JP4838552B2 - Substrate processing apparatus and semiconductor integrated circuit manufacturing method - Google Patents

Substrate processing apparatus and semiconductor integrated circuit manufacturing method Download PDF

Info

Publication number
JP4838552B2
JP4838552B2 JP2005241169A JP2005241169A JP4838552B2 JP 4838552 B2 JP4838552 B2 JP 4838552B2 JP 2005241169 A JP2005241169 A JP 2005241169A JP 2005241169 A JP2005241169 A JP 2005241169A JP 4838552 B2 JP4838552 B2 JP 4838552B2
Authority
JP
Japan
Prior art keywords
processing
electrode
electrode group
electrodes
processing tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005241169A
Other languages
Japanese (ja)
Other versions
JP2007059527A (en
Inventor
雄二 竹林
伸二 八島
一行 豊田
雲龍 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2005241169A priority Critical patent/JP4838552B2/en
Publication of JP2007059527A publication Critical patent/JP2007059527A/en
Application granted granted Critical
Publication of JP4838552B2 publication Critical patent/JP4838552B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Description

本発明は、基板処理装置および半導体集積回路の製造方法に関し、特に、高周波電力によって発生させたプラズマを利用して所定の処理を行うプラズマ処理装置および当該装置を使用する半導体集積回路の製造方法に関するものである。 The present invention relates to a substrate processing apparatus and a method for manufacturing a semiconductor integrated circuit , and more particularly to a plasma processing apparatus that performs a predetermined process using plasma generated by high-frequency power and a method for manufacturing a semiconductor integrated circuit using the apparatus. Is.

例えば、半導体集積回路の製造においては、CVD、エッチング、アッシング、スパッタリング工程で、処理ガスのイオン化や化学反応等を促進する為にプラズマが利用されている。従来より、半導体製造装置においてプラズマを発生させる方法には、平行平板方式、高周波誘導方式、ヘリコン波方式、ECR方式等がある。平行平板方式は、1対の平行平板型電極の一方を接地し他方を高周波電源に容量結合して両電極間にプラズマを生成する方法である。高周波誘導方式は、螺旋状又は渦巻き状のアンテナに高周波を印加して高周波電磁場を作り、その電磁場空間内で流れる電子を気体中の中性粒子に衝突させてプラズマを生成する方法である。ヘリコン波方式は、コイルで作った一様な磁場内で特殊な形状のアンテナにより磁場に平行に進む特殊な電磁波(ヘリコン波)を発生させ、このヘリコン波に伴うランダウダンピング効果を利用して速度制御可能な電子流によりプラズマを生成する方法である。ECR方式は、コイルで作った一様な磁場内に電子のサイクロトロン周波数に等しい周波数(2.45GHz)のマイクロ波を導波管を通じて導くことにより共鳴現象を起こさせ、電子にマイクロ波のパワーを吸収させてプラズマを生成する方法である。これらのプラズマ生成方法は、被処理体を1枚毎に処理をする枚葉方式と複数の被処理体をバッチ的に処理する方法がある。   For example, in the manufacture of semiconductor integrated circuits, plasma is used to promote ionization, chemical reaction, and the like of process gases in CVD, etching, ashing, and sputtering processes. Conventionally, methods for generating plasma in a semiconductor manufacturing apparatus include a parallel plate method, a high frequency induction method, a helicon wave method, and an ECR method. The parallel plate method is a method of generating plasma between both electrodes by grounding one of a pair of parallel plate electrodes and capacitively coupling the other to a high frequency power source. The high frequency induction method is a method of generating plasma by applying a high frequency to a spiral or spiral antenna to create a high frequency electromagnetic field, and causing electrons flowing in the electromagnetic field space to collide with neutral particles in the gas. The helicon wave method generates a special electromagnetic wave (helicon wave) that travels parallel to the magnetic field by a specially shaped antenna within a uniform magnetic field made of coils, and uses the Landau damping effect associated with this helicon wave to create a velocity. In this method, plasma is generated by a controllable electron flow. In the ECR method, a microwave having a frequency equal to the cyclotron frequency of an electron (2.45 GHz) is guided through a waveguide in a uniform magnetic field formed by a coil, and a resonance phenomenon is caused. In this method, plasma is generated by absorption. As these plasma generation methods, there are a single-wafer method for processing the objects to be processed one by one and a method for processing a plurality of objects to be processed in batches.

従来のプラズマ処理装置として、複数の被処理基板が鉛直方向に積層された状態で処理管内に収容され、処理管内に処理ガスを高さ方向均等に供給するよう大きさが調整された複数のガス供給用細孔が鉛直方向に設けられたガス供給用ノズルより処理ガスが供給される構造のものが使用されている。また、処理管の外周には、高周波電源に接続される第1の電極とアース接地される第2の電極とからなる高周波印加用電極が設けられている。この第1の電極と第2の電極は、水平方向に交互に延在して設けられている。   As a conventional plasma processing apparatus, a plurality of gases that are accommodated in a processing tube in a state in which a plurality of substrates to be processed are stacked in a vertical direction and are sized to supply a processing gas to the processing tube evenly in the height direction. A structure in which a processing gas is supplied from a gas supply nozzle provided with supply pores in a vertical direction is used. In addition, a high-frequency application electrode including a first electrode connected to a high-frequency power source and a second electrode grounded is provided on the outer periphery of the processing tube. The first electrode and the second electrode are provided so as to alternately extend in the horizontal direction.

このように、処理管内に処理ガスを高さ方向均等に供給するよう大きさが調整された複数のガス供給用細孔より処理ガスを均等に導入した状態で、第1の電極に高周波を印加した場合、第1の電極周辺の電界が強いためガス供給用細孔が局部的に高温になって、ノズルをたとえ石英で構成したとしても汚染物が被処理基板に飛散する可能性が高くなり、さらに、プラズマ密度も局部的に上昇し被処理基板の処理ムラの原因となるという問題があった。   In this way, a high frequency is applied to the first electrode in a state where the processing gas is uniformly introduced from the plurality of gas supply pores whose sizes are adjusted so as to supply the processing gas evenly in the height direction. In this case, since the electric field around the first electrode is strong, the gas supply pores become locally hot, and even if the nozzle is made of quartz, there is a high possibility that contaminants will be scattered on the substrate to be processed. Furthermore, there is a problem that the plasma density is also increased locally, causing processing unevenness of the substrate to be processed.

