JP2007115883A - Substrate treatment equipment - Google Patents

Substrate treatment equipment Download PDF

Info

Publication number
JP2007115883A
JP2007115883A JP2005305460A JP2005305460A JP2007115883A JP 2007115883 A JP2007115883 A JP 2007115883A JP 2005305460 A JP2005305460 A JP 2005305460A JP 2005305460 A JP2005305460 A JP 2005305460A JP 2007115883 A JP2007115883 A JP 2007115883A
Authority
JP
Japan
Prior art keywords
tube
soaking
processing
pipe
cassette
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005305460A
Other languages
Japanese (ja)
Inventor
Shinji Yashima
伸二 八島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2005305460A priority Critical patent/JP2007115883A/en
Publication of JP2007115883A publication Critical patent/JP2007115883A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide substrate treatment equipment suppressing an eddy current flowing through a soaking pipe fitted between an electrode for applying a high frequency and a heater for a heating, and being capable of effectively converting a charged high-frequency power to a plasma. <P>SOLUTION: The substrate treatment equipment has a treating pipe 2 forming a space housing a substrate, the soaking pipe 16 arranged so as to coat the treating pipe 2 from the outside, and a heating means 4 arranged around the soaking pipe 16. The substrate treatment equipment further has a pair of the electrodes 6 and 7 arranged in the space between the treating pipe 2 and the soaking pipe 16 for receiving the application of the high-frequency power. Irregularities are formed to a surface on at least the electrode side of the soaking pipe 16. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、基板処理装置に関し、特に、高周波電力によって発生するプラズマを利用して所定の基板処理を行うプラズマ処理装置に関するものである。   The present invention relates to a substrate processing apparatus, and more particularly to a plasma processing apparatus that performs predetermined substrate processing using plasma generated by high-frequency power.

例えば、半導体集積回路の製造においては、CVD、エッチング、アッシング、スパッタリング工程で、処理ガスのイオン化や化学反応等を促進する為にプラズマが利用されている。従来、半導体製造装置においてプラズマを発生させる方法には、平行平板方式、高周波誘導方式、ヘリコン波方式、ECR方式等がある。平行平板方式は、1対の平行平板型電極の一方を接地し他方を高周波電源に容量結合して両電極間にプラズマを生成する方法である。高周波誘導方式は、螺旋状又は渦巻き状のアンテナに高周波を印加して高周波電磁場を作り、その電磁場空間内に流れる電子を気体中の中性粒子に衝突させてプラズマを生成する方法である。ヘリコン波方式は、コイルで作った一様な磁場内で特殊な形状のアンテナにより磁場に平行に進む特殊な電磁波(ヘリコン波)を発生させ、このヘリコン波に伴うランダウダンピング効果を利用して速度制御可能な電子流によりプラズマを生成する方法である。ECR方式は、コイルで作った一様な磁場内に電子のサイクロトロン周波数に等しい周波数(2.45GHz)のマイクロ波を導波管を通じて導くことにより共鳴現象を起こさせ、電子にマイクロ波のパワーを吸収させてプラズマを生成する方法である。これらのプラズマ生成方法は、被処理体を1枚毎に処理をする枚葉方式と複数の被処理体をバッチ的に処理する方法がある。   For example, in the manufacture of semiconductor integrated circuits, plasma is used to promote ionization, chemical reaction, and the like of process gases in CVD, etching, ashing, and sputtering processes. Conventionally, methods for generating plasma in a semiconductor manufacturing apparatus include a parallel plate method, a high frequency induction method, a helicon wave method, and an ECR method. The parallel plate method is a method of generating plasma between both electrodes by grounding one of a pair of parallel plate electrodes and capacitively coupling the other to a high frequency power source. The high frequency induction method is a method of generating plasma by applying a high frequency to a spiral or spiral antenna to create a high frequency electromagnetic field and causing electrons flowing in the electromagnetic field space to collide with neutral particles in the gas. The helicon wave method generates a special electromagnetic wave (helicon wave) that travels parallel to the magnetic field by a specially shaped antenna within a uniform magnetic field made of coils, and uses the Landau damping effect associated with this helicon wave to create a velocity. In this method, plasma is generated by a controllable electron flow. In the ECR method, a microwave having a frequency equal to the cyclotron frequency of an electron (2.45 GHz) is guided through a waveguide in a uniform magnetic field formed by a coil, and a resonance phenomenon is caused. In this method, plasma is generated by absorption. As these plasma generation methods, there are a single-wafer method for processing the objects to be processed one by one and a method for processing a plurality of objects to be processed in batches.

従来のプラズマ処理装置では、処理管の外部に加熱ヒータを設けて処理管内部を加熱できるように構成されている。また、処理管と加熱ヒータとの間には、高周波電力を印加してプラズマを発生させる高周波印加用電極が設けられている。高周波印加用電極と加熱ヒータとの間には、被処理基板に著しい温度差が生じないように均熱管が設けられている。   In the conventional plasma processing apparatus, a heater is provided outside the processing tube so that the inside of the processing tube can be heated. In addition, a high-frequency application electrode for generating plasma by applying high-frequency power is provided between the processing tube and the heater. A soaking tube is provided between the high-frequency applying electrode and the heater so as not to cause a significant temperature difference in the substrate to be processed.

