2 micrometers to 1.5 micrometers. In the case of the third embodiment of the present invention described below and the fourth exemplary embodiment, the width of the third color pattern is preferably from 0.5 micrometers to 2.0 micrometers, and Preferably, the thickness of each of the first to third color patterns is preferably from 0.005 μm to 0.9 μm, more preferably from 〇5 μm to 0.8 μm, and further, to further solve the limitation of pattern formation. More preferably, it is ι·μm to 〇·7 μm. There is no particular limitation on the specific embodiment in which the first to third color patterns are formed by the “lithography method”, and the technique of lithography is known to be appropriate. For example, first, the colored photocurable composition described below is applied to the support directly or with other layers interposed therebetween, and dried (preferably further subjected to pre-baking treatment) to form a colored layer. The colored layer is formed by exposure of the pattern by radiation, and the color layer exposed by the pattern is developed (preferably further subjected to post-baking treatment) to obtain a color pattern. Post-exposure can be performed after development. The effect of the present invention is effectively obtained. Preferred examples of the radiation include -18-200844497 g-line, h-line, and i-line, and more preferably i-line. As for the developing solution usable for development, any developing solution can be used. The liquid is as long as it dissolves the unhardened portion. In particular, it can use various organic solvents or a combination of alkaline aqueous solutions. As for the designation of the photoresist to form the photoresist pattern in the "dry uranium engraving method", the specific embodiment is not particularly specific. The technique of lithography is known to be appropriately optimized and used. For example, first, a positive or negative photosensitive resin composition (photoresist) described later is applied onto a color layer, and dried (preferably further accepted). Pre-baking treatment) forming a photoresist layer. The formed photoresist layer is exposed to radiation and developed (preferably further subjected to post-baking treatment) to form a color pattern. For the purpose of the present invention, for exposing the photoresist layer The radiation is preferably a g-line, an h-line, and an i-line, and more preferably an i-line. As the developing solution usable for development, any developing solution can be used as long as it does not affect the color layer (including the colorant) and dissolves the unhardened portion (which corresponds to the hardened portion in the case where the photoresist is a positive type operation, and in the light The case where the resistance is a negative type operation is equivalent to the unhardened part). Specifically, it can use various organic solvents or a combination of aqueous alkali solutions. Among the above, the case where the first to third color patterns are formed by the dry etching method and the case where the second and third color patterns are formed by the etch back process are specified. The specific example of the dry etching is not particularly limited. However, it is known that dry-type etched examples are not suitable for the most suitable embodiment. A preferred embodiment of the dry uranium engraving is described below. -19- 200844497 Removal of color pattern The removal of the color pattern in the present invention is carried out by dry etching to remove a portion of the first color pattern and/or the second case in the region where the third case is to be formed. As for the area where the third color pattern is to be formed, there is no particular limitation on the area in which the third color pixel is to be formed, for example, the square pattern is as shown in the following FIGS. 6A to 6C, in which the green pixel is formed, and the third color is to be formed. The area of the pattern is preferably a bar graph, such as the area 120 in which the green pixels are formed in FIGS. 21A to 21C, and the first color pattern and the second color pattern extend in the direction in which they intersect. When the region of the third color pattern is a stripe pattern region, the first to the first patterns may be formed without forming pattern corners, and a substantially color filter array may be formed. A method for removing a region for forming a third color pattern by dry etching is preferably a method comprising using a photoresist (ie, forming a photoresist pattern for exposure of a third color region), in advance by a known lithography technique in the pattern and/or Or forming a photoresist pattern on the second color pattern and performing a dry etching process using the light as an etch mask. The length of one side of the region where the third color pattern is formed is preferably from 〇 to 2.0 μm, more preferably from 1 μm to 1.7 μm, and from a micron to 1.5 μm. In the case where the third embodiment of the present invention is described below as a specific embodiment, the length of the side portion forming the third color pattern is preferably 〇·5 μm to 2.0 μm, and more preferably 7.7 1.4 μm. Color map color map, and comparison area, 20 〇 区域 其 其 其 欲 欲 欲 欲 欲 欲 欲 欲 欲 欲 彩色 彩色 彩色 彩色 彩色 彩色 彩色 彩色 彩色 彩色 彩色 彩色 彩色 彩色 彩色 彩色 彩色 彩色 彩色 彩色 彩色 彩色 彩色 彩色 彩色 彩色 彩色 彩色 彩色 5 5 5 5 The specific embodiment of the dry etching of the color pattern is not particularly limited, and it is known that the specific embodiment of the dry touch can be suitably optimized and used. A preferred exemplary embodiment of dry etching is described below. Formation of Stop Layer The method of manufacturing the color filter of the present invention may include forming a stop layer (forming a first stop layer and/or a second stop layer). Formation of the first stop layer In the present invention, the second color pattern is formed by dry etching (including formation by "dry etching" and by "etch back etching"; the following is the same) and / or c Μ P processing is formed. The first color pattern is preferably formed by forming a first color layer on the support and forming a first stop layer on the formed first color layer (a forming process of the first stop layer). In this case, it is more preferable that the formation of the first color pattern includes forming a photoresist pattern on the first stop layer using the photoresist, and dry etching the first stop layer and the first using the formed photoresist pattern as an etch mask Color layer. Due to this first color pattern, the upper surface of the first color pattern formed (the surface of the two parallel supports of the color pattern away from the support side) is covered by the first stop layer. Therefore, the first color pattern can more effectively prevent the phenomenon such as film reduction and etching drying and/or c ΜΡ processing damage for forming the second color pattern. As a result, the spectral transmission characteristics of the color pixels of the color filter are easily controlled. Formation of the second stop layer In the present invention, the third color pattern is formed by dry etching (including formation by "Dry-21 - 200844497 uranium engraving method" and by "etching back treatment"; the following is also the case of 2 CMP treatment In the case, it is preferable to form the second stop layer on the first color pattern and the second color before forming the second color pattern and before removing the color pattern. Due to the above configuration, the second stop layer exists on the first and second patterns (in the opposite direction of the support when viewed from the color pattern; below). Therefore, the first and second color patterns can more effectively prevent damage by dry etching and/or CMP processing when the film is reduced to form the third color pattern. As a result, the spectrum of the color pixels of the color filter is easily controlled. The first stop layer and the second stop layer are each preferably a layer having a lower etching rate or a lower color pattern, and the stop layer is preferably used for visible light transmittance. The composition is formed such that the filter can be manufactured without completely removing the stop layer. Here, "transparent to visible light" means that the visible light transmittance is about or greater. Heating Procedure The method of the present invention preferably further comprises heating the colored layer at a temperature of from about 1 ° C to about 22 after removing the photoresist pattern including the color pattern and the color pixels. The color layer can be evaporated by heating (including The color pattern and the pixel absorb moisture, and can effectively suppress layer defects which may occur afterwards. Adhesion improving procedure The method for manufacturing a color filter of the present invention preferably includes improving the adhesion of the surface of the support of the dry etching; Adhesive improvement t / or after the color of the pattern is also the same as the color of the visible characteristic layer 95% (the package is colored to accept the support -22- 200844497 body to form a color layer; the color layer is exposed And developing the exposed color layer to form a color pattern. The method for manufacturing the color filter of the present invention can improve the adhesion between the color layer (color pattern) and the support, and can effectively suppress the development time. Color layer (color pattern) peeling, for example, even when the surface of the support is rendered hydrophilic by dry etching (for example, on the surface of the support) When the contact angle of water is less than 40°, it is not necessary to over-exposure (to increase the exposure amount) to improve the adhesion, and the accurate pattern size and adhesion treatment can be more effectively obtained together. Therefore, it is particularly effective in the coloring pattern hour. In the method for manufacturing a color filter of the present invention, the specific example of applying the adhesion improving treatment preferably includes the following two exemplary embodiments. The two specific embodiments can be used in combination. The method comprises: applying an adhesion improving treatment to the surface of the support after the dry etching process of removing the color pattern, forming a third color layer on the support body to which the adhesion improving treatment is applied, exposing the formed third color layer, and developing the exposed layer Forming a third color pattern. The peeling of the third color pattern can be effectively suppressed according to the exemplary embodiment. The second exemplary embodiment includes forming a first color pattern by dry etching, applying the surface of the support after the dry etching process Adhesive improvement treatment, forming a second color layer on the support to which the adhesion improving treatment has been applied, Forming a second color layer exposure, and developing the exposed layer to form a second color pattern. According to the exemplary embodiment, the second color pattern -23 - 200844497 peeling can be effectively suppressed. Regarding the adhesion improving effect, the adhesion improving treatment It is preferably a hydrophobic treatment 'and more preferably a contact angle between the surface of the support and water of 4 Å or more. Further, as for the adhesion improving treatment, it is preferably treated by adding an adhesion aid. At least one of fluorination treatment with plasma is used. Application of Adhesive Adhesives Adhesive adjuvants can be applied by conventional positive-type photoresist methods such as steam treatment, coating, inkjet coating, printing, or deposition. In the case of coating, various known coating methods such as slit coating, spin coating, cast coating, roll coating, spray coating, etc. can be applied. In the case of inkjet coating, it is possible to apply inkjet jetting using an ink jet head. Examples of the ink jet head include a charge control method for ejecting ink droplets by electrostatic induction force, an on-demand drop method (ie, pressure pulse method) for ejecting ink droplets by vibration pressure of a piezoelectric element, and converting an electric signal into a sound beam And an ultrasonic inkjet method in which a sound beam is applied to the radiation pressure of the ink to eject the ink droplets, and a thermal inkjet method in which bubbles are generated by heating the ink and the ink droplets are ejected by the generated pressure (ie, Bubble-Jet (registered trademark) ))By. Screen printing can be applied in the case of printing. Examples of deposition include atomization by spraying, deposition by evaporation, and soaking. Preferably, it is deposited by evaporation, and in this case, the treatment is preferably carried out at a low pressure of from about 30 to about 600 seconds. A solution comprising an adhesion aid is used in the case of coating or ink jet applications. The solution can be prepared by mixing a solvent such as cyclohexanone with a desired adhesion aid and dissolving the adhesive. After the adhesion adjuvant is applied, it is preferably dried using a hot plate, an oven or the like at a temperature of from 50 ° C to 300 ° C for about 30 to about 600 seconds. As for the adhesion adjuvant, the adhesion between the hardenable portion (i.e., image) and the color layer (especially the organic decane compound), as described below, and the development property of the uncured portion, may be performed using tantalum nitride or ruthenium oxide. Wait. In particular, from the viewpoint of forming a color pattern excellent in adhesion to the surface of the support without increasing the development residue of the unhardened portion (unexposed portion), it is preferably a compound represented by the following formula (A). However, the invention is not limited thereto.

R—Si—NH-Si—R6 式⑻R-Si-NH-Si-R6 type (8)

在式(A)中,R1至R6各獨立地表示具有1至4個碳原 之烴基,而且在其結構中可包括環結構及/或不飽和鍵。具 有1至4個碳原之烴基的實例包括甲基、乙基、丙基、與 丁基。特別是各R1至R6較佳爲表示甲基。 以下列出由式(A)表示之化合物的指定實例。然而本發 明不受其限制。 -25 - 200844497 CH3 ch3 H3G—Si—NH—Si—CH3In the formula (A), R1 to R6 each independently represent a hydrocarbon group having 1 to 4 carbon atoms, and may include a ring structure and/or an unsaturated bond in its structure. Examples of the hydrocarbon group having 1 to 4 carbon atoms include a methyl group, an ethyl group, a propyl group, and a butyl group. In particular, each of R1 to R6 preferably represents a methyl group. Designated examples of the compound represented by the formula (A) are listed below. However, the invention is not limited thereto. -25 - 200844497 CH3 ch3 H3G—Si—NH—Si—CH3

CH 3 CH, C2H5 H5O2— Si — NH C2H5 C2H5 Si—C2H5 C2H5 C3H7 C3H7CH 3 CH, C2H5 H5O2— Si — NH C2H5 C2H5 Si—C2H5 C2H5 C3H7 C3H7

H7C3— Si — NH— Si—C3H7 I I C3H7 C3H7 黏附輔劑存在於撐體上之量較佳爲使得提供於經輔劑 處理之撐體上之水具有5 0°或更大之接觸角,而且更佳爲 使得其相對撐體表面具有60°或更大之接觸角。在輔劑之 量在此範圍內時,其可有效地改良組成彩色濾光片之彩色 圖案的效果,同時減少來自硬化層之未去除曝光區域的顯 影殘渣,如下所述。 使用電漿之氟化處理 使用電漿之氟化處理較佳爲藉含氟氣體(例如氟烴, 如CF4等)之電漿產生,繼而電漿離子照射而實行。由疏 水性之觀點,其更佳爲由不含氧氣之氟烴氣體產生電漿, 及以電漿處理撐體表面。 特別地,使用電漿之氟化處理可以如本發明所述其他 乾式蝕刻處理之相同方式實行。 在本發明中可使用任何已知氣體作爲含氟氣體,而且 較佳爲由下式(B)表示之氣體。The H7C3-Si-NH-Si-C3H7 II C3H7 C3H7 adhesion adjuvant is preferably present on the support such that the water provided on the adjuvant-treated support has a contact angle of 50° or more, and More preferably, it has a contact angle of 60 or more with respect to the surface of the support. When the amount of the adjuvant is within this range, it can effectively improve the effect of the color pattern constituting the color filter while reducing the development residue from the unexposed exposed region of the hardened layer, as described below. Fluorination treatment using plasma Fluorination treatment using plasma is preferably carried out by plasma generation of a fluorine-containing gas (e.g., a fluorocarbon such as CF4), followed by plasma ion irradiation. From the viewpoint of water repellency, it is more preferable to produce a plasma from a fluorocarbon gas containing no oxygen, and to treat the surface of the support with a plasma. In particular, the fluorination treatment using plasma can be carried out in the same manner as other dry etching treatments described in the present invention. Any known gas can be used as the fluorine-containing gas in the present invention, and is preferably a gas represented by the following formula (B).

CnHmFi 式(B) 在式(B)中,η表示1至6,m表示0至13,及1表示 1 至 1 4。 -26 - 200844497 由式(B )表不之含氟氣體視情況地較佳爲選自c F 4、 C2F6、 C3F8、 C2F4、 C4F8、 c4f6、 C5F8、與 CHF3、及其混 合物。其中此含氟氣體視情況地更佳爲選自CF4、C2F6、 C4F8、與CHF3,而且進一步較佳爲CF4與C2F6。關於其寬 度利用性,特佳爲cf4。 又本發明之含氟氣體可爲選自此組,而且可使用二或 更多種選自此組之氣體的氣體混合物。 電漿處理較佳爲使用功率爲3 0 0瓦或更大之無線電頻 率(RF)實行5秒或更短。 如上所述,其敘述組成本發明彩色濾光片之製造方法 的各程序,而且此程序可組合使用。例如在形成第一至第 三彩色圖案時各可獨立地應用微影術法、乾式蝕刻法及平 坦化法,而且多種方法之組合可用於製造彩色濾光片。 此外其可包括以上程序以外之任何程序,只要其不影 響本發明之效果。 以下敘述依照本發明製造彩色濾光片之方法的指定例 示具體實施例(即第一例示具體實施例至第四例示具體實 施例)。然而本發明不限於這些例示具體實施例。 第一例示具體實施例 在第一例示具體實施例中,第三彩色圖案係排列成方 格狀圖案(即B a y e r排列),而且藉微影術法形成全部第一* 至第三彩色圖案。以下參考第1A至8C圖敘述第一例示具 體實施例。 在第 1A 至 8C 圖中,第 1A、2A、3A、4A、5A、6A、 -27 - 200844497 7A、及8A圖各顯示平面圖,及第1B、2B、3B、4B、5B 、6B、7B、及8B圖各顯示沿各第1A、2A、3A、4A、5A 、6A、7A、及8A圖之線A-A’而取之切面圖。此外在第5A 至8C圖中,第5C、6C、7C、及8C圖各顯示沿各第ία、 2A、3A、4A、5A、6A、7A、及8A圖之線B-B’而取之切 面圖。 第一彩色圖案之形成 在此各形成紅色圖案、藍色圖案與綠色圖案作爲第一 彩色圖案、第二彩色圖案與第三彩色圖案之實例。首先如 第1 A及1 B圖所示,將紅色圖案材料以預定膜厚塗布在撐 體10上形成紅色層12,其爲第一彩色層。然後實行圖案 曝光、顯影及後烘烤處理而形成紅色圖案1 4成爲條形圖案 之第一彩色圖案,如第2A及2B圖所示。 第二彩色圖案之形成 其次如第3 A及3 B圖所示,將藍色濾光材料塗布在其 上形成紅色圖案1 4之撐體側的表面上,使得以預定膜厚形 成藍色層16,其爲第二彩色層。然後使夾在紅色圖案14 間之區域接受圖案曝光、顯影及後烘烤處理而形成藍色圖 案18成爲條形圖案之第二彩色圖案,如第4A及4B圖所 不 ° 因而形成由彼此相鄰之紅色圖案1 4與藍色圖案1 8形 成之條形圖案。此時在將彩色濾光片陣列設計成方形之組 合體時,紅色圖案1 4與藍色圖案1 8之寬度比例(紅色圖 案14之寬度··藍色圖案18之寬度)可較佳爲1:1°然而此 -28- 200844497 比例可依裝置設計而改變。 彩色圖案之去除 其次如第5A至5C圖所示,將光阻塗布在其上形成紅 色圖案14與藍色圖案18之撐體側的表面上,而且藉曝光 及顯影繼而後烘烤處理去除第一彩色圖案及/或第二彩色 圖案上欲形成第三彩色圖案之區域(例如用於形成綠色像 素之區域20 )中光阻之一部分,因而形成光阻圖案22。 其次如第6A至6C圖所示,藉乾式蝕刻法去除用於在 紅色圖案14與藍色圖案18上形成綠色像素之區域20,而 形成紅色像素2 8與藍色像素3 0,然後去除紅色像素2 8與 藍色像素30上之光阻圖案22。 第三彩色圖案之形成 其次如第7A至7C圖所示,將綠色濾光材料塗布在其 上形成紅色像素2 8與藍色像素3 0之撐體側的表面上,而 形成綠色層24,其爲第三彩色層。 由黏著性的觀點來看,加熱及黏著性改良處理較佳爲 在塗布綠色濾光材料前實行。亦由於相同之原因,其較佳 爲綠色濾光材料包括後述之有機矽烷化合物。 將用於在綠色層24上形成綠色像素之區域曝光、顯影 及後烘烤形成綠色圖案26 (即綠色像素32),其爲第三彩 色圖案。 因而形成包括紅色像素2 8、藍色像素3 0與綠色像素 3 2之彩色濾光片陣列,如第8 A至8 C圖所示。 第二例示具體實施例 -29 - 200844497 第一至第三彩色圖案係藉微影術法及乾式蝕刻法 (包括藉「乾式蝕刻法」形成及藉「回蝕法」形成之 :以下亦同)。 以下參考第9A至20C圖敘述第二例示具體實施 其中第二彩色圖案係排列成方格狀圖案(即B a y e r排; 包括藉乾式蝕刻法(如果需要則及CMP )形成全部第 第三彩色圖案。 在第 9A 至 20C 圖中,第 9A、10A、11A、12A、 、14A、15A、16A、17A、18A、19A、及 20A 圖各顯 面圖,及第 9B、10B、11B、12B、13B、14B、15B、 、17B、18B、19B、及 20B 圖各顯示沿第 9A、10A、 、12A、13A、及14A圖之線A-A’而取之切面圖,及第 、16C、17C、18C、19C、及 20C 圖各顯示沿第 15A、 、:I 7A、1 8 A、1 9A、及20A圖之線B-B’而取之切面圖 第一彩色圖案之形成 如第9A及9B圖所示,例如將紅色濾光材料塗布 體1 〇上形成紅色層1 2,其爲第一彩色層,及在所形 色層12上進一步形成第一中止層34,繼而爲烘烤處Ϊ 由於第9 A圖爲第一中止層3 4爲透明膜之情形的 圖,第9A圖中之點圖案顯示位於第一中止層34下方 色層12,及如第9B圖所示顯示第一中止層34之白色 在平面圖中未顯示(在以下圖中亦同)。 然後如第10A及10B圖所示,將光阻塗布在中止 上形成塗膜,而且將膜按圖案曝光、顯影及後烘烤而 形成 情形 例, 列), 一至 1 3 A 示平 1 6B 1 1 A 1 5C 1 6A 〇 在撐 成紅 里。 平面 之紅 區塊 層34 在欲 -30- 200844497 形成紅色圖案之區域形成光阻圖案22。然後使用光阻圖案 22作爲蝕刻光罩實行第一中止層34與紅色層12之乾式蝕 刻,而形成紅色圖案1 4成爲第一彩色圖案,如第Π A及 1 1 B圖所示。然後去除光阻圖案2 2。 在第二具體實施例中,如第1 1 A及1 1 B圖所示,紅色 圖案1 4 (即第一彩色圖案)係形成條形圖案且其上具有第 一中止層3 4。 第二彩色圖案之形成 其次如第1 2 A及1 2B圖所示,例如將藍色濾光材料以 預定膜厚塗布在其上形成第一中止層34與紅色圖案14之 撐體側的表面上而形成藍色層1 6,其爲第二彩色層。 然後實行回蝕處理及/或CMP處理,直到暴露第一中 止層34而形成藍色圖案18成爲條形圖案之第二彩色圖案 ,如第13A及13B圖所示。藉這些處理形成其中紅色圖案 1 4與藍色圖案1 8彼此相鄰之條形圖案。 在如第12A及12B圖已形成藍色層16後,其可塗布 光阻形成光阻圖案22覆蓋欲形成藍色圖案之區域代替回 蝕處理及/或CMP處理,如第14B圖所示,而且可實行蝕 刻直到暴露第一中止層3 4,繼而去除光阻圖案2 2。在蝕刻 後藍色圖案之高度與紅色圖案之高度不同。爲了層表面之 平坦化可再度實行回蝕處理及/或CMP處理,如第13A及 1 3 B圖所示。CnHmFi Formula (B) In the formula (B), η represents 1 to 6, m represents 0 to 13, and 1 represents 1 to 14. -26 - 200844497 The fluorine-containing gas represented by the formula (B) is preferably selected from the group consisting of c F 4 , C 2 F 6 , C 3 F 8 , C 2 F 4 , C 4 F 8 , c 4 f 6 , C 5 F 8 , and CHF 3 , and a mixture thereof. The fluorine-containing gas is preferably selected from the group consisting of CF4, C2F6, C4F8, and CHF3, and further preferably CF4 and C2F6. Regarding its wide availability, it is especially good for cf4. Further, the fluorine-containing gas of the present invention may be selected from the group, and a gas mixture of two or more selected from the group may be used. The plasma treatment is preferably carried out for 5 seconds or less using a radio frequency (RF) having a power of 300 watts or more. As described above, each of the programs constituting the manufacturing method of the color filter of the present invention is described, and this program can be used in combination. For example, in forming the first to third color patterns, each of the lithography, the dry etching, and the flattening may be applied independently, and a combination of various methods may be used to manufacture the color filter. Further, it may include any program other than the above procedures as long as it does not affect the effects of the present invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific examples of the method of manufacturing a color filter according to the present invention (i.e., the first exemplary embodiment to the fourth exemplary embodiment) will be described. However, the invention is not limited to these illustrative specific embodiments. First Exemplary Embodiment In the first exemplary embodiment, the third color patterns are arranged in a square pattern (i.e., B a y e r arrangement), and all of the first to third color patterns are formed by lithography. The first exemplary embodiment will be described below with reference to Figs. 1A to 8C. In the drawings 1A to 8C, the first plan views are shown in the first, second, third, fourth, fourth, fifth, sixth, and fourth, respectively, and the first, second, second, sixth, and fourth, respectively, and the first, second, second, third, third, and fourth, And Fig. 8B each shows a cutaway view taken along line A-A' of each of Figs. 1A, 2A, 3A, 4A, 5A, 6A, 7A, and 8A. Further, in FIGS. 5A to 8C, the 5C, 6C, 7C, and 8C maps are each taken along the line B-B' of each of the ία, 2A, 3A, 4A, 5A, 6A, 7A, and 8A maps. Cutaway view. Formation of First Color Pattern Here, a red pattern, a blue pattern, and a green pattern are formed as examples of the first color pattern, the second color pattern, and the third color pattern. First, as shown in Figs. 1A and 1B, a red pattern material is applied onto the support 10 at a predetermined film thickness to form a red layer 12, which is a first color layer. Then, pattern exposure, development, and post-baking treatment are performed to form a first color pattern in which the red pattern 14 becomes a stripe pattern as shown in Figs. 2A and 2B. Formation of second color pattern Next, as shown in FIGS. 3A and 3B, a blue filter material is coated on the surface of the support side on which the red pattern 14 is formed, so that a blue layer is formed with a predetermined film thickness. 16, which is the second color layer. Then, the area between the red patterns 14 is subjected to pattern exposure, development and post-baking to form a second color pattern in which the blue pattern 18 becomes a stripe pattern, as shown in FIGS. 4A and 4B. A stripe pattern formed by the adjacent red pattern 14 and the blue pattern 18. At this time, when the color filter array is designed as a square combination, the width ratio of the red pattern 14 to the blue pattern 18 (the width of the red pattern 14 and the width of the blue pattern 18) may preferably be 1 :1° However, the ratio of this -28- 200844497 can be changed depending on the design of the device. The color pattern is removed as shown in FIGS. 5A to 5C, and a photoresist is coated on the surface of the support side on which the red pattern 14 and the blue pattern 18 are formed, and is removed by exposure and development and then baked. A portion of the photoresist in a region of the color pattern and/or the second color pattern where the third color pattern is to be formed (e.g., region 20 for forming green pixels), thereby forming a photoresist pattern 22. Next, as shown in FIGS. 6A to 6C, the region 20 for forming green pixels on the red pattern 14 and the blue pattern 18 is removed by dry etching, and the red pixel 28 and the blue pixel 30 are formed, and then the red color is removed. The photoresist pattern 22 on the pixel 28 and the blue pixel 30. Formation of the third color pattern is as follows, as shown in FIGS. 7A to 7C, the green filter material is coated on the surface on which the red pixel 28 and the blue pixel 30 are formed, and the green layer 24 is formed. It is the third color layer. From the viewpoint of adhesion, the heat and adhesion improving treatment is preferably carried out before the application of the green filter material. Also for the same reason, it is preferred that the green filter material include an organic decane compound to be described later. The area for forming green pixels on the green layer 24 is exposed, developed, and post-baked to form a green pattern 26 (i.e., green pixel 32) which is a third color pattern. Thus, a color filter array including red pixels 28, blue pixels 30 and green pixels 3 2 is formed as shown in Figs. 8A to 8C. Second Example -29 - 200844497 The first to third color patterns are formed by the lithography method and the dry etching method (including the formation by the "dry etching method" and the "etchback method": the same applies hereinafter) . The second exemplary embodiment is described below with reference to FIGS. 9A to 20C in which the second color patterns are arranged in a checkered pattern (ie, a Bayer array; including a dry etching method (and CMP if necessary) to form all of the third color patterns. 9A to 10C, 9A, 10A, 11A, 12A, 14A, 15A, 16A, 17A, 18A, 19A, and 20A, and 9B, 10B, 11B, 12B, 13B , 14B, 15B, 17B, 18B, 19B, and 20B each show a cutaway view taken along line AA' of lines 9A, 10A, 12A, 13A, and 14A, and the 16C, 17C, 18C, 19C, and 20C each show the formation of the first color pattern along the line B-B' of the 15A, , I 7A, 1 8 A, 1 9A, and 20A lines as shown in Figs. 9A and 9B. As shown in the figure, for example, a red color layer 12 is formed on the red filter material coating body 1 as a first color layer, and a first stop layer 34 is further formed on the color layer 12, followed by a baking place. Since FIG. 9A is a view in which the first stop layer 34 is a transparent film, the dot pattern in FIG. 9A shows the color layer 12 under the first stop layer 34, and The white color of the first suspension layer 34 is not shown in the plan view as shown in Fig. 9B (the same applies to the following figures). Then, as shown in Figs. 10A and 10B, the photoresist is coated on the suspension to form a coating film, and The film is formed by pattern exposure, development and post-baking to form a case, column), one to 13 A, and the flat 1 6B 1 1 A 1 5C 1 6A is in red. The plane red block layer 34 forms a photoresist pattern 22 in a region where a red pattern is formed in -30-200844497. The first stop layer 34 and the red layer 12 are then dry etched using the photoresist pattern 22 as an etch mask, and the red pattern 14 is formed into a first color pattern, as shown in Figures A and 1 1 B. The photoresist pattern 2 2 is then removed. In the second embodiment, as shown in Figs. 1 1 A and 1 1 B, the red pattern 14 (i.e., the first color pattern) is formed into a stripe pattern and has a first stop layer 34 thereon. The second color pattern is formed next as shown in FIGS. 1 2 A and 1 2B, for example, a blue filter material is coated on the support side surface of the first stop layer 34 and the red pattern 14 with a predetermined film thickness. The upper layer forms a blue layer 16 which is a second color layer. Then, an etch back process and/or a CMP process is performed until the first stop layer 34 is exposed to form a blue pattern 18 which becomes a second color pattern of a stripe pattern as shown in Figs. 13A and 13B. By these processes, a stripe pattern in which the red pattern 14 and the blue pattern 18 are adjacent to each other is formed. After the blue layer 16 has been formed as shown in FIGS. 12A and 12B, the photoresist-forming photoresist pattern 22 covers the region where the blue pattern is to be formed instead of the etch-back process and/or the CMP process, as shown in FIG. 14B. Moreover, etching can be performed until the first stop layer 34 is exposed, and then the photoresist pattern 2 2 is removed. The height of the blue pattern after etching is different from the height of the red pattern. The etch back process and/or the CMP process can be performed again for the planarization of the layer surface, as shown in Figs. 13A and 13B.