従って、本発明の主な目的は、高周波電力が印加される位置のガス供給管に発生する局部的なプラズマの異常を抑制できる基板処理装置および当該装置を使用する半導体集積回路の製造方法を提供することにある。 Accordingly, a main object of the present invention is to provide a substrate processing apparatus capable of suppressing local plasma abnormality occurring in a gas supply pipe at a position where high-frequency power is applied, and a method for manufacturing a semiconductor integrated circuit using the apparatus. There is to do.

本発明によれば、
複数の基板が積層された状態で収容される処理管と、
前記処理管の外部であって、前記処理管を囲うように配置された加熱手段と、
前記処理管内に所望の処理ガスを供給するため、前記基板の積層方向に延在するガス供給管と、
前記処理管と前記加熱手段との間に配置され、前記処理管の周囲を囲うように配置されたガス活性化手段と、を備え、
前記ガス活性化手段は、
少なくとも一方が、高周波電力が印加される第1の電極群と第2の電極群とを有し、前記第1の電極群の各電極と前記第2の電極群の各電極とが交互に配置され、
さらに、前記第1の電極群の電極と前記第2の電極群の電極は、それぞれ前記ガス供給管の延在方向と同じ方向に延在する形状である複数のストライプ部を有し、
前記ガス供給管は、前記第1の電極のストライプ部と、前記第2の電極のストライプ部の間の空間に設けられた基板処理装置が提供される。
なお、第1の電極群と第2の電極群の両方に高周波電力が印加されても良い。
また、本発明によれば、
複数の基板が積層された状態で収容される処理管と、
前記処理管の外部であって、前記処理管を囲うように配置された加熱手段と、
前記処理管内に所望の処理ガスを供給するため、前記基板の積層方向に延在するガス供給管と、
前記処理管と前記加熱手段との間に配置され、前記処理管の周囲を囲うように配置されたガス活性化手段と、を備え、
前記ガス活性化手段は、
少なくとも一方が、高周波電力が印加される第1の電極群と第2の電極群とを有し、前記第1の電極群の各電極と前記第2の電極群の各電極とが交互に配置され、
さらに、前記第1の電極群の電極と前記第2の電極群の電極は、それぞれ前記ガス供給管の延在方向と同じ方向に延在する形状である複数のストライプ部を有し、
前記ガス供給管は、前記第1の電極のストライプ部と、前記第2の電極のストライプ部の間の空間に設けられた基板処理装置を用いて、
基板が積層された状態で収容された前記処理管を、前記加熱手段によって加熱し、ガスを前記処理管に供給し、前記処理管内の圧力を一定に保持し、前記第1の電極群の電極と前記第2の電極群の電極間に電力を供給して、生成されたプラズマによって基板を処理する工程、を有する半導体集積回路の製造方法が提供される。
According to the present invention,
A processing tube accommodated in a state in which a plurality of substrates are laminated;
Heating means arranged outside the processing tube and surrounding the processing tube;
In order to supply a desired processing gas into the processing tube, a gas supply tube extending in the stacking direction of the substrate;
A gas activation unit disposed between the processing tube and the heating unit and disposed to surround the processing tube;
The gas activation means includes
At least one has a first electrode group and a second electrode group to which high-frequency power is applied, and the electrodes of the first electrode group and the electrodes of the second electrode group are alternately arranged. And
Furthermore, each of the electrodes of the first electrode group and the electrodes of the second electrode group has a plurality of stripe portions each having a shape extending in the same direction as the extending direction of the gas supply pipe ,
A substrate processing apparatus is provided in which the gas supply pipe is provided in a space between the stripe portion of the first electrode and the stripe portion of the second electrode .
Note that high-frequency power may be applied to both the first electrode group and the second electrode group.
Moreover, according to the present invention,
A processing tube accommodated in a state in which a plurality of substrates are laminated;
Heating means arranged outside the processing tube and surrounding the processing tube;
In order to supply a desired processing gas into the processing tube, a gas supply tube extending in the stacking direction of the substrate;
A gas activation unit disposed between the processing tube and the heating unit and disposed to surround the processing tube;
The gas activation means includes
At least one has a first electrode group and a second electrode group to which high-frequency power is applied, and the electrodes of the first electrode group and the electrodes of the second electrode group are alternately arranged. And
Furthermore, each of the electrodes of the first electrode group and the electrodes of the second electrode group has a plurality of stripe portions each having a shape extending in the same direction as the extending direction of the gas supply pipe,
The gas supply pipe uses a substrate processing apparatus provided in a space between the stripe portion of the first electrode and the stripe portion of the second electrode,
The processing tube accommodated in a stacked state is heated by the heating means, gas is supplied to the processing tube, the pressure in the processing tube is kept constant, and the electrode of the first electrode group And a step of supplying power between the electrodes of the second electrode group and treating the substrate with the generated plasma.

本発明によれば、高周波電力が印加される位置のガス供給管に発生する局部的なプラズマの異常を抑制できる基板処理装置および当該装置を使用する半導体集積回路の製造方法が提供される。 According to the present invention, there are provided a substrate processing apparatus capable of suppressing local plasma abnormality occurring in a gas supply pipe at a position to which high-frequency power is applied, and a method for manufacturing a semiconductor integrated circuit using the apparatus .

次に、本発明の好ましい実施例を説明する。   Next, a preferred embodiment of the present invention will be described.