このような装置では、高周波印加用電極に流れる電流により生成される磁場が、均熱管を貫通し、均熱管に渦電流が流れ、均熱管固有の抵抗値と渦電流によるジュール熱が発生し、投入した高周波電力(RF電力)が有効にプラズマに変換されないという問題がある。   In such a device, the magnetic field generated by the current flowing through the high-frequency application electrode penetrates the soaking tube, eddy current flows through the soaking tube, and Joule heat is generated due to the inherent resistance value of the soaking tube and eddy current, There is a problem that the input high frequency power (RF power) is not effectively converted into plasma.

従って、本発明の主な目的は、均熱管に流れる渦電流を抑制し、投入した高周波電力を有効にプラズマに変換できる基板処理装置を提供することにある。   Therefore, a main object of the present invention is to provide a substrate processing apparatus capable of suppressing eddy current flowing in a soaking tube and effectively converting inputted high-frequency power into plasma.

本発明によれば、
基板を収容する空間を形成する処理管と、
前記処理管を外側から覆うように配置される均熱管と、
前記均熱管の周囲に配置される加熱手段と、
前記処理管と均熱管との間の空間に配置され、高周波電力が印加される少なくとも一対の電極と、を備え、
前記均熱管の少なくとも前記電極側の表面には凹凸部が設けられていることを特徴とする基板処理装置が提供される。
According to the present invention,
A processing tube forming a space for accommodating the substrate;
A soaking tube arranged to cover the processing tube from the outside;
Heating means disposed around the soaking tube;
Arranged in a space between the processing tube and the soaking tube, and comprising at least a pair of electrodes to which high-frequency power is applied,
A substrate processing apparatus is provided in which an uneven portion is provided on at least the surface of the soaking tube on the electrode side.

本発明によれば、均熱管に流れる渦電流を抑制し、投入した高周波電力を有効にプラズマに変換できる基板処理装置が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the substrate processing apparatus which suppresses the eddy current which flows into a soaking | uniform-heating tube, and can convert the input high frequency electric power into plasma effectively is provided.

次に、本発明の好ましい実施例を説明する。   Next, a preferred embodiment of the present invention will be described.

本発明の好ましい実施例では、処理管及び均熱管を設置し、かつ処理管と均熱管の間に電極を置いて、これに高周波電力を印加してプラズマを生成するバッチ式プラズマ処理装置において、均熱管が2重構造を有している。   In a preferred embodiment of the present invention, in a batch type plasma processing apparatus in which a processing tube and a soaking tube are installed, and an electrode is placed between the processing tube and the soaking tube, and a high frequency power is applied thereto to generate plasma. The soaking tube has a double structure.

また、本発明の好ましい実施例では、処理管及び均熱管を設置し、かつ処理管と均熱管の間に電極を置いて、これに高周波電力を印加してプラズマを生成するバッチ式プラズマ処理装置において、均熱管を構成する内外2重構造の均熱管のそれぞれの管に細孔が設けられており、内外の均熱管の細孔は互いに連通しない用に構成し、均熱管の内部と外部の空間を遮断している。   Further, in a preferred embodiment of the present invention, a batch type plasma processing apparatus in which a processing tube and a soaking tube are installed, an electrode is placed between the processing tube and the soaking tube, and high frequency power is applied thereto to generate plasma. , The inner and outer double-layer soaking pipes constituting the soaking pipe are provided with pores, and the inner and outer soaking pipes are configured so as not to communicate with each other. Blocking the space.

また、本発明の好ましい実施例では、処理管及び均熱管を設置し、かつ処理管と均熱管の間に電極を置いて、これに高周波電力を印加してプラズマを生成するバッチ式プラズマ処理装置において、内外の均熱管は、電気的には、接触抵抗を介して互いに接続され、一体成型物よりも接触抵抗を高めている。   Further, in a preferred embodiment of the present invention, a batch type plasma processing apparatus in which a processing tube and a soaking tube are installed, an electrode is placed between the processing tube and the soaking tube, and high frequency power is applied thereto to generate plasma. However, the inner and outer heat equalizing tubes are electrically connected to each other through contact resistance, and the contact resistance is higher than that of the integrally molded product.

次に、本発明の好ましい実施例を図面を参照して、より詳細に説明する。   Next, preferred embodiments of the present invention will be described in more detail with reference to the drawings.

図1は、処理室1外面に載置された電極及び均熱管の構成・配置を示すもので、図2は処理室1の断面を、図3は処理室を上方から見た断面を示すものである。   FIG. 1 shows the configuration and arrangement of electrodes and heat equalizing tubes placed on the outer surface of the processing chamber 1, FIG. 2 shows a cross section of the processing chamber 1, and FIG. 3 shows a cross section of the processing chamber as viewed from above. It is.

