TW200839858A - Substrate treating method - Google Patents

Substrate treating method Download PDF

Info

Publication number
TW200839858A
TW200839858A TW097108865A TW97108865A TW200839858A TW 200839858 A TW200839858 A TW 200839858A TW 097108865 A TW097108865 A TW 097108865A TW 97108865 A TW97108865 A TW 97108865A TW 200839858 A TW200839858 A TW 200839858A
Authority
TW
Taiwan
Prior art keywords
substrate
chamber
pressure
wafer
gas
Prior art date
Application number
TW097108865A
Other languages
Chinese (zh)
Inventor
Chin-Woo Kim
Original Assignee
Psk Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Psk Inc filed Critical Psk Inc
Publication of TW200839858A publication Critical patent/TW200839858A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02046Dry cleaning only

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Drying Of Semiconductors (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

A method for processing a substrate is provided. The substrate loaded into a process chamber is placed on a support plate. Then the process chamber is isolated from the outside and a pressure in the process chamber is increased to a preset pressure. A temperature of the substrate is stabilized at a constant temperature under the preset pressure and a pressure in the process chamber is decreased to a process pressure. When processing of the substrate in the process chamber is accomplished, the substrate is unloaded to the outside of the process chamber. A method for increasing the pressure in the process chamber includes a process for supplying purge gas and a process for supplying process gas.

Description

關於on

Ο 200839858 九、發明說明: 【發明所屬之技術領域】 本發明關於一種基板處理方法,更詳細 A Β 種載置於平板(plate)上的基板的處理方法。。疋 【先前技術】 ' 對蒸鍍於晶圓(wafer)表面上的薄膜 (etching)而選擇性地除去,從而於晶圓表面、' 麵刻 的圖案(pattern)。在半導體製造過程中 上形成所需 / 、 入设運行這檨制& (process)。又,不僅可對蒸鍍的膜進行蝕刻,為衣% 溝槽(fdi)亦可對梦基板自身進行_=薄膜 如光阻膜(photoresist)或氧化矽膜(silic〇ndi〇xide) 化矽膜(silicon nitride)那樣的不同的薄膜。與光阻^ = 比,氧化膜或氮化膜可提供更好的蝕刻條件。 、 /對普通的電漿钮刻裝置(plaSmaetchingapparatus)進 行說明。將製程氣體(process gas)供給至腔室内,在兩 個電極(electrode)之間形成電場(eiectric加⑷時,氣 體原子(gas atoms)的一部分離子化(i〇nizati〇n),生成 ί%離子(positive ions)與自由電子(free eiectr〇ns)從而 形成電漿(Plasma)。於電漿蝕刻裝置中,能量是藉由以 13.56 MHz進行動作的高頻波產生器(RF(racji〇_freqUenCy) generator)而供給的。 與電漿蝕刻相關的兩個主要要素為自由基(free radicals )與離子(i〇ns )。自由基具有不牢固的鍵結 (incomplete bonding),電性為中性。因此,自由基因不 5 200839858 牢固的鍵結而具有非常大的反應性,主要是透過與日 的物質的化學作用而進行製程。然而,離子具有電^,、故Ο 200839858 IX. Description of the Invention: [Technical Field] The present invention relates to a substrate processing method, and more particularly to a method of processing a substrate placed on a plate. .疋 [Prior Art] 'Selectively remove the film deposited on the surface of the wafer to form a pattern on the surface of the wafer. In the semiconductor manufacturing process, the required /, operation, and process (process) are formed. Moreover, not only the vapor deposited film can be etched, but also the clothing substrate itself can be _=film such as photoresist or bismuth oxide film. Different films like silicon nitride. An oxide film or a nitride film provides better etching conditions than photoresist = ^. / / Explain the ordinary plasma buttoning device (plaSmaetchingapparatus). A process gas is supplied into the chamber to form an electric field between the two electrodes (the eiectric addition (4), a part of the gas atoms are ionized (i〇nizati〇n), generating ί% A positive ion and a free electron (free eiectr〇ns) form a plasma. In a plasma etching apparatus, energy is a high-frequency wave generator (RF(racji〇_freqUenCy) that operates at 13.56 MHz. The two main elements related to plasma etching are free radicals and ions (i〇ns). Free radicals have incomplete bonding and electrical properties are neutral. Therefore, the free gene does not have a strong bond and is very reactive, mainly through the chemical interaction with the material of the day. However, the ion has electricity,