第二中止層之形成及彩色圖案之去I 其次如第15A至15C圖所示,在其上形成紅色圖案14 -31- 200844497 、第一中止層34與藍色圖案18之撐體側的表面上形成第 二中止層36。將光阻塗布在第二中止層36上,而且藉圖 案曝光及顯影去除欲形成第三彩色層之區域(例如用於形 成綠色像素之區域2 0 )中之層。然後實行後烘烤處理形成 光阻圖案22。 由於第15A圖爲第一中止層34與第二中止層36均爲 透明膜之情形的平面圖,第1 5 A圖中之點圖案顯示下層之 紅色層14,及第15A圖中之斜線圖案顯示下層之藍色圖案 18,及如第15B及15C圖所示顯示第一中止層34與第二 中止層36之白色區塊在平面圖中未顯示(在以下圖中亦同 )° 其次如第16A至16C圖所示,使用光阻圖案22作爲 光罩,藉乾式蝕刻法去除用於形成綠色像素之區域20中的 第一中止層34、第二中止層36、紅色圖案14、與藍色圖 案1 8至少之一的一部分,因而形成紅色像素2 8與藍色像 素30。然後如第17A至17C圖所示,去除光阻圖案22。 V 在第二例示具體實施例中,如第1 5 A至1 7 C圖所示, 將第一中止層34與第二中止層36層合在紅色像素28上, 將第二中止層36層合在藍色像素30上。 弟二彩色圖案之形成 其次如第18A至18C圖所示,將綠色濾光材料塗布在 其上形成紅色像素28、藍色像素30、第一中止層34'與 第二中止層36之撐體側的表面上而形成綠色層24,其爲 第三彩色層。 -32 - 200844497 然後實行回蝕處理及/或CMP處理直到暴露第二中止 層,因而形成綠色圖案26(即綠色像素32),其爲第三彩 色圖案。回蝕及/或CMP處理後之狀態示於第20 A至20 C 圖。 在形成綠色層24後,如第18A至18C圖所示,其可 形成光阻圖案22覆蓋形成綠色像素之區域代替回蝕處理 之例示具體實施例,然後可實行乾式蝕刻直到暴露第二中 止層36,繼而去除光阻圖案22,如第19A至19C圖所示 。在蝕刻後綠色像素3 2對紅色像素2 8與藍色像素3 0之高 度差提高。因此可再度實行回鈾處理以完成平坦化,如第 20A至20C圖所示之形式。 藉以上處理形成具有紅色像素2 8、藍色像素3 0與綠 色像素32之彩色濾光片陣列,如第20A至20C圖所示。 第三例示具體實施例 在第三例示具體實施例中,第三彩色圖案係排列成按 與第一彩色圖案及第二彩色圖案交叉之方向延伸之條形圖 案,而且藉微影術法形成全部第一至第三彩色圖案。以下 參考第1A至4B圖及第21A至24C圖敘述第三例示具體實 施例。 在第1A至4B圖及第21A至24C圖中,第ΙΑ、2A、 3A、4A、21A、22A、23A、及24A圖各顯示平面圖,及第 IB、2B、3B、4B、21B、22 B、23B、及 24B 圖各顯示沿第 1A、2A、3A、4A、21A、22A、23A、及 24A 圖之線 A-A’Formation of the second stop layer and the color pattern I. Next, as shown in FIGS. 15A to 15C, the surface of the support side of the red pattern 14 - 31 - 200844497, the first stop layer 34 and the blue pattern 18 is formed thereon. A second stop layer 36 is formed thereon. A photoresist is applied to the second stop layer 36, and the layer in the region where the third color layer is to be formed (e.g., the region 20 for forming green pixels) is removed by pattern exposure and development. Then, a post-baking process is performed to form the photoresist pattern 22. Since FIG. 15A is a plan view showing a case where the first stop layer 34 and the second stop layer 36 are both transparent films, the dot pattern in FIG. 15A shows the red layer 14 of the lower layer, and the oblique line pattern display in FIG. 15A. The lower blue pattern 18, and the white blocks showing the first stop layer 34 and the second stop layer 36 as shown in FIGS. 15B and 15C are not shown in plan view (also in the following figures). Next, as in the 16A. As shown in FIG. 16C, using the photoresist pattern 22 as a photomask, the first stop layer 34, the second stop layer 36, the red pattern 14, and the blue pattern in the region 20 for forming green pixels are removed by dry etching. A portion of at least one of 1 8 thus forming a red pixel 28 and a blue pixel 30. Then, as shown in FIGS. 17A to 17C, the photoresist pattern 22 is removed. V In the second exemplary embodiment, as shown in FIGS. 15A to 17C, the first stop layer 34 and the second stop layer 36 are laminated on the red pixel 28, and the second stop layer 36 is layered. Closed on the blue pixel 30. The formation of the second color pattern is as follows, as shown in FIGS. 18A to 18C, the green filter material is coated thereon to form the red pixel 28, the blue pixel 30, the first stop layer 34' and the second stop layer 36. A green layer 24 is formed on the surface of the side, which is the third color layer. -32 - 200844497 Then an etch back process and/or a CMP process is performed until the second stop layer is exposed, thus forming a green pattern 26 (i.e., green pixel 32) which is a third color pattern. The state after etch back and/or CMP treatment is shown in Figures 20A through 20C. After the green layer 24 is formed, as shown in FIGS. 18A to 18C, it may form an exemplary embodiment in which the photoresist pattern 22 covers the region where the green pixel is formed instead of the etch back process, and then dry etching may be performed until the second stop layer is exposed. 36. The photoresist pattern 22 is then removed as shown in Figures 19A through 19C. The difference in height between the green pixel 32 and the red pixel 28 and the blue pixel 30 is improved after the etching. Therefore, the uranium treatment can be carried out again to complete the planarization, as shown in Figs. 20A to 20C. By the above processing, a color filter array having red pixels 28, blue pixels 30 and green pixels 32 is formed as shown in Figs. 20A to 20C. Third Exemplary Embodiment In a third exemplary embodiment, the third color pattern is arranged in a strip pattern extending in a direction crossing the first color pattern and the second color pattern, and is formed by lithography. First to third color patterns. The third exemplary embodiment will be described below with reference to Figs. 1A to 4B and Figs. 21A to 24C. In Figures 1A to 4B and Figures 21A to 24C, Figures 2, 2A, 3A, 4A, 21A, 22A, 23A, and 24A each show a plan view, and IB, 2B, 3B, 4B, 21B, 22 B , 23B, and 24B each show a line A-A' along the 1A, 2A, 3A, 4A, 21A, 22A, 23A, and 24A maps

而取之切面圖。此外在第21A至24C圖中,第21C、22C -33 - 200844497 、23C、及24C圖各顯示沿第21 A > 22A、23A、及24A圖 之線B - B ’而取之切面圖。 第一彩色圖案之形成至第二彩色圖窭之形成 首先以如實例1之相同方式形成第一彩色圖案與第二 彩色圖案(第1A至4B圖)。 彩色圖案之去除 其次如第21A至21C圖所示,將光阻塗布在其上形成 紅色圖案14與藍色圖案18之撐體側的表面上,而且藉曝 光及顯影繼而後烘烤處理去除第一彩色圖案及/或第二彩 色圖案上欲形成第三彩色圖案之區域(例如用於形成綠色 像素之區域120)中光阻之一部分,因而形成光阻圖案122 〇 在此情形,欲形成第三彩色層之區域(例如用於形成 綠色像素之區域120 )及光阻圖案122係各形成按與條形 紅色圖案1 4及條形藍色圖案1 8交叉之方向(例如垂直之 方向)延伸之條形圖案。 其次如第22 A至22 C圖所示,藉乾式鈾刻法去除用於 在紅色圖案14與藍色圖案18上形成綠色像素之區域120 ,而形成紅色像素1 2 8與藍色像素1 3 0,然後去除紅色像 素128與藍色像素130上之光阻圖案122。 第三彩色圖案之形成 其次如第2 3 A至2 3 C圖所示,將綠色濾光材料塗布在 其上形成紅色像素1 2 8與藍色像素1 3 0之撐體側的表面上 ,而形成綠色層124,其爲第三彩色層。 -34- 200844497 由黏著性之觀點來看,加熱及黏著性改良處理較佳爲 在塗布綠色濾光材料前實行。亦由於相同之原因’其較佳 爲綠色濾光材料包括後述之有機矽烷化合物。 將用於在綠色層124上形成綠色像素之區域120曝光 、顯影及後烘烤形成綠色圖案1 26 (即綠色像素1 3 2 ),其 爲第三彩色圖案。 如第24A至24C圖所示,其將作爲第三彩色圖案之綠 色圖案1 2 6 (即綠色像素1 3 2 )形成條形圖案。 因而形成包括紅色像素1 2 8、藍色像素1 3 0與綠色像 素132之彩色濾光片陣列,如第24A至2 4C圖所示。 第四例示具體實施例 在第四例示具體實施例中,第三彩色圖案係排列成按 與第一彩色圖案及第二彩色圖案交叉之方向延伸之條形圖 案,而且藉乾式蝕刻法(如果需要則及CMP )形成全部第 一至第三彩色圖案。以下參考第9A至14B圖及第25A至 3 0 C圖敘述第四例示具體實施例。 在第9A至14B圖及第25A至30C圖中,第9A、10A 、11A、12A、13A、14A、25A、26A、27A、28A、29A、 及30A圖各顯示平面圖,及第9B、10B、11B、12B、13B 、14B、25B、26B、27B、28B、29B、及 30B 圖各顯示沿 第 9A、10A、11A、12A、13A、14A、25A、26A、27A、28A 、29A、及30A圖之線A_A’而取之切面圖。此外在第25A 至 30C 圖中,第 25C、26C、27C、28C、29C、及 30C 圖各 顯示沿第 25A、26A、27A、28A、29A、及 30A 圖之線 B-B’ -35- 200844497 而取之切面圖。 第一彩色圖案之形成至第二彩色圖案之形成 首先以如實例2之相同方式形成第一彩色圖案及第二 彩色圖案(第9A至14B圖)。 第二中止層之形成及彩色圖案之去除 其次如第25A至25C圖所示,在其上形成紅色圖案14 、第一中止層34與藍色圖案18之撐體側的表面上形成第 二中止層36。將光阻塗布在第二中止層36上,而且藉圖 案曝光及顯影去除欲形成第三彩色層之區域(例如用於形 成綠色像素之區域1 20 )中之層。然後實行後烘烤處理形 成光阻圖案122。 在此情形,欲形成第三彩色層之區域(例如用於形成 綠色像素之區域120)及光阻圖案122係各形成按與條形 紅色圖案1 4及條形藍色圖案1 8交叉之方向(例如垂直之 方向)延伸之條形圖案。 其次如第26A至26C圖所示,使用光阻圖案122作爲 光罩,藉乾式蝕刻去除用於形成綠色像素之區域2 0中的第 一中止層34、第二中止層36、紅色圖案I4、與藍色圖案 1 8至少之一的一部分,因而形成紅色像素1 2 8與藍色像素 130。然後如第27A至27C圖所示’去除光阻圖案122。 在第四例不具體實施例中’如弟2 5 A至3 0 C圖所示, 將第一中止層34與第二中止層36層合在紅色像素128上 ,及將第二中止層36層合在藍色像素130上。 筮二彩色圖案之形成 -36 - 200844497 其次如第2 8 A至2 8 C圖所示,將綠色濾光 其上形成紅色像素1 2 8、藍色像素1 3 0、第一弓 與第二中止層3 6之撐體側的表面上而形成綠色 爲第三彩色層。 然後實行回蝕處理及/或CMP處理直到暴 層,因而形成綠色圖案126 (即綠色像素132 ) 彩色圖案。回蝕及/或CMP處理後之狀態示於第 圖。 如第30A至30C圖所示,作爲第三彩色圖 案1 26 (即綠色像素1 3 2 )係形成條形圖案。 在形成綠色層124後,如第28A至28C圖 形成光阻圖案122覆蓋形成綠色像素之區域代 之例示具體實施例,然後可實行乾式蝕刻直到 止層36,繼而去除光阻圖案122,如第29A至 。在蝕刻後綠色像素1 3 2對紅色像素1 2 8與藍 之高度差提高。因此可再度實行回蝕處理以完 如第30A至30C圖所示之形式。 藉以上處理形成具有紅色像素1 2 8、藍色 綠色像素1 3 2之彩色濾光片陣列,如第3 0 A至 〇And take a cutaway view. Further, in Figs. 21A to 24C, the 21C, 22C-33 - 200844497, 23C, and 24C drawings each show a cutaway view taken along line B - B ' of the 21A > 22A, 23A, and 24A drawings. Formation of First Color Pattern to Formation of Second Color Pattern First, the first color pattern and the second color pattern (Figs. 1A to 4B) were formed in the same manner as in Example 1. The color pattern is removed. Next, as shown in FIGS. 21A to 21C, a photoresist is coated on the surface of the support side on which the red pattern 14 and the blue pattern 18 are formed, and is removed by exposure and development and then baked. a color pattern and/or a portion of the second color pattern on which a third color pattern is to be formed (for example, a region 120 for forming a green pixel), thereby forming a photoresist pattern 122. In this case, The regions of the three color layers (for example, the region 120 for forming green pixels) and the photoresist pattern 122 are each formed to extend in a direction (for example, a vertical direction) crossing the strip-shaped red pattern 14 and the strip-shaped blue pattern 18. Strip pattern. Next, as shown in FIGS. 22A to 22C, the region 120 for forming green pixels on the red pattern 14 and the blue pattern 18 is removed by dry uranium engraving to form red pixels 1 28 and blue pixels 13 0, then the red photoresist 128 and the photoresist pattern 122 on the blue pixel 130 are removed. The formation of the third color pattern is next, as shown in the 2 3 A to 2 3 C, the green filter material is coated on the surface of the support side on which the red pixel 1 28 and the blue pixel 1 30 are formed. A green layer 124 is formed which is the third color layer. -34- 200844497 From the viewpoint of adhesion, the heat and adhesion improving treatment is preferably carried out before the application of the green filter material. Also for the same reason, it is preferable that the green filter material includes an organic decane compound to be described later. The region 120 for forming green pixels on the green layer 124 is exposed, developed, and post-baked to form a green pattern 1 26 (i.e., green pixel 1 3 2 ), which is a third color pattern. As shown in Figs. 24A to 24C, it forms a stripe pattern as a green pattern 1 2 6 of the third color pattern (i.e., green pixel 1 3 2 ). Thus, a color filter array including red pixel 1 28, blue pixel 1 30 and green pixel 132 is formed as shown in Figs. 24A to 24C. Fourth Exemplary Embodiment In a fourth exemplary embodiment, the third color pattern is arranged in a strip pattern extending in a direction crossing the first color pattern and the second color pattern, and by dry etching (if necessary Then, CMP) forms all of the first to third color patterns. The fourth exemplary embodiment will be described below with reference to Figs. 9A to 14B and Figs. 25A to 30C. 9A to 14B and 25A to 30C, the 9A, 10A, 11A, 12A, 13A, 14A, 25A, 26A, 27A, 28A, 29A, and 30A are each a plan view, and 9B, 10B, 11B, 12B, 13B, 14B, 25B, 26B, 27B, 28B, 29B, and 30B are shown along the lines 9A, 10A, 11A, 12A, 13A, 14A, 25A, 26A, 27A, 28A, 29A, and 30A. The line A_A' is taken as a cutaway view. In addition, in the 25A to 30C drawings, the 25C, 26C, 27C, 28C, 29C, and 30C drawings respectively show the lines along the 25A, 26A, 27A, 28A, 29A, and 30A lines B-B'-35- 200844497 And take a cutaway view. Formation of First Color Pattern to Formation of Second Color Pattern First, the first color pattern and the second color pattern (Figs. 9A to 14B) were formed in the same manner as in Example 2. The formation of the second stop layer and the removal of the color pattern are as follows, as shown in FIGS. 25A to 25C, the second stop is formed on the surface on which the red pattern 14 is formed, and the first stop layer 34 and the blue pattern 18 are on the support side. Layer 36. A photoresist is applied over the second stop layer 36, and the layer in the region where the third color layer is to be formed (e.g., the region 1 20 for forming green pixels) is removed by pattern exposure and development. Then, a post-baking process is performed to form the photoresist pattern 122. In this case, the region where the third color layer is to be formed (for example, the region 120 for forming green pixels) and the photoresist pattern 122 are each formed in a direction intersecting the strip-shaped red pattern 14 and the strip-shaped blue pattern 18. A strip pattern extending (for example, in the direction of the vertical). Next, as shown in FIGS. 26A to 26C, using the photoresist pattern 122 as a photomask, the first stop layer 34, the second stop layer 36, the red pattern I4 in the region 20 for forming green pixels are removed by dry etching. A portion of at least one of the blue patterns 1 8 forms a red pixel 1 28 and a blue pixel 130. Then, the photoresist pattern 122 is removed as shown in Figs. 27A to 27C. In the fourth embodiment, the second stop layer 34 is laminated on the red pixel 128, and the second stop layer 36 is formed as shown in the diagram of the second 25 A to 30 C. Laminated on the blue pixel 130. Formation of the second color pattern -36 - 200844497 Next, as shown in the 2nd 8th to 8th 8th C, the green color is filtered to form a red pixel 1 2 8 , a blue pixel 1 3 0, a first bow and a second The green layer is formed as a third color layer on the surface of the support side of the layer 36. An etch back process and/or a CMP process is then performed until the storm layer, thereby forming a green pattern 126 (i.e., green pixel 132) color pattern. The state after etch back and/or CMP treatment is shown in the figure. As shown in Figs. 30A to 30C, a strip pattern is formed as the third color pattern 1 26 (i.e., green pixel 1 3 2 ). After forming the green layer 124, the photoresist pattern 122 is formed as shown in FIGS. 28A to 28C to cover the region in which the green pixel is formed, instead of the exemplary embodiment, and then dry etching may be performed up to the stop layer 36, and then the photoresist pattern 122 is removed, such as 29A to. The height difference between the green pixel 1 3 2 and the red pixel 1 2 8 and blue is increased after etching. Therefore, the etch back process can be performed again to complete the form shown in Figs. 30A to 30C. By the above process, a color filter array having a red pixel 1 28 and a blue green pixel 133 is formed, such as the 3 0 A to 〇

第31圖顯示依照如第24A至24C及30A 示之第三例示具體實施例及第四例示具體實施 光片陣列,其中將各彩色濾光片陣列切割成該 件之像素單元且具有參考符號R (紅)、G (綠 材料塗布在 Θ止層34、 ^層124,其 露第二中止 ,其爲第三 30A 至 30C 案之綠色圖 所示,其可 替回蝕處理 暴露第二中 29C圖所示 色像素1 3 0 成平坦化, 像素1 3 0與 3 〇 C圖所示 至3 0 C圖所 例的彩色濾 固態攝影元 )及B (藍 -37- 200844497 )。第3 1圖中之虛線有關G圖案(即綠色像素) 態攝影元件之像素單元間的界面。實際上,G彩 此連接形成條形圖案,如第24A至24C及3 0A至 示0 在第三例示具體實施例及第四例示具體實施 部第一至第三彩色圖案均形成條形圖案。換言之 一至第三彩色圖案均可不形成圖案角落而形成, 光學相鄰效應。 因而各形成具有更爲長方形之橫切面的彩色 外在自撐體之正交線方向觀看固態攝影元件之像 ’全部第一至第三彩色像素均可形成更爲長方形 照第三例示具體實施例及第四例示具體實施例形 圖案。 以上敘述有關製造其中第三彩色圖案係排列 圖案之Bayer排列彩色濾光片陣列的方法之第一 體實施例,及有關其中第三彩色圖案爲按與第二 及第三彩色圖案交叉之方向延伸之條形圖案的彩 陣列之第三及第四具體實施例。然而本發明彩色 彩色像素之排列及其製造方法不限於本發明之第 例示具體實施例。 任何排列均可應用於本發明,例如第三彩色 按與第一彩色圖案及第二彩色圖案平行之方向延 圖案’或者桌二彩色圖案可按對第一彩色圖案及 圖案之一定角度排列。 且表示固 色像素彼 3 0 C圖所 例中,全 ,全部第 及可抑制 圖案。此 素單元時 。因此依 成局精細 成方格狀 及第二具 彩色圖案 色濾光片 濾光片中 一至第四 圖案可爲 伸之條形 第二彩色 -38- 200844497 在本發明製造彩色濾光片之方法中,用於形成第一至 第三彩色圖案之方法不限於用於本發明之第一至第四例示 具體實施例者,而且可使用微影術法、乾式蝕刻法及平坦 化之任何組合。例如在製造包括R (紅)、G (綠)及B ( 藍)之彩色濾光片的情形’彩色像素各可藉微影術法、乾 式蝕刻法及平坦化任一形成。 乾式蝕刻 在本發明製造彩色濾光片之方法中,其實行乾式蝕刻 去除彩色圖案。此外甚至藉「乾式蝕刻法」或「回蝕處理 」處理彩色圖案,其係實行乾式蝕刻。 乾式蝕刻之例示具體實施例並未特別地限制,而且可 依照已知具體實施例實行。 乾式蝕刻法之典型實例爲已知的,如 JP-Α第 59-126506、 59-46628、 58-9108、 58-2809、 57-148706、及 6 1-41102號專利所述。 乾式蝕刻之較佳具體實施例 由形成更爲長方形圖案切面之觀點,及由進一步減少 撐體損壞之觀點,其較佳爲本發明依照以下具體實施例實 行乾式蝕刻。 即一個較佳例示具體實施例包括第一蝕刻步驟,其中 使用含氟氣體與氧氣(0 2)之混合氣體實行區域(深度)蝕 刻至不暴露撐體之程度,及第二蝕刻步驟,其中在第一蝕 刻步驟後使用氮氣(N2)與氧氣(〇2)之混合氣體實行撐體之 區域(深度)蝕刻至較佳爲幾乎暴露撐體之程度,及在暴 -39 - 200844497 露撐體後實行過度飩刻。 以下在乾式蝕刻之較佳例示具體實施例中敘述蝕刻之 指定技術、第一蝕刻步驟、第二蝕刻步驟、及過度蝕刻。 飩刻條件之計算 較佳例示具體實施例中之乾式蝕刻可在已事先藉以下 技術調查蝕刻條件之組態後實行。 1 . 計算第一蝕刻步驟之蝕刻速率(奈米/分鐘)及第 二蝕刻步驟之飩刻速率(奈米/分鐘)。 2. 計算在第一蝕刻步驟蝕刻至所需厚度之時間及在 第二鈾刻步驟触刻至所需厚度之時間。 3. 依照以上第2項計算之蝕刻時間實行第一蝕刻步 驟。 4. 依照以上第2項計算之蝕刻時間實行第二蝕刻步 驟。或者藉由偵測終點而決定蝕刻時間,依照藉 此測定之鈾刻時間實行第二蝕刻步驟。 5. 由以上第3及4項之時間和計算過度蝕刻之時間 ,然後依照此時間實行過度蝕刻。 第一蝕刻步驟 關於處理蝕刻成長方形形式之膜的有機材料,用於第 一蝕刻步驟之混合氣體包括含氟氣體與氧氣(〇 2)之混合氣 體。因此由於第一飩刻步驟之例示具體實施例,其中鈾刻 發生至不暴露撐體之區域,可避免撐體損壞。 第二蝕刻步驟及過度蝕刻 在使用含氟氣體與氧氣之混合氣體將彩色層鈾刻至不 -40- 200844497 暴露撐體之深度的第一蝕刻步驟後,由避免撐體損 點,其可使用氮氣與氧氣之混合物實行第二蝕刻步 刻處理及過度蝕刻之蝕刻處理。 蝕刻量之較佳比例 決定第一步驟鈾刻之蝕刻量與第二步驟飩刻之 間的比例但不損及藉第一步驟飩刻之鈾刻處理製成 形形式爲必要的。 第二步驟蝕刻之蝕刻量對總蝕刻量(第一步驟 蝕刻量與第二步驟蝕刻之鈾刻量之和)的比例較佳 〇 %至5 0 %或更小,而且更佳爲1 〇 %至2 0 %。在此蝕 示欲蝕刻膜之蝕刻深度。 硏磨處理 在本發明製造彩色濾光片之方法中,其較佳 CMP處理之硏磨處理用於平坦化。 其較佳爲使用含0.5質量%至20質量%之Si02 粒徑爲1 〇奈米至1 〇 〇奈米)的水溶液(p Η : 9至1 用於硏磨處理之漿液。其較佳爲使用如膨脹聚胺基 之軟硏磨墊。 硏磨處理係使用漿液及硏磨墊,在漿液流速: 2 5 0毫升/分鐘,晶圓壓力·· 0.2至5.0 psi ’及保持 :1 · 0至2 · 5 p s i之條件下實行。 在硏磨處理後實行精確之清潔及脫水烘烤(較 1 0 0 °C至2 0 0 °C經1至5分鐘)。 撐體 壞之觀 驟之飩 鈾刻量 之長方 蝕刻之 爲超過 刻量表 爲將如 磨粒( 1 )作爲 甲酸酯 100至 環壓力 佳爲在 -41- 200844497 本發明之撐體並未特別地限制,只要其可用於彩色濾 光片。撐體之實例包括鈉玻璃、硼矽酸鹽玻璃與矽石玻璃 (其均用於液晶顯示器),及任何對其提供透明導電膜者, 及用於固態攝影元件之光電轉換基板,如矽基板、氧化物 膜或氮化矽。此外撐體與彩色圖案間可插入中間層,只要 其不損及本發明之效果。 彩色圖案 本發明之第一至第三彩色圖案(第一至第三彩色層) 各較佳爲使用包括著色劑之著色硬化性組成物形成。著色 硬化性組成物之實例包括著色光硬化性組成物與非感光性 著色熱固性組成物。 第一至第三彩色圖案可組成本發明彩色濾光片之彩色 像素至少之一。 此外在第一至第三彩色圖案係各藉微影術法形成時, 其使用著色光硬化性組成物。在第一至第三彩色圖案係各 藉乾式鈾刻法形成時,其可使用不包括光硬化性成分之非 感光性著色熱固性組成物。因此在藉乾式蝕刻法形成任何 彩色圖案之情形,其可增加著色劑在組成物中之濃度,因 此彩色濾光片之光譜特性可由較薄之膜獲得。 著色光硬化性組成物 著色光硬化性組成物包括至少一種著色劑與光硬化性 成分。「光硬化性成分」爲一種通常用於微影術法之光硬化 性組成物,而且可使用包括至少一種黏合劑樹脂(鹼溶性 樹脂等)、感光性可聚合成分(光聚合性單體等)、及光聚 -42- 200844497 合引發劑之組成物。 至於著色光硬化性組成物,其可直接應用JP-A第 2005-326453號專利之[〇〇17]至[0064]段所述之說明。 由對撐體之黏著性的觀點,著色光硬化性組成物較佳 爲包括有機矽烷化合物。 在將著色光硬化性組成物塗布在撐體上之前撐體表面 接受乾式鈾刻處理之情形,其更佳爲著色光硬化性組成物 包括有機矽烷化合物。由於此組態,其可改良彩色層(彩 色圖案)與撐體間之黏著性,而且可抑制顯影時之彩色層 (彩色圖案)剝離。以此方式,即使是在撐體表面由於乾 式蝕刻法而變成親水性時(例如在撐體表面與水間之接觸 角變成小於40°時),用於改良黏著性之過度曝光(增加曝 光量)爲不必要的,而且可較有效地一起得到準確之圖案 大小及黏著性改良。因此在彩色圖案尺寸小時,此組態特 別有效。 有機矽烷化合物相對著色光硬化性組成物中總固體含 量之較佳量依是否在將著色光硬化性組成物塗覆在撐體上 之前對撐體施加黏著性改良處理而定。 在對撐體施加改良黏著性之處理然後將著色光硬化性 組成物塗布在撐體上之情形,有機矽烷化合物之量相對著 色光硬化性組成物中之總固體含量較佳爲〇 . 〇 5至1.2質量 %,更佳爲〇. 1至1 · 2質量%,而且特佳爲〇 . 2至1 . 1質量% 〇 另一方面’在無改良撐體黏著性之處理而將著色光硬 -43- 200844497 化性組成物塗布在撐體上之情形,有機矽烷化合物之量相 對著色光硬化性組成物中之總固體含量較佳爲〇 . 3至1.2 質量%,更佳爲〇 . 4至1 .2質量%,而且特佳爲0.5至1 . 1 質量%。 在指定有機矽烷化合物之量在上述範圍内時,其可進 一步改良撐體表面與彩色圖案間之黏著性,但不退化著色 光硬化性組成物之儲存安定性及增加藉顯影去除區域之顯 影殘渣。 此外在本發明製造彩色濾光片之方法中,在著色光硬 化性組成物包括有機矽烷化合物之情形,指定之例示具體 實施例更佳爲以下兩個具體實施例。 第一例示具體實施例爲一個包括在彩色圖案去除處理 之乾式蝕刻法之後,使用包括有機矽烷化合物之著色光硬 化性組成物在撐體上形成第三彩色層,將所形成第三彩色 層曝光且將曝光之第三彩色層顯影而形成第三彩色圖案之 例示具體實施例。黏著性改良處理可恰在形成第三彩色層 之前施加於撐體表面。 依照此例示具體實施例,其可較有效地抑制第三彩色 圖案之剝離。 第二例示具體實施例爲一個包括藉乾式蝕刻法形成第 一彩色層,在乾式蝕刻法之後使用包括有機矽烷化合物之 著色光硬化性組成物在撐體上形成第二彩色層,將所形成 第二彩色層曝光且將曝光之第二彩色層顯影而形成第二彩 色圖案之例示具體實施例。黏著性改良處理可恰在形成第 -44 - 200844497 二彩色層之前施加於撐體表面。 依照此例示具體實施例,其可較有效地抑制第二彩色 圖案之剝離。 有機矽烷化合物之實例包括在分子中各含s i之化合 物。 特別地,其較佳爲由下式(I)表示之有機矽烷化合物( 以下亦稱爲「指定有機矽烷化合物」)。 由式(I)表示之有機矽烷化合物 本發明之光硬化性著色組成物較佳爲包括至少一種由 下式(I)表示之有機矽烷化合物(指定有機矽烷化合物)。光 硬化性著色組成物與撐體間之黏著性因倂入指定有機矽烷 化合物而進一步改良。此外在光硬化性著色組成物爲未曝 光狀態時,其較佳爲實行顯影且可抑制顯影殘渣。 (OR1) L-Si ⑴Figure 31 shows a specific embodiment of the optical sheet array according to the third exemplary embodiment and the fourth exemplary embodiment as shown in Figs. 24A to 24C and 30A, wherein each color filter array is cut into pixel units of the member and has a reference symbol R (red), G (green material coated on the stop layer 34, ^ layer 124, the second stop of the exposure, which is shown in the green figure of the third 30A to 30C case, which can expose the second 29C for the etch back treatment The color pixels 1 3 0 shown in the figure are flattened, the pixels 1 3 0 and 3 〇C are shown in the figure to the color filter solid-state photography element of the 3 C C diagram) and B (blue-37-200844497). The dotted line in Fig. 3 relates to the interface between the pixel units of the G pattern (i.e., green pixel) state imaging element. Actually, the G color is formed into a stripe pattern, as in Figs. 24A to 24C and 30A to 0. In the third exemplary embodiment and the fourth exemplary embodiment, the first to third color patterns each form a stripe pattern. In other words, the first to third color patterns can be formed without forming pattern corners, optically adjacent effects. Therefore, the image of the solid-state imaging element is viewed in the orthogonal direction of the color external self-supporting body having a more rectangular cross-section. All of the first to third color pixels can be formed into a more rectangular shape. And the fourth example shows a specific embodiment shape pattern. The first embodiment of the method for fabricating a Bayer array color filter array in which a third color pattern is arranged, and wherein the third color pattern extends in a direction intersecting the second and third color patterns Third and fourth embodiments of the color array of strip patterns. However, the arrangement of the color color pixels of the present invention and the method of fabricating the same are not limited to the first exemplary embodiment of the present invention. Any arrangement may be applied to the present invention, for example, the third color may be arranged in a direction parallel to the first color pattern and the second color pattern or the table 2 color pattern may be arranged at an angle to the first color pattern and the pattern. And it indicates that the solid color pixel is in the example of the 3 C C picture, and all and all of the patterns can be suppressed. When this element is used. Therefore, the first to fourth patterns in the finely-formed square shape and the second color-patterned color filter filter may be the strip-shaped second color-38-200844497. In the method of manufacturing the color filter of the present invention The method for forming the first to third color patterns is not limited to the first to fourth exemplary embodiments of the present invention, and any combination of lithography, dry etching, and planarization may be used. For example, in the case of manufacturing a color filter including R (red), G (green), and B (blue), color pixels can be formed by any of lithography, dry etching, and planarization. Dry Etching In the method of manufacturing a color filter of the present invention, it performs dry etching to remove a color pattern. In addition, the color pattern is processed by "dry etching" or "etch back etching", which is performed by dry etching. The exemplary embodiment of the dry etching is not particularly limited and can be carried out in accordance with known embodiments. Typical examples of the dry etching method are known, as described in JP-A-59-126506, 59-46628, 58-9108, 58-2809, 57-148706, and 6 1-41102. BEST MODE FOR CARRYING OUT THE INVENTION From the viewpoint of forming a more rectangular pattern cut surface, and from the viewpoint of further reducing the damage of the support, it is preferred that the present invention perform dry etching in accordance with the following specific examples. That is, a preferred exemplary embodiment includes a first etching step in which a region (depth) etching is performed to a degree that the support is not exposed using a mixed gas of a fluorine-containing gas and oxygen (0 2), and a second etching step in which After the first etching step, a region (depth) etching of the support is performed using a mixed gas of nitrogen (N2) and oxygen (〇2) to the extent that the support is preferably exposed, and after the support is exposed in the storm-39-200844497 Excessive engraving. The etch designation technique, the first etching step, the second etching step, and over etching are described below in the preferred exemplary embodiment of dry etching. Calculation of the engraving conditions It is preferable to carry out the dry etching in the specific embodiment after the configuration of the etching conditions has been previously investigated by the following technique. 1. Calculate the etching rate (nano/min) of the first etching step and the engraving rate (nano/min) of the second etching step. 2. Calculate the time to etch to the desired thickness during the first etch step and the time to the desired thickness during the second uranium engraving step. 3. Perform the first etch step in accordance with the etch time calculated in item 2 above. 4. Perform a second etch step in accordance with the etch time calculated in item 2 above. Alternatively, the etching time is determined by detecting the end point, and the second etching step is performed in accordance with the uranium engraving time determined thereby. 5. Calculate the time of over-etching from the time of items 3 and 4 above, and then perform over-etching according to this time. First etching step Regarding the treatment of the organic material etched into a film in a rectangular form, the mixed gas used in the first etching step includes a mixed gas of a fluorine-containing gas and oxygen (?2). Thus, due to the exemplified embodiment of the first engraving step, where uranium engraving occurs to areas where the support is not exposed, damage to the support can be avoided. The second etching step and the over-etching are performed after the first etching step of etching the color layer uranium to a depth of the non--40-200844497 exposed support using a mixed gas of a fluorine-containing gas and oxygen, which can be used by avoiding the loss of the support The mixture of nitrogen and oxygen is subjected to a second etching step process and an etching process of over etching. The preferred ratio of the amount of etching determines the ratio of the etching amount of the first step uranium engraving to the ratio of the second step engraving without damaging the uranium engraving process by the first step engraving. The ratio of the etching amount of the etching in the second step to the total etching amount (the sum of the etching amount of the first step and the etching amount of the urethane of the second step etching) is preferably 〇% to 50% or less, and more preferably 1% by weight. Up to 20%. Here, the etching depth of the film to be etched is shown. Honing Process In the method of manufacturing a color filter of the present invention, the honing process of the preferred CMP process is used for planarization. It is preferred to use an aqueous solution (p Η : 9 to 1 for honing treatment) containing 0.5% by mass to 20% by mass of SiO 2 having a particle diameter of 1 〇 to 1 。. Use a soft ram pad such as expanded polyamine. The honing treatment uses a slurry and a honing pad at a slurry flow rate of 205 ml/min, wafer pressure · 0.2 to 5.0 psi' and hold: 1 · 0 Execute to 2 · 5 psi. Perform precise cleaning and dehydration after honing (1 to 5 minutes from 100 °C to 200 °C). The rectangular etching of the uranium engraving amount is more than a scale. For example, the abrasive grains (1) are used as the formate 100 to the ring pressure. The support of the present invention is not particularly limited as long as it is It can be used for color filters. Examples of the support include soda glass, borosilicate glass and vermiculite glass (all of which are used for liquid crystal displays), and any of them providing a transparent conductive film, and for solid-state photographic elements. A photoelectric conversion substrate such as a germanium substrate, an oxide film or a tantalum nitride. Further, a support can be inserted between the support and the color pattern The interlayer is as long as it does not impair the effects of the present invention. Color Pattern The first to third color patterns (first to third color layers) of the present invention are each preferably formed using a color hardening composition including a colorant. Examples of the colored curable composition include a colored photocurable composition and a non-photosensitive colored thermosetting composition. The first to third color patterns may constitute at least one of the color pixels of the color filter of the present invention. The third color pattern is formed by a lithography method, and a colored photocurable composition is used. When the first to third color patterns are formed by a dry uranium engraving method, the photohardenable component may be used. The non-photosensitive tinting thermosetting composition. Therefore, in the case of forming any color pattern by dry etching, it can increase the concentration of the colorant in the composition, and thus the spectral characteristics of the color filter can be obtained by a thin film. The photocurable composition colored photocurable composition includes at least one coloring agent and a photocurable component. The "photocurable component" is a type commonly used for lithography. a photocurable composition of the method, and a composition comprising at least one binder resin (alkali-soluble resin, etc.), a photosensitive polymerizable component (photopolymerizable monomer, etc.), and a photopolymerization-42-200844497 initiator can be used. As for the colored photocurable composition, the descriptions described in paragraphs [〇〇17] to [0064] of JP-A No. 2005-326453 can be directly applied. From the viewpoint of adhesion to the support, coloring The photocurable composition preferably includes an organic decane compound. In the case where the surface of the support is subjected to dry uranium engraving before the colored photocurable composition is coated on the support, it is more preferable that the colored photocurable composition includes organic Decane compound. Due to this configuration, it is possible to improve the adhesion between the color layer (color pattern) and the support, and to suppress the peeling of the color layer (color pattern) during development. In this way, even when the surface of the support becomes hydrophilic due to the dry etching method (for example, when the contact angle between the surface of the support and water becomes less than 40°), the overexposure for improving the adhesion (increasing the exposure amount) ) is unnecessary, and can be more effectively combined to obtain accurate pattern size and adhesion improvement. This configuration is therefore particularly effective when the color pattern size is small. The preferred amount of the total solid content of the organodecane compound relative to the colored photocurable composition depends on whether or not the adhesion improving treatment is applied to the support before the colored photocurable composition is coated on the support. In the case where a treatment for improving the adhesion is applied to the support and then the colored photocurable composition is applied to the support, the amount of the organic decane compound is preferably 〇. 〇5 with respect to the total solid content of the colored photocurable composition. To 1.2% by mass, more preferably 〇. 1 to 1 · 2% by mass, and particularly preferably 〇. 2 to 1.1% by mass 〇 on the other hand 'hardening the coloring light without treatment of improved support adhesion -43- 200844497 In the case where the chemical composition is coated on the support, the amount of the organic decane compound is preferably from 0.3 to 1.2% by mass, more preferably 〇. 4 to the total solid content of the colored photocurable composition. It is 1.2% by mass, and particularly preferably 0.5 to 1.1% by mass. When the amount of the specified organic decane compound is within the above range, the adhesion between the surface of the support and the color pattern can be further improved, but the storage stability of the colored photocurable composition is not deteriorated and the development residue by the development removal region is increased. . Further, in the method of producing a color filter of the present invention, in the case where the colored photohardenable composition includes an organic decane compound, the specific examples are exemplified as the following two specific examples. The first exemplary embodiment is a method comprising: after the dry etching method of the color pattern removing process, forming a third color layer on the support using a colored photo-curable composition comprising an organic decane compound, and exposing the formed third color layer An exemplary embodiment of developing the exposed third color layer to form a third color pattern. The adhesion improving treatment can be applied to the surface of the support just before the formation of the third color layer. In accordance with this exemplary embodiment, it is possible to more effectively suppress the peeling of the third color pattern. A second exemplary embodiment is a method comprising forming a first color layer by dry etching, and forming a second color layer on the support using a colored photocurable composition comprising an organodecane compound after the dry etching method. An exemplary embodiment in which two color layers are exposed and the exposed second color layer is developed to form a second color pattern. The adhesion improving treatment can be applied to the surface of the support just before the formation of the second color layer of -44 - 200844497. In accordance with this exemplary embodiment, it is possible to more effectively suppress the peeling of the second color pattern. Examples of the organodecane compound include compounds each containing s i in the molecule. In particular, it is preferably an organodecane compound represented by the following formula (I) (hereinafter also referred to as "designated organodecane compound"). The organic decane compound represented by the formula (I) The photocurable coloring composition of the invention preferably comprises at least one organodecane compound (designated organodecane compound) represented by the following formula (I). The adhesion between the photocurable coloring composition and the support is further improved by the incorporation of the specified organodecane compound. Further, when the photocurable coloring composition is in an unexposed state, it is preferred to carry out development and to suppress development residue. (OR1) L-Si (1)

在式(I)中,L表示有機單價基,R1與R2各獨立地表 示烴基,及η表示1至3之整數。 由L表示之有機單價基的實例包括烷基、烯基、芳基 、烷氧基、胺基,其均可具有一或更多個碳原子且可經取 代,及其組合。其中較佳爲具有1至20個碳原子且可經取 -45- 200844497 代之烷基。 由R 1與R2表不之煙基包括線形、分枝或ί哀形院基( 例如甲基、乙基、丙基、異丙基、丁基、異丁基、戊基、 己基、環己基、苯基)。其中R1與R2各較佳爲表示具有1 至1 2個碳原子之線形、分枝或環形烷基,更佳爲表示具有 1至6個碳原子之烷基,而且特佳爲表示甲基或乙基。 此外η表示1至3之整數,而且關於安定性及黏著性 較佳爲2至3。 本發明之有機矽烷化合物較佳爲一種在其分子中具有 至少一個親水性部分之化合物,而且更佳爲一種在其分子 中具有多個親水性部分之化合物。在分子中存在多個親水 性部分時,其可爲彼此相同或不同。 由式(I)表示之有機矽烷化合物中,關於硬化力及在硬 化後藉顯影等去除硬化部分以外部分之情形的去除力,其 較佳爲由下式(II)表示之有機矽烷化合物。即此化合物爲一 種具有含親水性部分之有機單價基的有機矽烷化合物。In the formula (I), L represents an organic monovalent group, R1 and R2 each independently represent a hydrocarbon group, and η represents an integer of 1 to 3. Examples of the organic monovalent group represented by L include an alkyl group, an alkenyl group, an aryl group, an alkoxy group, an amine group, each of which may have one or more carbon atoms and may be substituted, and a combination thereof. Among them, an alkyl group having 1 to 20 carbon atoms and capable of taking -45 to 200844497 is preferred. The smog group represented by R 1 and R 2 includes a linear, branched or lyophilized courtyard group (for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, pentyl, hexyl, cyclohexyl). , phenyl). Wherein R1 and R2 each preferably represent a linear, branched or cyclic alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, and particularly preferably a methyl group or Ethyl. Further, η represents an integer of 1 to 3, and is preferably 2 to 3 with respect to stability and adhesion. The organodecane compound of the present invention is preferably a compound having at least one hydrophilic moiety in its molecule, and more preferably a compound having a plurality of hydrophilic moieties in its molecule. When a plurality of hydrophilic moieties are present in the molecule, they may be the same or different from each other. In the organic decane compound represented by the formula (I), the removal power in the case where the hardening force and the portion other than the hardened portion are removed by development after hardening or the like is preferably an organodecane compound represented by the following formula (II). That is, the compound is an organodecane compound having an organic monovalent group having a hydrophilic moiety.

