TW200843833A - Methods and apparatus for distillation - Google Patents

Methods and apparatus for distillation Download PDF

Info

Publication number
TW200843833A
TW200843833A TW96142295A TW96142295A TW200843833A TW 200843833 A TW200843833 A TW 200843833A TW 96142295 A TW96142295 A TW 96142295A TW 96142295 A TW96142295 A TW 96142295A TW 200843833 A TW200843833 A TW 200843833A
Authority
TW
Taiwan
Prior art keywords
fluid
volume
transfer element
heat transfer
heat
Prior art date
Application number
TW96142295A
Other languages
Chinese (zh)
Inventor
Francis P Burke
Kenneth J Horne
David B Taylor
Stephen R Topaz
Original Assignee
Hydrologic Ind Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/936,740 external-priority patent/US8206557B2/en
Priority claimed from US11/936,741 external-priority patent/US20080105531A1/en
Priority claimed from US11/936,657 external-priority patent/US8202401B2/en
Application filed by Hydrologic Ind Inc filed Critical Hydrologic Ind Inc
Publication of TW200843833A publication Critical patent/TW200843833A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/22Evaporating by bringing a thin layer of the liquid into contact with a heated surface
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/048Purification of waste water by evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/28Evaporating with vapour compression
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/28Evaporating with vapour compression
    • B01D1/2896Control, regulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0057Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes
    • B01D5/006Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes with evaporation or distillation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/041Treatment of water, waste water, or sewage by heating by distillation or evaporation by means of vapour compression
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/08Thin film evaporation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/33Wastewater or sewage treatment systems using renewable energies using wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

In one embodiment, a method includes moving a first volume of fluid from a region above a heat-transfer element to a region below the heat-transfer element after the first volume of fluid is boiled from a second volume of fluid within the region above the heat-transfer element. The first volume of fluid including an impurity concentration lower than an impurity concentration of the second volume of fluid. The region below the heat-transfer element has a temperature higher than a temperature of the region above the heat-transfer element. The method also includes transferring latent heat from the first volume of fluid to a third volume of fluid on a top surface of the heat transfer element. The latent heat is released when the first volume of fluid condenses.

Description

200843833 九、發明說明: 【發明所屬之技術領域】 且特定士 — 疋3之,係 效蒸餾的方法及 #务明之實施例大體而言係關於蒸顧, 關於用於在較大範圍之溫度及壓力下之有 裝置。 【先前技術】200843833 IX. Description of the invention: [Technical field to which the invention pertains] and the specific method - 疋3, the method of systemic distillation and the embodiment of the invention are generally related to steaming, for use in a wide range of temperatures and There are devices under pressure. [Prior Art]

已使用許多已知之設備及方法以自流體 (或分離)出流體。舉例而言,可使用已知淡化器來 水以產生具有較低鹽度之淡水從而用於灌溉或飲用之目 的。然而’已知之蒸餾設備及方法通常較為複雜、在高屢 及/或间溫下操作且歸因於低效而需要大量功率。因此, 存在對一種可賦能在較大範圍之溫度及/或壓力下之=效 操作的蒸餾裝置及方法之需要。 > 【發明内容】 在-實施例中,-種方法包括在將—第—體積之流體在 -位於一熱轉移元件上方之區域内自—第二體積之流體蒸 煮出後,將該第-體積之流體自位於該熱轉移元件上方之 區域移至一位力該熱轉移元件下方之區該第一體積之 流體包括-低於該第二體積之流體之—雜質濃度的雜質濃 度。位於該熱卿元件下方t區域具有一高於位於該熱轉 移元件上方之區域之一溫度的溫度。該方法亦包括將潛熱 自該第-體積之流體轉移至位於該熱轉移元件之—頂表面 上的一第三體積之流體。該潛熱係在該第一體積之流體冷 凝時釋放。 126586.doc 200843833 在另一實施例中,一種裝置包括一具有至少一入口及一 出口之外殼。該外殼經組態以經由該入口而接收一體積之 流體。该體積之流體呈'"""大體液悲且该體積之流體中的至 少一部分包括一經溶解之雜質。該裝置亦包括一叙接至該 外殼之一内部體積的熱轉移元件。該熱轉移元件包括一表 面,其至少一部分與一水平平面成一角度而安置。該體積 之流體包括一平行於該水平平面之表面。該裝置進一步包 括一壓縮組件,其經組態以壓縮自該體積之流體蒸煮出之 流體的至少一部分。 在又一貫施例中’一種方法包括接收一來自一安置於一 外殼内之感應器的信號。該外殼包括一蒸煮器部分及一冷 凝器部分。該蒸煮器部分之至少一部分及該冷凝器部分之 至少一部分係由一耦接至該外殼之一内部部分的熱轉移元 件來界定。該方法亦包括回應於該信號來修改該熱轉移元 件相對於一水平平面之一角度以使得一與該熱轉移元件相 關聯之熱轉移速率或一在該外殼内改變相之流體之一流動 速率中的至少一者被修改。 【實施方式】 圖1為說明根據本發明之實施例之蒸餾系統1 〇〇的示意性 方塊圖。在一些實施例中,蒸餾系統亦可被稱作蒸餾單 凡。蒸德系統100經組態以重新使用能量來有效地將—物 質與兩種或兩種以上物質之混合物分離。特定言之,連續 使用在分離處理期間釋放及/或添加至系統之能量來按照 循環方式促進進一步分離。在一些實施例中,蒸餾系統可 126586.doc 200843833 為高效蒸餾系統,其可具有在不同溫度下(例如,在低溫 下或在r§7溫下)及/或不同壓力下(例如,在低壓下或在高壓 下)操作的不同部分。 蒸餾系統1 〇〇包括一熱轉移元件1 20、一壓縮組件1 40及 兩個腔室一腔室110與腔室130。蒸餾系統1〇〇之組件經組態 以按照協調之方式操作而在兩種或兩種以上物質之混合物 的部分循環通過該蒸餾系統100時藉由一物質之相改變而 將该物質與该混合物分離。舉例而言,可在腔室1丨〇内藉 由第一相改變而將該物質與混合物分離。可由在腔室13〇 内因第二相改變而釋放且經由熱轉移元件12〇而自腔室13〇 轉移至腔室1 10的能量來誘發(例如,導致)第一相改變。當 混合物之至少一些部分循環通過蒸餾系統100時,可由壓 縮組件140將能量添加至該等部分中。 在:些實施例中’第一相改變可與第二相改變相反。舉 例而σ,第一相改變可能為自液態至氣態之相改變,且第 :相改變可能為自氣態至液態之相改變,i第一相改變可 :為自广恶至液態之相改變,且第二相改變可能為自液態 之改變。因此,第一相改變可為需要(例如)汽化 (例*,需要/消耗能量)相轉變,而第二相改 轉變:睪放(例如)冷凝之潛熱的放熱(例如’釋放能量)相 作::;:二°°可經組態以在較大範圍之溫度及塵力下操 一者可皆:’洛顧系統100之腔室110及腔室130中的每 、、’悲以在大體低於混合物内之—物質之正常彿點 126586.doc 200843833 之溫度及/或壓力的溫度及/或壓力下操作。在一些實施例 中m统1〇〇之腔室110及腔室13〇可經組態以在與混 合物内之-物質之正常沸點相關聯的溫度及/或壓力下或 在高於該溫度及/或該壓力之溫度及/或壓力下操作。在一 些實施例中’腔室11()及腔室13G可經組態以在由指定間隔 隔開之溫度及/或壓力下操作。 ΓMany known devices and methods have been used to self-fluid (or separate) fluids. For example, a known desiccator can be used to produce fresh water with a lower salinity for irrigation or drinking purposes. However, known distillation apparatus and methods are generally complex, operate at high and/or inter-temperature temperatures, and require a large amount of power due to inefficiency. Accordingly, a need exists for a distillation apparatus and method that can be enabled to operate at a wide range of temperatures and/or pressures. > SUMMARY OF THE INVENTION In an embodiment, the method comprises: after the fluid of the first volume is distilled from the second volume of fluid in a region above the thermal transfer element, the first The volume of fluid moves from a region above the thermal transfer element to a region below the force transfer element. The fluid of the first volume comprises - an impurity concentration below the impurity concentration of the fluid of the second volume. The region of t below the heat-clearing element has a temperature that is higher than the temperature of one of the regions above the thermal transfer element. The method also includes transferring latent heat from the first volume of fluid to a third volume of fluid on a top surface of the heat transfer element. The latent heat is released when the first volume of fluid is condensed. 126586.doc 200843833 In another embodiment, a device includes a housing having at least one inlet and one outlet. The housing is configured to receive a volume of fluid through the inlet. The volume of fluid is '"""<> The device also includes a thermal transfer element that is coupled to the interior volume of one of the housings. The heat transfer element includes a surface at least a portion disposed at an angle to a horizontal plane. The volume of fluid includes a surface that is parallel to the horizontal plane. The apparatus further includes a compression assembly configured to compress at least a portion of the fluid distilled from the volume of fluid. In a consistent embodiment, a method includes receiving a signal from a sensor disposed within a housing. The housing includes a digester portion and a condenser portion. At least a portion of the digester portion and at least a portion of the condenser portion are defined by a thermal transfer element coupled to an interior portion of the outer casing. The method also includes responding to the signal to modify an angle of the thermal transfer element relative to a horizontal plane such that a heat transfer rate associated with the heat transfer element or a flow rate of a fluid that changes phase within the outer casing At least one of them was modified. [Embodiment] Fig. 1 is a schematic block diagram showing a distillation system 1 根据 according to an embodiment of the present invention. In some embodiments, the distillation system may also be referred to as distillation. The steaming system 100 is configured to reuse energy to effectively separate the material from the mixture of two or more substances. In particular, the energy released during the separation process and/or added to the system is used continuously to facilitate further separation in a cyclic manner. In some embodiments, the distillation system can be 126586.doc 200843833 is a high efficiency distillation system that can have different temperatures (eg, at low temperatures or at r § 7 temperatures) and/or at different pressures (eg, at low pressures) Different parts of the operation under or under high pressure. The distillation system 1 includes a heat transfer element 120, a compression assembly 140, and two chambers, a chamber 110 and a chamber 130. The assembly of the distillation system is configured to operate in a coordinated manner and to exchange the substance with the mixture by a phase change of a substance as it is partially circulated through the distillation system 100 as part of a mixture of two or more substances Separation. For example, the substance can be separated from the mixture by a first phase change within the chamber 1 . The first phase change can be induced (e.g., caused) by energy released in the chamber 13A due to a second phase change and transferred from the chamber 13A to the chamber 110 via the thermal transfer element 12A. When at least some portion of the mixture is recycled through the distillation system 100, energy can be added to the portions by the compression assembly 140. In some embodiments, the 'first phase change can be opposite to the second phase change. For example, σ, the first phase change may be a phase change from a liquid state to a gas state, and the first phase change may be a phase change from a gas state to a liquid state, and the first phase change may be: a phase change from a broad to a liquid state, And the second phase change may be a change from a liquid state. Thus, the first phase change may be a need for, for example, vaporization (eg, *required/consumption of energy) phase transitions, while a second phase change transition: exothermic (eg, 'release energy') of the latent heat of condensation (eg, condensation) ::;: 2°° can be configured to operate under a wide range of temperatures and dust forces: 'Look at each of the chamber 110 and the chamber 130 of the system 100, 'sorrow It is operated substantially below the temperature and/or pressure of the temperature and/or pressure of the normal point of the substance in the mixture 126586.doc 200843833. In some embodiments, chamber 110 and chamber 13A can be configured to be at or above and above the temperature and/or pressure associated with the normal boiling point of the substance within the mixture. / or operate at the temperature and / or pressure of the pressure. In some embodiments, chamber 11() and chamber 13G can be configured to operate at temperatures and/or pressures separated by a specified interval. Γ

如圖1中所示,腔室110可經組態以經由入口 m而接收 -體積之混合物,該體積之混合物為流體且其具有一雜質 濃度。雜質可為(例如)以任一相(例如,固體、液體、氣 體)包括於(例如’離子化於、懸浮於)該體積之流體中的一 或多種元素、化合物、物質或材料。可在腔室ιι〇内自該 體積之流體將流體之-部分«錢相,且將其移至壓缩 組件H0内。流體之氣態部分可由壓縮組㈣罐縮且被移 至腔室130中’在腔室130中’隨著流體之氣態部分在熱轉 移元件12〇處冷凝,流體之氣態部分可釋放出熱185。可| 用自流體之冷凝部分釋放出之熱185以進一步誘發依序經 由入口 112而引入腔室110中(例*,在流體之氣態部分於 腔室110内蒸煮之後)之一體積之流體的蒸煮。 自該體積之流體蒸煮出之流體之該部分可被稱作顧出物 且可相對於該體積之流體而具有相㈣低之雜f濃度。換 言之,自該體積之流體蒸煮出的流體之該部分可為大體淨 化之流體’其與原始混合物相比具有相對較低之雜質含 量。在一些實施例中’因為流體之該部分係自該體積之流 體蒸煮出且具有相對較低之雜質濃度,所以原始體積之流 126586.doc -10- 200843833 體之雜質濃度將增大。在一些實施例中,淨化之流體可為 來自蒸鶴系統1 〇 〇之所要產物(例如,目標產物)。具有較高 雜質濃度之該體積之流體可被稱作副產物且可經由出口 Π4而自腔室11〇移除。在一些實施例中,副產物亦可能為 所要之鶴出物或目標鶴出物。 一旦蒸餾系統100達到穩態操作條件,則可使用經由腔 室110及相反之相改變腔室130中之相改變的循環而發生之 連績熱轉移來有效地產生較大體積之餾出物,因為進行相 改變以自一體積之流體獲得餾出物所需要的能量大體上係 由相反相改變來提供。以連續模式操作所需之能量可大體 上等於操作壓縮組件14〇所必需之能量。在一些實施例 中,瘵餾系統1 〇〇可包括一控制系統(未圖示),其經組態以 處理與(例如)瘵德系統丨〇 〇内之一或多種流體之流動及/或 熱轉移相關聯的信號。將結合圖n及圖12來論述與蒸餾系 統100内之控制系統相關的更多細節。 雖然可使用圖1中所示之蒸餾系統1〇〇以在各種應用(例 如,廢水處理)中將各種物質與各種混合物分離(例如,將 甲醇與甲醇”“…勿分離,將汽油與汽油_水混合物分 離,將水與汁液-水混合物分離),然而,結合本發明之實 施例的以下揭示内容將著重於將水與液態之鹽·水化合物 (NaCl-H2〇)分離/自液態之鹽-水化合物蒸餾出水來作為代 表性實例。在-些實施例中,鹽可以(例如)離子化狀態溶 解於水中。 圖2係根據本發明之實施例的經組態以將水與鹽-水分離 126586.doc -11 - 200843833 之蒸餾系統200的示意性說明。在一些實施例中,鹽-水可 具有包括於(例如,溶解於、懸浮於)鹽-水中的其他雜質, 諸如,基於鈣之化合物(例如,氣化鈣(CaCl))、基於锆之 化合物及/或基於鎂之化合物。諸如假想線232之假想線中 之許多者表現與蒸餾系統200相關聯之流體的移動。 如圖2中所示,蒸餾系統200具有一外殼204,外殼具有 一蒸煮器部分206及一冷凝器部分208。可藉由(例如)泵(未 圖示)經由入口 282而將流入之鹽,水流273移入外殼204之蒸 煮器部分206中的一體積之鹽-水272中。當該體積之鹽-水 272位於蒸煮器部分206中之熱轉移元件220上方時,熱經 由熱轉移元件220而轉移至鹽-水272以使得可將淡水蒸汽 自鹽-水272蒸煮出且可將其移入壓縮組件240中(232)。可 由壓縮組件240將淡水蒸汽吸入(例如,抽入)壓縮組件240 中0 該淡水蒸汽由壓縮組件240壓縮以使得壓縮組件240之出 口 244處之淡水蒸汽的溫度及/或壓力高於壓縮組件240之 入口 242處之淡水蒸汽的溫度及/或壓力。隨著淡水蒸汽移 動通過壓縮組件240,壓縮組件240之機械能量使淡水蒸汽 之溫度及/或壓力增大。在一些實施例中,當淡水蒸汽由 壓縮組件240壓縮時,淡水蒸汽之體積減小了高達二分之 ^― 〇 經壓縮之淡水蒸汽移入外殼204之冷凝器部分208中 (234),且接觸熱轉移元件220之底表面以使得經壓縮之淡 水蒸汽可冷凝且落入外殼204之淡水收集部分209中的一體 126586.doc -12- 200843833 積之淡水270中(236)。淡水收集部分2〇9亦可被稱作淡水儲 集器、淡水容器或淡水貯槽。可由(例如)泵(未圖示)經由 出口 284而將淡水270在流出淡水275流中自外殼2〇4移除。 隨著淡水蒸汽自鹽·水272蒸煮出,鹽_水272中之鹽之濃 度增大,直至鹽-水272變為鹽水274為止。在一些實施例 中,鹽水274可為以鹽達飽和或近乎以鹽達飽和之水。可 由(例如)泵(未圖示)經由出口 286而將鹽水274作為流出之 鹽水流277自外殼移除。在一些實施例中,可藉由重力來 移除流出之鹽水流277。在一些實施例中,鹽水274可含有 (例如)以重量計約25%之鹽。在一些實施例中,可將鹽水 274作為用於醫用目的、烹調目的、在油萃取過程(未圖 不)、在熱交換過程(未圖示)中之產物及/或作為化學過程 (未圖示)中之反應物來出售。 雖然自鹽-水272蒸煮出之水及在熱轉移元件22〇處冷凝 之水分別被稱作淡水蒸汽及淡水,然而,淡水蒸汽及淡水 可包括一些雜質。然而,雜質之濃度(例如,基於莫耳之 濃度、基於重量之濃度)可顯著低於鹽-水272中之雜質的濃 度。換言之,淡水之鹽度可低於鹽-水272之鹽度。換言 之,淡水蒸汽及/或淡水可具有一鹽濃度,該鹽濃度低於 鹽-水272在自鹽·水272蒸煮出淡水蒸汽之前的鹽濃度。 可幾乎完全使用因來自壓縮組件240之經壓縮之蒸汽的 冷凝而釋放之潛熱而自熱轉移元件22〇上方之鹽-水272蒸 煮出淡水蒸汽。換言之,使鹽-水272中之液態水吸熱相轉 、又成淡水蒸汽所需要的能量/熱可大體上藉由使氣態經壓 126586.doc -13- 200843833 縮之蒸汽放熱相轉變成液態水(例如,經冷凝之淡水270)而 產生之能量/熱來提供。在一些實施例中,流體(例如,鹽-水、蒸汽等等)流至外殼204、自外殼204流出及/或在外殼 204内流動之速率可經界定以使得淡水蒸汽幾乎完全係因 來自壓縮組件240之經壓縮之蒸汽(以線234展示)的冷凝而 產生之熱而蒸煮出。 如圖2中所示,熱轉移元件220相對於水平平面226具有 一傾斜表面。在一些實施例中,熱轉移元件2 2 0之相對於 水平平面226的角度224可為數度(例如,1度、15度、45度) 或甚至一度之分數。熱轉移元件220之斜面經設計以藉由 賦能熱經由熱轉移元件220轉移至鹽-水272之較淺深度222 而促進自鹽-水272蒸煮出淡水蒸汽。在此實施例中,鹽-水 272之表面與熱轉移元件220在零深度點228處相交。在一 些實施例中,鹽水272之深度222可一英吋之分數(例如, 0.1英吋)與數英吋(例如,2.2英吋、5英吋)之間。 可直接使用經由熱轉移元件220而轉移之熱中的較高百 分比來導致蒸煮,因為熱轉移元件220之全部或部分上的 鹽-水272之深度222較淺。換言之,較淺深度222促進有效 之熱轉移。具體言之,當新的較冷之流入之鹽-水273經由 入口 282而流入外殼204之蒸煮器部分206中的該體積之鹽-水272中時,熱之效應將不會由於傳導至該流入之鹽-水 273而被顯著抵銷。且,當鹽-水272之深度222較淺時,在 外殼204之蒸煮器部分206内之蒸煮將不會顯著受到與鹽-水272之深度222相關之靜壓力的抑制。 126586.doc -14- 200843833As shown in Figure 1, the chamber 110 can be configured to receive a mixture of - volume via the inlet m, the volume of the mixture being a fluid and having an impurity concentration. The impurity can be, for example, one or more elements, compounds, substances or materials that are included (e.g., 'ionized, suspended in) the volume of fluid in any phase (e.g., solid, liquid, gas). The portion of the fluid can be phased from the volume of fluid in the chamber and moved into the compression assembly H0. The gaseous portion of the fluid can be canned by the compression group (4) and moved into the chamber 130 'in the chamber 130. As the gaseous portion of the fluid condenses at the thermal transfer element 12, the gaseous portion of the fluid can release heat 185. Heat 185 released from the condensing portion of the fluid to further induce a volume of fluid introduced into the chamber 110 via the inlet 112 (eg, after cooking in the gaseous portion of the fluid in the chamber 110) Cooking. This portion of the fluid that is cooked from the volume of fluid can be referred to as a take-up and can have a phase (d) low mis-f concentration relative to the volume of fluid. In other words, the portion of the fluid that is cooked from the volume of fluid can be a substantially purified fluid' which has a relatively low impurity content compared to the original mixture. In some embodiments' because the portion of the fluid is cooked from the volume of the fluid and has a relatively low impurity concentration, the impurity concentration of the original volume stream 126586.doc -10- 200843833 will increase. In some embodiments, the purified fluid can be the desired product (e.g., the target product) from the steamer system. The volume of fluid having a higher impurity concentration can be referred to as a by-product and can be removed from the chamber 11 through the outlet port 4 . In some embodiments, the by-product may also be the desired crane or target crane. Once the distillation system 100 reaches steady state operating conditions, a continuous volume heat transfer that occurs via a change in the phase in the chamber 110 and the opposite phase changing chamber 130 can be used to efficiently produce a larger volume of distillate, The energy required to effect a phase change to obtain a distillate from a volume of fluid is generally provided by a change in the opposite phase. The energy required to operate in a continuous mode can be substantially equal to the energy necessary to operate the compression assembly 14〇. In some embodiments, the retort system 1 〇〇 can include a control system (not shown) configured to handle flow and/or flow of one or more fluids, for example, within a 瘵 system Thermal transfer associated signals. More details regarding the control system within the distillation system 100 will be discussed in conjunction with Figures n and 12. Although the distillation system shown in Figure 1 can be used to separate various materials from various mixtures in various applications (e.g., wastewater treatment) (e.g., methanol and methanol) "...do not separate, gasoline and gasoline _ The water mixture separates and separates the water from the juice-water mixture. However, the following disclosure in connection with embodiments of the present invention will focus on the separation of water from the liquid salt/water compound (NaCl-H2)/from the liquid salt. - Water compound distilled water as a representative example. In some embodiments, the salt can be dissolved in water, for example, in an ionized state. 2 is a schematic illustration of a distillation system 200 configured to separate water from salt-water 126586.doc -11 - 200843833, in accordance with an embodiment of the present invention. In some embodiments, the salt-water may have other impurities included in (eg, dissolved in, suspended in) the salt-water, such as a calcium-based compound (eg, calcium carbonate (CaCl)), a zirconium-based compound And / or based on magnesium compounds. Many of the imaginary lines, such as imaginary line 232, exhibit movement of fluid associated with distillation system 200. As shown in Figure 2, distillation system 200 has a housing 204 having a digester portion 206 and a condenser portion 208. The influent salt, stream 273, can be moved into a volume of salt-water 272 in the digester portion 206 of the outer casing 204 via, for example, a pump (not shown) via inlet 282. When the volume of salt-water 272 is located above the heat transfer element 220 in the digester section 206, heat is transferred to the salt-water 272 via the heat transfer element 220 such that fresh water vapor can be cooked from the salt-water 272 and It is moved into compression component 240 (232). The fresh water vapor may be drawn into (eg, drawn into) the compression assembly 240 by the compression assembly 240. The fresh water vapor is compressed by the compression assembly 240 such that the temperature and/or pressure of the fresh water vapor at the outlet 244 of the compression assembly 240 is higher than the compression assembly 240. The temperature and/or pressure of the fresh water vapor at inlet 242. As the fresh water vapor moves through the compression assembly 240, the mechanical energy of the compression assembly 240 increases the temperature and/or pressure of the fresh water vapor. In some embodiments, when the fresh water vapor is compressed by the compression assembly 240, the volume of fresh water vapor is reduced by up to two-thirds of the compressed fresh water vapor moved into the condenser portion 208 of the outer casing 204 (234), and the contact heat The bottom surface of the transfer element 220 is such that the compressed fresh water vapor can condense and fall into the integral 126586.doc -12- 200843833 fresh water 270 (236) in the fresh water collection portion 209 of the outer casing 204. The fresh water collection section 2〇9 may also be referred to as a fresh water reservoir, a fresh water container or a fresh water storage tank. The fresh water 270 can be removed from the outer casing 2〇4 in the flow of fresh water 275 from the outlet 284 by, for example, a pump (not shown). As the fresh water vapor is distilled from the salt water 272, the concentration of the salt in the salt_water 272 increases until the salt-water 272 becomes the brine 274. In some embodiments, the brine 274 can be water that is saturated with salt or nearly saturated with salt. The brine 274 can be removed from the outer casing as an effluent brine stream 277 via, for example, a pump (not shown) via an outlet 286. In some embodiments, the effluent brine stream 277 can be removed by gravity. In some embodiments, the brine 274 can contain, for example, about 25% salt by weight. In some embodiments, the brine 274 can be used as a product for medical purposes, for cooking purposes, in an oil extraction process (not shown), in a heat exchange process (not shown), and/or as a chemical process (not The reactants in the illustration) are for sale. Although the water distilled from the salt-water 272 and the water condensed at the heat transfer member 22 are referred to as fresh water vapor and fresh water, respectively, fresh water vapor and fresh water may include some impurities. However, the concentration of impurities (e.g., based on molar concentration, concentration based on weight) can be significantly lower than the concentration of impurities in the salt-water 272. In other words, the salinity of fresh water can be lower than the salinity of salt-water 272. In other words, fresh water vapor and/or fresh water may have a salt concentration that is lower than the salt concentration of salt-water 272 prior to cooking fresh water vapor from salt water 272. The fresh water vapor can be distilled from the salt-water 272 above the heat transfer element 22 from the latent heat released by the condensation of the compressed steam from the compression assembly 240. In other words, the energy/heat required to cause the liquid water in the salt-water 272 to endotherm and turn into fresh water vapor can be substantially converted into liquid water by the vaporization exotherm of the gaseous pressure 126586.doc -13 - 200843833 Energy/heat generated by (eg, condensed fresh water 270) is provided. In some embodiments, the rate at which fluid (eg, salt-water, steam, etc.) flows to the outer casing 204, out of the outer casing 204, and/or flows within the outer casing 204 can be defined such that fresh water vapor is almost entirely due to compression The heat generated by the condensation of the compressed vapor (shown by line 234) of assembly 240 is cooked. As shown in Figure 2, the thermal transfer element 220 has an inclined surface with respect to the horizontal plane 226. In some embodiments, the angle 224 of the thermal transfer element 220 with respect to the horizontal plane 226 can be a fraction of a number (e.g., 1 degree, 15 degrees, 45 degrees) or even a degree. The bevel of the thermal transfer element 220 is designed to facilitate the cooking of fresh water vapor from the salt-water 272 by transfer of heat of application via the thermal transfer element 220 to the shallower depth 222 of the salt-water 272. In this embodiment, the surface of salt-water 272 intersects heat transfer element 220 at zero depth point 228. In some embodiments, the depth 222 of the brine 272 can be between one fraction (e.g., 0.1 inch) and several inches (e.g., 2.2 inches, 5 inches). The higher percentage of heat transferred via heat transfer element 220 can be used directly to cause cooking because the depth 222 of salt-water 272 over all or a portion of heat transfer element 220 is shallow. In other words, the shallower depth 222 promotes efficient heat transfer. In particular, when a new cooler influent salt-water 273 flows into the volume of salt-water 272 in the digester portion 206 of the outer casing 204 via the inlet 282, the effect of heat will not be transferred to the The inflow of salt-water 273 was significantly offset. Also, when the depth 222 of the salt-water 272 is shallow, cooking in the digester portion 206 of the outer casing 204 will not be significantly inhibited by the static pressure associated with the depth 222 of the salt-water 272. 126586.doc -14- 200843833