本発明の好ましい実施例では、処理管外周に載置した電極に高周波(13.56MHz)を印加して処理ガスをプラズマ化して被処理基板をプラズマ処理するバッチ式プラズマ処理装置において、被処理基板の主面に対し垂直方向、または、基板積層方向と同じ方向に、または、ガス供給ノズルの延在方向と同じ方向に、棒又は帯状の高周波電力印加側電極とグランド側電極が交互に載置されている。   In a preferred embodiment of the present invention, in a batch type plasma processing apparatus that applies a high frequency (13.56 MHz) to an electrode placed on the outer periphery of a processing tube to convert the processing gas into plasma and plasma-process the processing substrate. A bar or band-like high-frequency power application side electrode and ground side electrode are alternately placed in a direction perpendicular to the main surface of the substrate, in the same direction as the substrate stacking direction, or in the same direction as the extending direction of the gas supply nozzle Has been.

高周波印加側電極とグランド側電極とを、ガス供給ノズルの延在方向と同じ方向に、交互に載置することにより、プラズマ発生領域の処理管内に載置されたガス供給ノズルのガス噴出し口との干渉を容易に防止することが可能となり局部的な電界集中を抑制することができるようになる。   The gas ejection port of the gas supply nozzle placed in the processing tube in the plasma generation region by alternately placing the high-frequency application side electrode and the ground side electrode in the same direction as the extending direction of the gas supply nozzle Interference can be easily prevented, and local electric field concentration can be suppressed.

そして、高周波印加側電極とアース側電極が交互に載置された電極の電気的な接合を目的に、処理管上下にリング状の電極が載置されている。そして、高周波印加側電極とリング状の電極、アース側電極とリング状の電極を、それぞれ一体型構造とし機械的な電極接続面の信頼性を向上させている。   Then, ring-shaped electrodes are placed on the upper and lower sides of the processing tube for the purpose of electrical joining of the electrodes on which the high-frequency application side electrode and the ground side electrode are alternately placed. The high-frequency application side electrode and the ring-shaped electrode, and the ground-side electrode and the ring-shaped electrode are each made into an integral structure to improve the reliability of the mechanical electrode connection surface.

次に、図面を参照して、本発明の好ましい実施例をより詳細に説明する。   The preferred embodiments of the present invention will now be described in more detail with reference to the drawings.

図1、図2は、本発明の好ましい実施例の基板処理装置の処理炉を説明するための概略縦断面図であり、図3は、本発明の好ましい実施例の基板処理装置の処理炉を説明するための概略横断面図である。図1は、反応室1外面に載置された電極の構成を示すもので、図2は反応室1の断面を示すもので、図3は反応室を上方から見た断面を示すものである。   1 and 2 are schematic longitudinal sectional views for explaining a processing furnace of a substrate processing apparatus according to a preferred embodiment of the present invention. FIG. 3 shows a processing furnace of a substrate processing apparatus according to a preferred embodiment of the present invention. It is a schematic cross-sectional view for demonstrating. FIG. 1 shows the configuration of electrodes placed on the outer surface of the reaction chamber 1, FIG. 2 shows a cross section of the reaction chamber 1, and FIG. 3 shows a cross section of the reaction chamber as viewed from above. .

反応室1は、処理管2及びシールキャップ3で気密に構成され、処理管2の周囲には、ヒータ4が反応室1を取り囲むように設けてある。処理管2は石英などの誘電体で構成する。処理管2の外周には高周波電源5に接続される第1の電極18とアースに接続される第2の電極19が被処理体16に対し垂直なストライプ状に交互になるよう配置され、高周波電源5の出力する交流電力を整合器10を介して印加できるようになっている。交流電力の周波数は13.56MHzの高周波が利用されることが多い。   The reaction chamber 1 is hermetically configured with a processing tube 2 and a seal cap 3, and a heater 4 is provided around the processing tube 2 so as to surround the reaction chamber 1. The processing tube 2 is made of a dielectric material such as quartz. A first electrode 18 connected to the high-frequency power source 5 and a second electrode 19 connected to the ground are alternately arranged on the outer periphery of the processing tube 2 in stripes perpendicular to the object 16 to be processed. The AC power output from the power source 5 can be applied via the matching unit 10. As the frequency of the AC power, a high frequency of 13.56 MHz is often used.

反応室1は排気管11、圧力調整バルブ12を介してポンプ13に接続され、反応室1内部のガスを排気できる構造となっている。反応室1にはガス導入ポート14が連通して設けてあり、反応室1内部の側面には、処理ガスを高さ方向均等に供給するよう大きさが調整された複数のガス供給用細孔15を備えるガス供給ノズル21が鉛直方向に延在して設けられ、より均等に処理ガスを導入することが可能となっている。   The reaction chamber 1 is connected to a pump 13 via an exhaust pipe 11 and a pressure adjusting valve 12 so that the gas inside the reaction chamber 1 can be exhausted. A gas introduction port 14 is provided in communication with the reaction chamber 1, and a plurality of gas supply pores whose sizes are adjusted to uniformly supply the processing gas in the height direction are provided on the side surface inside the reaction chamber 1. 15 is provided extending in the vertical direction so that the processing gas can be introduced more evenly.

反応室1内部には、被処理体でもある半導体ウエハ−16をバッチ処理できるように、例えば100〜150枚程度、それぞれ一枚ずつ水平に搭載置できるボート17が設けられる。   Inside the reaction chamber 1, a boat 17 that can be horizontally mounted, for example, about 100 to 150, is provided so that the semiconductor wafers 16 that are also objects to be processed can be batch-processed.

第1の電極18は複数のストライプ部31と、一つの帯部32とを備えている。ストライプ部31および帯部32は共に薄板状である。複数のストライプ部31のそれぞれの一端は帯部32に共通に接続されている。複数のストライプ部31のそれぞれの他端は解放されている。帯部32は処理管2の上部に水平方向に延在して取り付けられている。複数のストライプ部31は鉛直方向に互いに平行に配置されている。複数のストライプ部31の他端のうちの一つが処理管2の最下端まで延在し、その後、整合器10を介して高周波電源5に接続されている。   The first electrode 18 includes a plurality of stripe portions 31 and one strip portion 32. Both the stripe part 31 and the belt | band | zone part 32 are thin plate shape. One end of each of the plurality of stripe portions 31 is connected to the strip portion 32 in common. The other end of each of the plurality of stripe portions 31 is released. The band portion 32 is attached to the upper portion of the processing tube 2 so as to extend in the horizontal direction. The plurality of stripe portions 31 are arranged in parallel to each other in the vertical direction. One of the other ends of the plurality of stripe portions 31 extends to the lowermost end of the processing tube 2, and then connected to the high frequency power source 5 through the matching unit 10.