処理室1は、処理管2及びシールキャップ3で気密に構成され、処理管2の周囲には、加熱ヒータ4が処理室1を取り囲むように設けてある。処理管2は石英などの誘電体で構成され、処理管2の外周には高周波電源5に接続される第1の電極6(6a〜6h)とアースに接続される第2の電極7(7a〜7h)が被処理体(本実施例では半導体ウエハ)8に対し垂直なストライプ状に交互になるよう配置されている。高周波(RF)電力は、高周波電源5の出力する交流電力を、整合器9を介して第1の電極6に印加できるようになっている。第1の電極6に供給する交流電力の周波数は13.56MHzの高周波が利用されることが多い。   The processing chamber 1 is hermetically configured with a processing tube 2 and a seal cap 3, and a heater 4 is provided around the processing tube 2 so as to surround the processing chamber 1. The processing tube 2 is made of a dielectric material such as quartz, and a first electrode 6 (6a to 6h) connected to the high frequency power source 5 and a second electrode 7 (7a) connected to the ground are provided on the outer periphery of the processing tube 2. ˜7h) are alternately arranged in stripes perpendicular to the object to be processed (semiconductor wafer in this embodiment) 8. As the high frequency (RF) power, AC power output from the high frequency power source 5 can be applied to the first electrode 6 via the matching unit 9. The frequency of AC power supplied to the first electrode 6 is often 13.56 MHz.

処理室1は排気管10、圧力調整バルブ11を介してポンプ12に接続され、処理室1内部のガスを排気できる構造となっている。又、処理室1にはガス導入ポート13が設けてあり、処理室1内部の側面に沿って設けられ、処理ガスを高さ方向均等に供給するよう大きさが調整された複数のガス供給用細孔25が設けてあるガス供給用ノズル14により均等に導入することが可能となっている。   The processing chamber 1 is connected to a pump 12 via an exhaust pipe 10 and a pressure adjustment valve 11 so that the gas inside the processing chamber 1 can be exhausted. Further, the processing chamber 1 is provided with a gas introduction port 13, which is provided along a side surface inside the processing chamber 1, for supplying a plurality of gases whose sizes are adjusted so as to supply the processing gas evenly in the height direction. The gas can be introduced uniformly by the gas supply nozzle 14 provided with the pores 25.

処理室1内部には、被処理体8でもある半導体ウエハをバッチ処理できるように、例えば100〜150枚程度、それぞれ一枚ずつ水平に搭載置できるボート15が設けられている。   Inside the processing chamber 1, a boat 15 that can be horizontally mounted, for example, about 100 to 150, is provided so that semiconductor wafers that are also the workpieces 8 can be batch-processed.

ヒータ4と処理管2の間には、被処理体8に著しい温度差が発生しないように均熱管16が設置してある。ヒータ4の熱分布に不均一性があっても、均熱管16が熱的暖衝媒体となって、被処理体8に著しい温度差を与えない。均熱管16はSiC製である。SiCは、熱伝導に優れているため、被処理体8の温度分布をより均一にできる。   A soaking tube 16 is installed between the heater 4 and the processing tube 2 so that a significant temperature difference does not occur in the workpiece 8. Even if the heat distribution of the heater 4 is non-uniform, the soaking tube 16 becomes a thermal warming medium and does not give a significant temperature difference to the workpiece 8. The soaking tube 16 is made of SiC. Since SiC is excellent in heat conduction, the temperature distribution of the workpiece 8 can be made more uniform.

本実施例では、均熱管16を2重構造とし、かつ細孔を設けて渦電流経路を遮断し、RF電力が効率よくプラズマに変換されるようにしている。渦電流は、より表面を流れる性質があるため、2重均熱管の内管に細孔を設ける他、外管を迂回して流れることを防止するため、外管にも細孔を設け、かつ内管−外管を、一体成型とせず勘合させ、接触抵抗で抵抗を高める構造としている。   In this embodiment, the soaking tube 16 has a double structure, and pores are provided to block the eddy current path so that the RF power is efficiently converted into plasma. Since the eddy current has a property of flowing more on the surface, in addition to providing a pore in the inner tube of the double heat equalizing tube, providing a pore in the outer tube in order to prevent it from flowing around the outer tube, and The inner tube and the outer tube are fitted together without being integrally molded, and the resistance is increased by contact resistance.

図5に示すように、電極6(7)がSiC製均熱管16の近傍に位置する場合、図4に示すように、電極6(7)に流れる電流により、磁場32が発生する。この磁場32が、均熱管16を貫通して、均熱管表面を渦電流33が流れる。渦電流33同士が合わさって合成渦電流34となる。従って、均熱管16の抵抗値と渦電流33によるジュール熱が発生する。   As shown in FIG. 5, when the electrode 6 (7) is positioned in the vicinity of the SiC soaking tube 16, as shown in FIG. 4, a magnetic field 32 is generated by the current flowing through the electrode 6 (7). This magnetic field 32 penetrates the soaking tube 16, and an eddy current 33 flows on the surface of the soaking tube. The eddy currents 33 are combined to form a combined eddy current 34. Accordingly, Joule heat is generated by the resistance value of the soaking tube 16 and the eddy current 33.