k熱轉移70件220可由-種材料建構而成,該材料促進自 :殼_之冷凝器部分向蒸素器部分2〇6之有效執轉 =具體言之’熱轉移元件22。之材料可經選擇以使得孰 轉“件220之熱傳導性相對較高且將不會導致不欲之: 嶋失。舉例而言,熱轉移元件22〇可由純金屬及/或合 金(其可包括諸如銅、銀、金及/或紹之物質)建構而成。 且’熱轉移it件220可相對較薄以使得熱轉移元件22〇將進 1促進所要程度之有效熱轉移。在—些實施例中,舉例 而言,熱轉移元件可為一英吋之分數(例如,1/8英吋、 1/32英吋)。在一些實施例中,熱轉移元件220可為或可包 括基於聚合物之材料。 實施例中,熱轉移元件22〇完全安置在外殼2〇4内且 界疋瘵餾系統200之蒸煮器部分2〇6的至少一部分及冷凝器 部分208的至少-部 >。舉例而纟,熱轉移元件22〇之頂表 面界疋蒸煮器部分206之底部邊界,且熱轉移元件22〇之底 表面界定冷凝器部分2〇8之頂部邊界。 在些貝施例中,熱轉移元件220之形狀可經修改以使 得石亚揎熱轉移元件220之底表面的經壓縮之淡水蒸汽將被 引導至熱轉移元件220上之特定位置上。在一些實施例 中,熱轉移元件220可在熱轉移元件22〇之不同部分上具有 不同(例如,I化之)厚度及/或形狀以使得不同部分將具有 不同之熱轉移特徵。熱轉移特徵可根據蒸煮器部分2〇6及/ 或冷凝器部分208内之溫度及/或壓力梯度而變化。結合後 續圖式來論述各種形狀及類型之熱轉移元件。 126586.doc -15 - 200843833 在一些實施例中,蒸餾系統200可具有一分配組件(未圖 不)以促進將來自壓縮組件240之經壓縮之蒸汽分配在熱轉 矛夕元件220之底表面上(以線234展示)。舉例而言,分配組 件可經組態以導致經壓縮之蒸汽沿著熱轉移元件22〇之底 表面而大體均勻地分配或以特定樣式在熱轉移元件22〇上 分配。在一些實施例中,分配組件可經組態以基於蒸煮器 部分206及/或冷凝器部分2〇8内之指定壓力梯度及/或溫度The k heat transfer 70 member 220 can be constructed from a material that facilitates efficient transfer from the condenser portion of the shell to the vaporizer portion 2〇6, specifically the 'thermal transfer element 22. The material may be selected such that the thermal conductivity of the member 220 is relatively high and will not cause undesirable: loss. For example, the thermal transfer element 22 may be a pure metal and/or alloy (which may include Constructed such as copper, silver, gold, and/or materials. And the 'thermal transfer element 220 can be relatively thin so that the heat transfer element 22 will promote the desired degree of efficient heat transfer. In an example, for example, the thermal transfer element can be a fraction of one inch (eg, 1/8 inch, 1/32 inch). In some embodiments, the thermal transfer element 220 can be or can include an aggregation based The material of the material. In the embodiment, the heat transfer element 22 is disposed entirely within the outer casing 2〇4 and at least a portion of the digester portion 2〇6 of the retort system 200 and at least a portion of the condenser portion 208>. By way of example, the top surface of the thermal transfer element 22 is bounded by the bottom boundary of the digester portion 206, and the bottom surface of the thermal transfer element 22 defines the top boundary of the condenser portion 2 〇 8. In some examples, heat The shape of the transfer element 220 can be modified to make the heat of the stone The compressed fresh water vapor of the bottom surface of the shifting element 220 will be directed to a particular location on the thermal transfer element 220. In some embodiments, the thermal transfer element 220 can be different on different portions of the thermal transfer element 22( For example, the thickness and/or shape is such that different portions will have different heat transfer characteristics. The heat transfer characteristics may be based on temperature and/or pressure gradients within the digester portion 2〇6 and/or the condenser portion 208. Variations. Heat transfer elements of various shapes and types are discussed in conjunction with subsequent figures. 126586.doc -15 - 200843833 In some embodiments, distillation system 200 can have a dispensing assembly (not shown) to facilitate the coming from compression assembly 240. The compressed vapor is distributed on the bottom surface of the heat-transfer element 220 (shown by line 234). For example, the dispensing assembly can be configured to cause the compressed vapor to follow the bottom surface of the thermal transfer element 22 While being substantially evenly distributed or dispensed in a particular pattern on the thermal transfer element 22A. In some embodiments, the dispensing assembly can be configured to be based on the digester portion 206 and/or the condenser. Points within the specified pressure gradient 2〇8 and / or the temperature

