TW200839331A - Paste composition for optical waveguide and optical waveguide using it - Google Patents

Paste composition for optical waveguide and optical waveguide using it Download PDF

Info

Publication number
TW200839331A
TW200839331A TW096142467A TW96142467A TW200839331A TW 200839331 A TW200839331 A TW 200839331A TW 096142467 A TW096142467 A TW 096142467A TW 96142467 A TW96142467 A TW 96142467A TW 200839331 A TW200839331 A TW 200839331A
Authority
TW
Taiwan
Prior art keywords
resin
dispersion
oxe02
good
paste composition
Prior art date
Application number
TW096142467A
Other languages
Chinese (zh)
Other versions
TWI421551B (en
Inventor
Yoichi Shinba
Hiroyuki Niwa
Yoshiko Tatsuta
Koichi Fujimaru
Toshihisa Nonaka
Original Assignee
Toray Industries
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries filed Critical Toray Industries
Publication of TW200839331A publication Critical patent/TW200839331A/en
Application granted granted Critical
Publication of TWI421551B publication Critical patent/TWI421551B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/138Integrated optical circuits characterised by the manufacturing method by using polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F292/00Macromolecular compounds obtained by polymerising monomers on to inorganic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Materials For Photolithography (AREA)
  • Polymerisation Methods In General (AREA)
  • Optical Integrated Circuits (AREA)
  • Epoxy Resins (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Glass Compositions (AREA)

Abstract

The present invention provides a paste composition for optical waveguide which can be hardened in a short time and has excellent developing property. A paste composition for optical waveguide comprises (A) a barium sulfate particle having an average particle diameter of 1 nm to 50 nm, (B) a compound having polymerizable group and carboxylic group, or a phosphoric ester compound having polymerizable group, and (C) an organic solvent.

Description

200839331 九、發明說明: 【發明所屬之技術領域】 本發明關於光導波路用糊組成物。更詳細地,關於硫 酸鋇粒子分散在有機物質中的光導波路用糊組成物,及使 用它之光導波路。 【先前技術】 無機粒子分散在樹脂等的有機物質中之糊組成物,或 使糊組成物硬化而得之硬化物,係廣泛利用於印刷用塗料 、潤滑劑、化粧品、黏著劑、脫模劑、或顯示器或封裝基 板的構成材料等。使無機粒子分散於樹脂中之目的,可舉 出賦予熱機械特性或電磁特性、光學特性等之僅樹脂無法 得到的優良特性,或於使用高價的樹脂時,可舉出減少其 含量、抑制生產成本等。近年來,爲了提高材料的表面平 滑性或光透過性,或爲了應付半導體等的微小加工,使用 所分散的無機粒子之粒徑爲數十〜數奈米的微小者之嘗試 ’係在各技術領域中進展。其中,在光配線技術領域中, 爲了抑制光導波路材料的折射率或尺寸之隨著溫度的變化 ,或確保材料的光透過性,檢討使粒徑爲數十〜數奈米的 無機粒子分散於樹脂中的技術。 作爲使無機粒子分散於樹脂中的方法之一個,有首先 製造於有機溶劑中使無機粒子良好分散的分散液,其次混 合該分散液與樹脂的方法。市售的平均粒徑爲數十〜數奈 米的無機粒子,大多情況爲提供各個粒子(1次粒子)適度凝 聚的平均粒徑爲數十微米的粉體狀粒子(2次粒子)。因此, 200839331 爲了製造平均粒徑爲數十〜數奈米的無機粒子之分散液, 必須在有機溶劑中解散此等2次粒子的凝聚,製造1次粒 子安定分散的分散液。然而,於1次粒子的平均粒徑小於 5 Onm的情況等,因爲對於粒子體積而言表面積的比例非常 大,一次分散的粒子之再凝聚的頻率變高,而變成難以進 行分散的情況係多的。 因此,有揭示藉由添加在末端具官能基等的稱爲分散 劑的有機物,使該分散劑的官能基配位於無機粒子的表面 ,阻礙無機粒子彼此的接近,抑制1次粒子的再凝聚,以 提高分散性的方法。作爲此等的例子,有提案含有平均粒 徑2 0〜4 Onm的鎳膠體粒子、非極性高分子顏料分散劑及有 機溶劑的鎳膠體溶液(例如參照專利文獻1 )。又,亦有揭示 使用分散劑,使硫酸鋇粒子分散在有機溶劑中的方法(例如 參照專利文獻2)。 然而,於將使用習知分散劑的無機粒子之分散液與樹 脂混合而製造糊組成物,接著使其硬化而製造無機粒子分 散的硬化物時,經由光照射或加熱所致的樹脂之硬化反應 ,與不用無機粒子的情況比較下,係不充分。因此,所得 到的硬化物之熱機械特性等會劣化。又,對使用含有無機 粒子及由光所硬化的樹脂之糊組成物所製作的膜,藉由微 影法來進行圖案加工時,曝光部的硬化不足會導致顯像時 組成物的溶出,使圖案形狀變成不清晰,或未曝光部的溶 解性降低,在顯像時會發生糊組成物的殘渣。因此,微影 法所製造的光導波路之光傳播損失會變大。 200839331 又,已知於使樹脂硬化時,若添加含有聚合性基的磷 酸酯單體,則可給予提高硬化物的抗靜電性或難燃性,提 高樹脂中所分散的顏料(粒子)之分散性等的效果(參照專利 文獻3)。 一般地,顏料(粒子)的分散性,不僅隨著所用的顏料 爲有機物或無機物而有大的變化,而且由於即使爲同樣的 無機物顏料,例如硫酸鋇粒子與氧化鋁粒子,其表面電位 或表面平滑性等的差異也大,對於一方具有提高分散性的 效果之添加劑,但對於另一方也可能降低分散性。專利文 獻3僅記載可以使用無機顏料,但沒有具體揭示如上述說 明地能左右分散性的無機顏料之種類。 [專利文獻1]特開2004- 1 2423 7號公報(申請專利範圍、實 施例) [專利文獻2]特開2006-106708號公報(第18頁) [專利文獻3]特開2003 - 1 46992號公報(第2頁) 【發明内容】 發明所欲解決的問題 如上述地,於使用平均粒徑lnm以上且50nm以下的硫 酸鋇粒子當作光導波路用糊組成物中的構成物質之一時, 若以粒子的分散爲目的而使用含有習知的分散劑,則光照 射或加熱所致的糊組成物之硬化反應變不充分,或於對使 用該糊組成物所形成的膜以微影法來進行圖案加工時,顯 像會變困難。 本發明鑒於該先前技術的問題,目的爲提供可確實硬化 200839331 ,且顯像性優異的光導波路用糊組成物。 解決問穎的手段 本發明爲光導波路用糊組成物,其包含(A)平均粒徑lnm 以上且50nm以下的硫酸鋇粒子,(B)具有聚合性基及羧基 的化合物、或具有聚合性基的磷酸酯化合物,及(C)有機溶 劑。而且,使該光導波路用糊組成物硬化而成的光導波路 〇 發明的效果 本發明的光導波路用糊組成物係可藉由光照射或加熱 而確實地硬化。又,於藉由微影法進行圖案加工時,曝光 部的硬化性及未曝光部的顯像性係極良好。藉由使用本發 明的光導波路用糊組成物,可得到溫度所致的折射率之變 化率小、線膨脹率小、且光傳播損失小的光導波路。 【實施方式】 實施發明的最佳形態 本發明的光導波路用糊組成物(以下稱爲糊組成物)包含 (A)硫酸鋇粒子,(B)具有聚合性基及羧基的化合物、或具有 聚合性基的磷酸酯化合物,及(C)有機溶劑。以下只要沒有 特別預先指明,則以具有聚合性基及羧基的化合物、或具 有聚合性基的磷酸酯化合物當作「化合物A」。 於本發明的糊組成物中,化合物A係具有使硫酸鋇粒子 分散的作用。化合物A中的羧基或磷酸酯結合部位係藉由 與硫酸鋇粒子的相互作用,使化合物A覆蓋硫酸鋇粒子的 表面。而且,茲認爲覆蓋硫酸鋇粒子的表面之化合物A的 200839331 聚合性基係朝向硫酸鋇粒子的外側,與糊組成物中的有機 溶劑或其它化合物等作親和,使硫酸鋇粒子安定分散。 化合物A中的聚合性基係爲藉由光或熱進行聚加成反 應或自由基反應等,而可進行聚合的有機基。於本發明的 糊組成物中,由於化合物A參與聚合,硬化係快速且確實 地進行。 於本發明中,化合物A本身係藉由光或熱而聚合,成爲 硬化物中的基質樹脂。因此,本發明所用的化合物A係兼 具當作硫酸鋇粒子的分散劑之機能及當作基質樹脂的機能 。茲認爲藉由不具有聚合性基的分散劑,使硫酸鋇分散於 用於形成基質的具有聚合性基的樹脂中之情況,當基質樹 脂聚合時,硫酸鋇粒子會移動聚集,分散性降低。與其相 對地,於本發明的糊組成物中,由於化合物A係在捕捉硫 酸鋇粒子的狀態下聚合,故在硬化物中也能良好地保持硫 酸鋇粒子的分散性。因此,硬化物的光透過性和表面平坦 性成爲良好。 再者,藉由光使糊組成物中的化合物A硬化,可進行微 影法的圖案加工。於該情況下,由於曝光部的化合物A在 捕捉硫酸鋇粒子的狀態下聚合,故形成以硫酸鋇粒子當作 起點的強固網絡,而抑制顯像時的曝光部之膨潤或溶解, 因此可形成清晰的圖案形狀。 化合物A的聚合性基,由於目的爲使硫酸鋇粒子良好地 分散,較佳爲與糊組成物中所含有的有機溶劑或其它化合 物的親和性良好者。作爲此等者,可舉出乙烯基、丙烯酸 200839331 酯基、甲基丙烯酸酯基、環氧丙烯酸酯基、環氧甲基丙烯 酸酯基、環氧基等。200839331 IX. Description of the Invention: [Technical Field of the Invention] The present invention relates to a paste composition for an optical waveguide. More specifically, the optical waveguide paste composition in which the bismuth sulfate particles are dispersed in the organic substance, and the optical waveguide using it. [Prior Art] A paste composition in which an inorganic particle is dispersed in an organic substance such as a resin, or a cured product obtained by curing a paste composition is widely used in printing paints, lubricants, cosmetics, adhesives, and release agents. Or a constituent material of a display or a package substrate. The purpose of dispersing the inorganic particles in the resin is to give excellent properties such as thermodynamic properties, electromagnetic properties, optical properties, and the like which are not obtained by the resin, or when using a high-priced resin, it is possible to reduce the content and suppress the production. Cost, etc. In recent years, in order to improve the surface smoothness or light transmittance of materials, or to cope with the micromachining of semiconductors and the like, attempts have been made to use the fine particles of the dispersed inorganic particles having a particle diameter of several tens to several nanometers. Progress in the field. In the field of optical wiring technology, in order to suppress the change in the refractive index or the size of the optical waveguide material with temperature, or to ensure the light transmittance of the material, it is considered to disperse the inorganic particles having a particle diameter of several tens to several nanometers. The technology in the resin. One of the methods for dispersing the inorganic particles in the resin is a method of first dispersing a dispersion in which an inorganic particle is well dispersed in an organic solvent, and secondarily mixing the dispersion with a resin. Commercially available inorganic particles having an average particle diameter of several tens to several nanometers are often powder-like particles (secondary particles) having an average particle diameter of several tens of micrometers which are moderately aggregated for each particle (primary particle). Therefore, in order to produce a dispersion of inorganic particles having an average particle diameter of several tens to several nanometers, it is necessary to disperse the agglomeration of these secondary particles in an organic solvent to produce a dispersion in which the particles are stably dispersed once. However, in the case where the average particle diameter of the primary particles is less than 5 Onm, the ratio of the surface area to the particle volume is extremely large, and the frequency of re-agglomeration of the primary dispersed particles becomes high, and it becomes difficult to disperse. of. Therefore, it is disclosed that an organic substance called a dispersing agent having a functional group or the like at the end is added, and the functional group of the dispersing agent is placed on the surface of the inorganic particles to prevent the inorganic particles from approaching each other, thereby suppressing re-agglomeration of the primary particles. To improve the dispersion. As such an example, a nickel colloidal particle having an average particle diameter of 20 to 4 Onm, a nonpolar polymer pigment dispersant, and a nickel colloidal solution having an organic solvent are proposed (see, for example, Patent Document 1). Further, a method of dispersing barium sulfate particles in an organic solvent using a dispersant has been disclosed (for example, refer to Patent Document 2). However, when a paste composition is produced by mixing a dispersion of inorganic particles using a conventional dispersant with a resin, and then hardening it to produce a cured product in which inorganic particles are dispersed, a curing reaction of the resin by light irradiation or heating is carried out. Compared with the case of not using inorganic particles, the system is insufficient. Therefore, the thermomechanical properties and the like of the obtained cured product are deteriorated. Further, when a film formed by using a paste composition containing inorganic particles and a resin cured by light is subjected to patterning by a lithography method, insufficient curing of the exposed portion causes elution of the composition at the time of development. The pattern shape becomes unclear, or the solubility of the unexposed portion is lowered, and the residue of the paste composition occurs at the time of development. Therefore, the light propagation loss of the optical waveguide formed by the lithography method becomes large. 200839331 Further, it is known that when a resin monomer having a polymerizable group is added to the resin, the antistatic property or flame retardancy of the cured product can be increased, and the dispersion of the pigment (particles) dispersed in the resin can be improved. Effect such as sex (see Patent Document 3). In general, the dispersibility of pigments (particles) varies not only greatly depending on whether the pigment used is organic or inorganic, but also because of the same inorganic pigment, such as barium sulfate particles and alumina particles, the surface potential or surface thereof. The difference in smoothness and the like is also large, and one additive has an effect of improving dispersibility, but the other may also reduce dispersibility. Patent Document 3 only describes that an inorganic pigment can be used, but does not specifically disclose the kind of inorganic pigment which can be dispersed to the left and right as described above. [Patent Document 1] Japanese Laid-Open Patent Publication No. Hei. No. 2006-106708 (page 18) [Patent Document 3] JP-A-2003- 1 46992 [Explanation] The problem to be solved by the invention is as described above, when the barium sulfate particles having an average particle diameter of 1 nm or more and 50 nm or less are used as one of constituent materials in the composition for a light guide wave path paste, When a conventional dispersing agent is used for the purpose of dispersing particles, the curing reaction of the paste composition due to light irradiation or heating may be insufficient, or the film formed using the paste composition may be lithographically formed. When performing pattern processing, development becomes difficult. The present invention has been made in view of the problems of the prior art, and it is an object of the invention to provide a paste composition for an optical waveguide which is capable of reliably curing 200839331 and which is excellent in developability. The present invention relates to a paste composition for an optical waveguide comprising (A) barium sulfate particles having an average particle diameter of 1 nm or more and 50 nm or less, (B) a compound having a polymerizable group and a carboxyl group, or a polymerizable group. Phosphate compound, and (C) organic solvent. Further, the optical waveguide of the optical waveguide paste composition is cured. The effect of the optical waveguide paste composition of the present invention can be surely cured by light irradiation or heating. Further, in the patterning by the lithography method, the hardenability of the exposed portion and the developability of the unexposed portion are extremely excellent. By using the optical waveguide paste composition of the present invention, it is possible to obtain an optical waveguide having a small change in refractive index due to temperature, a small linear expansion ratio, and a small light propagation loss. [Embodiment] The optical waveguide paste composition (hereinafter referred to as paste composition) of the present invention contains (A) barium sulfate particles, (B) a compound having a polymerizable group and a carboxyl group, or has a polymerization. a phosphate compound of a base, and (C) an organic solvent. In the following, a compound having a polymerizable group and a carboxyl group or a phosphate compound having a polymerizable group is referred to as "Compound A" unless otherwise specified. In the paste composition of the present invention, the compound A has an action of dispersing the barium sulfate particles. The carboxyl group or the phosphate bond site in the compound A covers the surface of the barium sulfate particles by the interaction with the barium sulfate particles. Further, it is considered that the 200839331 polymerizable group of the compound A covering the surface of the barium sulfate particles is oriented to the outside of the barium sulfate particles, and is compatible with an organic solvent or other compound in the paste composition to stably disperse the barium sulfate particles. The polymerizable group in the compound A is an organic group which can be polymerized by a polyaddition reaction or a radical reaction by light or heat. In the paste composition of the present invention, since the compound A participates in the polymerization, the hardening is carried out rapidly and surely. In the present invention, the compound A itself is polymerized by light or heat to form a matrix resin in the cured product. Therefore, the compound A used in the present invention functions both as a dispersing agent for barium sulfate particles and as a matrix resin. It is considered that by dispersing barium sulfate in a polymer having a polymerizable group for forming a matrix by a dispersing agent having no polymerizable group, when the matrix resin is polymerized, barium sulfate particles move and aggregate, and the dispersibility is lowered. . On the other hand, in the paste composition of the present invention, since the compound A is polymerized in a state in which the cerium sulfate particles are trapped, the dispersibility of the cerium sulphate particles can be favorably maintained in the cured product. Therefore, the light transmittance and surface flatness of the cured product are good. Further, by curing the compound A in the paste composition by light, patterning by the lithography method can be performed. In this case, since the compound A in the exposed portion is polymerized in a state in which barium sulfate particles are trapped, a strong network using barium sulfate particles as a starting point is formed, and swelling or dissolution of the exposed portion during development is suppressed, so that formation can be performed. Clear pattern shape. The polymerizable group of the compound A is preferably a good affinity for the organic solvent or other compound contained in the paste composition because the purpose is to disperse the barium sulfate particles well. Examples of such may include a vinyl group, an acrylic acid 200839331 ester group, a methacrylate group, an epoxy acrylate group, an epoxy methacrylate group, and an epoxy group.

化合物A具有上述聚合性基及羧基。化合物a的羧基藉 由與硫酸鋇粒子相互作用,使化合物A覆蓋硫酸鋇粒子的 表面,可使硫酸鋇粒子分散。又,於以光使本發明的糊組 成物中的化合物A硬化之微影法來進行圖案加工時,由於 化合物A具有極性高的羧基,故對顯像液的溶出快,可減 低未曝光部的顯像時之殘渣。 本發明所用的化合物A較佳爲下述通式(1 )所示者 R1 CH2~c~ C— 0~R2-(:—OH (1) Ο Ο 於通式(1)中,R1表示氫原子或甲基,R2表示下述通式 (2)〜(4)中任一個所示的2價基。 十吨〇 一 PCH2tr (2) 〇The compound A has the above polymerizable group and a carboxyl group. The carboxyl group of the compound a acts on the surface of the barium sulfate particles by interacting with the barium sulfate particles to disperse the barium sulfate particles. Further, when the patterning process is performed by the lithography method in which the compound A in the paste composition of the present invention is cured by light, since the compound A has a carboxyl group having a high polarity, the dissolution of the developing solution is fast, and the unexposed portion can be reduced. The residue of the image. The compound A used in the present invention is preferably represented by the following formula (1): R1 CH2~c~C-0~R2-(:-OH(1) Ο 于 in the formula (1), and R1 represents hydrogen An atom or a methyl group, and R2 represents a divalent group represented by any one of the following formulas (2) to (4). Ten tons of hydrazine-PCH2tr (2) 〇

(3) (4) 於通式(2)〜(4)中,η及m各自爲1〜3的整數。 通式(1)的聚合性基,於R1爲氫原子時,係丙烯酸酯基 -10- 200839331 ,於R 1爲甲基時,係甲基丙烯酸酯基。丙烯酸酯基或甲基 丙烯酸酯基具有不飽和鍵’可藉由光照射或加熱使進行自 由基聚合。於藉由光使進行自由基聚合時,可採用經由光 罩照射光的微影法,形成配線圖案等。R 1爲氫原子的丙烯 酸酯基係聚合性更良好而較佳。 通式(2)〜(4)中的η及m,若其數小,則由於每單位重 量的聚合性基及羧基之數變多,故聚合性更良好,且提高 硫酸鋇粒子的分散性。另一方面,若η及m的數大,則化 合物A在配位於硫酸鋇粒子時,成爲立體障礙的效果變大 ,故提高分散性。因此,η及m較佳爲碳數2的伸乙基。 於通式(1)所表示的化合物之中,R1爲氫原子且R2爲通 式(4)所示的2價基之化合物係較宜,於該情況下,根據上 述理由,η較佳爲2。若使用該化合物,則聚合性及顯像性 成爲更良好。又,由於硫酸鋇粒子的分散性可更良好,可 更減小所分散的硫酸鋇之平均粒徑,故提高從糊組成物所 得到的硬化物之光透過性。因此,可得到光傳靖損失小的 光導波路。 作爲本發明所用的通式(1 )所示化合物Α的具體例子, 可舉出共榮社化學(股)製的“ Η Ο A - M S,,(商品名,通式(1 )中 的Ri爲氫原子,R2爲通式(2)所示者,η、①皆爲2)、 “HOA-HH”(商品名,通式⑴中的Ri爲氫原子,r2爲通式(3) 所示者,η爲2)、“HOA-MPL,,(商品名,通式(1)中的R1爲 氫原子’ R2爲通式(4)所示者,η爲2)。 另一方面’亦較佳爲使用下述通式(5 )所示的化合物Α。 -11- 200839331 Ο II ο—Ρ Ο一R4 (5) R5 於通式(5)中,R3〜R5表示下述通式(6)〜(10)中任一者 所示的1價基或氫原子,R3〜R5可爲相同或不同。但是, R3〜R5不是全部爲氫原子。(3) (4) In the general formulae (2) to (4), η and m are each an integer of 1 to 3. The polymerizable group of the formula (1) is an acrylate group -10- 200839331 when R1 is a hydrogen atom, and is a methacrylate group when R 1 is a methyl group. The acrylate group or the methacrylate group having an unsaturated bond ' can be subjected to radical polymerization by light irradiation or heating. When radical polymerization is carried out by light, a lithography method of irradiating light through a reticle can be employed to form a wiring pattern or the like. The acrylate group-based polymerizicity in which R 1 is a hydrogen atom is more preferable, and is preferable. When η and m in the general formulae (2) to (4) are small, the number of polymerizable groups and carboxyl groups per unit weight increases, so that the polymerizability is further improved and the dispersibility of barium sulfate particles is improved. . On the other hand, when the number of η and m is large, the compound A becomes a steric hindrance when it is placed on the barium sulfate particles, so that the dispersibility is improved. Therefore, η and m are preferably an exoethyl group having a carbon number of 2. Among the compounds represented by the formula (1), a compound wherein R1 is a hydrogen atom and R2 is a divalent group represented by the formula (4) is preferred. In this case, η is preferably used for the above reasons. 2. When this compound is used, polymerizability and developability are further improved. Further, since the dispersibility of the barium sulfate particles is further improved, the average particle diameter of the dispersed barium sulfate can be further reduced, so that the light transmittance of the cured product obtained from the paste composition is improved. Therefore, an optical waveguide having a small loss of light transmission can be obtained. Specific examples of the compound oxime represented by the formula (1) used in the present invention include "Η Ο A - MS, manufactured by Kyoei Kogyo Co., Ltd., (trade name, Ri in the formula (1) In the case of a hydrogen atom, R2 is represented by the formula (2), and both η and 1 are 2) and "HOA-HH" (trade name, Ri in the formula (1) is a hydrogen atom, and r2 is a formula (3). In other words, η is 2), "HOA-MPL, (trade name, R1 in the formula (1) is a hydrogen atom" R2 is represented by the formula (4), and η is 2). On the other hand, it is also preferred to use a compound oxime represented by the following formula (5). -11- 200839331 Ο II ο-Ρ Ο R4 (5) R5 In the formula (5), R3 to R5 represent a monovalent group represented by any one of the following formulas (6) to (10) or The hydrogen atom, R3 to R5, may be the same or different. However, not all of R3 to R5 are hydrogen atoms.

(6)(6)

(7) h2c=c〔 C-O—R10— II 0 (8) -12- 200839331 ⑼ H2C^CH—R11— (10) 於通式(6)〜(10)中,R6〜r9表示氫原子或甲基。Rio〜 R 11爲碳數1〜1 0的2價基,較佳爲碳數1〜1 0的2價烴基 ,更佳爲碳數2個的烷基。R12爲具有羥基的碳數1〜10的 2價基,較佳爲下述通式(13)〜(15)所示的有機基。(7) h2c=c[CO—R10—II 0 (8) -12- 200839331 (9) H2C^CH—R11— (10) In the general formulae (6) to (10), R6 to r9 represent a hydrogen atom or a base. Rio to R 11 are a divalent group having 1 to 10 carbon atoms, preferably a divalent hydrocarbon group having 1 to 10 carbon atoms, more preferably an alkyl group having 2 carbon atoms. R12 is a divalent group having 1 to 10 carbon atoms and having a hydroxyl group, and is preferably an organic group represented by the following formulas (13) to (15).