本発明者達の研究において、この様な渦電流による均熱管の加熱(誘導加熱)は、プラズマ発生に、極めて不利益であることが判ってきた。すなわち、投入したRF電力の一部は、プラズマに変換されず、均熱管の加熱に使用されてしまうので、投入した高周波電力を有効にプラズマに変換できないという問題が生じる。   In the research of the present inventors, it has been found that heating of the soaking tube by such eddy current (induction heating) is extremely disadvantageous for plasma generation. That is, a part of the input RF power is not converted into plasma and is used for heating the soaking tube, so that there is a problem that the input high frequency power cannot be effectively converted into plasma.

渦電流の流れ方は、図4の様になるものと想定される。したがって、渦電流を阻止するためには、均熱管16の等価的な抵抗値を高める必要がある。   It is assumed that the eddy current flows as shown in FIG. Therefore, in order to prevent the eddy current, it is necessary to increase the equivalent resistance value of the soaking tube 16.

渦電流は表面を流れる傾向にあることが知られている。一般的には、渦電流が進入する深さδは、次式で表される。   It is known that eddy currents tend to flow on the surface. In general, the depth δ at which the eddy current enters is expressed by the following equation.

Figure 2007115883
Figure 2007115883

ここで、ρは部材の抵抗率(μΩcm)、μは部材の比透磁率、fは周波数(Hz)をそれぞれ表す。   Here, ρ represents the resistivity (μΩcm) of the member, μ represents the relative permeability of the member, and f represents the frequency (Hz).

本実施例の場合、3mm程度となる。なお、この進入深さとは、表面電流に比較して、その値が1/eになるところを言う。また、均熱管16の厚さは、通常、5〜10mmである。   In the case of the present embodiment, it is about 3 mm. In addition, this penetration depth means the place where the value becomes 1 / e compared with the surface current. Moreover, the thickness of the soaking tube 16 is usually 5 to 10 mm.

また、このような渦電流による影響は、均熱管16の電極6、7側の表面の方が、電極6、7と反対側の表面よりも大きい。   Further, the influence of such an eddy current is greater on the surface of the soaking tube 16 on the side of the electrodes 6 and 7 than on the surface on the side opposite to the electrodes 6 and 7.

従って、渦電流による影響を抑制するために、均熱管16の少なくとも電極6(7)側の表面に凹凸部を設ける。このようにすれば、均熱管16の表面の延面距離が長くなって、抵抗値を高めて、渦電流を低減させることができる。   Therefore, in order to suppress the influence of the eddy current, an uneven portion is provided on the surface of at least the electrode 6 (7) side of the soaking tube 16. If it does in this way, the extended surface distance of the surface of the soaking tube 16 becomes long, resistance value can be raised and eddy current can be reduced.

より好ましくは、均熱管16の電極6(7)と反対側の表面にも凹凸部を設ける。このとき、電極6(7)側の表面の凹凸部と、電極6(7)と反対側の表面の凹凸部は互いに重ならないことが好ましい。重なってしまうと、均熱管16に貫通孔が生じ、その貫通孔を介してヒータ4からの熱が直接処理管2に伝わってしまい、被処理体8に著しい温度差が発生しないように設けた均熱管16の意義が薄れてしまうからである。   More preferably, a concavo-convex portion is also provided on the surface of the heat equalizing tube 16 opposite to the electrode 6 (7). At this time, it is preferable that the uneven portion on the surface on the electrode 6 (7) side and the uneven portion on the surface opposite to the electrode 6 (7) do not overlap each other. If they overlap, a through hole is formed in the soaking tube 16, and heat from the heater 4 is directly transmitted to the processing tube 2 through the through hole, so that a significant temperature difference does not occur in the object 8 to be processed. This is because the significance of the soaking tube 16 is diminished.

しかしながら、均熱管16の電極6(7)側の表面と反対側の表面のそれぞれ凹凸部を設けた構造では、均熱管16内部に、一様に連続した部分が存在し、その部分を経由して流れる渦電流も存在する。   However, in the structure in which the uneven portions of the surface on the opposite side of the electrode 6 (7) side of the heat equalizing tube 16 are provided, a uniform continuous portion exists inside the heat equalizing tube 16 and passes through that portion. There is also an eddy current flowing through.