梯度而將經壓縮之蒸汽分配在熱轉移元件22〇之底表面上 及/或將經壓縮之蒸汽分配在熱轉移元件22〇之底表面上以 在蒸煮器部分206及/或冷凝器部分2〇8内形成指定壓力梯 度及/或溫度梯度。 —在-些實施例巾,分§&組件可經組態以迫使經壓縮之蒸 汽碰撞熱轉移元件220之底表面以促進冷凝。舉例而言, 可迫使經壓縮之蒸汽到達熱轉移元件220之底表面以^可 抑制冷凝之物質(例如,沈殿物 ' 經冷凝之淡水)移離熱轉 私7L件220之底表面。結合圖6八及圖6D而論述於分配組件 相關之更多細節。 蒸餾系統200之組件可由各種材料建構而成,諸如(例 如)金屬、橡膠及/或基於聚合物之材娜,丙烯酸類聚 合物、聚乙稀、玻璃_維、 、 士 离義維)。舉例而言,蒸餾系統200之外 设2〇4可由諸如鐵氟龍 α # 次聚本乙烯之塑膠材料建構而成, 且瘵餾系統200之管線可盔| 戍了為基於聚氣乙烯(PVC)之材料。 如圖2中所示,來自屮 自出口 286之流出之鹽水流277 之淡水流275及流入之蹿 1出 现水机273經組態以在熱交換器260 126586.doc -16- 200843833 中交換熱。熱交換器260經組態以將來自流出之鹽水流277 及流出之淡水流275中的熱與流入之鹽-水流273交換而預 先加熱流入之鹽·水流273。藉由在流入之鹽-水流273進入 蒸煮器部分206之前將熱轉移至該鹽-水流273,流入之鹽-水流273之溫度可處於或大體接近於水在蒸餾系統200之蒸 煮器部分206之操作壓力下的沸點。因此,僅需要相對較 小量之熱(例如,冷凝之潛熱)來導致鹽-水2 7 2沸騰。可由 壓縮組件240將該小量熱添加至經壓縮之蒸汽中,該經壓 縮之蒸汽最終在經壓縮之蒸汽於熱轉移元件220處冷凝時 將熱釋放至鹽-水272中以導致其沸騰。此情形在邏輯上遵 循,當流入之鹽-水流273(其饋入鹽-水272中)接近所要沸 點時(例如,沸騰所要之溫度及/或壓力)時,壓縮組件240 所使用之能量可減少。 在一些實施例中,熱交換器260可經組態以使用來自蒸 餾系統200之外部的能量來預先加熱流入之鹽·水流273。 舉例而言,熱交換器260可經組態以使用太陽能(未圖示)或 來自單獨處理(未圖示)之輸出(例如,廢流、低級廢熱)的 能量而在外殼204之蒸煮器部分206的指定操作壓力下將流 入之鹽-水流273預先加熱至所要溫度。在一些實施例中, 熱交換器260可為(例如)殼管型熱交換器、板狀熱交換器及 /或再生式熱交換器。 在一些實施例中,除熱交換器260以外或替代熱交換器 260,蒸餾系統200之組件中的一或多者可經組態以使用自 蒸餾系統200周圍之環境中捕獲的能量。舉例而言,可藉 126586.doc 17 200843833 由風能、太陽能及/或來自單獨處理(未圖示)之輸出(例 如,廢流)的能量而對與蒸餾系統200之操作相關聯的一或 夕個泵(未圖不)、控制單元(未圖示)及/或感應器(未圖示) 提供動力。可藉由諸如電池組及/或燃料電池之能量儲存 没備而對蒸餾系統2〇〇之組件中的一或多者提供動力。 蒸餾系統200可經組態以在較大範圍之溫度及壓力下自 孤水272產生淡水。在此實施例中,蒸餾系統2⑼之一或 夕個^ 7刀(例如,蒸煮器部分206、冷凝器部分2〇8)可經組 悲以在大體低於與水之正常彿點相關聯之溫度及/或壓力 的皿度及/或壓力下操作。舉例而言,蒸煮器部分可經 、、且也、以在大體低於標準大氣壓力(例如,丨大氣壓)之指定壓 力下操作。在一些實施例中,蒸餾系統2〇〇之一或多個部 分(例如,蒸煮器部分206、冷凝器部分2〇8)可經組態以在 大體處於或回於與水之正常沸點相關聯之溫度及/或壓力 的溫度及/或壓力下操作。 蒸餾系統200可經組態以使得蒸煮器部分2〇6與冷凝器部 分208在以指定間隔隔開之溫度下操作及/或在以指定間隔 隔開之塵力下操作。舉例而纟,蒸煮器部分鳩與冷凝器 部分208可經組態以在以數度(例如,數華氏度(f)、數飢氏 度(K))隔開之溫度下操作。在—些實 與冷凝器部分·可經組態以在以—厂堅力二^ 碎每平方英料對μ力(㈣單位、毫米汞柱(mmHg)單位) 之分數隔開的塵力下操作。可藉由來自壓縮組件24〇之機 械能量來提供在蒸煮器部分206與冷凝器部分2〇8之間導致 126586.doc -18- 200843833 壓力差及/或溫度差的能量。 圖3說明根據本發明之實施例的可用以判定蒸顧系統之 至少-部分之操作點的蒸汽飽和度表。可藉由(例如)操作 壓力、操作溫度、操作濕度等等之組合來界定操作點。蒸 餾系統可為(例如)圖2中所示之蒸顧系、統200。可藉由以; 方式來選擇蒸煮器部分2〇6及冷凝器部分2〇8之各別操作 點:〇)使用圖3中所示之飽和度表來選擇蒸煮器部分206操 作點;及(2)基於蒸煮器部分2〇6操作點來計算冷凝器部分 2〇8操作點。可基於若干因素(例如,包括熱轉移元件“ο 之熱轉移特徵及汽化熱歸因於雜質而發生之改變)而自蒸 煮器部分206操作點來計算冷凝器部分2〇8之操作點。 舉例而言,在0.5 psia及78T之操作點(展示於3〇6處), 需要1096.4個英熱單位(BTU)來導致在蒸煮器部分2〇6處之 發生一磅(lb)之液態水之相政變。若熱轉移元件22〇之熱轉 移效率為99·91%,且鹽·水272内之雜質使汽化熱增加了 0.14%,則熱轉移元件22〇之冷凝器側所需要以導致汽化的 熱為1098.9 BTU/lb。基於飽和度表,冷凝器部分2〇8處之 操作點應為〇·6 psia及85卞(展示於3〇8處)以滿足此熱要 求。冷凝器部分206在稍高之穩態溫度及壓力下操作以使 得在冷凝為部分208中因冷凝而產生之熱將經由熱轉移元 件220而轉移至蒸煮器部分2〇6。在一些實施例中,減小熱 轉移元件220之厚度可增大熱轉移元件22〇之效率。 返回參看圖2,在一些實施例中,可大體上由壓縮組件 產生蒸煮器部分206與冷凝器部分208之操作點的溫度 126586.doc •19- 200843833 差及/或壓力差。換言之’可將能量添加至自蒸煮器部分 206移至冷凝器部分208之流體(例如,淡水蒸汽)以維持操 作點之不同條件。在一些實施例中,蒸餾系統2〇〇之蒸煮 器部分206可能在高溫及/或高壓下操作,且蒸鶴系統2〇〇 之冷凝裔部分2 0 8可能在低溫及/或低壓下操作;且蒸鶴季 統200之蒸煮器部分206可能在低溫及/或低壓下操作,且 蒸餾系統200之冷凝器部分208可能在高溫及/或高壓下操 作。 若蒸煮器部分2 0 6經組態以在一大體低於標準大氣壓力 之低壓下操作,則該低壓可藉由流入之鹽-水273流的重量 來維持/產生。雖然圖2中未圖示,但蒸餾系統2〇〇可經組 態以使得流入之鹽-水273為具有一重量之流入之鹽-水的水 柱(column),其由蒸煮器部分2〇6中之壓力而懸浮在蒸煮器 部分206之下方。此外,流入之鹽_水273流之水柱的高度 可經界定以形成蒸煮器部分2〇6内之指定低壓。蒸餾單元 200之諸如流出之鹽水277流的其他流可以類似方式組態以 輔助在蒸煮器部分206内維持/界定低壓。可使用流出之淡 水275之重量來維持/界定冷凝器部分2〇8中之指定壓力。 在一些貫施例中,蒸餾系統200可在指定溫度及/或壓力 下操作以大體防止特定不欲之副作用。在一些實施例中, 蒸餾系統200可經組態以在指定溫度及/或在指定壓力下操 作以防止不同化合物(例如,基於鎂之化合物)之沈澱及/或 /合解舉例而$ ’蒸餾系統2〇〇可經組態以在低於185T之 1度下操作以使得可能存在於鹽-水π]中之雜質(諸如,基 126586.doc -20- 200843833 化合物)將不會沈澱。在—些實施例中,舉例而 g ’蒸煮器部分206可經組態以在高於指定溫度之溫度下 知作=使得特定雜質(例如,微生物、細菌)將被破壞。 ^車之在療岛系統200在高溫下操作之情況,可藉由在 車乂低溫度下操作來減小蒸顧系統2〇〇與⑽如)周圍環境之絕 緣。 在:些實施例中,淡水蒸汽在熱轉移元件220之底表面 处、"是可輔助在(例如)蒸鶴系統2〇〇之冷凝器部分2⑽處維 2低㈣境。換言之,當經壓縮之蒸汽冷凝時,大量經壓 縮之蒸汽收縮成液體可形成負壓環境,該負壓環境可減小 蒸餾系統200之冷凝器部分208之壓力。 在:些實施例中,隨著流出之鹽水流277被抽汲出外殼 綱之療煮器部分2〇6,夕卜殼2〇4之蒸煮器部分施内之壓力 1減小。在一些實施例中,鹽水流277之流動速率可經調 =以辅助在外殼204之蒸煮器部分206内維持低壓操作環 ^在一些實施例中,蒸餾系統200可在啟動序列之後連 續:在穩態下操作。在-些實施例中,穩態期間所需要之 此里大體上係操作壓縮組件24〇所需要之能量。結合圖" 來論述與啟動序列相關之更多細節。 。在些實施例中,壓縮組件24〇可具有諸如圖4中所示之 單凋改紇之壓力差對流動速率特徵的單調改變之壓力差對 抓動速率特仏支。圖4為說明根據本發明之實施例的與塵縮 线相關聯之特徵化曲線42〇的示意圖。如圖4中戶韓,麼 备百組件之壓力差(Δρ)(展示於y軸上)隨著通過壓縮組件之流 126586.doc -21 - 200843833 動速率(展示於x轴上)之增大而單調減小。壓力差為壓縮,且 件之出口與壓縮組件之入口之間的壓力差。壓縮組件之單 肩改又之特欲促進线系統(例如,圖i中所示之蒸館系統 100)之穩疋性,尤其當蒸館系統在低温及/或在低壓下操作 時更為如此。 在-些情形下’當蒸館系統之外般中之壓力將(例如)出 . 丨意料地降低時,不具有單調改變之壓力差對㈣速㈣ , 的壓縮組件可能以不穩定之方式在流動速率之間振盈。 ( ㈣型之振盪可導致蒸餾系統無法產生餾出物或產生不欲 之餾出物,因為歸因於不一致之流動而無法得到連續之相 改變能量。 在一些實施例中,壓縮組件240可包括一或多個壓縮機 (例如,分級壓縮機)及/或一或多個閥控組件(未圖示)。壓 縮組件240可為(例如)離心壓縮機、液壓壓縮機、對角線或 混合流壓縮機、軸流式壓縮機、往復壓縮機、旋轉螺旋壓 縮機、渦旋式壓縮機、瓣型壓縮機(例如,羅茨(roots)鼓風 機)及/或隔膜壓縮機。在一些實施例中,壓縮組件24〇可包 括協調之閥門之系統,諸如圖8中所示並結合圖8而描述的 ‘ 協調之閥門之系統。 、在一些實施例中,壓縮組件240可安置在蒸餾系統2〇〇之 外殼204内。在一些實施例中,藉由將壓縮組件24〇安置在 外殼204内,可減輕或完全避免與(例如)壓縮組件24〇内之 較小漏玫相關聯的問題。舉例而言,壓縮組件24〇可包括 一安置於外殼204内的液壓馬達。在一些實施例中,由壓 126586.doc -22- 200843833 :組件240之機械部分產生之熱可轉移至鹽-水m以進一 在外成204之療煮器部分2()6處之蒸煮。在—些實施 例中’安置於外殼204之外部的馬達可磁性㈣接至_(或 多個)安置於外殼204内且經組態以壓縮淡水蒸汽的螺旋举 或扇葉。 、The compressed vapor is distributed over the bottom surface of the thermal transfer element 22 and/or the compressed vapor is distributed over the bottom surface of the thermal transfer element 22 to the digester portion 206 and/or the condenser portion 2 A specified pressure gradient and/or temperature gradient is formed within the crucible 8. - In some embodiments, the § & components can be configured to force compressed vapor to impinge on the bottom surface of the thermal transfer element 220 to promote condensation. For example, the compressed vapor can be forced to reach the bottom surface of the thermal transfer element 220 to remove the condensed material (e.g., the condensed fresh water) from the bottom surface of the thermal transfer 7L member 220. More details regarding the assignment of components are discussed in conjunction with Figures 6-8 and 6D. The components of the distillation system 200 can be constructed from a variety of materials such as, for example, metal, rubber, and/or polymer based materials, acrylic polymers, polyethylene, glass, and sigma. For example, the distillation system 200 may be constructed of a plastic material such as Teflon α #次聚乙乙, and the pipeline of the distillation system 200 may be helmeted | ) material. As shown in Figure 2, the fresh water stream 275 from the effluent brine stream 277 from the outlet 286 and the inflow 蹿 1 water generator 273 are configured to exchange heat in the heat exchanger 260 126586.doc -16 - 200843833 . The heat exchanger 260 is configured to preheat the influent salt/water stream 273 by exchanging heat from the effluent brine stream 277 and the effluent fresh water stream 275 with the incoming salt-water stream 273. By transferring heat to the salt-water stream 273 before the incoming salt-water stream 273 enters the digester portion 206, the temperature of the influent salt-water stream 273 can be at or substantially close to the water in the digester portion 206 of the distillation system 200. The boiling point under operating pressure. Therefore, only a relatively small amount of heat (e.g., latent heat of condensation) is required to cause the salt-water to boil. The small amount of heat can be added to the compressed steam by compression assembly 240, which ultimately releases heat into the salt-water 272 as it condenses at the heat transfer element 220 to cause it to boil. This situation is logically followed by the energy used by the compression assembly 240 when the incoming salt-water stream 273 (which is fed into the salt-water 272) approaches the desired boiling point (e.g., the desired temperature and/or pressure for boiling). cut back. In some embodiments, heat exchanger 260 can be configured to preheat the influent salt/water stream 273 using energy from the exterior of distillation system 200. For example, heat exchanger 260 can be configured to use solar energy (not shown) or energy from separate processing (not shown) output (eg, waste stream, low level waste heat) in the digester portion of outer casing 204. The incoming salt-water stream 273 is preheated to the desired temperature at a specified operating pressure of 206. In some embodiments, heat exchanger 260 can be, for example, a shell and tube heat exchanger, a plate heat exchanger, and/or a regenerative heat exchanger. In some embodiments, one or more of the components of distillation system 200, in addition to or in lieu of heat exchanger 260, can be configured to use energy captured in the environment surrounding self-distillation system 200. For example, one or one associated with the operation of distillation system 200 may be utilized by 126586.doc 17 200843833 by wind, solar energy, and/or energy from an output (eg, waste stream) from a separate process (not shown). Power is provided by a pump (not shown), a control unit (not shown), and/or a sensor (not shown). One or more of the components of the distillation system 2 can be powered by energy storage, such as a battery pack and/or a fuel cell. Distillation system 200 can be configured to produce fresh water from solitary water 272 over a wide range of temperatures and pressures. In this embodiment, one of the distillation systems 2 (9) or the kiln 7 (eg, the digester portion 206, the condenser portion 2 〇 8) may be grouped to be substantially lower than the normal point of view with water. Operating at a temperature and/or pressure of the dish and/or pressure. For example, the digester section can be operated via, and also at, a specified pressure substantially below a standard atmospheric pressure (e.g., helium atmosphere). In some embodiments, one or more portions of the distillation system 2 (eg, digester portion 206, condenser portion 2〇8) can be configured to be substantially at or return to the normal boiling point of water. Operating at temperatures and/or pressures of temperature and/or pressure. The distillation system 200 can be configured to operate the digester section 2〇6 and the condenser section 208 at temperatures separated by a specified interval and/or under dust forces spaced apart at specified intervals. By way of example, the digester section and condenser section 208 can be configured to operate at temperatures separated by a few degrees (e.g., several degrees Fahrenheit (f), number of hunger (K)). In the case of some solids and condensers, it can be configured to be separated by a fraction of the force of (units, millimeters of mercury (mmHg) per square inch of material. operating. Energy that causes a pressure differential and/or temperature difference between 126586.doc -18-200843833 between digester portion 206 and condenser portion 2〇8 can be provided by mechanical energy from compression assembly 24〇. Figure 3 illustrates a steam saturation table that can be used to determine at least a portion of the operating point of the steaming system in accordance with an embodiment of the present invention. The operating point can be defined by, for example, a combination of operating pressure, operating temperature, operating humidity, and the like. The distillation system can be, for example, the vaporization system 200 shown in Figure 2. The respective operating points of the digester section 2〇6 and the condenser section 2〇8 can be selected by: 〇) using the saturation table shown in FIG. 3 to select the operating point of the digester section 206; 2) Calculate the condenser section 2〇8 operating point based on the digester section 2〇6 operating point. The operating point of the condenser portion 2〇8 can be calculated from the operating point of the digester portion 206 based on several factors (e.g., including the heat transfer characteristics of the heat transfer element " and the change in vaporization heat due to impurities). For the 0.5 psia and 78T operating points (shown at 3〇6), 1096.4 British thermal units (BTU) are required to cause one pound (lb) of liquid water to occur at the digester section 2〇6. If the heat transfer efficiency of the heat transfer element 22 is 99.91%, and the impurities in the salt water 272 increase the heat of vaporization by 0.14%, the condenser side of the heat transfer element 22 is required to cause vaporization. The heat is 1098.9 BTU/lb. Based on the saturation table, the operating point at the condenser section 2〇8 should be 〇·6 psia and 85卞 (shown at 3〇8) to meet this thermal requirement. Condenser section 206 Operating at a slightly higher steady state temperature and pressure such that heat generated by condensation in the condensation portion 208 will be transferred to the digester portion 2〇6 via the heat transfer element 220. In some embodiments, the heat is reduced The thickness of the transfer element 220 increases the efficiency of the thermal transfer element 22 Referring back to Fig. 2, in some embodiments, the temperature of the operating point of the digester portion 206 and the condenser portion 208 can be substantially generated by the compression assembly 126586.doc • 19- 200843833 Poor and/or pressure differential. In other words, Energy is added to the fluid (e.g., fresh water vapor) that is moved from the digester portion 206 to the condenser portion 208 to maintain different conditions at the operating point. In some embodiments, the digester portion 206 of the distillation system 2 may be at a high temperature. And/or operating at high pressure, and the condensing portion of the steaming crane system 2 may operate at low temperature and/or low pressure; and the digester portion 206 of the steaming crane system 200 may be at low temperature and/or low pressure. Operation, and the condenser portion 208 of the distillation system 200 may operate at high temperatures and/or high pressures. If the digester portion 206 is configured to operate at a low pressure substantially below the standard atmospheric pressure, the low pressure may be borrowed Maintained/produced by the weight of the influent salt-water stream 273. Although not shown in Figure 2, the distillation system 2〇〇 can be configured such that the influent salt-water 273 is a salt having a weight inflow - Water column Column), which is suspended below the digester section 206 by the pressure in the digester section 2〇6. Further, the height of the water column flowing into the salt_water stream 273 can be defined to form within the digester section 2〇6 The low pressure is specified. Other streams of the distillation unit 200, such as the effluent brine 277 stream, can be configured in a similar manner to assist in maintaining/defining the low pressure within the digester portion 206. The weight of the effluent fresh water 275 can be used to maintain/define the condenser portion 2 The specified pressure in 〇 8. In some embodiments, distillation system 200 can be operated at a specified temperature and/or pressure to substantially prevent certain undesirable side effects. In some embodiments, distillation system 200 can be configured to operate at a specified temperature and/or at a specified pressure to prevent precipitation and/or/combination of different compounds (eg, magnesium-based compounds) by way of example. System 2〇〇 can be configured to operate at less than 1 degree 185 T such that impurities that may be present in the salt-water π] (such as the base 126586.doc -20-200843833 compound) will not precipitate. In some embodiments, for example, the g' digester portion 206 can be configured to be at a temperature above a specified temperature such that certain impurities (e.g., microorganisms, bacteria) will be destroyed. In the case where the treatment system 200 is operated at a high temperature, the insulation of the system 2 〇〇 and (10), for example, can be reduced by operating at a low temperature of the rut. In some embodiments, fresh water vapor at the bottom surface of the heat transfer element 220, " is assisted to maintain a low (four) condition at, for example, the condenser portion 2 (10) of the steamer system. In other words, as the compressed vapor condenses, the contraction of a large amount of compressed steam into a liquid creates a negative pressure environment that reduces the pressure of the condenser portion 208 of the distillation system 200. In some embodiments, the pressure 1 within the digester portion of the outer shell 2〇4 is reduced as the effluent brine stream 277 is drawn out of the shell portion 2〇6 of the shell. In some embodiments, the flow rate of the brine stream 277 can be adjusted to assist in maintaining a low pressure operating loop within the digester portion 206 of the outer casing 204. In some embodiments, the distillation system 200 can be continuous after the startup sequence: Operation. In some embodiments, what is needed during steady state is generally the energy required to operate the compression assembly 24〇. Use the diagram " to discuss more details related to the startup sequence. . In some embodiments, the compression assembly 24A may have a pressure differential versus grip rate characteristic such as a single change in pressure differential versus flow rate characteristics as shown in FIG. 4 is a schematic diagram illustrating a characterization curve 42A associated with a dust mitigation line in accordance with an embodiment of the present invention. As shown in Figure 4, Hu Yong, the pressure difference (Δρ) of the component (shown on the y-axis) increases with the flow rate through the compression component 126586.doc -21 - 200843833 (shown on the x-axis) Monotonously reduced. The pressure differential is compression and the pressure difference between the outlet of the piece and the inlet of the compression assembly. The one-shoulder modification of the compression assembly is specifically intended to promote the stability of the wire system (e.g., the steaming system 100 shown in Figure i), especially when the steaming system is operating at low temperatures and/or low pressures. . In some cases, when the pressure outside the steaming system will be (for example) out of the way, the pressure difference does not have a monotonous change. (4) The speed (four), the compression component may be unstable. The flow rate is between the vibrations. (The oscillation of type (4) may result in the distillation system being unable to produce distillate or producing an undesirable distillate because continuous phase change energy cannot be obtained due to inconsistent flow. In some embodiments, compression assembly 240 may include One or more compressors (eg, staged compressors) and/or one or more valve control assemblies (not shown). The compression assemblies 240 can be, for example, centrifugal compressors, hydraulic compressors, diagonals, or hybrids. Flow compressors, axial compressors, reciprocating compressors, rotary screw compressors, scroll compressors, petal compressors (eg, roots blowers), and/or diaphragm compressors. In some embodiments The compression assembly 24A can include a system of coordinated valves, such as the system of the 'coordinated valve' shown in FIG. 8 and described in connection with FIG. 8. In some embodiments, the compression assembly 240 can be disposed in the distillation system 2 Within the outer casing 204. In some embodiments, by placing the compression assembly 24(R) within the outer casing 204, problems associated with, for example, smaller leaks within the compression assembly 24(R) can be mitigated or completely avoided. For example, the compression assembly 24A can include a hydraulic motor disposed within the outer casing 204. In some embodiments, the heat generated by the mechanical portion of the assembly 126586.doc -22-200843833: component 240 can be transferred to the salt-water m is further cooked at a portion 2 () 6 of the outer portion 204. In some embodiments, the motor disposed outside the outer casing 204 may be magnetically (four) connected to the _ (or plurality) disposed within the outer casing 204. And a spiral lift or fan blade configured to compress fresh water vapor.

C 在一些實施例中,壓縮組件24〇可安置於熱轉移元件22〇 或卜双204下方。在一些實施例中,蒸餾系統㈣可具 :夕個壓鈿組件、具有每一類型之流入之流的多個流入之 流(例如,多個流入之鹽_水流)、具有每一類型之流出之流 的多個流出之流(例如,多個流出之鹽水流)、多個蒸煮器 及/或冷凝器部分及/或多個熱轉移元件。在一些實施例 中,瘵餾系統200可具有多個級。舉例而言,來自第一蒸 餾系統之流出之流可為第二蒸餾系統上之流入之流。…、 在一些實施例中,蒸餾系統200可具有一除氣系統(未圖 示),該除氣系統經組態以對(例如)流入之鹽-水流273除氣 以使得當自鹽-水釋放出氣體時,將不會不合需要地中斷 在熱轉移元件220上方之蒸煮。在一些實施例中,除氣系 統可經組態以在鹽-水於熱交換器260處被接收之前對流入 之鹽-水273中除氣。在一些實施例中,除氣系統可經組態 以在熱交換器260之後對流入之鹽-水273除氣。在一些實 施例中,除氣系統之至少一部分可安置於外殼2〇4内。 在一些實施例中,蒸顧系統200可包括(例如)音波轉換 器(未圖示),該音波轉換器經組態以促進在熱轉移元件22〇 上方之蒸煮。在一些實施例中,音波轉換器可為超音波轉 126586.doc •23- 200843833 換器。音波轉換器可增強對鹽-水之斷裂以( 態改變為汽態。在-些實施例中,可自液 器來對鹽™。在—些實施例中,; 為安置於外殼204之蒸煮器部分206内。 專換 圖5為說明根據本發明之實施例的用於 J 腹積之流轉C In some embodiments, the compression assembly 24A can be disposed below the thermal transfer element 22 or the double 204. In some embodiments, the distillation system (4) may have: a plurality of inflowing streams having a flow of each type of inflow (eg, a plurality of inflowing salt_water streams), having an outflow of each type Multiple outflows of the stream (eg, multiple outflowing brine streams), multiple digester and/or condenser sections, and/or multiple heat transfer elements. In some embodiments, the retorting system 200 can have multiple stages. For example, the effluent stream from the first distillation system can be the influent stream on the second distillation system. ..., in some embodiments, the distillation system 200 can have a degassing system (not shown) configured to degas, for example, the inflowing salt-water stream 273 such that when self-salt-water When the gas is released, the cooking above the thermal transfer element 220 will not be undesirably interrupted. In some embodiments, the degassing system can be configured to degas the influent salt-water 273 before the salt-water is received at the heat exchanger 260. In some embodiments, the degassing system can be configured to degas the incoming salt-water 273 after the heat exchanger 260. In some embodiments, at least a portion of the degassing system can be disposed within the outer casing 2〇4. In some embodiments, the vaporizing system 200 can include, for example, a sonic transducer (not shown) that is configured to facilitate cooking over the thermal transfer element 22A. In some embodiments, the sonic converter can be a supersonic 126586.doc • 23- 200843833 converter. The sonic transducer can enhance the salt-water cleavage (the state changes to the vapor state. In some embodiments, the salt can be applied to the salt TM. In some embodiments, for cooking in the outer casing 204) In the portion of the portion 206. Fig. 5 is a view for explaining the flow of the J product in accordance with an embodiment of the present invention.