Ο Ο 藉由電位差而向固定方向加速,從而主要是透過=圓 的物質的物理作用而進行製程。 /、阳L1上 另一方面,將晶圓裝載至腔室内,並載置於設置 室内的吸盤上(ehuek)。織,以適合進行製程的; 晶圓的溫度條件進行調節,只要溫度條件充分便開始進行 製程、。然而丄如上述那樣的普通裝置存在幾個問題。 為了提咼製程的精密度,必須準確地調整製程條件, 其^晶圓的溫度條件非常重要。此處’在晶圓離開吸盤的 狀悲下,供給至腔室内的氣體分子發揮著晶圓與吸盤之 的溫度傳遞媒介(mediat〇r)的功能。因此,很難“ 圓的/皿度’尤其是在南真$ (high vacuum)狀態下進行製 私B守,因為腔室内存在極少數的氣體分子,因此上述問 可能會更嚴重。 為了解決此問題,有時會向晶圓的後表面噴射氮氣 ^helium gas) ,’但在此情況下’要求另外設置用以固定晶 圓的衣置先箣使用機械式夾具(mechanical clamp )或靜 電吸盤(ESC : electrostatic chuck),但麵式夾具無法對 晶圓施加均勻的力,存在會產生微粒(partide)的缺點。 又’在使用靜電吸盤的情況下,裝置的構造變得複雜,生 產費用增加,進而在進行製程時,必須有吸附緊(chucking) /釋放(dechucking)的過程。 200839858 【發明内容】 本發明是鑒於上述問題而完成的,其目的在於提供一 種可容易地調節晶圓的溫度條件的基板處理方法。 本發明的另一目的在於提供一種可確保晶圓的溫度均 -一度的基板處理方法。 本發明的又一目的將藉由下述詳細說明及隨附圖式而 予以明確。 p 為了達成上述目的,本發明的基板處理方法包括··將 基板裝載至製程腔室(pr〇cess ^&ιη&Γ)内的步驟,·將用 以對上述基板進行處理的製程氣體供給至上述製程腔室 内,並將上述製程腔室内的壓力增壓至既定的壓力而使上 述基板的溫度穩定化的步驟;將上述製程腔室内的壓力減 壓至製耘壓力(process pressure),並對上述基板進行製 転的步驟,以及將上述基板卸載至上述製程腔室的外部的 步驟。 上述製程氣體可包括蝕刻氣體或清潔氣體(deaning O gas)〇 • 對上述基板進行製程的步驟可包括如下步驟,即在上 ^ 述製程腔室内形成著電場的狀態下,將上述製程氣體供給 至上述處理腔室内而生成電漿,利用所生成的電漿對上述 基板進行製程。 對上述基板進行製程的步驟可包括如下步驟,即對上 述基板進行加熱以除去形成在上述基板的上部表面的製程 副產物。 200839858 拓壯哉=的另―實施形態的基板處理綠,包括:將基 1腔室内的步驟;將用以對上述基板進行處理 白供給至上述第1腔室内,並將上述第1腔室内 驟土將既定的壓力而使上述基板的溫度敎化的步 1,將上述弟1腔室内的壓力減壓至製程μ力,並對上述 二1製程的步驟;將上述基板卸載至上述第1腔 ^外部,亚裝载至第2腔室内的步驟;將上述第2腔室 ==增壓至既j的塵力,而且使上述基板的溫度穩定 對卜ί 將上述第2腔室内的壓力減壓至製程麼力,並 行第2製程的步驟;以及將上述基板卸載至 勺2上述第1腔室_上述基板騎第1製程的步驟可 ,即在上述第1腔室内形成著電場的狀態 下將上述製程氣體供給至上述第!腔室内而生成 利用所生成的電漿對上述基板進行處理。 ’ Ο 勺紅ί上述第2腔室内對上述基板進行第2製程的步驟可 ,即對上述基板進行加熱以除去形成在上述 基板的上部表面的製程副產物。 上述製程氣體可包括蝕刻氣體或清潔氣體。 [發明的效果] 屡力Γ據i發明’將氣體供給至腔室内以增加腔室的内部 圓的密又度,可藉由氣體分子而容易地進行晶 以 '的皿度调即。又,可減小晶圓々各區域的溫 。尤其是可使用淨化氣體(purgegas)或製程氣體=容 8 200839858 易地調節晶圓w的溫度。 【實施方式】 以I ’根據隨附圖卜圖7來詳細說明本發明的較佳 貫鈀形悲Λ。本發明的實施形態可變形為各種形態, 〇 本發明的範圍解釋為限定於下述實施形態。本;施形:是 為了對具有該發明所屬技術領域的通常知識的人員更&田 地說明本發明而提供的。@此,為了 _更财的說明、、, 圖中的各要素的形狀可擴大。 另-方面’以下,對作為基板的—例的晶圓w進行說 明,但本發明的技術思想以及範圍並不限定於此。又,以 下為了說明本發蚊以電漿侧裝置為例而加以說明的, 但本發明可應用於以將晶圓載置於支撐板上的狀態而進行 製程的各種半導體製造裝置。又,以下,以感應耗合電聚 (ICP : hductively Coupled Plasma )類型的電漿裝置為例 Ο 進行《兒明’但可應用於包括電子回旋加速器共振(Ecr : Electron Cyclotron Resonance )類型的各種電漿装置。 圖1是概略地表示包含本發明的製程模組(process module) 10a、10b的半導體製造設備1的圖。 參照圖1,半導體製造設備1包括製程設備2、設備前 端模組(EFEM : Equipment Front End Module) 3、及界面 壁(interface wall) 4。 設備前端模組3安裝在製程設備2的前方,於收容著 晶圓W的容器(未圖示)與製程設備2之間移送晶圓w。 $又備箾端模組3具有多個裳載埠(i〇acjp〇rts) 6〇與框架 200839858 (frame) 50。框架50位於裝載埠60與製程設備2之間。 收容晶圓w的容器藉由如高架傳送機(overhead transfer)、尚架輸送機(〇verhea(j convey〇r)、或無人搬運 - 車(automatic guided vehicle )那樣的移送機構(未圖示) - 而載置於裝載埠60上。作為容器,可使用如前開式晶圓盒 (FOUP : Front Open Unified Pod)那樣的密閉容器。在框 架50内没置著框架機械手(frame r〇b〇t) 70,該框架機械 p 手70在載置於裝載埠60上的容器與製程設備2之間移送 ώ 晶圓W。可在框架50内設置著使容器的門自動打開或關 閉的開門器(opener)(未圖示)。又,可在框架50上設置 風扇過濾單元(FFU : Fan Filter Unit,未圖示),該風扇過 濾單元以使清潔空氣從框架50内的上部流向下部的方式 將清潔空氣供給至框架50内。 在製程設備2内對晶圓W進行規定的製程。製程設備 2具有裝載互鎖真空室(i〇adlockchamber) 20、傳送腔室 (transfer chamber) 30、及第 1 及第 2 製程模組(process 〇 module)l〇a、l〇b。傳送腔室30具有大致多邊形狀的剖面。 裝載互鎖真空室20或製程模組l〇a、l〇b位於傳送腔室30 的側面。裝載互鎖真空室20位於傳送腔室30的側部中的 • 與設備前端模組3相鄰接的侧部,製程模組i〇a、10b位於 另一侧部。裝載互鎖真空室20具有:裝載腔室20a,用以 進行製程而搬入至製程設備2中的晶圓W暫時待機於此; 以及卸載腔室20b,製程完成後從製程設備2搬出的晶圓 W暫時待機於此。傳送腔室30及製程模組l〇a、1〇b的内 10 200839858 ‘ 部保持為真空,而裝載互鎖真空室20的内部在真空及大氣 壓間進行切換。裝載互鎖真空室20防止外部污染物質流入 至傳送腔室30及製程模組i〇a、i〇b中。在裝載互鎖真空 - 室20與傳送腔室30之間,並且在裝載互鎖真空室2〇與設 - 備前端模組3之間’設置著閘閥(gate valve )(未圖示)。 當晶圓W在设備前端模組3與裝載互鎖真空室2〇之間移 動時,將設置在裝載互鎖真空室20與傳送腔室3〇之間的 、 閘閥關閉,而當晶圓w在裝載互鎖真空室20與傳送腔室 C 30之間移動時,將設置在裝載互鎖真空室2〇與設備^ 模組3之間的閘閥關閉。 在傳送I至30内女t者移送機械手4〇。移送機械手 40將晶圓W袋載至製程模組i〇a、iQb上,或者從夢程模 組10a、10b卸載晶圓W。又,移送機械手4〇在製程模組 10a、10b與裝載互鎖真空室20之間移送晶圓w。 製程模組10a、10b對晶圓%進行規定的製程,例如 如I虫刻、清 >糸(cleaning )、灰化()那樣的製程。 〇 製程模組l〇a、構成一個群組(group),連續地對晶圓 W進行製程。 圖2是概略地表示圖1的第丨製程模組1〇a的圖。 第1製程模組l〇a包括第1製程腔室12〇、第1平板14〇、 第1排氣管線(line) 160、線圈(c〇il) 17〇、及第1供給 管線180。 第1製程腔室120提供進行蝕刻製程的内部空間,當 進行製程時,使第1製程腔室120的内部空間與外部隔絕。 11 200839858 在第1製程腔室120沾j 、 ⑵。通⑽是藉由二:〜成 出入的通路 的開關構件而打開 未圖示)那樣 如, 關閉的。在第1製程腔室mo的另— 侧形成者w供給孔126。糾 = 室m的内部。在^^ 1流入至第1製程腔 第1 f程= G #底壁上形成著排出 弟1衣处至120内的氣體的第 =24形成在下述的第1平板H0的周圍,在第1排= 上幵y成著下述的第1排氣管線160。 、 在第1製程腔室12Q的内部㈣中設置著第 140。第1平板140由支標軸142支撐。晶圓w載置於第 表面。第1平板140接地,且與下‘ 、,泉圈 併在弟1製程腔室120的内部形成電場。在第 1平板140上設置著多個支撐突起14〇a,晶圓w的背面由 多個支撐突起140a支撐。因此,晶圓w保持離開第1平 板140的上部表面固定距離的狀態。 •第1排氣管線160連接於第1排氣孔124,進行第j 製程腔室120内部的壓力調節及内部空氣的排出。可在第 1排氣管線160上另行設置用以強制排氣的泵(pump,未 圖示)。因此,可利用泵來強制性地降低第1製程腔室12〇 的内部壓力。 於第1製程腔室120的上部設置著線圈170,高頻波 產生器(未圖示)連接於線圈170。當使與線圈17〇連接 的高頻波產生器作動時,由線圈17〇產生高頻波能量,且 12 200839858 所產生的能量經由第1製程腔室120的上部壁而傳遞至第 1製程腔室120的内部,從而在第i製程腔室12〇的内部 形成電場。另一方面,本實施形態中,說明了將線圈17〇 - 設置在第1製程腔室120的上部的情況,但線圈170的位 ^ 置<進行各種變形。 第1供給管線180分支為製程氣體管線182及淨化氣 體管線184。在製程氣體管線182的内部流動製程氣體, 在淨化氣體管線184的内部流動淨化氣體。因此,製程氣 f 體及淨化氣體通過第1供給管線180而供給至第1製程腔 室12〇的内部。另一方面,在製程氣體管線182上設置著 對製轾氣體管線182進行打開或關閉的閥i82a,且在淨化 氣體管線184上設置著對淨化氣體管線184進行打開或關 閉的闕184a。 製程氣體是根據在第1製程腔室12〇内進行的製程來 決定的,因此,當在第1製程腔室120内進行蝕刻製程時, 製程氣體為蝕刻氣體,而當在第丨製程腔室120内進行清 Ο 潔製蘀(cleaning process)時,製程氣體則為清潔氣體。 淨化氣體是為了在維修第1製程腔室12〇時將内部的有毒 - 氣體排出至外部而供給至第1製程腔室120的内部。淨化 • 氣體包含如氮氣(Ns)那樣的惰性氣體。 圖3是概略地表示圖1的第2製程模組10b的圖。 第2製程馳勘包括第2製程腔室22〇、第2平板 240、第2排氣管線260、及第2供給管線·。 第2製程腔t 220提供進行钱刻製程的内部空間,當 13 〇 Ο 在第2供给管 200839858 進行製耘時’使第2製程腔室220的内部空間與外部隔絕。 在第2製程腔室220的一侧形成著晶圓w出入的通路 222。通路222是藉由如狹縫門(未圖示)那樣的開關構件 而打開或關閉的。在第2製程腔室〜22〇的另一侧形成著第 2供給孔226。通過下述的第2供給管線28〇而供給的氣 體,將通過第2供給孔220而流入至第2製程腔室22〇的 内部。在第2製程腔室220白勺底壁上形成著排出第2製程 腔室220 β的氣體的第2排氣孔224。帛2排氣孔224形 成在下述的第2平板240的周圍,在第2排氣孔224上形 成著下述的第2排氣管線260。 在第2製程腔室220的内部空間中設置著第2平板 240。第2平板240由支撐軸244支撐。晶圓W載置於第 2平板240的上部表面。在第2平板24〇的内部設置著加 熱杰(heater) 242。加熱器242以製程溫度對放置於第2 平板240的上部表面的晶圓▽進行加熱。在第2平板240 作"又置著多個支撐突起240a,晶圓W的背面由多個支撐 犬起240a支撐。因此,晶圓w保持離開第1平板24〇的 上部,面m定距離的狀態。 第2排氣管線260連接於第2排氣孔224,且進行第2 勢斧军月允宮9 Ο Λ "" ϋ内部的壓力調節及内部空氣的排出。可在第 因此、/ 260上另行設置用以強制排氣的泵(未圖示)。 ’可利用泵來強制性地降低第2製程腔室220的内部 壓力。 線280的内部流動淨化氣體,淨化氣體 14 200839858 通過第2供給管線280而供給至第2製程腔室220的内部。 另一方面’在第2供給管線28〇上設置著對第2供給管線 280進行打開或關閉的閥280a。淨化氣體是為了在維修第 2製程腔室220時將内部的有毒氣體排出至外部而供給至 第2製程腔室220的内部。淨化氣體包含如氮氣(N2)那 樣的惰性氣體。 圖4是表不本發明的基板處理方法的流程圖(fl〇w chart),圖5是表示圖2的第1製程腔室ι2〇及圖3的第2 製程腔室220内的壓力變化的圖表(graph)。 以下,參照圖2〜圖5來說明對晶圓w的蝕刻製程及 調節晶圓W的溫度的方法。 首先,將晶圓W裝載至第1製程腔室12〇的内部 (S10)。移送機械手40將晶圓W裝載至第丨製程模組10a 中,晶圓w通過形成在第丨製程腔室12〇的一側的第i 通路122而載置於弟1平板140上。此處,第1製程腔室 120内部的壓力保持真空狀態(ra」區間:晶圓裝載區間)。 接著,在使弟1製程腔室120的内部空間與外部隔絕 的狀態下,將第1製程腔室120内部的壓力增壓至既定的 壓力而使晶圓w的溫度穩定化(S20)。所謂的使晶圓w 的溫度穂疋化是指,使晶圓W與第1平板14〇的溫度差處 於既定的範圍内,或者使晶圓w的各區域的溫度偏差處於 固定範圍内。除此以外還指將晶圓w的溫度調節為既定的 溫度。此處,能判斷為晶圓w的溫度已穩定化的範圍,可 根據作業人員的要求來決定。 15 26ff·45 ^ (2〇 Τ))為止(「b」區間:溫度穩定化區間)。 使第1 1¾腔室120的壓力增壓的方法有兩種。第一種方 法疋將製辁氣體供給至第丨製程腔室12〇的内部,第二種 方法是將淨化氣體供給至第1製程腔室120的内部。製程Ο 加速 Accelerates in a fixed direction by the potential difference, so that the process is mainly performed by the physical action of the material of the circle. On the other hand, the wafer is loaded into the chamber and placed on a suction cup (ehuek) in the installation room. Weaving, suitable for the process; the temperature conditions of the wafer are adjusted, and the process is started as long as the temperature conditions are sufficient. However, there are several problems with the conventional device as described above. In order to improve the precision of the process, the process conditions must be accurately adjusted, and the temperature conditions of the wafer are very important. Here, under the sorrow of the wafer leaving the chuck, the gas molecules supplied into the chamber function as a temperature transfer medium for the wafer and the chuck. Therefore, it is difficult to "circle/dish" especially in the state of high vacuum, because there are very few gas molecules in the chamber, so the above question may be more serious. The problem is that sometimes the nitrogen gas is sprayed onto the back surface of the wafer, 'but in this case' it is required to additionally set up the device for fixing the wafer, using a mechanical clamp or an electrostatic chuck ( ESC: electrostatic chuck), but the surface clamp cannot apply uniform force to the wafer, and there is a disadvantage of generating partide. In addition, in the case of using an electrostatic chuck, the structure of the device becomes complicated, and the production cost increases. Further, in the process of performing the process, there must be a process of chucking/dechucking. 