そのため、本実施例では、図6に示すように、SiC製均熱管16を内管18と外管19の2重構造とし、内管18に細孔20を設け、外管19に細孔21を設けている。細孔20は内管18を貫通させ、細孔21は外管10を貫通させている。このように、貫通した細孔20、21を内管18、外管19にぞれぞれ設けることにより、一様に連続した部分が存在しなくなり、内管18、外管19の抵抗値を高めることができるようになる。さらに、内管18を流れる渦電流は、細孔21にその経路を阻止され、外管19に迂回する事も考えられるので、内外管を一体成型せず、勘合することにより、接触抵抗を利用して、内外管の電気的接触を阻害し、迂回電流の低減を図っている。   Therefore, in this embodiment, as shown in FIG. 6, the SiC soaking tube 16 has a double structure of the inner tube 18 and the outer tube 19, the inner tube 18 is provided with pores 20, and the outer tube 19 is provided with pores 21. Is provided. The pore 20 penetrates the inner tube 18, and the pore 21 penetrates the outer tube 10. In this way, by providing the penetrating pores 20 and 21 in the inner tube 18 and the outer tube 19 respectively, there is no uniformly continuous portion, and the resistance values of the inner tube 18 and the outer tube 19 are reduced. Can be raised. Furthermore, since the path of the eddy current flowing through the inner pipe 18 is blocked by the pore 21 and may be bypassed to the outer pipe 19, contact resistance is utilized by fitting the inner and outer pipes without being integrally molded. Thus, the electrical contact between the inner and outer tubes is obstructed, and the bypass current is reduced.

なお、内管18の細孔20と外管19の細孔21とは連通しないように配置し、均熱管16に貫通孔が生じるのを防止して、電極6(7)側の空間とヒータ4側の空間とを隔離し、ヒータ4からの熱が直接処理管2に伝わってしないようにして、被処理体8に著しい温度差が発生しないようにしている。   The pores 20 of the inner tube 18 and the pores 21 of the outer tube 19 are arranged so as not to communicate with each other to prevent a through-hole from being formed in the soaking tube 16, and the space on the electrode 6 (7) side and the heater The space on the 4 side is isolated so that heat from the heater 4 is not directly transmitted to the processing tube 2 so that a significant temperature difference does not occur in the object 8 to be processed.

細孔20、21付き2重均熱管16を採用することにより、渦電流を低減し、RF電力を効率的にプラズマに変換できる。その結果、エネルギーの効率的利用が図れ、プラズマの発生が容易となる。   By adopting the double soaking tube 16 with the pores 20 and 21, eddy current can be reduced and RF power can be efficiently converted into plasma. As a result, energy can be used efficiently and plasma can be easily generated.

次に本装置の動作を説明する。
処理室1が大気圧の状態でエレベータ機構(図9参照)で被処理体8をボート15に装填する為シールキャップ3を下げて、被処理体搬送用ロボット(ウエハ移載機112、図9、図10参照)の相互動作により所用の数の被処理体8をボート15に載置した後、シールキャップ3を上昇させて処理室1内部に挿入する。
Next, the operation of this apparatus will be described.
When the processing chamber 1 is at atmospheric pressure, the elevator cap (see FIG. 9) lowers the seal cap 3 in order to load the processing object 8 into the boat 15, and the processing object transfer robot (wafer transfer machine 112, FIG. 9). , Refer to FIG. 10), after the required number of objects 8 to be processed are placed on the boat 15, the seal cap 3 is raised and inserted into the processing chamber 1.

加熱ヒータ4に電力を投入し、被処理体8など処理室1内部の部材を所定の温度に加熱する。被処理体搬送時、ヒータの温度を下げ過ぎてしまうと、被処理体の搬送終了後、処理室内部で温度を所定の値まで上昇させて安定させるのに相当の時間がかかってしまう為、通常は被処理体の搬送に支障が無い温度まで下げて、その値で保持した状態で搬送を行う。   Electric power is supplied to the heater 4 to heat members in the processing chamber 1 such as the object 8 to a predetermined temperature. If the temperature of the heater is excessively lowered during the transfer of the object to be processed, it takes a considerable amount of time to stabilize the temperature within the processing chamber by raising the temperature to a predetermined value after the transfer of the object to be processed. Usually, the temperature is lowered to a temperature that does not hinder the conveyance of the object to be processed, and the conveyance is performed in a state where the temperature is maintained.

同時に処理管1内部の気体を図示しない排気口から排気管10を通してポンプ12で排気する。被処理体8が所定の温度になった時点で処理室1にガス導入ポート13から反応性ガスを導入し、圧力調整バルブ11によって処理室1内の圧力を一定の値に保持する。   At the same time, the gas inside the processing pipe 1 is exhausted by a pump 12 through an exhaust pipe 10 from an exhaust port not shown. When the object to be processed 8 reaches a predetermined temperature, a reactive gas is introduced into the processing chamber 1 from the gas introduction port 13, and the pressure in the processing chamber 1 is maintained at a constant value by the pressure adjustment valve 11.

処理室1内部が所定の圧力になったら高周波電源5の出力する交流電力を整合器9を介して第1の電極6に供給し、第2の電極7を対抗電極として、電極間にプラズマを生成して、被処理体8の処理を行う。   When the inside of the processing chamber 1 reaches a predetermined pressure, AC power output from the high-frequency power source 5 is supplied to the first electrode 6 via the matching unit 9, and the second electrode 7 is used as a counter electrode to generate plasma between the electrodes. Generate and process the object 8 to be processed.