C/ 之-部分與該流體分離之方法的流程圖。該流程圖說明, 在500 ’纟蒸餾系統之外殼處接收具有一雜質濃度的 積之流體。該體積之流體可P體積之水且雜質濃度 (例如)鹽。在一些實施例中,該體積之流體可包括多種類 型之雜質(例如,基於鈣之雜質、基於鎂之雜質)。 、 在5 1 〇,在外殼之蒸煮器部分内於熱轉移元件之頂表面 上接收該體積之流體。該體積之流體可自(例如)鹽-水之主 體抽汲出且經由外殼之入口而被接收。該熱轉移元件之頂 表面可界定外殼之蒸煮器部分的至少一部分。 、 在52〇,自該體積之流體蒸煮出流體之一部分。若該體 積之流體為一體積之鹽-水,則流體之該部分可係以氣態 作為蒸汽而自鹽-水蒸煮出之淡水。 在53〇 ’在自該體積之流體蒸煮出流體之該部分之後, 在瘵餾系統之鹽水收集部分處接收該體積之流體。在一些 貝化例中’在自該體積之流體蒸煮出流體之該部分之後, 该體積之流體可具有一不同之雜質濃度。 在54〇,壓縮流體之該部分且將其自外殼之蒸煮器部分 移入冷凝器部分中。可藉由一耦接至外殼之壓縮組件來壓 縮並移動流體之該部分。 126586.doc -24- 200843833 在550,流體之該部分在熱轉移元件之底表面處冷凝。 當流體之該部分碰撞熱轉移元件之底表面時,流體之該部 分可冷凝。熱轉移元件之底表面可界定外殼之冷凝器部分 的至少一部分。 在560,將在熱轉移元件之底表面處釋放之熱自流體之 該部分轉移至蒸煮器部分。在一些實施例中,在熱轉移元 件之底表面處釋放之全部熱或大體全部熱可經由熱轉移元 件而轉移。A flow chart of a method of separating a portion of C/ from the fluid. The flow chart illustrates the receipt of a fluid having an impurity concentration at the outer shell of a 500' helium distillation system. The volume of fluid can be P volume of water and the impurity concentration is, for example, a salt. In some embodiments, the volume of fluid can include a plurality of types of impurities (e.g., calcium based impurities, magnesium based impurities). At 5 1 〇, the volume of fluid is received on the top surface of the thermal transfer element within the digester portion of the outer casing. The volume of fluid can be drawn from, for example, the salt-water body and received via the inlet of the housing. The top surface of the thermal transfer element can define at least a portion of the digester portion of the outer casing. At 52 〇, a portion of the fluid is distilled from the volume of fluid. If the volume of the fluid is a volume of salt-water, the portion of the fluid may be fresh water distilled from the salt-water in a gaseous state as steam. After the portion of the fluid is distilled from the volume of fluid at 53 〇 ', the volume of fluid is received at the brine collection portion of the retorting system. In some cases, the volume of fluid may have a different impurity concentration after the portion of the fluid is distilled from the fluid of the volume. At 54 Torr, the portion of the fluid is compressed and moved from the digester portion of the outer casing into the condenser portion. The portion of the fluid can be compressed and moved by a compression assembly coupled to the outer casing. 126586.doc -24- 200843833 At 550, this portion of the fluid condenses at the bottom surface of the heat transfer element. When the portion of the fluid collides with the bottom surface of the heat transfer element, that portion of the fluid can condense. The bottom surface of the thermal transfer element can define at least a portion of the condenser portion of the outer casing. At 560, the heat released at the bottom surface of the thermal transfer element is transferred from the portion of the fluid to the digester portion. In some embodiments, all or substantially all of the heat released at the bottom surface of the thermal transfer element can be transferred via the thermal transfer element.

t 在570,在蒸餘系統《淡水收集部分處接收流體之該經 冷凝之邠刀在些貫施例中,可自蒸顧系統之淡水收集 部分處抽汲流體之該經冷凝之部分。在一些實施例中,蒸 餾系統之淡水收集部分可安置於外殼内。 圖6Α為根據本發明之實施例的蒸餾系統6〇〇之若干組件 的分解透視圖。蒸餾系統6〇〇具有界定一蒸煮器之至少一 部分的外殼680之一頂部部分61〇、一熱轉移元件62〇、一 分配組件630及一淡水收集儲集器64〇。在此實施例中,在 瘵餾系統600内經由入口 674而接收流入之鹽_水631。鹽·水 在前頭632之方向上沿著熱轉移元件62〇之頂部部分a〕而 流動,且淡水蒸汽如箭頭634所示而自鹽-水蒸煮出。在一 些貝施例中,相對於水平平面,熱轉移元件62〇之斜率大 體小於1度。 圖6Β及圖6C中展示熱轉移元件62〇之透視圖。圖6Β說明 不存在鹽-水之情況下的熱轉移元件620(亦展示於圖6八中) 且圖6C說明存在鹽_水664之情況下的熱轉移元件62〇(亦展 126586.doc -25- 200843833 示於圖6A中)。具有一濃度之鹽-水664自開口 626流出,該 濃度隨著該鹽-水664通過熱轉移元件620之波紋部分666而 增大直至其達到鹽水濃度為止。鹽-水664在波紋部分666 之近乎每一凹紋(furrow)與凸紋(ridge)之間的零深度點處 相交。在每一凹紋之最深點處,鹽-水664之深度可為(例 如)數英吋或更少。在此實施例中,將流入之鹽-水631 (展 示於圖6A中)抽汲至熱轉移元件620之儲集器668内,以使 得鹽-水664可均勻分配在熱轉移元件620之波紋部分666 上。儲集器668可被稱作分配儲集器。 返回參看圖6A,鹽水636經由出口 676而自蒸餾系統600 之外殼680流出。在蒸汽634被壓縮之後,朝著熱轉移元件 620之底部部分624經由槽652將經壓縮之蒸汽638注入外殼 680之中間部分650中。使用圖6D中所示之分配岐管690將 經壓縮之蒸汽638分配至槽652中。如圖6D中所示,分配岐 管690具有一入口 694及對應於槽652(展示於圖6A中)之出 口槽696。經由分配岐管690之岐管系統692將經壓縮之蒸 汽638分配至槽652。在一些實施例中,分配岐管690可被 稱作分配組件。 返回參看圖6A,藉由分配組件63 0之引導系統644來進一 步導引經壓縮之蒸汽638。在一些實施例中,分配組件630 之水平平面646可具有多個開口(例如,小孔),以在將經壓 縮之蒸汽638注入外殼680中之後將該經壓縮之蒸汽638導 向熱轉移元件620之底表面624(在箭頭648之方向上)。在經 壓縮之蒸汽638於熱轉移元件620之底部部分624處冷凝之 126586.doc -26- 200843833 後,將經冷凝之淡水662收集於儲集器660中。 圖7A為說明根據本發明之一實施例之蒸餾系統700的示 意圖。蒸餾系統700具有一外殼710,該外殼710包括一熱 交換器760、壓縮組件740及一熱轉移元件720。外殼710具 有一充當蒸煮器712之部分及一充當冷凝器714之部分。 如圖7A中所示,鹽-水722沿熱轉移元件720自鹽-水儲集 器754向下(例如,經重力拉引)流至鹽水儲集器776中之鹽 ,水774。當鹽-水722沿熱轉移元件720向下流動時,淡水作 為淡水蒸汽自鹽-水722蒸煮出且被移入壓縮組件740中 (724)(以線724展示)。淡水蒸汽在壓縮組件740處被壓縮成 經壓縮之蒸汽(例如,經壓縮之淡水蒸汽)且向熱轉移元件 720之底表面728(經壓縮之蒸汽在此冷凝)移動(以線726展 示)。經由熱轉移元件720而將因熱轉移元件720之底表面 728處之相轉變而釋放出的熱轉移至流動之鹽-水722以導 致淡水蒸汽自該流動之鹽-水722蒸煮出。在一些實施例 中,蒸餾系統700可具有分配組件(未圖示),其經組態以促 ^ 進將經壓縮之蒸汽分配在熱轉移元件720之底表面728上。 在經壓縮之蒸汽冷凝成淡水之後,將淡水770收集在淡水 儲集器778中。 圖7B為根據本發明之實施例的圖7A中所示之蒸餾系統 700之一部分的示意圖。如圖7B中所示,沿熱轉移元件720 向下流動之鹽-水722之表面大體平行於熱轉移元件720之 斜面。因此,鹽-水722可在熱轉移元件720之大體整個長 度上具有較淺之深度782。在一些實施例中,可藉由鹽-水 126586.doc -27- 200843833 儲集器754中之鹽-水的液位及/或開口 784距鹽-水儲集器 754之尚度來判定鹽·水722之流動速率及鹽-水722之深度 782。在一些實施例中,可藉由熱轉移元件72〇之形狀及/ 或斜率來控制鹽-水722之流動速率。t At 570, the condensed file receiving the fluid at the fresh water collection portion of the retort system may, in some embodiments, bleed the condensed portion of the fluid from the fresh water collection portion of the steaming system. In some embodiments, the fresh water collection portion of the distillation system can be disposed within the outer casing. Figure 6 is an exploded perspective view of several components of a distillation system 6 in accordance with an embodiment of the present invention. Distillation system 6 has a top portion 61A of a housing 680 defining at least a portion of a digester, a heat transfer element 62A, a distribution assembly 630, and a fresh water collection reservoir 64A. In this embodiment, the influent salt_water 631 is received via the inlet 674 within the retorting system 600. The salt water flows along the top portion a) of the heat transfer member 62 in the direction of the front head 632, and the fresh water vapor is distilled from the salt-water as indicated by the arrow 634. In some of the examples, the slope of the thermal transfer element 62 is substantially less than 1 degree with respect to the horizontal plane. A perspective view of the thermal transfer element 62A is shown in Figures 6A and 6C. Figure 6A illustrates the thermal transfer element 620 in the absence of salt-water (also shown in Figure 6) and Figure 6C illustrates the thermal transfer element 62 in the presence of salt_water 664 (also shown in 126586.doc - 25- 200843833 is shown in Figure 6A). Salt-water 664 having a concentration flows out of opening 626 as the salt-water 664 is increased by the corrugated portion 666 of heat transfer element 620 until it reaches the brine concentration. The salt-water 664 intersects at a zero depth point between each of the furrows and the ridges of the corrugated portion 666. At the deepest point of each indentation, the depth of the salt-water 664 can be, for example, several inches or less. In this embodiment, the inflowing salt-water 631 (shown in Figure 6A) is pumped into the reservoir 668 of the thermal transfer element 620 such that the salt-water 664 can be evenly distributed across the corrugations of the thermal transfer element 620. Part 666. The reservoir 668 can be referred to as a distribution reservoir. Referring back to Figure 6A, brine 636 exits the outer casing 680 of distillation system 600 via outlet 676. After the steam 634 is compressed, the compressed vapor 638 is injected into the intermediate portion 650 of the outer casing 680 via the trough 652 toward the bottom portion 624 of the thermal transfer element 620. The compressed steam 638 is dispensed into the tank 652 using the distribution manifold 690 shown in Figure 6D. As shown in Figure 6D, the dispensing manifold 690 has an inlet 694 and an outlet slot 696 corresponding to the slot 652 (shown in Figure 6A). The compressed steam 638 is distributed to the tank 652 via the manifold system 692 of the distribution manifold 690. In some embodiments, the distribution manifold 690 can be referred to as a dispensing assembly. Referring back to Figure 6A, the compressed vapor 638 is further directed by the guidance system 644 of the distribution component 63 0 . In some embodiments, the horizontal plane 646 of the dispensing assembly 630 can have a plurality of openings (eg, apertures) to direct the compressed vapor 638 to the thermal transfer element 620 after injecting the compressed vapor 638 into the outer casing 680. Bottom surface 624 (in the direction of arrow 648). The condensed fresh water 662 is collected in a reservoir 660 after the compressed vapor 638 is condensed at 126586.doc -26-200843833 at the bottom portion 624 of the thermal transfer element 620. Figure 7A is a schematic diagram illustrating a distillation system 700 in accordance with an embodiment of the present invention. Distillation system 700 has a housing 710 that includes a heat exchanger 760, a compression assembly 740, and a thermal transfer element 720. The outer casing 710 has a portion that acts as a digester 712 and a portion that acts as a condenser 714. As shown in Figure 7A, salt-water 722 flows down the salt-water reservoir 754 from the salt-water reservoir 754 (e.g., by gravity pull) to the salt in the brine reservoir 776, water 774. As the salt-water 722 flows down the heat transfer element 720, the fresh water is cooked as fresh water vapor from the salt-water 722 and moved into the compression assembly 740 (724) (shown as line 724). Fresh water vapor is compressed at compression assembly 740 into compressed steam (e.g., compressed fresh water vapor) and moved toward bottom surface 728 of heat transfer element 720 (where compressed steam condenses) (shown by line 726). Heat released by the phase transition at the bottom surface 728 of the heat transfer element 720 is transferred to the flowing salt-water 722 via the heat transfer element 720 to cause fresh water vapor to be cooked from the flowing salt-water 722. In some embodiments, distillation system 700 can have a dispensing assembly (not shown) configured to facilitate dispensing the compressed vapor onto bottom surface 728 of thermal transfer element 720. After the compressed steam is condensed into fresh water, fresh water 770 is collected in fresh water reservoir 778. Figure 7B is a schematic illustration of a portion of the distillation system 700 shown in Figure 7A, in accordance with an embodiment of the present invention. As shown in Figure 7B, the surface of the salt-water 722 flowing down the thermal transfer element 720 is generally parallel to the slope of the thermal transfer element 720. Thus, the salt-water 722 can have a shallower depth 782 over substantially the entire length of the thermal transfer element 720. In some embodiments, the salt can be determined by the level of salt-water in the reservoir 754 of the salt-water 126586.doc -27- 200843833 and/or the extent of the opening 784 from the salt-water reservoir 754. The flow rate of water 722 and the depth 782 of salt-water 722. In some embodiments, the flow rate of salt-water 722 can be controlled by the shape and/or slope of thermal transfer element 72.

C 在一些實施例中,蒸餾系統7〇〇(例如,熱轉移元件 720、瘵煮器712等等)可經組態以使得在蒸餾系統7〇〇之操 作期間,點732與736(位於熱轉移元件72〇之相反末端處之 點)處之鹽-水722的蒸氣壓可大體相同。且,鹽·水722在熱 轉移元件上之流動速率可經界定以使得點734與8處之靜 壓力可大體相同且大致等於蒸煮器712内之壓力。換言 之,鹽-水722之深度782可經界定以使得將可忽略來自鹽_ 水722之深度782的靜壓力,因此促進在熱轉移元件72〇之 頂表面上方蒸煮。舉例而言,若蒸煮器712經組態以在大 體低於^準大氣壓力之指定壓力下操作,則點及乃6處 之黑氣[可大體上等於該指定壓力,且點734及738處之壓 力可與該指定壓力大體相同。 返回參看圖7A,再循環泵78〇經組態以藉由將鹽水774之 ^邛刀自鹽水儲集器776抽汲至鹽-水儲集器754來再 循壞該部分。gg 士 -水774之该部分可接著經受蒸煮處理,其 σ自農Jc 774提取出額外之淡水。可藉由再循環鹽水π# 中之二來更有效地提取淡水,尤其在鹽水774未以鹽達 飽和之情況下更為如+ & > , 、 為★此。換吕之,較之不進行再循環之情 況,可自鹽-水722移除較高百分比之淡水。 在一些實施例中,可回應於指示可自鹽水776提取額外 126586.doc -28- 200843833 淡水的信號來執行使用再循環泵7 8 0而進行之鹽水7 7 4的再 /盾裒牛例而曰,感應器(未圖示)及相關聯之控制模組(未 圖不)可經組態以在判定鹽水774之鹽濃度低於指定臨限值 時啟動及7或控制再循環泵780。 圖8為根據本發明之實施例之壓縮組件84〇的示意圖。壓 縮組件840經組態以在將淡水蒸汽移向熱轉移元件(未圖 示)(在此處&水蒸汽之能量可因冷凝而轉移)之前使用來 自廢流850之熱而在腔室846中壓縮淡水蒸汽。壓縮組件 840具有一入口閥842及一出口閥8料,其經組態以按照協 調之方式操作。人口閥842打開而出口閥844關閉以允許淡 水瘵汽進入並填充壓縮組件84〇之腔室846。在指定時間週 /月之後入口閥842關閉且對腔室846中之淡水蒸汽加熱以 坫大孩/火水瘵八之溫度及/或壓力。在指定時間週期之 後,打開出口閥844且將該蒸汽釋放至(例如)蒸餾系統之冷 凝(未圖示)。 圖9為根據本發明之實施例之熱轉移元件99〇的示意圖。 熱轉移元件990具有多個臺階992。熱轉移元件99〇之臺階 992可經組態以修改或界定鹽_水98〇在熱轉移元件99〇上的 &L動速率及/或熱轉移元件9 9 〇之熱轉移特徵。 圖為根據本發明之實施例之蒸餾系統1〇〇〇之側視橫 截面圖的示意性方塊圖,該蒸餾系統丨〇〇〇具有一大體圓錐 形之熱轉移元件1020。圓錐形熱轉移元件1〇2〇具有一頂表 面1048,來自鹽-水儲集器1〇54之鹽_水1〇22可在該頂表面 1048上方蒸煮。乂水蒸〉'可經由圓錐形熱轉移元件之 126586.doc -29- 200843833 頂部部分處之開口而移向圓錐形熱轉移熱元件1〇2〇之底表 面1049(淡水蒸汽可在此冷凝)(如線1094所示)。可藉由螺 旋漿1026之葉片來移動淡水蒸汽,該螺旋漿1〇26係由安置 於蒸德系統1000之外殼1〇 10内之馬達1〇9〇來驅動。在淡水 条〉飞冷凝成故冷凝之水之後,經冷凝之水可在圓錐形熱轉 移元件1020之基座1044處(或其下方)收集於淡水儲集器 1070中。在一些實施例中,熱轉移元件1〇2〇可被組態成類 似於圖9中所說明之熱轉移元件99〇。 如圖10A中所示,螺旋漿1〇26(其為壓縮組件1〇4〇之—部 分)圍繞一自開口 1046延伸至基座1〇44的軸1〇24(例如,軸 線)而旋轉。軸1024藉由兩組軸承1078及1〇76而緊固至外 殼1〇1〇。因為壓縮組件1040之組件完全安置於外殼1〇1〇 内,所以,在一些實施例中不需要防止漏洩之密封件及其 他組件。又,可使用由壓縮組件1〇4〇產生之熱中的大部分 以在淡水蒸汽自圓錐形熱轉移元件1〇2〇之外部向圓錐形熱 轉移元件1020内之一部分移動時(由線1〇94展示)對淡水蒸 汽加壓及/或增大淡水蒸汽之溫度。 亦如圖10A中所示,可使用熱交換器1〇6〇將熱自淡水儲 集器轉移至被移至鹽_水儲集器1〇54的流入之鹽-水(未圖 不)。在一些貫施例中,熱交換器丨〇6〇可經組態以使用來 自蒸餾系統1000之外部的能量(例如,太陽能)。高濃度之 鹽-水及/或鹽水被收集在鹽水儲集器1074中。 圖10B為根據本發明之一實施例的圖ι〇Α中所示之蒸餾 系統1〇〇〇之俯視部分剖視圖的示意性方塊圖。如圖l〇B中 126586.doc -30- 200843833 所示,熱轉移元件1020為大體環形之熱轉移元件1〇2〇。在 些只施例中’熱轉移元件1 〇 2 0可為半環形或不同形狀 (例如,五邊形、八邊形)。在一些實施例中,外殼1〇1〇亦 可具有不同於圖10B中所示之形狀的形狀(例如,圓形、環 形、三角形)。 圖11為根據本發明之一實施例的蒸餾系統丨丨〇〇之示意性 方塊圖,该蒸顧系統1 1 〇 〇包括一控制單元丨丨丨〇。蒸餾系統 11〇〇具有一熱轉移元件1120,其界定蒸煮器114〇之至少一 部分及冷凝器1142之至少一部分。蒸餾系統11〇〇亦具有一 壓縮組件1130、一耦接至熱轉移元件112〇之致動器115〇、 一耦接至出口 1172之出口閥1162及一耦接至入口 1174之入 口閥1164。出口 1172係自外殼1104通出之出口且入口 1174 係通入外殼1104之入口。出口閥1162及入口閥1164可各自 具有一經組態以修改流量的致動器。 控制單元1110經組態以回應於來自感應器1160之信號來 控制(例如,改變、修改、觸發一改變)蒸餾系統1100之一 或多個部分或功能。控制單元丨丨10可經組態以在蒸餾系統 11 00之操作之前、在蒸餾系統1100之操作之後或在蒸餾系 統1100之操作期間控制蒸餾系統。控制單元111〇可經組態 以基於控制單元mo之控制模組1112來控制蒸餾系統 11 〇〇。舉例而言,控制單元丨丨丨〇可經組態以實施啟動序 列。控制模組1112可包括可基於一或多個指令(例如,電 腦程式、演算法)之一或多個硬體模組(例如,韌體、數位 信號處理器)及/或一或多個軟體模組(例如,指令、軟體程 126586.doc -31- 200843833 式)。控制模組1112可包括一或多個記憶體部分(未圖示)及 /或一或多個處理部分(未圖示)。 控制單元1110可經組態以基於諸如反饋演算法及/或前 饋演算法之控制演算法(例如’控制程序)來控制蒸顧系統C In some embodiments, distillation system 7 (eg, heat transfer element 720, cooker 712, etc.) can be configured such that during operation of distillation system 7, points 732 and 736 (located in heat) The vapor pressure of the salt-water 722 at the point of the opposite end of the transfer element 72 can be substantially the same. Also, the flow rate of salt water 722 on the heat transfer element can be defined such that the static pressure at points 734 and 8 can be substantially the same and substantially equal to the pressure within digester 712. In other words, the depth 782 of the salt-water 722 can be defined such that the static pressure from the depth 782 of the salt_water 722 will be negligible, thus facilitating cooking over the top surface of the thermal transfer element 72. For example, if the digester 712 is configured to operate at a specified pressure that is substantially below the quasi-atmospheric pressure, the point and the black gas at 6 are [substantially equal to the specified pressure, and at points 734 and 738 The pressure can be substantially the same as the specified pressure. Referring back to Figure 7A, the recirculation pump 78 is configured to recycle the portion by pumping the brine 774 from the brine reservoir 776 to the salt-water reservoir 754. This portion of gg-water 774 can then be subjected to a retort treatment, with σ extracting additional fresh water from the agricultural Jc 774. Fresh water can be extracted more efficiently by recycling two of the brines π#, especially if the brine 774 is not saturated with salt, as is + &> In the case of Lu, it is possible to remove a higher percentage of fresh water from the salt-water 722 than if it were not recycled. In some embodiments, the re-shield yak case of the brine 7.4 using the recirculation pump 708 can be performed in response to a signal indicating that additional 126586.doc -28-200843833 fresh water can be extracted from the brine 776. A sensor (not shown) and associated control module (not shown) may be configured to initiate and 7 or control the recirculation pump 780 when it is determined that the salt concentration of the brine 774 is below a specified threshold. Figure 8 is a schematic illustration of a compression assembly 84A in accordance with an embodiment of the present invention. The compression assembly 840 is configured to use heat from the waste stream 850 in the chamber 846 prior to moving the fresh water vapor to a heat transfer element (not shown) where the energy of the water vapor can be transferred by condensation. Medium compressed fresh water vapor. Compression assembly 840 has an inlet valve 842 and an outlet valve 8 configured to operate in a coordinated manner. The population valve 842 is open and the outlet valve 844 is closed to allow fresh water vapor to enter and fill the chamber 846 of the compression assembly 84. The inlet valve 842 is closed after a specified time of week/month and the fresh water vapor in the chamber 846 is heated to increase the temperature and/or pressure of the child/fire. After a specified period of time, the outlet valve 844 is opened and the vapor is released to, for example, condensing of a distillation system (not shown). Figure 9 is a schematic illustration of a thermal transfer element 99A in accordance with an embodiment of the present invention. Thermal transfer element 990 has a plurality of steps 992. The step 992 of the thermal transfer element 99 can be configured to modify or define the &L rate of the salt on the thermal transfer element 99 and/or the thermal transfer characteristics of the thermal transfer element. BRIEF DESCRIPTION OF THE DRAWINGS The Figure is a schematic block diagram of a side cross-sectional view of a distillation system 1 having a generally conical shaped heat transfer element 1020 in accordance with an embodiment of the present invention. The conical heat transfer element 1〇2〇 has a top surface 1048 from which the salt_water 1〇22 from the salt-water reservoir 1〇54 can be cooked.乂水蒸>' can be moved to the bottom surface 1049 of the conical heat transfer heat element 1〇2〇 via the opening at the top of the conical heat transfer element 126586.doc -29- 200843833 (the fresh water vapor can condense here) (as shown by line 1094). The fresh water vapor can be moved by the blades of the slurry 1026, which is driven by a motor 1〇9〇 disposed in the outer casing 1〇10 of the steaming system 1000. After the fresh water strips are condensed into the condensed water, the condensed water can be collected in the fresh water reservoir 1070 at (or below) the pedestal 1044 of the conical thermal transfer element 1020. In some embodiments, the thermal transfer element 1〇2〇 can be configured to resemble the thermal transfer element 99〇 illustrated in FIG. As shown in Fig. 10A, a propeller 1 〇 26, which is a portion of the compression assembly 1 〇 4 旋转, rotates about an axis 1 〇 24 (e.g., an axis) extending from the opening 1046 to the susceptor 1 〇 44. The shaft 1024 is fastened to the outer casing 1〇1 by two sets of bearings 1078 and 1〇76. Because the components of the compression assembly 1040 are completely disposed within the housing 1〇1, there are no need to prevent leaking seals and other components in some embodiments. Again, most of the heat generated by the compression assembly 1〇4〇 can be used to move fresh water vapor from one of the outer portions of the conical heat transfer element 1020 to the outside of the conical heat transfer element 1020 (by line 1〇) 94 shows) pressurizing fresh water vapor and/or increasing the temperature of fresh water vapor. As also shown in Fig. 10A, the heat from the fresh water reservoir can be transferred to the inflowing salt-water (not shown) moved to the salt_water reservoir 1〇54 using the heat exchanger 1〇6〇. In some embodiments, the heat exchanger 丨〇6〇 can be configured to use energy (e.g., solar energy) from outside the distillation system 1000. A high concentration of salt-water and/or brine is collected in the brine reservoir 1074. Figure 10B is a schematic block diagram of a top cross-sectional view of the distillation system 1 图 shown in Figure 1 in accordance with one embodiment of the present invention. As shown in FIG. 1B, 126586.doc -30- 200843833, the thermal transfer element 1020 is a generally annular thermal transfer element 1〇2〇. In some embodiments, the thermal transfer element 1 〇 20 may be semi-annular or of a different shape (e.g., pentagon, octagon). In some embodiments, the outer casing 1〇1〇 may also have a shape other than the shape shown in Fig. 10B (e.g., circular, circular, triangular). Figure 11 is a schematic block diagram of a distillation system 丨丨〇〇 including a control unit 根据 according to an embodiment of the present invention. Distillation system 11A has a thermal transfer element 1120 that defines at least a portion of digester 114 and at least a portion of condenser 1142. The distillation system 11A also has a compression assembly 1130, an actuator 115 coupled to the thermal transfer element 112, an outlet valve 1162 coupled to the outlet 1172, and an inlet valve 1164 coupled to the inlet 1174. The outlet 1172 is an outlet from the outer casing 1104 and the inlet 1174 is open to the inlet of the outer casing 1104. The outlet valve 1162 and the inlet valve 1164 can each have an actuator configured to modify the flow. Control unit 1110 is configured to control (e.g., change, modify, trigger a change) one or more portions or functions of distillation system 1100 in response to signals from inductor 1160. The control unit 丨丨10 can be configured to control the distillation system prior to operation of the distillation system 11 00, after operation of the distillation system 1100, or during operation of the distillation system 1100. The control unit 111 can be configured to control the distillation system 11 基于 based on the control module 1112 of the control unit mo. For example, the control unit can be configured to implement a startup sequence. Control module 1112 can include one or more hardware modules (eg, firmware, digital signal processor) and/or one or more software based on one or more instructions (eg, computer programs, algorithms) Module (for example, instruction, software path 126586.doc -31- 200843833). Control module 1112 can include one or more memory portions (not shown) and/or one or more processing portions (not shown). Control unit 1110 can be configured to control the steaming system based on a control algorithm such as a feedback algorithm and/or a feedforward algorithm (eg, a 'control program)