Ll—Si (11}Ll-Si (11}

在式(II)中,L,表示含親水性部分之有機單價基。In the formula (II), L represents an organic monovalent group having a hydrophilic moiety.

Rl與R2各獨立地表示烴基,而且具有如式(I)中之R1 -46- 200844497 與R2所定義之相同意義。由R1與R2表示之烴基的細節及 較佳實例與式(I)中相同。 此外η表示1至3之整數,而且由安定性及黏著性之 觀點來看較佳爲2至3。 以下敘述由L’表示之「含親水性部分之有機單價基」 〇 包括於有機單價基L’之「親水性部分」爲一種對高極 性物質(如水)具有高親和力,而且包括例如氧原子、氮 原子、硫原子、或磷原子之極性原子基。親水性部分之實 例包括各可與高極性物質(如水)造成偶極-偶極交互作用 、偶極-離子交互作用、離子鍵結、氫鍵結等之部分。 親水性部分之實例包括含氧原子、氮原子、硫原子等 之極性基、含氧原子、氮原子、硫原子等之解離基;氫鍵 予體;氫鍵受體;及具有多個孤電子對(其因聚集而提供 親水性場)之部分。親水性部分之指定實例包括:親水性 基’如羥基、胺基、羰基、硫羰基、锍基、胺甲醯基、胺 甲醯氧基、或胺甲醯基胺基;磺醯胺基部分;胺基甲酸酯 部分;硫胺基甲酸酯部分;醯胺部分;酯部分;硫醚部分 ,脲部分;硫脲部分;氧基鑛氧基部分;錢部分;二級胺 部分;三級胺部分;由-(CH2CH2〇)a·表示之聚伸乙氧基部 分(其條件爲a表示2或更大之整數);氧基羰氧基部分 ;及由以下結構式表示之部分結構(單價至三價親水性部 分)。 -47- 200844497 單價親水性部分 0 ί-ΟΜ1 ΟΜ2 ΟR1 and R2 each independently represent a hydrocarbon group, and have the same meanings as defined for R2 in R1 to 46-200844497 in the formula (I). The details and preferred examples of the hydrocarbon group represented by R1 and R2 are the same as those in the formula (I). Further, η represents an integer of 1 to 3, and is preferably 2 to 3 from the viewpoint of stability and adhesion. Hereinafter, the "organic monovalent group having a hydrophilic moiety" represented by L' is included in the "hydrophilic moiety" of the organic monovalent group L', which has a high affinity for a highly polar substance such as water, and includes, for example, an oxygen atom, A nitrogen atom, a sulfur atom, or a polar atomic group of a phosphorus atom. Examples of the hydrophilic portion include portions which may cause dipole-dipole interaction, dipole-ion interaction, ionic bonding, hydrogen bonding, and the like with a highly polar substance such as water. Examples of the hydrophilic portion include a polar group containing an oxygen atom, a nitrogen atom, a sulfur atom or the like, a dissociative group containing an oxygen atom, a nitrogen atom, a sulfur atom or the like; a hydrogen bond donor; a hydrogen bond acceptor; and a plurality of lone electrons Part of the (providing a hydrophilic field due to aggregation). Specific examples of the hydrophilic moiety include: a hydrophilic group such as a hydroxyl group, an amine group, a carbonyl group, a thiocarbonyl group, a decyl group, an amine carbenyl group, an amine formamyloxy group, or an amine formylamino group; a sulfonylamino moiety a urethane moiety; a thiocarbamate moiety; a guanamine moiety; an ester moiety; a thioether moiety, a urea moiety; a thiourea moiety; an oxyorthooxy moiety; a money moiety; a secondary amine moiety; a hydrazine moiety; a condensed ethoxy moiety represented by -(CH2CH2〇)a· (provided that a represents an integer of 2 or more); an oxycarbonyloxy moiety; and a partial structure represented by the following structural formula (Unit price to trivalent hydrophilic part). -47- 200844497 Monovalent hydrophilic part 0 ί-ΟΜ1 ΟΜ2 Ο

—COOM^ ~S—OM—COOM^ ~S—OM

II Ο 二價親水性部分 Ο 0 ΙνΓ 三價親水性部分II Ο Divalent hydrophilic part Ο 0 ΙνΓ Trivalent hydrophilic part

在此結構式中,Μ 1與Μ2各獨立地表示氫原子或單價 金屬原子(例如鋰、鈉、鉀等)。 這些親水性部分中,由光硬化性著色組成物隨時間之 安定性的觀點來看,其較佳爲不與具有乙烯不飽和鍵之化 合物(例如上述光聚合性單體)的乙烯不飽和鍵造成麥可 加成反應之結構。由此觀點,親水性部分之較佳實例包括 羥基、羰基、硫羰基、胺甲醯基、胺甲醯氧基、胺甲醯基 胺基、胺基甲酸酯部分、硫胺基甲酸酯部分、醯胺部分、 酯部分、硫醚部分、脲部分、硫脲部分、氧基羰氧基部分 、錢部分、三級胺部分、由C Η 2 C Η 2 Ο ) a -表示之聚伸乙氧 基部分(其條件爲a表示2或更大之整數)、氧基羰氧基部 分、及由以上結構式袠示之部分結構(單價至三價親水性 -48- 200844497 部分)。 在式(II)之部分結構-si(ORl)nR23-n進行水解反應時, 其可變成硬化性組成物之黏度隨時間增加之原因。由不太 發生水解反應之觀點,親水性部分較佳爲經基、鑛基、硫 羰基、胺基甲酸酯部分、硫胺基甲酸酯部分、醯胺部分、 酯部分、硫醚部分、胺甲醯基、胺甲醯氧基、胺甲醯基胺 基、脲部分、硫脲部分、三級胺部分、或聚伸乙氧基部分 ,更佳爲羥基、胺基甲酸酯部分、硫胺基甲酸酯部分、醯 胺部分、磺醯胺部分、酯部分、脲部分、硫脲部分、三級 胺部分、或聚伸乙氧基部分,而且最佳爲羥基、胺基甲酸 酯部分、硫胺基甲酸酯部分、脲部分、三級胺部分、或由 -(CH2CH20)a-表示之聚伸乙氧基部分(其條件爲a表示2 或更大之整數)。 指定有機矽烷化合物中進一步較佳爲由下式(ΠΙ)或 (IV)表示之化合物。 由式(III)表示之有機矽烷化合物 (OR·1)In this structural formula, Μ 1 and Μ 2 each independently represent a hydrogen atom or a monovalent metal atom (e.g., lithium, sodium, potassium, etc.). Among these hydrophilic moieties, from the viewpoint of stability of the photocurable coloring composition over time, it is preferably an ethylenically unsaturated bond which does not react with a compound having an ethylenically unsaturated bond (for example, the above photopolymerizable monomer). The structure that causes the Michael addition reaction. From this point of view, preferred examples of the hydrophilic moiety include a hydroxyl group, a carbonyl group, a thiocarbonyl group, an amine formamidine group, an amine formamyloxy group, an amine formamylamino group, a urethane moiety, and a thiocarbamate. Part, guanamine moiety, ester moiety, thioether moiety, urea moiety, thiourea moiety, oxycarbonyloxy moiety, moiety moiety, tertiary amine moiety, polycondensation represented by C Η 2 C Η 2 Ο ) a - The ethoxy moiety (where a is an integer of 2 or more), the oxycarbonyloxy moiety, and the partial structure represented by the above structural formula (monovalent to trivalent hydrophilicity - 48-200844497 part). When the partial structure -Si(ORl)nR23-n of the formula (II) is subjected to a hydrolysis reaction, it may become a cause of an increase in the viscosity of the hardenable composition with time. From the viewpoint of less occurrence of the hydrolysis reaction, the hydrophilic portion is preferably a trans group, a mineral group, a thiocarbonyl group, a urethane moiety, a thiocarbamate moiety, a guanamine moiety, an ester moiety, a thioether moiety, An amine methyl sulfhydryl group, an amine methyl methoxy group, an amine methionyl group, a urea moiety, a thiourea moiety, a tertiary amine moiety, or a ethoxylated moiety, more preferably a hydroxy, urethane moiety, a urethane moiety, a guanamine moiety, a sulfonamide moiety, an ester moiety, a urea moiety, a thiourea moiety, a tertiary amine moiety, or a polycondensed ethoxy moiety, and most preferably a hydroxyl group, an aminocarboxylic acid The ester moiety, the thiocarbamate moiety, the urea moiety, the tertiary amine moiety, or the polyethoxylated moiety represented by -(CH2CH20)a- (with the condition that a represents an integer of 2 or greater). Further, among the specified organodecane compounds, a compound represented by the following formula (ΠΙ) or (IV) is further preferable. Organic decane compound represented by formula (III) (OR·1)

在式(III)中,R11與R12各獨立地表示具有1至6個碳 原子之烴基。由R11與R12表示之具有1至6個碳原子之烴 -49- 200844497 基的貫例包括具有1至6個碳原子之線形、分枝或環形烷 基(例如甲基、乙基、丙基、異丙基、丁基、異丁基、戊 基、己基、環己基、與苯基)。其中R11與R12各較佳爲表 示甲基或乙基。 R3表示具有1至12個碳原子之二價烴基,而且烴基 可爲未取代或經取代。此外烴基中之烴結構可包括環結構 及/或不飽和鍵。此外單價親水性部分可存在於烴結構中。 在此所指之親水性部分爲如L,所定義之單價親水性部分, 而且其較佳實例與L,所定義相同。 以下欽述由R3表示之二價烴基的細節。 X表示單價親水性部分。在此所指之親水性部分爲如 L’所定義之單價親水性部分,而且其較佳實例與L’所定義 相同。 η表示1至3之整數,而且關於安定性及黏著性較佳 爲2至3。 由式(IV)表示之有機矽烷化合物 (〇R11)n X, f r>5 κ Ρ i q -z-rH-y-r1- V3_n (IV) 在式(IV)中,R11與R12各獨立地表示具有1至6個碳 原子之烴基。由R11與R12表示之具有1至6個碳原子之烴 基的實例包括具有1至6個碳原子之線形、分枝或環形烷 基(例如甲基、乙基、丙基、異丙基、丁基、異丁基、戊 -50- 200844497 基、己基、環己基、與苯基)。其中R11與Rl2各較佳爲表 示甲基或乙基。 R4、R5、R6、與R7各獨立地表示單鍵或具有i至12 個碳原子之未取代或經取代烴鏈(二價烴基)。在各R4、 R5、R6、與R7表示烴鏈(二價烴基)時,烴鏈之烴結構可 包括環結構及/或不飽和鍵。此外烴鏈(二價烴基)可具有 單價親水性部分作爲取代基。 以下敘述各由R4至R7表示之二價烴基的細節。 X’表示氫原子或單價取代基,而且單價取代基可具有 親水性部分。在此所指之親水性部分爲如L,所定義之單價 親水性部分’而且其較佳實例與L,所定義相同。 Y與Y ’各獨立地表示二價親水性部分,Z依q値而表 示二價或三價親水性部分,及q爲1或2。即在q爲1之 情形’ Z表不一價親水性部分,及在q爲2之情形,Z表示 三價親水性部分。二價或三價親水性部分之實例可包括如 式(I)或(II)中二價或三價親水性部分所定義之相同部分。 此外P表示〇至20之整數,及r表示0至3之整數。 η表示1至3之整數。 在式(III)中R3或式(IV)中各R4、R5、R6、與R7爲二 價烴基之情形,二價烴基可較佳爲線形、分枝或環形烷基 或芳族環形基,而且二價烴基可具有取代基。 可引入二價烴基中之取代基的實例包括脂族基、芳族 基、雜環基、鹵素原子、氰基、硝基、脂族氧基、芳族氧 基、雜環氧基、與親水性基。特別地,其較佳爲具有1至 -51- 200844497 12個碳原子之脂族基、芳族基、雜環基、氯原子、氰基、 與親水性基。 具有1至1 2個碳原子之脂族基的較佳實例包括甲基、 乙基、丙基、異丙基、丁基、異丁基、戊基、己基、環己 基、與辛基,而且更佳爲甲基、乙基與丙基。 芳族基之實例包括苯基、萘基與蒽基,而且較佳爲苯 基。 雜環基之實例包括嗎啉基、四氫呋喃基、吡咯基、呋 喃基、噻吩基、苯并吡咯基、苯并呋喃基、苯并噻吩基、 吡唑基、異噁唑基、異噻唑基、茚唑基、苯并異噁唑基、 苯并異噻唑基、咪唑基、噁唑基、噻唑基、苯并咪唑基、 苯并噁唑基、苯并噻唑基、吡啶基、喹啉基、異喹啉基、 嗒阱基、嘧啶基、吡哄基、哮啉基、酞畊基、喹唑啉基、 喹噁啉基、吖啶基、啡啶基、酞哄基、咔唑基、羰啉基、 嘌呤基、三唑基、噁二唑基、噻二唑基,其中較佳爲嗎啉 基、四氫呋喃基、與吡啶基。 親水性基之實例包括羥基、胺基、羰基、硫羰基、锍 基、胺甲醯基、胺甲醯氧基、與胺甲醯基胺基,其中較佳 爲羥基、羰基與胺基。 在式(III)中R3或式(IV)中各R4、R5、R6、與R7爲二 價烴基時,二價烴基可包括「單價親水性部分」,如羥基、 胺基、锍基、銨基、胺甲醯基、胺甲醯氧基、胺甲醯基胺 基、或由下式之一表示之部分結構部分(各M1與M2與以 上所定義相同)。 -52- 200844497In the formula (III), R11 and R12 each independently represent a hydrocarbon group having 1 to 6 carbon atoms. Hydrocarbons having from 1 to 6 carbon atoms represented by R11 and R12 -49-200844497 Examples of bases include linear, branched or cyclic alkyl groups having from 1 to 6 carbon atoms (e.g., methyl, ethyl, propyl) , isopropyl, butyl, isobutyl, pentyl, hexyl, cyclohexyl, and phenyl). Wherein R11 and R12 each preferably represent a methyl group or an ethyl group. R3 represents a divalent hydrocarbon group having 1 to 12 carbon atoms, and the hydrocarbon group may be unsubstituted or substituted. Further, the hydrocarbon structure in the hydrocarbon group may include a ring structure and/or an unsaturated bond. Furthermore, a monovalent hydrophilic moiety can be present in the hydrocarbon structure. The hydrophilic moiety referred to herein is a monovalent hydrophilic moiety as defined by L, and preferred examples thereof are the same as defined for L. Details of the divalent hydrocarbon group represented by R3 are hereinafter described. X represents a monovalent hydrophilic moiety. The hydrophilic moiety referred to herein is a monovalent hydrophilic moiety as defined by L', and preferred examples thereof are the same as defined for L'. η represents an integer of 1 to 3, and is preferably 2 to 3 with respect to stability and adhesion. The organodecane compound represented by the formula (IV) (〇R11)n X, f r>5 κ Ρ iq -z-rH-y-r1 - V3_n (IV) In the formula (IV), R11 and R12 are each independently Represents a hydrocarbon group having 1 to 6 carbon atoms. Examples of the hydrocarbon group having 1 to 6 carbon atoms represented by R11 and R12 include a linear, branched or cyclic alkyl group having 1 to 6 carbon atoms (e.g., methyl, ethyl, propyl, isopropyl, butyl). Base, isobutyl, pent-50- 200844497, hexyl, cyclohexyl, and phenyl). Wherein R11 and Rl2 each preferably represent a methyl group or an ethyl group. R4, R5, R6, and R7 each independently represent a single bond or an unsubstituted or substituted hydrocarbon chain (divalent hydrocarbon group) having from i to 12 carbon atoms. When each of R4, R5, R6, and R7 represents a hydrocarbon chain (divalent hydrocarbon group), the hydrocarbon structure of the hydrocarbon chain may include a ring structure and/or an unsaturated bond. Further, the hydrocarbon chain (divalent hydrocarbon group) may have a monovalent hydrophilic moiety as a substituent. Details of each of the divalent hydrocarbon groups represented by R4 to R7 are described below. X' represents a hydrogen atom or a monovalent substituent, and the monovalent substituent may have a hydrophilic moiety. The hydrophilic moiety referred to herein is a monovalent hydrophilic moiety as defined by L, and its preferred embodiment is the same as defined for L. Y and Y' each independently represent a divalent hydrophilic moiety, Z represents a divalent or trivalent hydrophilic moiety, and q is 1 or 2. That is, in the case where q is 1, 'Z is not a monovalent hydrophilic portion, and in the case where q is 2, Z represents a trivalent hydrophilic portion. Examples of the divalent or trivalent hydrophilic moiety may include the same moiety as defined by the divalent or trivalent hydrophilic moiety in formula (I) or (II). Further, P represents an integer from 〇 to 20, and r represents an integer from 0 to 3. η represents an integer of 1 to 3. In the case where R3 or R4, R5, R6, and R7 in the formula (III) are each a divalent hydrocarbon group, the divalent hydrocarbon group may preferably be a linear, branched or cyclic alkyl group or an aromatic cyclic group. Further, the divalent hydrocarbon group may have a substituent. Examples of the substituent which may be introduced into the divalent hydrocarbon group include an aliphatic group, an aromatic group, a heterocyclic group, a halogen atom, a cyano group, a nitro group, an aliphatic oxy group, an aromatic oxy group, a heterocyclic oxy group, and a hydrophilic group. Sexual basis. Specifically, it is preferably an aliphatic group, an aromatic group, a heterocyclic group, a chlorine atom, a cyano group, and a hydrophilic group having 1 to -51 to 200844497 12 carbon atoms. Preferable examples of the aliphatic group having 1 to 12 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a pentyl group, a hexyl group, a cyclohexyl group, and an octyl group, and More preferably, it is a methyl group, an ethyl group and a propyl group. Examples of the aromatic group include a phenyl group, a naphthyl group and an anthracenyl group, and are preferably a phenyl group. Examples of the heterocyclic group include morpholinyl, tetrahydrofuranyl, pyrrolyl, furyl, thienyl, benzopyrrolyl, benzofuranyl, benzothienyl, pyrazolyl, isoxazolyl, isothiazolyl, Carbazolyl, benzisoxazolyl, benzisothiazolyl, imidazolyl, oxazolyl, thiazolyl, benzimidazolyl, benzoxazolyl, benzothiazolyl, pyridyl, quinolyl, Isoquinolyl, oxime, pyrimidinyl, pyridyl, porphyrin, hydrazine, quinazolinyl, quinoxalinyl, acridinyl, phenanthryl, decyl, carbazolyl, Carboxolyl, fluorenyl, triazolyl, oxadiazolyl, thiadiazolyl, of which morpholinyl, tetrahydrofuranyl, and pyridyl are preferred. Examples of the hydrophilic group include a hydroxyl group, an amine group, a carbonyl group, a thiocarbonyl group, a decyl group, an amine carbaryl group, an amine methyl methoxy group, and an amine mercaptoamino group, and among them, a hydroxyl group, a carbonyl group and an amine group are preferable. When R3, R5, R6, and R7 in the formula (III) are each a divalent hydrocarbon group, the divalent hydrocarbon group may include a "monovalent hydrophilic moiety" such as a hydroxyl group, an amine group, a thiol group, and an ammonium group. a base, an amine carbenyl group, an amine formamyloxy group, an amine formylamino group, or a partial structural moiety represented by one of the following formulas (each M1 and M2 are the same as defined above). -52- 200844497

—COOM1 Ο—COOM1 Ο

P~OM OM2 以上之中,由式(III)中R3表示之「二價烴基」較佳爲 具有1至5個碳原子之亞甲基鏈、或可具有取代基且鏈中 可包括氧原子之亞甲基鏈。 由式(IV)中各R4至R7表示之「二價烴基」較佳爲具 有1至5個碳原子之亞甲基鏈、或可具有取代基且鏈中可 包括氧原子之亞甲基鏈(更佳爲具有3個碳原子之亞甲基 鏈)。 式(III)之X或式(IV)之X’中之單價親水性部分的較佳 實例包括經基、胺基、疏基、錢基、胺甲醯基、胺甲酶氧 基、胺甲醯基胺基、及由以下結構式之一表示之部分結構 部分(各Μ 1與M2與以上所定義相同)。 Ο II Ρ-ΟΜ ΟΜ2In the above P~OM OM2, the "divalent hydrocarbon group" represented by R3 in the formula (III) is preferably a methylene chain having 1 to 5 carbon atoms, or may have a substituent and may include an oxygen atom in the chain. The methylene chain. The "divalent hydrocarbon group" represented by each of R4 to R7 in the formula (IV) is preferably a methylene chain having 1 to 5 carbon atoms, or a methylene chain which may have a substituent and may include an oxygen atom in the chain. (More preferably, a methylene chain having 3 carbon atoms). Preferable examples of the monovalent hydrophilic moiety of X of the formula (III) or X' of the formula (IV) include a trans group, an amine group, a thiol group, a ketone group, an amine carbaryl group, an amine methoxy group, an amine group A. a mercaptoamine group, and a partial moiety represented by one of the following structural formulas (each Μ 1 and M 2 are the same as defined above). Ο II Ρ-ΟΜ ΟΜ2

~COOM~COOM

0 II ,—S-OM 在式(IV)中各Υ1、Υ2與Ζ爲二價親水性部分之情形, 其較佳實例包括羰基、硫羰基、胺基甲酸酯部分、硫胺基 甲酸酯部分、醯胺部分、酯部分、硫醚部分、磺醯胺部分 -53 - 200844497 、脲部分、硫脲部分、二級胺部分、由_(CH2cH2〇)a-表不 之聚伸乙氧基部分(其條件爲a表示2或更大之整數)、氧 基羰氧基部分、及由以下結構式之一表示之部分結構部分 (Μ 1與以上所定義相同)。 〇 II —S-0— I!〇 〇 H —P-0-OM1 在式(IV)中ζ爲二價親水性部分之情形,其較佳實例 包括三級胺部分、脲部分、硫脲部分、及由以下結構式之 一表示之部分結構。0 II , —S-OM In the case where each of Υ1, Υ2 and Ζ in the formula (IV) is a divalent hydrophilic moiety, preferred examples thereof include a carbonyl group, a thiocarbonyl group, a urethane moiety, and a thiocarbamic acid. Ester moiety, guanamine moiety, ester moiety, thioether moiety, sulfonamide moiety -53 - 200844497, urea moiety, thiourea moiety, secondary amine moiety, _(CH2cH2〇)a- The base moiety (with the condition that a represents an integer of 2 or more), the oxycarbonyloxy moiety, and a partial structural moiety represented by one of the following structural formulas (Μ 1 is as defined above). 〇II —S-0—I!〇〇H—P-0-OM1 In the case where the oxime is a divalent hydrophilic moiety in the formula (IV), preferred examples thereof include a tertiary amine moiety, a urea moiety, and a thiourea moiety. And a partial structure represented by one of the following structural formulas.

由式(ΠΙ)表示之化合物中,其更佳爲一種R11與R12 各較佳爲表示甲基或乙基,R3表示具有1至5個碳原子之 '或可具有取代基且鏈中可包括氧原子之亞甲基 鍵(較佳爲具有3個碳原子之亞甲基鏈),χ表示胺基,及 n爲2至3 (較佳爲2 )的化合物。 此外由式(Iv)表示之化合物中,其更佳爲一種R11與 -54- 200844497 R12各較佳爲表示甲基或乙基,R4與R5各較 1至5個碳原子之亞甲基鏈(較佳爲具有2 甲基鏈),R6與R7各較佳爲表示具有1至5 甲基鏈(較佳爲具有3個碳原子之亞甲基鏈: ,各Y、Y’與Z表示胺基,p爲0,q爲l,r 2至3 (較佳爲2 )的化合物。 以下顯示由式(I)至(IV)表示之指定有機 實例。然而本發明不限於這些實例。 由式(I)表示之有機矽烷化合物的實例包 氧基環己基)乙基三甲氧基矽烷、γ-環氧丙 基矽烷、γ_環氧丙基丙基三乙氧基矽烷、甲 烷、甲基三乙氧基矽烷、乙烯基三乙醯氧基 基三甲氧基矽烷、乙烯基三甲氧基矽烷、乙 矽烷、γ-氯丙基甲基二甲氧基矽烷、三甲基 3,4-環氧基環己基)乙基三甲氧基矽烷、雙 基矽烷、四乙氧基矽烷、雙(三甲氧基矽烷 苯基三甲氧基砂院。 以下顯示由式(II)、(III)或(IV)表示之有 的更佳指定實例(例示化合物(1)至(149))。 佳爲表示具有 個碳原子之亞 個碳原子之亞 >,X ’表示胺基 爲0 ’及η爲 矽烷化合物的 ▲括 β - ( 3,4 -環 基丙基三甲氧 基三甲氧基矽 矽烷、γ-氯丙 烯基三乙氧基 氯矽烷、2-( 烯丙基三甲氧 基)己烷、與 機矽烷化合物 -55 - (2) 200844497 ⑴ H2N^-^Si(OEt)3 (3) HS/\/\Si(〇Et)3 HS^^^SiiOMeJa ⑷ H2N^^^Si(OMe)3 (5) (6)In the compound represented by the formula (ΠΙ), it is more preferred that one of R11 and R12 each preferably represents a methyl group or an ethyl group, and R3 represents a group having 1 to 5 carbon atoms or may have a substituent and may be included in the chain. A methylene bond of an oxygen atom (preferably a methylene chain having 3 carbon atoms), χ represents an amine group, and n is a compound of 2 to 3 (preferably 2). Further, among the compounds represented by the formula (Iv), more preferably one of R11 and -54-200844497 R12 each preferably represents a methyl group or an ethyl group, and R4 and R5 each have a methylene chain of 1 to 5 carbon atoms. (preferably having a 2 methyl chain), and each of R6 and R7 preferably represents a methyl group having 1 to 5 methyl chains (preferably having 3 carbon atoms: and each of Y, Y' and Z represents The amine group, a compound wherein p is 0, q is 1, and r 2 to 3 (preferably 2). The specified organic examples represented by the formulae (I) to (IV) are shown below. However, the invention is not limited to these examples. Examples of the organodecane compound represented by the formula (I) are anoxycyclohexyl)ethyltrimethoxydecane, γ-epoxypropyldecane, γ-glycidylpropyltriethoxydecane, methane, methyl Triethoxy decane, vinyl triethoxymethoxy trimethoxy decane, vinyl trimethoxy decane, ethane hexane, γ-chloropropyl methyl dimethoxy decane, trimethyl 3,4-ring Oxycyclohexyl)ethyltrimethoxydecane, bis-decane, tetraethoxydecane, bis(trimethoxydecanephenyltrimethoxylate). The following is shown by formula (II), (III) or (IV) is a more preferred designated example (exemplified compounds (1) to (149)). Preferably, it represents a sub-carbon atom having a carbon atom>, and X' represents an amine group. 0' and η are decane compounds, including β-(3,4-cyclopropyltrimethoxytrimethoxydecane, γ-chloropropenyltriethoxychlorodecane, 2-(allyltrimethoxy) Hexane, and decane compound-55 - (2) 200844497 (1) H2N^-^Si(OEt)3 (3) HS/\/\Si(〇Et)3 HS^^^SiiOMeJa (4) H2N^^^ Si(OMe)3 (5) (6)

H2N^^k〇^\ ⑺ 〇 H2N>>r"^^Si(OEt)3H2N^^k〇^\ (7) 〇 H2N>>r"^^Si(OEt)3

H (9) HS^ OEt OEtH (9) HS^ OEt OEt

(14)(14)

Si(OMe)3Si(OMe)3

Si(OEt)3 (15) 〇)冬Si(OEt)3 (15) 〇) winter

HerHer

OHOH

(16) 〇 "Si(OMe)3 H2N 人S 、Si(OMe)3 -56 - (17) 200844497 (18)(16) 〇 "Si(OMe)3 H2N Human S, Si(OMe)3 -56 - (17) 200844497 (18)

HO Ο Ο 丨人人/^s 八/^Si(OMe)2HO Ο Ο 丨人/^s 八/^Si(OMe)2

Η ΟΗ Ο

S^-^Si(OMe), (20)S^-^Si(OMe), (20)

S’Vx^^Si(〇Et)2 Λ (21) ~Si(OMe)3 (22)S’Vx^^Si(〇Et)2 Λ (21) ~Si(OMe)3 (22)

XX 、又 N 产、^Si(OEt)3 Η (23) 人 N 八〆^Si(OE〇3 Η Η (24) 〇 NT ν、Si(0Et)3 Η 1ST ν、Si(OEt)3 Η Η -57 - (25) )844497 (26) 0〆 、又 N^^^Si(〇Et)3 Η (27) (28) (29) 130)XX, N production, ^Si(OEt)3 Η (23) Human N 〆 〆 ^Si(OE〇3 Η Η (24) 〇NT ν, Si(0Et)3 Η 1ST ν, Si(OEt)3 Η Η -57 - (25) )844497 (26) 0〆,又N^^^Si(〇Et)3 Η (27) (28) (29) 130)

MeOMeO

ΟΟ

N々、^Si(〇Et)3 Η MeON々, ^Si(〇Et)3 Η MeO

Si(〇Me)3 <3^25〇Si(〇Me)3 <3^25〇

ΟΟ

N,、^Si(〇Et)3 Η (^2Η25〇N,, ^Si(〇Et)3 Η (^2Η25〇

ΟΟ

/^^Si(〇Me)3/^^Si(〇Me)3

Si(〇Me)3 (31) ⑽Si(〇Me)3 (31) (10)

ΟΟ

ΟΟ

N,^^Si(〇B)3 Η -58- (36) 200844497 (34)N,^^Si(〇B)3 Η -58- (36) 200844497 (34)

ΟΟ

Ο (35) H2Nv-^N^^Si(OEt)3 Η 八^^Si(OEt)3 η \^Ν 八Si(OEt)3 Η (37) Η (39) (40) Λ IT Η 、Si(〇Me)3Ο (35) H2Nv-^N^^Si(OEt)3 Η 八^^Si(OEt)3 η \^Ν Eight Si(OEt)3 Η (37) Η (39) (40) Λ IT Η , Si (〇Me)3

^Y^Si(OEt)3 ⑷) ^^^S\(OEt)3 (44)^Y^Si(OEt)3 (4)) ^^^S\(OEt)3 (44)

Has^^^^Si(OEt)3Has^^^^Si(OEt)3

OH • 59 - 200844497 (45)OH • 59 - 200844497 (45)

Η 〇 Η (46) Η Η Η Ν、/Ν' (47) WV 〇 八7〇、Si(〇Et)3 、Ν ^^'Si(OMe)3 Η (48)Η 〇 Η (46) Η Η Η Ν, /Ν' (47) WV 〇 八 〇, Si (〇Et) 3 , Ν ^^'Si(OMe)3 Η (48)

Ο 、Si(OEt)3 (49)Ο , Si(OEt)3 (49)

Η ΗΟ’γ^Ό OHΗ ΗΟ’γ^Ό OH

12^25 12^25 -60 - 200844497 (52) 〇 人 Η12^25 12^25 -60 - 200844497 (52) 〇人 Η

〇 II ^N^-^Si(OMe); 〇 Η 3〇 II ^N^-^Si(OMe); 〇 Η 3

〇 (56) NaO、#八^〇v^〇,v〇、Sj(〇Et)3 Ο〇 (56) NaO, #八^〇v^〇, v〇, Sj(〇Et)3 Ο

(59) Y(59) Y

HOHO

、Si(OEt)3 HO (60),Si(OEt)3 HO (60)

N^^Si(OEt)3 H (61) 又N^^Si(OEt)3 H (61) again

XX

HH

H (62) ^H (62) ^

… Si(OMe)3 -61 - 200844497... Si(OMe)3 -61 - 200844497

(64)(64)

Ο Me (65) (66) 2 OEt (67)Ο Me (65) (66) 2 OEt (67)

(68) Η2Ν Ο 人 Η r (69) H2N^hr^^Si(OMe)3 Η (70)(68) Η2Ν Ο人 Η r (69) H2N^hr^^Si(OMe)3 Η (70)

ΗΗ

Me Ο Me (71)Me Ο Me (71)

(72)(72)

Η2ΝΗ2Ν

Me 0 Me (75) Η2Ν 又Me 0 Me (75) Η2Ν

Si(OEt)3Si(OEt)3

OEt 200844497OEt 200844497

(79) 〇 (78) 〇 ^C^〇^cAN/^xSi(〇Me)3 H 6Et Η H 0Me(79) 〇 (78) 〇 ^C^〇^cAN/^xSi(〇Me)3 H 6Et Η H 0Me

(80) (81) Ο 广 Ο 、Κ ϊΓ^_3 Η Η 6Et (82) 广 0 ^Ν^νΛν^-^γ〇 Me Η Η OMe (83) ! Ο (84) , Ο (85) I Ο Η 5ί(ΟΜβ)3 Λ .OMe Η 0Me (86) (87) 〇'ο. 丨人 N^^^rOEt 0Et Η Η (88)(80) (81) Ο 广Ο, Κ ϊΓ^_3 Η Η 6Et (82) 广0 ^Ν^νΛν^-^γ〇Me Η Η OMe (83) ! Ο (84) , Ο (85) I Ο Η 5ί(ΟΜβ)3 Λ .OMe Η 0Me (86) (87) 〇'ο. 丨人N^^^rOEt 0Et Η Η (88)

X Η Η N^^Si(OMe)3X Η Η N^^Si(OMe)3

X Η Η -63 - (90) 200844497 (89) (91) Ο Ο Η OEt ο 丨〆0X Η Η -63 - (90) 200844497 (89) (91) Ο Ο Η OEt ο 丨〆0

Ο 、Si(OMe)3 (92) Me Me〇j H O Me ΗΟ , Si(OMe)3 (92) Me Me〇j H O Me Η

!Γ^Γ (93) (94) 0 MeO.!Γ^Γ (93) (94) 0 MeO.