200839858 SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object thereof is to provide a temperature condition in which a wafer can be easily adjusted. A substrate processing method. Another object of the present invention is to provide a substrate processing method capable of ensuring uniform temperature of a wafer. In order to achieve the above object, the substrate processing method of the present invention includes: loading a substrate into a process chamber (pr〇cess ^&ιη&Γ) a step of supplying a process gas for processing the substrate to the processing chamber, and pressurizing a pressure in the processing chamber to a predetermined pressure to stabilize a temperature of the substrate; The process of depressurizing the pressure in the process chamber to a process pressure, and the step of preparing the substrate, and unloading the substrate to the outside of the process chamber. The process gas may include etching gas or cleaning. Deaning O gas 〇 The step of processing the substrate may include a step of supplying the process gas into the processing chamber to generate a plasma in a state where an electric field is formed in the processing chamber. The substrate is processed by using the generated plasma. The step of performing the process on the substrate may include the following steps, that is, the above The substrate is heated to remove process by-products formed on the upper surface of the substrate. 200839858 The substrate processing green of another embodiment of the present invention includes: a step of placing the substrate in the substrate; and processing the substrate White is supplied to the first chamber, and the first chamber chamber is subjected to a predetermined pressure to reduce the temperature of the substrate, and the pressure in the chamber 1 is reduced to a process μ force. a step of the above-mentioned two-one process; the step of unloading the substrate to the outside of the first cavity, submounting into the second chamber; and pressurizing the second chamber == to the dust force of the j, and The temperature of the substrate is stabilized, and the pressure in the second chamber is decompressed to a process force, and the second process is performed in parallel; and the substrate is unloaded to the first chamber of the spoon 2 - the substrate rides the first process The step of supplying the process gas to the first stage in a state where an electric field is formed in the first chamber; Formation in the chamber The substrate is processed using the generated plasma. The step of performing the second process on the substrate in the second chamber may be performed by heating the substrate to remove process by-products formed on the upper surface of the substrate. The process gas described above may include an etching gas or a cleaning gas. [Effects of the Invention] According to the invention of the invention, the gas is supplied into the chamber to increase the density of the inner circle of the chamber, and the crystal can be easily adjusted by the gas molecules. Moreover, the temperature of each region of the wafer cassette can be reduced. In particular, the temperature of the wafer w can be easily adjusted using purge gas or process gas = volume 8 200839858. [Embodiment] The preferred palladium sorrow of the present invention will be described in detail with reference to Fig. 7 as shown in Fig. 7. The embodiment of the present invention can be modified into various forms, and the scope of the present invention is construed as being limited to the following embodiments. The present invention is provided for the purpose of explaining the present invention to a person having ordinary knowledge in the technical field to which the invention pertains. @这, In order to explain the _ more money, the shape of each element in the figure can be expanded. In the following, the wafer w as an example of the substrate will be described, but the technical idea and scope of the present invention are not limited thereto. Further, in order to explain the present invention, a plasma side device is described as an example. However, the present invention can be applied to various semiconductor manufacturing apparatuses which perform processes in a state where a wafer is placed on a support plate. In addition, in the following, a plasma device of the type of ICP (hectively Coupled Plasma) is used as an example to carry out "Children" but can be applied to various types including ECR: Electron Cyclotron Resonance. Slurry device. Fig. 1 is a view schematically showing a semiconductor manufacturing apparatus 1 including process modules 10a and 10b of the present invention. Referring to Fig. 1, a semiconductor manufacturing apparatus 1 includes a process device 2, an equipment front end module (EFEM) 3, and an interface wall 4. The device front end module 3 is mounted in front of the process equipment 2, and transfers the wafer w between the container (not shown) in which the wafer W is housed and the process equipment 2. The $ 箾 模组 module 3 has a plurality of 埠 〇 (i〇acjp〇rts) 6〇 and a frame 200839858 (frame) 50. The frame 50 is located between the loading cassette 60 and the process device 2. The container for accommodating the wafer w is a transfer mechanism (not shown) such as an overhead transfer, a 输送verhea (j convey〇r), or an automated guided vehicle (not shown). - It is placed on the loading cassette 60. As the container, a closed container such as a front open pod (FOUP: Front Open Unified Pod) can be used. There is no frame robot in the frame 50 (frame r〇b〇 t) 70, the frame mechanical p-hand 70 transfers the wafer W between the container placed on the loading cassette 60 and the processing device 2. A door opener for automatically opening or closing the container door may be provided in the frame 50. (opener) (not shown). Further, a fan filter unit (FFU: Fan Filter Unit, not shown) may be provided on the frame 50, and the fan filter unit may flow clean air from the upper portion in the frame 50 to the lower portion. The cleaning air is supplied into the frame 50. The wafer W is subjected to a predetermined process in the process equipment 2. The process equipment 2 has a load lock chamber (20), a transfer chamber 30, and a 1 and 2nd process modules (process 〇module) l〇a, l〇b. The transfer chamber 30 has a substantially polygonal cross section. The load lock chamber 20 or the process modules 10a, lb are located on the side of the transfer chamber 30. The interlocking vacuum chamber 20 is located in the side of the transfer chamber 30. • the side adjacent to the front end module 3 of the apparatus, and the process modules i〇a, 10b are located on the other side. The load lock vacuum chamber 20 has The loading chamber 20a is used to perform the process, and the wafer W carried into the processing apparatus 2 is temporarily waiting therefor; and the unloading chamber 20b, and the wafer W carried out from the processing apparatus 2 after the completion of the process is temporarily placed there. The chamber 30 and the inner module 10 200839858 of the process modules 10a, 1b are kept in a vacuum, and the inside of the load lock chamber 20 is switched between vacuum and atmospheric pressure. The interlock vacuum chamber 20 is loaded to prevent external pollution. The substance flows into the transfer chamber 30 and the process modules i〇a, i〇b. Between the load lock vacuum chamber 20 and the transfer chamber 30, and in the load lock chamber 2 and the front end A gate valve (not shown) is provided between the modules 3. When the wafer W is set When the front end module 3 moves between the loading interlocking vacuum chamber 2, the gate valve is disposed between the loading interlocking vacuum chamber 20 and the transfer chamber 3A, and when the wafer w is in the loading interlocking vacuum chamber When moving between the transfer chamber C30 and the transfer chamber C30, the gate valve disposed between the load lock chamber 2A and the device module 3 is closed. In the transmission of I to 30, the female t is transferred to the robot 4〇. The transfer robot 40 loads the wafer W bag onto the process modules i〇a, iQb, or unloads the wafer W from the dream mode groups 10a, 10b. Further, the transfer robot 4 transfers the wafer w between the process modules 10a and 10b and the load lock vacuum chamber 20. The process modules 10a and 10b perform a predetermined process for the wafer %, for example, processes such as I-cut, clear > cleaning, and ashing. 〇 The process module l〇a, forming a group, continuously processes the wafer W. FIG. 2 is a view schematically showing the second process module 1A of FIG. 1. The first process module 10a includes a first process chamber 12A, a first plate 14A, a first exhaust line (line) 160, a coil (c〇il) 17A, and a first supply line 180. The first process chamber 120 provides an internal space for performing an etching process, and when the process is performed, the internal space of the first process chamber 120 is isolated from the outside. 