第2の電極19は複数のストライプ部41と、一つの帯部42とを備えている。ストライプ部41および帯部42は共に薄板状である。複数のストライプ部41のそれぞれの一端は帯部42に共通に接続されている。複数のストライプ部41のそれぞれの他端は解放されている。帯部42は処理管2の下部に水平方向に延在して取り付けられている。複数のストライプ部41は鉛直方向に互いに平行に配置されている。複数のストライプ部41の一端のうちの一つが石英管の最下端まで延在し、その後アース接地されている。   The second electrode 19 includes a plurality of stripe portions 41 and one band portion 42. Both the stripe part 41 and the band part 42 are thin plate-like. One end of each of the plurality of stripe portions 41 is commonly connected to the belt portion 42. The other end of each of the plurality of stripe portions 41 is released. The belt portion 42 is attached to the lower portion of the processing tube 2 so as to extend in the horizontal direction. The plurality of stripe portions 41 are arranged in parallel to each other in the vertical direction. One of the ends of the plurality of stripe portions 41 extends to the lowest end of the quartz tube, and is then grounded.

このように、第1の電極18の複数のストライプ部31と第2の電極19は複数のストライプ部41とを、ガス供給ノズル21の延在方向と同じ方向に延在させているので、ガス供給ノズル21のガス供給用細孔15に交差することなく電極18、19を配置することが可能となり、高周波電力印加時のガス供給用細孔15の局部的な異常を抑制し被処理体の汚染を防止でき、処理の均一性が向上した。
尚、好ましくは、ガス供給ノズル21は図3の右側又は左側から見て、第1の電極18のストライプ部31と第2の電極19のストライプ部41との間の空間に設けられている。
As described above, since the plurality of stripe portions 31 and the second electrode 19 of the first electrode 18 extend the plurality of stripe portions 41 in the same direction as the extending direction of the gas supply nozzle 21, The electrodes 18 and 19 can be arranged without intersecting the gas supply pores 15 of the supply nozzle 21, and local abnormalities in the gas supply pores 15 when high-frequency power is applied can be suppressed, so Contamination could be prevented and processing uniformity was improved.
Preferably, the gas supply nozzle 21 is provided in a space between the stripe portion 31 of the first electrode 18 and the stripe portion 41 of the second electrode 19 when viewed from the right or left side of FIG.

また、反応室1の上下部に帯状のリングである帯部32、42を設け、第1の電極18を複数のストライプ部31と一つの帯部32との一体構造とし、第2の電極19を複数のストライプ部41と一つの帯部42との一体構造としたので、ヒータ加熱領域での接合部を排除することができ信頼性が向上した。   In addition, band portions 32 and 42 that are band-like rings are provided on the upper and lower portions of the reaction chamber 1, and the first electrode 18 has an integrated structure of a plurality of stripe portions 31 and one band portion 32. Since the plurality of stripe portions 41 and one band portion 42 are integrated with each other, the joint portion in the heater heating region can be eliminated, and the reliability is improved.

なお、第1の電極18および第2の電極をNi等の薄板とした。例えば、厚みを0.5mmとして、柔軟性を持たせた。   The first electrode 18 and the second electrode were made of a thin plate such as Ni. For example, the thickness was set to 0.5 mm to give flexibility.

第1の電極18の複数のストライプ部31(18a〜18h)と第2の電極19の複数のストライプ部41(19a〜19h)とは、処理管2の外側全周にわたって交互に配置されている。このように、全周にわたって配置されているので、プラズマ処理の被処理基板面内均一性を向上させることができ、被処理基板のプラズマ処理レートも向上させることができる。   The plurality of stripe portions 31 (18a to 18h) of the first electrode 18 and the plurality of stripe portions 41 (19a to 19h) of the second electrode 19 are alternately arranged over the entire outer periphery of the processing tube 2. . Thus, since it arrange | positions over the perimeter, the to-be-processed substrate uniformity of a plasma processing can be improved, and the plasma processing rate of a to-be-processed substrate can also be improved.

次に本発明の好ましい実施例の装置の動作を説明する。   The operation of the apparatus of the preferred embodiment of the present invention will now be described.

反応室1が大気圧の状態で、被処理体16をボート17に装填する為、エレベータ機構121(図4参照)でシールキャップ3を下げて、被処理体搬送用ロボット(ウエハ移載機112、図4、図5参照)の相互動作により所用の数の被処理体16をボート17に載置した後、シールキャップ3を上昇させて反応室1内部に挿入する。   In order to load the workpiece 16 into the boat 17 while the reaction chamber 1 is at atmospheric pressure, the seal cap 3 is lowered by the elevator mechanism 121 (see FIG. 4), and the robot for transferring the workpiece (wafer transfer machine 112). 4 and FIG. 5), after the required number of objects 16 to be processed are placed on the boat 17, the seal cap 3 is raised and inserted into the reaction chamber 1.

ヒータ4に電力を投入し、被処理体16など反応室1内部の部材を所定の温度に加熱する。被処理体搬送時、ヒータ4の温度を下げ過ぎてしまうと、被処理体16の搬送終了後、反応室1内部で温度を所定の値まで上昇させて安定させるのに相当の時間がかかってしまう為、通常は被処理体16の搬送に支障が無い温度まで下げて、その値で保持した状態で搬送を行う。   Electric power is supplied to the heater 4 to heat members in the reaction chamber 1 such as the object 16 to a predetermined temperature. If the temperature of the heater 4 is excessively lowered during the conveyance of the object to be processed, it takes a considerable amount of time to raise the temperature to a predetermined value within the reaction chamber 1 and stabilize it after the conveyance of the object 16 to be processed. For this reason, normally, the temperature of the workpiece 16 is lowered to a temperature that does not hinder the conveyance, and the conveyance is performed in a state where the temperature is maintained.