H sSi(OMe)3 (95) (96)H sSi(OMe)3 (95) (96)

Ci2K?5'Ci2K? 5'

Me o Ci2H25ap^^^^^j(〇M0)3 (97) ^12^25 (99)Me o Ci2H25ap^^^^^j(〇M0)3 (97) ^12^25 (99)

(100) Si(OMe)3 (98) .OEt (102) (101)(100) Si(OMe)3 (98) .OEt (102) (101)

、NT HNT H

Et H 0Et (103) 山/0 Me H 0 Me (105)Et H 0Et (103) Mountain / 0 Me H 0 Me (105)

HH

丨(OMe>3 H (104) H OEt 006) 士〇 Me 6 Me -64 (108) 200844497 (107) α iTt3丨 (OMe>3 H (104) H OEt 006) Gentry Me 6 Me -64 (108) 200844497 (107) α iTt3

Η 、Si(OMe)3 (109) α (110) N^r° Me Η 0 MeΗ , Si(OMe)3 (109) α (110) N^r° Me Η 0 Me

Me H 0Me (111) (112) 义 H OEt (113) (114) |pY^Si(OMe)3 (115) 、ίΓτ 士0 Me 0 Me (116) 〇 人Me H 0Me (111) (112) 义 H OEt (113) (114) |pY^Si(OMe)3 (115) , ίΓτ士士 0 Me 0 Me (116) 〇人

H r (117) 〇 、^人 Ν SK〇Me)3 (118)H r (117) 〇 , ^人 Ν SK〇Me)3 (118)

叉 4r°Fork 4r°

Me (120)200844497 <119)Me (120)200844497 <119)

r^i(0Me)r^i(0Me)

-66 - 200844497-66 - 200844497

2 ]6 (146)2 ]6 (146)

?H3 ch3 (CH30)2SjC3H60CC=CH 0 (147) ch3 (CH30)3SiC3H6OQC=CH2 2 (148) CH 〜 yH3 CH3 (C2H50)2SiC3H60C,0=CH2 6 (149) CH3?H3 ch3 (CH30)2SjC3H60CC=CH 0 (147) ch3 (CH30)3SiC3H6OQC=CH2 2 (148) CH ~ yH3 CH3 (C2H50)2SiC3H60C,0=CH2 6 (149) CH3