0H -CH2—CH—CH2— (13)0H -CH2—CH—CH2— (13)

OHOH

II

(14) —CH2—CH — CH2—CH2—(14) —CH2—CH — CH2—CH2—

OH -ch2-ch— (15) 於通式(5)所示的化合物A中,R3〜R5中任2個爲氫原 子的磷酸單酯,與r3〜r5中任1個爲氫原子的磷酸二酯比 較下,由於提高硫酸鋇粒子的分散性,故係較宜。又,磷 -13- 200839331 酸二酯,與R3〜R5中皆不含氫原子的磷酸三酯比較下,由 於提高硫酸鋇粒子的分散性,故係較宜。 通式(6)〜(9)所示的1價基係具有丙烯酸酯基或甲基丙 烯酸酯基,可藉由光照射或加熱而進行自由基聚合。又, 通式(10)所示的1價基係可藉由光照射或加熱使進行離子 聚合。R6〜R9爲氫原子的丙烯酸酯基之聚合性係更良好, 而係較宜。 γ 就通式(8)〜(10)的R1()〜R12之碳數而言,若其數少,則 由於每單位重量的聚合性基及磷酸酯結合部位的數變多, 故聚合性更良好,且提高硫酸鋇粒子的分散性。又,若R 1G 〜R12的碳數多,則化合物A在配位於硫酸鋇粒子時,成爲 立體障礙的效果變大’故提高分散性。因此,R 1 ^〜R 12的碳 數較佳爲1〜4。 特別地,於通式(5)所示的化合物之中,較佳爲R3〜R5 中至少1個係通式(8)所示的1價基,於該情況下,更佳爲 , R1G係碳數1〜3的2價烴基。又,較佳爲通式(5)的R3〜R5 中至少1係通式(9)所示的1價基,通式(9 )的R 12係具有羥 基的碳數2〜3之2價烴基。 作爲本發明所用的通式(5 )所示的化合物A之具體例子 ,可舉出共榮社化學(股)製的“Light_Acrylate P-1 A”(商品名 ,具有丙烯酸酯基的磷酸單酯)、共榮社化學(股)製的“ Light-Ester P-1M,,(商品名,具有甲基丙烯酸酯基的磷酸單 醋)、“Light-Ester P-2M”(商品名,具有甲基丙嫌酸醋基的 磷酸二酯)、DAICEL-CYTEC(股)製的RDX63182(具有環氧 -14- 200839331 丙烯酸酯基的磷酸二酯)。本發明所用的化合物A可以使用 1種類,也可以使用複數種。 又,由本發明的糊組成物所得到的硬化物,係對於溫度 的物性變化微小,例如溫度所致的折射率之變化率或線膨 脹率小。用於提高無機粒子的分散性之分散劑,係會阻礙 糊組成物中的樹脂之硬化反應,增大從糊組成物所得到的 硬化物之溫度所致的折射率之變化率或線膨脹率等,使硬 化物的特性劣化。因此,分散劑含量較佳爲盡可能地少量 Γ 。於本發明中,亦有助於硫酸鋇粒子的分散性之化合物 A 本身,由於聚合、硬化係參與後述的樹脂之聚合,故可抑 制溫度所致的折射率變化率或線膨脹率增大等之硬化物的 特性劣化。 如上述地,於本發明的糊組成物中,化合物A係聚合而 形成硬化物中的基質,但也可含有其以外之亦用於形成基 質的樹脂。作爲此時所用的樹脂,可舉出聚醯胺酸、乙烯 系樹脂、原冰片烯樹脂、環氧樹脂、丙烯酸酯樹脂、甲基 丙烯酸酯樹脂、環氧丙烯酸酯樹脂、環氧甲基丙烯酸酯樹 脂、氰酸酯樹脂、雙馬來醯胺-三阱樹脂、苯并環丁烯樹脂 、矽氧烷樹脂等的具有聚合性基的熱硬化型或UV硬化型樹 脂。又,可舉出芳醯胺樹脂、聚苯乙烯、聚醚醯亞胺、聚 苯醚、熱塑性聚醯亞胺等之熱塑性樹脂。此等樹脂可被單 獨使用,亦可以適當的比例使用複數種。 於製程中要求耐熱性等的用途中,上述樹脂之中較佳爲 熱硬化型樹脂或具有UV硬化型樹脂等聚合性基的樹脂。又 -15- 200839331 ,使用於從糊組成物所得到的硬化物被要求光透過性的光 導波路用材料時,較佳爲使用環氧樹脂、丙烯酸酯樹脂、 甲基丙烯酸酯樹脂、環氧丙烯酸酯樹脂、環氧甲基丙烯酸 酯樹脂、矽氧烷樹脂等。特別地,若選擇此等樹脂中的UV 硬化型者,則可藉由微影法來實現光導波路的圖案,而係 較宜。 於本發明中’可使熱硬化型樹脂或UV硬化型樹脂所具 有的聚合性基彼此聚合,或也可以使此等樹脂所具有的聚 合性基與化合物A的聚合性基聚合。本發明的硬化物中所 形成的聚合物,有(a)由化合物A所成的聚合物、(b)化合物 A與樹脂的聚合物、或(c)僅由樹脂所成的聚合物等各式各 樣形態的聚合物,具有以分散狀態存在於此等聚合物中的 硫酸鋇粒子。再者,只要沒有特別預先指明,則在將存在 於由糊組成物所得到的硬化物中之上述(a)〜(c)的各聚合物 僅稱爲「聚合物」。 依照糊組成物中所含有的化合物A、樹脂、聚合促進劑 等之組成,由糊組成物所得到的硬化物中之聚合物係爲上 述(a)〜(c)中任一個態樣,或此等混合存在的態樣。 例如,於化合物A的聚合性基爲丙烯酸酯基,樹脂的聚 合性基亦爲丙烯酸酯基時,由於硫酸鋇粒子附近傍存在許 多的化合物 A,故(a)的聚合物多,在遠離硫酸鋇粒子的區 域中(c)的聚合物係多的,在此等之中間的區域中(b)的聚合 物存在。又,作爲另外一例,可從含有聚合性基爲丙烯酸 酯基的化合物A與聚合性基爲環氧基的樹脂之糊組成物來 -16- 200839331 製造由(a)的聚合物及(c)的聚合物所成的硬化物。又,於使 用複數種的樹脂時,例如使用聚合性基爲丙烯酸酯基的化 合物A、聚合性基爲環氧丙烯酸酯基的樹脂、及聚合性基爲 環氧基的樹脂,使此等3成分共聚合,亦可得到(b)的聚合 物。 本發明的硬化物中之聚合物與硫酸鋇粒子的折射率若 接近,則由於硬化物中所入射的光之瑞利散射小,而增加 硬化物的光透過性。因此,於要求光學材料般的光透過性 時,爲了得到具有所欲折射率的聚合物,較佳爲設定化合 物A及樹脂的種類或混合比。由於硫酸鋇的折射率爲1.6 ,爲了提高光透過性,所得到的聚合物之折射率較佳爲接 近1.6,更佳爲聚合物的折射率亦爲1.6。 聚合物由於係由分散劑或樹脂等糊組成物中所含有的 硫酸鋇粒子以外的物質所構成,爲了使所得到的聚合物之 折射率成爲接近1 . 6,較佳爲決定各物質的種類或混合量。 但是,於混合折射率不同的複數之物質,形成具有某一折 射率的聚合物時,各物質的折射率接近目的之折射率者可 容易得到折射率變動少的聚合物,故係較宜。 就先前所例示的化合物A之折射率而言,“ Η Ο A - M S ”爲 1.46,“ΗΟΑ-ΗΗ” 爲 1.48,“HOA-MPL” 爲 1.52。又, “Light-Acrylate Ρ-1Α”爲 1.47,“Light-Ester Ρ-1Μ”爲 1.47 ,“1^§1^-丑3{61»?-2%”爲1.47,110乂63182 爲1.54。於光導 波路等的光學材料用途中,若使用與硫酸鋇的折射率接近 的“HOA-MPL”或RDX6 3 1 8 2,則從糊組成物所得到的硬化物 -17- 200839331 之光透過性容易變良好,故係較宜。 於使用本發明的糊組成物所得到的硬化物於要求耐熱 性和光透過性的光導波路材料時,作爲上述熱硬化型樹脂 或UV硬化型樹脂所具有的聚合性基,較佳爲環氧基、丙烯 酸酯基、甲基丙烯酸酯基、環氧丙烯酸酯基、環氧甲基丙 烯酸酯基等。但是,於使環氧樹脂等進行陽離子聚合時, 陽離子活性物種會吸附於硫酸鋇粒子,使聚合反應變慢。 ( 因此,較佳爲適合於自由基聚合的丙烯酸酯樹脂、甲基丙 烯酸酯樹脂、環氧丙烯酸酯樹脂、環氧甲基丙烯酸酯樹脂 。作爲光配線材料,較佳爲如上述地與硫酸鋇粒子的折射 率接近者,例如可舉出下述式(11)所示的丙烯酸酯樹脂(折 射率:1.55)、或下述式(12)所示的環氧丙烯酸酯樹脂(折射 率:1.5 6)等。於使用糊組成物藉由微影法來進行圖案加工 時,若選擇下述式(1 1)所示的樹脂當作樹脂,則可減低顯像 時的未曝光部之殘渣,而係較宜。另一方面,若選擇下述 β 式(1 2)所示的樹脂當作樹脂,則可減小由糊組成物所得到的 硬化物之折射率的溫度依賴性或線膨脹率,而係較宜。 -18- 200839331OH -ch2-ch- (15) In the compound A represented by the formula (5), a phosphoric acid monoester in which two of R3 to R5 are a hydrogen atom, and a phosphoric acid in which one of r3 to r5 is a hydrogen atom In the case of diester comparison, it is preferred to increase the dispersibility of barium sulfate particles. Further, phosphorus-13-200839331 acid diester is preferable in comparison with a phosphate triester which does not contain a hydrogen atom in R3 to R5, because it improves the dispersibility of barium sulfate particles. The monovalent group represented by the formulae (6) to (9) has an acrylate group or a methacrylate group, and can be subjected to radical polymerization by light irradiation or heating. Further, the monovalent group represented by the formula (10) can be subjected to ion polymerization by light irradiation or heating. The polymerizable group of the acrylate group in which R6 to R9 are a hydrogen atom is more preferably used. γ When the number of carbon atoms of R1() to R12 in the general formulae (8) to (10) is small, the number of polymerizable groups and phosphate-bonding sites per unit weight increases, so polymerization property It is more favorable and improves the dispersibility of barium sulfate particles. Further, when R 1G to R12 have a large carbon number, the compound A has a large steric hindrance when it is placed on the barium sulfate particles, so that the dispersibility is improved. Therefore, the carbon number of R 1 ^ to R 12 is preferably from 1 to 4. In particular, among the compounds represented by the formula (5), at least one of R3 to R5 is preferably a monovalent group represented by the formula (8). In this case, more preferably, the R1G system is used. A divalent hydrocarbon group having 1 to 3 carbon atoms. Further, at least one of R3 to R5 of the formula (5) is preferably a monovalent group represented by the formula (9), and the R 12 of the formula (9) has a carbon number of 2 to 3 of the hydroxyl group. Hydrocarbyl group. Specific examples of the compound A represented by the formula (5) used in the present invention include "Light_Acrylate P-1 A" (trade name, phosphate monoester having an acrylate group) manufactured by Kyoeisha Chemical Co., Ltd. ), "Light-Ester P-1M," (trade name, methacrylate-based phosphoric acid monoacetate), "Light-Ester P-2M" (trade name, with A) RDX63182 (phosphoric acid diester having epoxy-14-200839331 acrylate group) manufactured by DAICEL-CYTEC Co., Ltd., which can be used in the present invention. Further, the cured product obtained from the paste composition of the present invention has a small change in physical properties with respect to temperature, and a rate of change in refractive index or a coefficient of linear expansion due to temperature is small, and is used for enhancing dispersion of inorganic particles. a dispersant which hinders the hardening reaction of the resin in the paste composition, increases the rate of change of the refractive index or the coefficient of linear expansion due to the temperature of the cured product obtained from the paste composition, and the characteristics of the cured product. Deterioration In the present invention, the compound A itself which contributes to the dispersibility of the barium sulfate particles, since the polymerization and the hardening are involved in the polymerization of the resin described later, the temperature-induced refraction can be suppressed. As described above, in the paste composition of the present invention, the compound A is polymerized to form a matrix in the cured product, but may contain other substances. A resin used for forming a matrix. Examples of the resin used at this time include polyacrylic acid, ethylene resin, raw borneylene resin, epoxy resin, acrylate resin, methacrylate resin, and epoxy acrylate resin. a thermosetting or UV curable resin having a polymerizable group such as an epoxy methacrylate resin, a cyanate resin, a bismaleimide-tripper resin, a benzocyclobutene resin, or a decane resin. Further, a thermoplastic resin such as linaloamine resin, polystyrene, polyether phthalimide, polyphenylene ether or thermoplastic polyimide may be mentioned. These resins may be used singly or in an appropriate ratio. In the application for heat resistance and the like in the process, among the above resins, a thermosetting resin or a resin having a polymerizable group such as a UV curable resin is preferred. Further, -15-200839331, used for a paste composition When the obtained cured product is required to be a light-transmitting optical waveguide material, an epoxy resin, an acrylate resin, a methacrylate resin, an epoxy acrylate resin, an epoxy methacrylate resin, or a ruthenium is preferably used. In particular, when a UV-curable type of these resins is selected, it is preferable to realize a pattern of an optical waveguide by a lithography method. In the present invention, a thermosetting resin can be used. The polymerizable groups of the UV-curable resin may be polymerized with each other, or the polymerizable group of these resins may be polymerized with the polymerizable group of the compound A. The polymer formed in the cured product of the present invention may have (a) a polymer formed from the compound A, (b) a polymer of the compound A and the resin, or (c) a polymer formed only from the resin. The polymer of various forms has barium sulfate particles which are present in the polymer in a dispersed state. Further, the respective polymers (a) to (c) present in the cured product obtained from the paste composition are simply referred to as "polymers" unless otherwise specified. The polymer in the cured product obtained from the paste composition is in any one of the above (a) to (c), or in accordance with the composition of the compound A, the resin, the polymerization accelerator, and the like contained in the paste composition, or These mixed forms exist. For example, when the polymerizable group of the compound A is an acrylate group and the polymerizable group of the resin is also an acrylate group, since a large amount of the compound A is present in the vicinity of the barium sulfate particles, the polymer of (a) is much more distant from sulfuric acid. In the region of the ruthenium particles, the polymer of (c) is many, and the polymer of (b) is present in the intermediate region. Further, as another example, the polymer of (a) and (c) may be produced from a paste composition containing a polymerizable group of an acrylate group-containing compound A and a polymerizable group of an epoxy group-containing resin-16-200839331. The cured product of the polymer. Further, when a plurality of resins are used, for example, a compound A having a polymerizable group as an acrylate group, a resin having a polymerizable group as an epoxy acrylate group, and a resin having a polymerizable group as an epoxy group are used. The component is copolymerized to obtain the polymer of (b). When the refractive index of the polymer in the cured product of the present invention and the barium sulfate particles are close to each other, the Rayleigh scattering of light incident on the cured product is small, and the light transmittance of the cured product is increased. Therefore, in order to obtain a light having a desired refractive index when an optical material-like light transmittance is required, it is preferred to set the type or mixing ratio of the compound A and the resin. Since the refractive index of barium sulfate is 1.6, in order to improve light transmittance, the refractive index of the obtained polymer is preferably close to 1.6, and more preferably the refractive index of the polymer is also 1.6. The polymer is composed of a substance other than barium sulfate particles contained in a paste composition such as a dispersant or a resin, and the refractive index of the obtained polymer is made close to 1. 6. Preferably, the type of each substance is determined. Or a mixture amount. However, when a plurality of substances having different refractive indexes are mixed to form a polymer having a certain refractive index, it is preferred that the refractive index of each substance is close to the intended refractive index, and a polymer having a small refractive index variation can be easily obtained. With respect to the refractive index of Compound A exemplified previously, "Η Ο A - M S " was 1.46, "ΗΟΑ-ΗΗ" was 1.48, and "HOA-MPL" was 1.52. Also, "Light-Acrylate Ρ-1Α" is 1.47, "Light-Ester Ρ-1Μ" is 1.47, "1^§1^- ugly 3{61»?-2%" is 1.47, and 110乂63182 is 1.54. In the use of optical materials such as optical waveguides, when "HOA-MPL" or RDX6 3 18 2 which is close to the refractive index of barium sulfate is used, the light transmittance of the cured product 17-200839331 obtained from the paste composition is used. It is easy to get better, so it is better. When the cured product obtained by using the paste composition of the present invention is a light-transmitting material which is required to have heat resistance and light transmittance, the polymerizable group of the thermosetting resin or the UV curable resin is preferably an epoxy group. An acrylate group, a methacrylate group, an epoxy acrylate group, an epoxy methacrylate group, or the like. However, when the epoxy resin or the like is subjected to cationic polymerization, the cationically active species are adsorbed to the barium sulfate particles, and the polymerization reaction is slowed down. (Therefore, it is preferably an acrylate resin, a methacrylate resin, an epoxy acrylate resin, or an epoxy methacrylate resin which is suitable for radical polymerization. As the optical wiring material, it is preferably as described above with barium sulfate The refractive index of the particle is close to, for example, an acrylate resin (refractive index: 1.55) represented by the following formula (11) or an epoxy acrylate resin represented by the following formula (12) (refractive index: 1.5). 6) When the paste composition is subjected to patterning by the lithography method, when the resin represented by the following formula (1 1) is selected as the resin, the residue of the unexposed portion at the time of development can be reduced. On the other hand, if the resin represented by the following formula (1 2) is selected as the resin, the temperature dependence or linear expansion of the refractive index of the cured product obtained from the paste composition can be reduced. Rate, and the system is more suitable. -18- 200839331