11 200839858 In the first process chamber 120, j, (2). The passage (10) is opened by a switch member of a passage that is two: to a passage (not shown), for example, closed. The hole 126 is supplied to the other side of the first process chamber mo. Correction = the interior of room m. The ^24 flows into the first process chamber, and the second portion of the first plate of the first process, which is formed on the bottom wall of the first process, is formed around the first plate H0, and is formed in the first The row = upper jaw y is formed into the first exhaust line 160 described below. The 140th is provided in the inside (4) of the first processing chamber 12Q. The first flat plate 140 is supported by the support shaft 142. The wafer w is placed on the first surface. The first flat plate 140 is grounded, and an electric field is formed inside the process chamber 120 with the lower and lower springs. A plurality of support protrusions 14a are provided on the first flat plate 140, and the back surface of the wafer w is supported by a plurality of support protrusions 140a. Therefore, the wafer w is kept away from the upper surface of the first flat plate 140 by a fixed distance. The first exhaust line 160 is connected to the first exhaust hole 124, and performs pressure regulation inside the j-th processing chamber 120 and discharge of internal air. A pump (not shown) for forcibly exhausting may be separately provided on the first exhaust line 160. Therefore, the pump can be used to forcibly lower the internal pressure of the first process chamber 12A. A coil 170 is disposed at an upper portion of the first processing chamber 120, and a high frequency generator (not shown) is connected to the coil 170. When the high-frequency wave generator connected to the coil 17A is actuated, high-frequency wave energy is generated by the coil 17A, and the energy generated by 12200839858 is transmitted to the inside of the first processing chamber 120 via the upper wall of the first processing chamber 120. Thereby, an electric field is formed inside the i-th process chamber 12A. On the other hand, in the present embodiment, the case where the coil 17 〇 - is provided in the upper portion of the first processing chamber 120 has been described, but the position of the coil 170 is variously modified. The first supply line 180 branches into a process gas line 182 and a purge gas line 184. The process gas flows inside the process gas line 182, and the purge gas flows inside the purge gas line 184. Therefore, the process gas and the purge gas are supplied to the inside of the first process chamber 12 through the first supply line 180. On the other hand, a valve i82a for opening or closing the helium gas line 182 is provided on the process gas line 182, and a crucible 184a for opening or closing the purge gas line 184 is provided on the purge gas line 184. The process gas is determined according to a process performed in the first process chamber 12A. Therefore, when the etching process is performed in the first process chamber 120, the process gas is an etching gas, and when in the second process chamber When the cleaning process is carried out in 120, the process gas is a clean gas. The purge gas is supplied to the inside of the first process chamber 120 when the internal toxic gas is exhausted to the outside while the first process chamber 12 is being repaired. Purification • The gas contains an inert gas such as nitrogen (Ns). Fig. 3 is a view schematically showing the second process module 10b of Fig. 1; The second process capture includes a second process chamber 22A, a second plate 240, a second exhaust line 260, and a second supply line. The second process chamber t 220 provides an internal space for performing the engraving process, and when the 供给 Ο is made in the second supply pipe 200839858, the internal space of the second process chamber 220 is isolated from the outside. A passage 222 through which the wafer w enters and exits is formed on one side of the second processing chamber 220. The passage 222 is opened or closed by a switch member such as a slit door (not shown). A second supply hole 226 is formed on the other side of the second process chamber -22 〇. The gas supplied through the second supply line 28A described below flows into the inside of the second processing chamber 22A through the second supply hole 220. A second exhaust hole 224 through which the gas of the second process chamber 220? is discharged is formed in the bottom wall of the second process chamber 220. The 排气2 vent hole 224 is formed around the second flat plate 240 to be described later, and the second exhaust line 260 described below is formed in the second exhaust hole 224. A second flat plate 240 is disposed in the internal space of the second processing chamber 220. The second flat plate 240 is supported by the support shaft 244. The wafer W is placed on the upper surface of the second flat plate 240. A heater 242 is provided inside the second flat plate 24A. The heater 242 heats the wafer cassette placed on the upper surface of the second flat plate 240 at the process temperature. On the second flat plate 240, a plurality of support protrusions 240a are placed, and the back surface of the wafer W is supported by a plurality of support dogs 240a. Therefore, the wafer w is kept away from the upper portion of the first flat plate 24, and the surface m is in a state of a predetermined distance. The second exhaust line 260 is connected to the second exhaust hole 224, and performs pressure regulation and internal air discharge of the second potential axe army 允 宫 9 quot quot &"" A pump (not shown) for forcibly exhausting may be separately provided on the first and / 260. The pump can be used to forcefully reduce the internal pressure of the second process chamber 220. The inside of the line 280 flows the purge gas, and the purge gas 14 200839858 is supplied to the inside of the second process chamber 220 through the second supply line 280. On the other hand, a valve 280a that opens or closes the second supply line 280 is provided on the second supply line 28A. The purge gas is supplied to the inside of the second process chamber 220 by discharging the internal toxic gas to the outside when the second process chamber 220 is being repaired. The purge gas contains an inert gas such as nitrogen (N2). 4 is a flow chart showing a substrate processing method of the present invention, and FIG. 5 is a view showing pressure changes in the first process chamber ι2 of FIG. 2 and the second process chamber 220 of FIG. Chart. Hereinafter, a method of etching the wafer w and adjusting the temperature of the wafer W will be described with reference to Figs. 2 to 5 . First, the wafer W is loaded into the inside of the first process chamber 12A (S10). The transfer robot 40 loads the wafer W into the second process module 10a, and the wafer w is placed on the first plate 140 through the i-th path 122 formed on one side of the second process chamber 12''. Here, the pressure inside the first process chamber 120 is maintained in a vacuum state (ra) section: wafer loading section. Then, in a state where the internal space of the first processing chamber 120 is isolated from the outside, the pressure inside the first processing chamber 120 is pressurized to a predetermined pressure to stabilize the temperature of the wafer w (S20). The deuteration of the temperature of the wafer w means that the temperature difference between the wafer W and the first flat plate 14 is within a predetermined range, or the temperature deviation of each region of the wafer w is within a fixed range. In addition to this, the temperature of the wafer w is adjusted to a predetermined temperature. Here, it can be determined that the temperature of the wafer w has been stabilized, and can be determined according to the requirements of the operator. 15 26ff·45 ^ (2〇 Τ)) ("b" interval: temperature stabilization interval). There are two methods for pressurizing the pressure of the first chamber 120. The first method supplies the helium gas to the inside of the second processing chamber 12, and the second method supplies the purge gas to the inside of the first processing chamber 120. Process