(C2H50)3S i C3HeOC(b =C H(C2H50)3S i C3HeOC(b =C H

O 弈感光性著色熱固伸钾成物 非感光性著色熱固性組成物包括著色劑與熱固性化合 物’而且總固體含量中之著色劑濃度較佳爲5 〇質量。/q或更 大且小於1 0 0質量%。增加著色劑濃度則可形成較薄之彩 色濾光片。 -67 - 200844497 著色劑 可用於本發明之著色劑並未特別地限制,及可使用習 知染料或顏料之一,或者可使用其二或更多種之混合物。 可用於本發明之顏料的實例包括各種習知無機或有機 顏料。不論是無機顏料或有機顏料,考量高穿透率,其希 望使用平均粒徑儘可能小之顏料,而且亦考量處理性質, 顏料之平均粒徑較佳爲〇 · 〇 1微米至〇. 1微米,而且更佳爲 0.01微米至〇.〇5微米。 以下顯示可較佳地用於本發明之顏料。然而本發明不 限於這些顏料。 顏料之實例包括:c . I.顏料黃1 1、2 4、1 0 8、1 0 9、1 1 0 、138、139、150、151、154、167、180、與 185; C.I.顏 料橙 36 與 71; C.I.顏料紅 122、150、171、175、177、209 、224、242、254、255、與 264; C.I.顏料紫 19、23 與 32 ;C.I.顏料藍 15:1、15:3、15:6、16、22、60、與 66;及 C . I.顏料黑1。 在本發明之著色劑爲染料之情形’染料可均勻地溶於 組成物而得非感光性著色熱固性樹脂組成物。 可作爲包括於本發明組成物之著色劑的染料並未特別 地限制,而且可使用用於彩色濾光片之習知染料。 其可使用具有妣π坐基偶氮、苯胺基偶氮、二苯基甲院 、蒽醌、蒽吡啶酮、亞苄基、οχοηο1、吡唑基三唑、吡啶 酮偶氮、花青、酚噻阱、吡咯基吡唑偶氮次甲基、_唱、 酞青、苯并哌喃、靛等化學結構之染料。 -68 - 200844497 雖然本發明著色熱固性組成物之總固體含量中的著色 劑含量並未特別地限制,其較佳爲30質量%至60質量%。 使著色劑含量爲3 0質量%或更大則可得到作爲彩色濾光片 之合適色度。此外使著色劑含量爲60質量%或更小則可完 整地進行光硬化且可抑制由組成物形成之膜的強度降低。 熱固性化合物 可用於本發明之熱固性化合物並未特別地限制,只要 由組成物形成之膜可藉加熱硬化。例如其可使用具有熱固 性官能基之化合物。熱固性化合物較佳爲一種具有至少一 種選自環氧基、羥甲基、烷氧基甲基、與醯氧基甲基之基 的化合物。 熱固性化合物之進一步較佳實例包括(a)環氧化合物 ,(b)三聚氰胺化合物、胍胺化合物、乙炔脲化合物、或脲 化合物,其均經至少一種選自羥甲基、烷氧基甲基與醯氧 基甲基之取代基取代,及(c)酚化合物、萘酚化合物或經基 蒽化合物,其均經至少一種選自羥甲基、烷氧基甲基與酿 氧基甲基之取代基取代。特別地,多官能基環氧化合物作 爲熱固性化合物特佳。 熱固性化合物在著色熱固性組成物中之總含量相對熱 固性組成物之總固體含量(質量比)較佳爲0· 1至5〇質量 %,更佳爲0 · 2至4 0質量%,而且特佳爲1至3 5質量%, 雖然其依材料而定。 各種添力 如果需要,則其可將各種添加劑,如黏合劑、硬化劑 -69- 200844497 、硬化觸媒、溶劑、塡料、上述以外之聚合物、界面活性 劑、黏附改良劑、抗氧化劑、紫外線吸收劑、抗絮凝劑、 分散劑等,以添加劑不影響本發明效果之程度倂入本發明 之著色熱固性組成物。 黏合劑 黏合劑經常在製備顏料分散液時加入,而且黏合劑可 無鹼溶解力及應爲可溶於有機溶劑。 黏合劑較佳爲一種可溶於有機溶劑之線形高分子有機 聚合物。線形高分子有機聚合物之實例包括各在其側鏈中 具有羧酸之聚合物,如甲基丙烯酸共聚物、丙烯酸共聚物 、伊康酸共聚物、巴豆酸共聚物、順丁烯二酸共聚物、部 分酯化順丁烯二酸共聚物等,如例如J P - A第5 9 - 4 4 6 1 5號 專利、日本專利申請案公告(JP-Β)第54-34327號、JP-B第 5 8 - 1 2 5 77 號專利、JP-B 54-25 95 7 號專利、JP-A 5 9- 5 3 8 3 6 、及JP-A 5 9-7 1 048號專利所述。類似地,其可使用各在其 側鏈中具有羧酸之酸性纖維素化合物。 這些各種黏合劑中,由耐熱性之觀點較佳爲多羥基苯 乙烯、聚矽氧烷樹脂、丙烯酸樹脂、丙烯醯胺樹脂、及丙 烯酸/丙烯醯胺共聚物樹脂,而且由顯影性質控制力之觀點 較佳爲丙烯酸樹脂、丙烯醯胺樹脂、及丙烯酸/丙烯醯胺共 聚物樹脂。 丙烯酸樹脂之較佳實例包括由選自(甲基)丙烯酸苄 酯、(甲基)丙烯酸、(甲基)丙烯酸羥基乙酯、(甲基)丙 烯醯胺等之單體形成之共聚物,其包括如甲基丙烯酸苄酯/ -70- 200844497 甲基丙烯酸、及甲基丙烯酸苄酯/苄基甲基丙烯醯胺、KS 光阻-106 (商標名,Osaka Organic Chemical Industry Ltd. 製造)、Cyclomer P 系歹[J 產品(Daicel Chemical Industries, Ltd.)之共聚物。 將著色劑以較高濃度分散於黏合劑中可改良例如對下 層之黏著性,及經塗覆表面在旋塗或縫塗期間之性質。 固化劑 在本發明中較佳爲在使用環氧樹脂作爲熱固性樹脂時 加入固化劑。現有極多種環氧樹脂用固化劑,其如樹脂與 固化劑之混合物的安定性、黏度、固化溫度、固化時間、 及熱產生之性質不同,因此需要依固化劑之應用、使用條 件及作業條件選擇合適固化劑。此固化劑詳述於Hiroshi Kakiuchi 編著之”Epoxy Resins (Shokodo)”,第 5 章。 固化劑之實例包括以下:催化固化劑,如三級胺與三 氟化硼-胺錯合物;與環氧樹脂中官能基定量地化學反應 之固化劑,如多胺與酸酐;常溫固化固化劑,如二伸乙三 胺與聚醯胺樹脂;中溫固化固化劑,如二乙胺基丙胺與参 (二甲胺基甲基)酚;及高溫固化固化劑,如酞酸酐與間 伸苯二胺等。在就化學結構而言時,固化劑包括胺,其包 括脂族多胺,如二伸乙三胺,芳族多胺,如間伸苯二胺, 及三級胺,如参(二甲胺基甲基)酚;酸酐,其包括酞酸 酐、聚醯胺樹脂、聚硫化物樹脂、三氟化硼-單乙胺錯合物 、例如酚樹脂之起初階段縮合物、二氰二醯胺等。 這些固化劑藉加熱與環氧樹脂反應、聚合及固化’附 200844497 帶交聯密度之增加。爲了降低膜厚’黏合劑或固化劑之量 較佳爲儘可能小,及特別是固化劑之量相對熱固性樹脂較 佳爲35質量%或更小,更佳爲30質量%或更小,而且仍更 佳爲2 5質量%或更小。 硬化觸媒 在本發明中爲了得到高濃度著色劑,經與硬化劑之反 應硬化及經環氧樹脂間反應硬化爲有效的。因此可使用硬 化觸媒代替硬化劑。硬化觸媒之加入量相對環氧當量爲約 150至200之環氧樹脂較佳爲小至約1/10至1/1,〇〇〇倍, 更佳爲約1/20至1 /5 00倍,而且仍更佳爲約1/30至1/250 倍重量比。 溶劑 本發明之著色熱固性組成物可以其中將著色熱固性組 成物溶於任何溶劑之溶液形式使用。基本上,在本發明中 用於著色熱固性組成物之溶劑並未特別地限制,只要滿足 著色熱固性組成物各成分之溶解度及塗覆性質。 分散劑 此外可加入分散劑以改良顏料之分散效率。其可使用 任何適當地選擇之已知分散劑作爲分散劑,而且其實例包 括陽離子性界面活性劑、氟化學面活性劑、聚合物分散劑 等。 多種化合物可作爲分散劑。分散劑之實例包括:酞青 化合物(商標名:.EFKA-745,EFKA 製造);SOLSPERSE 5〇〇〇(商標名,Lubrizol Japan Ltd.製造);陽離子性界面 -72- 200844497 活性劑’如有機矽氧烷聚合物KP341 (商標名,Shin-Etsu Chemical Co·, Ltd·製造)、(甲基)丙烯酸爲主(共)聚 合物POLYFLOW第75號、第90號與第95號(均爲商標 名,Kyoeisha Chemical Co.,Ltd·製造),或 W001 (商標 名’ Yusho Co·,Ltd.製造);非離子性界面活性劑,如聚 氧伸乙基月桂基醚、聚氧伸乙基硬脂基醚、聚氧伸乙基油 基醚、聚氧伸乙基辛基苯基醚、聚氧伸乙基壬基苯基醚、 聚乙二醇二月桂酸酯、聚乙二醇二硬脂酸酯、或山梨醇酐 脂肪酸酯;陰離子性界面活性劑,如W 0 0 4、W 0 0 5與W 0 1 7 (均爲商標名,Yusho Co·,Ltd.製造);聚合分散劑,如 EFKA-46、EFKA-47、EFKA-47EA、EFKA POLYMER 100 、EFKA POLYMER 400、EFKA POLYMER 401、與 EFKA POLYMER 450 (均爲商標名,Morishita & Co·,Ltd·製造) ,或 DISPERSE AID 6、DISPERSE AID 8、DISPERSE AID 15 與 DISPERSE AID 9100(均爲商標名,San Nopco Ltd.製造 );各種 SOLSPERSE 分散齊!| ,如 SOLSPERSE 3000、 5000 、9000 、 12000 、 13240 、 13940 、 17000 、 24000 、 26000 、 或 28000 (均爲商標名,Lubrizol Japan Ltd.製造); ADEKAPLURONIC L31、F38、L42、L44、L61、L64、F68 、L72、 P95、 F77、 P84、 F87、 P94、 L101、 P103、 F108、 L121、P-123 (均爲商標名,Asahi Denka Κ·Κ·製造);及 ISONET S-20 (商標名,Sanyo Chemical Industries Ltd.製 造)。 其可單獨使用分散劑之一,或者可使用其二或更多種 -73- 200844497 之混合物。本發明之分散劑通常以每i 〇 〇質量份之顏料較 佳爲約0.1至5 0質量份之量加入著色熱固性組成物。 其他添加劑 事實上,各種添加劑可進一步加入本發明之非感光性 著色硬化性組成物。各種添加劑之指定實例包括上述關於 著色光硬化性組成物之有機矽烷化合物。有機矽烷化合物 之較佳範圍與著色光硬化性組成物相同。 光阻 如上所述,在藉「乾式蝕刻法」形成第一至第三彩色 圖案時,其使用光阻形成光阻圖案。亦在去除彩色圖案時 ,其較佳爲使用光阻形成光阻圖案。 其可使用適合用於對如紫外線(g -線、h -線、i -線)、 遠紫外線(包括準分子雷射)、電子束、離子束、或X-射 線之輻射敏感之正型光阻的正型光阻組成物作爲正型感光 性樹脂組成物。關於爲了本發明之目的將感光性樹脂層曝 光,輻射中較佳爲g-線、h-線與i-線,而且特佳爲i-線。 特別地,正型感光性樹脂組成物較佳爲一種包括二疊 氮化醌化合物與鹼溶性樹脂之組成物。其較佳爲使用包括 二疊氮化醌化合物與鹼溶性樹脂之正型感光性樹脂組成物 作爲正型光阻,因爲其藉由以波長爲5 0 0奈米或更小之光 照射將二疊氮化醌基分解成羧基,而由鹼不溶性狀態變成 鹼溶性狀態。正型光阻之解析度顯著地較優,因此用於製 造積體電路,如1C與LSI。二疊氮化醌化合物之一個實例 爲二疊氮化萘醌化合物。 -74- 200844497 虫止層 第一及第二中止層較佳爲使用上述之硬化性組成物形 成。 '-種包括熱硬化性高分子聚合物之組成物可較佳地用 於硬化性組成物。聚合物之更佳實例包括聚矽氧烷聚合物 與聚苯乙烯聚合物。其中更佳爲已知爲旋塗玻璃(SOG)材料 之材料、或包括聚苯乙烯化合物或聚羥基苯乙烯化合物作 爲主要成分之熱固性組成物。 至於顯示形成中止層之硬化性組成物的蝕刻抗性之指 數,例如可使用 Ohnishi參數(參考文獻:JP-A第 2004-294638及2005-146182號專利)。在本發明中,在著 色硬化性組成物之參數爲3 . 5至4.5,及形成中止層之硬化 性組成物的參數爲2 · 5或更小時,其可選擇性地決定可建 立之著色硬化性組成物。Ohni shi參數係依照以下方程式(I) 計算。 (C + 0 + H)/(C-0)··.方程式(I) 在方程式(I)中,C、Ο與Η各表示聚合物重複單元中 碳原子、氧原子與氫原子之莫耳數。以下顯示Ohni shi參 數之計算例。在此計算中,計算係在將數値進位至小數二 位後進行。 計算例1 :荞丙烯酸酯化合物 (C + 0 + H)/(C-0) = (3 3 + 6 + 25)/(3 3 - 6) = 2.3 7 計算例2 :多羥基苯乙烯化合物 (C + 0 + H)/(C-0) = (8 +1+8)/(8-1) = 2.42 -75 - 200844497 藉上述製造彩色濾光片之方法製造之彩色濾光片可用 於液晶顯示器或固態攝影元件,如電荷偶合裝置(C CD),而 且特別適合超過百萬像素之高解析度固態攝影元件。本發 明之彩色濾光片可作爲排列於例如組成CCD之各像素群與 集光用微透鏡間之彩色濾光片。 特別地,此彩色濾光片更適合用於其中像素大小爲2.5 微米或更小之固態攝影元件,而且特別適合用於其中像素 大小爲2.0微米或更小之固態攝影元件。 固態攝影元件 本發明之固態攝影元件包括本發明之彩色濾光片。 由於本發明之固態攝影元件包括本發明之彩色濾光片 (其具有實質上長方形彩色像素),此固態攝影元件之彩 色再現力優異。 雖然固態攝影元件之組態並未特別地限制,只要其包 括本發明之彩色濾光片且作爲固態攝影元件,以下敘述其 組態之一個實例。 例如本發明之固態攝影元件包括撐體、多個形成固態 攝影元件之光接收區域的光二極管(例如CCD影像感應器 、CMOS影像感應器等)、及由多矽等組成之轉移電極, 其中將由鎢等組成之遮光膜(遮光膜在光二極管之光接收 區域上具有穿孔)提供於光二極管與轉移電極上,將由氮 化矽等組成之裝置保護膜提供於遮光膜上以覆蓋遮光膜及 光二極管之光接收區域的全部表面,及將本發明之彩色濾 光片提供於裝置保護膜上。 -76 - 200844497 此外例如本發明之固態攝影元件可進一步包括集光單 元(例如微透鏡等,以下亦同),其提供於裝置保護層上 及彩色濾光片下方(較接近撐體之彩色濾光片側),或者 可進一步在彩色濾光片上包括集光單元。 實例 以下參考實例詳述本發明。然而本發明不受其限制, 只要標的物不背離本發明之精神。除非另有特別地指示, 「份」表示質量份(或質量比份)。 此外在以下程序中,使用市售處理溶液之處理係依照 製造者指定之方法實行,除非另有特別地敘述。 實例1 依照一個例示具體實施例(第一例示具體實施例)製 造彩色濾光片,其中第三彩色圖案係排列成方格狀圖案( 即Bayer排列),而且藉微影術法形成全部彩色層。以下敘 述製造方法之細節。 第_一彩色圖案之形成 藉旋塗器將紅色(R)光硬化性組成物”SR-5000L”(商標 名,F uj i f i 1 m E 1 e c t r ο n i c s M at e r i al s C 〇 ·,L t d ·製造)塗布在 基板上,形成厚〇. 8微米之塗膜,然後使用熱板在使得塗 膜溫度或周圍溫度爲100°C之溫度實行前烘烤處理2分鐘 而得R彩色層,其爲第一彩色層。 繼而使用i-線步進器(Canon Inc.製造)將R彩色層 以2 00毫焦耳/平方公分之曝光量按圖案曝光,以顯影劑 ” CD-2060”(商標名,Fujifilm Electronic Materials Co.,Ltd -77 - 200844497 製造)接受顯影1分鐘’以純水清洗’及藉旋乾乾燥。然 後進一步在220 °C實行後烘烤5分鐘而在意圖形成R圖案 之圖案區域形成R圖案,其爲第一彩色圖案。 在此R圖案係形成條形圖案。R圖案之線與間隙之大 小爲線:1 . 5微米及間隙:1 . 5微米,而且後烘烤後之塗膜 厚度爲0.7微米。 在此實例中,「線」表示圖案之線寬及「間隙」表示 夾在兩個圖案間之區域(在此圖案不形成)的寬度(以下 亦同)。 第二彩色圖案之形成 其次將藍色(B)光硬化性組成物”SB-5 000L”(商標名, Fujifilm Electronics Materials Co·,Ltd·製造)塗布在其上 形成R圖案之矽基板側的表面上,形成厚0.7微米之塗膜 ,及使用熱板在使得塗膜溫度或周圍溫度爲100 °C之溫度 實行前烘烤處理2分鐘而得B彩色層,其爲第二彩色層。 繼而使用i-線步進器(Canon Inc.製造)將B彩色層 以2 5 0毫焦耳/平方公分之曝光量按圖案曝光,以顯影劑 ”CD-2060”(商標名,Fujifilm Electronic Materials Co.,Ltd 製造)接受顯影1分鐘,以純水清洗,及藉旋乾乾燥。然 後進一步在220 °C實行後烘烤5分鐘而在意圖形成B圖案 之圖案區域形成B圖案,其爲第二彩色圖案。 在此B圖案係在不形成R圖案之區域形成平行R圖案 之條形圖案。B圖案之線與間隙之大小爲線:1 . 5微米及間 隙:1 · 5微米,而且後烘烤後之塗膜厚度爲〇 . 7微米。 -78 - 200844497 此外以相鄰圖案之表面彼此接觸之方式形成R圖案與 B圖案。各R圖案與B圖案之表面爲平面。g卩R圖案與B 圖案之上表面相對矽基板之高度相同。 繼而將正型光阻”FHi622BC”(商標名,Fujifilm Electronic Materials Co.,Ltd.製造)塗布在其上形成R圖 案與B圖案之矽基板側的表面上,然後前烘烤形成厚〇 . 8 微米之光阻層。 繼而使用i-線步進器(Canon Inc·製造)將R與B圖 案之圖案區域上的光阻層(其中欲形成G圖案(G像素) )以250毫焦耳/平方公分之曝光量按圖案曝光,及在使得 光阻層溫度或周圍溫度爲90 °C之溫度實行加熱1分鐘。然 後使用顯影劑”FHD-5”(商標名,Fujifilm Electronic Materials Co.,Ltd.製造)實行顯影1分鐘,及在110 °C實 行後烘烤處理1分鐘,使得去除欲形成G圖案(G像素) 之區域的光阻而形成光阻圖案。在所形成光阻圖案中,欲 形成G圖案(G像素)之區域爲1.5微米xl.5微米平方之 穿孔圖案,而且其陣列爲方格狀圖案。 彩色圖案之去除 然後在以下條件下實行乾式蝕刻以去除R與B圖案之 欲形成G圖案(G像素)之區域。 首先使用乾式蝕刻設備(商標名:U-621,Hitachi Hi-Technologies Corp.製造),在 RF 功率:8 00 瓦,天線 偏壓:400瓦,晶圓偏壓:200瓦,室內壓:4.0 Pa,基板 溫度:50°C,及混合氣體之物種與流速:CF4 : 80毫升/分 -79- 200844497 鐘,02: 40毫升/分鐘,與Ar: 8 0〇毫升/分鐘之條件下實 行第一步驟乾式蝕刻處理90秒。 在第一步驟乾式蝕刻之條件下的B圖案刮除量爲5 2 5 奈米,及R圖案爲635奈米,而且在第一飩刻步驟中B圖 案與R圖案之蝕刻量各爲75%與91%。結果撐體上殘留膜 之厚度各爲175奈米及65奈米。 繼而在相同之蝕刻室中,在RF功率:6 0 0瓦,天線偏 壓:100瓦,晶圓偏壓:250瓦,室內壓:2.OPa,基板溫 度:50°C,混合氣體之物種與流速·· N2: 5 0 0毫升/分鐘, 〇2: 50 毫升 / 分鐘,與 Ar: 500 毫升 / 分鐘(N2/02/Ar=10/l/10) ,及過度蝕刻速率:相對總蝕刻爲20%之條件下實行第二 步驟乾式蝕刻及過度蝕刻。 各B圖案與R圖案在第二步驟乾式蝕刻中之蝕刻速率 爲600奈米/分鐘或更大,而且蝕刻B與R圖案之殘留膜費 時約1 〇至20秒。蝕刻時間係計算爲第一蝕刻時間之90秒 與第一鈾刻時間之20秒之和。結果由於蝕刻時間爲 90 + 20= 1 1 0秒且過度飩刻時間爲110x0.2 = 22秒,總蝕刻時 間設爲1 1 0 + 22 = 1 32秒。 如上所述,藉乾式蝕刻去除B與R圖案之欲形成G圖 案(G像素)之區域的部分而得到R像素與B像素。 其次使用光阻釋放劑”MS-23 0 C”(商標名,Fuji film Electronic Materials Co.,Ltd.)實行釋放處理 120 秒以去 除光阻。然後在100 °C實行加熱2分鐘。 第三彩色圖案之形成 -80- 200844497 其次將形成G圖案之光硬化性組成物,’ S G - 5 0 0 0 L ” 標名 ’ Fujifilm Electronics Materials Co.,Ltd·製造) 在其上形成R與B像素之矽基板側的表面上,形成厚 微米之塗膜’及使用熱板在使得塗膜溫度或周圍溫度爲 t之溫度實行前烘烤處理2分鐘而得G彩色層,其爲 彩色層。 繼而使用i-線步進器(Canon Inc.製造)將G彩 以200毫焦耳/平方公分之曝光量按圖案曝光,以顯 ”CD-2060”(商標名,Fujifilm Electronic Materials Co… 製造)接受顯影1分鐘,以純水清洗,及藉旋乾乾燥 後進一步在220 °C實行後烘烤5分鐘而在意圖形成G (G像素)之圖案區域形成G圖案(G像素),其爲 彩色圖案。 G圖案(G像素)係以使得各G像素嵌入藉蝕刻 之區域中的方式形成方格狀圖案,各G像素爲1.5微米 微米平方。G像素之陣列爲方格狀圖案。 此外將基板表面形成平面形式。即R像素、B像 G像素之上表面相對矽基板之高度相同。 以此方式得到具有R像素、G像素與B像素之彩 光片陣列。 在如此得到之彩色濾光片陣列中,其抑制在各彩 素(R像素、G像素與B像素)角落聚集區域不形成 像素之區域的發生,而且亦抑制在各像素邊界附近之 像素的膜厚變薄之區域的發生。 (商 塗布 0.6 100 第三 色層 影劑 ,Ltd 。然 圖案 第三 形成 xl .5 素與 色濾 色像 彩色 彩色 -81 - 200844497 此結果顯示使用上述製造彩色濾光片之方法可解決圖 案形成之限制,而且可形成較精細之圖案。 實例2 依照一個例示具體實施例(第二例示具體實施例)製 造彩色濾光片,其中第三彩色圖案係排列成方格狀圖案( 即Bayer排列),而且藉乾式蝕刻法形成全部彩色層。以下 敘述製造方法之細節。 第一彩色圖案之形成 藉旋塗器將紅色(R)光硬化性組成物”SR- 5 000L”(商標 名,Fujifilm Electronics Materials Co.,Ltd·製造)塗布在 矽基板上,形成厚0.8微米之塗膜,然後使用熱板在220 °C加熱5分鐘而得,使得塗膜硬化形成R彩色層,其爲第 一彩色層。使用SR-5000L形成後之R彩色層厚度爲0.65 微米。 繼而藉旋塗器將熱固性組成物”ITS-54S-3 00 A”(商標 名,Lasa Industries, Ltd.製造)塗布在其上形成R彩色層 之矽基板側的表面上,使得膜厚爲3 0奈米,然後實行加熱 以在2 2 0 °C硬化5分鐘而在R彩色層上形成透明薄膜1,其 爲第一中止層。 繼而將正型光阻”FHi622BC”(商標名,Fujifilm Electronic Materials Co.,Ltd.製造)塗布在透明薄膜1上 ,及實行前烘烤形成厚0.8微米之光阻層。 繼而使用i-線步進器(Canon Inc.製造)將欲形成B 圖案之圖案區域的光阻層以250毫焦耳/平方公分之曝光量 -82- 200844497 按圖案曝光,及在使得光阻層溫度或周圍溫度爲90 °C之溫 度加熱1分鐘。然後使用顯影劑”FHD-5”(商標名,Fujifilm Electronic Materials Co.,Ltd.製造)實行顯影 1 分鐘,進 一步在Π 〇 °C實行後烘烤1分鐘,及藉由去除欲形成B圖 案之所需彩色圖案區域的光阻而形成作爲蝕刻光罩之光阻 圖案。 在此光阻圖案係形成條形圖案,而且關於蝕刻轉換差 異(蝕刻之圖案寬度差減小),光阻圖案之線與間隙之大 小爲線:1.6微米及間隙:1.4微米。 其次如上所述,使用所形成光阻圖案作爲蝕刻光罩實 行透明薄膜1及R彩色層之乾式蝕刻,藉此製造R圖案’ 其爲第一彩色圖案。 首先使用乾式蝕刻設備(商標名:U-621 ’ Hitachi Hi-Technologies Corp·製造),在 RF 功率:800 瓦,天線 偏壓:400瓦,晶圓偏壓:200瓦,室內壓:4.0Pa,基板 溫度:50°C,及混合氣體之物種與流速:CF4: 80毫升/分 鐘,〇2: 40毫升/分鐘,與Ar: 800毫升/分鐘之條件下實 行第一蝕刻處理90秒。 在以上飩刻條件下之R彩色層刮除量爲6 3 5奈米’及 第一蝕刻爲9 1 %之鈾刻量。飩刻透明薄膜1需要約3秒’ 而且殘留膜具有約6 8奈米之厚度。 繼而在相同之鈾刻室中,在RF功率:6 0 0瓦,天線偏 壓:100瓦,晶圓偏壓·· 250瓦,室內壓:2.OPa’基板溫 度:5 0。(:,混合氣體之物種與流速:N 2 : 5 0 0毫升/分鐘, -83- 200844497 〇2: 50 毫升 / 分鐘,與 Ar: 500 毫升 / 分鐘(N2/02/Ar=10/l/10) ’及過度蝕刻速率:相對總蝕刻爲2 0 %之條件下實行蝕刻 處理。 R彩色層在第二蝕刻條件下之蝕刻速率爲6 0 0奈米/分 鐘或更大,而且蝕刻R彩色層之殘留膜費時約1 0秒。蝕刻 時間係計算爲第一蝕刻時間之9 0秒與第一鈾刻時間之1 〇 秒之和。結果由於蝕刻時間爲9 0+ 1 0= 1 0 0秒且過度鈾刻時 間爲1 00x0.2 = 20秒,總蝕刻時間設爲1 00 + 20 = 1 20秒。 在以上條件下實行乾式蝕刻後,使用光阻釋放劑 ”MS230C”(商標名,Fujifilm Electronic Materials Co·,Ltd. )實行釋放處理1 20秒以去除光阻,及得到在其上層具有 透明薄膜1之R圖案作爲第一彩色圖案。 在此R圖案係形成條形圖案。線與間隙之大小爲線: 1 · 5微米及間隙:1 . 5微米。 第二彩色圖案之形成 其次使用旋塗器將藍色光硬化性組成物”SB-5 000L”( 商標名,Fujifilm Electronics Materials Co·,Ltd.製造)塗 布在其上形成透明薄膜i與R圖案之矽基板側的表面上, 形成厚〇·7微米之塗膜,及使用熱板在220 °C之溫度加熱5 分鐘,使得塗膜硬化形成B彩色層,其爲第二彩色層。 繼而使用乾式触刻設備(商標名:U - 6 2 1,H i t a c h i Hi-Technologies Corp·製造),在 RF 功率:600 瓦,天線 偏壓:100瓦,晶圓偏壓·· 250瓦,室內壓:2.0 Pa,基板 溫度:5(TC,及混合氣體之物種與流速:N2: 5 0 0毫升/分 -84- 200844497 鐘與八1*:500毫升/分鐘(1^2/八^1/1)之條件下,在全部表面 上實行蝕刻(回蝕處理)。 由於B彩色層在第二蝕刻條件下之飩刻速率爲1 5 0奈 米/分鐘或更大,及在R圖案上透明薄膜1上形成之B彩色 層具有500奈米之膜厚,其計算爲去除B彩色層及暴露R 圖案上之透明薄膜1費時200秒。蝕刻時間係設爲此時間 加1 〇秒之過度蝕刻。結果由於蝕刻時間爲200秒且過度蝕 刻時間爲10秒,總蝕刻時間設爲200 + 1 0 = 2 1 0秒。 在以上條件下實行全部表面之蝕刻而得B圖案,其爲 第二彩色圖案。 所得B圖案係以使得其嵌入夾在矽基板上R圖案間之 凹陷部分中的方式形成。因而R與B圖案係以相鄰圖案之 表面彼此接觸之方式形成。 此外R圖案上透明薄膜1之上表面及B圖案之上表面 相對矽基板之高度相同。 第二中止層之形成 其次使用旋塗器將熱固性組成物”ITS-54 S- 3 0 0 A”(商 標名,Lasa Industries,Ltd.製造)塗布在其上形成R圖案 、透明薄膜1與B圖案之矽基板側的表面上,而形成膜厚 爲30奈米之塗膜,及使用熱板在220 °C加熱5分鐘,使得 塗膜硬化而在透明薄膜1與B圖案上形成第二透明薄膜2 ,其爲第二中止層。 繼而將正型光阻”FHi622BC”(商標名,Fujifilm Electronic Materials Co.,Ltd.製造)塗布在所形成透明薄 -85 - 200844497 膜2上,然後前烘烤形成厚0.8微米之光阻層 形成第一彩色圖案中形成光阻圖案之相同條件 光,繼而顯影,使得去除欲形成G圖案(G像 的光阻而形成光阻圖案。在所形成光阻圖案中 圖案(G像素)之區域爲1.5微米xl.5微米平 案,而且其陣列爲方格狀圖案。 彩色圖案之去除 其次在如實例1之相同條件下,除了將第 改成95秒,將第二步驟飩刻改成20秒,及將 間改成2 3秒,而將總蝕刻時間改成1 3 8秒,藉 透明薄膜1、透明薄膜2、R圖案、與B圖案去 圖案(G像素)之區域。 以此方式藉乾式蝕刻自R圖案與B圖案去 圖案(G像素)之區域,因而得到R像素與G 其次使用光阻釋放劑”MS-23 0C”(商標名 Electronic Materials Co.,Ltd.)藉釋放處理經 除光阻圖案。 第三彩色圖案之形成 其次將形成G圖案之光硬化性組成物” S G 標名,Fujifilm Electronics Materials Co·,Ltd. 在其上形成R像素、B像素、透明薄膜1、與 之矽基板側的表面上,形成厚〇 . 6微米之塗膜 板在2 2 0 °C之溫度加熱5分鐘,因而得到G彩 第三彩色層。此時透明薄膜2上G彩色層之厚 。然後在如 下按圖案曝 素)之區域 ,欲形成G 方之穿孔圖 一步驟蝕刻 過度蝕刻時 乾式蝕刻自 除欲形成G 除欲形成G 像素。 ,,Fujifilm 120秒以去 _ 5 0 0 0 L,,(商 製造)塗布 透明薄膜2 ,及使用熱 色層,其爲 度爲500奈 -86 - 200844497 米。 繼而使用乾式蝕刻設備(商標名:U-621,Hitachi Hi-Technologies Corp.製造),在 RF 功率:600 瓦,天線 偏壓:1〇〇瓦,晶圓偏壓:250瓦,室內壓:2.OPa,基板 溫度:50°C,及混合氣體之物種與流速:N2 : 5 00毫升/分 鐘與八^ 500毫升/分鐘(>12/八1-1/1)之條件下,實行全部表 面之蝕刻(回鈾處理),直到暴露透明薄膜1與透明薄膜 2。 此時G彩色層之蝕刻速率爲1 5 0奈米/分鐘或更大,及 其計算爲暴露透明薄膜1與2費時200秒。蝕刻時間係設 爲此時間加1 〇秒之過度蝕刻。結果由於蝕刻時間爲200秒 且過度鈾刻時間爲1〇秒,總蝕刻時間設爲200 + 1 0 = 21〇秒 〇 以此方式在欲形成G圖案(G像素)之所需彩色圖案 區域形成G圖案(G像素),其爲第三彩色圖案。 G圖案(G像素)係以各G像素嵌入藉蝕刻形成之區 域中的方式形成方格狀圖案,各G像素爲〗·5微米x1·5微 米平方。G像素之陣列爲方格狀圖案。 此外將基板表面形成平面形式。即R像素上之透明薄 膜2、B像素之透明薄膜2、與G像素之表面相對矽基板之 高度相同。 以此方式得到具有R像素、G像素與B像素之彩色濾 光片陣列。 在如此得到之彩色濾光片陣列中,其抑制在各彩色像 -87- 200844497 素(R像素、G像素與B像素)角落聚集區域不形成彩色 像素之區域的發生,而且亦抑制在各像素邊界附近之彩色 像素的膜厚變薄之區域的發生。 此結果顯示使用上述製造彩色濾光片之方法可解決圖 案形成之限制,而且可形成較精細之圖案。 在藉習知微影術法形成之彩色濾光片中。G、R與B 圖案基本上形成分隔圖案(分隔島)(G爲方格狀圖案) ,而且由於曝光時之相鄰效應,習知圖案之圖案形成力劣 於線與間隙圖案。已知特別地塗布於彩色濾光片之彩色組 成物的圖案長方形本性劣於一般光阻。爲了補償長方形本 性’其將第一及第二彩色層形成條形線與間隙圖案,而且 藉具高解析度之光阻及乾式蝕刻輔助形成彩色濾光片之分 隔圖案化’藉此可形成長方形本性優於習知濾光片之彩色 濾光片。 結果改良圖案之限制,特別是藉微影術法形成彩色圖 案’而且形成具有較精細像素之彩色濾光片爲可行的。 I例3 化性組成物夕祖柯 首先按以下方式製備形成G圖案之著色光硬化性組成 物P1。 :液之製備 藉球磨機將作爲顏料,比例爲8 0/2 0/3 5 (質量比)之 (C · I ·顏料綠3 6 / c · ;{ •顏料綠7 / c丄顏料黃1 3 9 )的c ·丨.顏料 綠3 6、C · I ·顏料綠7與C · I ·顏料黃1 3 9之混合物(1 5份) -88- 200844497 ,作爲分散劑之 BYK 2001 ( Disperbyk: BYK-Chemie 製造 ,固體含量濃度爲4 5 · 0 % ) ( 1 〇份)(計算固體爲約4 · 5 份)、甲基丙基酸苄酯/甲基丙基酸(莫耳比例:70/30) 共聚物(5.5份)、及作爲溶劑之環己烷(69.5份)混合及 分散15小時,而製備顏料分散液(P1)。 使用 MICROTRAC NANOTRAC UPA-EX1 50 (商標名, Nikki so Co.,Ltd.製造)藉動態光散射測量顏料分散液(P1) 中顏料之平均粒度且發現爲200奈米。 著色光硬化件組成物之製備 使用以上之顏料分散液P 1,將以下組成物中之成分混 合在一起且攪拌而得著色光硬化性組成物P 1之溶液。指定 有機矽烷化合物在著色光硬化性組成物P 1之總固體含量 中之量爲0.6質量°/〇。 組成物 顏料分散液P1 ".65份 例示化合物(1〇3)[指定有機矽烷化合物] ...0.15份 辛二酮-0-苯甲醯基肟[光聚合引發劑] ...1.5份 二異戊四醇六丙烯酸酯[光聚合性單體] ··. 6份 鹼溶性樹脂(黏合劑聚合物)[甲基丙烯酸苄酯/甲基丙烯 酸(莫耳比例:7 0/3 0 )共聚物,Mw: 3 0,000] ...2份 PGMEA (溶劑) ...2 5.3 5 份 彩色濾光片之製造 以類似實例1之方式得到具R像素與B像素之矽基板 ,除了形成第三彩色圖案前之程序係與實例1相同。 -89 - 200844497 即此基板具有其中藉乾式蝕刻自條形圖案之R與B圖 案去除欲形成G圖案(G像素)之區域,而且已接受光阻 去除及加熱。 黏著性改良處理 使用低壓黏附設備LPAH (其以旋塗設備SK-60BW建 構)(商標名,Dainippon Screening Mfg. Co·,Ltd·製造) ,在以下條件下將 HMDS (商標名,Fujifilm Electronic Materials Co.,Ltd.製造;六甲基二矽氮烷)在加熱後蒸氣 沉積在其上形成R與B像素之矽基板側的表面上。 然後使用旋塗設備SK-60BW,在以下條件下藉由旋塗 在Si基板之經HMDS沉積側上而塗布形成G圖案之著色硬 化性組成物P1,及在100 °C前烘烤120秒形成G彩色層, 其爲第三彩色層。 蒸氣沉積條件 基板溫度:1 1 0 °C 蒸氣沉積時間:45秒 旋塗條件 液滴量:2克 塗覆速度:1,〇〇〇 rpm 塗層厚度(乾燥厚度)·· 1 · 0微米 塗覆溫度:2 3 °C 圖案曝光、顯影等 使形成之G彩色層在如實例1中形成第三彩色層之相 问條件下依序接受圖案曝光、顯影、沖洗處理、乾燥處理 -90- 200844497 、及後烘烤處理,除了圖案曝光係使用藉下述方法決定之 最適曝光量實行,而且在欲形成G圖案(G像素)之所需 彩色圖案區域形成第三彩色層之G圖案(G像素)。 G圖案(G像素)係以各G像素嵌入藉以上蝕刻形成 之區域(此區域爲欲形成G圖案(G像素)之區域,藉乾 式蝕刻自R圖案與B圖案去除)中的方式形成方格狀圖案 ,各G像素爲1.5微米xl.5微米平方。G像素之陣列爲方 格狀圖案。 此外將基板表面形成平面形式。即R像素、Β像素與 G像素之上表面相對矽基板之高度相同。 以此方式得到具有R像素、G像素與Β像素之彩色濾 光片陣列。 在如此得到之彩色濾光片陣列中,其抑制在各彩色像 素(R像素、G像素與Β像素)角落聚集區域不形成彩色 像素之區域的發生,而且亦抑制在各像素邊界附近之彩色 像素的膜厚變薄之區域的發生。 此結果顯示使用此製造彩色濾光片之方法可解決圖案 形成之限制,而且可形成較精細之圖案。 評估 著色光硬化性組成物之儲存安定性 使用Ε型黏度計(Toki Sangyo Co·,Ltd.製造)溶液在 室溫儲存1個月前後之黏度,而且依照以下標準評估以上 製備之著色光硬化性組成物P 1的溶液之儲存安定性。評估 結果示於以下表1至3。 -91- 200844497 標準 A :未觀察到黏度增加。 B :觀察到黏度增加5%或更多且小於10% (在實際使用之 可接受範圍內)。 C :觀察到黏度增加10%或更多且小於20 %(在實際使用之 可接受範圍內)。 D:黏度增加20%或更多,其超過實際使用之可接受範圍。 黏著性改良處理後接觸角之測量 提供矽基板作爲用於測量接觸角之基板,而且接受黏 著性改良處理。基板與水間之接觸角係使用DROP MASTER 500 (商標名,Kyowa Interface Science Co.,Ltd.製造)測 量。測量結果示於以下表1至3。 最適曝光量Ennt之測量 在G彩色層之圖案曝光中,曝光係藉由按1〇毫焦耳/ 平方公分之單位改變曝光量而實行,及藉臨界尺寸掃描電 子顯微鏡(SEM)測量各曝光量之圖案寬度。將圖案寬度爲預 定値1.5微米之曝光量稱爲最適曝光量Ε。^。測量結果示 於表1至3。 黏附曝光量之測量 在G彩色層之圖案曝光中,曝光係藉由按1〇毫焦耳/ 平方公分之單位改變曝光量而實行,及光學顯微鏡觀察各 曝光量之圖案剝離。圖案不剝離之最小曝光量稱爲黏附曝 光量。測量結果示於表1至3。 黏著性之評估 -92- 200844497 藉由估計曝光下邊緣而評估黏著性,其爲將最適曝光 量E〇pt減去黏附曝光量而得之値。其顯示曝光下邊緣越寬 則黏著性越優良。評估結果示於表1至3。 A :曝光下邊緣夠寬,及黏著性極良好。 B :曝光下邊緣寬,及黏著性良好。 C:曝光下邊緣窄,但是在實際使用之可接受範圍內。 D:黏附曝光量超過最適曝光量E。^,但是藉光罩偏移等之 助在實際使用之可接受範圍內。 E :黏著性極差,及即使藉光罩偏移等之助黏附曝光量仍超 過實際使用之可接受範圍。 實例4至1 0 以如實例3之相同方式製造彩色濾光片’除了將實例 3之指定有機矽烷化合物之種類及量各改成如表1至3所 示者,而且以如實例3之相同方式評估。評估結果示於表 1至3。 實例1 1 以如實例7之相同方式製造彩色濾光片’除了在以下 條件下實行電漿氟化處理代替Η M D S蒸氣沉積,以改良實 例7之黏著性,而且以如實例7之相同方式評估。g平估結 果示於表1至3。 電漿氟化處理之條住_ 使用乾式鈾刻設備(商標名:U_621,HitachiO-sensitized tinted thermosetting potassium exhibitant The non-photosensitive tinted thermosetting composition includes a colorant and a thermosetting compound' and the concentration of the colorant in the total solid content is preferably 5 Å. /q is larger and less than 100% by mass. Increasing the colorant concentration results in a thinner color filter. -67 - 200844497 Coloring agent The coloring agent which can be used in the present invention is not particularly limited, and one of conventional dyes or pigments may be used, or a mixture of two or more thereof may be used. Examples of the pigment which can be used in the present invention include various conventional inorganic or organic pigments. Regardless of whether it is an inorganic pigment or an organic pigment, considering a high transmittance, it is desirable to use a pigment having an average particle diameter as small as possible, and also considering the handling property, and the average particle diameter of the pigment is preferably 〇·〇 1 μm to 〇.  1 micron, and more preferably 0. 01 micron to 〇. 〇 5 microns. The pigments which can be preferably used in the present invention are shown below. However, the invention is not limited to these pigments. Examples of pigments include: c.  I. Pigment yellow 1 1 , 2 4 , 1 0 8 , 1 0 9 , 1 1 0 , 138, 139, 150, 151, 154, 167, 180, and 185; I. Yan Cai Orange 36 and 71; C. I. Pigment red 122, 150, 171, 175, 177, 209, 224, 242, 254, 255, and 264; C. I. Pigment Violet 19, 23 and 32; C. I. Pigment Blue 15:1, 15:3, 15:6, 16, 22, 60, and 66; and C.  I. Pigment black 1. In the case where the coloring agent of the present invention is a dye, the dye can be uniformly dissolved in the composition to obtain a non-photosensitive coloring thermosetting resin composition. The dye which can be used as the coloring agent of the composition of the present invention is not particularly limited, and a conventional dye for a color filter can be used. It can be used with 妣π-sitting azo, anilino azo, diphenylmethyl, fluorene, anthrapyridone, benzylidene, οχοηο, pyrazolyl triazole, pyridone azo, cyanine, phenol A dye of a chemical structure such as a thiol, pyrrolylpyrazole azo methine, sing, indigo, benzopyran, or anthracene. -68 - 200844497 Although the coloring agent content in the total solid content of the colored thermosetting composition of the present invention is not particularly limited, it is preferably from 30% by mass to 60% by mass. A suitable color ratio as a color filter can be obtained by setting the content of the colorant to 30% by mass or more. Further, when the content of the colorant is 60% by mass or less, photohardening can be performed completely and the decrease in strength of the film formed of the composition can be suppressed. Thermosetting Compound The thermosetting compound which can be used in the present invention is not particularly limited as long as the film formed of the composition can be hardened by heat. For example, it is possible to use a compound having a thermosetting functional group. The thermosetting compound is preferably a compound having at least one selected from the group consisting of an epoxy group, a methylol group, an alkoxymethyl group, and a decyloxymethyl group. Further preferred examples of the thermosetting compound include (a) an epoxy compound, (b) a melamine compound, a guanamine compound, an acetylene urea compound, or a urea compound, each of which is selected from at least one selected from the group consisting of a methylol group and an alkoxymethyl group. Substituting a substituent of a methoxymethyl group, and (c) a phenol compound, a naphthol compound or a ruthenium-based compound, each substituted with at least one selected from the group consisting of a methylol group, an alkoxymethyl group and a methoxymethyl group Substituted. In particular, polyfunctional epoxy compounds are particularly preferred as thermosetting compounds. The total content of the thermosetting compound in the colored thermosetting composition is preferably from 0.1 to 5% by mass, more preferably from 0 to 2% to 40% by mass, based on the total solid content (mass ratio) of the thermosetting composition, and is particularly preferable. It is 1 to 35 mass%, although it depends on the material. Various additives, if necessary, can be used for various additives such as adhesives, hardeners -69- 200844497, hardening catalysts, solvents, dips, polymers other than the above, surfactants, adhesion improvers, antioxidants, The ultraviolet absorbing agent, the deflocculating agent, the dispersing agent and the like are incorporated into the colored thermosetting composition of the present invention to the extent that the additive does not affect the effects of the present invention. Adhesives Adhesives are often added during the preparation of pigment dispersions, and the binders are solvent-free and should be soluble in organic solvents. The binder is preferably a linear polymer organic polymer which is soluble in an organic solvent. Examples of the linear high molecular organic polymer include polymers each having a carboxylic acid in a side chain thereof, such as a methacrylic acid copolymer, an acrylic copolymer, an itaconic acid copolymer, a crotonic acid copolymer, and a maleic acid copolymer. a partially esterified maleic acid copolymer or the like, for example, JP-A No. 5 9 - 4 4 6 1 5 Patent, Japanese Patent Application Publication (JP-A) No. 54-34327, JP-B Patent No. 5 8 - 1 2 5 77, JP-B 54-25 95 7 , JP-A 5 9- 5 3 8 3 6 , and JP-A 5 9-7 1 048. Similarly, it is possible to use an acidic cellulose compound each having a carboxylic acid in its side chain. Among these various binders, polyhydroxystyrene, polyoxyalkylene resin, acrylic resin, acrylamide resin, and acrylic/acrylamide copolymer resin are preferred from the viewpoint of heat resistance, and the developing property is controlled by the developing property. The viewpoint is preferably an acrylic resin, an acrylamide resin, and an acrylic/acrylamide copolymer resin. Preferable examples of the acrylic resin include a copolymer formed of a monomer selected from the group consisting of benzyl (meth)acrylate, (meth)acrylic acid, hydroxyethyl (meth)acrylate, (meth)acrylamide, and the like. Including, for example, benzyl methacrylate / -70- 200844497 methacrylic acid, and benzyl methacrylate / benzyl methacrylamide, KS photoresist - 106 (trade name, Osaka Organic Chemical Industry Ltd.  Manufacturing), Cyclomer P System [J Product (Daicel Chemical Industries, Ltd.) Copolymer. Dispersing the colorant in the binder at a higher concentration improves, for example, the adhesion to the underlying layer and the properties of the coated surface during spin coating or stitch coating. Curing Agent In the present invention, it is preferred to add a curing agent when an epoxy resin is used as the thermosetting resin. There are many kinds of curing agents for epoxy resins, such as the stability, viscosity, curing temperature, curing time, and heat generation properties of the mixture of the resin and the curing agent, so the application, use conditions and working conditions of the curing agent are required. Choose a suitable curing agent. This curing agent is described in detail in "Epoxy Resins (Shokodo)" by Hiroshi Kakiuchi, Chapter 5. Examples of the curing agent include the following: a catalytic curing agent such as a tertiary amine and a boron trifluoride-amine complex; a curing agent which quantitatively chemically reacts with a functional group in the epoxy resin, such as a polyamine and an acid anhydride; curing at room temperature Agents such as diethylenetriamine and polyamide resin; medium temperature curing curing agents such as diethylaminopropylamine and ginseng (dimethylaminomethyl)phenol; and high temperature curing curing agents such as phthalic anhydride and stretching Phenylenediamine and the like. In terms of chemical structure, the curing agent includes an amine including an aliphatic polyamine such as diethylenetriamine, an aromatic polyamine such as an exophenylene diamine, and a tertiary amine such as dimethylamine. a methyl group) phenol; an acid anhydride comprising phthalic anhydride, a polyamide resin, a polysulfide resin, a boron trifluoride-monoethylamine complex, an initial stage condensate such as a phenol resin, dicyandiamide, etc. . These curing agents are reacted by heating, epoxy resin, and polymerized and cured. In order to lower the film thickness, the amount of the binder or the curing agent is preferably as small as possible, and particularly the amount of the curing agent is preferably 35 mass% or less, more preferably 30 mass% or less, and more preferably 30 mass% or less. Still better at 25% by mass or less. Hardening Catalyst In the present invention, in order to obtain a high-concentration coloring agent, it is effective to be subjected to reaction hardening with a curing agent and hardening reaction by an epoxy resin. Therefore, a hardening catalyst can be used instead of the hardener. The amount of the hardening catalyst added is preferably from about 1/10 to 1/1, 〇〇〇 times, more preferably from about 1/20 to 1 /5 00, with respect to the epoxy resin having an epoxy equivalent of about 150 to 200. Multiple, and still more preferably about 1/30 to 1/250 times by weight. Solvent The colored thermosetting composition of the present invention can be used in the form of a solution in which a colored thermosetting composition is dissolved in any solvent. Basically, the solvent for coloring the thermosetting composition in the present invention is not particularly limited as long as the solubility and coating properties of the components of the colored thermosetting composition are satisfied. Dispersant A dispersant may be added to improve the dispersion efficiency of the pigment. It may use any suitably selected known dispersant as a dispersing agent, and examples thereof include a cationic surfactant, a fluorochemical surfactant, a polymer dispersant and the like. A variety of compounds are available as dispersing agents. Examples of the dispersing agent include: indigo compound (trade name:. EFKA-745, manufactured by EFKA); SOLSPERSE 5〇〇〇 (trade name, Lubrizol Japan Ltd. Manufactured); Cationic interface-72- 200844497 Active agent' such as organosiloxane polymer KP341 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.), (meth)acrylic acid (co)polymer POLYFLOW No. 75, No. 90 and No. 95 (both are trademark names, Kyoeisha Chemical Co. ,Ltd·manufacturing), or W001 (trade name 'Yusho Co.,Ltd. Manufactured; nonionic surfactants, such as polyoxyethylene ethyl lauryl ether, polyoxyethylene ethyl stearyl ether, polyoxyethylene ethyl oleyl ether, polyoxyethyl octyl phenyl ether, Polyoxyethylene ethyl phenyl ether, polyethylene glycol dilaurate, polyethylene glycol distearate, or sorbitan fatty acid ester; anionic surfactant, such as W 0 0 4, W 0 0 5 and W 0 1 7 (both are trademark names, Yusho Co., Ltd.) Manufacturing); polymeric dispersants such as EFKA-46, EFKA-47, EFKA-47EA, EFKA POLYMER 100, EFKA POLYMER 400, EFKA POLYMER 401, and EFKA POLYMER 450 (both trade names, Morishita & Co·, Ltd.) Manufacturing), or DISPERSE AID 6, DISPERSE AID 8, DISPERSE AID 15 and DISPERSE AID 9100 (both are trade names, San Nopco Ltd. Manufacturing); various SOLSPERSE dispersions!| , such as SOLSPERSE 3000, 5000, 9000, 12000, 13240, 13940, 17000, 24000, 26000, or 28000 (all are trademark names, Lubrizol Japan Ltd. Manufacturing); ADEKAPLURONIC L31, F38, L42, L44, L61, L64, F68, L72, P95, F77, P84, F87, P94, L101, P103, F108, L121, P-123 (all are trade names, Asahi Denka Κ ·Κ·manufacturing); and ISONET S-20 (trade name, Sanyo Chemical Industries Ltd. Manufacturing). It may be used alone as one of the dispersing agents, or a mixture of two or more of -73 to 200844497 may be used. The dispersant of the present invention is usually preferably about 0 parts by mass per part by mass of the pigment. The colored thermosetting composition is added in an amount of from 1 to 50 parts by mass. Other Additives In fact, various additives may be further added to the non-photosensitive colored curable composition of the present invention. Specific examples of the various additives include the above organic decane compounds relating to the colored photocurable composition. The preferred range of the organic decane compound is the same as that of the colored photocurable composition. Photoresist As described above, when the first to third color patterns are formed by the "dry etching method", they are formed using a photoresist to form a photoresist pattern. Also when removing the color pattern, it is preferable to form a photoresist pattern using a photoresist. It can use positive light suitable for radiation sensitive to ultraviolet light (g-line, h-line, i-line), far ultraviolet (including excimer laser), electron beam, ion beam, or X-ray. The resistive positive resist composition is a positive photosensitive resin composition. The photosensitive resin layer is exposed for the purpose of the present invention, and the radiation is preferably a g-line, an h-line, and an i-line, and particularly preferably an i-line. Particularly, the positive photosensitive resin composition is preferably a composition comprising a bismuth subnitride compound and an alkali-soluble resin. It is preferable to use a positive photosensitive resin composition comprising a bismuth azide compound and an alkali-soluble resin as a positive photoresist because it is irradiated with light having a wavelength of 500 nm or less. The azide group is decomposed into a carboxyl group, and changes from an alkali-insoluble state to an alkali-soluble state. Positive-type photoresists are significantly superior in resolution and are therefore used to fabricate integrated circuits such as 1C and LSI. An example of a bismuth subnitride compound is a naphthoquinonediazide compound. -74- 200844497 Insect Killing Layer The first and second stopping layers are preferably formed using the above-described hardenable composition. The composition comprising a thermosetting polymer can be preferably used for the curable composition. More preferred examples of the polymer include a polyoxyalkylene polymer and a polystyrene polymer. More preferably, it is a material known as a spin-on-glass (SOG) material, or a thermosetting composition including a polystyrene compound or a polyhydroxystyrene compound as a main component. As for the index indicating the etching resistance of the hardenable composition forming the stopper layer, for example, the Ohnishi parameter can be used (references: JP-A Nos. 2004-294638 and 2005-146182). In the present invention, the parameter of the colored curable composition is 3.  5 to 4. 5. The parameter of the hardenable composition forming the stop layer is 2 · 5 or less, which selectively determines the color-hardening composition that can be established. The Ohni shi parameter is calculated according to the following equation (I). (C + 0 + H)/(C-0)··. In the equation (I), C, Ο and Η each represent the number of moles of carbon atoms, oxygen atoms and hydrogen atoms in the repeating unit of the polymer. The calculation example of the Ohni shi parameter is shown below. In this calculation, the calculation is performed after the number is carried to the decimal place. Calculation Example 1: 荞Acrylate compound (C + 0 + H) / (C-0) = (3 3 + 6 + 25) / (3 3 - 6) = 2. 3 7 Calculation Example 2: Polyhydroxystyrene compound (C + 0 + H) / (C-0) = (8 +1 + 8) / (8-1) = 2. 42 -75 - 200844497 The color filter manufactured by the above method of manufacturing a color filter can be used for a liquid crystal display or a solid-state imaging element such as a charge coupled device (C CD), and is particularly suitable for a high resolution solid state exceeding megapixels. Photography component. The color filter of the present invention can be used as a color filter arranged between, for example, each pixel group constituting the CCD and the microlens for collecting light. In particular, this color filter is more suitable for use in which the pixel size is 2. Solid-state photographic components of 5 microns or smaller, and are particularly suitable for use where the pixel size is 2. Solid-state photographic elements of 0 microns or less. Solid-State Photographic Element The solid-state photographic element of the present invention comprises the color filter of the present invention. Since the solid-state imaging element of the present invention includes the color filter of the present invention (which has substantially rectangular color pixels), the solid-state imaging element is excellent in color reproduction power. Although the configuration of the solid-state imaging element is not particularly limited as long as it includes the color filter of the present invention and as a solid-state imaging element, an example of the configuration thereof will be described below. For example, the solid-state imaging element of the present invention includes a support, a plurality of photodiodes (for example, a CCD image sensor, a CMOS image sensor, etc.) forming a light receiving region of the solid state imaging device, and a transfer electrode composed of a plurality of turns, etc., wherein a light-shielding film made of tungsten or the like (the light-shielding film has a perforation in the light-receiving region of the photodiode) is provided on the photodiode and the transfer electrode, and a device protective film composed of tantalum nitride or the like is provided on the light-shielding film to cover the light-shielding film and the light. The entire surface of the light receiving region of the diode, and the color filter of the present invention are provided on the device protective film. Further, for example, the solid-state imaging element of the present invention may further comprise a light collecting unit (for example, a microlens or the like, the same applies hereinafter), which is provided on the protective layer of the device and under the color filter (closer to the color filter of the support) The light sheet side may further include a light collecting unit on the color filter. EXAMPLES The invention is described in detail below with reference to examples. However, the invention is not limited thereto, as long as the subject matter does not depart from the spirit of the invention. Unless otherwise indicated, "parts" means parts by mass (or by mass). Further, in the following procedures, the treatment using a commercially available treatment solution is carried out in accordance with a method designated by the manufacturer unless otherwise specifically stated. Example 1 A color filter was fabricated in accordance with an exemplary embodiment (first exemplary embodiment) in which a third color pattern was arranged in a checkered pattern (i.e., a Bayer arrangement), and all color layers were formed by lithography. . The details of the manufacturing method are described below. The first color pattern is formed by a spin coater to red (R) photohardenable composition "SR-5000L" (trade name, F uj ifi 1 m E 1 ectr ο nics M at eri al s C 〇·, L Td · manufacturing) coated on the substrate to form thick enamel.  The coating film of 8 μm was then subjected to a prebaking treatment for 2 minutes at a temperature at which the coating film temperature or the ambient temperature was 100 ° C using a hot plate to obtain an R color layer which was the first color layer. Then use the i-line stepper (Canon Inc. Manufacture) Exposing the R color layer to a pattern of exposure of 200 mJ/cm 2 to the developer "CD-2060" (trade name, Fujifilm Electronic Materials Co.) , Ltd -77 - 200844497 Manufactured) subjected to development for 1 minute 'cleaned with pure water' and dried by spin drying. Then, post-baking was further carried out at 220 °C for 5 minutes to form an R pattern, which is the first color pattern, in the pattern region where the R pattern is intended to be formed. Here, the R pattern forms a stripe pattern. The line of the R pattern and the gap are the line: 1 .  5 microns and clearance: 1 .  5 microns, and the film thickness after post-baking is 0. 7 microns. In this example, "line" indicates the line width of the pattern and "gap" indicates the width of the area sandwiched between the two patterns (the pattern is not formed) (the same applies hereinafter). Formation of second color pattern Next, a blue (B) photocurable composition "SB-5 000L" (trade name, manufactured by Fujifilm Electronics Materials Co., Ltd.) is coated on the side of the substrate on which the R pattern is formed. On the surface, a thickness of 0 is formed. A 7 micron coating film and a hot plate were used to carry out a prebaking treatment for 2 minutes at a temperature at which the coating film temperature or the ambient temperature was 100 ° C to obtain a B color layer, which was a second color layer. Then use the i-line stepper (Canon Inc. Manufacture) Exposing the B color layer in a pattern at an exposure of 250 kHz/cm 2 to the developer "CD-2060" (trade name, Fujifilm Electronic Materials Co.) , manufactured by Ltd.) subjected to development for 1 minute, washed with pure water, and dried by spin drying. Then, post-baking was further carried out at 220 °C for 5 minutes to form a B pattern, which is a second color pattern, in the pattern region where the B pattern was intended to be formed. Here, the B pattern forms a stripe pattern of parallel R patterns in a region where the R pattern is not formed. The line of the B pattern and the size of the gap are lines: 1 .  5 microns and gap: 1 · 5 microns, and the film thickness after post-baking is 〇.  7 microns. -78 - 200844497 Further, the R pattern and the B pattern are formed in such a manner that the surfaces of the adjacent patterns are in contact with each other. The surface of each of the R pattern and the B pattern is a flat surface. The upper surface of the g卩R pattern and the B pattern are the same as the height of the substrate. Then the positive photoresist "FHi622BC" (trade name, Fujifilm Electronic Materials Co. ,Ltd. It is coated on the surface of the substrate side on which the R pattern and the B pattern are formed, and then baked to form a thick ruthenium.  8 micron photoresist layer. Then, an i-line stepper (manufactured by Canon Inc.) was used to pattern the photoresist layer (where G pattern (G pixel) is to be formed) on the pattern area of the R and B patterns at an exposure amount of 250 mJ/cm 2 . The exposure was carried out, and heating was carried out for 1 minute at a temperature at which the temperature of the photoresist layer or the ambient temperature was 90 °C. Then use the developer "FHD-5" (trade name, Fujifilm Electronic Materials Co.) ,Ltd. The development was carried out for 1 minute, and the post-baking treatment was performed at 110 ° C for 1 minute to remove the photoresist of the region where the G pattern (G pixel) was to be formed, thereby forming a photoresist pattern. In the formed photoresist pattern, the area where the G pattern (G pixel) is to be formed is 1. 5 micron xl. A 5 micron square perforation pattern, and the array is a checkered pattern. Removal of color pattern Then dry etching was performed under the following conditions to remove regions of the R and B patterns which were to form a G pattern (G pixel). First use dry etching equipment (trade name: U-621, Hitachi Hi-Technologies Corp. Manufacturing), in RF power: 800 watts, antenna bias: 400 watts, wafer bias: 200 watts, indoor pressure: 4. 0 Pa, substrate temperature: 50 ° C, and the species and flow rate of the mixed gas: CF4: 80 ml / min -79 - 200844497 clock, 02: 40 ml / min, and Ar: 80 〇 ml / min The first step is a dry etching process for 90 seconds. The B pattern scraping amount under the condition of dry etching in the first step is 5 25 nm, and the R pattern is 635 nm, and the etching amount of the B pattern and the R pattern in the first engraving step is 75% each. With 91%. As a result, the thickness of the residual film on the support was 175 nm and 65 nm, respectively. Then in the same etch chamber, at RF power: 600 watts, antenna bias: 100 watts, wafer bias: 250 watts, indoor pressure: 2. OPa, substrate temperature: 50 ° C, species and flow rate of mixed gas · · N2: 500 ml / min, 〇 2: 50 ml / min, and Ar: 500 ml / min (N2/02 / Ar = 10 / l/10), and over-etching rate: the second step of dry etching and over-etching is performed under conditions of 20% total etching. The etching rate of each of the B pattern and the R pattern in the second step dry etching is 600 nm/min or more, and the residual film for etching the B and R patterns takes about 1 Torr to 20 seconds. The etching time is calculated as the sum of 90 seconds of the first etching time and 20 seconds of the first uranium engraving time. As a result, the etching time is 90 + 20 = 1 10 seconds and the excessive etching time is 110x0. 2 = 22 seconds, total etch time is set to 1 1 0 + 22 = 1 32 seconds. As described above, the R and P pixels are obtained by dry etching to remove portions of the B and R patterns which are to form regions of the G pattern (G pixels). Secondly, use the photoresist release agent "MS-23 0 C" (trade name, Fuji film Electronic Materials Co. ,Ltd. The release process is performed for 120 seconds to remove the photoresist. Heating was then carried out at 100 °C for 2 minutes. Formation of the third color pattern -80- 200844497 Next, a photo-curable composition of the G pattern will be formed, 'S G - 5 0 0 L 》 ” Fujifilm Electronics Materials Co. , manufactured by Ltd.) On the surface of the substrate side on which the R and B pixels are formed, a thick micron coating film is formed, and a preheating treatment is performed using a hot plate at a temperature at which the coating film temperature or the ambient temperature is t. The G color layer is obtained in minutes, which is a color layer. Then use the i-line stepper (Canon Inc. Manufactured) G-color was exposed in a pattern at an exposure of 200 mJ/cm 2 and subjected to development for 1 minute with "CD-2060" (trade name, manufactured by Fujifilm Electronic Materials Co...), washed with pure water, and spinped After dry drying, post-baking was further carried out at 220 ° C for 5 minutes to form a G pattern (G pixel) in a pattern region where G (G pixel) is intended to be formed, which is a color pattern. The G pattern (G pixel) is formed into a checkered pattern in such a manner that each G pixel is embedded in the region to be etched, and each G pixel is 1. 5 microns micron squared. The array of G pixels is a checkered pattern. In addition, the surface of the substrate is formed into a planar form. That is, the upper surface of the R pixel and the B image G pixel is the same as the height of the substrate. In this way, an array of color patches having R pixels, G pixels, and B pixels is obtained. In the color filter array thus obtained, it suppresses the occurrence of a region where no pixel is formed in a corner aggregation region of each color element (R pixel, G pixel, and B pixel), and also suppresses a film of a pixel near the boundary of each pixel. The occurrence of thick and thin areas. (business coating 0. 6 100 Third Color Layer Agent, Ltd. The pattern third forms xl . 5 Prime and Color Filter Color Image Color Color -81 - 200844497 This result shows that the above method of manufacturing a color filter can solve the limitation of pattern formation and form a finer pattern. Example 2 A color filter was produced in accordance with an exemplary embodiment (second exemplary embodiment) in which a third color pattern was arranged in a checkered pattern (i.e., a Bayer arrangement), and all of the color layers were formed by dry etching. The details of the manufacturing method are described below. Formation of the first color pattern The red (R) photocurable composition "SR-5 000L" by the spinner (trade name, Fujifilm Electronics Materials Co.) , manufactured by Ltd.) coated on a ruthenium substrate to form a thickness of 0. An 8 micron coating film was then obtained by heating at 220 ° C for 5 minutes using a hot plate to harden the coating film to form an R color layer which was the first color layer. The thickness of the R color layer after formation using SR-5000L is 0. 65 microns. The thermoset composition "ITS-54S-3 00 A" (trade name, Lasa Industries, Ltd.) was then applied by spinner. Manufactured on the surface of the ruthenium substrate side on which the R color layer is formed so that the film thickness is 30 nm, and then heating is performed to harden at 2200 ° C for 5 minutes to form a transparent film 1 on the R color layer It is the first stop layer. Then the positive photoresist "FHi622BC" (trade name, Fujifilm Electronic Materials Co. ,Ltd. Manufactured) coated on the transparent film 1, and pre-baked to form a thickness of 0. 8 micron photoresist layer. Then use the i-line stepper (Canon Inc. Manufacture) The photoresist layer to form the pattern region of the B pattern is exposed in a pattern of 250 mJ/cm 2 -82 - 200844497, and is heated at a temperature such that the temperature of the photoresist layer or the ambient temperature is 90 ° C. minute. Then use the developer "FHD-5" (trade name, Fujifilm Electronic Materials Co. ,Ltd. The development was carried out for 1 minute, and further post-baking was performed at Π ° C for 1 minute, and a photoresist pattern as an etching mask was formed by removing the photoresist of the desired color pattern region to form the B pattern. In this resist pattern, a stripe pattern is formed, and with respect to the etching transition difference (the pattern width difference of the etching is reduced), the line of the photoresist pattern and the gap are the line: 1. 6 microns and clearance: 1. 4 microns. Next, as described above, dry etching of the transparent film 1 and the R color layer is performed using the formed photoresist pattern as an etching mask, whereby the R pattern ' is created as the first color pattern. First, a dry etching apparatus (trade name: U-621 ’ Hitachi Hi-Technologies Corp.) was used, at RF power: 800 watts, antenna bias: 400 watts, wafer bias: 200 watts, and indoor pressure: 4. 0 Pa, substrate temperature: 50 ° C, and species and flow rate of the mixed gas: CF 4 : 80 ml/min, 〇 2: 40 ml/min, and the first etching treatment was performed for 90 seconds under Ar: 800 ml/min. The R color layer scraping amount under the above etching conditions was 6 3 5 nm' and the first etching was 9 1 % uranium engraving. It takes about 3 seconds to etch the transparent film 1 and the residual film has a thickness of about 68 nm. Then in the same uranium chamber, at RF power: 600 watts, antenna bias: 100 watts, wafer bias · 250 watts, indoor pressure: 2. OPa' substrate temperature: 50. (:, species and flow rate of mixed gas: N 2 : 520 ml / min, -83 - 200844497 〇 2: 50 ml / min, and Ar: 500 ml / min (N2/02 / Ar = 10 / l / 10) 'and over-etching rate: etching treatment is performed under the condition that the total etching is 20%. The etching rate of the R color layer under the second etching condition is 600 nm/min or more, and the R color is etched. The residual film of the layer takes about 10 seconds. The etching time is calculated as the sum of the first etching time of 90 seconds and the first uranium etching time of 1 〇. The result is that the etching time is 90 + 1 0 = 1 0 0 Seconds and excessive uranium engraving time is 1 00x0. 2 = 20 seconds, the total etch time is set to 1 00 + 20 = 1 20 seconds. After dry etching under the above conditions, a photoresist release agent "MS230C" (trade name, Fujifilm Electronic Materials Co., Ltd.) was used.  The release treatment was carried out for 1 20 seconds to remove the photoresist, and an R pattern having the transparent film 1 on the upper layer was obtained as the first color pattern. Here, the R pattern forms a stripe pattern. The size of the line and the gap is the line: 1 · 5 microns and the gap: 1 .  5 microns. Formation of second color pattern Next, a blue light-curable composition "SB-5 000L" (trade name, Fujifilm Electronics Materials Co., Ltd.) was used using a spin coater. Manufactured on the surface of the substrate side on which the transparent film i and the R pattern are formed, a coating film having a thickness of 7 μm is formed, and heated at a temperature of 220 ° C for 5 minutes using a hot plate to form a film to be hardened. B color layer, which is the second color layer. Then use a dry etch device (trade name: U-6 2 1, manufactured by Hitachi Hi-Technologies Corp.) at RF power: 600 watts, antenna bias: 100 watts, wafer bias · 250 watts, indoor Pressure: 2. 0 Pa, substrate temperature: 5 (TC, and mixed gas species and flow rate: N2: 520 ml / min -84 - 200844497 clock and eight 1 *: 500 ml / min (1 ^ 2 / eight ^ 1 / 1 Under the conditions, etching is performed on all surfaces (etchback treatment). Since the etching rate of the B color layer under the second etching condition is 150 nm/min or more, and the transparent film on the R pattern The B color layer formed on 1 has a film thickness of 500 nm, which is calculated to take 200 seconds to remove the B color layer and expose the transparent film 1 on the R pattern. The etching time is set to be overetched by this time plus 1 〇 second. As a result, since the etching time was 200 seconds and the excessive etching time was 10 seconds, the total etching time was set to 200 + 1 0 = 2 10 0 seconds. Under the above conditions, the etching of all the surfaces was performed to obtain a B pattern, which was a second color pattern. The resulting B pattern is formed in such a manner that it is embedded in the recessed portion between the R patterns on the ruthenium substrate. Thus, the R and B patterns are formed in such a manner that the surfaces of the adjacent patterns are in contact with each other. Further, the transparent film 1 on the R pattern The upper surface and the upper surface of the B pattern are the same height as the substrate. Stop layers is formed using a spin coater followed by thermosetting composition "ITS-54 S- 3 0 0 A" (trade names, Lasa Industries, Ltd. Manufactured on the surface of the substrate on which the R pattern, the transparent film 1 and the B pattern are formed, and formed into a film having a film thickness of 30 nm, and heated at 220 ° C for 5 minutes using a hot plate to make a coating The film is hardened to form a second transparent film 2 on the transparent film 1 and the B pattern, which is a second stop layer. Then the positive photoresist "FHi622BC" (trade name, Fujifilm Electronic Materials Co. ,Ltd. Manufactured) coated on the formed transparent thin -85 - 200844497 film 2, and then baked to form a thickness of 0. The 8 micron photoresist layer forms the same condition light that forms the photoresist pattern in the first color pattern, and then develops, so that the G pattern (the photoresist of the G image is formed to form a photoresist pattern. The pattern is formed in the formed photoresist pattern). The area of (G pixel) is 1. 5 micron xl. The 5 micron pattern, and its array is a checkered pattern. The removal of the color pattern was followed by the same conditions as in Example 1, except that the first step was changed to 95 seconds, the second step was changed to 20 seconds, and the interval was changed to 23 seconds, and the total etching time was changed to 1 3 8 seconds, by the transparent film 1, the transparent film 2, the R pattern, and the pattern of the B pattern (G pixel). In this way, dry etching is performed from the R pattern and the B pattern to the area of the pattern (G pixel), thereby obtaining R pixels and G. Secondly, a photoresist release agent "MS-23 0C" (trade name Electronic Materials Co.) is used. ,Ltd. The release treatment process removes the photoresist pattern. Formation of the third color pattern Next, a photocurable composition of the G pattern will be formed" S G, Fujifilm Electronics Materials Co., Ltd.  On the surface on which the R pixel, the B pixel, the transparent film 1, and the substrate side are formed, a thick ridge is formed.  The 6 micron coated film was heated at a temperature of 2200 ° C for 5 minutes, thereby obtaining a G color third color layer. At this time, the thickness of the G color layer on the transparent film 2 is thick. Then, in the area where the pattern is exposed as follows, the pattern of the G-side perforation is formed. One-step etching Excessive etching is performed by dry etching to form G to form G pixels. , Fujifilm 120 seconds to go _ 5 0 0 0 L,, (manufactured) coated transparent film 2, and the use of a hot color layer, the degree is 500 Na -86 - 200844497 meters. Then use dry etching equipment (trade name: U-621, Hitachi Hi-Technologies Corp. Manufacturing), in RF power: 600 watts, antenna bias: 1 watt, wafer bias: 250 watts, indoor pressure: 2. OPa, substrate temperature: 50 ° C, and mixed gas species and flow rate: N2: 5 00 ml / min and 8 ^ 500 ml / min (> 12 / 81-1 / 1), the entire surface is implemented Etching (returning uranium treatment) until the transparent film 1 and the transparent film 2 are exposed. At this time, the etching rate of the G color layer was 150 nm/min or more, and it was calculated that exposing the transparent films 1 and 2 took 200 seconds. The etching time is set to over-etch for this time plus 1 second. As a result, since the etching time is 200 seconds and the excessive uranium engraving time is 1 sec., the total etching time is set to 200 + 1 0 = 21 〇 second. In this way, the desired color pattern region where the G pattern (G pixel) is to be formed is formed. G pattern (G pixel), which is a third color pattern. The G pattern (G pixel) is formed into a checkered pattern in such a manner that each G pixel is embedded in a region formed by etching, and each G pixel is ???·5 μm×1·5 μm square. The array of G pixels is a checkered pattern. In addition, the surface of the substrate is formed into a planar form. That is, the transparent film 2 on the R pixel and the transparent film 2 of the B pixel have the same height as the surface of the G pixel with respect to the substrate. In this way, a color filter array having R pixels, G pixels, and B pixels is obtained. In the color filter array thus obtained, it suppresses the occurrence of a region where the color pixels are not formed in the corner-concentrated regions of the respective color images -87-200844497 (R pixels, G pixels, and B pixels), and is also suppressed in each pixel. The occurrence of a region where the film thickness of the color pixel near the boundary is thinned. This result shows that the above-described method of manufacturing a color filter can solve the limitation of pattern formation, and a finer pattern can be formed. In the color filter formed by the lithography method. The G, R and B patterns basically form a separation pattern (separation island) (G is a checkered pattern), and the pattern forming force of the conventional pattern is inferior to the line and gap pattern due to the adjacent effect at the time of exposure. It is known that the pattern rectangle of a color composition specially coated on a color filter is inferior to a general photoresist. In order to compensate for the rectangular nature, the first and second color layers are formed into strip lines and gap patterns, and the high-resolution photoresist and the dry etching assist are used to form a color filter. The color filter is superior to the conventional filter. As a result, the limitations of the improved pattern, particularly the formation of color patterns by lithography, and the formation of color filters with finer pixels are feasible. In the case of the first example, the luminescent composition P1 which forms the G pattern was prepared in the following manner. : Preparation of liquid by ball mill will be used as pigment, the ratio is 8 0/2 0/3 5 (mass ratio) (C · I · Pigment Green 3 6 / c · ; { • Pigment Green 7 / c丄 Pigment Yellow 1 3 9) c · 丨. Pigment Green 3 6 , C · I · Pigment Green 7 and C · I · Pigment Yellow 1 3 9 Mixture (15 parts) -88- 200844497 , as a dispersant BYK 2001 ( Disperbyk: BYK-Chemie, solid content Concentration 4 5 · 0 % ) (1 〇) (calculated solids are about 4 · 5 parts), benzyl propyl methacrylate / methyl propyl acid (mole ratio: 70 / 30) copolymer (5 . 5 parts), and cyclohexane as a solvent (69. 5 parts) were mixed and dispersed for 15 hours to prepare a pigment dispersion (P1). Use MICROTRAC NANOTRAC UPA-EX1 50 (trade name, Nikki so Co. ,Ltd. Manufacture) The average particle size of the pigment in the pigment dispersion (P1) was measured by dynamic light scattering and found to be 200 nm. Preparation of the coloring light-curing member composition The above-mentioned pigment dispersion liquid P1 was used, and the components in the following composition were mixed and stirred to obtain a solution of the coloring photocurable composition P1. The amount of the organic decane compound in the total solid content of the colored photocurable composition P 1 is 0. 6 mass ° / 〇. Composition pigment dispersion P1 ". 65 parts of the exemplified compound (1〇3) [designated organodecane compound]. . . 0. 15 parts of octanedione-0-benzylidene hydrazine [photopolymerization initiator]. . . 1. 5 parts diisopentaerythritol hexaacrylate [photopolymerizable monomer] ··.  6 parts alkali-soluble resin (adhesive polymer) [benzyl methacrylate / methacrylic acid (mole ratio: 7 0 / 30) copolymer, Mw: 3 0,000]. . . 2 parts PGMEA (solvent). . . 2 5. 3 5 parts of color filter fabrication A substrate having R pixels and B pixels was obtained in a manner similar to that of Example 1, except that the procedure before forming the third color pattern was the same as in Example 1. -89 - 200844497 That is, the substrate has a region in which the G pattern (G pixel) is formed by dry etching from the strip pattern R and B patterns, and photoresist removal and heating have been accepted. Adhesive improvement treatment LPAH (which is constructed by spin coating equipment SK-60BW) using a low pressure bonding equipment (trade name, Dainippon Screening Mfg.)  Co·, Ltd. manufactured), HMDS (trade name, Fujifilm Electronic Materials Co.) under the following conditions ,Ltd. Manufactured; hexamethyldioxane) is vapor-deposited on the surface on the side of the substrate on which the R and B pixels are formed after heating. Then, using a spin coating apparatus SK-60BW, a color-hardening composition P1 which forms a G pattern is applied by spin coating on the HMDS-deposited side of the Si substrate under the following conditions, and baked at 100 ° C for 120 seconds. A color layer of G, which is a third color layer. Vapor deposition conditions Substrate temperature: 1 1 0 °C Vapor deposition time: 45 seconds Spin coating conditions Droplet amount: 2 g Coating speed: 1, 〇〇〇 rpm Coating thickness (dry thickness) · · · · · μm coating Coating temperature: 2 3 ° C pattern exposure, development, etc. The formed G color layer is subjected to pattern exposure, development, rinsing treatment, and drying treatment under the condition of forming the third color layer as in Example 1 - 90- 200844497 And post-baking treatment, except that the pattern exposure is performed using an optimum exposure amount determined by the following method, and a G pattern of the third color layer is formed in a desired color pattern region where a G pattern (G pixel) is to be formed (G pixel) ). The G pattern (G pixel) is formed by inserting each G pixel into a region formed by the above etching (this region is a region where a G pattern (G pixel) is to be formed, and is removed by dry etching from the R pattern and the B pattern). Pattern, each G pixel is 1. 5 micron xl. 5 micrometers squared. The array of G pixels is a square pattern. In addition, the surface of the substrate is formed into a planar form. That is, the upper surface of the R pixel, the Β pixel, and the G pixel is the same as the height of the 矽 substrate. In this way, a color filter array having R pixels, G pixels, and Β pixels is obtained. In the color filter array thus obtained, it suppresses the occurrence of a region where the color pixel is not formed in the corner aggregation region of each color pixel (R pixel, G pixel, and Β pixel), and also suppresses color pixels near the boundary of each pixel. The occurrence of a thin film thickness region. This result shows that the method of manufacturing a color filter can solve the limitation of pattern formation and form a finer pattern. Evaluation of storage stability of colored photohardenable composition Using a Ε-type viscometer (Toki Sangyo Co., Ltd. The viscosity of the solution was stored at room temperature for 1 month, and the storage stability of the solution of the colored photocurable composition P 1 prepared above was evaluated in accordance with the following criteria. The results of the evaluation are shown in Tables 1 to 3 below. -91- 200844497 Standard A: No increase in viscosity was observed. B: A viscosity increase of 5% or more and less than 10% (within an acceptable range for practical use) was observed. C: A viscosity increase of 10% or more and less than 20% (within an acceptable range for practical use) was observed. D: The viscosity is increased by 20% or more, which is more than the acceptable range for practical use. Measurement of contact angle after adhesion improving treatment A tantalum substrate was provided as a substrate for measuring a contact angle, and an adhesion improving treatment was accepted. The contact angle between the substrate and the water is DROP MASTER 500 (trade name, Kyowa Interface Science Co. ,Ltd. Manufacturing) measurement. The measurement results are shown in Tables 1 to 3 below. Measurement of Optimum Exposure Ennt In the pattern exposure of the G color layer, the exposure is performed by changing the exposure amount in units of 1 〇mJ/cm 2 and measuring the exposure amount by a critical dimension scanning electron microscope (SEM). Pattern width. Set the width of the pattern to a predetermined value of 1. The exposure amount of 5 microns is called the optimum exposure amount Ε. ^. The measurement results are shown in Tables 1 to 3. Measurement of Adhesive Exposure In the pattern exposure of the G color layer, the exposure was carried out by changing the exposure amount in units of 1 〇mJ/cm 2 , and the pattern peeling of each exposure amount was observed with an optical microscope. The minimum amount of exposure that the pattern does not peel off is called the amount of adhesion exposure. The measurement results are shown in Tables 1 to 3. Evaluation of Adhesion -92- 200844497 Adhesion was evaluated by estimating the lower edge of the exposure, which was obtained by subtracting the exposure amount from the optimum exposure amount E〇pt. It shows that the wider the lower edge of the exposure, the better the adhesion. The evaluation results are shown in Tables 1 to 3. A: The lower edge of the exposure is wide enough and the adhesion is excellent. B: The lower edge of the exposure is wide and the adhesion is good. C: The lower edge of the exposure is narrow, but within the acceptable range for practical use. D: The adhesion exposure amount exceeds the optimum exposure amount E. ^, but with the aid of reticle offset, etc., within the acceptable range of practical use. E: Adhesiveness is extremely poor, and the amount of adhesion that can be adhered by the reticle offset or the like is still beyond the acceptable range for practical use. Examples 4 to 10 A color filter was produced in the same manner as in Example 3 except that the kinds and amounts of the specified organodecane compounds of Example 3 were changed to those shown in Tables 1 to 3, and the same as in Example 3. Way assessment. The results of the evaluation are shown in Tables 1 to 3. Example 1 1 A color filter was produced in the same manner as in Example 7 except that the plasma fluorination treatment was carried out instead of Η MDS vapor deposition under the following conditions to improve the adhesion of Example 7, and evaluated in the same manner as in Example 7. . The results of the g-flat evaluation are shown in Tables 1 to 3. Plasma fluorination treatment _ using dry uranium engraving equipment (trade name: U_621, Hitachi