次に、図5、図6を参照して、本発明の好ましい実施例の基板処理装置についてその概略を説明する。   Next, with reference to FIG. 5 and FIG. 6, the outline of the substrate processing apparatus according to a preferred embodiment of the present invention will be described.

筐体101内部の前面側には、図示しない外部搬送装置との間で基板収納容器としてのカセット100の授受を行う保持具授受部材としてのカセットステージ105が設けられ、カセットステージ105の後側には昇降手段としてのカセットエレベータ115が設けられ、カセットエレベータ115には搬送手段としてのカセット移載機114が取りつけられている。又、カセットエレベータ115の後側には、カセット100の載置手段としてのカセット棚109が設けられると共にカセットステージ105の上方にも予備カセット棚110が設けられている。予備カセット棚110の上方にはクリーンユニット118が設けられクリーンエアを筐体101の内部を流通させるように構成されている。   A cassette stage 105 is provided on the front side of the inside of the housing 101 as a holder transfer member that transfers the cassette 100 as a substrate storage container to and from an external transfer device (not shown). Is provided with a cassette elevator 115 as lifting means, and a cassette transfer machine 114 as a conveying means is attached to the cassette elevator 115. A cassette shelf 109 as a means for placing the cassette 100 is provided on the rear side of the cassette elevator 115, and a spare cassette shelf 110 is also provided above the cassette stage 105. A clean unit 118 is provided above the spare cassette shelf 110 so that clean air is circulated inside the housing 101.

筐体101の後部上方には、処理炉40が設けられ、処理炉40の下方には基板としてのウエハ8を水平姿勢で多段に保持する基板保持手段としてのボート15を処理炉40に昇降させる昇降手段としてのボートエレベータ121が設けられ、ボートエレベータ121に取りつけられた昇降部材122の先端部には蓋体としてのシールキャップ3が取りつけられボート26を垂直に支持している。ボートエレベータ121とカセット棚109との間には昇降手段としての移載エレベータ113が設けられ、移載エレベータ113には搬送手段としてのウエハ移載機112が取りつけられている。又、ボートエレベータ121の横には、開閉機構を持ち処理炉40の下面を塞ぐ遮蔽部材としての炉口シャッタ116が設けられている。   A processing furnace 40 is provided above the rear portion of the casing 101, and a boat 15 as a substrate holding means for holding the wafers 8 as substrates in a horizontal posture in multiple stages is raised and lowered to the processing furnace 40 below the processing furnace 40. A boat elevator 121 as an elevating means is provided, and a seal cap 3 as a lid is attached to the tip of an elevating member 122 attached to the boat elevator 121 to support the boat 26 vertically. Between the boat elevator 121 and the cassette shelf 109, a transfer elevator 113 as an elevating means is provided, and a wafer transfer machine 112 as a transfer means is attached to the transfer elevator 113. A furnace opening shutter 116 as a shielding member that has an opening / closing mechanism and closes the lower surface of the processing furnace 40 is provided beside the boat elevator 121.

ウエハ8が装填されたカセット100は、図示しない外部搬送装置からカセットステージ105にウエハ8が上向き姿勢で搬入され、ウエハ8が水平姿勢となるようカセットステージ105で90°回転させられる。更に、カセット100は、カセットエレベータ115の昇降動作、横行動作及びカセット移載機114の進退動作、回転動作の協働によりカセットステージ105からカセット棚109又は予備カセット棚110に搬送される。   The cassette 100 loaded with the wafer 8 is carried in an upward posture from the external transfer device (not shown) to the cassette stage 105, and is rotated by 90 ° on the cassette stage 105 so that the wafer 8 is in a horizontal posture. Further, the cassette 100 is transported from the cassette stage 105 to the cassette shelf 109 or the spare cassette shelf 110 by cooperation of the raising / lowering operation of the cassette elevator 115, the transverse operation, the advance / retreat operation of the cassette transfer machine 114, and the rotation operation.

カセット棚109にはウエハ移載機112の搬送対象となるカセット100が収納される移載棚123があり、ウエハ8が移載に供されるカセット100はカセットエレベータ115、カセット移載機114により移載棚123に移載される。   The cassette shelf 109 has a transfer shelf 123 in which the cassette 100 to be transferred by the wafer transfer device 112 is stored. The cassette 100 to which the wafer 8 is transferred is transferred by the cassette elevator 115 and the cassette transfer device 114. Transferred to the transfer shelf 123.

カセット100が移載棚123に移載されると、ウエハ移載機112の進退動作、回転動作及び移載エレベータ113の昇降動作の協働により移載棚123から降下状態のボート15にウエハ8を移載する。   When the cassette 100 is transferred to the transfer shelf 123, the wafer 8 is transferred from the transfer shelf 123 to the lowered boat 15 by the cooperation of the advance / retreat operation, rotation operation, and lifting / lowering operation of the transfer elevator 113 of the wafer transfer device 112. Is transferred.