〇〇之至分。控制演算法可基於比例控制、微分於 制及/或積分控制之任何組合。控制單元⑴阿經組態 基於與蒸餾系統1 i 〇 〇相關聯之歷史資料來控制蒸餾系統 1100之至少一部分。可回應於來自控制單元im之指.令來 儲存歷史諸且可將其財於可由控鮮元⑴時取之資 料庫(未圖示)中。 ' 感應器1160可包括(例如)溫度感應器、壓力感應器、濕 度感應器、流動速率感應器、電磁輕射感應器等等中之一 或多者。雖然此實施例中展示一感應器丨16〇,但在一些實 施例中,蒸餾系統_可具有位於蒸餾系統11〇〇之各個部 刀中的夕個感應器(未圖示)。舉例而言,感應器(未圖示) 可耦接至熱轉移元件112〇、感應器(未圖示)可安置於冷凝 印1丨42内及/或感應崙(未圖示)可安置於壓縮組件1130内。 在一些實施例中,感應器116〇(或另一感應器)之至少一部 分可安置於蒸餾系統之外殼丨丨〇4之外部。 舉例而a,控制單元丨丨丨〇可經組態以回應於來自感應器 1160之信號來修改熱轉移元件1 120相對於水平平面丨丨i 8之 角度1112。控制單元1110可藉由發送信號來改變熱轉移元 件1120之斜率,該信號觸發耦接至熱轉移元件1120之致動 器1 1 5 0的私動。當滿足一或多個條件(例如,滿足臨限條 126586.doc -32 - 200843833 件)時,可自控制單元111 〇發送該信號。在一些實施例 中,當角度1112改變時,可修改流體1114之流動速率。在 一些貫施例中’控制單元丨丨1〇可經組態以基於來自感應器 1160之信號來修改熱轉移元件112〇之熱轉移速率的速率。 可在控制單元1110處基於來自蒸餾系統1100之感應器 11 60(及/或另一感應器)的一或多個信號來計算熱轉移速 率 〇 控制單元1110可經組態以基於來自感應器116〇(及/或另 一感應器(未圖示))之信號藉由分別改變閥門1162及/或閥 門1164來修改出口 1172之流動速率及/或入口丨174之流動 速率。舉例而言,若如控制單元111〇基於來自感應器116〇 之信號所判定,熱轉移元件112〇上方之流體1114的蒸煮速 率、壓力及/或溫度低於臨限值,則控制單元丨丨丨〇可藉由 矛夕動閥門11 62之一部分來改變經由出口 1丨72之流動速率 (以線1132展示)。同樣,若如控制單元丨丨1〇基於來自感應 器1160之信號所判定,熱轉移元件丨12〇上方之流體丨丨14的 蒸煮速率、屢力及/或溫度滿足一條件,則控制單元1 Η 〇 可藉由移動閥門1 164之一部分來改變經由入口 11 之流動 速率(以線1134展示)。 在一些實施例中,控制單元11 30可經組態以回應於來自 感應器1 160之信號來修改壓縮組件113〇之輸出及/或輸入 (例如’輸入溫度、輸入壓力、輸出溫度、輸出壓力)。舉 例而言,控制單元1130可經組態以當熱轉移元件112〇下方 之冷政速率、壓力及/或溫度滿足臨限條件時修改壓縮組 126586.doc -33 - 200843833 件1130之馬達(未圖示)的速度。在一些實施例中,控制單 元113 0可經組態以當淡水生產速率及/或經壓縮之蒸汽之 生產速率低於指定限值時修改壓縮組件113〇之輸出及/或 輸入。〇〇之之分. The control algorithm can be based on any combination of proportional control, differential and/or integral control. The control unit (1) is configured to control at least a portion of the distillation system 1100 based on historical data associated with the distillation system 1 i 〇 . In response to the instructions from the control unit im, the history can be stored and stored in a repository (not shown) that can be taken from the control element (1). The sensor 1160 can include, for example, one or more of a temperature sensor, a pressure sensor, a humidity sensor, a flow rate sensor, an electromagnetic light sensor, and the like. Although a sensor 丨16〇 is shown in this embodiment, in some embodiments, the distillation system _ can have a sigma sensor (not shown) located in each of the knives of the distillation system 11A. For example, an inductor (not shown) may be coupled to the thermal transfer element 112, an inductor (not shown) may be disposed within the condensation print 1 42 and/or an inductive (not shown) may be disposed Compressed within component 1130. In some embodiments, at least a portion of the inductor 116 (or another inductor) can be disposed external to the outer casing 4 of the distillation system. For example, a, the control unit 丨丨丨〇 can be configured to modify the angle 1112 of the thermal transfer element 1 120 relative to the horizontal plane 丨丨i 8 in response to signals from the inductor 1160. The control unit 1110 can change the slope of the thermal transfer element 1120 by transmitting a signal that triggers the private motion of the actuator 1 150 that is coupled to the thermal transfer element 1120. This signal may be sent from control unit 111 when one or more conditions are met (e.g., the threshold 126586.doc - 32 - 200843833 is satisfied). In some embodiments, the flow rate of fluid 1114 can be modified as angle 1112 changes. In some embodiments, the 'control unit' can be configured to modify the rate of thermal transfer rate of the thermal transfer element 112 based on the signal from the inductor 1160. The thermal transfer rate may be calculated at control unit 1110 based on one or more signals from inductors 1160 (and/or another inductor) of distillation system 1100. Control unit 1110 may be configured to be based on from detector 116. The signal of 〇 (and/or another inductor (not shown)) modifies the flow rate of the outlet 1172 and/or the flow rate of the inlet 丨 174 by varying the valve 1162 and/or the valve 1164, respectively. For example, if the control unit 111 determines, based on the signal from the sensor 116, that the cooking rate, pressure, and/or temperature of the fluid 1114 above the thermal transfer element 112 is below a threshold, then the control unit 丨丨The flow rate (shown by line 1132) via outlet 1丨72 can be varied by a portion of the spoke valve 11 62 . Similarly, if the control unit 丨丨1〇 determines based on the signal from the sensor 1160 that the cooking rate, the force and/or the temperature of the fluid port 14 above the heat transfer element 丨12〇 satisfy a condition, the control unit 1 The flow rate through the inlet 11 (shown by line 1134) can be varied by moving a portion of valve 1 164. In some embodiments, control unit 315 can be configured to modify the output and/or input of compression component 113(R) in response to signals from inductor 1160 (eg, 'input temperature, input pressure, output temperature, output pressure ). For example, control unit 1130 can be configured to modify the motor of compression group 126586.doc -33 - 200843833 1130 when the cold rate, pressure, and/or temperature below thermal transfer element 112〇 meets the threshold condition (not The speed of the illustration). In some embodiments, control unit 113 0 can be configured to modify the output and/or input of compression assembly 113 when the fresh water production rate and/or the compressed steam production rate is below a specified limit.

在一些實施例中,控制單元丨丨1〇可經组態以修改流體自 安置於外殼1104外部之儲集器(未圖示)流入外殼11〇4之流 動速率。在一些實施例中,控制單元丨丨1〇可經組態以修改 來自安置於外殼11〇4内之儲集器(未圖示)的位於外殼11〇4 内之流體的流動速率、溫度及/或壓力。在一些實施例 中,控制單元1110可經組態以修改外殼11〇4内及/或外部 之廢產物(例如,鹽水)的流動速率、溫度及/或壓力。 在些κ施例中,控制單元1 1 1 〇可經組態以修改蒸餾系 統1100之一部分(例如,熱轉移元件112〇之斜率、流體之 Μ動速率)以使知瘵煮器i 140(例如,在熱轉移元件1處 或上方)内之溫度與冷凝器1142(例如,在熱轉移元件1120 處或下方)内之溫度以指定間隔隔開。在一些實施例中, 控制單元1110可經組態以修改蒸餾系統U00之一部分(例 如,熱轉移元件⑽之斜率、流體之流動速率)以使得蒸 煮器1 14 0内之廢力盘;/v龄哭、,,J。 /、冷綾益1142内之壓力以指定間隔隔 開。 在些貝把例中,可以協調之方式(例如,同時地、連 續地)修改與蒸顧系統1100相關聯之多個組件以達成所要 結果。舉例而言,若熱轉移元^ ^ ^ ^ ^ ^ ^ ^ ^ π1120上方之瘵煮速率低於 指定(例如,所要)位準,則 、J 了精由修改熱轉移元件丨120之 126586.doc •34- 200843833 角度1112以增大流體1114之流動速率且藉由增大壓縮組件 1J30之馬達的速度來增大自流體1114蒸煮出之流體的流 量。在-些實施财,控制單丨⑴〇可經組態以經由有線 網路及/或無線網路來控料個蒸顧系統(未圖示)之一或多 個部分。 在-些貫施例中,蒸餾系統11〇〇可具有一使用者介面 • (未圖示P使用者可使用該使用者介面來手動改變蒸餾系 Γ 、统Ή0之一態樣。舉例而言,使用者可經由使用者介面來 》變與蒸㈣統1 _相關聯之流體的流動速率或 件1120之熱轉移速率。在一些實施例中。使用者可經由使 用者介面來改變蒸餾系統1100之一或多個部分的操作點。 控制單元1110可經組態以修改(例如)熱轉移元件112〇之流 動速率及/或角度以實施操作點改變。 丨在-些實施例中,舉例而言,可在向蒸餾系統之至 少一部分的肖定操作點#變期fs1臨時使用冑%電加熱器之 〇 t熱組件(未圖示)。舉例而言,若蒸煮器部分1140之操作 Μ度增大,則可使用加熱組件來臨時加熱一流入之鹽-水 • 机(未圖不)直至達到穩態條件為止。在一些實施例中,可 持久使用加熱組件以維持蒸館系統_之-部分的穩態條 件0 圖12為祝明根據本發明之實施例的用於修改蒸餾系統之 熱轉移^件之角度的方法之流程圖。該流程圖展示,在 j210,在蒸餾系統之外殼處接收具有雜質濃度之流體。在 1220 ’接收來自與蒸顧系統相關聯之感應器的信號。在一 126586.doc -35- 200843833 些實施例中,感應器可為溫度感應器或壓力感應器。 在1230,基於該信號來修改耦接至外殼之熱轉移元件的 角度。舉例而言,當基於該信號滿足臨限條件時,控制單 元可觸發致動器以改變熱轉移元件之角度。在一些實施例 中’除了修改熱轉移元件之角度以外或替代修改熱轉移元 件之角度,亦可修改流體之至少一部分的流動速率。 圖1 3為說明根據本發明之實施例的用於起始蒸顧系統之 ( Ο 方法的流程圖。該流程圖說明,在1300,使用真空泵來抽 空瘵餾系統之外殼的至少一部分。在一些實施例中,若蒸 餾系統之一或多個部分經組態以在低壓下操作,則必須抽 :蒸餾系統之外殼。在一些實施例中,因為蒸餾系統經組 態以在(例如)大氣壓力下操作,所以不需要真空泵。在一 些實施例中’ t要鼓風機以將蒸餾系統之壓力增大至古芦 操作點。 《 问1 在131〇,起始轉接至外殼之塵縮組件。在132〇,使用加 ::件來加熱流至蒸館系統之外殼的流體。該流體可為兩 力孰質的混合物。在一些實施例中,可將流體 加”、、至蒸餾系統之蒸煮器部 ^ , , , , ^ 1刀扪徕作,皿度。在一些實施例 件。在-此實…)僅在啟動期間使用的電加熱組 及/或…? 需要冷卻組件以將蒸館系統之流入 及n之相溫度降低至低溫操作點。 在⑽,當蒸㈣統達到穩態時,終止真 件之操作。在—些實施例令 ::’ ϋ…且 蒸館系統之冷凝器部分達到1各別=、、〜煮器部分及 I、各別刼作點時,蒸餾系統以 126586.doc -36 - 200843833 穩態操作。在穩態操作點’安置於蒸餾系統之外殼内的熱 轉私元件之熱轉移速率大體丨互定。 一些實施例係關於-種具有電腦可讀媒體(亦可被稱作 處理器可讀媒體)之電腦儲存產。口口,電腦可讀媒體上呈有 用於執行由電腦實施之各種操作的指令或電腦碼。媒體及 電腦碼(亦可被稱作碼)可為出於指定目的而特定設計並建 構的媒體及電腦碼。電腦可讀媒體之實例包括(但不限 於)·諸如硬碟、軟碟及磁帶之磁性儲存媒體丨諸如緊密 光碟/數位視訊光碟(CD/DVD)、緊密光碟-唯讀記憶體^〇_ ROM)及全像設備之光學儲存媒體;諸如光磁碟之磁光儲 存媒體;載波信號;及經特定組態以儲存並執行程式碼的 硬體設備,諸如,特殊應用積體電路(ASIC)、可程式化邏 輯設備(PLD)及ROM與隨機存取記憶體(Ram)設備。電腦 碼之實例包括(但不限於)微碼或微指令、機器指令(諸如, 由編譯器產生)及含有由電腦使用解譯器來執行之較高階 才曰令的檔案。舉例而言,可使用java、C++或其他目標導 向式程式化語言及開發工具來實施本發明之實施例。電腦 碼之領外實例包括(但不限於)控制信號、加密碼及壓縮 碼。 總而言之,尤其描述用於在較大範圍之溫度及壓力不之 蒸餾的方法及裝置。雖然上文已描述各種實施例,但應理 解’其僅以實例方式出現且可對形式及細節作出各種改 變。舉例而言,可使用圖式中所展示之蒸餾系統中之組件 的各種組合來形成不同及/或獨立之蒸餾系統。在—些實 126586.doc -37- 200843833 施例中’舉例而言,可將圖2種所示之蒸館系統之组件中 的一些與圖10Α及圖Π中所示之蒸餾系統組合。 【圖式簡單說明】 圖1為說明根據本發明之實施例之蒸餾系統的示意性方 塊圖。 〜 圖2係根據本發明之實施例的經組態以將水與鹽·水分離 之蒸餾系統的示意性說明。In some embodiments, the control unit 〇1〇 can be configured to modify the flow rate of fluid from the reservoir (not shown) disposed outside of the housing 1104 into the housing 11〇4. In some embodiments, the control unit 〇1〇 can be configured to modify the flow rate, temperature, and flow of fluid from the housing 11〇4 from a reservoir (not shown) disposed within the housing 11〇4 / or pressure. In some embodiments, control unit 1110 can be configured to modify the flow rate, temperature, and/or pressure of waste products (e.g., brine) within and/or outside of housing 11〇4. In some κ embodiments, the control unit 1 1 1 〇 can be configured to modify a portion of the distillation system 1100 (eg, the slope of the thermal transfer element 112, the rate of turbulence of the fluid) to cause the cooker i 140 ( For example, the temperature within or above the heat transfer element 1 is separated from the temperature within the condenser 1142 (e.g., at or below the heat transfer element 1120) by a specified interval. In some embodiments, the control unit 1110 can be configured to modify a portion of the distillation system U00 (eg, the slope of the thermal transfer element (10), the flow rate of the fluid) to cause the waste disk within the digester 1140; Age crying,,, J. /, the pressure within the cold 1142 is separated by a specified interval. In some examples, the various components associated with the steaming system 1100 can be modified in a coordinated manner (e.g., simultaneously, continuously) to achieve the desired result. For example, if the cooking rate above the thermal transfer element ^ ^ ^ ^ ^ ^ ^ ^ ^ π1120 is lower than the specified (eg, desired) level, then the 126586.doc of the thermal transfer element 修改120 is modified. • 34- 200843833 Angle 1112 increases the flow rate of fluid 1114 and increases the flow of fluid liquefied from fluid 1114 by increasing the speed of the motor of compression assembly 1J30. In some implementations, the control unit (1) can be configured to control one or more portions of the steaming system (not shown) via a wired network and/or a wireless network. In some embodiments, the distillation system 11A can have a user interface. (The user interface is not shown to manually change the distillation system and the control system. For example, The user can change the flow rate of the fluid associated with the steam or the heat transfer rate of the member 1120 via the user interface. In some embodiments, the user can change the distillation system 1100 via the user interface. Operating point of one or more portions. Control unit 1110 can be configured to modify, for example, the flow rate and/or angle of thermal transfer element 112 to perform operating point changes. In some embodiments, for example </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; If increased, a heating assembly can be used to temporarily heat an incoming salt-water machine (not shown) until steady state conditions are reached. In some embodiments, the heating assembly can be used permanently to maintain the steaming system. Partial steady state Figure 12 is a flow diagram of a method for modifying the angle of a heat transfer element of a distillation system in accordance with an embodiment of the present invention. The flow chart shows that at j210, an impurity concentration is received at the outer casing of the distillation system. The fluid receives the signal from the sensor associated with the vaporizing system at 1220 '. In some embodiments, the sensor can be a temperature sensor or a pressure sensor. In 1230, based on The signal modifies the angle of the thermal transfer element coupled to the outer casing. For example, when the threshold condition is met based on the signal, the control unit can trigger the actuator to change the angle of the thermal transfer element. In some embodiments The flow rate of at least a portion of the fluid may be modified in addition to or in lieu of modifying the angle of the heat transfer element. Figure 13 is a diagram illustrating the use of an initial distillation system in accordance with an embodiment of the present invention ( Flowchart of the method. The flow chart illustrates that at 1300, a vacuum pump is used to evacuate at least a portion of the outer casing of the retorting system. In some embodiments, if the distillation system is One or more sections configured to operate at low pressure must be pumped: the outer casing of the distillation system. In some embodiments, a vacuum pump is not required because the distillation system is configured to operate at, for example, atmospheric pressure. In some embodiments, the blower is required to increase the pressure of the distillation system to the operating point of the ancient reed. "Question 1 At 131 〇, the transfer is initiated to the dust-shrinking assembly of the outer casing. At 132 〇, the use of:: To heat the fluid flowing to the outer casing of the steaming system. The fluid may be a mixture of two enamels. In some embodiments, the fluid may be added to the digester portion of the distillation system, ^, , ^ 1 Knife, the degree of the dish. In some of the examples. In the - this ... ... only used during the start-up of the electric heating group and / or ...? A cooling assembly is required to reduce the inflow of the vaporizer system and the phase temperature of n to the low temperature operating point. At (10), when the steaming (four) system reaches a steady state, the operation of the real part is terminated. In some embodiments: :: ' ϋ ... and the condenser part of the steaming system reaches 1 each =, ~, the boiler part and I, each of the different points, the distillation system is 126586.doc -36 - 200843833 Steady state operation. The heat transfer rate of the heat transfer element disposed in the outer casing of the distillation system at the steady state operating point is substantially constant. Some embodiments relate to a computer storage product having a computer readable medium (which may also be referred to as a processor readable medium). At the mouth, the computer readable medium has instructions or computer code for performing various operations performed by the computer. Media and computer code (which may also be referred to as code) may be media and computer code specifically designed and constructed for a specified purpose. Examples of computer readable media include, but are not limited to, magnetic storage media such as hard disks, floppy disks, and magnetic tapes, such as compact discs/digital video discs (CD/DVD), compact discs-read only memory. And optical storage media for holographic devices; magneto-optical storage media such as optical disks; carrier signals; and hardware devices specifically configured to store and execute code, such as special application integrated circuits (ASICs), Programmable logic device (PLD) and ROM and random access memory (Ram) devices. Examples of computer code include, but are not limited to, microcode or microinstructions, machine instructions (such as produced by a compiler), and files containing higher level commands executed by a computer using an interpreter. For example, embodiments of the invention may be implemented using java, C++, or other object oriented stylized languages and development tools. Examples of computer code include, but are not limited to, control signals, encryption codes, and compression codes. In summary, methods and apparatus for distillation over a wide range of temperatures and pressures are described in particular. While various embodiments have been described in the foregoing, it is understood that For example, various combinations of components in the distillation system shown in the drawings can be used to form different and/or separate distillation systems. In the example 126586.doc -37- 200843833, by way of example, some of the components of the steaming system shown in Figure 2 can be combined with the distillation system shown in Figures 10A and 。. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic block diagram showing a distillation system according to an embodiment of the present invention. ~ Figure 2 is a schematic illustration of a distillation system configured to separate water from salt and water in accordance with an embodiment of the present invention.