Hi-Technologies Corp.製造),在 RF 功率·· 8 0 0 瓦’天線 偏壓:400瓦,晶圓偏壓:200瓦,室內壓:2.0 Pa,基板 -93 - 200844497 溫度:50°C,及混合氣體之物種與流速:Ar : 8 00毫升/分 鐘與CF4: 200毫升/分鐘之條件下,實行電漿處理5秒。 實例1 2 以如實例3之相同方式製造彩色濾光片’除了在如實 例1 1之相同條件下實行電漿氟化處理代替HMDS蒸氣沉積 ,以改良實例3之黏著性,而且以如實例3之相同方式評 估。評估結果示於表1至3。 實例13 以如實例1 〇之相同方式製造彩色濾光片’除了在如實 例1 1之相同條件下實行電漿氟化處理代替HMD S蒸氣沉積 ,以改良實例1 〇之黏著性,而且以如實例1 0之相同方式 評估。評估結果示於表1至3。 實例1 4 以如實例1 1之相同方式製造彩色濾光片,除了未將例 示化合物(103)加入著色光硬化性組成物,而且以如實例1 1 之相同方式評估。評估結果示於表1至3。 實例1 5 以如實例3之相同方式製造彩色濾光片,除了將例示 化合物(1 0 3)之量改成表1至3所示之量,及未實行黏著性 改良處理,而且以如實例3之相同方式評估。評估結果示 於表1至3。 奮例1 6及1 7 以如實例1 5之相同方式製造彩色濾光片,除了將例示 化合物(10 3)之量各改成表1至3所示之量,而且以如實例 -94- 200844497 1 5之相同方式評估。評估結果示於表1至3 ° 實例1 8 以如實例1 5之相同方式製造彩色濾光片,除了未將例 示化合物(1〇3)加入著色光硬化性組成物,而且以如實例15 之相同方式評估。評估結果示於表1至3。 200844497 I撇 担 黏著性 之評估 < < < < < 黏附曝光量 (mJ/cm2) 〇 瘃 旦 150 , 150 150 150 150 si s f 1 i 槪 HMDS: 40° HMDS: 40° HMDS: 40° HMDS: 40° HMDS: 40° 有機矽烷化合物 組成物之 儲存安定性 < < < < CQ 量 (相對固體含量之%) ο 〇 d d (N ,··Η 種類 例示化合物(103) 例示化合物(102) 例示化合物(ιοί) 例示化合物(36) 例示化合物(103) 實例3 實例4 實例5 實例6 實例7 丨96- 200844497 _痣 C < u < c 線心 担 1 m ^ 〇 〇 Μ ) (N 寸 ^ 1 鍚w ^ S 〇 〇 Ο <3 ο ir> r-H tn ▼丨11Η 零丨丨丨< in 瘃 旦 _ 1 m S S ^ Μ 1 i 祕 ο Ο 寸 〇 〇 寸 〇 〇 寸 ο Ο 寸 ο Ο Ο r-H o 〇 r-H 00 Q S 〇〇 Q 00 Q s 00 Q s ΐττί 1 勸 m mi 1 勁 m ffi ffi ffi ffi 减 减 組成物之 儲存安定性 PQ < < < PQ < /^N 容 Η 鬆 _ 4π ,,<ΙΏ (N ψΜΜ^ in (N \Q m ▼—H r-H d o 〇 r-H 〇 画 m s m ο s /^S s s s 種類 1 I 1 1 1 1 4π 4n 4n 4n <n 卜 00 ON S ο τ—Η r-H 匡 (N f < 匡 W 1¾ {U u IK u 200844497 乾式蝕刻後黏著性之評估 黏著性之評估 CQ U U Q PQ Q 黏附曝光量 (mJ/cm2) ΙΟ (N 150 150 175 100 200 ."a Μ Β 150 150 〇 r—Η 150 150 150 ^ 1 sg % i 氟化處理:100° 氟化處理:100° 無處理:10° 無處理:10° 無處理:10° 無處理:10° 有機矽烷化合物 組成物之 儲存安定性 < C < < U < 量 (相對固體含量之%) 0.05 壊 m ο (Ν ό m τ-Η 壊 種類 例示化合物(103) 1 1 1 例示化合物(103) 例示化合物(103) 例示化合物(103) 1 1 1 實例13 實例14 實例15 實例16 實例17 實例18 -006- 200844497 如表1至3所7[Κ ’在實例3至1 5及1 7中,乾式蝕刻 後之黏著性特別優良。其中實例3至8、1 1及丨2中之黏著 性極優良。 如上所示已敘述其中改變實例1之第三彩色圖案形成 方法的貫例3至1 8。當然即使是在類似地改變實例2之第 三彩色圖案形成方法時得到相同之結果。 實例1 9 依照一個例示具體實施例(第三例示具體實施例)製 造彩色濾'光片,其中第三彩色圖案係形成按以與第一彩色 圖案及第二彩色圖案交叉之方向延伸的條形圖案,而且藉 微影術法形成全部彩色層。以下敘述製造方法之細節。 第一彩色圖案之形成及第二彩色圖案之形成 首先以如實例1之相同方式形成條形R圖案及條形B 圖案’除了改變光罩使得R圖案具有線與間隙:1 · 〇微米 及間隙:1 · 〇微米,而且B圖案具有線與間隙:1 . 〇微米及 間隙:1 · 0微米。 繼而以如實例1之相同方式形成光阻圖案,除了改變 接受圖案曝光之區域(即圖案光罩)。 光阻圖案係形成按以與R圖案及B圖案之條形圖案交 叉之方向延伸的條形圖案(線:1 · 〇微米及間隙:1 · 〇微米 之線與間隙圖案)。 換言之’在所形成光阻圖案中,欲形成G圖案(G彩 色像素)之區域係形成按以與寬1.0微米之R圖案及寬1.〇 微米之B圖案交叉之方向延伸的條形穿孔區域(孔寬:1 · 〇 -99- 200844497 微米)。 彩色圖案之去除 藉由在如實例1之相同條件下以乾式蝕刻去除R與B 圖案之欲形成G圖案(G像素)之區域(條形穿孔區域) 而得到R與B像素。然後在如實例1之相同條件下去除光 阻。 第三彩色圖案之形成 在如實例1之相同條件下形成G彩色層。 繼而在欲形成G圖案(G像素)之條形穿孔區域,在 如實例1之相同條件下藉圖案曝光、顯影、乾燥、及後烘 烤,將G圖案(G,像素)(其爲第三彩色圖案)形成條形 圖案,除了改變接受圖案曝光之區域(即光罩圖案)。 將G圖案(G像素)形成條形圖案,使得已藉蝕刻形 成之條形穿孔區域充滿G圖案。G圖案(G像素)具有1.〇 微米之寬度。 此外將基板表面形成平面形式。即R像素、B像素與 G像素之上表面相對矽基板之高度相同。 以此方式得到包括R像素、G像素與B像素之彩色濾 光片陣列。 在如此得到之彩色濾光片陣列中,其抑制在各彩色像 素(R像素、G像素與B像素)角落聚集區域不形成彩色 像素之區域的發生,而且亦抑制在各像素邊界附近之彩色 像素的膜厚變薄之區域的發生。 此結果顯示使用上述製造彩色濾光片之方法可解決圖 -100- 200844497 案形成之限制,而且可形成較精細之圖案。 實例2 0 依照一個例示具體實施例(第四例示具體實施例)製 造彩色濾光片,其中第三彩色圖案係形成按以與第一彩色 圖案及第二彩色圖案交叉之方向延伸的條形圖案,而且藉 乾式蝕刻及CMP處理形成全部第一至第三彩色圖案。以下 敘述製造方法之細節。 复色熱固性組成物之製備 廬料分散液之製備 使用捏合機將以下表4及5所示之綠(G)色、藍(B)色 及紅(R)色用材料(溶劑以外之成分)各均勻地捏合。然後 使用兩個輥使經捏合產物各接受乾燥分散處理(捏合分散 )° 將已接受乾燥分散處理之分散液各加入表4及5所示 量之丙二醇一甲醚乙酸甲酯作爲溶劑成分。然後使用均化 機將所得混合物各以2,0 00 rpm攪拌30分鐘,因而得到其 中均勻地分散顏料之綠(G)色、藍(B)色及紅(R)色分散液組 成物。使用具 0.3毫米銷氧粒之粒分散器(商標名: DISPERMAT,GETZMANN製造)使所得分散液組成物各接 受微分散處理。 然後使分散液組成物各接受2 · 5微米過濾器之過濾, 因而得到其中均勻地分散顏料之各色顏料分散液(1)至(3) 。表5顯示各顏料分散液之經捏合產物(分散液)在捏合 分散處理及微分散處理時之黏度、及各顏料分散液中顏料 -10 1- 200844497 之平均粒徑、及粒徑爲0.0 1 ± 0 · 0 〇 5微米之顏料顆粒 部顏料顆粒之比例。Hi-Technologies Corp.), in RF power · 800 watts 'antenna bias: 400 watts, wafer bias: 200 watts, indoor pressure: 2.0 Pa, substrate -93 - 200844497 Temperature: 50 ° C, And the species and flow rate of the mixed gas: Ar: 8 00 ml / min and CF4: 200 ml / min, plasma treatment was carried out for 5 seconds. Example 1 2 A color filter was produced in the same manner as in Example 3 except that plasma fluorination treatment was carried out instead of HMDS vapor deposition under the same conditions as in Example 11 to improve the adhesion of Example 3, and as in Example 3. Evaluate in the same way. The evaluation results are shown in Tables 1 to 3. Example 13 A color filter was produced in the same manner as in Example 1 except that a plasma fluorination treatment was carried out instead of HMD S vapor deposition under the same conditions as in Example 11 to improve the adhesion of Example 1 and Example 10 was evaluated in the same manner. The evaluation results are shown in Tables 1 to 3. Example 1 4 A color filter was produced in the same manner as in Example 11 except that the exemplified compound (103) was not added to the colored photocurable composition, and was evaluated in the same manner as in Example 11. The evaluation results are shown in Tables 1 to 3. Example 1 5 A color filter was produced in the same manner as in Example 3 except that the amount of the exemplified compound (103) was changed to the amounts shown in Tables 1 to 3, and the adhesion improving treatment was not carried out, and as in the example 3 in the same way as the assessment. The results of the evaluation are shown in Tables 1 to 3. Example 1 6 and 1 7 A color filter was produced in the same manner as in Example 15 except that the amounts of the exemplified compound (10 3 ) were each changed to the amounts shown in Tables 1 to 3, and as in the example -94- Evaluation of the same method of 200844497 1 5. The evaluation results are shown in Tables 1 to 3 °. Example 1 8 A color filter was produced in the same manner as in Example 15 except that the exemplified compound (1〇3) was not added to the colored photocurable composition, and as in Example 15 Evaluate in the same way. The evaluation results are shown in Tables 1 to 3. 200844497 I. Evaluation of Adhesiveness <<<<< Adhesion Exposure (mJ/cm2) Round 150, 150 150 150 150 si sf 1 i 槪HMDS: 40° HMDS: 40° HMDS: 40° HMDS: 40° HMDS: 40° Storage stability of organic decane compound composition <<< CQ amount (% relative to solid content) ο 〇dd (N ,··Η Type exemplified compound (103 Illustrative compound (102) exemplified compound (ιοί) exemplified compound (36) exemplified compound (103) Example 3 Example 4 Example 5 Example 6 Example 7 丨96- 200844497 _痣C < u < c Line heart 1 m ^ 〇〇Μ ) (N inch ^ 1 钖w ^ S 〇〇Ο <3 ο ir> rH tn ▼丨11Η zero丨丨丨< in 瘃旦_ 1 m SS ^ Μ 1 i 秘ο Ο inch 〇〇寸 inch inch ο Ο inch ο Ο Ο rH o 〇rH 00 QS 〇〇Q 00 Q s 00 Q s ΐττί 1 persuade m mi 1 force m ffi ffi ffi ffi reduction composition storage stability PQ <<< PQ < /^N 容Η 松_ 4π , , <ΙΏ(N Q^ in (N \Q m ▼—H rH do 〇rH msmms ms ο s /^S sss Type 1 I 1 1 1 1 4π 4n 4n 4n <n 卜 00 ON S ο τ—Η rH 匡(N f < 匡W 13⁄4 {U u IK u 200844497 Evaluation of Adhesiveness after Dry Etching Evaluation of Adhesion CQ UUQ PQ Q Adhesion Exposure (mJ/cm2) ΙΟ (N 150 150 175 100 200 ."a Μ Β 150 150 〇r-Η 150 150 150 ^ 1 sg % i Fluorination treatment: 100° Fluorination treatment: 100° No treatment: 10° No treatment: 10° No treatment: 10° No treatment : 10° Storage stability of organic decane compound composition < C << U < quantity (% relative to solid content) 0.05 壊m ο (Ν ό m τ-Η 壊 species exemplified compound (103) 1 1 1 exemplified compound (103) exemplified compound (103) exemplified compound (103) 1 1 1 Example 13 Example 14 Example 15 Example 16 Example 17 Example 18 - 006 - 200844497 As shown in Tables 1 to 3 [Κ ' in Examples 3 to 1 In 5 and 17 , the adhesion after dry etching is particularly excellent. Among them, the adhesions in Examples 3 to 8, 11 and 极2 were excellent. The examples 3 to 18 in which the third color pattern forming method of Example 1 is changed as described above have been described. Of course, the same result was obtained even when the third color pattern forming method of Example 2 was similarly changed. Example 1 9 A color filter 'light sheet is manufactured according to an exemplary embodiment (third exemplary embodiment), wherein the third color pattern forms a strip extending in a direction crossing the first color pattern and the second color pattern Patterns, and all the color layers are formed by lithography. The details of the manufacturing method are described below. Formation of the first color pattern and formation of the second color pattern First, the strip R pattern and the strip B pattern are formed in the same manner as in Example 1 except that the mask is changed so that the R pattern has lines and spaces: 1 · 〇 micron and gap : 1 · 〇 micron, and the B pattern has lines and gaps: 1. 〇 micron and gap: 1 · 0 micron. Then, a photoresist pattern was formed in the same manner as in Example 1, except that the area where the pattern was exposed was changed (i.e., the pattern mask) was changed. The resist pattern is formed into a stripe pattern (line: 1 · 〇 micron and gap: 1 · 〇 micron line and gap pattern) extending in a direction intersecting the stripe pattern of the R pattern and the B pattern. In other words, in the formed photoresist pattern, the region where the G pattern (G color pixel) is to be formed is formed into a strip-shaped perforated region extending in a direction crossing the R pattern having a width of 1.0 μm and the B pattern having a width of 1. μm. (Position width: 1 · 〇-99- 200844497 microns). Removal of color pattern R and B pixels were obtained by removing the regions of the G pattern (G pixel) (bar-shaped perforated regions) of the R and B patterns by dry etching under the same conditions as in Example 1. The photoresist was then removed under the same conditions as in Example 1. Formation of Third Color Pattern A G color layer was formed under the same conditions as in Example 1. Then, in the strip-shaped perforated area where the G pattern (G pixel) is to be formed, the G pattern (G, pixel) (which is the third) is subjected to pattern exposure, development, drying, and post-baking under the same conditions as in Example 1. The color pattern) forms a strip pattern except that the area where the pattern is exposed is exposed (ie, the mask pattern). The G pattern (G pixel) is formed into a stripe pattern such that the strip-shaped perforated area which has been formed by etching is filled with the G pattern. The G pattern (G pixel) has a width of 1. 〇 microns. In addition, the surface of the substrate is formed into a planar form. That is, the upper surface of the R pixel, the B pixel, and the G pixel is the same as the height of the substrate. In this way, a color filter array including R pixels, G pixels, and B pixels is obtained. In the color filter array thus obtained, it suppresses the occurrence of a region where the color pixel is not formed in the corner-concentrated region of each color pixel (R pixel, G pixel, and B pixel), and also suppresses color pixels near the boundary of each pixel. The occurrence of a thin film thickness region. This result shows that the above-described method of manufacturing a color filter can solve the limitation of the formation of the drawing -100-200844497, and a finer pattern can be formed. Example 2 0: A color filter is fabricated in accordance with an exemplary embodiment (fourth exemplary embodiment), wherein the third color pattern forms a strip pattern extending in a direction crossing the first color pattern and the second color pattern And all of the first to third color patterns are formed by dry etching and CMP processing. The details of the manufacturing method are described below. Preparation of a color-developing thermosetting composition Preparation of a pigment dispersion A green (G) color, a blue (B) color, and a red (R) color material (components other than a solvent) shown in Tables 4 and 5 below using a kneader. Each was uniformly kneaded. Then, the kneaded products were each subjected to dry dispersion treatment (kneading dispersion) using two rolls. The dispersions which had been subjected to the dry dispersion treatment were each added to the amounts of methyl propylene glycol monomethyl ether acetate shown in Tables 4 and 5 as a solvent component. Then, the resulting mixture was stirred at 2,00 rpm for 30 minutes using a homogenizer, thereby obtaining a green (G) color, a blue (B) color, and a red (R) color dispersion composition in which the pigment was uniformly dispersed. The resulting dispersion compositions were each subjected to a microdispersion treatment using a pellet disperser (trade name: DISPERMAT, manufactured by GETZMANN) having a 0.3 mm pin oxygen particle. Then, the dispersion compositions were each subjected to filtration of a 2.5 μm filter, thereby obtaining pigment dispersions (1) to (3) of the respective colors in which the pigment was uniformly dispersed. Table 5 shows the viscosity of the kneaded product (dispersion) of each pigment dispersion in the kneading dispersion treatment and the microdispersion treatment, and the average particle diameter of the pigment-10 - 200844497 in each pigment dispersion, and the particle diameter of 0.011 The ratio of pigment particles in the pigment granules of ± 0 · 0 〇 5 μm.