Vi yo 〇 i £u (u)ffioHHulo==lo」HuIHu-^uloVi yo 〇 i £u (u)ffioHHulo==lo"HuIHu-^ulo

U-H0U-H0

0=0、 I9 o 7 * 7 il 7 olffiulHulffiuloiu=clHU HO I OHO-, HO 〇 olwulHrKol?u==ISHffiu 於本發明的糊組成物中,化合物A的含量,對於1 00重 量份的硫酸鋇粒子而言,較佳爲5重量份以上且2 0重量份 以下。對於硫酸鋇粒子而言,化合物A的含量若爲5重量 份以上,則可提高硫酸鋇粒子的分散性,減小硫酸鋇粒子 -19- 200839331 的分散粒徑,故可提高由本發明的糊組成物所得到的硬化 物之光透過性。因此,可得到光傳播損失小的光導波路。 另一方面,若考慮化合物A與硫酸鋇的折射率差,則對於 硫酸鋇粒子而言,當化合物A的含量爲2 0重量份以下時, 可提高由糊組成物所得到的硬化物之光透過性。因此,可 得到光傳播損失小的光導波路。 又,於本發明的糊組成物中,於硬化所得到的聚合物爲 r 僅由化合物A所構成時,對於糊組成物全體而言,化合物a 的含量係不同於由化合物A與樹脂所構成的情況。例如, 硬化物中的聚合物,於僅化合物A單獨聚合硬化的(a)之態 樣中,化合物A的含量係沒有特別的限定,但相對於糊組 成物中的有機溶劑等揮發成分以外的固體成分而言,較佳 爲20重量%以上且70重量%以下。化合物A的含量相對於 糊組成物中的有機溶劑等揮發成分以外的固體成分而言若 爲2 0重量%以上,則所得到的硬化物之耐龜裂性或與基板 的接著性會提高,對於內聚破壞的耐性亦變高。化合物A 的含量,對於糊組成物中的有機溶劑等揮發成分以外的固 體成分而言,若爲3 0重量%以上,則可更提高此等效果, 而係更佳。化合物A的含量,對於糊組成物中的有機溶劑 等揮發成分以外的固體成分而言,若爲7 0重量%以下,則 可更減小所得到的硬化物之溫度所致的折射率變化率或線 膨脹率。化合物A的含量,對於糊組成物中的有機溶劑等 揮發成分以外的固體成分而言,若爲5 0重量%以下,則可 更提高此等效果’而係更佳。 -20- 200839331 另一方面,於硬化物中的聚合物包含(b)或(C)的態樣時 ,對於糊組成物中的有機溶劑等揮發成分以外的固體成分 而言,化合物A與樹脂的含量之和較佳爲2 0重量%以上, 更佳爲3 0重量%以上。又,對於糊組成物中的有機溶劑等 揮發成分以外的固體成分而言,化合物A與樹脂的含量之 和較佳爲7 0重量%以下,更佳爲5 0重量%以下。在該範圍 內的較佳理由係與上述(a)態樣的理由同樣。化合物a與樹 脂的混合比,可配合應製造的化合物A與樹脂之聚合物的 組成比來任意地設定,化合物A的含量對於硫酸鋇粒子而 言若爲1重量%以上,則可是高硫酸鋇粒子的分散性,而係 較宜。 又,於使用具有聚合性基的樹脂時,較佳爲考慮化合物 A與樹脂的聚合特性,設定此等的混合比。即,於(b 1 )化合 物A與具有聚合性基的樹脂各自單獨地聚合時,於(b2)使1 個化合物A與在起點具有聚合性基的樹脂以鏈狀聚合時, 於(b 3)化合物A與具有聚合性基的樹脂交替地聚合時,化合 物A與具有聚合性基的樹脂之混合比係不同。例如,上述 (b3)的態樣之一例,於使聚合性基爲環氧丙烯酸酯基的化合 物A與環氧樹脂交替聚合時,兩者的聚合性基較佳爲同數 〇 本發明的糊組成物,爲了促進化合物A或樹脂的聚合, 亦可含有用於產生自由基或陽離子、陰離子等的活性種之 聚合促進劑。作爲聚合促進劑,有經由光照射或加熱處理 而活性化者,可視用途而分開使用。於將糊組成物形成爲 -21- 200839331 膜狀’藉由微影法來圖案化時,使用經由光照射而活性化 的聚合促進劑。作爲經由UV光照射而產生自由基的聚合促 進劑,可舉出肟系、二苯甲酮系、三阱系、苯并三唑系等。 又,作爲經由UV光照射而產生陽離子的聚合促進劑,可舉 出鱗系、銃系、碘鑰系等。 本發明的糊組成物含有平均粒徑爲lnm以上且50nm以 下的硫酸鋇。再者,本發明中的平均粒徑係指數平均粒徑 ^ 。糊組成物中的硫酸鋇粒子,係以完全解開凝聚的1次粒 子之狀態者及複數個的1次粒子凝聚之狀態者存在。此處 ,糊組成物中的硫酸鋇粒子之粒徑,係指沒有凝聚的1次 粒子爲其粒子的粒徑,1次粒子凝聚者爲其凝聚體的粒徑。 爲了製造經分散的硫酸鋇粒子之平均粒徑爲5 Onm以下的糊 組成物,所使用的硫酸鋇粒子之1次粒子的平均粒徑必須 爲5 Onm以下。作爲滿足此者,例如可舉出堺化學工業(股) 製的BF-40(平均1次粒徑i〇nm)。作爲測定糊組成物中的 硫酸鋇粒子之平均粒徑的方法,可舉出藉由SEM(掃描型電 子顯微鏡)或TEM (透射型電子顯微鏡)來直接觀察粒子,計 算粒徑的數平均之方法。糊組成物中的硫酸鋇粒子的平均 粒徑若爲5 0 n m以下,則於糊組成物及硬化物的各形態中, 均質性會上升,而且減小硫酸鋇粒子所致的光之瑞利散射 ,故光透過性亦變高。使用如此的糊組成物,可得到光傳 播f貝失小的先導波路。再者’糊組成物中所分散的硫酸鋇 粒子之平均粒徑若爲3 Onm以下,則於由該糊組成物所得到 的硬化物中,硫酸鋇粒子所致的光之瑞利散射變極小,顯 -22- 200839331 示與不含硫酸鋇粒子的硬化物之情況大致同等的光透過性 。若使用如此的材料,則可得到光傳播損失非常小的光導 波路。另一方面,硫酸鋇粒子的粒徑若爲1 nm以上,則由 於對於粒子的體積而言,比表面積變小,故粒子的分散性 變良好。 於本發明中,糊組成物中的硫酸鋇粒子之含量,對於有 機溶劑等揮發成分以外的固體成分而言,較佳爲3 0重量% 以上且80重量%以下。對於糊組成物中的固體成分而言, 硫酸鋇粒子的含量若爲3 0重量%以上,則減低由糊組成物 所得到的硬化物之溫度所致的折射率變化率或線膨脹率。 對於糊組成物中的固體成分而言,硫酸鋇粒子的含量更佳 爲5 0重量%以上。對於糊組成物中的固體成分而言,硫酸 鋇粒子的含量若爲8 0重量%以下,則提高耐龜裂性或與基 板的接著性,亦提高對於內聚破壞的耐性。又,若使用如 此的材料,則可得到光透過性優異的硬化物,故可得到光 傳播損失小的光導波路。又,於藉由微影法來進行圖案加 工時,爲了減低顯像時的未曝光部之殘渣,更佳爲對於糊 組成物中的固體成分而言,硫酸鋇粒子的含量爲7 0重量% 以下。 本發明的糊組成物含有有機溶劑。作爲有機溶劑,可舉 出Ν,Ν-二甲基乙醯胺、N-甲基-2-吡咯啶酮、二甲基咪唑啉 二酮、二甲亞楓、γ - 丁內酯、乳酸乙酯、1 -甲氧基-2 -丙醇 、1-乙氧基-2-丙醇、乙二醇單正丙基醚、二丙酮醇、四氫 糠醇等。 -23- 200839331 本發明的糊組成物較佳爲含有矽烷偶合劑。藉由含有矽 院偶合劑’可減低微影法的圖案加工中曝光部的圖案之變 細或剝離’故可抑制裂紋的發生,實現清晰的圖案形狀。 又,亦可更減低未曝光部的殘渣。一般地,已知矽烷偶合 劑係有提高無機材料與有機材料的接著性之效果。於本發 明中’亦可期待提高組成物中的樹脂成分與無機成分的接 著性’或提高組成物中的樹脂成分與矽晶圓等無機基板的 接著性’減低微影法的圖案加工中曝光部的圖案之變細或 剝離,抑制裂紋的發生之效果。另一方面,關於減低微影 法的圖案加工中未曝光部的殘渣之效果,可考慮如以下的 理由。若顯像液接觸未曝光部,則樹脂或化合物A等會溶 出,而且化合物A所捕捉的硫酸鋇粒子亦會溶出。若顯像 時化合物A從硫酸鋇粒子脫離,表面露出的硫酸鋇粒子會 互相凝聚,其附近的樹脂等亦凝集,成爲顯像殘渣。但是 ,矽烷偶合劑若存在,則由於矽烷偶合劑更強固地無機成 分的硫酸鋇粒子與有機成分的化合物A之結合力,故保持 顯像時的硫酸鋇粒子之分散性,組成物快速地溶出,不易 發生殘渣。 作爲矽烷偶合劑,較佳爲3 ·縮水甘油氧基丙基三甲氧基 矽烷、3 -縮水甘油氧基丙基三乙氧基矽烷、3 _甲基丙烯醯氧 基丙基三甲氧基矽烷、3 -甲基丙烯醯氧基丙基三乙氧基矽烷 、N-2(胺乙基)3-胺基丙基三甲氧基矽烷、N-2(胺乙基)3-胺 基丙基三乙氧基砂院、3 -異氰酸酯丙基三甲氧基砂院、3-異氰酸酯丙基三乙氧基矽烷等。又,糊組成物中的矽烷偶 -24- 200839331 合劑之含量,對於有機溶劑等揮發成分以外的形成分而言 ,較佳爲0.1重量%以上且1 〇重量%以下。對於糊組成物中 的固體成分而言,矽烷偶合劑的含量若爲0 ·1重量°/〇以上, 可得到上述矽烷偶合劑的充分效果。又’以上述列舉者爲 首的一般矽烷偶合劑之折射率爲1 .4 5以下,與硫酸鋇粒子 的折射率差異大。因此,對於糊組成物中的固體成分而言 ,矽烷偶合劑的含量若爲1 〇重量%以下,則可減低瑞利散 射,提高光透過性,而係較宜。 又,本發明的糊組成物亦可含有化合物A以外的分散劑 。化合物A以外的分散劑之含量,對於1 00重量份的硫酸 鋇粒子而言,較佳爲5重量份以上且20重量份以下。化合 物A以外的分散劑之含量,若爲5重量份以上,則提高硫 酸鋇粒子的分散性之效果係顯著,而若爲20重量份以下, 則由糊組成物所得到的硬化物之溫度所致的折射率變化率 或線膨脹率會變小。 接著,詳細說明本發明的糊組成物之製造方法。首先, 顯示硫酸鋇粒子分散在有機溶劑中的分散液之製造方法。 將平均1次粒徑爲50nm以下的硫酸鋇粒子(2次粒子, 包含凝聚狀態者)、化合物A、有機溶劑、及按照需要的其 它樹脂或pH調整劑、聚合抑制劑等以指定的份量混合、攪 拌。由於在混合後空氣層立刻覆蓋硫酸鋇粒子的表面,有 硫酸鋇粒子與有機溶劑的潤濕不充分,而增加黏度的情況 。於該情況下,較佳爲以回轉葉片等花費時間攪拌到硫酸 鋇粒子與有機溶劑完全潤濕爲止。 -25- 200839331 於混合硫酸鋇粒子時,亦可添加用於製造目的之硬化物 的必要樹脂之全量或其一部分。與在分散處理後添加樹脂 的情況比較下,在分散處理前添加樹脂時,可均勻地混合 樹脂與硫酸鋇粒子。另一方面,分散液的黏度上升,則有 分散處理的效率變差,或分散處理後的分散液之保存安定 性發生變差等的情況。關於化合物A,可在分散處理前全量 投入所必要量,亦可在分散處理前預先投入所必要量的一 部分,在分散處理後添加其餘量。又,亦可邊測定分散處 理中的分散液之黏度等的性狀,邊徐徐地添加化合物A或 其它物質。 又,亦可添加用於製造目的之硬化物所必要的聚合促進 劑、消泡劑、抗氧化劑、聚合抑制劑、可塑劑、矽烷偶合 劑等。但是,從分散液的保存安定性之觀點來看,較佳爲 在製造糊組成物之前立即添加聚合促進劑等。 於將硫酸鋇粒子(2次粒子,包含凝聚狀態者)、化合物A 、有機溶劑、及其它必要的物質混合、攪拌後,藉由分散 裝置來進行硫酸鋇粒子的分散處理。 作爲分散裝置,例如可舉出壽工業(股)製的“Ultra Apex Mill”(商品名)ASHIZAWA精密科技(股)製的“Star Mill”(商 品名)等的珠磨機。珠磨機所使用的珠粒之平均粒徑較佳爲 0.0 1mm以上且0.5mm以下。於珠粒的平均粒徑爲〇.5mm以 下時,由於珠磨機內硫酸鋇粒子與珠粒的接觸頻率高’故 得到充分分散的效果。另一方面’於珠粒的平均粒徑爲 0.0 1 mm以上時,由於各個珠粒所具有的運動量大,可得到 -26 - 200839331 用於分散所凝聚的硫酸鋇粒子之充分剪切應力。 作爲珠粒,可以使用陶瓷或玻璃、金屬製者等。作爲珠 粒的材質,例如可舉出鈉玻璃、石英、二氧化鈦、氮化石夕 、碳化矽、氧化鋁、氧化锆、矽酸鉻、鋼、不銹鋼等。於 此等之中,硬度高的氧化鉻珠粒係特別適用。 珠磨機的分散係可使用小的珠粒實施一次的處理,也可 階段地改變珠粒的大小而實施。例如,可首先使用粒徑爲 0.5 mm的珠粒,進行分散處理,直到硫酸鋇粒子的分散粒徑 成爲100 nm左右爲止後,接著使用微小的珠粒,實施分散 處理。 分散處理所花費的時間係依照硫酸鋇粒子、或構成化合 物A、有機溶劑等的分散液之物質的種類或組成比來適宜設 定。又,以每一定時間對分散液作取樣,測定分散液中的 硫酸鋇粒子之平均粒徑,係可掌握分散狀態的經時變化, 判斷分散處理的結束,而係較宜。作爲分散液中的硫酸鋇 粒子之粒徑的測定裝置,可舉出動態光散射方式的 SYSMEX(股)製的 “Zeatsiz ernano ZS”(商品名)。其次,說明 以上述方法混合所得到的分散液與樹脂等來製造糊組成物 的方法。但是,於分散液製造時完全混合用於製造目的之 硬化物所需要的物質時,上述方法所得到的分散液係成爲 本發明的糊組成物。 於硫酸鋇粒子的分散液中混合樹脂時,按照分散液中的 化合物A等之組成來選擇所混合的樹脂之種類或混合量。 於使用本發明所得之分散有硫酸鋇粒子的糊組成物來製造 -27- 200839331 光導波路時,若由化合物A與樹脂所得到的聚合物之折射 率爲接近硫酸鋇粒子的折射率(1 .6)之値,則可減低光導波 路的光傳播損失,故係較宜。於混合上述分散液與樹脂時 ,可在樹脂中注入分散液直到成爲指定量爲止,亦可在分 散液中注入樹脂直到成爲指定量爲止。於糊組成物的製造 時,亦可更添加化合物A來調整組成。 對於混合指定量的分散液與樹脂等而得的糊組成物,爲 了成爲更均質,可以進行使用球磨機或輥磨機的處理。又 ,由於混合處理而在糊組成物中混入氣泡時,若靜置、置 於減壓下、或使用攪拌脫泡機等來去除氣泡,則可避免氣 泡混入使用糊組成物所製造的硬化物中。 爲了調整糊組成物的黏度,可再添加有機溶劑,或藉由 加熱或減壓來適量去除有機溶劑。又,亦可藉由加熱處理 或光照射使化合物A或樹脂的聚合反應適度地進行。 使如上述所製造的糊組成物硬化,可製造在聚合物中分 散有硫酸鋇粒子的硬化物。 其次,說明使本發明的糊組成物硬化之方法的例子。首 先,將糊組成物塗布在基板上,進行拉伸以成爲薄膜狀或 紗狀,藉由灌入模具等而成形後,以加熱處理來去除糊組 成物中的有機溶劑。作爲去除有機溶劑的方法,可舉出烘 箱或加熱板的加熱乾燥,以及真空乾燥、紅外線或微波等 的電磁波之加熱等。此處,於有機溶劑的去除不充分時, 則接下來的硬化處理所得到的組成物係成爲未硬化狀態, 熱機械特性會變不良。 -28- 200839331 於去除有機溶劑後,按照所用的糊組成物中的化合物A 或樹脂的硬化機構,藉由加熱處理或光照射等來進行糊組 成物的硬化反應。於該情況下,爲了在光照射後作加熱處 理等使完全硬化,亦可組合複數的處理。又,於1 00 °C以上 的環境下進行加熱處理時,若在氮氣等的惰性氣氛下作處 理,則可抑制聚合物的氧化,故係較宜。又,於使用產生 自由基的聚合促進劑(其會由於氧而喪失活性)之組成中,藉 由光照射來進行硬化時,若在氮氣等的惰性氣氛下作處理 ,亦不會阻礙聚合,故係較宜。 於藉由微影法來進行圖案加工時,首先將糊組成物塗布 在基板上,於去除有機溶劑後,以僅使光通過對應於圖案 的必要部分之方式,經由所設計的光罩,照射對應於糊組 成物的硬化波長範圍之光。作爲光源,可舉出超高壓水銀 燈、金屬鹵化物燈、鹵素燈、氦-氖雷射、YAG雷射等。作 爲曝光裝置,可舉出超高壓水銀燈曝光裝置 PEM-6M(UNION光學(股)製)等。於糊組成物的硬化機構爲 自由基聚合時,爲了防止自由基反應種被氧化而失去活性 ,較佳爲在氮氣氛下作曝光處理。又,爲了提高圖案的解 像度,較佳爲提高曝光裝置的照射光之平行度,而且爲了 減低光罩被繞射光影響,較佳爲使光罩與基板接觸,或縮 小光罩與基板的間隙。 於曝光時由於照射光在乾燥後的糊組成物內部散射,圖 案邊緣會畸變。於該情況下,若預先將紫外線吸收劑加到 糊組成物中,由於紫外線吸收劑會吸收從曝光部所漏出的 -29- 200839331 微弱光而抑制散射’可銳利地保持圖案邊緣’故係較宜。 乾燥後的糊組成物內部之散射’來自硫酸鋇粒子的瑞利散 射係大的,愈短波長的光’該散射愈大。因此’亦較佳爲 使用可選擇吸收短波長的光之紫外線吸收劑。又,於光源 與光罩之間插入截斷短波長光的濾光片,亦可抑制散射。 爲了在曝光後再進行硬化反應,亦可將基板在室溫保存 一定時間,進行熱處理。 曝光處理後,將基板浸入顯像液中,去除未曝光部分的 糊組成物,對形成有硬化物的圖案的基板作洗淨及使乾燥 ,爲了進行硬化反應,亦可再作加熱處理。 本發明的糊組成物或硬化物較佳爲使用於光導波路。光 導波路係形成在電子機器等的電路基板上,具有傳送基板 上所封裝的1C間之光信號的作用。光導波路係由光信號傳 播的芯部、與圍繞芯部之比芯部的折射率還低的包層部所 構成。第1圖顯示通道型光導波路的構造,第2圖顯示板 型光導波路的構造。通道型光導波路具有包層部2圍繞線 狀的芯部1之周圍的構造。板型光導波路具有層狀的包層 部2覆蓋層狀的芯部1之上下的構造。本發明的糊組成物 可使用於芯部與包層部兩者,也可僅使用於任一者。 本發明的糊組成物由於可藉由光照射而形成圖案,故若 當作芯部形成用材料,則可容易地製造各式各樣形狀的光 導波路,而係較宜。又,較佳爲芯部與包層部的折射率異 差大者,其封閉包圍傳播光的效果大。 光導波路的包層部及芯部的折射率或厚,係可依照所設 -30- 200839331 I十的光導波路來任思邊擇。於多模光導波路時,加大芯部 與包層部的折射率差異’增厚芯部係適合的。於單模光導 波路時,減小芯部與包層部的折射率差異,減薄芯部,可 實現單模傳播。 於製造通道型光導波路的方法中,例如是如以下者。於 玻璃或砂晶圓、玻璃環氧基板、塑膠薄膜等的基板上,塗 布下包層部用糊組成物,進行乾燥、硬化,形成下包層部 & 。再者,於下包層部上,塗布芯部用糊組成物,進行乾燥 ,形成膜狀的芯部。接著,將膜狀的芯部加工成導波路圖 案。於芯部用糊組成物以光照射來聚合時,可藉由微影法 來進行圖案的形成。又,於芯部用糊組成物以熱來聚合時 ’可藉由反應性離子蝕刻等來進行圖案的形成。接著,於 芯部之上塗布上包層部用糊組成物,進行乾燥、硬化,形 成上包層部。 作爲形成塗布膜的方法,並沒有特別的限定,例如可舉 r^j 出使用旋塗機、網版印刷、刮板塗布機、口模式塗布機等 裝置的方法。 【實施方式】 以下說明本發明的實施例,惟本發明不受此等所限定。 又’於實施例所用的化合物之中,所使用的縮寫符號係如 以下所示。 DMAc : N,N-二甲基乙醯胺 THFA :四氫糠醇 由硫酸鋇粒子的分散液、糊組成物所得到的硬化物、及 •31- 200839331 光導波路的各特性之測定方法係如以下。 <由糊組成物所得到的硬化物之折射率的測定方法> 使用METRICON公司製的稜鏡耦合器裝置2010與專用 的P -1稜鏡,在波長8 5 0 n m、溫度2 5 °C,求得製成膜狀的 由糊組成物所得到的硬化物之折射率。又,以同一裝置來 測定4 0 °C、6 0 °C、8 0 °C及1 〇 〇 °C的折射率,以最小平方法 求得此等4點的斜率,算出折射率對於溫度的變化(折射率 溫度依賴性)。 <光導波路的光傳播損失之測定方法> 依照 JPCA 規格(JPCA-PE02-05 -0 1 S-2004),以回切 (c u t b a c k)法來測定。入射側及出射側的光纖係使用芯徑爲 5 Ομιη的開口數爲0.28的多模類型。測定溫度爲23 t,測 定光源的波長爲8 5 0 n m。 <分散液製造前所凝聚的原料硫酸鋇粒子之平均粒徑的測 定方法> 如以下地使用光學顯微鏡來測定。將粒子載置於玻璃等 的透明板上,將載有粒子的透明板放置於光學顯微鏡的觀 察台上,自透明板的下側來照射光線,經由代替光學顯微 鏡的目鏡部所安裝的CCD照相機ADP-240M((股)FLOVEL 製),將其透過光影像當作數位影像輸入電腦,藉由影像處 理軟體FlvFs((股)FLOVEL製),對所觀察的任意100個粒子 ,求得球形近似時的粒徑,算出數平均粒徑。 <分散液中的硫酸鋇粒子之平均粒徑的測定方法> 於經碳蒸鍍的膠棉膜上,滴下分散液,乾燥去除有機溶 -32- 200839331 劑後,以透射型電子顯微鏡H-71 OOFA(日立製作所(股)製) 來觀察硫酸鋇粒子。加速電壓爲l〇okv。觀察的影像係當作 數位影像輸入電腦,藉由影像處理軟體FlvFs((股)FLOVEL 製),對所觀察的任意1 〇 〇個粒子,求得球形近似時的粒徑 ,算出數平均粒徑。再者,於1次粒子凝聚存在時,測定 凝聚體的粒徑。 <糊組成物中的硫酸鋇粒子之平均粒徑的測定方法> 於經碳蒸鍍的膠棉膜上,滴下糊組成物,乾燥去除有機 溶劑後,以透射型電子顯微鏡H-7 10 OF A(日立製作所(股)製 )來觀察硫酸鋇粒子。加速電壓爲l〇〇kV。觀察的影像係當 作數位影像輸入電腦,藉由影像處理軟體 FlvFs((股 )FLOVEL製),對所觀察的任意100個粒子,求得球形近似 時的粒徑,算出數平均粒徑。再者,於1次粒子凝聚存在 時,測定凝聚體的粒徑。 <由糊組成物所得到的硬化物之線膨脹率的測定方法> 使用SII奈米科技(股)製的TMA測定裝置TMA/SS6100 ,在氮氣氛中,從室溫升溫到1 20 °C爲止,再降溫到室溫爲 止時,以5 OmN的壓入荷重來測定由糊組成物所得到的硬化 物之尺寸的位移,算出自5 0 °C到70 °C的升降溫之平均線膨 脹率。爲了去除線膨脹率的溫度經歴,連續升降溫,重複2 次,使用第2次的測定結果當作位移値。 <分散液的製造> 如以下地製造分散液A〜P。以表1所示的各混合量來 混合硫酸鋇2次粒子BF-40(堺化學工業(股)製,平均2次粒 -33- 200839331 徑15μπι,平均1次粒徑l〇nm)、分散劑及有機溶劑,藉由 均化器“Excleauto、商品名,(股)日本精機製作所製),以 5 m/s的回轉刀前端周速來處理1小時,以將硫酸鋇粒子分 散。 接著,對均化器所處理的上述分散液,使用球磨機即 “ULTRA APEX MILLUAM-015”(商品名)(壽工業(股)製)來 作分散處理。珠粒之材質爲氧化鉻,平均粒徑爲0.05 mm (( 股)NIKKATO製,YTZ球),投入量爲400克。又,、珠磨機 的轉子周速爲9· 5m/s,送液壓力爲0.1 MPa。分散處理時間 係分散液A〜Ο爲1 〇小時,P爲1小時,分散處理結束後 ,將液回收,得到硫酸鋇粒子的分散液。表1中顯示分散 結束時的分散液中之硫酸鋇粒子的平均粒徑。 表1中,作爲分散劑所使用的“HOA-MPL”(商品名)、 “HOA-HH”(商品名)係共榮社化學(股)製,爲具有聚合性基 及竣基的化合物。又,“Light-Ester P-1M”(商品名,共榮社 化學(股)製)及“RDX63182”(商品名,DAICEL-CYTEC(股)製 )係具有聚合性基的磷酸酯化合物。另外,“Disperbyk-1 1 1,,( 商品名,BYK日本(股)製)係不具有聚合性基的磷酸酯化合 物。 -34- 200839331 【表1】 分散液組成 分散處理 時間 (h) 平均粒徑 (nm) 硫酸鋇量 (克) 分散劑 《HOA-MPL、ΗΟΑ-ΗΗ 係具有 聚合性基及羧基的化合物, Light-Ester Ρ-1Μ、RDX63182 係 具有聚合性基的憐酸酯化合物 他合物A) 有機溶劑 mn loo 軍暈份的 硫酸鋇而 言,分散劑 暈(雷量份) 材料 量(克) 材料 量(克) 分散液A 200 HOA-MPL 30 THFA 270 15 10 22 分散液B 200 HOA-MPL 8 THFA 292 4 10 33 分散液c 200 HOA-MPL 14 THFA 286 7 10 24 分散液D 200 HOA-MPL 60 THFA 240 30 10 26 分散液E 200 HOA-HH 30 THFA 270 15 10 26 分散液F 200 HOA-HH 8 THFA 292 4 10 37 分散液G 200 HOA-HH 14 THFA 286 7 10 25 分散液Η 200 HOA-HH 60 THFA 240 30 10 26 分散液I 200 Light-Ester P-1 Μ 30 DMAc 270 15 10 19 分散液J 200 Light-Ester P-1 Μ 8 DMAc 292 4 10 31 分散液K 200 Light-Ester P-1 M 14 DMAc 286 7 10 20 分散液L 200 Light-Ester P-1 M 60 DMAc 240 30 10 21 分散液Μ 200 RDX63182 30 DMAc 270 15 10 29 分散液Ν 200 Disperbyk-111 30 DMAc 270 15 10 31 分散液〇 200 Disperbyk-111 10 DMAc 290 5 10 40 分散液Ρ 200 HOA-MPL 30 THFA 270 15 1 49 -35- 200839331 實施例1 使用球磨機來混合9.8克分散液A、5克上述式(1 1)所示 的樹脂、0.1克肟系UV活性型聚合促進劑OXE02(汽巴特殊 化學品(股)製)、0.2克矽烷偶合劑“KBM403 ”(商品名,信越 化學工業(股)製,化學名:3-縮水甘油氧基丙基三甲氧基矽 烷),以製造糊組成物。再者,於該糊組成物中,有機溶劑 以外的固體成分中的硫酸鋇粒子之含量爲40重量%。又, 糊組成物中的硫酸鋇粒子之平均粒徑爲26nm。使用旋塗機 將上述糊組成物塗布在石英基板上,於大氣中使用烘箱在 8 0°C乾燥1小時後,使用超高壓水銀燈曝光裝置(UNION光 學(股)製的PEM-6M)來作糊組成物的硬化處理,以50mJ/cm2 的紫外線作曝光,製造厚度1 〇μπι的膜狀硬化物。在波長 8 5 0nm、溫度25°C時,該膜狀硬化物的折射率爲1.5 5 6,折 射率的溫度變化率爲5 1 p p m / °C。 另一方面,使用糊組成物,如以下地製造線膨脹率評價 用的硬化物。於Φ4吋的矽晶圓上黏貼 10mm xl 0mm的 “Teflon(註冊商標)”膠帶,於其上載置內徑爲 8mm的 “ Teflon (註冊商標)”膠帶經裁切成5mm的長度者,以液的高 度成爲1 mm的方式將上述所得到的糊組成物注入“Teflon( 註冊商標)”膠帶內。接著,於大氣中使用烘箱在80°C乾燥1 小時後,使用超高壓水銀燈曝光裝置(UNION光學(股)製的 PEM-6M)作糊組成物的硬化處理,以50mJ/cm2的紫外線作 曝光,製造底面的直徑爲8mm的厚度lmm之硬化物。由 “Teflon(註冊商標)”膠帶內取出所得到的硬化物,測定厚度 -36- 200839331 方向的線膨脹率,結果爲44PPm/°C。 另一方面,使用糊組成物,如以下地製造光導波路。首 先,使用旋塗機將液狀環氧樹脂(EPOTEK公司製# 314)塗 布在Φ4吋的矽晶圓上,於大氣中使用烘箱在80°C乾燥1小 時後,爲了硬化,在氮氣中於1 5 0 °C加熱1小時,形成厚度 5μιη的下包層部。測定下包層部在波長8 5 0nm、溫度25°C 的折射率,結果爲1.5 02。接著,使用旋塗機,將上述糊組 , 成物塗布在石英基板上所形成的下包層部上,於大氣中使 用烘箱在8 0 °C乾燥1小時,得到厚度5 0 μιη的糊組成物之乾 燥膜。對所得到的膜,使用超高壓水銀燈曝光裝置(UNION 光學(股)製的PEM-6M),通過石英製光罩,以50mJ/cm2的 紫外線作曝光。石英製光罩係具有寬度50μηι且長度9cm的 縫部,以縫部以外的部分來遮光。將曝光後的基板浸漬在 顯像液P-7G(東京應化工業(股)製)中5分鐘,去除未曝光部 的膜,形成寬度5 0 μ m且長度9 c m的形狀之芯部。顯像後的 圖案爲清晰的矩形,沒有裂紋的發生,在未曝光部亦沒有 見到殘渣,顯像性係良好。 再於其上使用旋塗機來塗布與下包層部相同的材料,在 8 〇 °C乾燥1小時後,爲了硬化,於氮氣中在1 5 0 °C加熱1小 時,形成厚度5 μιη的上包層部,得到光導波路。 使用切割裝置,在每基板切斷光導波路的兩端,求得光 傳播損失,結果爲〇.3dB/em。 實施例2〜2 9 0 以與實施例1同樣的方法來製造表2〜3 1所示組成的糊 -37- 200839331 組成物,使用其來製造物性値評價用硬化物及光導波路。 再者,於實施例209〜226中,在製造糊組成物之際,不添 加樹脂而製造分散液時,追加所用的化合物A而添加。評 價結果顯示於表2〜3 1中。此處,樹脂A係上述式(1 1 )所表 示者,樹脂B係上述式(1 2)所表示者。又,矽烷偶合劑 “KBM 5 03 ”(商品名)係信越化學工業(股)製,化學名爲3-甲 基丙烯醯氧基丙基三甲氧基矽烷。 再者,於製造光導波路之際,關於在顯像後的未曝光部 之基板表面上存在有薄膜狀的殘渣之實施例,表2〜3 1的 顯像性之欄中記載「未曝光部有殘渣」。又,於製造光導 波路之際,關於在顯像後的芯部有看到裂紋的存在處之實 施例,表2〜3 1的顯像性之欄中記載爲「芯部發生裂紋」 -38- 200839331 【表2】 糊組成物組成 分散液 樹脂 聚合促進劑 矽烷偶合劑 固體成分 固體成分 中的化合 物A與樹 脂的含量 (重量 樣品名 里 (克) 材料 旦 里 (克) 材料 量(克) 材料 量(克) 中的硫酸 鋇含量(重 量%) 實施例1 分散液A 9.8 樹脂A 5 OXE02 0.1 KBM403 0.2 40 57 實施例2 分散液A 2.4 樹脂A 5 OXE02 0.1 KBM403 0.2 15 80 實施例3 分散液A 3.4 樹脂A 5 OXE02 0.1 KBM403 0.2 20 76 實施例4 分散液A 15.4 樹脂A 3 OXE02 0.06 KBM403 0.12 60 38 實施例5 分散液A 26.5 樹脂A 1 OXE02 0.02 KBM403 0.04 80 20 實施例6 分散液A 50.1 樹脂A 0.5 OXE02 0.01 KBM403 0.02 85 15 實施例7 分散液B 9.1 樹脂A 5 OXE02 0.1 KBM403 0.2 40 57 實施例8 分散液B 2.3 樹脂A 5 OXE02 0.1 KBM403 0.2 15 81 實施例9 分散液B 3.3 樹脂A 5 OXE02 0.1 KBM403 0.2 20 76 實施例10 分散液B 12.7 樹脂A 3 OXE02 0.06 KBM403 0.12 60 37 實施例11 分散液B 12.6 樹脂A 1 OXE02 0.02 KBM403 0.04 80 18 實施例12 分散液B 9.7 樹脂A 0.5 OXE02 0.01 KBM403 0.02 85 14 實施例13 分散液C 9.3 樹脂A 5 OXE02 0.1 KBM403 0.2 40 57 實施例14 分散液C 2.4 樹脂A 5 OXE02 0.1 KBM403 0.2 15 80 實施例15 分散液C 3.4 樹脂A 5 OXE02 0.1 KBM403 0.2 20 75 實施例16 分散液c 13.3 樹脂A 3 OXE02 0.06 KBM403 0.12 60 38 實施例17 分散液C 14.7 棚旨A 1 OXE02 0.02 KBM403 0.04 80 20 實施例18 分散液C 12.4 樹脂A 0.5 OXE02 0.01 KBM403 0.02 85 15 實施例19 分散液D 11.0 測旨A 5 OXE02 0.1 KBM403 0.2 40 57 實施例20 分散液D 2.5 樹脂A 5 OXE02 0.1 KBM403 0.2 15 81 實施例21 分散液D 3.6 樹脂A 5 OXE02 0.1 KBM403 0.2 20 76 實施例22 分散液D 21.7 樹脂A 3 OXE02 0.06 KBM403 0.12 60 39 -39- 200839331 【表3】 結果 糊組成物 中的平均 粒徑(nm) 折射率 折射率溫 度依賴性 (ppm/°C) 線膨脹率 (ppm/°C) 顯像性 光傳播損失 (dB/cm) 實施例1 26 1.556 51 44 良好 0.3 實施例2 23 1.552 56 52 良好 0.3 實施例3 25 1.553 55 51 良好 0.3 實施例4 27 1.562 44 37 良好 0.3 實施例5 29 1.572 31 24 良好 0.4 實施例6 32 1.575 25 18 未曝光部有殘渣 芯部發生裂紋 0.5 實施例7 37 1.558 52 46 良好 0.6 實施例8 35 1.552 57 52 良好 0.5 實施例9 35 1.553 56 50 良好 0.6 實施例10 36 1.566 44 36 良好 0.6 實施例11 39 1.578 33 25 良好 0.7 實施例12 42 1.583 26 17 未曝光部有殘渣 芯部發生裂紋 0.8 實施例13 25 1.558 49 44 良好 0.3 實施例Μ 24 1.552 55 51 良好 0.3 實施例15 25 1.553 56 51 良好 0.3 實施例16 27 1.565 44 37 良好 0.3 實施例Π 29 1.577 30 23 良好 0.4 實施例18 31 1.581 24 18 未曝光部有殘渣 芯部發生裂紋 0.5 實施例19 27 1.554 52 43 良好 0.5 實施例20 25 1.551 55 51 良好 0.4 實施例21 25 1.552 55 51 良好 0.5 實施例22 27 1.557 43 37 良好 0.6 -40- 200839331 【表4】0=0, I9 o 7 * 7 il 7 olffiulHulffiuloiu=clHU HO I OHO-, HO 〇olwulHrKol?u==ISHffiu In the paste composition of the present invention, the content of the compound A, for 100 parts by weight of barium sulfate particles Preferably, it is 5 parts by weight or more and 20 parts by weight or less. When the content of the compound A is 5 parts by weight or more, the dispersibility of the barium sulfate particles can be increased, and the dispersed particle diameter of the barium sulfate particles 19 to 200839331 can be reduced, so that the composition of the paste of the present invention can be improved. The light transmittance of the cured product obtained by the object. Therefore, an optical waveguide having a small light propagation loss can be obtained. On the other hand, when the refractive index difference between the compound A and the barium sulfate is considered, when the content of the compound A is 20 parts by weight or less with respect to the barium sulfate particles, the light of the cured product obtained from the paste composition can be improved. Transparency. Therefore, an optical waveguide having a small light propagation loss can be obtained. Further, in the paste composition of the present invention, when the polymer obtained by curing is r only composed of the compound A, the content of the compound a is different from that of the compound A and the resin as a whole of the paste composition. Case. For example, in the aspect of the polymer (A) in which the compound A is polymerized and cured alone, the content of the compound A is not particularly limited, but is different from the volatile component such as an organic solvent in the paste composition. The solid content is preferably 20% by weight or more and 70% by weight or less. When the content of the compound A is 20% by weight or more based on the solid content other than the volatile component such as the organic solvent in the paste composition, the crack resistance of the obtained cured product or the adhesion to the substrate is improved. The resistance to cohesive failure is also high. When the content of the compound A is 30% by weight or more based on the volatile component other than the volatile component such as the organic solvent in the paste composition, the effect can be further improved. When the content of the compound A is 70% by weight or less based on the solid content other than the volatile component such as the organic solvent in the paste composition, the refractive index change rate due to the temperature of the obtained cured product can be further reduced. Or linear expansion rate. When the content of the compound A is 50% by weight or less based on the solid content of the volatile component such as the organic solvent in the paste composition, the effect can be further improved. -20- 200839331 On the other hand, when the polymer in the cured product contains the aspect of (b) or (C), the compound A and the resin are solid components other than the volatile component such as an organic solvent in the paste composition. The sum of the contents is preferably 20% by weight or more, more preferably 30% by weight or more. In addition, the solid content of the solid component other than the volatile component such as the organic solvent in the paste composition is preferably 70% by weight or less, and more preferably 50% by weight or less. The preferred reason within this range is the same as the reason of the above (a) aspect. The mixing ratio of the compound a to the resin can be arbitrarily set in accordance with the composition ratio of the polymer A to be produced and the polymer of the resin. When the content of the compound A is 1% by weight or more for the barium sulfate particles, high barium sulfate is used. The dispersibility of the particles is preferred. Further, when a resin having a polymerizable group is used, it is preferred to consider the polymerization characteristics of the compound A and the resin, and to set the mixing ratio. In other words, when (b 1 ) the compound A and the resin having a polymerizable group are each polymerized separately, when (b2) one compound A and a resin having a polymerizable group at the starting point are polymerized in a chain form, (b 3 ) When the compound A and the resin having a polymerizable group are alternately polymerized, the mixing ratio of the compound A and the polymer having a polymerizable group is different. For example, in the case of the aspect of the above (b3), when the compound A having an epoxy group and an epoxy acrylate group is alternately polymerized, the polymerizable group of the two is preferably the same as the paste of the present invention. The composition may contain a polymerization accelerator for generating an active species of a radical, a cation, an anion or the like in order to promote the polymerization of the compound A or the resin. The polymerization accelerator may be activated by light irradiation or heat treatment, and may be used separately depending on the application. When the paste composition is formed into a film of -21 - 200839331, by patterning, a polymerization accelerator activated by light irradiation is used. Examples of the polymerization accelerator which generates radicals by irradiation with UV light include an anthracene series, a benzophenone type, a triple well type, and a benzotriazole type. Further, examples of the polymerization accelerator which generates cations by irradiation with UV light include scaly, lanthanide, and iodine. The paste composition of the present invention contains barium sulfate having an average particle diameter of 1 nm or more and 50 nm or less. Further, the average particle diameter in the present invention is an index average particle diameter ^. The barium sulfate particles in the paste composition are present in a state in which the state of the primary particles which are completely agglomerated and the state in which the plurality of primary particles are aggregated are present. Here, the particle size of the barium sulfate particles in the paste composition refers to the particle diameter of the primary particles which are not aggregated, and the particle size of the aggregates of the primary particles. In order to produce a paste composition in which the dispersed barium sulfate particles have an average particle diameter of 5 Onm or less, the primary particles of the barium sulfate particles used must have an average particle diameter of 5 Onm or less. For example, BF-40 (average primary particle diameter i 〇 nm) manufactured by Nippon Chemical Industry Co., Ltd. can be mentioned. As a method of measuring the average particle diameter of the barium sulfate particles in the paste composition, a method of directly observing particles by SEM (scanning electron microscope) or TEM (transmission electron microscope) and calculating the number average of the particle diameters is exemplified. . When the average particle diameter of the barium sulfate particles in the paste composition is 50 nm or less, the homogeneity increases in each form of the paste composition and the cured product, and the Rayleigh of light caused by the barium sulfate particles is reduced. Scattering, so light transmission is also high. By using such a paste composition, a pilot wave path in which light propagation is small can be obtained. Further, when the average particle diameter of the barium sulfate particles dispersed in the paste composition is 3 Onm or less, the Rayleigh scattering caused by the barium sulfate particles is extremely small in the cured product obtained from the paste composition.显-22-200839331 shows the light transmittance substantially the same as that of the cured product containing no barium sulfate particles. When such a material is used, an optical waveguide having a very small light propagation loss can be obtained. On the other hand, when the particle size of the barium sulfate particles is 1 nm or more, the specific surface area becomes small with respect to the volume of the particles, so that the dispersibility of the particles becomes good. In the present invention, the content of the barium sulfate particles in the paste composition is preferably 30% by weight or more and 80% by weight or less based on the solid content other than the volatile component such as an organic solvent. When the content of the barium sulfate particles in the solid content in the paste composition is 30% by weight or more, the refractive index change rate or the linear expansion ratio due to the temperature of the cured product obtained from the paste composition is reduced. The content of the barium sulfate particles in the solid content in the paste composition is more preferably 50% by weight or more. When the content of the barium sulfate particles in the solid content in the paste composition is 80% by weight or less, the crack resistance or the adhesion to the substrate is improved, and the resistance to cohesive failure is also improved. Further, by using such a material, a cured product excellent in light transmittance can be obtained, so that an optical waveguide having a small light propagation loss can be obtained. Further, in the patterning by the lithography method, in order to reduce the residue of the unexposed portion during development, it is more preferable that the content of the barium sulfate particles in the paste composition is 70% by weight. the following. The paste composition of the present invention contains an organic solvent. Examples of the organic solvent include hydrazine, hydrazine-dimethylacetamide, N-methyl-2-pyrrolidone, dimethylimidazolidinone, dimethyl sulfoxide, γ-butyrolactone, and lactate B. Ester, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, ethylene glycol mono-n-propyl ether, diacetone alcohol, tetrahydrofurfuryl alcohol, and the like. -23- 200839331 The paste composition of the present invention preferably contains a decane coupling agent. By including the ceramsite coupling agent, the pattern of the exposed portion can be reduced or peeled off during the patterning process of the lithography method, so that the occurrence of cracks can be suppressed and a clear pattern shape can be realized. Further, the residue of the unexposed portion can be further reduced. In general, it is known that a decane coupling agent has an effect of improving the adhesion of an inorganic material to an organic material. In the present invention, it is also expected to improve the adhesion between the resin component and the inorganic component in the composition or to improve the adhesion of the resin component in the composition to the inorganic substrate such as a ruthenium wafer. The pattern of the portion is thinned or peeled off, and the effect of cracking is suppressed. On the other hand, regarding the effect of reducing the residue of the unexposed portion in the pattern processing of the lithography method, the following reasons can be considered. When the developing liquid contacts the unexposed portion, the resin or the compound A or the like is eluted, and the barium sulfate particles captured by the compound A are also eluted. When the compound A is desorbed from the barium sulfate particles, the barium sulfate particles exposed on the surface are agglomerated with each other, and the resin or the like in the vicinity is also aggregated to become a development residue. However, if the decane coupling agent is present, the cerium coupling agent is more strongly bonded to the inorganic component cerium sulfate particles and the organic component compound A, so that the dispersibility of the barium sulfate particles during development is maintained, and the composition is rapidly dissolved. It is not easy to cause residue. As the decane coupling agent, 3 · glycidoxypropyl trimethoxy decane, 3 - glycidoxypropyl triethoxy decane, 3 - methacryloxypropyl trimethoxy decane, 3-Methyl propylene methoxy propyl triethoxy decane, N-2 (aminoethyl) 3-aminopropyl trimethoxy decane, N-2 (aminoethyl) 3-aminopropyl three Ethoxylate sand, 3-isocyanate propyl trimethoxy sand, 3-isocyanate propyl triethoxy decane, and the like. In addition, the content of the mixture of the decane-coupled-24-200839331 in the paste composition is preferably 0.1% by weight or more and 1% by weight or less based on the component other than the volatile component such as an organic solvent. When the content of the decane coupling agent is 0.1% by weight or more based on the solid content in the paste composition, a sufficient effect of the above decane coupling agent can be obtained. Further, the general decane coupling agent of the above-mentioned enumerator has a refractive index of 1.45 or less and a large difference in refractive index from barium sulfate particles. Therefore, in the solid content in the paste composition, when the content of the decane coupling agent is 1% by weight or less, Rayleigh scattering can be reduced and light transmittance can be improved, which is preferable. Further, the paste composition of the present invention may contain a dispersing agent other than the compound A. The content of the dispersing agent other than the compound A is preferably 5 parts by weight or more and 20 parts by weight or less based on 100 parts by weight of the barium sulfate particles. When the content of the dispersing agent other than the compound A is 5 parts by weight or more, the effect of improving the dispersibility of the barium sulfate particles is remarkable, and when the content is less than 20 parts by weight, the temperature of the cured product obtained from the paste composition is The resulting refractive index change rate or linear expansion ratio becomes small. Next, a method of producing the paste composition of the present invention will be described in detail. First, a method of producing a dispersion in which barium sulfate particles are dispersed in an organic solvent is shown. The barium sulfate particles (secondary particles containing agglomerated state) having an average primary particle diameter of 50 nm or less, the compound A, the organic solvent, and other resins, a pH adjuster, a polymerization inhibitor, and the like as needed are mixed in a specified amount. Stir. Since the air layer immediately covers the surface of the barium sulfate particles after mixing, there is a case where the barium sulfate particles are insufficiently wetted with the organic solvent to increase the viscosity. In this case, it is preferred to stir with a rotating blade or the like until the barium sulfate particles are completely wetted with the organic solvent. -25- 200839331 When mixing barium sulfate particles, the total amount or a part of the necessary resin for the purpose of producing a cured product may be added. In comparison with the case where the resin is added after the dispersion treatment, when the resin is added before the dispersion treatment, the resin and the barium sulfate particles can be uniformly mixed. On the other hand, when the viscosity of the dispersion increases, the efficiency of the dispersion treatment may be deteriorated, or the storage stability of the dispersion liquid after the dispersion treatment may be deteriorated. Regarding the compound