Ο 圖3說明根據本發明之實施例之可用以判定蒸餾系統之 至少一部分之操作點的蒸汽飽和度表。 圖4為說明根據本發明之實施例的與壓縮組件相關聯之 特徵化曲線的示意圖。 圖5為說明根據本發明之實施例的用於將一體積之流體 之一部分與該流體分離之方法的流程圖。 圖6Α為根據本發明之實施例的蒸餾系統之若干組件的分 解透視圖。 圖6 Β為根據本發明之實施例的不存在鹽_水之情況下的 圖6Α之熱轉移元件的透視圖。 圖6C為根據本發明之實施例的存在鹽-水之情況下的圖 6Α之熱轉移元件的透視圖。 圖6D為根據本發明之實施例之分配組件的透視透明圖。 圖7Α為說明根據本發明之實施例之蒸餾系統的示意圖。 圖7Β為根據本發明之實施例的圖7Α中所示之蒸餾系統 之一部分的示意圖。 圖8為根據本發明之實施例之壓縮組件的示意圖。 126586.doc -38- 200843833 圖9為根據本發明之實施例之熱轉移元件的示意圖。 圖1〇A為根據本發明之實施例之蒸餾系統的側視橫截面 Θ的示思性方塊圖,該蒸顧系統具有一大體圓錐形之熱轉 移元件。 圖1 〇B為根據本發明之實施例的圖10A中所示之蒸餾系 統之俯視部分剖視圖的示意性方塊圖。 圖11為根據本發明之實施例之蒸餾系統的示意性方塊 圖’該蒸餾系統包括一控制單元。 圖12為說明根據本發明之實施例的用於修改蒸餾系統之 熱轉移元件之角度的方法之流程圖。 圖13為說明根據本發明之實施例的用於起始蒸餾系統之 方法的流程圖。 【主要元件符號說明】 100 蒸館系統 110 腔室 112 入口 114 出π 120 熱轉移元件 130 腔室 140 壓縮組件 185 熱 200 蒸餾系統 204 外殼 206 蒸煮器部# 126586.doc •39- 200843833 208 冷凝器部分 209 淡水收集部分 220 熱轉移元件 222 深度 224 角度 226 水平平面 228 零深度點 232 假想線 234 線 240 壓縮組件 242 入口 244 出口 260 熱交換器 270 淡水 272 鹽-水 273 流入之鹽-水流 274 鹽水 275 流出之淡水流 277 流出之鹽水流 282 入口 284 出口 286 出口 306 操作點 308 操作點 126586.doc - 40 - 200843833 420 特徵化曲線 600 蒸顧系統 610 頂部部分 620 熱轉移元件 622 頂部部分 624 底部部分/底表面 626 開口 630 分配組件 631 流入之鹽-水 632 箭頭 634 箭頭/蒸汽 636 鹽水 638 經壓縮之蒸汽 640 淡水收集儲集器 644 引導系統 646 水平平面 648 箭頭 650 中間部分 652 槽 660 儲集器 662 淡水 664 鹽-水 666 波紋部分 668 儲集器 126586.doc -41- 200843833 674 入口 676 出π 680 外殼 690 分配岐管 692 岐管系統 694 入口 * 696 出口槽 ^ 700 蒸餾系統 ( 710 外殼 712 蒸煮器 714 冷凝器 720 熱轉移元件 722 鹽-水 724 線 726 線 728 底表面 G 732 點 734 點 736 點 * 738 點 740 壓縮組件 754 鹽-水儲集器 760 熱交換器 770 淡水 126586.doc -42- 200843833 774 鹽水 776 鹽水儲集器 778 淡水儲集器 780 再循環泵 782 深度 784 開口 840 壓縮組件 842 入口閥 844 出口閥 846 腔室 850 廢流 980 鹽-水 990 熱轉移元件 992 臺階 1000 蒸餾系統 1010 外殼 1020 圓錐形熱轉移元件/圓錐形熱轉移熱元件 1022 鹽-水 1024 軸 1026 螺旋漿 1040 壓縮組件 1044 基座 1046 開口 1048 頂表面 126586.doc -43 - 200843833 1049 底表面 1054 鹽-水儲集器 1060 熱交換器 1070 淡水儲集器 1074 鹽水儲集器 1076 軸承 1078 軸承 1090 馬達 1094 線 1100 蒸餾系統 1104 外殼 1110 控制單元 1112 控制模組/角度 1114 流體 1118 水平平面 1120 熱轉移元件 1130 壓縮組件 1132 線 1134 線 1140 煮器 1142 冷凝器 1150 致動器 1160 感應器 1162 出口閥 126586.doc -44- 200843833 1164 入口閥 1172 出口 1174 入口 ΔΡ 壓力差 126586.doc -45Figure 3 illustrates a steam saturation table that can be used to determine the operating point of at least a portion of the distillation system in accordance with an embodiment of the present invention. 4 is a schematic diagram illustrating an characterization curve associated with a compression assembly in accordance with an embodiment of the present invention. Figure 5 is a flow chart illustrating a method for separating a portion of a volume of fluid from the fluid in accordance with an embodiment of the present invention. Figure 6A is an exploded perspective view of several components of a distillation system in accordance with an embodiment of the present invention. Figure 6 is a perspective view of the heat transfer element of Figure 6 in the absence of salt_water in accordance with an embodiment of the present invention. Figure 6C is a perspective view of the thermal transfer element of Figure 6 in the presence of salt-water, in accordance with an embodiment of the present invention. Figure 6D is a perspective transparent view of a dispensing assembly in accordance with an embodiment of the present invention. Figure 7 is a schematic diagram illustrating a distillation system in accordance with an embodiment of the present invention. Figure 7 is a schematic illustration of a portion of the distillation system illustrated in Figure 7A, in accordance with an embodiment of the present invention. Figure 8 is a schematic illustration of a compression assembly in accordance with an embodiment of the present invention. 126586.doc -38- 200843833 Figure 9 is a schematic illustration of a thermal transfer element in accordance with an embodiment of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1A is a schematic block diagram of a side cross-sectional view of a distillation system in accordance with an embodiment of the present invention having a generally conical heat transfer element. Figure 1 is a schematic block diagram of a top cross-sectional view of the distillation system shown in Figure 10A, in accordance with an embodiment of the present invention. Figure 11 is a schematic block diagram of a distillation system in accordance with an embodiment of the present invention. The distillation system includes a control unit. Figure 12 is a flow chart illustrating a method for modifying the angle of a thermal transfer element of a distillation system in accordance with an embodiment of the present invention. Figure 13 is a flow chart illustrating a method for initiating a distillation system in accordance with an embodiment of the present invention. [Main component symbol description] 100 steaming system 110 chamber 112 inlet 114 out π 120 heat transfer element 130 chamber 140 compression assembly 185 heat 200 distillation system 204 housing 206 digester section # 126586.doc • 39- 200843833 208 condenser Section 209 Freshwater Collection Section 220 Thermal Transfer Element 222 Depth 224 Angle 226 Horizontal Plane 228 Zero Depth Point 232 Imaginary Line 234 Line 240 Compression Assembly 242 Inlet 244 Outlet 260 Heat Exchanger 270 Fresh Water 272 Salt - Water 273 Influent Salt - Water Stream 274 Brine 275 Outflow of fresh water stream 277 Outflowing brine stream 282 Inlet 284 Outlet 286 Outlet 306 Operating point 308 Operating point 126586.doc - 40 - 200843833 420 Characterization curve 600 Steaming system 610 Top section 620 Thermal transfer element 622 Top section 624 Bottom section / bottom surface 626 opening 630 dispensing assembly 631 inflowing salt - water 632 arrow 634 arrow / steam 636 brine 638 compressed steam 640 fresh water collection reservoir 644 guiding system 646 horizontal plane 648 arrow 650 middle portion 652 slot 660 reservoir 662 Water 664 salt-water 666 corrugated portion 668 reservoir 126586.doc -41- 200843833 674 inlet 676 out π 680 outer casing 690 distribution manifold 692 manifold system 694 inlet * 696 outlet tank ^ 700 distillation system (710 shell 712 digester 714 Condenser 720 Thermal Transfer Element 722 Salt-Water 724 Line 726 Line 728 Bottom Surface G 732 Point 734 Point 736 Point* 738 Point 740 Compression Assembly 754 Salt-Water Reservoir 760 Heat Exchanger 770 Fresh Water 126586.doc -42- 200843833 774 brine 776 brine reservoir 778 freshwater reservoir 780 recirculation pump 782 depth 784 opening 840 compression assembly 842 inlet valve 844 outlet valve 846 chamber 850 waste stream 980 salt-water 990 heat transfer element 992 step 1000 distillation system 1010 Housing 1020 Conical Heat Transfer Element / Conical Heat Transfer Heat Element 1022 Salt - Water 1024 Axis 1026 Propeller 1040 Compression Assembly 1044 Base 1046 Opening 1048 Top Surface 126586.doc -43 - 200843833 1049 Bottom Surface 1054 Salt-Water Storage 1060 heat exchanger 1070 fresh water reservoir 1074 brine reservoir 1076 bearing 1078 1090 Motor 1094 Line 1100 Distillation System 1104 Housing 1110 Control Unit 1112 Control Module / Angle 1114 Fluid 1118 Horizontal Plane 1120 Heat Transfer Element 1130 Compression Assembly 1132 Line 1134 Line 1140 Boiler 1142 Condenser 1150 Actuator 1160 Sensor 1162 Exit Valve 126586.doc -44- 200843833 1164 inlet valve 1172 outlet 1174 inlet ΔΡ differential pressure 126586.doc -45

Claims (1)