同時に反応管1内部の気体を図示しない排気口から排気管11を通してポンプ13で排気する。被処理体16が所定の温度になった時点で反応室1にガス導入ポート14から反応性ガスを導入し、圧力調整バルブ12によって反応室1内の圧力を一定の値に保持する。   At the same time, the gas inside the reaction tube 1 is exhausted by a pump 13 through an exhaust pipe 11 from an exhaust port (not shown). When the object to be processed 16 reaches a predetermined temperature, a reactive gas is introduced into the reaction chamber 1 from the gas introduction port 14, and the pressure in the reaction chamber 1 is maintained at a constant value by the pressure adjustment valve 12.

反応室1内部が所定の圧力になったら高周波電源5の出力する交流電力を整合器10を介して第1の電極18に供給し、電極間にプラズマを生成して、被処理体16の処理を行う。   When the inside of the reaction chamber 1 reaches a predetermined pressure, AC power output from the high-frequency power source 5 is supplied to the first electrode 18 via the matching unit 10 to generate plasma between the electrodes, thereby processing the object 16 to be processed. I do.

次に、図4、図5参照して、本発明の好ましい実施例の基板処理装置についてその概略を説明する。   Next, an outline of the substrate processing apparatus according to a preferred embodiment of the present invention will be described with reference to FIGS.

筐体101内部の前面側には、図示しない外部搬送装置との間で基板収納容器としてのカセット100の授受を行う保持具授受部材としてのカセットステージ105が設けられ、カセットステージ105の後側には昇降手段としてのカセットエレベータ115が設けられ、カセットエレベータ115には搬送手段としてのカセット移載機114が取りつけられている。又、カセットエレベータ115の後側には、カセット100の載置手段としてのカセット棚109が設けられると共にカセットステージ105の上方にも予備カセット棚110が設けられている。予備カセット棚110の上方にはクリーンユニット118が設けられクリーンエアを筐体101の内部を流通させるように構成されている。   A cassette stage 105 is provided on the front side of the inside of the housing 101 as a holder transfer member that transfers the cassette 100 as a substrate storage container to and from an external transfer device (not shown). Is provided with a cassette elevator 115 as lifting means, and a cassette transfer machine 114 as a conveying means is attached to the cassette elevator 115. A cassette shelf 109 as a means for placing the cassette 100 is provided on the rear side of the cassette elevator 115, and a spare cassette shelf 110 is also provided above the cassette stage 105. A clean unit 118 is provided above the spare cassette shelf 110 so that clean air is circulated inside the housing 101.

筐体101の後部上方には、処理炉40が設けられ、処理炉40の下方には基板としてのウエハ16を水平姿勢で多段に保持する基板保持手段としてのボート17を処理炉40に昇降させる昇降手段としてのボートエレベータ121が設けられ、ボートエレベータ121に取りつけられた昇降部材122の先端部には蓋体としてのシールキャップ3が取りつけられボート17を垂直に支持している。ボートエレベータ121とカセット棚109との間には昇降手段としての移載エレベータ113が設けられ、移載エレベータ113には搬送手段としてのウエハ移載機112が取りつけられている。又、ボートエレベータ121の横には、開閉機構を持ち処理炉40の下面を塞ぐ遮蔽部材としての炉口シャッタ116が設けられている。   A processing furnace 40 is provided above the rear portion of the casing 101, and a boat 17 as a substrate holding unit that holds the wafers 16 as substrates in a horizontal posture in multiple stages is raised and lowered to the processing furnace 40 below the processing furnace 40. A boat elevator 121 as an elevating means is provided, and a seal cap 3 as a lid is attached to the tip of an elevating member 122 attached to the boat elevator 121 to support the boat 17 vertically. Between the boat elevator 121 and the cassette shelf 109, a transfer elevator 113 as an elevating means is provided, and a wafer transfer machine 112 as a transfer means is attached to the transfer elevator 113. A furnace opening shutter 116 as a shielding member that has an opening / closing mechanism and closes the lower surface of the processing furnace 40 is provided beside the boat elevator 121.

ウエハ16が装填されたカセット100は、図示しない外部搬送装置からカセットステージ105にウエハ16が上向き姿勢で搬入され、ウエハ16が水平姿勢となるようカセットステージ105で90°回転させられる。更に、カセット100は、カセットエレベータ115の昇降動作、横行動作及びカセット移載機114の進退動作、回転動作の協働によりカセットステージ105からカセット棚109又は予備カセット棚110に搬送される。   The cassette 100 loaded with the wafer 16 is loaded into the cassette stage 105 from an external transfer device (not shown) in an upward posture, and is rotated by 90 ° on the cassette stage 105 so that the wafer 16 is in a horizontal posture. Further, the cassette 100 is transported from the cassette stage 105 to the cassette shelf 109 or the spare cassette shelf 110 by cooperation of the raising / lowering operation of the cassette elevator 115, the transverse operation, the advance / retreat operation of the cassette transfer machine 114, and the rotation operation.

カセット棚109にはウエハ移載機112の搬送対象となるカセット100が収納される移載棚123があり、ウエハ16が移載に供されるカセット100はカセットエレベータ115、カセット移載機114により移載棚123に移載される。   The cassette shelf 109 has a transfer shelf 123 in which the cassette 100 to be transferred by the wafer transfer device 112 is stored. The cassette 100 to which the wafer 16 is transferred is transferred by the cassette elevator 115 and the cassette transfer device 114. Transferred to the transfer shelf 123.

カセット100が移載棚123に移載されると、ウエハ移載機112の進退動作、回転動作及び移載エレベータ113の昇降動作の協働により移載棚123から降下状態のボート17にウエハ16移載する。   When the cassette 100 is transferred to the transfer shelf 123, the wafer 16 is transferred from the transfer shelf 123 to the lowered boat 17 by the cooperation of the forward / backward movement and rotation operation of the wafer transfer device 112 and the lifting / lowering operation of the transfer elevator 113. Transfer.