ϋ 200839858 、衣程月工至120的内部壓力從真空狀態(vacUum ·· V)增加至大於等於1999.84 Pa (15 Τ (Τοιτ))(較好的是 氣體或淨化氣體是通過第1供給管線180而供給至第1製 程腔室120的内部。當將氣體強制性地供給至第1製程腔 室120的内部時,第丨製程腔室12内部的壓力增加。 將氣體強制性地供給至第丨製程腔室12()内部,由此 第1製私腔室120的内部充滿著氣體,藉此第J製程腔室 120内部的壓力及氣體分子的密度增加。充滿於第〗製程 腔至120内部的氣體分子,發揮著第1平板mo與晶圓w 之間的溫度傳遞媒介的功能。因此,可在第丨平板14〇與 晶圓W之間順利地進行熱傳遞。 圖6是表示在圖2的第1製程模組i〇a上測定出的晶 圓W的溫度變化的圖表,晶圓w的溫度是在各種區域中 測定出的。圖6的左侧圖表是表示第1製程腔室120的内 部為真空狀態時的晶圓W的溫度變化,圖6的右側圖表是 表示弟1製程腔室120的内部為南壓狀態時的晶圓^的溫 度變化。圖6中,「1」表示晶圓w載置於第1平板140 上的時間點。 晶圓W藉由移送機械手40而裝載至第1製程腔室ί2〇 的内部’晶圓W的溫度高於第1平板140的溫度。晶圓w 16 Ο Ο 200839858 载置在第1平板140上之後,在晶圓W與第1平板140 之間進行熱傳遞,晶圓w逐漸冷卻。 ^ 此處,圖6的左侧圖表所示的晶圓w因區域不同而有 聲較犬的溫度偏差 ,且缓慢地冷卻。與此相對,可知圖.6 勺右側圖表所示的晶圓W ,最初在不同區域有著較大的溫 度偏差’藉由增加第1製程腔室120的内部壓力(「H」時 間點)’、而使晶圓w的温度快速地降低。這樣結果的原因 ,於,當第1製程腔室120的内部壓力較高時,藉由氣體 t子而順利地進行熱傳遞。亦即,當内部壓力較高時,可 藉由氣體分子而迅速地調節晶圓W的溫度。又,根據同一 理由,可減小晶圓W的各區域的溫度偏差。 接著,當晶圓W的溫度穩定化後,將第丨 120的内部壓力減壓至製程壓力,對晶圓w進行第^ (S30 )。第i製程腔室120的内部壓力從2666 45 = 至小於等於666.61 Pa (5 丁)(較好的是 (1 T) (「c」區間:製程區間)。 當第1製程腔室120的内部壓力達到製程 4程氣體供給至第1製程腔室12()内。製程θ、雨制 程氣體管線182及第i供給管線m而供給的。 程腔室120内形成電場時,由製程氣體生成心 = 的電漿對晶圓W表面進行蝕刻。根據^彳& 定製程氣體。 轉《進確刻的膜來決 接著,當完成第i製程後,將晶_從第!製程腔室 200839858 120内加以_載(「d」區間),並I载至第2製程腔室22〇 中(S40)(「a」區間)。將晶圓〜裳載至第2製程腔室 220的方法,與將晶圓W裝載至第!製程腔室12〇的方法 * 相同ϋ 200839858 The internal pressure of the garment duty to 120 is increased from the vacuum state (vacUum ··V) to 1999.84 Pa (15 Τ (Τοιτ)). (It is preferable that the gas or the purge gas is supplied through the first supply line 180. The inside of the first processing chamber 120. When the gas is forcibly supplied to the inside of the first processing chamber 120, the pressure inside the second processing chamber 12 is increased. The gas is forcibly supplied to the second processing chamber. Inside the chamber 12 (), whereby the inside of the first private chamber 120 is filled with gas, whereby the pressure inside the first processing chamber 120 and the density of gas molecules increase. The gas filled in the inside of the processing chamber to 120 The molecule functions as a temperature transfer medium between the first plate mo and the wafer w. Therefore, heat can be smoothly transferred between the second plate 14A and the wafer W. Fig. 6 is a view showing the same in Fig. 2. A graph showing the temperature change of the wafer W measured on the first process module i〇a, and the temperature of the wafer w is measured in various regions. The left graph of FIG. 6 indicates the first process chamber 120. The temperature change of the wafer W when the inside is in a vacuum state, as shown in FIG. The side graph indicates the temperature change of the wafer when the inside of the processing chamber 120 is in the south pressure state. In Fig. 6, "1" indicates the time at which the wafer w is placed on the first flat plate 140. W is loaded into the first process chamber by the transfer robot 40. The temperature of the wafer W is higher than the temperature of the first plate 140. After the wafer w 16 Ο Ο 200839858 is placed on the first plate 140 The heat transfer between the wafer W and the first flat plate 140 is performed, and the wafer w is gradually cooled. ^ Here, the wafer w shown in the left diagram of FIG. 6 has a sound deviation from the dog due to the region, and In contrast, it can be seen that the wafer W shown in the right graph of Fig. 6 is initially subjected to a large temperature deviation in different regions by increasing the internal pressure of the first processing chamber 120 ("H" time). The temperature of the wafer w is rapidly lowered. The result of this is that when the internal pressure of the first processing chamber 120 is high, heat transfer is smoothly performed by the gas t. When the internal pressure is high, the temperature of the wafer W can be quickly adjusted by the gas molecules. For the same reason, the temperature deviation of each region of the wafer W can be reduced. Next, after the temperature of the wafer W is stabilized, the internal pressure of the second crucible 120 is depressurized to the process pressure, and the wafer w is subjected to the second ( S30) The internal pressure of the i-th process chamber 120 is from 2666 45 = to less than or equal to 666.61 Pa (5 butyl) (preferably (1 T) ("c" interval: process interval). When the first process chamber The internal pressure of 120 is supplied to the process 4 gas supply to the first process chamber 12 (), the process θ, the rain process gas line 182, and the i-th supply line m. When an electric field is formed in the chamber 120, the surface of the wafer W is etched by the plasma generated by the process gas. Customize the process gas according to ^彳&. Turn "to enter the film exactly, then, after completing the i-th process, the crystal _ from the first! The process chamber 200839858 120 is loaded with _ ("d" interval), and I is loaded into the second process chamber 22 (S40) ("a" interval). The method of loading the wafer to the second processing chamber 220 and loading the wafer W to the first! Method of processing chamber 12〇 * same