A, the necessary amount may be fully charged before the dispersion treatment, or a part of the necessary amount may be previously charged before the dispersion treatment, and the remaining amount may be added after the dispersion treatment. Further, the compound A or other substance may be gradually added while measuring the properties such as the viscosity of the dispersion in the dispersion treatment. Further, a polymerization accelerator, an antifoaming agent, an antioxidant, a polymerization inhibitor, a plasticizer, a decane coupling agent, and the like which are necessary for the purpose of producing a cured product may be added. However, from the viewpoint of preservation stability of the dispersion, it is preferred to add a polymerization accelerator or the like immediately before the production of the paste composition. The barium sulfate particles (secondary particles including agglomerated state), the compound A, the organic solvent, and other necessary substances are mixed and stirred, and then the barium sulfate particles are dispersed by a dispersing device. For example, a bead mill such as "Star Mill" (trade name) manufactured by "Ultra Apex Mill" (trade name) ASHIZAWA Precision Technology Co., Ltd., manufactured by Shou Industrial Co., Ltd., may be mentioned. The average particle diameter of the beads used in the bead mill is preferably 0.0 1 mm or more and 0.5 mm or less. When the average particle diameter of the beads is 〇.5 mm or less, since the contact frequency of the barium sulfate particles in the bead mill with the beads is high, the effect of sufficiently dispersing is obtained. On the other hand, when the average particle diameter of the beads is 0.0 1 mm or more, since the amount of movement of each of the beads is large, the sufficient shear stress for dispersing the aggregated barium sulfate particles can be obtained from -26 to 200839331. As the beads, ceramics, glass, metal or the like can be used. Examples of the material of the beads include soda glass, quartz, titanium oxide, cerium nitride, tantalum carbide, aluminum oxide, zirconium oxide, chromium silicate, steel, stainless steel, and the like. Among these, chrome oxide beads having high hardness are particularly suitable. The dispersion of the bead mill can be carried out by using a small bead for one treatment or by changing the size of the bead. For example, the beads having a particle diameter of 0.5 mm may be first subjected to dispersion treatment until the dispersed particle diameter of the barium sulfate particles is about 100 nm, and then the dispersion treatment is carried out using minute beads. The time taken for the dispersion treatment is appropriately set in accordance with the type or composition ratio of the barium sulfate particles or the substance constituting the dispersion of the compound A or the organic solvent. Further, by sampling the dispersion liquid every predetermined period of time and measuring the average particle diameter of the barium sulfate particles in the dispersion liquid, it is preferable to grasp the change over time in the dispersion state and judge the end of the dispersion treatment. The apparatus for measuring the particle size of the barium sulfate particles in the dispersion liquid is "Zeatsiz ernano ZS" (trade name) manufactured by SYSMEX Co., Ltd., which is a dynamic light scattering method. Next, a method of producing a paste composition by mixing the obtained dispersion liquid with a resin or the like by the above method will be described. However, when a substance required for the purpose of producing a cured product is completely mixed at the time of production of the dispersion, the dispersion obtained by the above method is a paste composition of the present invention. When the resin is mixed in the dispersion of barium sulfate particles, the type or amount of the resin to be mixed is selected in accordance with the composition of the compound A or the like in the dispersion. When the optical composition of the -27-200839331 optical waveguide is produced by using the paste composition in which the barium sulfate particles are dispersed according to the present invention, the refractive index of the polymer obtained from the compound A and the resin is close to that of the barium sulfate particles (1. After 6), the light propagation loss of the optical waveguide can be reduced, so it is better. When the dispersion and the resin are mixed, the dispersion may be injected into the resin until a predetermined amount is reached, or the resin may be injected into the dispersion until a predetermined amount is reached. At the time of manufacture of the paste composition, Compound A may be further added to adjust the composition. The paste composition obtained by mixing a predetermined amount of the dispersion liquid, the resin, or the like may be subjected to a treatment using a ball mill or a roll mill in order to be more homogeneous. Further, when bubbles are mixed in the paste composition by the mixing treatment, if the bubbles are removed by standing, under reduced pressure, or by using a stirring defoaming machine or the like, it is possible to prevent the bubbles from being mixed into the cured product produced by using the paste composition. in. In order to adjust the viscosity of the paste composition, an organic solvent may be further added, or an organic solvent may be appropriately removed by heating or depressurization. Further, the polymerization reaction of the compound A or the resin may be appropriately carried out by heat treatment or light irradiation. By hardening the paste composition produced as described above, a cured product in which barium sulfate particles are dispersed in the polymer can be produced. Next, an example of a method of hardening the paste composition of the present invention will be described. First, the paste composition is applied onto a substrate, stretched to form a film or a yarn, and after being molded by pouring into a mold or the like, the organic solvent in the paste composition is removed by heat treatment. Examples of the method for removing the organic solvent include heat drying in an oven or a hot plate, heating in a vacuum drying, electromagnetic waves such as infrared rays or microwaves, and the like. Here, when the removal of the organic solvent is insufficient, the composition obtained by the subsequent hardening treatment is in an uncured state, and the thermomechanical properties are deteriorated. -28-200839331 After the removal of the organic solvent, the curing reaction of the paste composition is carried out by heat treatment, light irradiation or the like according to the curing mechanism of the compound A or the resin in the paste composition to be used. In this case, in order to completely cure the heat treatment after light irradiation, a plurality of treatments may be combined. Further, when the heat treatment is carried out in an environment of 100 ° C or higher, it is preferred to treat the mixture in an inert atmosphere such as nitrogen to suppress oxidation of the polymer. Further, in the composition in which a radical-generating polymerization accelerator (which loses activity due to oxygen) is used, when it is cured by light irradiation, if it is treated under an inert atmosphere such as nitrogen, polymerization is not inhibited. Therefore, it is more appropriate. When the patterning process is performed by the lithography method, the paste composition is first applied onto the substrate, and after removing the organic solvent, the light is irradiated through the designed mask only by passing the light through a necessary portion corresponding to the pattern. Light corresponding to the hardened wavelength range of the paste composition. Examples of the light source include an ultrahigh pressure mercury lamp, a metal halide lamp, a halogen lamp, a helium-neon laser, and a YAG laser. As the exposure apparatus, an ultrahigh pressure mercury lamp exposure apparatus PEM-6M (manufactured by UNION Optical Co., Ltd.) or the like can be given. When the curing mechanism of the paste composition is a radical polymerization, in order to prevent the radical reaction species from being deactivated by oxidation, it is preferred to perform exposure treatment under a nitrogen atmosphere. Further, in order to improve the resolution of the pattern, it is preferable to increase the parallelism of the irradiation light of the exposure apparatus, and in order to reduce the influence of the diffracted light of the mask, it is preferable to bring the mask into contact with the substrate or to reduce the gap between the mask and the substrate. At the time of exposure, the edge of the pattern is distorted due to scattering of the illuminating light inside the dried paste composition. In this case, if the ultraviolet absorber is added to the paste composition in advance, since the ultraviolet absorber absorbs the weak light of -29-200839331 leaking from the exposed portion and suppresses the scattering, the edge of the pattern can be sharply maintained. should. The scattering inside the dried paste composition 'the Rayleigh scattering from the barium sulfate particles is large, and the shorter the wavelength of light', the greater the scattering. Therefore, it is also preferred to use an ultraviolet absorber which can selectively absorb light of a short wavelength. Further, by inserting a filter for cutting short-wavelength light between the light source and the photomask, scattering can be suppressed. In order to carry out the hardening reaction after the exposure, the substrate may be stored at room temperature for a certain period of time for heat treatment. After the exposure treatment, the substrate is immersed in the developing solution to remove the paste composition of the unexposed portion, and the substrate on which the cured pattern is formed is washed and dried, and may be further subjected to heat treatment for the curing reaction. The paste composition or cured product of the present invention is preferably used in an optical waveguide. The optical waveguide system is formed on a circuit board such as an electronic device and has a function of transmitting an optical signal between 1C packaged on the substrate. The optical waveguide is composed of a core portion propagated by an optical signal and a cladding portion having a lower refractive index than a core portion of the core portion. Fig. 1 shows the structure of a channel type optical waveguide, and Fig. 2 shows the structure of a plate type optical waveguide. The channel type optical waveguide has a structure in which the cladding portion 2 surrounds the periphery of the linear core portion 1. The plate type optical waveguide has a layered cladding portion 2 covering the upper and lower layers of the layered core portion 1. The paste composition of the present invention can be used for both the core portion and the cladding portion, or can be used alone. Since the paste composition of the present invention can be patterned by light irradiation, it is preferable to use a material for forming a core portion, and it is possible to easily manufacture optical waveguides of various shapes. Further, it is preferable that the refractive index difference between the core portion and the cladding portion is large, and the effect of enclosing the propagating light is large. The refractive index or thickness of the cladding portion and the core portion of the optical waveguide can be selected in accordance with the optical waveguide of the -30-200839331 I. In the case of a multimode optical waveguide, it is suitable to increase the refractive index difference between the core and the cladding portion. In the case of a single-mode optical waveguide, the difference in refractive index between the core and the cladding is reduced, and the core is thinned to achieve single mode propagation. In the method of manufacturing a channel type optical waveguide, for example, the following. The paste composition for the under cladding layer is applied onto a substrate such as a glass or sand wafer, a glass epoxy substrate, or a plastic film, and dried and hardened to form an under cladding portion & Further, a core composition for a core is applied to the lower cladding portion and dried to form a film-shaped core portion. Next, the film-shaped core is processed into a waveguide pattern. When the core paste composition is polymerized by light irradiation, pattern formation can be performed by a lithography method. Further, when the core paste composition is polymerized by heat, the pattern can be formed by reactive ion etching or the like. Next, a paste composition for a clad portion is applied over the core, dried, and cured to form an over cladding portion. The method for forming the coating film is not particularly limited, and for example, a method using a device such as a spin coater, a screen printing machine, a blade coater, or a die coater can be used. [Embodiment] Hereinafter, embodiments of the present invention will be described, but the present invention is not limited thereto. Further, among the compounds used in the examples, the abbreviations used are as follows. DMAc : N,N-dimethylacetamide THFA: a cured product of tetrahydrofurfuryl alcohol from a dispersion of barium sulfate particles, a paste composition, and a method for measuring various characteristics of the optical waveguide of the 31-200839331 . <Method for Measuring Refractive Index of Hardened Material Obtained from Paste Composition> Using a 稜鏡coupler device 2010 manufactured by METRICON Co., Ltd. and a dedicated P -1 稜鏡 at a wavelength of 85 mM and a temperature of 25 ° C, the refractive index of the cured product obtained from the paste composition in the form of a film was obtained. Further, the refractive indices of 40 ° C, 60 ° C, 80 ° C, and 1 〇〇 ° C were measured by the same apparatus, and the slopes of these four points were obtained by the least square method, and the refractive index was calculated for temperature. Change (refractive index temperature dependence). <Method for Measuring Light Propagation Loss of Optical Guide Wave Path> According to the JPCA specification (JPCA-PE02-05-0 S-2004), it is measured by the cwib (c u t b a c k) method. The fiber on the incident side and the exit side was a multimode type in which the number of openings having a core diameter of 5 Ο μη was 0.28. The measurement temperature was 23 t, and the wavelength of the light source was measured to be 8 5 0 n m. <Method for Measuring Average Particle Diameter of Raw Material Barium Sulfate Particles Coagulated Before Production of Dispersion> The measurement was carried out by using an optical microscope as follows. The particles are placed on a transparent plate such as glass, and the transparent plate carrying the particles is placed on an observation stage of an optical microscope, and the light is irradiated from the lower side of the transparent plate, and the CCD camera mounted on the eyepiece portion instead of the optical microscope is attached. The ADP-240M (FLOVEL system) is used to input the optical image as a digital image into the computer. The image processing software FlvFs (made by FLOVEL) is used to obtain a spherical approximation for any 100 particles observed. The particle diameter at the time was calculated and the number average particle diameter was calculated. <Method for Measuring Average Particle Diameter of Barium Sulfate Particles in Dispersion> On a carbon-deposited rubber film, the dispersion was dropped, and the organic solvent-32-200839331 was removed to obtain a transmission electron microscope H. -71 OOFA (Hitachi Manufacturing Co., Ltd.) to observe barium sulfate particles. The acceleration voltage is l〇okv. The observed image is used as a digital image input computer. The image processing software FlvFs (manufactured by FLOVEL) is used to obtain the particle size of the spherical approximation for any one of the observed particles, and the number average particle diameter is calculated. . Further, when the primary particles are aggregated, the particle size of the aggregates is measured. <Method for Measuring Average Particle Diameter of Barium Sulfate Particles in Paste Composition> The paste composition was dropped on a carbon-deposited rubber film, and the organic solvent was dried and removed, and then subjected to a transmission electron microscope H-7 10 OF A (manufactured by Hitachi, Ltd.) to observe barium sulfate particles. The acceleration voltage is l〇〇kV. The observed image was used as a digital image input computer, and the image processing software FlvFs (manufactured by FLOVEL) was used to obtain the spherical average particle size of any 100 particles observed, and the number average particle diameter was calculated. Further, when the primary particles are aggregated, the particle size of the aggregates is measured. <Method for Measuring Linear Expansion Ratio of Cured Product Obtained from Paste Composition> Using TMA measuring device TMA/SS6100 manufactured by SII Nanotechnology Co., Ltd., heating from room temperature to 1 20 ° in a nitrogen atmosphere When C is further cooled to room temperature, the displacement of the size of the cured product obtained from the paste composition is measured by a press-in load of 5 OmN, and the average line of the temperature rise and fall from 50 ° C to 70 ° C is calculated. Expansion rate. In order to remove the temperature of the linear expansion rate, the temperature was continuously raised and lowered, and the temperature was repeated twice, and the second measurement result was used as the displacement 値. <Production of Dispersion> Dispersions A to P were produced as follows. The barium sulfate secondary particles BF-40 (manufactured by Nippon Chemical Industry Co., Ltd., average 2 particles - 33 - 200839331 diameter 15 μm, average primary particle diameter l 〇 nm) and dispersed were mixed at the respective amounts shown in Table 1. The agent and the organic solvent were treated by a homogenizer "Excleauto, trade name, manufactured by Nippon Seiki Co., Ltd." at a peripheral speed of a 5 m/s rotary blade tip for 1 hour to disperse the barium sulfate particles. The above-mentioned dispersion liquid to be treated by the homogenizer is subjected to dispersion treatment using "ULTRA APEX MILLUAM-015" (trade name) (manufactured by Shou Industrial Co., Ltd.) as a ball mill. The material of the beads is chromium oxide, and the average particle size is 0.05 mm (manufactured by NIKKATO, YTZ ball), the input amount is 400 g. In addition, the peripheral speed of the bead mill rotor is 9.5 m/s, and the liquid supply pressure is 0.1 MPa. Dispersion treatment time is dispersion A When Ο is 1 〇, P is 1 hour, and after completion of the dispersion treatment, the liquid is recovered to obtain a dispersion of barium sulfate particles. Table 1 shows the average particle diameter of barium sulfate particles in the dispersion at the end of dispersion. 1 "HOA-MPL" (trade name), "HOA-H" used as a dispersing agent "H" (trade name) is a compound having a polymerizable group and a mercapto group, and is also a "light-Ester P-1M" (trade name, Kyoeisha Chemical Co., Ltd.). And "RDX63182" (trade name, manufactured by DAICEL-CYTEC Co., Ltd.) is a phosphate compound having a polymerizable group. "Disperbyk-1 1 1, (trade name, BYK Japan Co., Ltd.) does not have A polymerizable group phosphate compound. -34- 200839331 [Table 1] Dispersion composition dispersion treatment time (h) Average particle size (nm) Barium sulfate amount (g) Dispersant "HOA-MPL, ΗΟΑ-ΗΗ compound having a polymerizable group and a carboxyl group, Light -Ester Ρ-1Μ, RDX63182 is a compound of pity ester compound with polymerizable group A) Organic solvent mn loo For barium sulfate, dispersant halo (Ray content) Material amount (g) (g) Dispersion A 200 HOA-MPL 30 THFA 270 15 10 22 Dispersion B 200 HOA-MPL 8 THFA 292 4 10 33 Dispersion c 200 HOA-MPL 14 THFA 286 7 10 24 Dispersion D 200 HOA-MPL 60 THFA 240 30 10 26 Dispersion E 200 HOA-HH 30 THFA 270 15 10 26 Dispersion F 200 HOA-HH 8 THFA 292 4 10 37 Dispersion G 200 HOA-HH 14 THFA 286 7 10 25 Dispersion Η 200 HOA- HH 60 THFA 240 30 10 26 Dispersion I 200 Light-Ester P-1 Μ 30 DMAc 270 15 10 19 Dispersion J 200 Light-Ester P-1 Μ 8 DMAc 292 4 10 31 Dispersion K 200 Light-Ester P- 1 M 14 DMAc 286 7 10 20 Dispersion L 200 Light-Ester P-1 M 60 DMAc 240 30 10 21 Dispersion Μ 200 RDX63182 30 DMAc 270 1 5 10 29 Dispersion Ν 200 Disperbyk-111 30 DMAc 270 15 10 31 Dispersion 〇200 Disperbyk-111 10 DMAc 290 5 10 40 Dispersion Ρ 200 HOA-MPL 30 THFA 270 15 1 49 -35- 200839331 Example 1 Use The ball mill was mixed with 9.8 g of the dispersion A, 5 g of the resin represented by the above formula (1 1), 0.1 g of the lanthanide UV-active polymerization accelerator OXE02 (made by Ciba Specialty Chemicals Co., Ltd.), and 0.2 g of the decane coupling agent. "KBM403" (trade name, Shin-Etsu Chemical Co., Ltd., chemical name: 3-glycidoxypropyltrimethoxydecane) to prepare a paste composition. Further, in the paste composition, the content of barium sulfate particles in the solid component other than the organic solvent was 40% by weight. Further, the average particle diameter of the barium sulfate particles in the paste composition was 26 nm. The paste composition was applied onto a quartz substrate by a spin coater, dried in an air oven at 80 ° C for 1 hour in the atmosphere, and then subjected to an ultrahigh pressure mercury lamp exposure apparatus (PEOM-6M manufactured by UNION Optics). The hardening treatment of the paste composition was carried out by exposure to ultraviolet rays of 50 mJ/cm 2 to produce a film-like cured product having a thickness of 1 μm. At a wavelength of 850 nm and a temperature of 25 ° C, the refractive index of the film-like cured product was 1.55 6, and the temperature change rate of the refractive index was 5 1 p p m / °C. On the other hand, using a paste composition, a cured product for evaluation of linear expansion ratio was produced as follows. Apply 10mm x 10mm "Teflon (registered trademark)" tape to the Φ4吋 wafer, and place the 8mm inner diameter "Teflon (registered trademark)" tape on the 内径4mm. The paste composition obtained above was injected into a "Teflon (registered trademark)" tape in such a manner that the height became 1 mm. Then, it was dried in an air oven at 80 ° C for 1 hour in the atmosphere, and then subjected to hardening treatment of a paste composition using an ultrahigh pressure mercury lamp exposure apparatus (PEOM-6M manufactured by UNION Optics Co., Ltd.), and exposed to ultraviolet rays of 50 mJ/cm 2 . A cured product having a thickness of 8 mm and a thickness of 1 mm on the bottom surface was produced. The obtained cured product was taken out from the "Teflon (registered trademark)" tape, and the linear expansion ratio in the direction of -36 - 200839331 was measured and found to be 44 ppm/°C. On the other hand, using a paste composition, an optical waveguide is manufactured as follows. First, a liquid epoxy resin (#314, manufactured by EPOTEK Co., Ltd.) was applied onto a Φ4 吋 矽 wafer using a spin coater, and dried in an atmosphere at 80 ° C for 1 hour in an oven, and then hardened in nitrogen gas. The mixture was heated at 150 ° C for 1 hour to form a lower cladding portion having a thickness of 5 μm. The refractive index of the lower cladding portion at a wavelength of 850 nm and a temperature of 25 ° C was measured and found to be 1.5 02. Next, the paste group and the object were applied onto the under cladding portion formed on the quartz substrate by a spin coater, and dried in an atmosphere at 80 ° C for 1 hour in an oven to obtain a paste composition having a thickness of 50 μm. Dry film of matter. To the obtained film, an ultrahigh pressure mercury lamp exposure apparatus (PEM-6M manufactured by UNION Optics Co., Ltd.) was used, and exposed to ultraviolet rays of 50 mJ/cm 2 through a quartz mask. The quartz reticle has a slit portion having a width of 50 μm and a length of 9 cm, and is shielded from light by a portion other than the slit portion. The substrate after the exposure was immersed in a developing solution P-7G (manufactured by Tokyo Ohka Kogyo Co., Ltd.) for 5 minutes, and the film of the unexposed portion was removed to form a core portion having a shape of a width of 50 μm and a length of 9 cm. The pattern after development was a clear rectangle, and no crack occurred, and no residue was observed in the unexposed portion, and the developing property was good. Further, the same material as that of the under cladding portion was applied by using a spin coater, and after drying at 8 ° C for 1 hour, it was heated at 150 ° C for 1 hour in nitrogen gas for hardening to form a thickness of 5 μm. The upper cladding portion obtains an optical waveguide. Using a cutting device, the optical propagation loss was obtained by cutting both ends of the optical waveguide for each substrate, and the result was 〇3 dB/em. Examples 2 to 2 9 0 A composition of paste-37-200839331 having the composition shown in Tables 2 to 31 was produced in the same manner as in Example 1 to produce a cured product for evaluation of physical properties and an optical waveguide. Further, in Examples 209 to 226, when a paste composition was produced and a dispersion liquid was produced without adding a resin, the compound A used was added and added. The evaluation results are shown in Tables 2 to 31. Here, the resin A is represented by the above formula (1 1 ), and the resin B is represented by the above formula (1 2). Further, the decane coupling agent "KBM 5 03 " (trade name) is a system name of 3-methyl propylene methoxy propyl trimethoxy decane, manufactured by Shin-Etsu Chemical Co., Ltd. Further, in the case of producing an optical waveguide, an example in which a film-like residue is present on the surface of the substrate on the unexposed portion after development is described, and in the column of the visibility of Tables 2 to 31, "unexposed portion" is described. There is residue." Further, in the case of producing an optical waveguide, in the case where the crack is present in the core portion after development, the development of Tables 2 to 31 is described as "the core is cracked" -38 - 200839331 [Table 2] Paste composition composition dispersion resin polymerization accelerator decane coupling agent Solid content solid content solid content of compound A and resin (weight sample name (g) material denier (g) material amount (g) Barium sulfate content (% by weight) in the amount of material (g) Example 1 Dispersion A 9.8 Resin A 5 OXE02 0.1 KBM403 0.2 40 57 Example 2 Dispersion A 2.4 Resin A 5 OXE02 0.1 KBM403 0.2 15 80 Example 3 Dispersion Liquid A 3.4 Resin A 5 OXE02 0.1 KBM403 0.2 20 76 Example 4 Dispersion A 15.4 Resin A 3 OXE02 0.06 KBM403 0.12 60 38 Example 5 Dispersion A 26.5 Resin A 1 OXE02 0.02 KBM403 0.04 80 20 Example 6 Dispersion A 50.1 Resin A 0.5 OXE02 0.01 KBM403 0.02 85 15 Example 7 Dispersion B 9.1 Resin A 5 OXE02 0.1 KBM403 0.2 40 57 Example 8 Dispersion B 2.3 Resin A 5 OXE02 0.1 KBM403 0.2 15 81 Example 9 Dispersion B 3 .3 Resin A 5 OXE02 0.1 KBM403 0.2 20 76 Example 10 Dispersion B 12.7 Resin A 3 OXE02 0.06 KBM403 0.12 60 37 Example 11 Dispersion B 12.6 Resin A 1 OXE02 0.02 KBM403 0.04 80 18 Example 12 Dispersion B 9.7 Resin A 0.5 OXE02 0.01 KBM403 0.02 85 14 Example 13 Dispersion C 9.3 Resin A 5 OXE02 0.1 KBM403 0.2 40 57 Example 14 Dispersion C 2.4 Resin A 5 OXE02 0.1 KBM403 0.2 15 80 Example 15 Dispersion C 3.4 Resin A 5 OXE02 0.1 KBM403 0.2 20 75 Example 16 Dispersion c 13.3 Resin A 3 OXE02 0.06 KBM403 0.12 60 38 Example 17 Dispersion C 14.7 Casing A 1 OXE02 0.02 KBM403 0.04 80 20 Example 18 Dispersion C 12.4 Resin A 0.5 OXE02 0.01 KBM403 0.02 85 15 Example 19 Dispersion D 11.0 Measurement A 5 OXE02 0.1 KBM403 0.2 40 57 Example 20 Dispersion D 2.5 Resin A 5 OXE02 0.1 KBM403 0.2 15 81 Example 21 Dispersion D 3.6 Resin A 5 OXE02 0.1 KBM403 0.2 20 76 Example 22 Dispersion D 21.7 Resin A 3 OXE02 0.06 KBM403 0.12 60 39 -39- 200839331 [Table 3] Results Average particle size (nm) Refractive index refractive index in paste composition Temperature dependence (ppm/°C) Linear expansion ratio (ppm/°C) Developmental light propagation loss (dB/cm) Example 1 26 1.556 51 44 Good 0.3 Example 2 23 1.552 56 52 Good 0.3 Example 3 25 1.553 55 51 Good 0.3 Example 4 27 1.562 44 37 Good 0.3 Example 5 29 1.572 31 24 Good 0.4 Example 6 32 1.575 25 18 Unexposed part has cracks in the core of the residue 0.5 Example 7 37 1.558 52 46 Good 0.6 Example 8 35 1.552 57 52 Good 0.5 Example 9 35 1.553 56 50 Good 0.6 Example 10 36 1.566 44 36 Good 0.6 Example 11 39 1.578 33 25 Good 0.7 Example 12 42 1.583 26 17 Unexposed part with residue core Cracking occurred 0.8 Example 13 25 1.558 49 44 Good 0.3 Example Μ 24 1.552 55 51 Good 0.3 Example 15 25 1.553 56 51 Good 0.3 Example 16 27 1.565 44 37 Good 0.3 Example Π 29 1.577 30 23 Good 0.4 Example 18 31 1.581 24 18 Unexposed part with crack in the core of the residue 0.5 Example 19 27 1.554 52 43 Good 0.5 Example 20 25 1.551 55 51 Good 0.4 Example 21 25 1.552 55 51 Good 0.5 Real Example 22 27 1.557 43 37 Good 0.6 -40- 200839331 [Table 4]