顏料之粒徑係使用著色樹脂組成物經丙二醇一 酸乙酯與 MICROTRAC UPA 15 0(商標名,Nikkiso C 製造)稀釋之溶液作爲樣品而測量。 相對全 甲醚乙 ).? Ltd. -102 200844497 寸« 顏料分散液:紅(R) 顏料紅(PR) 254 80質量份 顏料黃(PY) 139 20質量份 EDAPLAN472 (Kusumoto Chemicals Ltd.製造) 15質量份 « g w o S _ ^ M-r 叢Φ Φ fc ίΤ> W If ft i: ik 2 餾_ tf ^ | § Μ ft ο i Κ] μ m ε- 1 11 K 顏料分散液(2):藍(B) 顏料藍(PB) 15:6 125質量份 I 顏料紫(PV)23 25質量份 m m 趙a 懿j々 ί £ ft ]| 6 ^ ^ O 二 〇 η ε Si Q w 时A « I 嚴峡 ^ M-r 裝Φ Φ fe哲_ 湖· 1¾ fr IE|ffifl ^ 餾_ if ^ 鍫沄 | g E: 4, _ 〇〇 am mi N3 氍 K) m ε- ] 氍 11 顏料分散液(1):綠(G) 顏料綠(PG) 36 90質量份 顏料綠(PG) 7 25質量份 顏料黃(PY) 139 40質量份 PLAAD ED151 (Kusumoto Chemicals Ltd·製造) 20質量份 «〇 w 〇 § ¢1 S _ 經 媛φ Φ fe iM _ & S I: iM S 餾_ E iU S g 丙二醇一甲醚乙酸乙酯:625質量份 著色劑 分散劑 測旨 溶劑 丨s I — 200844497 ώ C/3 "cd η , 00 s 顏料分散液= Μη ε ο ο θ' 卜 "c5 Ρη ε to r-H η 寸 r-H Ο ο Μ ο 寸· PQ _ (ZJ C/3 (N d Ρη S "cd S H _ ί Φ 駿 ο ο ο B ^T) (N m r"H Ο ο νο 〇\ ο ϊ "ίδ η . C/3 S 1 φ 魆 ΗΗ ε ο ο ΙΟ ΙΤ) Oh ε m r-H =L τ—Η Ο ο _ _( Ο 00 Os m JLJ *-LA 侧 Μ vrrnr φ 4π 微分散時之黏ί 顏料之平均粒ί m 騷 ε n in ο ο ο +ι r-H Ο ο 200844497 著色熱固件組成物之製備 將多官能基環氧樹脂”EHPE-3150”(商標名,Daicel Chemical Industries, Ltd.製造)以20質量份之量加入顏料 分散液(1),以6質量份之量加入顏料分散液(2),及以8質 量份之量加入顏料分散液(3)。此外將作爲硬化觸媒之 ,,1B2PZ”(商標名,Shikoku Chemicals Corporation 製造) 以相對多官能基環氧樹脂爲1 /5 0 (質量比)之量加入各顏 料分散液。在溶解觸媒後,將混合物各以丙二醇一甲醚乙 酸乙酯稀釋,使得各組成物中之固體含量爲1 5質量%而不 造成顏料黏附。以此方式得到三種具有高顏料濃度之著色 熱固性組成物R、G及B,使得顏料分散液(1)之顏料含量 爲7 2.0質量%,顏料分散液(2)之顏料含量爲71.0質量%, 及顏料分散液(3)之顏料含量爲75.1質量%。 彩色濾光片之製備 第一彩色圖案之形成 以如實例2之相同方式形成R彩色層,除了使用著色 熱固性組成物R代替紅色光硬化性組成物SR- 5 0 00L。熱固 後之膜厚爲0.4微米。 然後如實例2之相同方式形成透明薄膜1及光阻圖案 ,除了改變光罩,繼而藉乾式蝕刻去除光阻,因而得到在 上層中具有透明薄膜1作爲第一中止層之R圖案。 在此情形,其將R圖案形成線大小爲1 · 〇微米及間隙 大小爲1 . 〇微米之條形圖案。 第二彩色圖案之形成 -105- 200844497 以如實例2之相同方式形成B彩色層,除了使用著色 熱固性組成物B代替藍色光硬化性組成物S B - 5 0 0 0 L。熱固 後之膜厚爲〇 . 7微米。 然後在漿液流速:150毫升/分鐘,晶圓壓力·· 0.2 psi ,及保持環壓力:1·〇 psi之條件下,使用CMP硏磨裝置( 商標名:BC-15,Kemet Japan 製造),以 SEMISPERSE25 (註冊商標,Cabot製造):純水=1:10作爲漿液,及膨脹 聚胺基甲酸酯(商標名:Whitex系列,Kemet Japan製造 )作爲硏磨墊而實行硏磨,直到R圖案上之透明薄膜1暴 露。 以如實例2之相同方式在R圖案及透明薄膜1上形成 透明薄膜2及第二中止層。 然後以如實例2之相同方式實行光阻圖案,除了形成 具不同之接受圖案曝光區域(即改變光罩)的光阻圖案( 即在去除彩色圖案之乾式蝕刻中作爲蝕刻光罩之光阻圖案 )° 圖案係形成按以與R圖案及B圖案交叉之方向延伸的 條形圖案,線大小爲i . 〇微米及間隙大小爲1 . 0微米。 換言之,在如此形成光阻圖案中,欲形成G圖案(G 彩色像素)之區域係形成按以與寬1.0微米之!^圖案及寬 1 . 〇微米之B圖案交叉之方向延伸的條形穿孔區域(孔寬 :1·〇微米)。 1色圖案之去除 其次在如實例2之相同條件下藉乾式蝕刻自透明薄膜 -106- 200844497 1、透明薄膜2、R圖案、與B圖案去除欲形成G圖案(G 像素)之區域。 然後在如實例2之相同條件下去除光阻。 第三彩色圖案之形成 以如實例2之相同方式形成G彩色層,除了使用著色 熱固性組成物G代替綠色光硬化性組成物SG- 5 00 0 L。熱固 後之膜厚爲0.6微米。 在此情形,透明薄膜2上之G彩色層具有5 00奈米之 膜厚。 然後在漿液流速:1 5 0毫升/分鐘,晶圓壓力:〇 · 2 p s i ,及保持環壓力:1.0 p si之條件下,使用CMP硏磨裝置( 商標名:BC-15,KemetJapan製造),以SEMISPERSE25 (註冊商標,C ab 〇 t製造):純水=1 : 1 〇作爲漿液,及膨脹 聚胺基甲酸酯(Whit ex系列,商標名,Kemet Japan製造 )作爲硏磨墊而實行硏磨,直到R圖案與B圖案上之透明 薄膜2暴露。 以此方式在欲形成G圖案(G像素)之條形穿孔區域 形成G圖案(G像素),其爲第三彩色圖案。 G圖案(G像素)係以嵌入藉鈾刻形成之條形穿孔區 域中的方式形成條形圖案。G圖案(G像素)具有1 · 0微米 之寬度。 此外將基板表面形成平面形式。即層合在R像素上之 透明薄膜2的上表面、層合在B像素上之透明薄膜2的上 表面、與G像素之上表面相對矽基板之高度相同。 -107- 200844497 以此方式得到具有R像素、G像素與B像素之彩色濾 光片陣列。 在如此得到之彩色濾光片陣列中,其抑制在各彩色像 素(R像素、G像素與B像素)角落聚集區域不形成彩色 像素之區域的發生,而且亦抑制在各像素邊界附近之彩色 像素的膜厚變薄之區域的發生。 此結果顯示使用上述製造彩色濾光片之方法可解決圖 案形成之限制,而且可形成較精細之圖案。 奮例2 1 彩色濾光片之形成 在形成第三彩色圖案之前依照實例1 9之方法得到具R 像素與B像素之矽基板。 換言之,基板具有欲形成G圖案(G像素)之條形區 域,其已藉乾式蝕刻自條形R與B圖案去除,而且已自基 板去除光阻,及基板已接受加熱。 在加熱後,存在於具R像素與B像素之矽基板上的R 像素與B像素之表面在如實例3之相同條件下接受黏著性 改良處理,而且在如實例3之相同條件下使用著色光硬化 性組成物P 1,如此形成G彩色層。 圖案曝光及顯影 使如此形成之G彩色層在如實例1 9中形成第三彩色 層之相同條件下依序接受圖案曝光、顯影、沖洗處理、乾 燥處理、及後烘烤處理,除了圖案曝光係使用實例3決定 之最適曝光量(Ε。^)實行,而且在欲形成G圖案(G像素) -108- 200844497 之條形圖案區域形成第三彩色層之G圖案(G像素)。 G圖案(G像素)係以各G像素嵌入藉以上飩刻形成 之區域(此區域爲欲形成G圖案(G像素)之區域’藉乾 式鈾刻自R圖案與B圖案去除)中的方式形成條形圖案’ 各G像素具有1.0微米之寬度。 此外將基板表面形成平面形式。即R像素、B像素與 G像素之上表面相對矽基板之高度相同。 以此方式得到具有R像素、G像素與B像素之彩色濾 光片陣列。 在如此得到之彩色濾光片陣列中,其抑制在各彩色像 素(R像素、G像素與B像素)角落聚集區域不形成彩色 像素之區域的發生,而且亦抑制在各像素邊界附近之彩色 像素的膜厚變薄之區域的發生。 此結果顯不使用此製造彩色爐光片之方法可解決圖案 形成之限制,而且可形成較精細之圖案。 評估 在如實例3之相同條件及標準下評估著色光硬化性組 成物之儲存安定性、黏著性改良處理後接觸角、最適曝光 量Ε。^、黏附曝光量、黏著性。評估結果示於表6及7。 實例2 2辛2 8 以如實例2 1之相同方式製造彩色濾光片,除了將實例 2 1之指定有機砍烷化合物之種類及量各改成如表6及7所 示者,而且以如實例2 1之相同方式評估。評估結果示於表 6及7。 -109- 200844497 實例2 9 以如實例2 5之相同方式製造彩色濾光片’除了在以下 條件下實行電漿氟化處理代替HMDS蒸氣沉積,以改良實 例2 5之黏著性,而且以如實例2 5之相同方式評估。評估 結果示於表6及7。 電漿氟化處理之條件 使用乾式蝕刻設備(商標名:u-621 ’ HitachiThe particle size of the pigment was measured by using a solution in which the colored resin composition was diluted with propylene glycol monoethyl acrylate and MICROTRAC UPA 15 0 (trade name, manufactured by Nikkiso C) as a sample. Relatively full methyl ether).? Ltd. -102 200844497 inch « Pigment dispersion: Red (R) Pigment red (PR) 254 80 parts by mass of pigment yellow (PY) 139 20 parts by mass EDAPLAN472 (manufactured by Kusumoto Chemicals Ltd.) 15 Mass parts « gwo S _ ^ Mr plex Φ Φ fc ίΤ> W If ft i: ik 2 Distillation _ tf ^ | § Μ ft ο i Κ] μ m ε- 1 11 K Pigment dispersion (2): Blue (B ) Pigment Blue (PB) 15:6 125 parts by mass I Pigment Violet (PV) 23 25 parts by mass mm Zhao 懿j々ί £ ft ]| 6 ^ ^ O 二〇η ε Si Q w When A « I Yanxia ^ Mr Install Φ Φ fezhe_ Lake·13⁄4 fr IE|ffifl ^ Distillation_ if ^ 鍫沄| g E: 4, _ 〇〇am mi N3 氍K) m ε- ] 氍11 Pigment Dispersion (1): Green (G) Pigment Green (PG) 36 90 parts by mass of pigment green (PG) 7 25 parts by mass of pigment yellow (PY) 139 40 parts by mass of PLAAD ED151 (manufactured by Kusumoto Chemicals Ltd.) 20 parts by mass «〇w 〇§ ¢1 S _ 媛媛 φ Φ fe iM _ & SI: iM S distillation _ E iU S g propylene glycol monomethyl ether ethyl acetate: 625 parts by mass of colorant dispersant measurement solvent 丨s I — 200844497 ώ C/3 " Cd η , 00 s pigment dispersion = Μη ε ο ο θ' 卜 &Quc;c5 Ρη ε to rH η inch rH Ο ο Μ ο 寸 · PQ _ (ZJ C/3 (N d Ρη S "cd SH _ ί Φ 骏ο ο ο B ^T) (N m r"H Ο ο νο 〇\ ο ϊ "ίδ η . C/3 S 1 φ 魆ΗΗ ε ο ο ΙΟ ΙΤ) Oh ε m rH =L τ—Η ο ο _ _( Ο 00 Os m JLJ *-LA Side Μ vrrnr φ 4π micro-dispersion viscosity ί pigment average particle ί m 赛ε n in ο ο ο +ι rH Ο ο 200844497 Preparation of colored hot firmware composition of polyfunctional epoxy resin "EHPE-3150" (trade name, The pigment dispersion liquid (1) is added in an amount of 20 parts by mass, the pigment dispersion liquid (2) is added in an amount of 6 parts by mass, and the pigment dispersion liquid (3) is added in an amount of 8 parts by mass, as manufactured by Daicel Chemical Industries, Ltd. . Further, as a hardening catalyst, 1B2PZ" (trade name, manufactured by Shikoku Chemicals Corporation) was added to each pigment dispersion in an amount of 1 /5 (mass ratio) relative to the polyfunctional epoxy resin. After dissolving the catalyst The mixture was each diluted with ethyl propylene glycol monomethyl ether acetate so that the solid content in each composition was 15 mass% without causing pigment adhesion. In this way, three colored thermosetting compositions having high pigment concentrations were obtained, R, G. And B, the pigment content of the pigment dispersion liquid (1) was 7 2.0% by mass, the pigment content of the pigment dispersion liquid (2) was 71.0% by mass, and the pigment content of the pigment dispersion liquid (3) was 75.1% by mass. Preparation of Light Sheet Formation of First Color Pattern The R color layer was formed in the same manner as in Example 2 except that the colored thermosetting composition R was used instead of the red light curable composition SR-500 00L. The film thickness after thermosetting was 0.4. Then, the transparent film 1 and the photoresist pattern were formed in the same manner as in Example 2 except that the photomask was changed, and then the photoresist was removed by dry etching, thereby obtaining a transparent film 1 in the upper layer. The R pattern of the first stop layer. In this case, the R pattern is formed into a stripe pattern having a line size of 1 · 〇 micron and a gap size of 1. 〇 micron. The formation of the second color pattern is -105- 200844497 The B color layer was formed in the same manner as in Example 2 except that the colored thermosetting composition B was used instead of the blue photocurable composition SB - 500 L. The film thickness after thermosetting was 〇. 7 μm. Then at the slurry flow rate: 150 ML/min, wafer pressure · 0.2 psi, and retaining ring pressure: 1 〇 psi, using CMP honing device (trade name: BC-15, manufactured by Kemet Japan), SEMISPERSE25 (registered trademark, Cabot) Manufactured: Pure water = 1:10 as a slurry, and expanded polyurethane (trade name: Whitex series, manufactured by Kemet Japan) was honed as a honing pad until the transparent film 1 on the R pattern was exposed. The transparent film 2 and the second stopper layer were formed on the R pattern and the transparent film 1 in the same manner as in Example 2. Then, the photoresist pattern was carried out in the same manner as in Example 2 except that the exposed regions having different acceptance patterns were formed (i.e., changed). Mask The photoresist pattern (that is, the photoresist pattern as an etching mask in the dry etching for removing the color pattern). The pattern is formed into a strip pattern extending in a direction crossing the R pattern and the B pattern, and the line size is i. The micron and the gap size are 1.0 μm. In other words, in the thus formed photoresist pattern, the region where the G pattern (G color pixel) is to be formed is formed to have a width of 1.0 μm and a width of 1. μm. A strip-shaped perforated area (hole width: 1 · 〇 micron) extending in the direction in which the B pattern intersects. Removal of 1-color pattern Next, under the same conditions as in Example 2, dry etching was performed from the transparent film -106-200844497 1. The transparent film 2, the R pattern, and the B pattern were removed from the region where the G pattern (G pixel) was to be formed. The photoresist was then removed under the same conditions as in Example 2. Formation of Third Color Pattern A G color layer was formed in the same manner as in Example 2 except that the colored thermosetting composition G was used instead of the green photocurable composition SG-5 00 0 L. The film thickness after thermosetting was 0.6 μm. In this case, the G color layer on the transparent film 2 has a film thickness of 500 nm. Then, using a CMP honing device (trade name: BC-15, manufactured by Kemet Japan) under the conditions of slurry flow rate: 150 ml/min, wafer pressure: 〇·2 psi, and holding ring pressure: 1.0 p si, SEMISPERSE25 (registered trademark, manufactured by C ab 〇t): pure water = 1 : 1 〇 as a slurry, and expanded polyurethane (Whit ex series, trade name, manufactured by Kemet Japan) as a honing pad Grind until the R pattern and the transparent film 2 on the B pattern are exposed. In this way, a G pattern (G pixel) which is a third color pattern is formed in the strip-shaped perforated area where the G pattern (G pixel) is to be formed. The G pattern (G pixel) is formed in a stripe pattern in such a manner as to be embedded in a strip-shaped perforated area formed by uranium engraving. The G pattern (G pixel) has a width of 1 · 0 μm. In addition, the surface of the substrate is formed into a planar form. That is, the upper surface of the transparent film 2 laminated on the R pixel, the upper surface of the transparent film 2 laminated on the B pixel, and the upper surface of the G pixel are the same as the height of the substrate. -107- 200844497 In this way, a color filter array having R pixels, G pixels, and B pixels is obtained. In the color filter array thus obtained, it suppresses the occurrence of a region where the color pixel is not formed in the corner-concentrated region of each color pixel (R pixel, G pixel, and B pixel), and also suppresses color pixels near the boundary of each pixel. The occurrence of a thin film thickness region. This result shows that the above-described method of manufacturing a color filter can solve the limitation of pattern formation, and a finer pattern can be formed. Example 2 1 Formation of Color Filter A ruthenium substrate having R pixels and B pixels was obtained in accordance with the method of Example 19 before forming the third color pattern. In other words, the substrate has a strip-shaped region where a G pattern (G pixel) is to be formed, which has been removed from the strip R and B patterns by dry etching, and the photoresist has been removed from the substrate, and the substrate has been heated. After heating, the surfaces of the R pixels and the B pixels existing on the substrate having the R pixel and the B pixel were subjected to the adhesion improving treatment under the same conditions as in Example 3, and the colored light was used under the same conditions as in Example 3. The curable composition P1 thus forms a G color layer. Pattern exposure and development such that the G color layer thus formed is sequentially subjected to pattern exposure, development, rinsing, drying, and post-baking treatment under the same conditions as in the case of forming the third color layer in Example 19, except for the pattern exposure system. The optimum exposure amount (Ε.^) determined using Example 3 was carried out, and a G pattern (G pixel) of the third color layer was formed in the strip pattern region where the G pattern (G pixel) -108-200844497 was to be formed. The G pattern (G pixel) is formed by embedding each G pixel in a region formed by the above engraving (this region is a region where the G pattern (G pixel) is to be formed by the dry uranium engraving from the R pattern and the B pattern). The strip pattern 'each G pixel has a width of 1.0 micron. In addition, the surface of the substrate is formed into a planar form. That is, the upper surface of the R pixel, the B pixel, and the G pixel is the same as the height of the substrate. In this way, a color filter array having R pixels, G pixels, and B pixels is obtained. In the color filter array thus obtained, it suppresses the occurrence of a region where the color pixel is not formed in the corner-concentrated region of each color pixel (R pixel, G pixel, and B pixel), and also suppresses color pixels near the boundary of each pixel. The occurrence of a thin film thickness region. This result shows that the method of manufacturing a colored calender is not used to solve the limitation of pattern formation, and a finer pattern can be formed. Evaluation The storage stability of the colored photocurable composition, the contact angle after the adhesion improving treatment, and the optimum exposure amount were evaluated under the same conditions and standards as in Example 3. ^, adhesion exposure, adhesion. The evaluation results are shown in Tables 6 and 7. Example 2 2Xin 2 8 A color filter was produced in the same manner as in Example 2, except that the types and amounts of the designated organic chopane compounds of Example 21 were changed as shown in Tables 6 and 7, and Example 2 1 was evaluated in the same manner. The evaluation results are shown in Tables 6 and 7. -109- 200844497 Example 2 9 A color filter was produced in the same manner as in Example 25 except that the plasma fluorination treatment was carried out instead of HMDS vapor deposition under the following conditions to improve the adhesion of Example 25, and as in the example Evaluation in the same way as 2 5 . The results of the evaluation are shown in Tables 6 and 7. Conditions for plasma fluorination treatment Using dry etching equipment (trade name: u-621 ’ Hitachi