,著在使第2製矛王腔;g 220的内部空間與外部隔絕 的狀L、下將第2製程腔室220内部的壓力增壓至既定的 壓力,使晶圓W的溫度穩定化(S50)。第2製程腔室22〇 P ㈣部壓力從真空狀態增加至大於等於1999 84 Pa ( 15 T 、 ())(較好的是 2666·45 Pa (2〇 τ)) ( % 區間)為 匕錯由向第2製程腔室22G的内部供給淨化氣體而增加 該第2製程腔室220的壓力。淨化氣體是通過第2供給管 線280而供給至第2製程腔室22〇的内部的。此外,使晶 圓W的溫度穩定化的原理與上述方法同樣。 α圖7是表示在圖3的第2製程模組lib中測定出的晶 圓^的溫度變化的圖表,晶圓W的溫度是在各種區域中 、〆則定出的。圖7的左侧圖表是表示第2製程腔室220的内 G 部為f空狀料的晶圓W的溫度變化,圖7的右侧圖表是 表不第2製程腔室22〇的内部為高壓狀態時的晶圓w的溫 度變化。 猎由私送枝械手40而將晶圓w裝載至第2梦寇腔室 则内部W度低於第2平=‘= 曰曰圓W载置於第2平板240上之後,在晶圓w與第2平 板240之間進行熱傳遞,晶圓w被逐漸加熱。 此處,圖7的左側圖表所示的晶圓w因區域不同而有 18 200839858 著較大的溫度偏差,而圖7的右侧圖表所示的晶圓w在不 同區域幾乎沒有溫度偏差。這樣結果的原因在於,當第2 製程腔室220内部壓力較高時,藉由氣體分子而順利地進 _ 行熱傳遞。亦即,當内部壓力較高時,可藉由氣體分子而 - 迅速地調節晶圓W的溫度。又,根據同一理由可減小晶圓 W的各區域的溫度偏差。 接著,當晶圓W的溫度穩定化後,將第2製程腔室 ◎ 220的内部壓力減壓至製程壓力,對晶圓w進行第2製程 (S60)。第2製程腔室220的内部壓力從2666.45 Pa(20 T) 減小至小於等於666.61 Pa (5 T)(較好的是133.32 Pa ( 1 T))為止。亦即,第2製程模組l〇b的製程壓力為133.32 Pa (IT) (「C」區間)。 當第2製程腔室220的内部壓力達到製程壓力時,第 2平板240將晶圓W加熱至既定的溫度。對晶圓w進行 加熱時,殘留在進行了第1製程(蝕刻)後的晶圓W的表 面上的物質就蒸發(vaporization),並以氣體狀態通過第2 〇 排氣管線260而排出至外部。 上述本發明的較佳實施形態是為了例示而揭示的,在 不脫離本發明的技術思想的範圍内,只要是具有本發明所 ' 屬技術領域的通常知識的人員,則可進行各種置換、變形 以及變更’上述置換、變更等屬於本發明的申請專利範圍。 【圖式簡單說明】 圖1是概略地表示包括本發明的製程模組的半導體製 造設備的圖。 19 200839858 圖2是概略地表示圖1的第1製程模組的圖。 圖3是概略地表示圖1的第2製程模組的圖。 圖4是表示本發明的基板處理方法的流程圖。 • 圖5是表示圖2的第1製程腔室及圖3的第2製程腔 - 室内的壓力變化的圖表。 圖6是表示在圖2的第1製程模組測定出的晶圓W的 溫度變化的圖表。 圖7是表示在圖3的第2製程模組測定出的晶圓W的 (溫度變化的圖表。 【主要元件符號說明】 1 :半導體製造設備 2:製程設備 3:設備前端模組 4 :界面壁 10a、10b :製程模組 20 :裝载互鎖真空室 1) 20a、20b :裝載腔室 30 :傳送腔室 40 :移送機械手 • 50 ·•框架 60 =裝載埠 70 :框架機械手 120、220 :製程腔室 122、222 :通路 20 200839858 124、224 :排氣孔 126、226 :供給孔 140、240 :支撐板 140a、240a :支撐突起 . 142、244 :支撐轴 160、260 :排氣管線 170 :線圈 180、280 :供給管線 P 182 :製程氣體管線 182a、184a、280a ··閥 184 :淨化氣體管線 224 :第2排氣孔 242 :加熱器 S :步驟 W :晶圓 21The pressure inside the second processing chamber 220 is pressurized to a predetermined pressure to stabilize the temperature of the wafer W in the shape of the second spear chamber; the internal space of the g 220 is isolated from the outside. S50). The pressure of the second process chamber 22〇P (four) increases from the vacuum state to 1999 84 Pa (15 T , ()) (preferably 2666·45 Pa (2〇τ)) (% interval) is wrong The pressure of the second processing chamber 220 is increased by supplying the purge gas to the inside of the second processing chamber 22G. The purge gas is supplied to the inside of the second process chamber 22 through the second supply line 280. Further, the principle of stabilizing the temperature of the crystal W is the same as that of the above method. Fig. 7 is a graph showing the temperature change of the crystal circle measured in the second process module lib of Fig. 3, and the temperature of the wafer W is determined in various regions and 〆. The left side graph of FIG. 7 is a temperature change of the wafer W in which the inner G portion of the second processing chamber 220 is f empty, and the right side diagram of FIG. 7 indicates that the inside of the second processing chamber 22 is The temperature change of the wafer w in a high pressure state. Hunting by the private delivery arm 40 and loading the wafer w to the second nightmare chamber, the internal W degree is lower than the second level = '= 曰曰 circle W is placed on the second plate 240, after the wafer The heat transfer between w and the second plate 240 is performed, and the wafer w is gradually heated. Here, the wafer w shown in the left diagram of Fig. 7 has a large temperature deviation due to the difference in the area, and the wafer w shown in the right diagram of Fig. 7 has almost no temperature deviation in different regions. The reason for this is that when the internal pressure of the second processing chamber 220 is high, heat transfer is smoothly performed by gas molecules. That is, when the internal pressure is high, the temperature of the wafer W can be quickly adjusted by the gas molecules. Further, the temperature deviation of each region of the wafer W can be reduced for the same reason. Next, after the temperature of the wafer W is stabilized, the internal pressure of the second processing chamber ◎ 220 is reduced to the process pressure, and the wafer w is subjected to the second process (S60). The internal pressure of the second processing chamber 220 is reduced from 2664.45 Pa (20 T) to 666.61 Pa (5 T) or less (preferably 133.32 Pa (1 T)). That is, the process pressure of the second process module 10b is 133.32 Pa (IT) ("C" interval). When the internal pressure of the second processing chamber 220 reaches the process pressure, the second flat plate 240 heats the wafer W to a predetermined temperature. When the wafer w is heated, the substance remaining on the surface of the wafer W after the first process (etching) is vaporized, and is discharged to the outside through the second exhaust line 260 in a gaseous state. . The preferred embodiments of the present invention have been disclosed by way of example only, and various substitutions and modifications can be made as long as they have the ordinary knowledge of the technical field of the present invention within the scope of the technical idea of the present invention. And the change of the above-mentioned replacement, change, etc. is within the scope of the patent application of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view schematically showing a semiconductor manufacturing apparatus including a process module of the present invention. 19 200839858 FIG. 2 is a view schematically showing the first process module of FIG. 1. Fig. 3 is a view schematically showing the second process module of Fig. 1; 4 is a flow chart showing a substrate processing method of the present invention. Figure 5 is a graph showing pressure changes in the first process chamber of Figure 2 and the second process chamber of Figure 3 - room. Fig. 6 is a graph showing changes in temperature of the wafer W measured by the first process module of Fig. 2; 7 is a graph showing the temperature change of the wafer W measured by the second process module of FIG. 3. [Description of main component symbols] 1: Semiconductor manufacturing equipment 2: Process equipment 3: Equipment front end module 4: Interface Wall 10a, 10b: Process Module 20: Load Interlock Vacuum Chamber 1) 20a, 20b: Load Chamber 30: Transfer Chamber 40: Transfer Robot • 50 • Frame 60 = Load 埠 70: Frame Robot 120 220: process chambers 122, 222: passage 20 200839858 124, 224: exhaust holes 126, 226: supply holes 140, 240: support plates 140a, 240a: support protrusions. 142, 244: support shafts 160, 260: row Gas line 170: coils 180, 280: supply line P 182: process gas lines 182a, 184a, 280a · · valve 184: purge gas line 224: second exhaust hole 242: heater S: step W: wafer 21