糊組成物組成 分散液 棚旨 聚合促進劑 矽烷偶合劑 固體成分 中的硫酸 鋇含量(重 量%) 固體成分 中的化合 樣品名 量(克) 材料 量 (克) 材料 量(克) 材料 量(克) 物A與樹 脂的含量 (重量%) 實施例23 分散液A 9.8 樹脂A 5 OXE02 0.1 KBM503 0.2 40 57 實施例24 分散液A 2.4 樹脂A 5 OXE02 0.1 KBM503 0.2 15 80 實施例25 分散液A 3.4 樹脂A 5 OXE02 0.1 KBM503 0.2 20 76 實施例26 分散液A 15.4 棚旨A 3 OXE02 0.06 KBM503 0.12 60 38 實施例27 分散液A 26.5 樹脂A 1 OXE02 0.02 KBM503 0.04 80 20 實施例28 分散液A 50.1 樹脂A 0.5 OXE02 0.01 KBM503 0.02 85 15 實施例29 分散液B 9.1 樹脂A 5 OXE02 0.1 KBM503 0.2 40 57 實施例30 分散液C 9.3 棚旨A 5 OXE02 0.1 KBM503 0.2 40 57 實施例31 分散液D 11.0 樹脂A 5 OXE02 0.1 KBM503 0.2 40 57 實施例32 分散液A 9.4 樹脂A 5 OXE02 0.1 ^fnrr. Μ j \\\ 40 59 實施例33 分散液A 2.3 棚旨A 5 OXE02 0.1 姐 j\\\ int. illl! J\\\ 15 83 實施例34 分散液A 3.3 樹脂A 5 OXE02 0.1 Μ ^\\\ Arxr Mil j \\\ 20 79 實施例35 分散液A 14.8 樹脂A 3 OXE02 0.06 vfnrr tltt j\\\ inL ftTt jw\ 60 39 實施例36 分散液A 25.5 樹脂A 1 OXE02 0.02 Μ j\\\ fill? J \\\ 80 20 實施例37 分散液A 48.2 樹脂A 0.5 OXE02 0.01 Μ j\\\ 並 J\\\ 85 15 實施例38 分散液B 8.7 樹脂A 5 OXE02 0.1 r titr A\\T. it 11? J \\\ 40 59 實施例39 分散液B 2.2 樹脂A 5 OXE02 0.1 4ί Μ* ΊΤΤΓ \Ν irrr J \ \\ 15 84 實施例40 分散液B 3.2 樹脂A 5 OXE02 0.1 4rrr Η ιΠ >fnT 11Π! j \\\ 20 79 實施例41 分散液B 12.2 樹脂A 3 OXE02 0.06 4γγτ. 11 lit 4επι 111 tr y \ \\ 60 39 實施例42 分散液B 12.1 樹脂A 1 OXE02 0.02 無 無 80 20 實施例43 分散液B 9.3 樹脂A 0.5 OXE02 0.01 Μ >frrr. m 85 14 實施例44 分散液c 8.9 樹脂A 5 OXE02 0.1 紐 ist /\\\ 40 59 實施例45 分散液c 2.3 樹脂A 5 OXE02 0.1 Μ /\\\ j \\\ 15 83 實施例46 分散液C 3.3 樹脂A 5 OXE02 0.1 dot. Milt J\\\ 並 20 78 實施例47 分散液C 12.8 樹脂A 3 OXE02 0.06 Μ ^\\\ 無 60 39 實施例48 分散液C 14.2 樹脂A 1 OXE02 0.02 彳m·-ΙΜΓ ^\\\ M J \ 80 20 實施例49 分散液C 12.0 樹脂A 0.5 OXE02 0.01 M: J i N\ 85 15 -41 200839331 【表5】 結果 糊組成物中 的平均粒徑 (nm) 折射率 折射率溫度 依賴性 (ppm/°C) 線膨脹率 (ppm/°C) 顯像性 光傳播損失 (dB/cm) 實施例23 27 1.556 50 42 良好 0.3 實施例24 24 1.552 55 52 良好 0.3 實施例25 26 1.553 55 52 良好 0.3 實施例26 27 1.562 43 38 良好 0.3 實施例27 29 1.572 31 25 良好 0.4 實施例28 33 1.578 24 19 未曝光部有殘渣 芯部發生裂紋 0.5 實施例29 35 1.558 51 44 良好 0.6 實施例30 25 1.558 53 41 良好 0.3 實施例31 25 1.554 53 42 良好 0.5 實施例32 25 1.556 51 42 良好 0.4 實施例33 22 1.552 55 51 良好 0.3 實施例34 25 1.553 54 50 良好 0.3 實施例35 26 1.562 44 37 良好 0.4 實施例36 30 1.572 32 24 芯部發生裂紋 0.4 實施例37 31 1.578 24 18 未曝光部有殘渣 芯部發生裂紋 0.5 實施例38 36 1.558 51 43 良好 0.6 實施例39 35 1.552 56 52 良好 0.5 實施例40 36 1.553 56 51 良好 0.6 實施例41 36 1.566 43 36 良好 0.6 實施例42 36 1.578 31 22 芯部發生裂紋 0.7 實施例43 41 1.583 25 17 未曝光部有殘渣 芯部發生裂紋 0.8 實施例44 25 1.558 52 43 良好 0.4 實施例45 25 1.552 56 51 良好 0.3 實施例46 24 1.553 55 51 良好 0.3 實施例47 26 1.565 43 37 良好 0.4 實施例48 29 1.577 31 24 芯部發生裂紋 0.4 實施例49 33 1.581 24 18 未曝光部有殘渣 芯部發生裂紋 0.5 -42- 200839331 【表6】Paste composition composition dispersion medium polymerization accelerator cesium hydride coupling agent solid content of barium sulfate content (% by weight) in the solid content of the compound sample name (g) amount of material (g) amount of material (g) amount of material (g Contents of A and Resin (% by weight) Example 23 Dispersion A 9.8 Resin A 5 OXE02 0.1 KBM 503 0.2 40 57 Example 24 Dispersion A 2.4 Resin A 5 OXE02 0.1 KBM 503 0.2 15 80 Example 25 Dispersion A 3.4 Resin A 5 OXE02 0.1 KBM503 0.2 20 76 Example 26 Dispersion A 15.4 shed A 3 OXE02 0.06 KBM503 0.12 60 38 Example 27 Dispersion A 26.5 Resin A 1 OXE02 0.02 KBM503 0.04 80 20 Example 28 Dispersion A 50.1 Resin A 0.5 OXE02 0.01 KBM503 0.02 85 15 Example 29 Dispersion B 9.1 Resin A 5 OXE02 0.1 KBM503 0.2 40 57 Example 30 Dispersion C 9.3 A5 OXE02 0.1 KBM503 0.2 40 57 Example 31 Dispersion D 11.0 Resin A 5 OXE02 0.1 KBM503 0.2 40 57 Example 32 Dispersion A 9.4 Resin A 5 OXE02 0.1 ^fnrr. Μ j \\\ 40 59 Example 33 Dispersion A 2.3 shed A 5 OXE02 0.1 Sister j\\\ int. illl ! J\\\ 15 8 3 Example 34 Dispersion A 3.3 Resin A 5 OXE02 0.1 Μ ^\\\ Arxr Mil j \\\ 20 79 Example 35 Dispersion A 14.8 Resin A 3 OXE02 0.06 vfnrr tltt j\\\ inL ftTt jw\ 60 39 Example 36 Dispersion A 25.5 Resin A 1 OXE02 0.02 Μ j\\\ fill? J \\\ 80 20 Example 37 Dispersion A 48.2 Resin A 0.5 OXE02 0.01 Μ j\\\ and J\\\ 85 15 Implementation Example 38 Dispersion B 8.7 Resin A 5 OXE02 0.1 r titr A\\T. it 11? J \\\ 40 59 Example 39 Dispersion B 2.2 Resin A 5 OXE02 0.1 4ί Μ* ΊΤΤΓ \Ν irrr J \ \\ 15 84 Example 40 Dispersion B 3.2 Resin A 5 OXE02 0.1 4rrr Η ιΠ > fnT 11Π! j \\\ 20 79 Example 41 Dispersion B 12.2 Resin A 3 OXE02 0.06 4γγτ. 11 lit 4επι 111 tr y \ \ \ 60 39 Example 42 Dispersion B 12.1 Resin A 1 OXE02 0.02 No 80 20 Example 43 Dispersion B 9.3 Resin A 0.5 OXE02 0.01 Μ > frrr. m 85 14 Example 44 Dispersion c 8.9 Resin A 5 OXE02 0.1 Newist /\\\ 40 59 Example 45 Dispersion c 2.3 Resin A 5 OXE02 0.1 Μ /\\\ j \\\ 15 83 Example 46 Dispersion C 3.3 Resin A 5 OXE02 0.1 dot. Milt J\\ \ and 20 78 Example 47 Dispersion C 12.8 Resin A 3 OXE02 0.06 Μ ^\\\ No 60 39 Example 48 Dispersion C 14.2 Resin A 1 OXE02 0.02 彳m·-ΙΜΓ ^\\\ MJ \ 80 20 Example 49 Dispersion C 12.0 Resin A 0.5 OXE02 0.01 M: J i N\ 85 15 -41 200839331 [Table 5] Results Average particle size (nm) in the paste composition Refractive index Refractive index Temperature dependence (ppm/°C) Line Expansion ratio (ppm/°C) Developmental light propagation loss (dB/cm) Example 23 27 1.556 50 42 Good 0.3 Example 24 24 1.552 55 52 Good 0.3 Example 25 26 1.553 55 52 Good 0.3 Example 26 27 1.562 43 38 Good 0.3 Example 27 29 1.572 31 25 Good 0.4 Example 28 33 1.578 24 19 Unexposed part has cracks in the core of the residue 0.5 Example 29 35 1.558 51 44 Good 0.6 Example 30 25 1.558 53 41 Good 0.3 Implementation Example 31 25 1.554 53 42 Good 0.5 Example 32 25 1.556 51 42 Good 0.4 Example 33 22 1.552 55 51 Good 0.3 Example 34 25 1.553 54 50 Good 0.3 Example 35 26 1.562 44 37 Good 0.4 Example 36 30 1.572 32 24 core cracks 0.4 implementation 37 31 1.578 24 18 Unexposed part with crack in the core of the residue 0.5 Example 38 36 1.558 51 43 Good 0.6 Example 39 35 1.552 56 52 Good 0.5 Example 40 36 1.553 56 51 Good 0.6 Example 41 36 1.566 43 36 Good 0.6 Example 42 36 1.578 31 22 Crack occurred in the core 0.7 Example 43 41 1.583 25 17 Crack in the core portion of the unexposed portion 0.8 Example 44 25 1.558 52 43 Good 0.4 Example 45 25 1.552 56 51 Good 0.3 Example 46 24 1.553 55 51 Good 0.3 Example 47 26 1.565 43 37 Good 0.4 Example 48 29 1.577 31 24 Crack occurred in the core 0.4 Example 49 33 1.581 24 18 Unexposed part has cracks in the core of the residue 0.5 -42- 200839331 Table 6]