ボート17に所定枚数のウエハ16が移載されるとボートエレベータ121によりボート17が処理炉40に挿入され、シールキャップ3により処理炉40が気密に閉塞される。気密に閉塞された処理炉40内ではウエハ16が加熱されると共に処理ガスが処理炉40内に供給され、ウエハ16に処理がなされる。   When a predetermined number of wafers 16 are transferred to the boat 17, the boat 17 is inserted into the processing furnace 40 by the boat elevator 121, and the processing furnace 40 is airtightly closed by the seal cap 3. The wafer 16 is heated in the hermetically closed processing furnace 40 and a processing gas is supplied into the processing furnace 40 to process the wafer 16.

ウエハ16への処理が完了すると、ウエハ16は上記した作動の逆の手順により、ボート17から移載棚123のカセット100に移載され、カセット100はカセット移載機114により移載棚123からカセットステージ105に移載され、図示しない外部搬送装置により筐体101の外部に搬出される。尚、炉口シャッタ116は、ボート17が降下状態の際に処理炉40の下面を塞ぎ、外気が処理炉40内に巻き込まれるのを防止している。   When the processing on the wafer 16 is completed, the wafer 16 is transferred from the boat 17 to the cassette 100 of the transfer shelf 123 by the reverse procedure of the operation described above, and the cassette 100 is transferred from the transfer shelf 123 by the cassette transfer device 114. It is transferred to the cassette stage 105 and carried out of the housing 101 by an external transfer device (not shown). The furnace port shutter 116 closes the lower surface of the processing furnace 40 when the boat 17 is in the lowered state, and prevents outside air from being caught in the processing furnace 40.

カセット移載機114等の搬送動作は、搬送制御手段124により制御される。   The transport operation of the cassette transfer machine 114 and the like is controlled by the transport control means 124.

(比較例)
図6、図7は、比較のための基板処理装置の処理炉を説明するための概略縦断面図であり、図8は、比較のための基板処理装置の処理炉を説明するための概略横断面図である。図6は、反応室1外面に載置された電極の構成を示すもので、図7は反応室1の断面を示すもので、図8は反応室を上方から見た断面を示すものである。
(Comparative example)
6 and 7 are schematic longitudinal sectional views for explaining a processing furnace of a substrate processing apparatus for comparison, and FIG. 8 is a schematic cross section for explaining a processing furnace of a substrate processing apparatus for comparison. FIG. 6 shows the configuration of the electrodes placed on the outer surface of the reaction chamber 1, FIG. 7 shows the cross section of the reaction chamber 1, and FIG. 8 shows the cross section of the reaction chamber as viewed from above. .

反応室1は、処理管2及びシールキャップ3で気密に構成され、処理管2の周囲には、ヒータ4が反応室1を取り囲むように設けてある。処理管2は石英などの誘電体で構成する。処理管2の外周には高周波電源5に接続される第1の電極6a〜6dとアースに接続される第2の電極7a〜7eが帯状に交互に多段になるよう配置され、それぞれ導電性の電極支柱8と電極支柱9に取り付けられており、電極支柱8は高周波電源5の出力する交流電力を整合器10を介して印加できるようになっている。電極支柱9はアースに接続されている。   The reaction chamber 1 is hermetically configured with a processing tube 2 and a seal cap 3, and a heater 4 is provided around the processing tube 2 so as to surround the reaction chamber 1. The processing tube 2 is made of a dielectric material such as quartz. On the outer periphery of the processing tube 2, first electrodes 6 a to 6 d connected to the high-frequency power source 5 and second electrodes 7 a to 7 e connected to the ground are arranged alternately in a strip shape in multiple stages, The electrode column 8 is attached to the electrode column 8 and the electrode column 9, and the electrode column 8 can apply the AC power output from the high frequency power source 5 via the matching unit 10. The electrode support 9 is connected to ground.

反応室1は排気管11、圧力調整バルブ12を介してポンプ13に接続され、反応室1内部のガスを排気できる構造となっている。反応室1にはガス導入ポート14が設けてあり、反応室1内部の側面には処理ガスを高さ方向均等に反応ガスを供給するよう大きさが調整された複数のガス供給用細孔15を備えるガス供給ノズル21より均等に導入することが可能となっている。   The reaction chamber 1 is connected to a pump 13 via an exhaust pipe 11 and a pressure adjusting valve 12 so that the gas inside the reaction chamber 1 can be exhausted. The reaction chamber 1 is provided with a gas introduction port 14, and a plurality of gas supply pores 15 whose sizes are adjusted to supply the reaction gas in the height direction evenly on the side surface inside the reaction chamber 1. It is possible to introduce evenly from the gas supply nozzle 21 provided with.

反応室1内部には、被処理体でもある半導体ウエハ−16をバッチ処理できるように、例えば100〜150枚程度、それぞれ一枚ずつ水平に搭載置できるボート17が設けられる。   Inside the reaction chamber 1, a boat 17 that can be horizontally mounted, for example, about 100 to 150, is provided so that the semiconductor wafers 16 that are also objects to be processed can be batch-processed.

この比較例においては、反応室1に処理ガスを高さ方向均等に供給するよう大きさが調整された複数のガス供給用細孔15を備えるガス供給ノズル21より処理ガス均等に導入した状態で、第1の電極6a〜6dに高周波を印加した場合、第1の電極6a〜6d周辺の電界が強いためガス供給用細孔15が局部的に高温になって、たとえ石英で構成したとしても汚染物が被処理体に飛散する可能性が高くなり、プラズマ密度も局部的に上昇し被処理体の処理ムラの原因となる。   In this comparative example, the process gas is introduced uniformly from the gas supply nozzle 21 having a plurality of gas supply pores 15 whose sizes are adjusted so as to supply the process gas to the reaction chamber 1 in the height direction evenly. When a high frequency is applied to the first electrodes 6a to 6d, the electric field around the first electrodes 6a to 6d is strong, so that the gas supply pores 15 are locally high in temperature, even if they are made of quartz. There is a high possibility that contaminants are scattered on the object to be processed, and the plasma density is also increased locally, causing processing unevenness of the object to be processed.