Claims (1)

200839858 十、申請專利範圍: 1·一種基板處理方法,其特徵在於包括: 將基板裝載至製程腔室内的步驟, · 。,用以對上述基板進行處〜理的製程氣體供給至上述製 私腔至内’且將上述製程腔室内的壓力增壓至既^的壓力 而使上述基板的溫度穩定化的步驟; 將上述製程腔室内的壓力減壓至製程壓力,述基 板進行製程的步驟;以及 將上述基板卸載至上述製程腔室的外部的步驟。 、、2.如申請專利範圍第1項所述的基板處理方法,其中 上述製程氣體包括蝕刻氣體或清潔氣體。 .1如申請專利範圍第1項所述的基板處理方法,其中 對士述基板進行製程的步驟包括如下步驟,即在上述製程 =室内形成著電場的狀態下,將上述製程氣體供給至上述 j腔室内而生成電漿,所生成的電漿對上述基板進 4. 如巾請專機圍第3項所述的基板處财法,並寸 ί上迷基板進行製㈣步驟包括如下步驟,即對上述縣 物:丁加熱⑽去形成在上述基板的上部表面的製程副J 5. 如中料利範㈣〗項所述的基板處理方法, 為力為她5Pa(帕斯卡),上述製鍾力 6.—種基板處理方法,其特徵在於包括: 22200839858 X. Patent Application Range: 1. A substrate processing method, comprising: a step of loading a substrate into a process chamber, ·. a step of supplying a process gas for treating the substrate to the inside of the process chamber and pressurizing the pressure in the process chamber to a pressure of the substrate to stabilize the temperature of the substrate; The pressure in the process chamber is depressurized to a process pressure, the step of performing a process on the substrate; and the step of unloading the substrate to the outside of the process chamber. 2. The substrate processing method according to claim 1, wherein the process gas comprises an etching gas or a cleaning gas. The substrate processing method according to claim 1, wherein the step of performing the process on the substrate comprises the step of supplying the process gas to the j in a state in which the electric field is formed in the process. A plasma is generated in the chamber, and the generated plasma is introduced into the substrate. 4. If the substrate is in accordance with the method of the substrate described in item 3, and the substrate is processed, the step (4) includes the following steps, namely, The above-mentioned county: Ding is heated (10) to form a process pair J on the upper surface of the above substrate. 5. The substrate processing method as described in the middle material Lifan (4), for the force 5Pa (Pascal), the above-mentioned clock force 6. A substrate processing method characterized by comprising: 22 200839858 將基板裝載至第1腔室内的步驟; ,用㈣上述絲進行翁的製錢體供 將上述第i腔室内的壓力增壓至既定的= 而使上述基板的溫度穂定化的步.驟; 將上述^腔室内的壓力減麼至製程壓力,對 板進行第1製程的步驟; 土 將上述基板卸載至上述第!腔室的外部, 2腔室内的步驟; I戰主弟 基板的溫至既㈣壓力而使上述 將上述第2腔室内的麗力減壓至製 板進行第2製程的步驟;以及 了上H 將上述基板卸載至上述第2腔室的外部的步驟。 7.如巾料利_第6項所麵基板處理方法,其 扭‘在上第1腔室内對上述基板進行第1製程的步驟包 ’即在上述第1腔室_成著電場的狀態下, =返製域舰給至上述第2腔室㈣生成電漿,利用 斤生成的電漿對上述基板進行處理。 8·如申請專利範圍第6項所述的基板處理方法,其 中,在上述第2腔室内對上述基板進行第2製程的步驟包 括如下步驟’即對上述基板進行加熱以除去 板的上部表面的製㈣產_㈣。 紐、土 9·如申請專利範圍第6項所述的基板處理方法,其中 上述製程氣體包括蝕刻氣體或清潔氣體。 23 200839858 10.如申請專利範圍第6項所述的基板處理方法,其中 上述既定的壓力為2666.45 Pa (帕斯卡),上述製程壓力 為 133.32 Pa。 Γ 〇 24200839858 The step of loading the substrate into the first chamber; and (4) using the above-mentioned filament to perform the step of pressurizing the pressure in the i-th chamber to a predetermined value to determine the temperature of the substrate. The step of reducing the pressure in the chamber into the process pressure and performing the first process on the plate; the soil unloading the substrate to the above! The outer part of the chamber, the step in the chamber 2; the temperature of the substrate of the parent and the other is the pressure of the (four) pressure, and the step of decompressing the Lili in the second chamber to the second process is performed; and the upper H The step of unloading the substrate onto the outside of the second chamber. 7. The substrate processing method according to the sixth aspect of the invention, wherein the step of performing the first process of the substrate in the first chamber is twisted, that is, in the state in which the first chamber _ is in an electric field , = returning the domain ship to the second chamber (four) to generate plasma, using the plasma generated by the pound to treat the substrate. The substrate processing method according to claim 6, wherein the step of performing the second process on the substrate in the second chamber includes the step of heating the substrate to remove the upper surface of the substrate. System (four) production _ (four). The substrate processing method according to claim 6, wherein the process gas comprises an etching gas or a cleaning gas. The substrate processing method according to claim 6, wherein the predetermined pressure is 2666.45 Pa (Pascal), and the process pressure is 133.32 Pa. Γ 〇 24
TW097108865A 2007-03-15 2008-03-13 Substrate treating method TW200839858A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070025552A KR100851237B1 (en) 2007-03-15 2007-03-15 Substrate treating method