糊組成物組成 分散液 樹脂 聚合促進劑 矽烷偶合劑 固體成分 固體成分 中的化合 樣品名 量(克) 材料 量 (克) 材料 量(克) 材料 量(克) 中的硫酸 鋇含量 (重量%) 物A與樹 脂含量 (重量%) 實施例50 分散液D 10.6 棚旨A 5 OXE02 0.1 無 並 J \ w 40 59 實施例51 分散液D 2.4 樹脂A 5 OXE02 0.1 Μ j \\\ M /\\\ 15 84 實施例52 分散液D 3.5 樹脂A 5 OXE02 0.1 tilt yfrrr. tilt y\\s 20 78 實施例53 分散液D 20.9 樹脂A 3 OXE02 0.06 Μ yvw 並 60 40 實施例54 分散液E 9.8 樹脂A 5 OXE02 0.1 KBM403 0.2 40 57 實施例55 分散液E 2.4 樹脂A 5 OXE02 0.1 KBM403 0.2 15 80 實施例56 分散液E 3.4 樹脂A 5 OXE02 0.1 KBM403 0.2 20 76 實施例57 分散液E 15.4 樹脂A 3 OXE02 0.06 KBM403 0.12 60 38 實施例58 分散液E 26.5 樹脂A 1 OXE02 0.02 KBM403 0.04 80 20 實施例59 分散液E 50.1 樹脂A 0.5 OXE02 0.01 KBM403 0.02 85 15 實施例60 分散液F 9.1 樹脂A 5 OXE02 0.1 KBM403 0.2 40 57 實施例61 分散液G 9.3 樹脂A 5 OXE02 0.1 ICBM403 0.2 40 57 實施例62 分散液Η 11.0 樹脂A 5 OXE02 0.1 KBM403 0.2 40 57 實施例63 分散液Ε 9.4 樹脂A 5 OXE02 0.1 Μ j \ \\ 4rrr 無 40 59 實施例64 分散液Ε 2.3 棚旨A 5 OXE02 0.1 4ττΐ ILjI! j\\\ llllt >、、、 15 83 實施例65 分散液Ε 3.3 樹脂A 5 OXE02 0.1 4nr lilt dxxc trnt y\w 20 79 實施例66 分散液Ε 14.8 樹脂A 3 OXE02 0.06 無 M j\\\ 60 39 實施例67 分散液Ε 25.5 樹脂A 1 OXE02 0.02 4τχτ titr j \\\ 迦 j\\\ 80 20 實施例68 分散液Ε 48.2 樹脂A 0.5 OXE02 0.01 iXXL· I I 11 - J\\\ 85 15 實施例69 分散液F 8.7 樹脂A 5 OXE02 0.1 M 40 59 實施例7〇 分散液G 8.9 樹脂A 5 OXE02 0.1 >fnrr Mttt /\\\ 迦 ^\\\ 40 59 實施例71 分散液Η 10.6 樹脂A 5 OXE02 0.1 4rrr. 11 lit j \\\ 無 40 59 -43- 200839331 【表7】 結果 糊組成物中 的平均粒徑 (nm) 折射率 折射率溫 度依賴性 (ppm/°C) 線膨脹率 (ppm/°C) 顯像丨生 光傳播損失 (dB/cm) 實施例50 24 1.554 51 43 良好 0.5 實施例51 23 1.551 56 51 良好 0.4 實施例52 24 1.552 55 51 良好 0.5 實施例53 26 1.557 43 37 良好 0.6 實施例54 30 1.553 52 44 良好 0.5 實施例55 29 1.551 56 51 良好 0.3 實施例56 30 1.551 55 51 良好 0.4 實施例57 31 1.555 43 38 良好 0.5 實施例58 34 1.560 33 25 良好 0.5 實施例59 39 1.561 27 20 未曝光部有殘渣 芯部發生裂紋 0.6 實施例60 42 1.557 51 43 良好 0.7 實施例61 33 1.556 51 44 良好 0.5 實施例62 32 1.547 50 44 良好 0.6 實施例63 29 1.553 52 43 良好 0.5 實施例64 30 1.551 55 52 良好 0.3 實施例65 29 1.551 54 51 良好 0.4 實施例66 30 1.555 44 36 良好 0.5 實施例67 33 1.560 31 24 芯部發生裂紋 0.5 實施例68 40 1.561 25 18 未曝光部有殘渣 芯部發生裂紋 0.6 實施例69 43 1.557 51 43 良好 0.7 實施例70 31 1.556 51 43 良好 0.5 實施例71 31 1.547 52 44 良好 0.6 -44 - 200839331 【表8】 糊組成物組成 分散液 測旨 聚合促進劑 矽烷偶合劑 固體成 分中的 固體成分 中的化合 樣品名 量 (克) 材料 量 (克) 材料 量(克) 材料 量(克) 硫酸鋇 含量(重 量%) 物A與樹 脂的含量 (重量%) 實施例72 分散液A 9.8 欄旨B 5 OXE02 0.1 KBM403 0.2 40 57 實施例73 分散液A 2.4 樹脂B 5 OXE02 0.1 KBM403 0.2 15 80 實施例74 分散液A 3.4 樹脂B 5 OXE02 0.1 KBM403 0.2 20 76 實施例75 分散液A 15.4 樹脂B 3 OXE02 0.06 KBM403 0.12 60 38 實施例76 分散液A 26.5 樹脂B 1 OXE02 0.02 KBM403 0.04 80 20 實施例77 分散液A 50.1 樹脂B 0.5 OXE02 0.01 KBM403 0.02 85 15 實施例78 分散液B 9.1 樹脂B 5 ' OXE02 0.1 KBM403 0.2 40 57 實施例79 分散液c 9.3 樹脂B 5 OXE02 0.1 KBM403 0.2 40 57 實施例80 分散液D 11.0 樹脂B 5 OXE02 0.1 KBM403 0.2 40 57 實施例81 分散液A 9.4 樹脂B 5 OXE02 0.1 Μ y\\\ ^frrr .1111Γ J » NN 40 59 實施例82 分散液A 2.3 樹脂B 5 OXE02 0.1 Mitt y\\\ M y\\\ 15 83 實施例83 分散液A 3.3 樹脂B 5 OXE02 0.1 並 j»\\ ^\\\ 20 79 實施例84 分散液A 14.8 樹脂B 3 OXE02 0.06 M j\\\ 無 60 39 實施例85 分散液A 25.5 樹脂B 1 OXE02 0.02 /fnT- illtt 無 80 20 實施例86 分散液A 48.2 樹脂B 0.5 OXE02 0.01 M j\\\ 85 15 實施例87 分散液B 8.7 樹脂B 5 OXE02 0.1 >frnr till j \\\ ^fnr τΓΤΓ j \\\ 40 59 實施例88 分散液c 8.9 樹脂B 5 OXE02 0.1 >frrr Mti j\\\ int. itir J\\\ 40 59 實施例89 分散液D 10.6 樹脂B 5 OXE02 0.1 >fnT- ΤΓΓΓ J\\\ 40 59 -45- 200839331 【表9】 結果 糊組成物 中的平均 粒徑(nm) 折射率 折射率溫度 依賴性 (ppm/°C) 線膨脹率 (ppm/°C) 顯像性 光傳播損失 (dB/cm) 實施例72 25 1.566 50 37 良好 0.4 實施例73 23 1.563 54 45 良好 0.3 實施例74 24 1.563 53 43 良好 0.3 實施例75 25 1.566 44 27 未曝光部有殘渣 0.4 實施例76 29 1.574 32 16 未曝光部有殘渣 0.4 實施例77 33 1.576 24 12 未曝光部有殘渣 芯部發生裂紋 0.5 實施例78 36 1.568 48 32 良好 0.6 實施例79 25 1.568 49 35 良好 0.4 實施例80 27 1.562 52 35 良好 0.5 實施例81 23 1.566 51 35 未曝光部有殘渣 0.4 實施例82 23 1.563 53 43 良好 0.3 實施例83 24 1.563 53 43 良好 0.3 實施例84 25 1.566 43 28 未曝光部有殘渣 0.5 實施例85 28 1.574 32 16 未曝光部有殘渣 芯部發生裂紋 0.5 實施例86 32 1.576 23 12 未曝光部有殘渣 芯部發生裂紋 0.6 實施例87 34 1.568 49 31 未曝光部有殘渣 0.7 實施例88 25 1.568 50 35 未曝光部有殘渣 0.4 實施例89 27 1.562 51 33 未曝光部有殘渣 0.5 -46- 200839331 【表10】 糊組成物組成 分散液 樹脂 聚合促進劑 矽烷偶合劑 固體成分 固體成分 中的化合 樣品名 量(克) 材料 量 (克) 材料 量(克) 材料 量(克) 中的硫酸 鋇含量 f雷量%) 物A與樹 脂的含量 (重量%) 實施例90 分散液E 9.8 樹脂Β 5 ΟΧΕ02 0.1 ΚΒΜ403 0.2 40 57 實施例91 分散液E 2.4 樹脂Β 5 ΟΧΕ02 0.1 ΚΒΜ403 0.2 15 80 實施例92 分散液E 3.4 樹脂Β 5 ΟΧΕ02 0.1 ΚΒΜ403 0.2 20 76 實施例93 分散液Ε 26.5 樹脂Β 1 ΟΧΕ02 0.02 ΚΒΜ403 0.04 80 20 實施例94 分散液Ε 50.1 棚旨Β 0.5 ΟΧΕ02 0.01 ΚΒΜ403 0.02 85 15 實施例95 分散液F 9.1 欄旨Β 5 ΟΧΕ02 0.1 ΚΒΜ403 0.2 40 57 實施例96 分散液G 9.3 樹脂Β 5 ΟΧΕ02 0.1 ΚΒΜ403 0.2 40 57 實施例97 分散液Η 11.0 樹脂Β 5 ΟΧΕ02 0.1 ΚΒΜ403 0.2 40 57 實施例98 分散液Ε 9.4 樹脂Β 5 ΟΧΕ02 0.1 惟 Μ j \\\ 40 59 實施例99 分散液Ε 2.3 樹脂Β 5 ΟΧΕ02 0.1 無 inL m 15 83 實施例1〇〇 分散液Ε 3.3 棚旨Β 5 ΟΧΕ02 0.1 j \\\ M j \ w 20 79 實施例101 分散液Ε 25.5 樹脂Β 1 ΟΧΕ02 0.02 Μ dnL· ΤΓΤΓ J \\\ 80 20 實施例102 分散液Ε 48.2 樹脂Β 0.5 ΟΧΕ02 0.01 >frrr It Tit J\S\ M j \\\ 85 15 實施例103 分散液F 8.7 樹脂Β 5 ΟΧΕ02 0.1 /fnT πΓπ 40 59 實施例104 分散液G 8.9 樹脂Β 5 ΟΧΕ02 0.1 並 J \\\ 40 59 實施例105 分散液Η 10.6 樹脂Β 5 ΟΧΕ02 0.1 M j\\\ ixxt. ΤΤΤΓ J \\\ 40 59 -47- 200839331 【表11】 結果 糊組成物中 的平均粒徑 (nm) 折射率 折射率溫度 依賴性 (ppm/°C) 線膨脹率 (ppm/°C) 顯像性 光傳播損失 (dB/cm) 實施例90 30 1.555 52 38 良好 0.5 實施例91 30 1.562 54 44 良好 0.3 實施例92 29 1.562 53 41 良好 0.4 實施例93 35 1.562 34 18 未曝光部有殘渣 0.5 實施例94 40 1.562 26 13 未曝光部有殘渣 芯部發生裂紋 0.6 實施例95 42 1.567 51 36 良好 0.7 實施例96 32 1.566 51 38 良好 0.5 實施例97 33 1.555 53 39 良好 0.6 實施例98 29 1.555 53 37 未曝光部有殘渣 0.5 實施例99 29 1.562 55 44 良好 0.3 實施例1〇〇 30 1.562 54 42 良好 0.4 實施例101 34 1.562 33 15 未曝光部有殘渣 芯部發生裂紋 0.6 實施例102 39 1.562 24 12 未曝光部有殘渣 芯部發生裂紋 0.7 實施例103 43 1.567 48 35 未曝光部有殘渣 0.8 實施例104 33 1.566 49 37 未曝光部有殘渣 0.5 實施例105 31 1.555 51 37 未曝光部有殘渣 0.6 -48- 200839331 【表12】 糊組成物組成 分散 皮 樹脂 聚合促進劑 矽烷偶合劑 固體成分 中的硫酸 鋇含量(重 量%) 固體成分中 的化合物A 與樹脂的含 量(重量%) 樣品名 量(克) 材料 量 (克) 材料 量(克) 材料 量(克) 實施例106 分散液A 9.8 樹脂A 2.5 OXE02 0.1 KBM403 0.2 40 57 欄旨B 2.5 實施例107 分散液A 2.4 樹脂A 2.5 OXE02 0.1 KBM403 0.2 15 80 樹脂B 2.5 實施例108 分散液A 3.4 樹脂A 2.5 OXE02 0.1 KBM403 0.2 20 76 樹脂B 2.5 實施例109 分散液A 15.4 樹脂A 1.5 OXE02 0.06 KBM403 0.12 60 38 樹脂B 1.5 實施例110 分散液A 26.5 樹脂A 0.5 OXE02 0.02 KBM403 0.04 80 20 樹脂B 0.5 實施例111 分散液A 50.1 樹脂A 0.25 OXE02 0.01 KBM403 0.02 85 15 樹脂B 0.25 實施例112 分散液B 9.1 樹脂A 2.5 OXE02 0.1 KBM403 0.2 40 57 樹脂B 2.5 實施例113 分散液B 2.3 棚旨A 2.5 OXE02 0.1 KBM403 0.2 15 81 樹脂B 2.5 實施例114 分散液B 3.3 樹脂A 2.5 OXE02 0.1 KBM403 0.2 20 76 樹脂B 2.5 實施例115 分散液B 12.7 棚旨A 1.5 OXE02 0.06 KBM403 0.12 60 37 樹脂B 1.5 實施例116 分散液B 12.6 樹脂A 0.5 OXE02 0.02 KBM403 0,04 80 18 樹脂B 0.5 實施例117 分散液B 9.7 樹脂A 0.25 OXE02 0.01 KBM403 0.02 85 14 樹脂B 0.25 實施例118 分散液c 9.3 欄旨A 2.5 OXE02 0.1 KBM403 0.2 40 57 樹脂B 2.5 實施例119 分散液C 2.4 樹脂A 2.5 OXE02 0.1 KBM403 0.2 15 80 樹脂B 2.5 實施例120 分散液c 3.4 樹脂A 2.5 OXE02 0.1 KBM403 0.2 20 75 樹脂B 2.5 實施例121 分散液C 13.3 樹脂A 1.5 OXE02 0.06 KBM403 0.12 60 38 樹脂B 1.5 實施例122 分散液C 14.7 樹脂A 0.5 OXE02 0.02 KBM403 0.04 80 20 樹脂B 0.5 實施例123 分散液c 12.4 樹脂A 0.25 OXE02 0.01 KBM403 0.02 85 15 樹脂B 0.25 -49- 200839331 【表13】 結果 糊組成物 中的平均 粒徑(nm) 折射率 折射率溫度 依賴性 (ppm/°C) 線膨脹率 (ppm/°C) 顯像性 光傳播損失(dB/cm) 實施例106 25 1.561 50 40 良好 0.3 實施例107 24 1.557 55 48 良好 0.3 實施例108 26 1.558 54 47 良好 0.3 實施例109 26 1.565 42 33 良好 0.3 實施例110 27 1.573 32 21 良好 0.4 實施例111 31 1.576 25 16 未曝光部有殘渣 芯部發生裂紋 0.5 實施例112 37 1.563 51 41 良好 0.6 實施例113 36 1.558 56 48 良好 0.5 實施例114 35 1.559 53 46 良好 0.6 實施例115 36 1.570 42 33 良好 0.6 實施例116 39 1.581 30 20 良好 0.7 實施例1Π 41 1.585 24 15 未曝光部有殘渣 芯部發生裂紋 0.8 實施例118 26 1.563 51 40 良好 0.3 實施例119 24 1.558 55 47 良好 0.3 實施例120 24 1.559 55 47 良好 0.3 實施例121 26 1.569 43 33 良好 0.3 實施例122 28 1.579 31 21 良好 0.4 實施例123 30 1.582 25 16 未曝光部有殘渣 芯部發生裂紋 0.5 -50- 200839331 【表14】 糊組成物組成 分散液 樹脂 聚合促進劑 矽烷偶合劑 固體成分 中的硫酸 鋇含量(重 量%) 固體成分中 的化合物A 與樹脂的含 量(雷量%) 樣品名 量 (克) 材料 量 (克) 材料 量 (克) 材料 里 (克) 實施例124 分散液D 11.0 樹脂A 2.5 OXE02 0.1 KBM403 0.2 40 57 樹脂B 2.5 實施例125 分散液D 2.5 樹脂A 2.5 OXE02 0.1 KBM403 0.2 15 81 樹脂B 2.5 實施例126 分散液D 3.6 樹脂A 2.5 OXE02 0.1 KBM403 0.2 20 76 樹脂B 2.5 實施例127 分散液D 21.7 樹脂A 1.5 OXE02 0.06 KBM403 0.12 60 39 樹脂B 1.5 實施例128 分散液A 9.4 棚旨A 2.5 OXE02 0.1 無 ^ττΤ Μ 40 59 樹脂B 2.5 實施例129 分散液A 2.3 棚旨A 2.5 OXE02 0.1 姐 15 83 樹脂B 2.5 實施例130 分散液A 3.3 樹脂A 2.5 OXE02 0.1 Μ 迦 20 79 欄旨B 2.5 實施例131 分散液A 14.8 樹脂A 1.5 OXE02 0.06 無 i ιΓ. ΤΓΓΓ J\\\ 60 39 樹脂B 1.5 實施例132 分散液A 25.5 樹脂A 0.5 OXE02 0.02 Μ j\\\ Μ 80 20 樹脂B 0.5 實施例133 分散液A 48.2 測旨A 0.25 OXE02 0.01 4ml iMt! 挑 85 15 樹脂B 0.25 實施例134 分散液B 8.7 樹脂A 2.5 OXE02 0.1 •Yiir. TiTTT j\w Μ /\\\ 40 59 樹脂B 2.5 實施例135 分散液C 8.9 棚旨A 2.5 OXE02 0.1 M y\\\ Μ y\\\ 40 59 棚旨B 2.5 實施例136 分散液D 10.6 樹脂A 2.5 OXE02 0.1 M 5ε j\\\ 40 59 觀旨B 2.5 實施例137 分散液E 9.8 樹脂A 2.5 OXE02 0.1 KBM403 0.2 40 57 樹脂B 2.5 實施例138 分散液E 2.4 樹脂A 2.5 OXE02 0.1 KBM403 0.2 15 80 棚旨B 2.5 實施例139 分散液E 3.4 樹脂A 2.5 OXE02 0.1 KBM403 0.2 20 76 棚旨B 2.5 實施例140 分散液E 26.5 樹脂A 0.5 OXE02 0.02 KBM403 0.04 80 20 樹脂B 0.5 實施例141 分散液E 50.1 棚旨A 0.25 OXE02 0.01 KBM403 0.02 85 15 棚旨B 0.25 -51 - 200839331 【表15】 結果 糊組成物中 的平均粒徑 (nm) 折射率 折射率溫度 依賴性 (ppm/°C) 線膨脹率 (ppm/°C) 顯像性 光傳播損失 (dB/cm) 實施例124 26 1.558 52 39 良好 0.5 實施例125 25 1.557 55 48 良好 0.4 實施例126 26 1.557 54 47 良好 0.5 實施例127 27 1.559 42 33 良好 0.6 實施例128 24 1.561 51 40 良好 0.4 實施例129 23 1.557 56 47 良好 0.3 實施例130 25 1.558 55 46 良好 0.3 實施例131 26 1.565 43 32 良好 0.4 實施例132 28 1.573 32 21 芯部發生裂紋 0.4 實施例133 31 1.576 24 17 未曝光部有殘渣 芯部發生裂紋 0.5 實施例134 26 1.563 50 40 良好 0.6 實施例135 25 1.563 51 39 良好 0.4 實施例136 25 1.558 52 40 良好 0.5 實施例137 29 1.557 52 40 良好 0.5 實施例138 30 1.556 56 48 良好 0.3 實施例139 30 1.557 55 47 良好 0.4 實施例140 35 1.561 31 21 良好 0.5 實施例141 40 1.562 25 16 未曝光部有殘渣 芯部發生裂紋 0.6 -52- 200839331 【表16】 糊組成物組成Paste composition composition Dispersion resin Polymerization accelerator decane coupling agent Solid component Solid component Solid component content (g) Material amount (g) Material amount (g) Material amount (g) Barium sulphate content (% by weight) Content A and Resin Content (% by weight) Example 50 Dispersion D 10.6 shed A 5 OXE02 0.1 No and J \ w 40 59 Example 51 Dispersion D 2.4 Resin A 5 OXE02 0.1 Μ j \\\ M /\\ 15 15 Example 52 Dispersion D 3.5 Resin A 5 OXE02 0.1 tilt yfrrr. tilt y\\s 20 78 Example 53 Dispersion D 20.9 Resin A 3 OXE02 0.06 Μ yvw and 60 40 Example 54 Dispersion E 9.8 Resin A 5 OXE02 0.1 KBM403 0.2 40 57 Example 55 Dispersion E 2.4 Resin A 5 OXE02 0.1 KBM403 0.2 15 80 Example 56 Dispersion E 3.4 Resin A 5 OXE02 0.1 KBM403 0.2 20 76 Example 57 Dispersion E 15.4 Resin A 3 OXE02 0.06 KBM403 0.12 60 38 Example 58 Dispersion E 26.5 Resin A 1 OXE02 0.02 KBM403 0.04 80 20 Example 59 Dispersion E 50.1 Resin A 0.5 OXE02 0.01 KBM403 0.02 85 15 Example 60 Dispersion F 9.1 Resin A 5 OXE02 0.1 KBM403 0.2 40 57 Example 61 Dispersion G 9.3 Resin A 5 OXE02 0.1 ICBM403 0.2 40 57 Example 62 Dispersion Η 11.0 Resin A 5 OXE02 0.1 KBM403 0.2 40 57 Example 63 Dispersion Ε 9.4 Resin A 5 OXE02 0.1 Μ j \ \\ 4rrr None 40 59 Example 64 Dispersion Ε 2.3 shed A 5 OXE02 0.1 4ττΐ ILjI! j\\\ llllt >,,, 15 83 Example 65 Dispersion Ε 3.3 Resin A 5 OXE02 0.1 4nr lilt dxxc trnt y\w 20 79 Example 66 Dispersion Ε 14.8 Resin A 3 OXE02 0.06 No M j\\\ 60 39 Example 67 Dispersion Ε 25.5 Resin A 1 OXE02 0.02 4τχτ titr j \\\ 嘉 j\\\ 80 20 Example 68 Dispersion Ε 48.2 Resin A 0.5 OXE02 0.01 iXXL· II 11 - J\\\ 85 15 Example 69 Dispersion F 8.7 Resin A 5 OXE02 0.1 M 40 59 Example 7 〇 Dispersion G 8.9 Resin A 5 OXE02 0.1 > Fnrr Mttt /\\\ 迦^\\\ 40 59 Example 71 Dispersion Η 10.6 Resin A 5 OXE02 0.1 4rrr. 11 lit j \\\ No 40 59 -43- 200839331 [Table 7] Results in the paste composition Average particle size (nm) Refractive index Refractive index Temperature dependence (ppm/°C) Linear expansion ratio (ppm/°C) Imaging twin light propagation loss (dB/cm) Example 50 24 1.554 51 43 Good 0.5 Example 51 23 1.551 56 51 Good 0.4 Example 52 24 1.552 55 51 Good 0.5 Example 53 26 1.557 43 37 Good 0.6 Example 54 30 1.553 52 44 Good 0.5 Example 55 29 1.551 56 51 Good 0.3 Example 56 30 1.551 55 51 Good 0.4 Example 57 31 1.555 43 38 Good 0.5 Example 58 34 1.560 33 25 Good 0.5 Example 59 39 1.561 27 20 Unexposed part with residue core Cracking occurred 0.6 Example 60 42 1.557 51 43 Good 0.7 Example 61 33 1.556 51 44 Good 0.5 Example 62 32 1.547 50 44 Good 0.6 Example 63 29 1.553 52 43 Good 0.5 Example 64 30 1.551 55 52 Good 0.3 Example 65 29 1.551 54 51 Good 0.4 Example 66 30 1.555 44 36 Good 0.5 Example 67 33 1.560 31 24 Crack occurred in the core 0.5 Example 68 40 1.561 25 18 Unexposed part has cracks in the core of the residue 0.6 Example 69 43 1.557 51 43 Good 0.7 Example 70 31 1.556 51 43 Good 0.5 Example 71 31 1.547 52 44 Good 0.6 -44 - 200839331 [Table 8] Composition of the paste composition Liquid measurement polymerization accelerator decane coupling agent Solid component in the solid content of the compound sample amount (g) Material amount (g) Material amount (g) Material amount (g) Barium sulfate content (% by weight) A and resin Content (% by weight) Example 72 Dispersion A 9.8 Column B 5 OXE02 0.1 KBM403 0.2 40 57 Example 73 Dispersion A 2.4 Resin B 5 OXE02 0.1 KBM403 0.2 15 80 Example 74 Dispersion A 3.4 Resin B 5 OXE02 0.1 KBM403 0.2 20 76 Example 75 Dispersion A 15.4 Resin B 3 OXE02 0.06 KBM403 0.12 60 38 Example 76 Dispersion A 26.5 Resin B 1 OXE02 0.02 KBM403 0.04 80 20 Example 77 Dispersion A 50.1 Resin B 0.5 OXE02 0.01 KBM403 0.02 85 15 Example 78 Dispersion B 9.1 Resin B 5 ' OXE02 0.1 KBM403 0.2 40 57 Example 79 Dispersion c 9.3 Resin B 5 OXE02 0.1 KBM403 0.2 40 57 Example 80 Dispersion D 11.0 Resin B 5 OXE02 0.1 KBM403 0.2 40 57 Example 81 Dispersion A 9.4 Resin B 5 OXE02 0.1 Μ y\\\ ^frrr .1111Γ J » NN 40 59 Example 82 Dispersion A 2.3 Resin B 5 OXE02 0.1 Mitt y\\\ M y\\\ 15 83 Example 83 Dispersion A 3.3 Resin B 5 OXE02 0.1 and j»\\ ^\\\ 20 79 Example 84 Dispersion A 14.8 Resin B 3 OXE02 0.06 M j\\\ No 60 39 Example 85 Dispersion A 25.5 Resin B 1 OXE02 0.02 /fnT- illtt No 80 20 Example 86 Dispersion A 48.2 Resin B 0.5 OXE02 0.01 M j\\\ 85 15 Example 87 Dispersion B 8.7 Resin B 5 OXE02 0.1 >frnr till j \\\ ^fnr ΓΤΓΓΤΓ j \\\ 40 59 Example 88 Dispersion c 8.9 Resin B 5 OXE02 0.1 > frrr Mti j\\\ int. itir J\\\ 40 59 Example 89 Dispersion D 10.6 Resin B 5 OXE02 0.1 > fnT- ΤΓΓΓ J\\\ 40 59 -45- 200839331 [Table 9] Results Average particle size (nm) in the paste composition Refractive index Refractive index Temperature dependence (ppm/°C) Linear expansion ratio (ppm/°C) ) Developmental light propagation loss (dB/cm) Example 72 25 1.566 50 37 Good 0.4 Example 73 23 1.563 54 45 Good 0.3 Example 74 24 1.563 53 43 Good 0.3 Example 75 25 1.566 44 27 Unexposed part Residue 0.4 Example 76 29 1.574 32 16 Residue in the unexposed portion 0.4 Example 77 33 1.576 24 12 Unexposed portion has cracks in the core portion 0.5 78 36 1.568 48 32 Good 0.6 Example 79 25 1.568 49 35 Good 0.4 Example 80 27 1.562 52 35 Good 0.5 Example 81 23 1.566 51 35 Unexposed part with residue 0.4 Example 82 23 1.563 53 43 Good 0.3 Example 83 24 1.563 53 43 Good 0.3 Example 84 25 1.566 43 28 Residue in the unexposed portion 0.5 Example 85 28 1.574 32 16 Crack in the core portion of the unexposed portion 0.5 Example 86 32 1.576 23 12 Unexposed portion with residue core Cracking occurred 0.6 Example 87 34 1.568 49 31 Residues in the unexposed portion 0.7 Example 88 25 1.568 50 35 Residue in the unexposed portion 0.4 Example 89 27 1.562 51 33 Unexposed portion with residue 0.5 -46- 200839331 [Table 10] Paste composition composition Dispersion resin Polymerization accelerator decane coupling agent Solid component Solid component Solid component content (g) Material amount (g) Material amount (g) Material amount (g) Barium sulphate content f Thunder % Contents of A and Resin (% by weight) Example 90 Dispersion E 9.8 Resin Β 5 ΟΧΕ 02 0.1 ΚΒΜ 403 0.2 40 57 Example 91 Dispersion E 2.4 Resin Β 5 Ο Ε02 0.1 ΚΒΜ403 0.2 15 80 Example 92 Dispersion E 3.4 Resin Β 5 ΟΧΕ 02 0.1 ΚΒΜ 403 0.2 20 76 Example 93 Dispersion Ε 26.5 Resin Β 1 ΟΧΕ 02 0.02 ΚΒΜ 403 0.04 80 20 Example 94 Dispersion Ε 50.1 棚 Β 0.5 ΟΧΕ 02 0.01 ΚΒΜ 403 0.02 85 15 Example 95 Dispersion F 9.1 Column Β 5 ΟΧΕ 02 0.1 ΚΒΜ 403 0.2 40 57 Example 96 Dispersion G 9.3 Resin Β 5 ΟΧΕ 02 0.1 ΚΒΜ 403 0.2 40 57 Example 97 Dispersion Η 11.0 Resin Β 5 ΟΧΕ 02 0.1 ΚΒΜ403 0.2 40 57 Example 98 Dispersion Ε 9.4 Resin Β 5 ΟΧΕ 02 0.1 Μ j \\\ 40 59 Example 99 Dispersion Ε 2.3 Resin Β 5 ΟΧΕ 02 0.1 No inL m 15 83 Example 1 〇〇 Dispersion Ε 3.3棚ΒΒ 5 ΟΧΕ02 0.1 j \\\ M j \ w 20 79 Example 101 Dispersion Ε 25.5 Resin Β 1 ΟΧΕ02 0.02 Μ dnL· ΤΓΤΓ J \\\ 80 20 Example 102 Dispersion Ε 48.2 Resin Β 0.5 ΟΧΕ02 0.01 >frrr It Tit J\S\ M j \\\ 85 15 Example 103 Dispersion F 8.7 Resin Β 5 ΟΧΕ02 0.1 /fnT πΓπ 40 59 Example 104 Dispersion G 8.9 Resin Β 5 ΟΧΕ02 0.1 J \\\ 40 59 Example 105 Dispersion Η 10.6 Resin Β 5 ΟΧΕ 02 0.1 M j\\\ ixxt. ΤΤΤΓ J \\\ 40 59 -47- 200839331 [Table 11] The average particle size in the paste composition ( Nm) refractive index refractive index temperature dependence (ppm/°C) linear expansion ratio (ppm/°C) developmental light propagation loss (dB/cm) Example 90 30 1.555 52 38 Good 0.5 Example 91 30 1.562 54 44 is good 0.3 Example 92 29 1.562 53 41 Good 0.4 Example 93 35 1.562 34 18 Residue in the unexposed portion 0.5 Example 94 40 1.562 26 13 Crack in the core portion of the unexposed portion 0.6 Example 95 42 1.567 51 36 Good 0.7 Example 96 32 1.566 51 38 Good 0.5 Example 97 33 1.555 53 39 Good 0.6 Example 98 29 1.555 53 37 Unexposed part with residue 0.5 Example 99 29 1.562 55 44 Good 0.3 Example 1〇〇30 1.562 54 42 Good 0.4 Example 101 34 1.562 33 15 Crack occurred in the core portion of the unexposed portion 0.6 Example 102 39 1.562 24 12 Crack occurred in the core portion of the unexposed portion 0.7 Example 103 43 1.567 48 35 Unexposed portion has residue 0.8 Example 104 33 1.56 6 49 37 Residue in the unexposed part 0.5 Example 105 31 1.555 51 37 Residue in the unexposed part 0.6 -48- 200839331 [Table 12] Composition of the paste composition Disperse skin resin polymerization accelerator The content of barium sulfate in the solid component of the decane coupling agent (% by weight) Content of Compound A and Resin in solid content (% by weight) Sample name (g) Material amount (g) Material amount (g) Material amount (g) Example 106 Dispersion A 9.8 Resin A 2.5 OXE02 0.1 KBM403 0.2 40 57 Column B 2.5 Example 107 Dispersion A 2.4 Resin A 2.5 OXE02 0.1 KBM403 0.2 15 80 Resin B 2.5 Example 108 Dispersion A 3.4 Resin A 2.5 OXE02 0.1 KBM403 0.2 20 76 Resin B 2.5 Example 109 Dispersion A 15.4 Resin A 1.5 OXE02 0.06 KBM403 0.12 60 38 Resin B 1.5 Example 110 Dispersion A 26.5 Resin A 0.5 OXE02 0.02 KBM403 0.04 80 20 Resin B 0.5 Example 111 Dispersion A 50.1 Resin A 0.25 OXE02 0.01 KBM403 0.02 85 15 Resin B 0.25 Example 112 Dispersion B 9.1 Resin A 2.5 OXE02 0.1 KBM403 0.2 40 57 Resin B 2.5 Example 113 Dispersion B 2.3 shed A 2.5 OXE02 0.1 K BM403 0.2 15 81 Resin B 2.5 Example 114 Dispersion B 3.3 Resin A 2.5 OXE02 0.1 KBM403 0.2 20 76 Resin B 2.5 Example 115 Dispersion B 12.7 Casing A 1.5 OXE02 0.06 KBM403 0.12 60 37 Resin B 1.5 Example 116 Dispersion Liquid B 12.6 Resin A 0.5 OXE02 0.02 KBM403 0,04 80 18 Resin B 0.5 Example 117 Dispersion B 9.7 Resin A 0.25 OXE02 0.01 KBM403 0.02 85 14 Resin B 0.25 Example 118 Dispersion c 9.3 Column A 2.5 OXE02 0.1 KBM403 0.2 40 57 Resin B 2.5 Example 119 Dispersion C 2.4 Resin A 2.5 OXE02 0.1 KBM403 0.2 15 80 Resin B 2.5 Example 120 Dispersion c 3.4 Resin A 2.5 OXE02 0.1 KBM403 0.2 20 75 Resin B 2.5 Example 121 Dispersion C 13.3 Resin A 1.5 OXE02 0.06 KBM403 0.12 60 38 Resin B 1.5 Example 122 Dispersion C 14.7 Resin A 0.5 OXE02 0.02 KBM403 0.04 80 20 Resin B 0.5 Example 123 Dispersion c 12.4 Resin A 0.25 OXE02 0.01 KBM403 0.02 85 15 Resin B 0.25 -49- 200839331 [Table 13] Results Average particle diameter (nm) in the paste composition Refractive index Refractive index Temperature dependence (ppm/°C) Linear expansion ratio (ppm/°C) Developmental Light Propagation Loss (dB/cm) Example 106 25 1.561 50 40 Good 0.3 Example 107 24 1.557 55 48 Good 0.3 Example 108 26 1.558 54 47 Good 0.3 Example 109 26 1.565 42 33 Good 0.3 Example 110 27 1.573 32 21 Good 0.4 Example 111 31 1.576 25 16 Unexposed part has crack in the core of the residue 0.5 Example 112 37 1.563 51 41 Good 0.6 Example 113 36 1.558 56 48 Good 0.5 Example 114 35 1.559 53 46 Good 0.6 Example 115 36 1.570 42 33 Good 0.6 Example 116 39 1.581 30 20 Good 0.7 Example 1Π 41 1.585 24 15 Unexposed portion has cracks in the residue core 0.8 Example 118 26 1.563 51 40 Good 0.3 Example 119 24 1.558 55 47 is good 0.3 Example 120 24 1.559 55 47 Good 0.3 Example 121 26 1.569 43 33 Good 0.3 Example 122 28 1.579 31 21 Good 0.4 Example 123 30 1.582 25 16 Unexposed part has a residue core crack 0.5 - 50- 200839331 [Table 14] Paste composition composition dispersion liquid resin polymerization accelerator cesium hydride coupling agent solid content of barium sulfate (% by weight) Content of Compound A and Resin in Solid Content (% by volume) Sample Name (g) Material Quantity (g) Material Quantity (g) Material (g) Example 124 Dispersion D 11.0 Resin A 2.5 OXE02 0.1 KBM403 0.2 40 57 Resin B 2.5 Example 125 Dispersion D 2.5 Resin A 2.5 OXE02 0.1 KBM403 0.2 15 81 Resin B 2.5 Example 126 Dispersion D 3.6 Resin A 2.5 OXE02 0.1 KBM403 0.2 20 76 Resin B 2.5 Example 127 Dispersion D 21.7 Resin A 1.5 OXE02 0.06 KBM403 0.12 60 39 Resin B 1.5 Example 128 Dispersion A 9.4 Casing A 2.5 OXE02 0.1 No ^ττΤ Μ 40 59 Resin B 2.5 Example 129 Dispersion A 2.3 shed A 2.5 OXE02 0.1 Sister 15 83 Resin B 2.5 Example 130 Dispersion A 3.3 Resin A 2.5 OXE02 0.1 迦 20 20 79 Column B 2.5 Example 131 Dispersion A 14.8 Resin A 1.5 OXE02 0.06 No i ιΓ. ΤΓΓΓ J\\\ 60 39 Resin B 1.5 Implementation Example 132 Dispersion A 25.5 Resin A 0.5 OXE02 0.02 Μ j\\\ Μ 80 20 Resin B 0.5 Example 133 Dispersion A 48.2 Test A 0.25 OXE02 0.01 4 ml iMt! Pick 85 15 Resin B 0.25 Example 134 Dispersion B 8.7 Resin A 2.5 OXE02 0.1 • Yiir. TiTTT j\w Μ /\\\ 40 59 Resin B 2.5 Example 135 Dispersion C 8.9 shed A 2.5 OXE02 0.1 M y\\\ Μ y\\\ 40 59 Shelter B 2.5 Example 136 Dispersion D 10.6 Resin A 2.5 OXE02 0.1 M 5ε j\\\ 40 59 Purpose B 2.5 Example 137 Dispersion E 9.8 Resin A 2.5 OXE02 0.1 KBM403 0.2 40 57 Resin B 2.5 Example 138 Dispersion E 2.4 Resin A 2.5 OXE02 0.1 KBM403 0.2 15 80 shed B 2.5 Example 139 Dispersion E 3.4 Resin A 2.5 OXE02 0.1 KBM403 0.2 20 76 shed B 2.5 Example 140 Dispersion E 26.5 Resin A 0.5 OXE02 0.02 KBM403 0.04 80 20 Resin B 0.5 Example 141 Dispersion E 50.1 Benzing A 0.25 OXE02 0.01 KBM403 0.02 85 15 Shelter B 0.25 -51 - 200839331 [Table 15] Results Average particle size (nm) in the paste composition Refractive index Refractive index temperature dependence Properties (ppm/°C) Linear Expansion Ratio (ppm/°C) Developmental Light Propagation Loss (dB/cm) Example 124 26 1.558 52 39 Good 0.5 Example 125 25 1.557 55 48 Good 0.4 Example 126 26 1.557 54 47 Good 0.5 Example 127 27 1.559 42 33 Good 0.6 Example 128 2 4 1.561 51 40 Good 0.4 Example 129 23 1.557 56 47 Good 0.3 Example 130 25 1.558 55 46 Good 0.3 Example 131 26 1.565 43 32 Good 0.4 Example 132 28 1.573 32 21 Core cracking 0.4 Example 133 31 1.576 24 17 Unexposed part has crack in the core of the residue 0.5 Example 134 26 1.563 50 40 Good 0.6 Example 135 25 1.563 51 39 Good 0.4 Example 136 25 1.558 52 40 Good 0.5 Example 137 29 1.557 52 40 Good 0.5 Example 138 30 1.556 56 48 Good 0.3 Example 139 30 1.557 55 47 Good 0.4 Example 140 35 1.561 31 21 Good 0.5 Example 141 40 1.562 25 16 Unexposed part has cracks in the core of the residue 0.6 -52- 200839331 [Table 16] Paste composition