ボート15に所定枚数のウエハ8が移載されるとボートエレベータ121によりボート15が処理炉40に挿入され、シールキャップ3により処理炉40が気密に閉塞される。気密に閉塞された処理炉40内ではウエハ8が加熱されると共に処理ガスが処理炉40内に供給され、ウエハ8に処理がなされる。   When a predetermined number of wafers 8 are transferred to the boat 15, the boat 15 is inserted into the processing furnace 40 by the boat elevator 121, and the processing furnace 40 is airtightly closed by the seal cap 3. The wafer 8 is heated and the processing gas is supplied into the processing furnace 40 in the hermetically closed processing furnace 40, and the wafer 8 is processed.

ウエハ8への処理が完了すると、ウエハ8は上記した作動の逆の手順により、ボート15から移載棚123のカセット100に移載され、カセット100はカセット移載機114により移載棚123からカセットステージ105に移載され、図示しない外部搬送装置により筐体101の外部に搬出される。尚、炉口シャッタ116は、ボート15が降下状態の際に処理炉40の下面を塞ぎ、外気が処理炉24内に巻き込まれるのを防止している。   When the processing on the wafer 8 is completed, the wafer 8 is transferred from the boat 15 to the cassette 100 of the transfer shelf 123 by the reverse procedure of the above-described operation, and the cassette 100 is transferred from the transfer shelf 123 by the cassette transfer device 114. It is transferred to the cassette stage 105 and carried out of the housing 101 by an external transfer device (not shown). The furnace port shutter 116 closes the lower surface of the processing furnace 40 when the boat 15 is in the lowered state, and prevents outside air from being caught in the processing furnace 24.

カセット移載機114等の搬送動作は、搬送制御手段124により制御される。   The transport operation of the cassette transfer machine 114 and the like is controlled by the transport control means 124.

本発明の好ましい実施例の基板処理装置の処理炉を説明するための概略縦断面図である。It is a schematic longitudinal cross-sectional view for demonstrating the processing furnace of the substrate processing apparatus of preferable Example of this invention. 本発明の好ましい実施例の基板処理装置の処理炉を説明するための概略縦断面図である。It is a schematic longitudinal cross-sectional view for demonstrating the processing furnace of the substrate processing apparatus of preferable Example of this invention. 本発明の好ましい実施例の基板処理装置の処理炉を説明するための概略横断面図である。It is a schematic cross-sectional view for demonstrating the processing furnace of the substrate processing apparatus of preferable Example of this invention. 渦電流の発生形態を説明するための概略斜視図である。It is a schematic perspective view for demonstrating the generation | occurrence | production form of an eddy current. 渦電流の発生形態を説明するための概略縦断面図である。It is a schematic longitudinal cross-sectional view for demonstrating the generation | occurrence | production form of an eddy current. 本発明の好ましい実施例の基板処理装置の処理炉で使用する均熱管を説明するための概略縦断面図である。It is a schematic longitudinal cross-sectional view for demonstrating the soaking | uniform-heating tube used with the processing furnace of the substrate processing apparatus of preferable Example of this invention. 図6のA部の部分拡大概略側面図である。It is a partial expansion schematic side view of the A section of FIG. 図7のBB線概略縦断面図である。FIG. 8 is a schematic vertical sectional view taken along line BB in FIG. 7. 本発明の好ましい実施例の基板処理装置を説明するための概略斜視図である。It is a schematic perspective view for demonstrating the substrate processing apparatus of the preferable Example of this invention. 本発明の好ましい実施例の基板処理装置を説明するための概略縦断面図である。It is a schematic longitudinal cross-sectional view for demonstrating the substrate processing apparatus of the preferable Example of this invention.

符号の説明Explanation of symbols

1…処理室
2…処理管
3…シールキャップ
4…ヒータ
5…高周波電源
6、6a〜6h…第一の電極
7、7a〜7h…第二の電極
8…被処理体(シリコンウエハ)
9…整合器
10…排気配管
11…圧力調整バルブ
12…ポンプ
13…ガス導入ポート
14…ガス供給用ノズル
15…ボート
16…均熱管
18…均熱管内管
19…均熱管外管
20…均熱管内管の細孔
21…均熱管外管の細孔
25…ガス供給用細孔
31…電流
32…磁界
33…渦電流
34…合成渦電流
40…処理炉
100…カセット
101…筐体
105…カセットステージ
109…カセット棚
110…予備カセット棚
112…ウエハ移載機
113…移載エレベータ
114…カセット移載機
115…カセットエレベータ
116…炉口シャッタ
118…クリーンユニット
121…ボートエレベータ
122…昇降部材
123…移載棚
124…搬送制御手段
DESCRIPTION OF SYMBOLS 1 ... Processing chamber 2 ... Processing pipe 3 ... Seal cap 4 ... Heater 5 ... High frequency power supply 6, 6a-6h ... 1st electrode 7, 7a-7h ... 2nd electrode 8 ... To-be-processed object (silicon wafer)
DESCRIPTION OF SYMBOLS 9 ... Matching device 10 ... Exhaust piping 11 ... Pressure control valve 12 ... Pump 13 ... Gas introduction port 14 ... Gas supply nozzle 15 ... Boat 16 ... Soaking pipe 18 ... Soaking pipe inner pipe 19 ... Soaking pipe outer pipe 20 ... Soaking Pore of inner tube 21 ... Pore of soaking outer tube 25 ... Pore for gas supply 31 ... Current 32 ... Magnetic field 33 ... Eddy current 34 ... Synthetic eddy current 40 ... Processing furnace 100 ... Cassette 101 ... Housing 105 ... Cassette Stage 109 ... Cassette shelf 110 ... Preliminary cassette shelf 112 ... Wafer transfer machine 113 ... Transfer elevator 114 ... Cassette transfer machine 115 ... Cassette elevator 116 ... Furnace port shutter 118 ... Clean unit 121 ... Boat elevator 122 ... Lifting member 123 ... Transfer shelf 124 ... Conveyance control means