加えて、反応室1外周に載置された第1の電極6a〜6d、第二の電極7a〜7eは、電極支柱8、電極支柱9と機械的な接続が必要とされ、電極外周に設けられたヒータ4の熱による膨張・変形及び接続面の酸化による接触不良等の問題もある。   In addition, the first electrodes 6a to 6d and the second electrodes 7a to 7e placed on the outer periphery of the reaction chamber 1 need to be mechanically connected to the electrode support 8 and the electrode support 9, and are provided on the outer periphery of the electrode. There are also problems such as expansion / deformation due to heat of the heater 4 and contact failure due to oxidation of the connection surface.

本発明の好ましい実施例の基板処理装置の処理炉を説明するための概略縦断面図である。It is a schematic longitudinal cross-sectional view for demonstrating the processing furnace of the substrate processing apparatus of preferable Example of this invention. 本発明の好ましい実施例の基板処理装置の処理炉を説明するための概略縦断面図である。It is a schematic longitudinal cross-sectional view for demonstrating the processing furnace of the substrate processing apparatus of preferable Example of this invention. 本発明の好ましい実施例の基板処理装置の処理炉を説明するための概略横断面図である。It is a schematic cross-sectional view for demonstrating the processing furnace of the substrate processing apparatus of preferable Example of this invention. 本発明の好ましい実施例の基板処理装置を説明するための概略斜視図である。It is a schematic perspective view for demonstrating the substrate processing apparatus of the preferable Example of this invention. 本発明の好ましい実施例の基板処理装置を説明するための概略縦断面図である。It is a schematic longitudinal cross-sectional view for demonstrating the substrate processing apparatus of the preferable Example of this invention. 比較のための基板処理装置の処理炉を説明するための概略縦断面図である。It is a schematic longitudinal cross-sectional view for demonstrating the processing furnace of the substrate processing apparatus for a comparison. 比較のための基板処理装置の処理炉を説明するための概略縦断面図である。It is a schematic longitudinal cross-sectional view for demonstrating the processing furnace of the substrate processing apparatus for a comparison. 比較のための基板処理装置の処理炉を説明するための概略横断面図であるIt is a schematic cross-sectional view for demonstrating the processing furnace of the substrate processing apparatus for a comparison.

符号の説明Explanation of symbols

1…反応室
2…処理管
3…シールキャップ
4…ヒータ
5…高周波電源
6a〜6d…第1の電極
7a〜7e…第2の電極
8…電極支柱
9…電極支柱
10…整合器
11…排気管
12…圧力調整バルブ
13…ポンプ
14…ガス導入ポート
15…ガス供給用細孔
16…被処理体(シリコンウエハ)
17…ボート
18(18a〜18h)…第1の電極
19(19a〜19h)…第2の電極
20…高周波電力印加電極
21…ガス供給用ノズル
31、41…ストライプ部
32、42…帯部
40…処理炉
100…カセット
101…筐体
105…カセットステージ
109…カセット棚
110…予備カセット棚
112…ウエハ移載機
113…移載エレベータ
114…カセット移載機
115…カセットエレベータ
116…炉口シャッタ
118…クリーンユニット
121…ボートエレベータ
122…昇降部材
123…移載棚
124…搬送制御手段
DESCRIPTION OF SYMBOLS 1 ... Reaction chamber 2 ... Processing tube 3 ... Seal cap 4 ... Heater 5 ... High frequency power supply 6a-6d ... 1st electrode 7a-7e ... 2nd electrode 8 ... Electrode support | pillar 9 ... Electrode support | pillar 10 ... Matching device 11 ... Exhaust Pipe 12 ... Pressure adjustment valve 13 ... Pump 14 ... Gas introduction port 15 ... Gas supply pore 16 ... Object to be processed (silicon wafer)
DESCRIPTION OF SYMBOLS 17 ... Boat 18 (18a-18h) ... 1st electrode 19 (19a-19h) ... 2nd electrode 20 ... High frequency electric power application electrode 21 ... Gas supply nozzle 31, 41 ... Stripe part 32, 42 ... Band part 40 ... Processing furnace 100 ... cassette 101 ... casing 105 ... cassette stage 109 ... cassette shelf 110 ... preliminary cassette shelf 112 ... wafer transfer machine 113 ... transfer elevator 114 ... cassette transfer machine 115 ... cassette elevator 116 ... furnace port shutter 118 ... Clean unit 121 ... Boat elevator 122 ... Elevating member 123 ... Transfer shelf 124 ... Transport control means

Claims (3)