200843833 十、申請專利範圍: 1 · 一種裝置,其包含: 外设,其包括一冷凝器部分及一蒸煮器部分,該外 殼係經組態以在該蒸煮器部分中接收呈一大體液態之一 體積之流體,該體積之流體包括一雜質濃度; 其耦接至該外殼且界定該冷凝器部分 一熱轉移元件 之至少-部分及該蒸煮器部分之至少一部分,該熱轉移200843833 X. Patent Application Range: 1 - A device comprising: a peripheral device comprising a condenser portion and a digester portion configured to receive one of a bulk liquid state in the digester portion a fluid of volume, the volume of fluid comprising an impurity concentration; coupled to the outer casing and defining at least a portion of the condenser portion - a heat transfer element and at least a portion of the digester portion, the heat transfer Ο 兀件經組態以將熱自該冷凝器部分轉移至該蒸煮器部 刀以使得在该蒸煮器部分内於一低於一標準大氣壓力 的壓力下自該體積之流體將流體之一部分蒸煮成一氣 相,流體之該部分包括一低於該體積之流體之該雜質濃 度的雜質濃度;及 壓縮組件,其耦接至該外殼之該蒸煮器部分且經組 悲以將流體之該部分自該蒸煮器部分移至該冷凝器部 分,該壓縮組件經組態以在移動流體之該部分時增大流 體之該部分的壓力。 2·如凊求項1之裝置,其中該體積之流體為一第一體積之 流體, 、 5亥裝置進一步包含: 一熱父換器,其經組態以在流體之該部分至少部分地 變為液相之後且在一第)體積之流體在言玄蒸煮器部分處 被接收之後將熱自流體之該部分轉移至該第二體積之流 體,该第二體積之流體包括一經溶解之雜質。 月求項1之裝置,其中該壓縮組件經組態以移動流體 126586.doc 200843833 之°亥°卩刀,以使得在流體之該部分在該熱轉移元件之一 -表面處文為液相時,經由該熱轉移元件來轉一 流體之該部分的料。 U 4· 如明求項1之裝置,其中流體之該部分為流體之— 邛刀,且自該冷凝器部分轉移至該蒸煮器部分的該埶 一與來自兮挪蚀 …、係 元件之_ 流體的流體之—第二部分在該熱轉移 部分包括!表面處之冷凝相關聯的潛熱,流體之該第二 产 低於該體積之流體之該雜質濃度的雜質濃 5_ 2叫求項1之裝置,其中滿足以下條件中之至少· ①件之—部分具有—圓錐形形狀,或該外殼之 口ρ刀為一基於聚合物之材料。 6 ·如明求項1之裝置,其中該體積之产俨&gt;、士 4立 煮器部分中之……“體在被接收於該蒸 料處理之流來加熱中的至少一者。 束自-廢 C/ 邱:长項1之I置’其中流體之該部分為流體之-第一 接收之—第1…… 旧,在該外殼處 的流體之一第_ #八# Λ # 體積之流體 、 Ρ刀來加熱’流體之該第二部分且右 兩於該第—體積之流體 刀具有一 ㈣之抓體之6亥雜質濃度的雜質濃度。 .如“項1之裝置’其中該體積之流體為 該雜質為一鹽,流體之該部 f之水, 質之·溫度的溫度下蒸煮…低於-基於舞之物 9·如請求項1之裝置,其進一步包含: 126586.doc 200843833 刀配組件’其耦接至該外殼且經組態以在流體之該 部分在該熱轉移元件之一底表面處冷凝之前將流體之該 部分分配至该熱轉移元件之該底表面。 ίο. —種裝置’其包含: 一外殼,其具有至少一入口及一出口,該外殼經組態 以接收呈一大體液態之一體積之流體,該體積之流體的 至少一部分包括一經溶解之物質;及 一熱轉移兀件’其耦接至該外殼之一内部體積,且經 組態以將一潛熱轉移至安置於該熱轉移元件之一頂表面 上的該體積之流體的一第一部分,以使得該第一部分之 蒸氣壓大體等於該熱轉移元件上方的壓力,該潛熱係在 該體積之流體之一第二部分接觸該熱轉移元件之一底表 面並冷凝時來自該第二部分。 11. 如請求項10之裝置,其進一步包含: 一壓縮組件’其耦接至該外殼且經組態以將該第二部 分自一位於該熱轉移元件之該頂表面上方的區域移至一 位於該熱轉移元件之該底表面下方的區域,位於該熱轉 移元件之該底表面下方的該區域包括一高於該熱轉移元 件上方之該壓力的壓力。 12. 如請求項10之裝置,其進一步包含: 一真空泵,其耦接至該外殼且經組態以在該體積之水 在該外殼處被接收之前將該熱轉移元件上方之該壓力減 小至一大體低於一標準大氣壓力的壓力。 1 3 ·如請求項1 〇之裝置,其進一步包含: 126586.doc 200843833 一力u辦一 …、凡件,其耦接至該外殼且經組態以加熱該體積 之流體直$ # 4 μ &gt; _ 一” μ…、轉私元件在一穩態下轉移該潛熱為止;及 3日波轉換器,其耦接至該外殼且經組態以回應於 “潛熱而促進該第一部分之一相改變。 14 ·如清求項】 $置,/、中該熱轉移元件之至少一部分係 相對於—k 良千平面成一角度而安置。 ‘ 15. -種裝置,其包含: ( _外咸’其包括一第一區段及一第二區段,該外殼係 I 經組態以在兮鲎 Γ- Π $ 隹5亥弟一區段處接收一第一物質與一第二物質 之一混合物; … 熱轉移元件,其耦接至該外殼且界定該第一區段之 至少一部分及該第二區段之至少一部分;及 一壓縮組件,其耦接至該第一區段且經組態以在該第 物貝之部分在該第一區段處經由該第一物質之該部 第相改變而與該混合物分離之後將該第一物質 Q 之4部分自該第一區段移至該第二區段,該第〆相改變 係由經由該熱轉移元件轉移至該混合物的熱所導致, . 該壓縮組件經組態以移動該第一物質之該部分,以使 侍该第一物質之該部分之壓力及溫度增大,該熱轉移元 件經組悲以在將該第一物質之該部分移至該第二區段之 後轉移與該第一物質之該部分之一第二相改變相關聯的 熱,該第二相改變係發生在該第一相改變之後。 16·如請求項15之裝置,其中與該第一相改變相關聯之該熱 的量大體上等於與該第二相改變相關聯之該熱的量。 126586.doc 200843833 1 7.如請求項15之裴置,其中該第一物質之該部分係在一低 於一標準大氣壓力之壓力下與該混合物分離,該第一物 質之該部分的該第一相改變係發生在一低於該混合物中 所包括之一基於鈣之物質之沈澱溫度的溫度下。 18.如請求項15之裝置,其中該第一區段為一冷凝器且該第 二區段為一蒸煮器,該第一物質為水且該第二物質為一 在水中離子化的化合物。 19 ·如請求項15之裝置,其中該熱轉移元件之至少一部分係 相對於一水平平面成一角度而安置。 2〇·如請求項1 5之裝置,其中該混合物被安置在該熱轉移元 件之一頂表面上,該熱轉移元件之該頂表面在該混合物 之一零深度點處與該混合物之一表面相交。 2 1 · —種方法,其包含: 在一第一體積之流體在一位於一熱轉移元件上方之區 域内自一第二體積之流體蒸煮出之後,將該第一體積之 机體自位於该熱轉移元件上方之該區域移至一位於該熱 轉移元件下方之區域,該第一體積之流體包括一低於該 第二體積之流體之一雜質濃度的雜質濃度,位於該熱轉 移元件下方之該區域具有高於位於該熱轉移元件上方之 該區域之溫度的溫度;及 將潛熱自該第一體積之流體轉移至位於該熱轉移元件 之一頂表面上的一第三體積之流體,該潛熱係在該第〆 體積之流體冷凝時釋放。 22·如請求項21之方法,其進一步包含: 126586.doc 200843833 壓縮該第-體積之流體,以使得一與該第— 、 體相關聯之能量被增大一指定量之能量,該指=旦之流 量大體等於一與該潛熱相關聯之能量。ζ日疋夏之能 23·如請求項21之方法,其進一步包含: 壓縮该第一體積之流體,以使得該第一 、 溫度或壓力中的至少一者增大。 _貝之流體之 24·如請求項21之方法,其進一步包含: 在該第-體積之流體自該第二體積之流體1 一 且在與該潛熱相關聯之該轉移之前將與該第::之前 體相關聯之熱轉移至該第三體積之流體。 、之流 25. —種裝置,其包含: 外成,其具有至少一入口及一鹽水收集部分 殼係經組態以經由該入口接收一體積之鹽-水;”外 Ο -熱轉移元件’其耦接至該外殼之—内部體積 轉移件包括-表面’其至少—部分係相對於—水= 面成-角度而安置,當將該體積之鹽水安置於該: 兀件上時,該體積之鹽-水包括一平行於該水平平面之I 面,該熱轉移元件經組態以將潛熱轉移至該鹽·水,以使 得水之-部分自該鹽.水蒸煮出且該鹽_水之一鹽濃度增 大, 又日 該鹽水收集部分經組態以在該鹽_水之該鹽濃度增大之 後接收該鹽-水;及 一壓縮組件,其經組態以壓縮自該鹽-水蒸煮出之水之 至少該部分且經組態以將該部分之水移向該熱轉移元件 126586.doc 200843833 之'^底表面。 26· —種裝置,其包含: 卜殼’其具有至少-人口及—出π,該外殼係經組 悲以接收一體積之流體;及 一大體圓錐形之埶鏟 …、轉移兀件,其耦接至該外殼之一内 部體積,該圓錐开彡勒絲 口錐1熱轉移元件包括一外表面、一内表面 及一開口, 該大體圓錐形 &gt; 劫# # ,, 、 …、轉私兀件經組態以使得流體之一部 4於料表面上方的該體積之流體蒸煮出,流體之 ㈣分移動通過該開口且在該内表面處冷凝。 27·如睛求項26之裝置,复 “中忒大體圓錐形之熱轉移元件之 射卜表面界定該外殼之—蒸煮器部分之 該圓錐形熱轉移元件之兮 内表面界定該外殼之一冷凝器 口Ρ分之至少一部分。 28. 如請求項26之裝置, 體®錐形之熱轉移元件具 與該基座相對,該圓錐形熱轉移元 件係經組態以使得备法 出時,Γ田 部分自該體積之流體蒸煮 出時,4體積之流體在該外表 29. 如請求項26之裝置, 方向該基座流動。 其至少-部分包括 1大體液悲之水 M r ^ # ^ . 雜質,該大體圓錐形之熱 轉私兀件之该外表面界定該 -^ ^ ^ ^ ^ ^ ^ 蒸煮器部分之至少 一刀,机體之該部分在該蒗者 準大氣壓力之壓力下蒸煮。―、Μ分内於-低於-心 30. 如請求項26之裝置,其進—步包含: 126586.doc 200843833 一壓縮組件’其耦接至該外殼或該大體圓錐形之熱轉 移元件中的至少一者,流體之該部分係由該壓縮組件來 移動。 3 1 ·如請求項26之裝置,其中該圓錐形熱轉移元件具有一基 座’該開口係與該基座相對,該裝置進一步包含: 一壓縮組件’其耦接至該外殼或該大體圓錐形之熱轉 移件中的至少一者,流體之該部分係由該壓縮組件來 移動並壓縮,該壓縮組件具有一經組態以圍繞一軸線而 旋轉的細長構件,該軸線係自該基座延伸至該開口。 32.如請求項26之裳置,其中當流體之該部分被移動時,一 量之能量被添加至流體之該部分,當流體之該部分在該 内表面處冷凝時,該晉夕#旦ό + t u 巧里之此里自该内表面轉移至該外表 面。 3 3 ·如請求項2 6之裝置, 質’該體積之流體為 混合物。 其中流體之該部分大體為一第一物 一包括該第一物質及一第二物質的 34.如請求項26之裝置,复中 &gt; 甲β體積之流體為一體積之水, 其具有^ 一问於流體之該部八夕 灿· /W·、曲― 系刀之一雜質濃度的雜質濃度。 35· —種裝置,其包含: 一外殼’其具有至φ λ Γ-Ι 72 , 頁至^ 一入口及一出口,該外殼係經組 態以經由該入口接收一鲈接 ^ 體積之流體,該體積之流體係呈 '大體液恶’该體積之声碑+ s , 價之Μ體之至少一部分包括一經溶解 之雜質; 一熱轉移元件,其叙技$ — ^ + 、妾至该外殼之一内部體積,該熱 126586.doc 200843833 轉移兀件包括~表面,其至少-部分係相對於-水平平 面成一角度而安置,該體積之流體包括一平行於該水平 平面之表面;及 一壓縮組件,其經組態以壓縮自該體積之流體蒸煮出 之流體的至少一部分。 36·如請求項35之裝置,其中該熱轉移元件之該表面在該體 積之流體的一零深度點處與該體積之流體相交。 r、 月长員3 5之裝置,其中該壓縮組件係經組態以將流體 之該部分移至該熱轉移元件之一底表面。 38·如請求項35之裝置,其中該體積之流體為一第一體積之 流體, 、 该裝置進一步包含: 一熱交換器,其經組態以將熱自流體之該部分轉移至 σ亥外设中之/弟一體積之流體,流體之該部分係 自該第一體積之流體蒸煮出,該第二體積之流體係呈一 大體液態且包括一經溶解之雜質。 39.如凊求項35之裝置,其中該壓縮組件係磁性地耦接至一 馬達。 4〇·如凊求項35之裝置,其中該壓縮組件具有一協調之閥控 系統’其經組態以移動並壓縮流體之該部分。 4 1 ·如請灰,c 、 負3 5之裝置,其中流體之該部分係在一低於一標 準大氣壓力之壓力下且大體完全藉由經由該熱轉移元件 轉移wMj Μ體之該部分的潛熱而自該體積之流體蒸煮出。 /員3 5之t置,其中該壓縮組件具有一單調改變之 126586.doc 200843833 壓力差對流動速率特徵。 43. —種裝置,其包含: 一瘵餾單元,其經組態以將一第一物質之至少〆部分 自該第-物質及一第二物質之一混合物中分離出;及 一壓^機’其具有一單調改變之壓力差對流動速率特 徵,該壓縮機經組態以當該部分自該混合物中分離出時 將該第一物質移離該混合物。 44·如請求項43之裝置,其中該第一物質係基於該第〆物質 之一相改變特徵而自該混合物中分離出。 45·如請求項43之裝置,其中該混合物係呈一液相,當一冷 綾之潛熱轉移至該混合物時,該第一物質之該部分自該 混合物蒸煮出。 46· —種裝置,其包含: 一外设’其具有至少一入口及一出口,該入口經組態 以接收呈一液態之一體積之流體,該體積之流體包括一 雜質濃度; 一熱轉移元件,其耦接至該外殼之一内部部分且包括 一頂表面,該頂表面之至少一部分係相對於一水平平面 成一角度而安置,以使得該體積之流體在被移至該頂表 面上之後在該頂表面之該部分上流動,該體積之流體之 一表面大體平行於該頂表面;及 一壓縮組件,其耦接至該外殼且經組態以將自該體積 之體蒸煮出的流體之一部分移至該熱轉移元件之一底 表面’以使得熱自流體之該部分經由該熱轉移元件而轉 126586.doc -10- 200843833 移至該體積之流體。 47· 士口月求項46之裝置,其中該體積之流體係在一第一時間 被移:該頂表面上,該雜質濃度為一第一雜質濃度,當 在一第二時間自該體積之流體蒸煮出流體之該部分時y «積之流體包括一高於該第一雜質濃度之第二雜質濃 度,該第二時間係在該第一時間之後, 、 該裝置進一步包含:The crucible is configured to transfer heat from the condenser portion to the digester blade such that a portion of the fluid is partially cooked from the volume of fluid within the digester portion at a pressure below a standard atmospheric pressure Forming a gas phase, the portion of the fluid comprising an impurity concentration of the impurity concentration of the fluid below the volume; and a compression assembly coupled to the digester portion of the outer casing and responsive to the portion of the fluid The digester portion is moved to the condenser portion, the compression assembly being configured to increase the pressure of the portion of the fluid as the portion of the fluid is moved. 2. The device of claim 1, wherein the volume of fluid is a first volume of fluid, and the device further comprises: a thermal parent that is configured to at least partially change in the portion of the fluid After the liquid phase and after a first volume of fluid is received at the digester portion, heat is transferred from the portion of the fluid to the second volume of fluid, the second volume of fluid comprising a dissolved impurity. The device of claim 1, wherein the compression assembly is configured to move a fluid of a fluid 126586.doc 200843833 such that when the portion of the fluid is in a liquid phase at one of the surface of the thermal transfer element Transferring the portion of a fluid through the heat transfer element. U4. The device of claim 1, wherein the portion of the fluid is a fluid-cutter, and the first portion of the fluid transferred from the condenser portion to the retort portion is from the eclipse... The fluid part of the fluid - the second part is included in the heat transfer part! The latent heat associated with condensation at the surface, the second impurity of the fluid that is lower than the impurity concentration of the fluid of the volume is 5% of the device of claim 1, wherein at least one of the following conditions is satisfied - part The utility model has a conical shape, or the mouth of the outer casing is a polymer-based material. 6. The apparatus of claim 1, wherein the volume of the calamus &gt;, the 4th boiler portion is ... "at least one of the bodies being heated by the stream received by the steam treatment. Self-waste C/Qiu: Long item 1 of I set 'where the part of the fluid is fluid-first received- 1st... old, one of the fluids at the outer shell _ #八# Λ #体积a fluid, a trowel to heat the second portion of the fluid and the right two fluid injectors of the first volume have a (four) impurity concentration of the impurity concentration of the colloid. [1] The fluid is a salt of the impurity, the water of the part f of the fluid, and the temperature of the temperature is cooked at a temperature lower than - based on the device of the dance item 9. The device of claim 1, further comprising: 126586.doc 200843833 A knife assembly is coupled to the housing and configured to dispense the portion of the fluid to the bottom surface of the heat transfer element before the portion of the fluid condenses at a bottom surface of the heat transfer element. A device comprising: a housing having at least one inlet and an outlet, the housing configured to receive a volume in a volume of a bulk liquid, at least a portion of the volume of fluid comprising a dissolved substance And a heat transfer element 'coupled to an internal volume of the outer casing and configured to transfer a latent heat to a first portion of the volume of fluid disposed on a top surface of the thermal transfer element, The vapor pressure of the first portion is substantially equal to the pressure above the heat transfer element from the second portion when a second portion of the volume of fluid contacts a bottom surface of the heat transfer element and condenses. 11. The device of claim 10, further comprising: a compression component coupled to the housing and configured to move the second portion from an area above the top surface of the thermal transfer element to a A region below the bottom surface of the thermal transfer element, the region below the bottom surface of the thermal transfer element includes a pressure that is higher than the pressure above the thermal transfer element. 12. The device of claim 10, further comprising: a vacuum pump coupled to the housing and configured to reduce the pressure above the thermal transfer element before the volume of water is received at the housing To a pressure below a standard atmospheric pressure. 1 3 - The device of claim 1 further comprising: 126586.doc 200843833 A device that is coupled to the housing and configured to heat the volume of the fluid straight $ # 4 μ &gt; _ a "μ..., the private component transfers the latent heat in a steady state; and a 3-day wave converter coupled to the housing and configured to facilitate one of the first portions in response to "latent heat" The phase changes. 14 · If the item is set, the at least part of the heat transfer element is placed at an angle with respect to the -k. ' 15. - A device comprising: ( _ outside salty) comprising a first section and a second section, the housing I is configured to be in the area of 兮鲎Γ - Π $ 隹 5 Receiving a mixture of a first substance and a second substance; a thermal transfer element coupled to the outer casing and defining at least a portion of the first section and at least a portion of the second section; and a compression An assembly coupled to the first section and configured to separate the portion of the first substance after the first phase is separated from the mixture by the first phase of the first substance 4 parts of a substance Q are moved from the first section to the second section, the third phase change being caused by heat transferred to the mixture via the heat transfer element, the compression assembly being configured to move The portion of the first substance to increase the pressure and temperature of the portion of the first substance, the heat transfer element being sorrowful after moving the portion of the first substance to the second portion Transferring heat associated with a second phase change of one of the portions of the first substance, the first The two-phase change occurs after the first phase change. The apparatus of claim 15 wherein the amount of heat associated with the first phase change is substantially equal to the heat associated with the second phase change 7. The apparatus of claim 15, wherein the portion of the first substance is separated from the mixture at a pressure below a standard atmospheric pressure, the portion of the first substance The first phase change occurs at a temperature below a precipitation temperature of a calcium-based material included in the mixture. 18. The apparatus of claim 15 wherein the first stage is a condenser and The second section is a digester, the first substance is water and the second substance is a compound ionized in water. 19. The apparatus of claim 15, wherein at least a portion of the heat transfer element is relative to The apparatus of claim 1 wherein the mixture is disposed on a top surface of one of the heat transfer elements, the top surface of the heat transfer element being at a depth of one of the mixtures Point and One surface of the composition intersects. 2 1 · A method comprising: after the first volume of fluid is cooked from a second volume of fluid in a region above a thermal transfer element, the first The volumetric body moves from the region above the thermal transfer element to a region below the thermal transfer element, the first volume of fluid comprising an impurity concentration lower than an impurity concentration of the fluid of the second volume, The region below the thermal transfer element has a temperature above a temperature of the region above the thermal transfer element; and transferring the latent heat from the first volume of fluid to a top surface of one of the thermal transfer elements a third volume of fluid that is released when the second volume of fluid condenses. 22. The method of claim 21, further comprising: 126586.doc 200843833 compressing the first volume of fluid such that The energy associated with the body is increased by a specified amount of energy, and the flow of the finger is substantially equal to the energy associated with the latent heat. The method of claim 21, further comprising: compressing the first volume of fluid such that at least one of the first, temperature or pressure is increased. The method of claim 21, further comprising: wherein the fluid of the first volume is from the second volume of fluid 1 and prior to the transfer associated with the latent heat: : The heat associated with the previous body is transferred to the third volume of fluid. 25. A device comprising: an outer casing having at least one inlet and a brine collection portion shell configured to receive a volume of salt-water via the inlet; "outer crucible - thermal transfer element" Coupling to the outer casing - the inner volume transfer member comprises - the surface 'at least - part of which is disposed relative to the water - surface angle - when the volume of brine is placed on the: member, the volume The salt-water includes an I plane parallel to the horizontal plane, the heat transfer element being configured to transfer latent heat to the salt water such that the water is partially distilled from the salt water and the salt water One of the salt concentrations is increased, and the brine collection portion is configured to receive the salt-water after the salt concentration of the salt-water is increased; and a compression assembly configured to compress from the salt- At least the portion of the water that is distilled from the water and configured to move the portion of the water toward the bottom surface of the thermal transfer element 126586.doc 200843833. A device comprising: a shell having at least - population and - out of π, the shell is sad to receive a volume a fluid; and a substantially conical shovel ..., a transfer member coupled to an inner volume of the outer casing, the conical open taper 1 heat transfer element including an outer surface, an inner surface, and an opening , the generally conical &gt; robbery # # , , ..., trans-private element is configured such that one portion of the fluid 4 is digested from the volume of fluid above the surface of the material, and the (four) portion of the fluid moves through the opening and Condensation at the inner surface. 27. The apparatus of claim 26, wherein the surface of the generally conical heat transfer element of the middle of the crucible defines the inner portion of the conical heat transfer element of the outer casing The surface defines at least a portion of the condenser port of one of the outer casings. 28. The device of claim 26, wherein the body-conical heat transfer member is opposite the base, the conical heat transfer member being configured such that when ready for preparation, the portion of the field is cooked from the volume of fluid. Upon exit, 4 volumes of fluid are in the outer surface 29. As in the device of claim 26, the base flows. The at least one portion includes a large body fluid water M r ^ # ^ . impurity, the outer surface of the substantially conical heat-transferring member defines at least one knife of the -^ ^ ^ ^ ^ ^ ^ digester portion, This part of the body is cooked under the pressure of the latter's quasi-atmospheric pressure. ―, Μ分内-下低-心30. The device of claim 26, further comprising: 126586.doc 200843833 A compression assembly 'coupled to the outer casing or the generally conical heat transfer element At least one of the portions of the fluid is moved by the compression assembly. The device of claim 26, wherein the conical heat transfer element has a base that is opposite the base, the device further comprising: a compression assembly 'coupled to the outer casing or the generally conical At least one of the heat transfer members, the portion of the fluid being moved and compressed by the compression assembly, the compression assembly having an elongate member configured to rotate about an axis extending from the base To the opening. 32. The skirt of claim 26, wherein when the portion of the fluid is moved, an amount of energy is added to the portion of the fluid, and when the portion of the fluid condenses at the inner surface, the ό + tu is transferred from the inner surface to the outer surface. 3 3 . The apparatus of claim 2, wherein the volume of fluid is a mixture. Wherein the portion of the fluid is substantially a first substance comprising the first substance and a second substance. 34. The apparatus of claim 26, wherein the fluid of the beta beta volume is a volume of water having ^ Asked about the impurity concentration of the impurity concentration of one of the fluids of the part of the octagonal cum · / W ·, 曲 - knives. 35. A device comprising: a housing having a φ λ Γ-Ι 72, a page to an inlet and an outlet, the housing being configured to receive a volume of fluid through the inlet, The volume flow system is a 'major liquid evil' sound volume of the volume + s, at least a part of the valence body includes a dissolved impurity; a thermal transfer element, the stoichiometric $ — ^ + , 妾 to the outer shell An internal volume, the heat 126586.doc 200843833 transfer member includes a surface at least partially disposed at an angle relative to the horizontal plane, the volume of fluid comprising a surface parallel to the horizontal plane; and a compression assembly And configured to compress at least a portion of the fluid distilled from the volume of fluid. 36. The device of claim 35, wherein the surface of the thermal transfer element intersects the volume of fluid at a zero depth point of the volume of fluid. r. The apparatus of the lunar member 35, wherein the compression assembly is configured to move the portion of the fluid to a bottom surface of the thermal transfer element. 38. The device of claim 35, wherein the volume of fluid is a first volume of fluid, the apparatus further comprising: a heat exchanger configured to transfer heat from the portion of the fluid to σ In the middle of the volume of fluid, the portion of the fluid is cooked from the first volume of fluid, the second volume of the system is in a generally liquid state and includes a dissolved impurity. 39. The device of claim 35, wherein the compression component is magnetically coupled to a motor. 4. Apparatus according to claim 35, wherein the compression assembly has a coordinated valve control system&apos; configured to move and compress the portion of the fluid. 4 1 · A device such as ash, c, or negative 5, wherein the portion of the fluid is at a pressure below a standard atmospheric pressure and is substantially entirely transferred by the heat transfer element to the portion of the wMj body The latent heat is cooked from the volume of fluid. / member 3 5 t, wherein the compression component has a monotonous change 126586.doc 200843833 pressure difference versus flow rate characteristics. 43. A device comprising: a retorting unit configured to separate at least a portion of a first substance from a mixture of the first substance and a second substance; and a press 'It has a monotonically varying pressure differential versus flow rate characteristic, and the compressor is configured to move the first species away from the mixture as it is separated from the mixture. 44. The device of claim 43, wherein the first substance is separated from the mixture based on a phase change characteristic of the second substance. 45. The device of claim 43, wherein the mixture is in a liquid phase, and when a latent heat of cooling is transferred to the mixture, the portion of the first material is cooked from the mixture. 46. A device comprising: a peripheral having 'at least one inlet and one outlet, the inlet configured to receive a volume in a liquid volume, the volume of fluid comprising an impurity concentration; An element coupled to an inner portion of the outer casing and including a top surface, at least a portion of the top surface being disposed at an angle relative to a horizontal plane such that fluid of the volume is moved to the top surface Flowing over the portion of the top surface, one surface of the volume of fluid is substantially parallel to the top surface; and a compression assembly coupled to the outer casing and configured to fluidly evaporate from the volume of the body A portion of the fluid is transferred to the bottom surface of the heat transfer element to cause heat to be transferred from the portion of the fluid to the volume of fluid via the heat transfer element by 126586.doc -10- 200843833. 47. The apparatus of claim 46, wherein the volume flow system is moved at a first time: the top surface has a concentration of the first impurity, and at a second time from the volume When the fluid is cooked to the portion of the fluid y «the fluid includes a second impurity concentration higher than the first impurity concentration, the second time is after the first time, the device further comprises: ϋ 泵,其耦接至該外殼且經組態以在一在該第二時間 之後的第三時間將包括該第二雜質濃度的該體積之流體 之至少一部分移至該頂表面上。 月東項46之裝置,其中位於該熱轉移表面之一第一末 的«積之流體之—蒸氣壓及位於該熱轉移表面之 第一末端處的該體積之流體之一蒸氣壓大體等於一低 於一標準大氣壓力之壓力,當自該體積之流體蒸煮出流 體之該部分時,該體積之流體之該雜質濃度增大。 49·如=求項46之裝置,其中該壓縮組件係經組態以在蒸煮 出流體之該部分之後改變流體之該部分之壓力或溫度中 的至少一者,以使得流體之該部分在該熱轉移元件之該 底表面處冷凝, 該外殼具有-流體收集部分,該流體收集部分經組態 以在流體之該部分冷凝之後接收流體之該部分, 該外殼具有一鹽水收集部分,該鹽水收集部分經組態 以在自該體積之流體蒸煮出流體之該部分之後接收該體 積之流體。 126586.doc -11 - 200843833 5 0.如明求項46之裝置,其中該雜質為一鹽且流體之該部分 為流體之一第一部分,流體之該第一部分大體係使用自 級體之一第二部分釋放之潛熱而蒸煮出,流體之該第二 部分在該熱轉移元件之該底表面處自一氣相改變為一液 相。 5 1 · —種方法,其包含: 接收一來自一安置於一外殼内之感應器的信號,該外 殼包括一蒸煮器部分及一冷凝器部分,該蒸煮器部分之 至^部分及該冷凝器部分之至少一部分係由一耦接至 該外殼之一内部部分的熱轉移元件來界定;及 回應於邊k號來修改该熱轉移元件相對於一水平平面 之一角度,以使得一與該熱轉移元件相關聯之熱轉移速 率或一在該外殼内改變相之流體之一流動速率中的至少 一者被修改。 52. 〇 月求員5 1之方法,其中該修改包括進行修改以使得在 “、、轉f夕元件之邊蒸煮恭部分處自_混合物蒸煮出該流 體之°卩分的一速率被改變,該流體之該部分在自該混 53. 合物蒸煮出之後自該蒸煮器部分移至該冷凝器部分。 如請求項51之方法’其中該修改包括修改該角度,以使 得,該蒸煮器部分處蒸煮的一速率及在該冷凝器部分處 冷凝的一速率被改變。 54.如請求項51之方法,其中該熱轉移速率係與一經由該敎 轉:几件自該冷凝器部分轉移至該蒸煮器部分的潛熱相 關聯,該潛熱係自-在該熱轉移元件之一底表面處自_ 126586.doc •12- 200843833 氣相冷凝之流體釋放,該方法進一步包八· 」:該流體自該蒸煮器部分移至該;:::部分,以使得 该流體之溫度或壓力中的至少一 ^ θ大’該移動包括在 該潛熱自該流體釋放出之前移動。 55.如請求項51之方法,其中該熱轉移速率係與—經由該熱 轉移元件自該冷凝器部分轉移至該蒸煮器部分的潛熱相 關聯,該潛熱係來自一在該埶鏟孩分从 牡4热轉移TL件之一底表面處冷And a pump coupled to the housing and configured to move at least a portion of the volume of fluid comprising the second impurity concentration to the top surface for a third time after the second time. The device of the continuation 46, wherein a vapor pressure of the vapor at the first end of the heat transfer surface and a vapor of the volume at the first end of the heat transfer surface is substantially equal to one At a pressure below a standard atmospheric pressure, the concentration of the impurity of the volume of fluid increases as the portion of the fluid is cooked from the volume of fluid. 49. The apparatus of claim 46, wherein the compression component is configured to change at least one of a pressure or a temperature of the portion of the fluid after cooking the portion of the fluid such that the portion of the fluid is Condensing at the bottom surface of the heat transfer element, the outer casing having a fluid collection portion configured to receive the portion of the fluid after condensation of the portion of the fluid, the outer casing having a brine collection portion, the brine collection A portion is configured to receive the volume of fluid after the portion of the fluid is distilled from the volume of fluid. The apparatus of claim 46, wherein the impurity is a salt and the portion of the fluid is a first portion of the fluid, and the first portion of the fluid is used as one of the first The second portion releases the latent heat and is cooked, and the second portion of the fluid changes from a gas phase to a liquid phase at the bottom surface of the heat transfer element. 5 1 - A method comprising: receiving a signal from a sensor disposed in a housing, the housing including a digester portion and a condenser portion, the digester portion to the portion and the condenser At least a portion of the portion is defined by a thermal transfer element coupled to an inner portion of the outer casing; and responsive to the edge k to modify an angle of the thermal transfer member relative to a horizontal plane such that the heat is At least one of the heat transfer rate associated with the transfer element or a flow rate of a fluid that changes the phase within the outer casing is modified. 52. The method of claim 5, wherein the modification comprises making a modification such that a rate at which the portion of the mixture is cooked from the mixture at the side of the "," The portion of the fluid is moved from the digester portion to the condenser portion after cooking from the blend 53. The method of claim 51 wherein the modification comprises modifying the angle such that the digester portion The rate at which the cooking is performed and the rate at which the condenser portion is condensed is changed. 54. The method of claim 51, wherein the heat transfer rate is transferred from the condenser portion to the portion via the condenser portion The latent heat of the digester portion is associated with the release of fluid from the bottom surface of the heat transfer element from the bottom surface of the heat transfer element from 126586.doc • 12-200843833, the method further comprising: Moving from the digester portion to the :::: portion such that at least one of the temperature or pressure of the fluid is greater 'this movement includes moving before the latent heat is released from the fluid. 55. The method of claim 51, wherein the heat transfer rate is associated with latent heat transfer from the condenser portion to the digester portion via the heat transfer element, the latent heat system being from a shovel from the shovel The bottom surface of one of the 4 thermal transfer TL pieces is cold C; 凝的流體,該熱轉移元件之該底表面界定該冷凝器部分 之該部分。 56·如凊求項5 1之方法,其中該熱轉移速率係與一經由該熱 轉移元件自該冷凝器部分轉移至該蒸煮器部分的潛熱相 關聯,該潛熱係來自一在該熱轉移元件之一底表面處自 氣相冷凝的流體,該流體在該冷凝之前於該熱轉移元 件之一頂表面上方自一液相改變為該氣相。 57·如請求項51之方法,其中該熱轉移速率係與一經由該熱 轉移元件自該冷凝器部分轉移至該蒸煮器部分的潛熱相 關聯’該潛熱係來自在該熱轉移元件之一底表面處冷凝 的一第一物質之一部分,當該第一物質與一第二物質之 一混合物位於該熱轉移元件之一頂表面上方時,該第一 物質之該部分自該混合物蒸煮出,當該第一物質自該混 合物蒸煮出時,該第二物質之一濃度增大。 58· —種裝置,其包含: 一外殼,其包括一第一部分及一第二部分,該外殼經 組態以接收呈一大體液態之一第一物質與一第二物質的 126586.doc -13- 200843833 一混合物; -^熱轉移- 夕%件,其耦接至該外殼且經組態以轉 混合物之〜^ ^ ^ °卩分在該外殼之该弟一部分處之一相改 變相關聯的埶 相改 …、’以使得該混合物之一第二部分的一相太 該外殼之該箸 ^ • 部分處改變,該熱係以一速率來轉移, 該混合物之兮 夕, ”弟—部分與該混合物之該第二部分係不同 的 , , 一感應級侔,* , ( 、 ^ 其耦接至該外殼且經組態以產生一與該 混合物之一楚- 不二部分相關聯的信號;及 一致動哭,计&gt; °° 其耦接至該外殼且經組態以回應於該 來修改該速率。 5 9. 士明求項58之裝置,其中該感應組件包括一壓力感應 &quot;&quot; /;α星感應器或一溫度感應器中之至少一者,該致 動為係經組態以改變該熱轉移元件之一斜率,當該熱轉 移元件之該斜率改變時,該速率被修改。 〇 6G.㈣求項58之裝置,其中該感應組件包括-壓力感應 為、一流量感應器或一溫度感應器中之至少一者,該致 • 動器係經組態以改變該外殼内之該混合物之一第四部分 的一流動速率,當該流動速率改變時,該速率被修改。 &quot; 61·如請求項58之裝置,其中該第一物質為水且該第二物質 為鹽,該混合物之該第一部分的該相改變係與在一低於 考不準大氣壓力之壓力下之蒸煮相關聯,該混合物之該 第二部分的該相係自一氣相改變為液相。 62·如請求項58之裝置,其中該第一物質為水且該第二物質 126586.doc •14- 200843833 為鹽’該混人払 口 之该第二部分包括一低於該混合物之一 1》辰度的鹽濃度。 63·如請求項58 壯 衣置’其中該第三部分係不同於該第一部 分及該第二部分。 4 64.如請求項58之 仏1,具進一步包含· 一壓縮組件,f A U 具耦接至該外殼,該壓縮組件經組態 將該混合物之兮 邊弟一部分自該外殼之該第一部分移至 外殼之該第_部八 W 坪一σ卩刀,使得該混合物之該第一部分之壓力 或溫度中的至少一者增大。 士明求項58之裝置,其中與該混合物之該第一部分之今 相改變相關聯的該熱^以導致在〆大體恒定之壓力下: 5物之5亥第二部分之該相的該改變。 66. —種方法,其包含: L 士接收一來自一安置於一外殼内之感應器的信號,該外 /V又包括一瘵煮器部分及一冷凝器部分,該蒸煮器部分之 至少一部分及該冷凝器部分之至少一部分係由一耦接至 4外设之一内部部分的熱轉移元件來界定; 在该外殼之該蒸煮器部分處接收一流體; 將該流體自該蒸煮器部分移至該冷凝器部分,以使得 來自該流體之能量在該冷凝器部分處釋放且經由該熱轉 移元件轉移至該蒸煮器部分;及 回應於該信號來修改該流體之一流動速率,以使得該 外殼處之一相改變的一速率被改變。 67·如請求項66之方法,其中該相改變係在該蒸煮器部分處 126586.doc -15- 200843833 之自一液相至一氣相的一第 修改以使得該冷凝器部分處 二相改變的一速率被改變。 一相改'變,該修改包括進行 之自該氣相至該液相之一第 68. 69. 70. 71. 如請求項66之方法’其中該修改包括進行修改以使得姐 由該熱轉移元件之熱轉移的一速率被改變。 如請求項66之方法,其中該能量為潛能,該移動包括進 行私動以使得該流體之溫度或麼力中的至少一者增大。 如請求項66之方法,其進一步包含·· 回應於該信號來修改該熱轉移元件相對於一水平平面 之一角度。 如請求項66之方法,其進一步包含: 回應於該信號來修改該熱轉移元件相對於一水平平面 之一角度,該角度之該修改及該流動速率之該修改係協 調的。 126586.doc 16-C; a condensed fluid, the bottom surface of the heat transfer element defining the portion of the condenser portion. The method of claim 5, wherein the heat transfer rate is associated with a latent heat transferred from the condenser portion to the digester portion via the heat transfer element, the latent heat system being from a thermal transfer element A fluid condensed from the gas phase at a bottom surface, the fluid being changed from a liquid phase to a gas phase above a top surface of the heat transfer element prior to the condensation. The method of claim 51, wherein the heat transfer rate is associated with a latent heat transferred from the condenser portion to the digester portion via the heat transfer element from the bottom of the heat transfer element a portion of a first substance condensed at the surface, when a mixture of the first substance and a second substance is located above a top surface of the heat transfer element, the portion of the first substance is cooked from the mixture, when When the first substance is cooked from the mixture, the concentration of one of the second substances increases. 58. A device comprising: a housing comprising a first portion and a second portion, the housing configured to receive a first substance and a second substance in a substantially liquid state 126586.doc -13 - 200843833 a mixture; - ^ heat transfer - a piece of the sun, coupled to the outer casing and configured to convert the mixture to a ^ ^ ^ ^ ° 在 at the part of the outer portion of the outer casing is associated with a change埶 改 ... 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二The second portion of the mixture is different, a sensing level 侔, *, (, ^ is coupled to the housing and configured to generate a signal associated with one of the mixture - the second portion; And the consistent crying, &gt; °° is coupled to the housing and configured to modify the rate in response thereto. 5 9. The device of claim 57, wherein the sensing component includes a pressure sensing &quot;&quot;/; alpha star sensor or a temperature sensor At least one of the actuations is configured to change a slope of the thermal transfer element, the rate being modified when the slope of the thermal transfer element changes. 〇6G. (4) means for finding item 58, Wherein the sensing component comprises at least one of - a pressure sensing, a flow sensor or a temperature sensor, the actuator being configured to change a flow of a fourth portion of the mixture within the housing The rate is modified when the flow rate is changed. &lt; 61. The device of claim 58, wherein the first substance is water and the second substance is a salt, the phase change of the first portion of the mixture Associated with cooking at a pressure below an unacceptable atmospheric pressure, the phase of the second portion of the mixture is changed from a gas phase to a liquid phase. 62. The device of claim 58, wherein the One substance is water and the second substance 126586.doc •14- 200843833 is the salt. The second part of the mixed mouth includes a salt concentration lower than one of the mixtures. 63. 58 壮衣置' of which the first The portion is different from the first portion and the second portion. 4 64. As claimed in claim 58, further comprising a compression assembly, the f AU is coupled to the housing, the compression assembly being configured to the mixture Thereafter, a portion of the priest is moved from the first portion of the outer casing to the first portion of the outer casing, such that at least one of the pressure or temperature of the first portion of the mixture is increased. The device of item 58, wherein the heat associated with the change in the first portion of the first portion of the mixture results in a change in the phase of the second portion of the 5th portion of the 5th. 66. A method comprising: receiving a signal from a sensor disposed in a housing, the outer/V further comprising a boiler portion and a condenser portion, at least a portion of the digester portion And at least a portion of the condenser portion is defined by a thermal transfer element coupled to an inner portion of the outer periphery; receiving a fluid at the digester portion of the outer casing; moving the fluid from the digester portion To the condenser portion such that energy from the fluid is released at the condenser portion and transferred to the digester portion via the heat transfer element; and in response to the signal, modifying a flow rate of the fluid such that A rate at which one phase changes at the outer casing is changed. 67. The method of claim 66, wherein the phase change is a modification from a liquid phase to a gas phase at the digester portion 126586.doc -15- 200843833 such that the condenser portion is biphasic A rate is changed. a phase change, the modification comprising performing from the gas phase to one of the liquid phases. 68. 69. 70. 71. The method of claim 66, wherein the modification comprises modifying to cause the sister to be transferred by the heat The rate at which the component is thermally transferred is changed. The method of claim 66, wherein the energy is a potential, the moving comprising performing a private movement to increase at least one of a temperature or a force of the fluid. The method of claim 66, further comprising: responsive to the signal to modify an angle of the thermal transfer element relative to a horizontal plane. The method of claim 66, further comprising: responsive to the signal to modify an angle of the thermal transfer element relative to a horizontal plane, the modification of the angle and the modification of the flow rate being coordinated. 126586.doc 16-
TW96142295A 2006-11-08 2007-11-08 Methods and apparatus for distillation TW200843833A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US86489906P 2006-11-08 2006-11-08
US11/936,740 US8206557B2 (en) 2006-11-08 2007-11-07 Methods and apparatus for distillation of shallow depth fluids
US11/936,741 US20080105531A1 (en) 2006-11-08 2007-11-07 Methods and apparatus for signal processing associated with phase change distillation
US11/936,657 US8202401B2 (en) 2006-11-08 2007-11-07 Methods and apparatus for distillation using phase change energy