分散液 測旨 聚合促進劑 矽烷偶合劑 固體成 分中的 硫酸鋇 含量(重 量%) 固體成分 中的化合 物A與樹 脂的含量 (重量%) 樣品名 量(克) 材料 量(克) 材料 量(克) 材料 量(克) 實施例142 分散液F 9.1 樹脂A 2.5 OXE02 0.1 KBM403 0.2 40 57 樹脂B 2.5 實施例143 分散液G 9.3 樹脂A 2.5 OXE02 0.1 KBM403 0.2 40 57 樹脂B 2.5 實施例144 分散液Η 11.0 棚旨A 2.5 OXE02 0.1 KBM403 0.2 40 57 樹脂B 2.5 實施例145 分散液Ε 9.4 樹脂A 2.5 OXE02 0.1 並 >frrr 40 59 樹脂B 2.5 實施例146 分散液Ε 2.3 樹脂A 2.5 OXE02 0.1 4rrr tilt* j\\\ M j\\\ 15 83 樹脂B 2.5 實施例147 分散液Ε 3.3 棚旨A 2.5 OXE02 0.1 並 j\\\ 無 20 79 棚旨B 2.5 實施例148 分散液Ε 25.5 樹脂A 0.5 OXE02 0.02 Μ ^\\\ 赫 j\\\ 80 20 樹脂B 0.5 實施例149 分散液Ε 48.2 樹脂A 0.25 OXE02 0.01 Ittt! j \\\ M j \\\ 85 15 樹脂B 0.25 實施例150 分散液F 8.7 樹脂A 2.5 OXE02 0.1 M j\\\ ^\\\ 40 59 棚旨B 2.5 實施例151 分散液G 8.9 觀旨A 2.5 OXE02 0.1 输 J \ w 40 59 樹脂B 2.5 實施例152 分散液Η 10.6 樹脂A 2.5 OXE02 0.1 M j\\\ 赫 j \\\ 40 59 樹脂B 2.5 -53- 200839331 【表17】 結果 糊組成物 中的平均 粒徑(nm) 折射率 折射率溫度 依賴性 (ppm/°C) 線膨脹率 (ppm/°C) 顯像性 光傳播損失 (dB/cm) 實施例142 44 1.562 50 41 良好 0.7 實施例143 32 1.561 49 41 良好 0.5 實施例144 30 1.551 52 40 良好 0.6 實施例145 30 1.557 50 40 良好 0.5 實施例146 28 1.556 54 47 良好 0.3 實施例147 29 1.557 55 46 良好 0.4 實施例148 36 1.561 30 20 芯部發生裂紋 0.5 實施例149 39 1.562 24 15 未曝光部有殘渣 芯部發生裂紋 0.6 實施例150 42 1.562 50 41 良好 0.7 實施例151 29 1.561 51 39 良好 0.5 實施例152 31 1.551 50 39 良好 0.6 -54- 200839331 【表18】 糊組成物組成 分散液 樹脂 聚合促進劑 矽烷偶合劑 固體成分 中的硫酸 鋇含量(重 量%) 固體成分 中的化合 物A與樹 脂的含量 (重量%) 樣品名 量(克) 材料 量 (克) 材料 量(克) 材料 量(克) 實施例153 分散液I 9.8 樹脂A 5 OXE02 0.1 KBM403 0.2 40 57 實施例154 分散液I 2.4 樹脂A 5 OXE02 0.1 KBM403 0.2 15 80 實施例155 分散液I 3.4 樹脂A 5 OXE02 0.1 KBM403 0.2 20 76 實施例156 分散液I 15.4 樹脂A 3 OXE02 0.06 KBM403 0.12 60 38 實施例157 分散液I 26.5 樹脂A 1 OXE02 0.02 KBM403 0.04 80 20 實施例158 分散液I 50.1 樹脂A 0.5 OXE02 0.01 KBM403 0.02 85 15 實施例159 分散液J 9.1 樹脂A 5 OXE02 0.1 KBM403 0.2 40 57 實施例160 分散液J 2.3 樹脂A 5 OXE02 0.1 KBM403 0.2 15 81 實施例161 分散液J 3.3 樹脂A 5 OXE02 0.1 KBM403 0.2 20 76 實施例162 分散液J 12.7 樹脂A 3 OXE02 0.06 KBM403 0.12 60 37 實施例163 分散液J 12.6 樹脂A 1 OXE02 0.02 KBM403 0.04 80 18 實施例164 分散液J 9.7 樹脂A 0.5 OXE02 0.01 KBM403 0.02 85 14 實施例165 分散液κ 9.3 樹脂A 5 OXE02 0.1 KBM403 0.2 40 57 實施例166 分散液K 2.4 樹脂A 5 OXE02 0.1 KBM403 0.2 15 80 實施例167 分散液K 3.4 樹脂A 5 OXE02 0,1 KBM403 0.2 20 75 實施例168 分散液K 13.3 樹脂A 3 OXE02 0.06 KBM403 0.12 60 38 實施例169 分散液K 14.7 樹脂A 1 OXE02 0.02 KBM403 0.04 80 20 實施例170 分散液κ 12.4 樹脂A 0.5 OXE02 0.01 KBM403 0.02 85 15 實施例Π1 分散液L 11.0 樹脂A 5 OXE02 0.1 KBM403 0.2 40 57 實施例172 分散液L 2.5 樹脂A 5 OXE02 0.1 KBM403 0.2 15 81 實施例Π3 分散液L 3.6 樹脂A 5 OXE02 0.1 KBM403 0.2 20 Ί6 實施例Π4 分散液L 21.7 樹脂A 3 OXE02 0.06 KBM403 0.12 60 39 -55- 200839331 【表19】 結果 糊組成 物中的 平均粒 徑(nm) 折射率 折射率溫 度依賴性 (ppm/°C) 線膨脹率 (ppm/°C) 顯像性 光傳播損失 (dB/cm) 實施例153 21 1.552 51 44 良好 0.4 實施例154 20 1.550 55 52 良好 0.3 實施例155 21 1.551 54 51 良好 0.3 實施例156 23 1.553 44 38 良好 0.4 實施例157 26 1.556 31 24 未曝光部有殘渣 0.4 實施例158 28 1.557 26 19 未曝光部有殘渣 芯部發生裂紋 0.5 實施例159 35 1.557 51 46 良好 0.6 實施例160 33 1.552 56 53 良好 0.5 實施例161 33 1.553 55 51 良好 0.6 實施例162 36 1.563 43 36 良好 0.7 實施例163 37 1.574 33 25 未曝光部有殘渣 0.7 實施例164 38 1.578 25 16 未曝光部有殘渣 芯部發生裂紋 0.8 實施例165 22 1.556 49 44 良好 0.4 實施例166 21 1.552 55 50 良好 0.3 實施例167 22 1.552 55 49 良好 0.3 實施例168 24 1.561 43 38 良好 0.4 實施例169 26 1.569 30 23 未曝光部有殘渣 0.4 實施例Π0 29 1.572 24 18 未曝光部有殘渣 芯部發生裂紋 0.5 實施例171 22 1.544 53 43 良好 0.5 實施例172 21 1.548 55 51 良好 0.4 實施例173 22 1.548 55 51 良好 0.4 實施例Π4 23 1.539 43 37 良好 0.6 -56- 200839331Dispersion measurement The polymerization accelerator cesium hydride coupling agent solid content of barium sulfate (% by weight) Solid content of compound A and resin content (% by weight) Sample name (g) Material amount (g) Material amount (g Material amount (g) Example 142 Dispersion F 9.1 Resin A 2.5 OXE02 0.1 KBM403 0.2 40 57 Resin B 2.5 Example 143 Dispersion G 9.3 Resin A 2.5 OXE02 0.1 KBM403 0.2 40 57 Resin B 2.5 Example 144 Dispersion Η 11.0 BOX A 2.5 OXE02 0.1 KBM403 0.2 40 57 Resin B 2.5 Example 145 Dispersion Ε 9.4 Resin A 2.5 OXE02 0.1 and > frrr 40 59 Resin B 2.5 Example 146 Dispersion Ε 2.3 Resin A 2.5 OXE02 0.1 4rrr tilt* j\\\ M j\\\ 15 83 Resin B 2.5 Example 147 Dispersion Ε 3.3 shed A 2.5 OXE02 0.1 and j\\\ No 20 79 shed B 2.5 Example 148 Dispersion Ε 25.5 Resin A 0.5 OXE02 0.02 Μ ^\\\ 赫 j\\\ 80 20 Resin B 0.5 Example 149 Dispersion Ε 48.2 Resin A 0.25 OXE02 0.01 Ittt! j \\\ M j \\\ 85 15 Resin B 0.25 Example 150 Dispersion F 8.7 Resin A 2.5 OXE02 0.1 M j\\\ ^\\\ 40 59 Purpose B 2.5 Example 151 Dispersion G 8.9 Purpose A 2.5 OXE02 0.1 Loss J \ w 40 59 Resin B 2.5 Example 152 Dispersion Η 10.6 Resin A 2.5 OXE02 0.1 M j\\\ 赫 j \\\ 40 59 Resin B 2.5 -53- 200839331 [Table 17] Results Average particle size (nm) in the paste composition Refractive index Refractive index Temperature dependence (ppm/°C) Linear expansion ratio (ppm/°C) Imaging light propagation loss (dB/cm) Example 142 44 1.562 50 41 Good 0.7 Example 143 32 1.561 49 41 Good 0.5 Example 144 30 1.551 52 40 Good 0.6 Example 145 30 1.557 50 40 Good 0.5 Example 146 28 1.556 54 47 Good 0.3 Example 147 29 1.557 55 46 Good 0.4 Example 148 36 1.561 30 20 Crack occurred in the core 0.5 Example 149 39 1.562 24 15 Crack in the core portion of the unexposed portion 0.6 Example 150 42 1.562 50 41 Good 0.7 Example 151 29 1.561 51 39 Good 0.5 Example 152 31 1.551 50 39 Good 0.6 -54- 200839331 [Table 18] Paste composition composition Dispersion resin polymerization accelerator 矽 偶 偶 coupling agent solid content of barium sulfate (% by weight) Solid content Content of Compound A and Resin (% by weight) Sample Name (g) Material Quantity (g) Material Quantity (g) Material Quantity (g) Example 153 Dispersion I 9.8 Resin A 5 OXE02 0.1 KBM403 0.2 40 57 Example 154 Dispersion I 2.4 Resin A 5 OXE02 0.1 KBM403 0.2 15 80 Example 155 Dispersion I 3.4 Resin A 5 OXE02 0.1 KBM403 0.2 20 76 Example 156 Dispersion I 15.4 Resin A 3 OXE02 0.06 KBM403 0.12 60 38 Example 157 Dispersion Liquid I 26.5 Resin A 1 OXE02 0.02 KBM403 0.04 80 20 Example 158 Dispersion I 50.1 Resin A 0.5 OXE02 0.01 KBM403 0.02 85 15 Example 159 Dispersion J 9.1 Resin A 5 OXE02 0.1 KBM403 0.2 40 57 Example 160 Dispersion J 2.3 Resin A 5 OXE02 0.1 KBM403 0.2 15 81 Example 161 Dispersion J 3.3 Resin A 5 OXE02 0.1 KBM403 0.2 20 76 Example 162 Dispersion J 12.7 Resin A 3 OXE02 0.06 KBM403 0.12 60 37 Example 163 Dispersion J 12.6 Resin A 1 OXE02 0.02 KBM403 0.04 80 18 Example 164 Dispersion J 9.7 Resin A 0.5 OXE02 0.01 KBM403 0.02 85 14 Example 165 Dispersion κ 9.3 Resin A 5 OXE02 0.1 KBM403 0.2 40 57 Example 166 Dispersion K 2.4 Resin A 5 OXE02 0.1 KBM403 0.2 15 80 Example 167 Dispersion K 3.4 Resin A 5 OXE02 0,1 KBM403 0.2 20 75 Example 168 Dispersion K 13.3 Resin A 3 OXE02 0.06 KBM403 0.12 60 38 Example 169 Dispersion K 14.7 Resin A 1 OXE02 0.02 KBM403 0.04 80 20 Example 170 Dispersion κ 12.4 Resin A 0.5 OXE02 0.01 KBM403 0.02 85 15 Example Π1 Dispersion L 11.0 Resin A 5 OXE02 0.1 KBM403 0.2 40 57 Example 172 Dispersion L 2.5 Resin A 5 OXE02 0.1 KBM403 0.2 15 81 Example Π 3 Dispersion L 3.6 Resin A 5 OXE02 0.1 KBM403 0.2 20 Ί 6 Example Π 4 Dispersion L 21.7 Resin A 3 OXE02 0.06 KBM403 0.12 60 39 -55- 200839331 [Table 19] Results Average particle diameter (nm) in the paste composition Refractive index Refractive index Temperature dependence (ppm/°C) Linear expansion ratio (ppm/°C) Developmental light propagation loss (dB/cm) Example 153 21 1.552 51 44 Good 0.4 Example 154 20 1.550 55 52 Good 0.3 Example 155 21 1.551 54 51 Good 0.3 Example 156 23 1.553 44 38 Good 0.4 Example 157 26 1.556 31 24 Unexposed portion has a residue of 0.4 Example 158 28 1.557 26 19 Unexposed portion having cracks in the residue core 0.5 Example 159 35 1.557 51 46 Good 0.6 Example 160 33 1.552 56 53 Good 0.5 Example 161 33 1.553 55 51 Good 0.6 Example 162 36 1.563 43 36 Good 0.7 Example 163 37 1.574 33 25 Unexposed portion with residue 0.7 Example 164 38 1.578 25 16 Unexposed portion with crack in the core portion 0.8 Example 165 22 1.556 49 44 Good 0.4 Example 166 21 1.552 55 50 Good 0.3 Example 167 22 1.552 55 49 Good 0.3 Example 168 24 1.561 43 38 Good 0.4 Example 169 26 1.569 30 23 Residue in the unexposed portion 0.4 Example Π0 29 1.572 24 18 Unexposed portion has a crack in the core portion 0.5 Example 171 22 1.544 53 43 Good 0.5 Example 172 21 1.548 55 51 Good 0.4 Example 173 22 1.548 55 51 Good 0.4 Example Π 4 23 1.539 43 37 Good 0.6 -56- 200839331