Claims (1)

基板を収容する空間を形成する処理管と、
前記処理管を外側から覆うように配置される均熱管と、
前記均熱管の周囲に配置される加熱手段と、
前記処理管と均熱管との間の空間に配置され、高周波電力が印加される少なくとも一対の電極と、を備え、
前記均熱管の少なくとも前記電極側の表面には凹凸部が設けられていることを特徴とする基板処理装置。
A processing tube forming a space for accommodating the substrate;
A soaking tube arranged to cover the processing tube from the outside;
Heating means disposed around the soaking tube;
Arranged in a space between the processing tube and the soaking tube, and comprising at least a pair of electrodes to which high-frequency power is applied,
A substrate processing apparatus, wherein an uneven portion is provided on at least the surface of the soaking tube on the electrode side.
JP2005305460A 2005-10-20 2005-10-20 Substrate treatment equipment Withdrawn JP2007115883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005305460A JP2007115883A (en) 2005-10-20 2005-10-20 Substrate treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005305460A JP2007115883A (en) 2005-10-20 2005-10-20 Substrate treatment equipment

Publications (1)

Publication Number Publication Date
JP2007115883A true JP2007115883A (en) 2007-05-10

Family

ID=38097809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005305460A Withdrawn JP2007115883A (en) 2005-10-20 2005-10-20 Substrate treatment equipment

Country Status (1)

Country Link
JP (1) JP2007115883A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018016131A1 (en) * 2016-07-21 2018-01-25 株式会社日立国際電気 Plasma generating device, substrate processing device, and method of manufacturing semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018016131A1 (en) * 2016-07-21 2018-01-25 株式会社日立国際電気 Plasma generating device, substrate processing device, and method of manufacturing semiconductor device
JPWO2018016131A1 (en) * 2016-07-21 2019-01-31 株式会社Kokusai Electric Plasma generating apparatus, substrate processing apparatus, semiconductor device manufacturing method and program
US11749510B2 (en) 2016-07-21 2023-09-05 Kokusai Electric Corporation Plasma generating device, substrate processing apparatus, and method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
KR100837474B1 (en) Substrate processor and method of manufacturing device
TW201742147A (en) Substrate processing apparatus
JP2011049570A (en) Substrate processing apparatus, and semiconductor device manufacturing method
KR20210122209A (en) Substrate processing apparatus and substrate processing method
US11183372B2 (en) Batch type plasma substrate processing apparatus
CN109075106B (en) Plasma enhanced annealing chamber for wafer outgassing
JP2008300444A (en) Semiconductor manufacturing apparatus
KR20180014656A (en) Substrate processing apparatus and substrate processing method
JP4948088B2 (en) Semiconductor manufacturing equipment
KR102501096B1 (en) Applying power to the electrodes of the plasma reactor
JP4861208B2 (en) Substrate mounting table and substrate processing apparatus
JP2006278652A (en) Board processor
JP4838552B2 (en) Substrate processing apparatus and semiconductor integrated circuit manufacturing method
JP2007115883A (en) Substrate treatment equipment
JP5171584B2 (en) Substrate mounting table for substrate processing apparatus, substrate processing apparatus, and method for manufacturing semiconductor device
JPWO2006118215A1 (en) Substrate processing apparatus and semiconductor device manufacturing method
KR101559874B1 (en) Substrate treating apparatus and chamber producing method
US20100224128A1 (en) Semiconductor manufacturing apparatus
KR20210048901A (en) Substrate processing apparatus and substrate processing method
JP2005259902A (en) Substrate processor
TW202119872A (en) Baffle unit and substrate processing apparatus including the same
JP2015221930A (en) Substrate processing apparatus
JP2007063640A (en) Substrate treatment device
JP2006049367A (en) Plasma processing apparatus
KR102290913B1 (en) Apparatus for treating substrate

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090106