Publications (1)

Publication Number Publication Date
TW200839858A true TW200839858A (en) 2008-10-01

Family

ID=39845672

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097108865A TW200839858A (en) 2007-03-15 2008-03-13 Substrate treating method

Country Status (4)

Country Link
JP (1) JP2008227506A (en)
KR (1) KR100851237B1 (en)
CN (1) CN101266921A (en)
TW (1) TW200839858A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103094157B (en) * 2011-10-31 2015-07-15 细美事有限公司 Substrate treating apparatus and substrate treating method
CN104932150B (en) * 2015-07-14 2017-10-17 京东方科技集团股份有限公司 Processing method is dried after drying processing unit and light alignment film after a kind of smooth alignment film

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0567548A (en) * 1991-09-09 1993-03-19 Fujitsu Ltd Manufacture of thin film circuit device
JPH1012595A (en) * 1996-06-20 1998-01-16 Hitachi Ltd Ashing treatment method
US5879461A (en) * 1997-04-21 1999-03-09 Brooks Automation, Inc. Metered gas control in a substrate processing apparatus
KR19990079578A (en) * 1998-04-07 1999-11-05 김영환 Process chamber purification method of semiconductor manufacturing equipment
JP2001207265A (en) 2000-01-27 2001-07-31 Kubota Corp Film deposition system
JP4833512B2 (en) * 2003-06-24 2011-12-07 東京エレクトロン株式会社 To-be-processed object processing apparatus, to-be-processed object processing method, and to-be-processed object conveyance method
JP2007009508A (en) * 2005-06-30 2007-01-18 Kcon Kk Method of repairing existing sewer pipe made of degraded concrete

Also Published As

Publication number Publication date
CN101266921A (en) 2008-09-17
JP2008227506A (en) 2008-09-25
KR100851237B1 (en) 2008-08-20

Similar Documents

Publication Publication Date Title
US20240301584A1 (en) Method and apparatus for precleaning a substrate surface prior to epitaxial growth
JP3574651B2 (en) Film forming method and film forming apparatus
KR101153330B1 (en) Method of cleaning plasma-treating apparatus, plasma-treating apparatus where the cleaning method is practiced, and memory medium memorizing program executing the cleaning method
JP5757869B2 (en) Method for producing a surface-treated aluminum nitride baffle
US20070000870A1 (en) Plasma processing method
TW201028804A (en) Substrate processing method
JP2004179426A (en) Cleaning method of substrate processing apparatus
KR20170103672A (en) Substrate processing apparatus
JP2011049570A (en) Substrate processing apparatus, and semiconductor device manufacturing method
KR20100009625A (en) Silicide forming method and system thereof
CN112259457A (en) Plasma etching method, plasma etching apparatus, and substrate mounting table
JP2011061037A (en) Substrate processing apparatus, and method of manufacturing semiconductor device
US8043471B2 (en) Plasma processing apparatus
JP4656364B2 (en) Plasma processing method
US20230335409A1 (en) Substrate processing method and substrate processing apparatus
TW200839858A (en) Substrate treating method
TW202044405A (en) Cleaning method and plasma processing apparatus
JP4838552B2 (en) Substrate processing apparatus and semiconductor integrated circuit manufacturing method
JP7482657B2 (en) CLEANING METHOD AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD
KR102653253B1 (en) Substrate processing method and substrate processing apparatus
US20070281447A1 (en) Method of loading and/or unloading wafer in semiconductor manufacturing apparatus
TW202405870A (en) Plasma processing apparatus