Publications (1)

Publication Number Publication Date
TW200843833A true TW200843833A (en) 2008-11-16

Family

ID=39365378

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96142295A TW200843833A (en) 2006-11-08 2007-11-08 Methods and apparatus for distillation

Country Status (11)

Country Link
EP (1) EP2114543A4 (en)
JP (1) JP5479906B2 (en)
KR (1) KR20090113358A (en)
AP (1) AP2009004887A0 (en)
AU (1) AU2007317223A1 (en)
BR (1) BRPI0718704A2 (en)
CA (1) CA2668972A1 (en)
IL (1) IL198673A0 (en)
MX (1) MX2009004875A (en)
TW (1) TW200843833A (en)
WO (1) WO2008058242A2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2179774B1 (en) 2008-10-22 2012-09-19 King Abdulaziz City for Science and Technology Water purification system and method
US9005404B2 (en) * 2011-02-15 2015-04-14 Purestream Services, Llc Controlled-gradient, accelerated-vapor-recompression apparatus and method
US9227853B2 (en) 2010-04-19 2016-01-05 Council Of Scientific & Industrial Research Desalination unit for the production of potable water from sub-soil brine
WO2015014387A1 (en) * 2013-07-29 2015-02-05 Francois-Mathieu Winandy Water desalination methods and facilities using mechanical vapour compression distillation
JP6658259B2 (en) * 2016-04-22 2020-03-04 株式会社Ihi Separation device
EP3523400A1 (en) * 2016-10-07 2019-08-14 SABIC Global Technologies B.V. Stage and system for compressing cracked gas
KR20190017628A (en) * 2017-06-07 2019-02-20 쿤-투 루 Generative system, vessel, facilities and operation method using distilled water as vessel ballast water, use of distilled water
BE1024466B1 (en) * 2017-07-27 2018-02-28 Ind Advanced Services Fz Llc Mechanical water vapor desalination unit
WO2019086979A1 (en) * 2017-10-30 2019-05-09 Chandan Kumar Mechanical vapor compression evaporator with no boiler

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3192130A (en) * 1960-02-08 1965-06-29 Jr John E Pottharst Forced circulation evaporator
US3423294A (en) * 1963-04-22 1969-01-21 Hugo H Sephton Vortex flow film distillation process
US3956072A (en) * 1975-08-21 1976-05-11 Atlantic Fluidics, Inc. Vapor distillation apparatus with two disparate compressors
JPS53116273A (en) * 1977-03-22 1978-10-11 Hitachi Zosen Corp Evaporating apparatus
US4440601A (en) * 1980-01-28 1984-04-03 Jerome Katz Method and apparatus for high volume fractional distillation of liquids
JPS60153986A (en) * 1984-01-21 1985-08-13 Michizo Yamano Distillation method and apparatus
JPH0615102A (en) * 1992-06-30 1994-01-25 Chiyoda Corp Falling film type concentrator
JPH07703A (en) * 1993-06-14 1995-01-06 C & Ee:Kk Heat exchanger type vacuum distillation and drying device
US5587054A (en) * 1994-10-11 1996-12-24 Grano Environmental Corporation Vapor compression distillation system
US6270735B2 (en) * 1998-08-18 2001-08-07 Clean Technologies International Corporation Apparatus for thermal stripping and molecular decomposition for waste streams
US6804962B1 (en) * 1999-12-23 2004-10-19 Melvin L. Prueitt Solar energy desalination system
US6436242B1 (en) * 2000-02-10 2002-08-20 Pedro Joaquin Sanchez Belmar Device and method for distilling water
US6695951B1 (en) * 2000-07-18 2004-02-24 Jack G. Bitterly Saline/sewage water reclamation system
CA2466849A1 (en) * 2001-10-03 2003-04-10 Yaron Mayer System and method for efficient and low energy desalination of water
BR0202830B1 (en) * 2002-07-10 2010-11-16 resonant arrangement for linear compressor.
CN101658740B (en) * 2002-11-13 2014-06-04 迪卡产品合伙有限公司 Pressurized vapor cycle liquid distillation

Also Published As

Publication number Publication date
EP2114543A2 (en) 2009-11-11
IL198673A0 (en) 2010-02-17
BRPI0718704A2 (en) 2014-01-07
WO2008058242A2 (en) 2008-05-15
KR20090113358A (en) 2009-10-30
JP2010509057A (en) 2010-03-25
MX2009004875A (en) 2009-07-10
CA2668972A1 (en) 2008-05-15
JP5479906B2 (en) 2014-04-23
AU2007317223A1 (en) 2008-05-15
AP2009004887A0 (en) 2009-06-30
WO2008058242A3 (en) 2008-09-04
EP2114543A4 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
US8206557B2 (en) Methods and apparatus for distillation of shallow depth fluids
TW200843833A (en) Methods and apparatus for distillation
US8202401B2 (en) Methods and apparatus for distillation using phase change energy
JP4227022B2 (en) Rotary heat exchanger
WO2011085669A1 (en) Low-temperature heat-driven distillation separation apparatus for evaporating aqueous solution under negative pressure and method for obtaining distilled water
US4186311A (en) Heat pump method of concentrating fluids
TW201213531A (en) Supertorrefaction of biomass into biocoal
JP2015202445A (en) Reduced-pressure boiling-type seawater desalination apparatus with power generating function
US20080105531A1 (en) Methods and apparatus for signal processing associated with phase change distillation
CN207418323U (en) A kind of split type condensing unit
EP0044294A1 (en) A desalination apparatus with power generation
CN207169691U (en) A kind of energy-conservation steams formula cycling hot retort
CN101573162A (en) Methods and apparatus for distillation
US20160107097A1 (en) Distallation System with Heat Recovery
JP5212940B2 (en) Air-conditioning power generation distillation system using barometric siphon
CN206666173U (en) Auto-manual double mode solar energy cascade boiled seawater desalination device
TW562917B (en) Steam collection type evaporator
JPS63131901A (en) Method of recovering heat of reaction
EP0044830A1 (en) Heat pump method of concentrating fluids
JP2017029910A (en) Separation refining apparatus for composite liquid
RU48159U1 (en) VACUUM-EVAPORATING INSTALLATION
NL1000149C2 (en) Ocean thermal energy conversion (OTEC) system.
CN210963977U (en) Small MVR evaporation crystallization equipment
US11208336B2 (en) Fully regenerative distillation system for low-cost water desalination
JPS59197703A (en) Flush evaporating method and device for liquid