Hi-Technologies Corp.製造),在 RF 功率:800 瓦,天線 偏壓:400瓦,晶圓偏壓:200瓦,室內壓:2.OPa,基板 溫度:50°C,及混合氣體之物種與流速:Ar : 8 00毫升/分 鐘與CF4 : 20 0毫升/分鐘之條件下,實行電漿處理5秒。 實例3 0 以如實例2 1之相同方式製造彩色濾光片’除了在如實 例29之相同條件下實行電漿氟化處理代替HMDS蒸氣沉積 ,以改良實例2 1之黏著性,而且以如實例2 1之相同方式 評估。評估結果示於表6及7。 實例3 1 以如實例2 8之相同方式製造彩色濾光片,除了在如實 例29之相同條件下實行電漿氟化處理代替HMDS蒸氣沉積 ,以改良實例2 8之黏著性,而且以如實例2 8之相同方式 評估。評估結果示於表6及7。 實例3 2 以如實例2 9之相同方式製造彩色濾光片,除了未將例 示化合物(103)加入著色光硬化性組成物,而且以如實例29 -110- 200844497 之相同方式評估。評估結果示於表6及7 ° 實例33 以如實例2 1之相同方式製造彩色濾光片’除了將例示 化合物(103)之量改成表6及7所示之量’及未實行黏著性 改良處理,而且以如實例2 1之相同方式評估。評估結果示 於表6及7。 實例3 4及3 5 以如實例3 3之相同方式製造彩色濾光片’除了將例不 化合物(1 0 3 )之量各改成表6及7所示之量,而且以如實例 3 3之相同方式評估。評估結果示於表6及7。 實例3 6 以如實例3 3之相同方式製造彩色濾光片’除了未將例 示化合物(1 0 3 )加入著色光硬化性組成物,而且以如實例3 3 之相同方式評估。評估結果示於表6及7。 -111- 200844497 担 -1 1 1 黏著性 之評估 < < < < < < PQ u 黏附曝光量 (mJ/cm2) o o o ο ^Τ) ο 寸 o 寸 125 140 so 瘃 u? ^ 旦 150 150 150 150 150 J 150 150 150 m | Si 温鹚 s:制 % m 祕 HMDS: 40° HMDS: 40。 HMDS: 40° HMDS: 40° HMDS: 40° ! HMDS: 40° HMDS: 40° HMDS: 40。 化合物之 儲存安定性 < < < < PQ < < < 4π _ IS VO 'O 'Ο <N {m IS o o o ο r-H o o nn -Kr- s r-N o ΓΛ s /0^ s s /N m O 1 1 £ I 1 1 1 1 IH 4n φ 4n 4n 4n Γ+Ν*1 lie 匡 匡 m r-H (N (N (N m (N CN \〇 (N 卜 CN 〇〇 <N 匡 匡 匡 匡 匡 m u IK IK H Μ IK {_ 200844497 L^ 担 -11 1 黏著性 之評估 < < PQ U U Q PQ Q 黏附曝光量 (mJ/cm ) 〇 ο ^Τ) in (N ▼-H 150 150 175 100 200 Έ2 瘃 -B 旦 〇 Τ—Η 150 150 150 150 150 150 150 m C 勸m ^ ffi a g Si 氟化:1〇〇° 氟化:1〇〇° 氟化:100° 氟化:100° 無處理:10° 無處理:10° 無處理:10° 1 無處理:10° 有機矽烷化合物 化合物之 儲存安定性 m < < < < < U < 含量 (相對固體之%) (N y—i ν〇 ο 0.05 壊 cn d CN 〇 cn ▼-Η 壊 型式 例示化合物(103) 例示化合物(103) 例示化合物(103) 1 例示化合物(103) 例示化合物(103) 例示化合物(103) 1 實例29 實例30 實例31 實例32 實例33 實例34 實例35 實例36 200844497 如表6及7所示,在實例21至33及35中,乾 後之黏著性特別優良。其中實例21至26、29及30 著性極優良。 如上所述已敘述其中改變實例1 9之第三彩色 成方法的實例2 1至3 6。當然即使是在類似地改變] 之第三彩色圖案形成方法時得到相同之結果。 如上所述已敘述其中在矽基板上形成彩色濾光 括R、G與B彩色圖案)之實例1至36。在製造固 元件時,其可使用其上提供光二極管、遮光膜、裝 膜等之固態攝影元件用基板代替矽基板。 例如可如下製造具有優異彩色再現力之固態攝 。首先在具光二極管與轉移電極之撐體上形成由鎢 之遮光膜,遮光膜在光二極管之光接收區域上具有 將由氮化矽等組成之裝置保護膜提供於遮光膜上以 光膜及光二極管之光接收區域(即遮光膜之穿孔) 表面,及在依照本發明實例1至3 6之方法任一之彩 片提供於裝置保護膜上。然後將作爲集光單元之微 供於彩色濾光片上。 【圖式簡單說明】 第1 A圖爲本發明第一例示具體實施例及第三 體實施例之平面圖,及第1 B圖爲沿第1 A圖之線A-之切面圖; 第2A圖爲本發明第一例示具體實施例及第三 體實施例之平面圖,及第2B圖爲沿第2A圖之線A- 式蝕刻 中之黏 圖案形 ,例2 0 片(包 攝影 置保護 影元件 等組成 穿孔。 覆蓋遮 的全部 色濾光 透鏡提 例示具 A’而取 例示具 A’而取 -114- 200844497 之切面圖; 第3 A圖爲本發明第一例示具體實施例及第三例示具 體實施例之平面圖,及第3 B圖爲沿第3 A圖之線A -A ’而取 之切面圖, 第4A圖爲本發明第一例示具體實施例及第三例示具 體實施例之平面圖,及第4 B圖爲沿第4 A圖之線A -A ’而取 之切面圖; 第5A圖爲本發明第一例示具體實施例之平面圖,第 5B圖爲沿第5A圖之線A-A’而取之切面圖,及第5C圖爲 沿第5A圖之線B-B’而取之切面圖; 第6A圖爲本發明第一例示具體實施例之平面圖,第 6B圖爲沿第6A圖之線A-A’而取之切面圖,及第6C圖爲 沿第6A圖之線B-B5而取之切面圖; 第7A圖爲本發明第一例示具體實施例之平面圖,第 7B圖爲沿第7A圖之線A-A’而取之切面圖,及第7C圖爲 沿第7A圖之線B-B’而取之切面圖; 第8A圖爲本發明第一例示具體實施例之平面圖,第 8B圖爲沿第8A圖之線A-A’而取之切面圖,及第8C圖爲 沿第8A圖之線B-B’而取之切面圖; 第9A圖爲本發明第二例示具體實施例及第四例示具 體實施例之平面圖,及第9B圖爲沿第9A圖之線A-A’而取 之切面圖; 第1 0 A圖爲本發明第二例示具體實施例及第四例示具 體實施例之平面圖,及第10B圖爲沿第10A圖之線A-A’ -115- 200844497 而取之切面圖, 第1 1 A圖爲本發明第二例示具體實施例及第四例示具 體實施例之平面圖,及第1 1B圖爲沿第1 1 A圖之線A-A ’ 而取之切面圖; 第1 2 A圖爲本發明第二例示具體實施例及第四例示具 體實施例之平面圖,及第12B圖爲沿第12A圖之線A-A’ 而取之切面圖, 第1 3 A圖爲本發明第二例示具體實施例及第四例示具 體實施例之平面圖,及第13B圖爲沿第13A圖之線A-A’ 而取之切面圖, 第1 4 A圖爲本發明第二例示具體實施例及第四例示具 體實施例之平面圖,及第14B圖爲沿第14A圖之線A-A’ 而取之切面圖; 第15A圖爲本發明第二例示具體實施例之平面圖,第 15B圖爲沿第15A圖之線A-A’而取之切面圖,及第15C圖 爲沿第15A圖之線B-B’而取之切面圖; 第16A圖爲本發明第二例示具體實施例之平面圖,第 16B圖爲沿第16A圖之線A_A’而取之切面圖,及第16C圖 爲沿第16A圖之線B-B’而取之切面圖; 第17A圖爲本發明第二例示具體實施例之平面圖,第 17B圖爲沿第17A圖之線A-A’而取之切面圖,及第17C圖 爲沿第17A圖之線B-B’而取之切面圖; 第18A圖爲本發明第二例示具體實施例之平面圖,第 18B圖爲沿第18A圖之線A-A’而取之切面圖,及第18C圖 -116- 200844497 爲沿第18A圖之線LB5而取之切面圖; 第19A圖爲本發明第二例示具體實施例之平面圖,第 19B圖爲沿第19A圖之線A-A’而取之切面圖,及第19C圖 爲沿第19A圖之線B-B’而取之切面圖; 第20 A圖爲本發明第二例示具體實施例之平面圖,第 20B圖爲沿第20A圖之線A-A’而取之切面圖,及第20C圖 爲沿第20A圖之線B-B’而取之切面圖; 第21A圖爲本發明第三例示具體實施例之平面圖,第 21B圖爲沿第21 A圖之線A-A’而取之切面圖,及第21C圖 爲沿第21 A圖之線B-B’而取之切面圖; 第22A圖爲本發明第二例示具體實施例之平面圖,第 22B圖爲沿第22A圖之線A-A’而取之切面圖,及第22C圖 爲沿第22A圖之線B-B’而取之切面圖; 第2 3A圖爲本發明第二例示具體實施例之平面圖,第 23B圖爲沿第23A圖之線A-A’而取之切面圖,及第23C圖 爲沿第23 A圖之線B-B’而取之切面圖; 第24 A圖爲本發明第二例示具體實施例之平面圖,第 24B圖爲沿第24A圖之線A-A’而取之切面圖,及第24C圖 爲沿第2 4 A圖之線B - B ’而取之切面圖; 第25A圖爲本發明第四例示具體實施例之平面圖,第 25B圖爲沿第25A圖之線A-A’而取之切面圖,及第25C圖 爲沿第2 5 A圖之線B - B ’而取之切面圖; 第26A圖爲本發明第四例示具體實施例之平面圖,第 26B圖爲沿第26A圖之線A-A’而取之切面圖,及第26C圖 -117- 200844497 爲沿第26A圖之線B-B’而取之切面圖; 第27A圖爲本發明第四例示具體實施例之平面圖,第 27B圖爲沿第27A圖之線A-A’而取之切面圖,及第27C圖 爲沿第27A圖之線B-B’而取之切面圖; 第28 A圖爲本發明第四例示具體實施例之平面圖,第 28B圖爲沿第28A圖之線A-A’而取之切面圖,及第28C圖 爲沿第28A圖之線B-B’而取之切面圖; 第29A圖爲本發明第四例示具體實施例之平面圖,第 29B圖爲沿第29A圖之線A-A’而取之切面圖,及第29C圖 爲沿第29A圖之線B-B’而取之切面圖; 第30A圖爲本發明第四例示具體實施例之平面圖,第 30B圖爲沿第30A圖之線A-A’而取之切面圖,及第30C圖 爲沿第30A圖之線B-B’而取之切面圖; 第3 1圖顯示依照第三及第四例示具體實施例之彩色 濾光片,其中將彩色濾光片分割成固態攝影元件之像素單 元且具有參考符號R (紅)、G (綠)及B (藍); 第3 2 A圖爲描述製造彩色濾光片之習知方法的平面圖 ,及第32B圖爲沿第32A圖之線A-A’而取之切面圖; 第3 3 A圖爲描述製造彩色濾光片之習知方法的平面圖 ,及第33B圖爲沿第33 A圖之線A-A,而取之切面圖; 第34A圖爲描述製造彩色濾光片之習知方法的平面圖 ,及第34B圖爲沿第34A圖之線A-A’而取之切面圖; 第3 5 A圖爲描述製造彩色濾光片之習知方法的平面圖 ,及第35B圖爲沿第35A圖之線A-A’而取之切面圖;及 -118- 200844497 第36A圖爲描述製造彩色濾光片之習知方法的平面圖 ,及第36B圖爲沿第36A圖之線A-A’而取之切面圖。 【主要元件符號說明】 10 撐 體 1 2 紅 色 層 14 紅 色 圖 案 16 藍 色 層 18 藍 色 圖 案 20 用 於 形 成 綠 色 像 素 之 區域 22 光 阻 圖 案 24 綠 色 層 26 綠 色 圖 案 28 紅 色 像 素 30 藍 色 像 素 32 綠 色 像 素 34 第 —* 中 止 層 36 第 二 中 止 層 42 第 —* 彩 色 層 44 第 —* 彩 色 像 素 形 成 1E 域 46 不 必 要 1¾ 域 47 光 罩 48 第 —* 彩 色 像 素 50 第 二 彩 色 像 素 52 第 三 彩 色 像 素 -119- 200844497 54 不 形 成 彩 色 像 素 之 1E 域 56 彩 色 像 素 膜 厚 變 薄 之 域 120 用 於 形 成 綠 色 像 素 之 區 域 122 光 阻 圖 案 124 綠 色 層 126 綠 色 圖 案 128 紅 色 像 素 130 藍 色 像 素 132 綠 色 像 素 -120-Hi-Technologies Corp.), RF power: 800 watts, antenna bias: 400 watts, wafer bias: 200 watts, indoor pressure: 2.OPa, substrate temperature: 50 ° C, and species of mixed gases Flow rate: Ar: 8 00 ml/min and CF4: 20 ml/min, plasma treatment was carried out for 5 seconds. Example 3 0 A color filter was produced in the same manner as in Example 21 except that the plasma fluorination treatment was carried out instead of HMDS vapor deposition under the same conditions as in Example 29 to improve the adhesion of Example 21, and as in the example 2 1 is evaluated in the same way. The evaluation results are shown in Tables 6 and 7. Example 3 1 A color filter was produced in the same manner as in Example 28 except that plasma fluorination treatment was carried out instead of HMDS vapor deposition under the same conditions as in Example 29 to improve the adhesion of Example 28, and as in the example Evaluation in the same way as 2 8 . The evaluation results are shown in Tables 6 and 7. Example 3 2 A color filter was produced in the same manner as in Example 29 except that the exemplified compound (103) was not added to the colored photocurable composition, and was evaluated in the same manner as in Example 29-110-200844497. The evaluation results are shown in Tables 6 and 7 °. Example 33 A color filter was produced in the same manner as in Example 21 except that the amount of the exemplified compound (103) was changed to the amount shown in Tables 6 and 7 and the adhesion was not performed. The treatment was modified and evaluated in the same manner as in Example 21. The results of the evaluation are shown in Tables 6 and 7. Examples 3 4 and 3 5 A color filter was produced in the same manner as in Example 33 except that the amounts of the compound (1 0 3 ) were changed to the amounts shown in Tables 6 and 7, and as in Example 3 3 Evaluate in the same way. The evaluation results are shown in Tables 6 and 7. Example 3 6 A color filter was produced in the same manner as in Example 33 except that the exemplified compound (1 0 3 ) was not added to the colored photocurable composition, and was evaluated in the same manner as in Example 33. The evaluation results are shown in Tables 6 and 7. -111- 200844497 担-1 1 1 Adhesive evaluation <<<<<< PQ u Adhesion exposure (mJ/cm2) ooo ο ^Τ) ο inch o inch 125 140 so 瘃u? ^ 丹 150 150 150 150 150 J 150 150 150 m | Si Temperature 鹚: % % Secret HMDS: 40° HMDS: 40. HMDS: 40° HMDS: 40° HMDS: 40° ! HMDS: 40° HMDS: 40° HMDS: 40. Storage stability of the compound <<<< PQ <<< 4π _ IS VO 'O 'Ο <N {m IS ooo ο rH oo nn -Kr- s rN o ΓΛ s /0^ Ss /N m O 1 1 £ I 1 1 1 1 IH 4n φ 4n 4n 4n Γ+Ν*1 lie 匡匡m rH (N (N (N m (N CN \〇(N 卜CN 〇〇<N匡匡匡匡匡mu IK IK H Μ IK {_ 200844497 L^ 担-11 1 Adhesive evaluation << PQ UUQ PQ Q Adhesion exposure (mJ/cm) 〇ο ^Τ) in (N ▼- H 150 150 175 100 200 Έ2 瘃-B 〇Τ-〇Τ 150 150 150 150 150 150 150 m C Persuasion m ^ ffi ag Si Fluoride: 1 〇〇 ° Fluoride: 1 〇〇 ° Fluoride: 100 ° Fluorine Chemical: 100° No treatment: 10° No treatment: 10° No treatment: 10° 1 No treatment: 10° Storage stability of organic decane compound compounds <<<<<< U < Content (relative % of solids) (N y—i ν〇ο 0.05 壊cn d CN 〇cn ▼-Η 壊 type formula compound (103) exemplified compound (103) exemplified compound Compound (103) 1 exemplified compound (103) exemplified compound (103) exemplified compound (103) 1 Example 29 Example 30 Example 31 Example 32 Example 33 Example 34 Example 35 Example 36 200844497 As shown in Tables 6 and 7, in Example 21 to Among the 33 and 35, the adhesion after drying was particularly excellent. Among them, Examples 21 to 26, 29 and 30 were extremely excellent. Examples of the third color forming method in which Example 19 were changed as described above were described. Of course, the same result is obtained even when the third color pattern forming method is similarly changed. Examples 1 to 36 in which color filters including R, G, and B color patterns are formed on the germanium substrate have been described above. . When the solid element is manufactured, it is possible to use a substrate for a solid-state imaging element on which a photodiode, a light shielding film, a film, or the like is provided instead of the ruthenium substrate. For example, solid-state photography with excellent color reproduction power can be manufactured as follows. First, a light-shielding film made of tungsten is formed on a support having a photodiode and a transfer electrode, and the light-shielding film has a device protective film made of tantalum nitride or the like on the light-receiving region of the photodiode to provide a light film and light on the light-shielding film. The light receiving region of the diode (i.e., the perforation of the light shielding film) surface, and the color film according to any of the methods of Examples 1 to 36 of the present invention are provided on the protective film of the device. It is then applied as a light collecting unit to the color filter. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A is a plan view showing a first embodiment of the present invention and a third embodiment, and FIG. 1B is a cross-sectional view taken along line A- of FIG. 1A; FIG. The first embodiment of the present invention is a plan view of a specific embodiment and a third embodiment, and FIG. 2B is a pattern of a viscous pattern in the A-etch along the line of FIG. 2A, and an example of a 20-piece (photographed protective image element) The entire color filter lens of the cover is shown as A', and the cut-away view of -114-200844497 is taken as the example A'; the third embodiment is the first exemplary embodiment and the third example of the present invention. The plan view of the specific embodiment, and FIG. 3B is a cross-sectional view taken along line A-A' of FIG. 3A, and FIG. 4A is a plan view of the first exemplary embodiment and the third exemplary embodiment of the present invention. And FIG. 4B is a cross-sectional view taken along line A-A' of FIG. 4A; FIG. 5A is a plan view showing a first exemplary embodiment of the present invention, and FIG. 5B is a line A along line 5A; -A' is taken as a cut-away view, and Figure 5C is a cut-away view taken along line B-B' of Figure 5A; Figure 6A is the same 1 is a plan view of a specific embodiment, FIG. 6B is a cross-sectional view taken along line A-A' of FIG. 6A, and FIG. 6C is a cross-sectional view taken along line B-B5 of FIG. 6A; 7A is a plan view showing a first exemplary embodiment of the present invention, FIG. 7B is a cross-sectional view taken along line A-A' of FIG. 7A, and FIG. 7C is a line B-B' along line 7A. FIG. 8A is a plan view showing a first embodiment of the present invention, FIG. 8B is a cross-sectional view taken along line A-A' of FIG. 8A, and FIG. 8C is a view along line 8A. FIG. 9A is a plan view showing a second embodiment of the present invention and a fourth exemplary embodiment, and FIG. 9B is a line A-A' along line 9A. FIG. 10A is a plan view showing a second embodiment of the present invention and a fourth exemplary embodiment, and FIG. 10B is taken along line A-A'-115-200844497 of FIG. 10A. FIG. 1A is a plan view showing a second embodiment of the present invention and a fourth exemplary embodiment, and FIG. 1B is a cross-sectional view taken along line AA′ of FIG. 1 2 A is a plan view showing a second embodiment of the present invention and a fourth exemplary embodiment, and FIG. 12B is a cross-sectional view taken along line A-A' of FIG. 12A, 1 3 A Figure 2 is a plan view showing a second embodiment of the present invention and a fourth exemplary embodiment, and Figure 13B is a cross-sectional view taken along line A-A' of Figure 13A, and Figure 14A is the first embodiment of the present invention. 2 is a plan view showing a specific embodiment and a fourth exemplary embodiment, and FIG. 14B is a cross-sectional view taken along line A-A' of FIG. 14A; FIG. 15A is a plan view showing a second exemplary embodiment of the present invention; Fig. 15B is a cross-sectional view taken along line A-A' of Fig. 15A, and Fig. 15C is a cross-sectional view taken along line B-B' of Fig. 15A; Fig. 16A is a second view of the present invention A plan view of a specific embodiment is illustrated, a 16B is a cross-sectional view taken along line AA' of Fig. 16A, and a 16C is a cross-sectional view taken along line B-B' of Fig. 16A; A second embodiment of the present invention is a plan view of a specific embodiment, a 17B is a cross-sectional view taken along line A-A' of FIG. 17A, and a 17C is a line B along the 17A. -B' is a cutaway view; Fig. 18A is a plan view showing a second exemplary embodiment of the present invention, and Fig. 18B is a cross-sectional view taken along line A-A' of Fig. 18A, and Fig. 18C-116 - 200844497 is a cutaway view taken along line LB5 of Fig. 18A; Fig. 19A is a plan view showing a second exemplary embodiment of the present invention, and Fig. 19B is a cutaway view taken along line A-A' of Fig. 19A; And Fig. 19C is a cross-sectional view taken along line BB' of Fig. 19A; Fig. 20A is a plan view showing a second exemplary embodiment of the present invention, and Fig. 20B is a line along line A of Fig. 20A A' is taken as a cutaway view, and 20C is a cutaway view taken along line B-B' of Fig. 20A; Fig. 21A is a plan view showing a third exemplary embodiment of the present invention, and Fig. 21B is taken along the line 21A is a cross-sectional view taken along line A-A', and FIG. 21C is a cross-sectional view taken along line B-B' of FIG. 21A; FIG. 22A is a second exemplary embodiment of the present invention Fig. 22B is a cross-sectional view taken along line A-A' of Fig. 22A, and Fig. 22C is a cross-sectional view taken along line B-B' of Fig. 22A; Fig. 2A is a view of the present invention The second example shows specific Figure 23B is a plan view taken along line A-A' of Fig. 23A, and Fig. 23C is a cutaway view taken along line B-B' of Fig. 23A; Figure 2 is a plan view showing a second embodiment of the present invention, Figure 24B is a cross-sectional view taken along line A-A' of Figure 24A, and Figure 24C is a line B-B' along line 2 4 A FIG. 25A is a plan view showing a fourth embodiment of the present invention, and FIG. 25B is a cross-sectional view taken along line A-A' of FIG. 25A, and FIG. 25C is a second section. FIG. 26A is a plan view showing a fourth embodiment of the present invention, and FIG. 26B is a cross-sectional view taken along line A-A' of FIG. 26A, and 26C-117-200844497 is a cross-sectional view taken along line BB' of Fig. 26A; Fig. 27A is a plan view showing a fourth exemplary embodiment of the present invention, and Fig. 27B is a line A along line 27A -A' taken as a cutaway view, and Fig. 27C is a cutaway view taken along line B-B' of Fig. 27A; Fig. 28A is a plan view showing a fourth exemplary embodiment of the present invention, and Fig. 28B is a plan view AA along line 28A 'That is taken as a cut-away view, and FIG. 28C is a cut-away view taken along line B-B' of FIG. 28A; FIG. 29A is a plan view showing a fourth exemplary embodiment of the present invention, and FIG. 29B is a view along line 29A FIG. 30A is a cross-sectional view taken along line BB' of FIG. 29A; FIG. 30A is a plan view showing a fourth embodiment of the present invention, Figure 30B is a cross-sectional view taken along line A-A' of Figure 30A, and Figure 30C is a cross-sectional view taken along line B-B' of Figure 30A; Figure 3 shows the third and Four examples show a color filter of a specific embodiment in which a color filter is divided into pixel units of a solid-state imaging element and has reference symbols R (red), G (green), and B (blue); A plan view describing a conventional method of manufacturing a color filter, and FIG. 32B is a cross-sectional view taken along line A-A' of FIG. 32A; FIG. 3 3A is a conventional method for manufacturing a color filter. The plan view, and Fig. 33B are taken along line AA of Fig. 33A, and taken as a cutaway view; Fig. 34A is a plan view showing a conventional method of manufacturing a color filter, and the third 4B is a cross-sectional view taken along line A-A' of Fig. 34A; Fig. 35A is a plan view showing a conventional method of manufacturing a color filter, and Fig. 35B is a line A along line 35A -A' and its cut-away view; and -118- 200844497 Figure 36A is a plan view depicting a conventional method of manufacturing a color filter, and Figure 36B is a section taken along line A-A' of Figure 36A Figure. [Main component symbol description] 10 Support 1 2 Red layer 14 Red pattern 16 Blue layer 18 Blue pattern 20 Area for forming green pixels 22 Resistive pattern 24 Green layer 26 Green pattern 28 Red pixel 30 Blue pixel 32 Green pixel 34 - - abort layer 36 second stop layer 42 - * color layer 44 - * color pixel formation 1E field 46 unnecessary 13⁄4 field 47 mask 48 - * color pixel 50 second color pixel 52 third Color Pixel-119- 200844497 54 1E Domain 56 without Color Pixels Color Pixel Film Thickness Field 120 Region for Green Pixels 122 Photoresist Pattern 124 Green Layer 126 Green Pattern 128 Red Pixel 130 Blue Pixel 132 Green Pixel-120-

Claims (1)

200844497 十、申請專利範圍: 括 包 其 案 圖 色 彩1 第 成 法形 方案 之圖 片複 光重 爐以 色上 彩體 造撐 製在 Omll 種 ) 形 不 在 上 撐 在 圖 色 彩 二 第 成 形 案 圖 複 重 以 域 區 之 案 圖 色 彩 一 第; 成案 第: 除分 二 刻一 M少 式至 乾的 藉一 之之 案案 圖圖 色色 彩彩 二三 第第 與成 案 圖 色 彩 形 欲 爲 分 部 此 及 域 區 色 彩二 第 與 案 圖 。 色案 彩圖 一 色 第彩 分三 部第 除成 去形 已域 在區 , 的 上一 體之 撐案 在圖 中 其 法 方 之 片。 光形 濾條 色爲 彩各 造案 製圖 之色 項彩 1 二 第第 圍與 範案 利圖 專色 請彩 申一 如第 2 中 其 法 方 之 片 光 濾 色: 彩成 造形 製一 之任 項下 1 以 第藉 圍係 範案 利圖 專色 請彩 申一 如第 (1) 一種包括在撐體上形成第一彩色層,將第一彩色層 曝光,及將曝光所得物顯影之方法;及 (2) —種包括在撐體上形成第一彩色層,使用光阻在第 一彩色層上形成光阻圖案,及使用光阻圖案作爲蝕 刻光罩而乾式蝕刻第一彩色層之方法。 4 ·如申請專利範圍第1項之製造彩色濾光片之方法,其中 第二彩色圖案係藉以下方法(1 )、或一種包括以下方法(2) 及(3 )至少之一的方法形成: (1) 一種包括在形成第一彩色圖案之撐體上形成第二 彩色層,及將第二彩色層曝光,繼而顯影之方法; -121 - 200844497 (2) —種包括在形成第一彩色圖案之撐體上形成第二 彩色層,使用光阻在第二彩色層上形成光阻圖案, 及使用光阻圖案作爲飩刻光罩而乾式鈾刻第二彩 色層之方法;及 (3) —種包括在形成第一彩色圖案之撐體上形成第二 彩色層,及實行至少第二彩色層之平坦化的方法。 5.如申請專利範圍第1項之製造彩色濾光片之方法,其中 第三彩色圖案係藉以下方法(1)、或一種包括以下方法(2) ' 及(3)至少之一的方法形成: (1) 一種包括在形成第一彩色圖案與第二彩色圖案之 撐體上形成第三彩色層,及將第三彩色層曝光,繼 而顯影之方法; (2) —種包括在形成第一彩色圖案與第二彩色圖案之 撐體上形成第三彩色層,使用光阻在第三彩色層上 形成光阻圖案,及使用光阻圖案作爲蝕刻光罩而乾 式蝕刻第三彩色層之方法;及 V (3) 一種包括在形成第一彩色圖案與第二彩色圖案之 撐體上形成第三彩色層,及實行至少第三彩色層之 平坦化的方法。 6 ·如申請專利範圍第4項之製造彩色濾光片之方法,其中 平坦化包括回蝕處理(其蝕刻彩色層之全部曝光表面) 及硏磨處理(其硏磨彩色層之全部曝光表面)至少之一 〇 7 ·如申請專利範圍第1項之製造彩色濾光片之方法,其進 -122- 200844497 一步包括在(b)形成第二彩色圖案之後及在(C)去除部分 彩色圖案之前,在第一彩色圖案與第二彩色圖案上形成 第二中止層,其中: 去除部分彩色圖案包括在欲形成第三彩色圖案之區域 去除第一彩色圖案與第二彩色圖案至少之一的至少一部 分’及在欲形成第三彩色圖案之區域去除第二中止層; 及 形成第三彩色圖案包括在形成第一彩色圖案、第二彩 色圖案、與第二中止層之撐體上形成第三彩色層,及乾 式蝕刻第三彩色層直到暴露第二中止層。 8 ·如申請專利範圍第1項之製造彩色濾光片之方法,其中 形成第一彩色圖案包括在撐體上形成第一彩色層,及 在第一彩色層上形成第一中止層;及 形成第二彩色圖案包括在形成第一彩色圖案之撐體上 形成第二彩色層,及乾式蝕刻第二彩色層直到暴露第一 中止層。 9 ·如申請專利範圍第1項之製造彩色濾光片之方法,其中 第一彩色圖案與第二彩色圖案係以第一彩色圖案與第二 彩色圖案之表面彼此接觸之方式形成。 1 0.如申請專利範圍第1項之製造彩色濾光片之方法,其中 形成第一彩色圖案、形成第二彩色圖案、或形成第三彩 色圖案至少之一包括: 在乾式蝕刻後對撐體施加黏著性改良處理; -123 - 200844497 在已施加黏著性改良處理之撐體上形成彩色層, 將彩色層曝光;及 將曝光所得物顯影形成彩色圖案。 1 1 .如申請專利範圍第1 〇項之製造彩色濾光片之方法,其中 黏著性改良處理包括加入黏附輔劑或使用電漿之氟化處 理至少之一。 1 2 ·如申請專利範圍第1 0項之製造彩色濾光片之方法,其中 彩色層係藉由塗布一種包括相對著色硬化性組成物之總 固體含量爲0.05至1.2質量%之量的有機矽烷化合物之 著色硬化性組成物而形成。 1 3 ·如申請專利範圍第1項之製造彩色濾光片之方法,其中 形成第一彩色圖案、形成第二彩色圖案、或形成第三彩 色圖案至少之一包括: 在乾式蝕刻後不對撐體施加黏著性改良處理,藉由對 撐體塗布一種包括相對著色硬化性組成物之總固體含量 爲0.3至1 · 2質量%之量的有機矽烷化合物之著色硬化性 組成物而形成彩色層; 將彩色層曝光;及 將曝光所得物顯影形成彩色圖案。 1 4 ·如申請專利範圍第1項之製造彩色濾光片之方法,其中 欲形成第三彩色圖案之區域包括方格狀圖案區域。 1 5 ·如申請專利範圍第1項之製造彩色濾光片之方法,其中 欲形成第三彩色圖案之區域包括按與第一彩色圖案及第 二彩色圖案交叉之方向延伸之條形圖案。 -124- 200844497 1 6. —種彩色濾光片,其係藉申請專利範圍第1項之製造彩 色濾光片之方法製造。 1 7. —種固態攝影元件,其包括申請專利範圍第1 6項之彩色 濾光片。 -125-200844497 X. The scope of application for patents: including the color of the case chart 1 The picture of the first legal plan The complex light furnace is made of color on the color of the body in the Omll species. The shape is not on the support. Re-emphasizing the color of the case of the domain area; the case of the case: In addition to the minute and the second, one of the M-type to the dry, the case of the case, the color of the case, the color, the color, the second, the first, the case, the color, the shape, the shape, the division And the color of the domain area and the case map. Color scheme color map one color first color divided into three parts divided into de-shaped has been in the area, the upper body of the case in the picture of its French film. The light color filter color is the color of each color. The color of the color is 1 color. The second and the second case of the film and the color of the case. Please use the color of the film in the second part of the film. In the first paragraph, the first color layer is formed on the support, the first color layer is exposed, and the exposed product is developed. And (2) comprising: forming a first color layer on the support, forming a photoresist pattern on the first color layer using the photoresist, and dry etching the first color layer using the photoresist pattern as an etch mask method. 4. The method of manufacturing a color filter according to claim 1, wherein the second color pattern is formed by the following method (1), or a method comprising at least one of the following methods (2) and (3): (1) A method comprising forming a second color layer on a support for forming a first color pattern, and exposing the second color layer, and then developing; -121 - 200844497 (2) - including forming a first color pattern Forming a second color layer on the support, forming a photoresist pattern on the second color layer using the photoresist, and using a photoresist pattern as the engraved mask to dry the uranium engraved second color layer; and (3) The method includes forming a second color layer on a support forming the first color pattern, and performing a planarization of at least the second color layer. 5. The method of manufacturing a color filter according to claim 1, wherein the third color pattern is formed by the following method (1), or a method comprising at least one of the following methods (2)' and (3) (1) A method comprising forming a third color layer on a support forming a first color pattern and a second color pattern, and exposing the third color layer, and then developing; (2) being included in forming the first Forming a third color layer on the support of the color pattern and the second color pattern, forming a photoresist pattern on the third color layer using the photoresist, and dry etching the third color layer using the photoresist pattern as an etch mask; And V (3) A method comprising forming a third color layer on a support forming the first color pattern and the second color pattern, and performing planarization of at least the third color layer. 6. The method of manufacturing a color filter according to claim 4, wherein the planarization comprises an etch back process (which etches all exposed surfaces of the color layer) and a honing process (which hones all exposed surfaces of the color layer) At least one of the methods of manufacturing a color filter according to claim 1, wherein the step of -122-200844497 includes after (b) forming the second color pattern and before (C) removing the partial color pattern Forming a second stop layer on the first color pattern and the second color pattern, wherein: removing the partial color pattern includes removing at least a portion of at least one of the first color pattern and the second color pattern in an area where the third color pattern is to be formed And removing the second stop layer in the region where the third color pattern is to be formed; and forming the third color pattern includes forming a third color layer on the support forming the first color pattern, the second color pattern, and the second stop layer And dry etching the third color layer until the second stop layer is exposed. 8. The method of manufacturing a color filter according to claim 1, wherein the forming the first color pattern comprises forming a first color layer on the support, and forming a first stop layer on the first color layer; and forming The second color pattern includes forming a second color layer on the support forming the first color pattern, and dry etching the second color layer until the first stop layer is exposed. 9. The method of manufacturing a color filter according to claim 1, wherein the first color pattern and the second color pattern are formed in such a manner that surfaces of the first color pattern and the second color pattern are in contact with each other. The method of manufacturing a color filter of claim 1, wherein forming the first color pattern, forming the second color pattern, or forming the third color pattern comprises: at least one after dry etching Adhesive improvement treatment is applied; -123 - 200844497 A colored layer is formed on the support to which the adhesion improving treatment has been applied, the colored layer is exposed; and the exposed resultant is developed to form a color pattern. A method of producing a color filter according to the first aspect of the invention, wherein the adhesion improving treatment comprises at least one of adding an adhesion aid or a fluorination treatment using a plasma. 1 2 - A method of producing a color filter according to claim 10, wherein the color layer is coated with an organic decane in an amount of from 0.05 to 1.2% by mass based on the total solid content of the relatively colored hardenable composition The coloring composition of the compound is formed. The method of manufacturing a color filter according to claim 1, wherein the forming the first color pattern, forming the second color pattern, or forming the third color pattern comprises: at least not supporting the support after dry etching Applying an adhesion improving treatment to form a color layer by coating a support with a color hardening composition comprising an organic decane compound in an amount of 0.3 to 1.2% by mass relative to the coloring hardenable composition; The colored layer is exposed; and the exposed resultant is developed to form a color pattern. A method of manufacturing a color filter according to the first aspect of the invention, wherein the area in which the third color pattern is to be formed includes a checkered pattern area. The method of manufacturing a color filter according to claim 1, wherein the area in which the third color pattern is to be formed includes a stripe pattern extending in a direction crossing the first color pattern and the second color pattern. -124- 200844497 1 6. A color filter manufactured by the method of manufacturing a color filter of claim 1 of the patent application. 1 7. A solid-state photographic element comprising a color filter of claim 16 of the patent application. -125-
TW97104910A 2007-02-14 2008-02-13 Color filter and method of manufacturing the same, and solid-state image pickup element TW200844497A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007033576 2007-02-14
JP2007175016 2007-07-03
JP2007340293A JP5094378B2 (en) 2007-02-14 2007-12-28 Color filter for solid-state image sensor, method for manufacturing the same, and solid-state image sensor

Publications (1)

Publication Number Publication Date
TW200844497A true TW200844497A (en) 2008-11-16

Family

ID=40402252

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97104910A TW200844497A (en) 2007-02-14 2008-02-13 Color filter and method of manufacturing the same, and solid-state image pickup element

Country Status (2)

Country Link
JP (1) JP5094378B2 (en)
TW (1) TW200844497A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112128710A (en) * 2019-06-24 2020-12-25 宜兰汽车配件制造(平湖)有限公司 Method for manufacturing color pattern imaging light-transmitting sheet for automobile projection lamp

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5562591B2 (en) * 2009-07-31 2014-07-30 富士フイルム株式会社 Colored curable composition, color filter and method for producing the same
JP6106784B2 (en) * 2012-07-30 2017-04-05 富士フイルム株式会社 Colored curable composition and color filter using the same
JP6205193B2 (en) * 2012-07-30 2017-09-27 富士フイルム株式会社 Colored curable composition and color filter using the same
JP6043645B2 (en) 2013-02-08 2016-12-14 富士フイルム株式会社 Curable composition and color filter
JP6147224B2 (en) * 2013-07-01 2017-06-14 富士フイルム株式会社 Colored curable composition, cured film using the same, color filter, method for producing color filter, solid-state imaging device, liquid crystal display device, and organic EL display device
JP6106638B2 (en) * 2013-08-05 2017-04-05 富士フイルム株式会社 Colored photosensitive resin composition, cured film, color filter, method for producing color filter, solid-state imaging device, and image display device
JP6147135B2 (en) * 2013-08-05 2017-06-14 富士フイルム株式会社 Colored photosensitive resin composition, cured film, color filter, method for producing color filter, solid-state imaging device, and image display device
JP6106639B2 (en) * 2013-08-05 2017-04-05 富士フイルム株式会社 Colored photosensitive resin composition, cured film, color filter, method for producing color filter, solid-state imaging device, and image display device
JP6536005B2 (en) * 2014-10-15 2019-07-03 凸版印刷株式会社 Method of manufacturing color filter and color filter
JP6809215B2 (en) * 2016-12-27 2021-01-06 凸版印刷株式会社 Solid-state image sensor and its manufacturing method
JP6838394B2 (en) * 2016-12-27 2021-03-03 凸版印刷株式会社 Solid-state image sensor and its manufacturing method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62159591A (en) * 1986-01-07 1987-07-15 Seiko Epson Corp Color solid-state image pickup device
JP3480979B2 (en) * 1993-07-30 2003-12-22 シャープ株式会社 Method of forming resist pattern
JP3455915B2 (en) * 1993-09-24 2003-10-14 Jsr株式会社 Radiation-sensitive composition for color filter and color filter
JP3210791B2 (en) * 1993-11-30 2001-09-17 京セラ株式会社 Method for manufacturing color liquid crystal display device
JPH0915420A (en) * 1995-06-27 1997-01-17 Toppan Printing Co Ltd Color filter for color liquid crystal projector and its production
JP2006319133A (en) * 2005-05-12 2006-11-24 Fuji Photo Film Co Ltd Color filter, manufacturing method thereof, solid-state imaging element, and manufacturing method thereof
JP2006339376A (en) * 2005-06-01 2006-12-14 Matsushita Electric Ind Co Ltd Solid state imaging device, manufacturing method thereof, and camera
JP2007034250A (en) * 2005-06-23 2007-02-08 Sanyo Epson Imaging Devices Corp Method for manufacturing color filter
JP2007025358A (en) * 2005-07-19 2007-02-01 Fujifilm Holdings Corp Color filter and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112128710A (en) * 2019-06-24 2020-12-25 宜兰汽车配件制造(平湖)有限公司 Method for manufacturing color pattern imaging light-transmitting sheet for automobile projection lamp

Also Published As

Publication number Publication date
JP2009031723A (en) 2009-02-12
JP5094378B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
TW200844497A (en) Color filter and method of manufacturing the same, and solid-state image pickup element
KR100967465B1 (en) Black resin composition for display element, and member for display element
JP4818712B2 (en) Black resin composition for display element, and member for display element
WO2009104339A1 (en) Color filter, method for producing the same, and solid-state imaging device
JP5562591B2 (en) Colored curable composition, color filter and method for producing the same
JP5064426B2 (en) Color filter manufacturing method and solid-state imaging device
JP2009111225A (en) Solid-state image sensor and method of manufacturing the same
EP1959276B1 (en) Color Filter and Method of Manufacturing the same, and Solid-State Image Pickup Element
JP2010134352A (en) Method for manufacturing color filter, and solid-state imaging element
KR20200031054A (en) Imaging device and infrared absorption film
KR101913604B1 (en) Siloxane resin composition, transparent cured object obtained therefrom, transparent pixel, microlens, and solid imaging element
TW201926730A (en) Solid-state image capture element and method of manufacturing same
JP2010085756A (en) Method of manufacturing color filter, and solid-state imaging device
JP5412124B2 (en) Photoelectric conversion device and solid-state imaging device
JP2010085701A (en) Method of manufacturing color filter
JP2010085755A (en) Method of manufacturing color filter, and solid-state imaging device
JP2010085754A (en) Method of manufacturing color filter and solid-state imaging device
JP2008176184A (en) Method for manufacturing color filter
JP2009244710A (en) Color filter array and method of manufacturing the same, and solid-state image sensor
JP2009025623A (en) Colored thermosetting composition for forming colored pattern, solid-state imaging element, colored pattern and its forming method, and color filter and its manufacturing method
TWI846952B (en) Curable composition, cured film, color filter, solid-state imaging element, image display device
JP2010085700A (en) Method of manufacturing color filter
JP2008292629A (en) Manufacturing method for color filter
JP2010085702A (en) Method of manufacturing color filter
KR101988257B1 (en) Colored photosensitive resin composition