複数の基板が積層された状態で収容される処理管と、
前記処理管の外部であって、前記処理管を囲うように配置された加熱手段と、
前記処理管内に所望の処理ガスを供給するため、前記基板の積層方向に延在するガス供給管と、
前記処理管と前記加熱手段との間に配置され、前記処理管の周囲を囲うように配置されたガス活性化手段と、を備え、
前記ガス活性化手段は、
少なくとも一方が、高周波電力が印加される第1の電極群と第2の電極群とを有し、前記第1の電極群の各電極と前記第2の電極群の各電極とが交互に配置され、
さらに、前記第1の電極群の電極と前記第2の電極群の電極は、それぞれ前記ガス供給管の延在方向と同じ方向に延在する形状である複数のストライプ部を有し、
前記ガス供給管は、前記第1の電極のストライプ部と、前記第2の電極のストライプ部の間の空間に設けられた基板処理装置。
A processing tube accommodated in a state in which a plurality of substrates are laminated;
Heating means arranged outside the processing tube and surrounding the processing tube;
In order to supply a desired processing gas into the processing tube, a gas supply tube extending in the stacking direction of the substrate;
A gas activation unit disposed between the processing tube and the heating unit and disposed to surround the processing tube;
The gas activation means includes
At least one has a first electrode group and a second electrode group to which high-frequency power is applied, and the electrodes of the first electrode group and the electrodes of the second electrode group are alternately arranged. And
Furthermore, each of the electrodes of the first electrode group and the electrodes of the second electrode group has a plurality of stripe portions each having a shape extending in the same direction as the extending direction of the gas supply pipe ,
The gas supply pipe is a substrate processing apparatus provided in a space between a stripe portion of the first electrode and a stripe portion of the second electrode .
前記第1の電極群は、前記複数のストライプ部の一端が帯部に接続され、前記帯部と前記ストライプ部は一体型で形成される請求項1記載の基板処理装置。2. The substrate processing apparatus according to claim 1, wherein the first electrode group has one end of the plurality of stripe portions connected to a strip portion, and the strip portion and the stripe portion are integrally formed. 複数の基板が積層された状態で収容される処理管と、A processing tube accommodated in a state in which a plurality of substrates are laminated;
前記処理管の外部であって、前記処理管を囲うように配置された加熱手段と、  Heating means arranged outside the processing tube and surrounding the processing tube;
前記処理管内に所望の処理ガスを供給するため、前記基板の積層方向に延在するガス供給管と、  In order to supply a desired processing gas into the processing tube, a gas supply tube extending in the stacking direction of the substrate;
前記処理管と前記加熱手段との間に配置され、前記処理管の周囲を囲うように配置されたガス活性化手段と、を備え、  A gas activation unit disposed between the processing tube and the heating unit and disposed to surround the processing tube;
前記ガス活性化手段は、  The gas activation means includes
少なくとも一方が、高周波電力が印加される第1の電極群と第2の電極群とを有し、前記第1の電極群の各電極と前記第2の電極群の各電極とが交互に配置され、  At least one has a first electrode group and a second electrode group to which high-frequency power is applied, and the electrodes of the first electrode group and the electrodes of the second electrode group are alternately arranged. And
さらに、前記第1の電極群の電極と前記第2の電極群の電極は、それぞれ前記ガス供給管の延在方向と同じ方向に延在する形状である複数のストライプ部とを有し、  Furthermore, the electrodes of the first electrode group and the electrodes of the second electrode group each have a plurality of stripe portions each having a shape extending in the same direction as the extending direction of the gas supply pipe,
前記ガス供給管は、前記第1の電極のストライプ部と、前記第2の電極のストライプ部の間の空間に設けられた基板処理装置を用いて、  The gas supply pipe uses a substrate processing apparatus provided in a space between the stripe portion of the first electrode and the stripe portion of the second electrode,
基板が積層された状態で収容された前記処理管を、前記加熱手段によって加熱し、ガスを前記処理管に供給し、前記処理管内の圧力を一定に保持し、前記第1の電極群の電極と前記第2の電極群の電極間に電力を供給して、生成されたプラズマによって基板を処理する工程、を有する半導体集積回路の製造方法。  The processing tube accommodated in a stacked state is heated by the heating means, gas is supplied to the processing tube, the pressure in the processing tube is kept constant, and the electrode of the first electrode group And a step of supplying a power between the electrodes of the second electrode group and processing the substrate with the generated plasma.
JP2005241169A 2005-08-23 2005-08-23 Substrate processing apparatus and semiconductor integrated circuit manufacturing method Active JP4838552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005241169A JP4838552B2 (en) 2005-08-23 2005-08-23 Substrate processing apparatus and semiconductor integrated circuit manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005241169A JP4838552B2 (en) 2005-08-23 2005-08-23 Substrate processing apparatus and semiconductor integrated circuit manufacturing method

Publications (2)

Publication Number Publication Date
JP2007059527A JP2007059527A (en) 2007-03-08
JP4838552B2 true JP4838552B2 (en) 2011-12-14

Family

ID=37922771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005241169A Active JP4838552B2 (en) 2005-08-23 2005-08-23 Substrate processing apparatus and semiconductor integrated circuit manufacturing method

Country Status (1)

Country Link
JP (1) JP4838552B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10774421B2 (en) 2016-03-18 2020-09-15 Kokusai Electric Corporation Semiconductor device manufacturing method, substrate processing apparatus and recording medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6966402B2 (en) 2018-09-11 2021-11-17 株式会社Kokusai Electric Substrate processing equipment, manufacturing method of semiconductor equipment, and electrodes of substrate processing equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02159027A (en) * 1988-12-13 1990-06-19 Tel Sagami Ltd Plasma treatment device
JPH05160042A (en) * 1991-12-09 1993-06-25 Matsushita Electric Ind Co Ltd Plasma producing device and method of performing plasma treatment of semiconductor thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10774421B2 (en) 2016-03-18 2020-09-15 Kokusai Electric Corporation Semiconductor device manufacturing method, substrate processing apparatus and recording medium

Also Published As

Publication number Publication date
JP2007059527A (en) 2007-03-08

Similar Documents

Publication Publication Date Title
TWI763653B (en) Substrate processing equipment
JP7320874B2 (en) SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD
KR101040992B1 (en) Substrate processing apparatus
JP2011049570A (en) Substrate processing apparatus, and semiconductor device manufacturing method
JP2011061037A (en) Substrate processing apparatus, and method of manufacturing semiconductor device
JP2008300444A (en) Semiconductor manufacturing apparatus
KR20180014656A (en) Substrate processing apparatus and substrate processing method
JP4948088B2 (en) Semiconductor manufacturing equipment
JP4838552B2 (en) Substrate processing apparatus and semiconductor integrated circuit manufacturing method
JP2006278652A (en) Board processor
JP5171584B2 (en) Substrate mounting table for substrate processing apparatus, substrate processing apparatus, and method for manufacturing semiconductor device
JPWO2006118215A1 (en) Substrate processing apparatus and semiconductor device manufacturing method
JP2008311555A (en) Substrate treatment device
KR101559874B1 (en) Substrate treating apparatus and chamber producing method
JP2010212321A (en) Semiconductor manufacturing apparatus
JP2007063640A (en) Substrate treatment device
JP2009283794A (en) Substrate processing apparatus
KR20210048901A (en) Substrate processing apparatus and substrate processing method
JP2006049367A (en) Plasma processing apparatus
JP2007250988A (en) Substrate-treating apparatus
JP2007115883A (en) Substrate treatment equipment
JP4895685B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
TWI821764B (en) Apparatus for treating substrate and method for aligning dielectric plate using the same
TWI841941B (en) Plasma generation unit, and apparatus for treating substrate with the same
TW200839858A (en) Substrate treating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080807

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4838552

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250