【表20】 糊組成物組成 分散液 刪旨 聚合促進劑 矽烷偶合劑 固體成分 中的硫酸 鋇含量 (重暈%) 固體成分 中的化合 物A與樹 脂的含量 (重量%) 樣品名 量(克) 材料 旦 里 (克) 材料 量(克) 材料 量(克) 實施例175 分散液I 9.4 樹脂A 5 OXE02 0.1 dux: 無 40 59 實施例176 分散液I 2.3 樹脂A 5 OXE02 0.1 並 Μ j \\\ 15 83 實施例177 分散液I 3.3 樹脂A 5 OXE02 0.1 無 Μ j \\\ 20 79 實施例Π8 分散液I 14.8 樹脂A 3 OXE02 0.06 4τττ 1ΙΤΙ 4ττγ ΊιίΓ «μ 60 39 實施例179 分散液I 25.5 観旨A 1 OXE02 0.02 並 Μ j \\\ 80 20 實施例180 分散液I 48.2 樹脂A 0.5 OXE02 0.01 Μ 85 15 實施例181 分散液J 8.7 樹脂A 5 OXE02 0.1 並 «/WN Μ j \\\ 40 59 實施例182 分散液J 2.2 樹脂A 5 OXE02 0.1 J\\\ 並 15 84 實施例183 分散液J 3.2 樹脂A 5 OXE02 0.1 無 Μ j \\\ 20 79 實施例184 分散液J 12.2 樹脂A 3 OXE02 0.06 M Μ 4 V ΝΝ 60 39 實施例185 分散液J 12.1 樹脂A 1 OXE02 0.02 M j\\\ Μ j\\\ 80 20 實施例186 分散液J 9.3 棚旨A 0.5 OXE02 0.01 ^\\\ Α\\\λ Mil 85 14 實施例187 分散液K 8.9 棚旨A 5 OXE02 0.1 無 dnL· πΤΓ 40 59 實施例188 分散液K 2.3 樹脂A 5 OXE02 0.1 J\\\ ΤΠΓ* J\\\ 15 83 實施例189 分散液K 3.3 樹脂A 5 OXE02 0.1 無 無 20 78 實施例190 分散液K 12.8 樹脂A 3 OXE02 0.06 j \ \\ Μ J\\\ 60 39 實施例191 分散液K 14.2 樹脂A 1 OXE02 0.02 >fnr IMF J\\\ Μ j \\\ 80 20 實施例192 分散液K 12.0 樹脂A 0.5 OXE02 0.01 無 >fnT- ΤΓΤΤ: J\\\ 85 15 實施例193 分散液 10.6 棚旨A 5 OXE02 0.1 4fff j\\\ inL 挑 40 59 實施例194 分散液L 2.4 棚旨A 5 OXE02 0.1 >frn* TTli 15 84 實施例195 分散液L 3.5 樹脂A 5 OXE02 0.1 無 >fnr. ΠΠΤ 20 78 實施例196 分散液L 20.9 樹脂A 3 OXE02 0.06 無 M J \ w 60 40 -57- 200839331 【表21】 結果 糊組成 物中的 平均粒 徑(nm) 折射率 折射率溫 度依賴性 (ppm/°C) 線膨脹率 (ppm/°C) 顯像性 光傳播損失(dB/cm) 實施例175 23 1.552 51 43 良好 0.4 實施例Π6 21 1.550 56 52 良好 0.3 實施例Π7 21 1.551 55 51 良好 0.3 實施例178 24 1.553 44 37 未曝光部有殘渣 0.5 實施例179 27 1.556 30 25 未曝光部有殘渣 芯部發生裂紋 0.5 實施例180 28 1.557 25 18 未曝光部有殘渣 芯部發生裂紋 0.6 實施例181 35 1.557 53 46 良好 0.7 實施例182 33 1.552 56 51 良好 0.5 實施例183 34 1.553 56 50 良好 0.6 實施例184 37 1.563 45 37 未曝光部有殘渣 0.7 實施例185 38 1.574 33 25 未曝光部有殘渣 芯部發生裂紋 0.8 實施例186 40 1.578 26 17 未曝光部有殘渣 芯部發生裂紋 0.9 實施例187 22 1.556 49 44 良好 0.4 實施例188 20 1.552 56 51 良好 0.3 實施例189 20 1.552 55 50 良好 0.3 實施例190 22 1.561 44 37 未曝光部有殘渣 0.5 實施例191 26 1.569 31 22 未曝光部有殘渣 芯部發生裂紋 0.5 實施例192 28 1.572 25 19 未曝光部有殘渣 芯部發生裂紋 0.6 實施例193 21 1.544 53 44 良好 0.5 實施例194 20 1.548 54 51 良好 0.4 實施例195 21 1.548 54 50 良好 0.4 實施例196 22 1.539 43 36 未曝光部有殘渣 0.6 -58- 200839331 【表22】 糊組成物組成 分散液 棚旨 聚合促進劑 矽烷偶合劑 固體成分 固體成分 中的化合 物A與樹 脂的含量 (軍暈%) 樣品名 里 (克) 材料 量 (克) 材料 量(克) 材料 量(克) 中的硫酸 鋇含量 (重暈%) 實施例197 分散液Μ 9.8 棚旨A 5 OXE02 0.1 KBM403 0.2 40 57 實施例198 分散液Μ 2.4 觀旨A 5 OXE02 0.1 KBM403 0.2 15 80 實施例199 分散液Μ 3.4 樹脂A 5 OXE02 0.1 KBM403 0.2 20 76 實施例200 分散液Μ 15.4 樹脂A 3 OXE02 0.06 ICBM403 0.12 60 38 實施例201 分散液Μ 26.5 欄旨A 1 OXE02 0.02 KBM403 0.04 80 20 實施例202 分散液Μ 50.1 棚旨A 0.5 OXE02 0.01 KBM403 0.02 85 15 實施例203 分散液Μ 9.4 棚旨A 5 OXE02 0.1 Μ >fnT Πιί J\\\ 40 59 實施例204 分散液Μ 2.3 樹脂A 5 OXE02 0.1 4ml tttr j\w Μ J i 15 83 實施例205 分散液Μ 3.3 樹脂A 5 OXE02 0.1 ΑττΤ. lHI? J\\\ 4ttT. iitr y\\n 20 79 實施例206 分散液Μ 14.8 樹脂A 3 OXE02 0.06 'till· J\\\ 無 60 39 實施例207 分散液Μ 25.5 樹脂A 1 OXE02 0.02 M 無 80 20 實施例208 分散液Μ 48.2 樹脂A 0.5 OXE02 0.01 無 無 85 15 ί -59- 200839331 【表23】 結果 糊組成物 中的平均 粒徑(nm) 折射率 折射率溫度 依賴性 (ppm/°C) 線膨脹率 (ppm/°C) 顯像性 光傳播損失 (dB/cm) 實施例197 35 1.558 51 43 良好 0.6 實施例198 34 1.552 54 52 良好 0.5 實施例199 34 1.553 54 51 良好 0.6 實施例200 37 1.565 45 37 良好 0.6 實施例201 39 1.578 32 24 未曝光部有殘渣 0.7 實施例202 40 1.582 26 20 未曝光部有殘渣 芯部發生裂紋 0.8 實施例203 36 1.558 52 44 良好 0.6 實施例204 33 1.552 55 51 良好 0.5 實施例205 34 1.553 55 49 良好 0.6 實施例206 38 1.565 45 37 未曝光部有殘渣 0.7 實施例207 39 1.578 31 25 未曝光部有殘渣 芯部發生裂紋 0.8 實施例208 41 1.582 26 19 未曝光部有殘渣 芯部發生裂紋 0.9[Table 20] Paste composition composition dispersion liquid polymerization accelerator decane coupling agent solid content of barium sulfate content (% halo) Solid content of compound A and resin content (% by weight) Sample name (g) Material denier (grams) Material amount (g) Material amount (g) Example 175 Dispersion I 9.4 Resin A 5 OXE02 0.1 dux: No 40 59 Example 176 Dispersion I 2.3 Resin A 5 OXE02 0.1 and Μ j \\ \ 15 83 Example 177 Dispersion I 3.3 Resin A 5 OXE02 0.1 No Μ j \\\ 20 79 Example Π 8 Dispersion I 14.8 Resin A 3 OXE02 0.06 4τττ 1ΙΤΙ 4ττγ ΊιίΓ «μ 60 39 Example 179 Dispersion I 25.5 A A A 1 OXE02 0.02 and Μ j \\\ 80 20 Example 180 Dispersion I 48.2 Resin A 0.5 OXE02 0.01 Μ 85 15 Example 181 Dispersion J 8.7 Resin A 5 OXE02 0.1 and «/WN Μ j \\\ 40 59 Example 182 Dispersion J 2.2 Resin A 5 OXE02 0.1 J\\\ and 15 84 Example 183 Dispersion J 3.2 Resin A 5 OXE02 0.1 No Μ j \\\ 20 79 Example 184 Dispersion J 12.2 Resin A 3 OXE02 0.06 M Μ 4 V ΝΝ 60 39 Example 185 Dispersion J 12. 1 Resin A 1 OXE02 0.02 M j\\\ Μ j\\\ 80 20 Example 186 Dispersion J 9.3 shed A 0.5 OXE02 0.01 ^\\\ Α\\\λ Mil 85 14 Example 187 Dispersion K 8.9棚 A 5 OXE02 0.1 No dnL· πΤΓ 40 59 Example 188 Dispersion K 2.3 Resin A 5 OXE02 0.1 J\\\ ΤΠΓ* J\\\ 15 83 Example 189 Dispersion K 3.3 Resin A 5 OXE02 0.1 No 20 78 Example 190 Dispersion K 12.8 Resin A 3 OXE02 0.06 j \ \\ Μ J\\\ 60 39 Example 191 Dispersion K 14.2 Resin A 1 OXE02 0.02 > fnr IMF J\\\ Μ j \\\ 80 20 Example 192 Dispersion K 12.0 Resin A 0.5 OXE02 0.01 N/gt; fnT- ΤΓΤΤ: J\\\ 85 15 Example 193 Dispersion 10.6 shed A 5 OXE02 0.1 4fff j\\\ inL Pick 40 59 Example 194 Dispersion L 2.4 shed A 5 OXE02 0.1 > frn* TTli 15 84 Example 195 Dispersion L 3.5 Resin A 5 OXE02 0.1 No > fnr. ΠΠΤ 20 78 Example 196 Dispersion L 20.9 Resin A 3 OXE02 0.06 No MJ \ w 60 40 -57- 200839331 [Table 21] Result Average particle size (nm) in the paste composition Refractive index Refractive index Temperature dependence (ppm/°C) Linear expansion ratio (ppm/°C) Developmental light propagation loss (dB/cm) Example 175 23 1.552 51 43 Good 0.4 Example Π6 21 1.550 56 52 Good 0.3 Example Π7 21 1.551 55 51 Good 0.3 Example 178 24 1.553 44 37 Unexposed portion has residue 0.5 Example 179 27 1.556 30 25 Crack in the core portion of the unexposed portion 0.5 Example 180 28 1.557 25 18 Crack in the core portion of the unexposed portion 0.6 Example 181 35 1.557 53 46 Good 0.7 Example 182 33 1.552 56 51 good 0.5 Example 183 34 1.553 56 50 Good 0.6 Example 184 37 1.563 45 37 Unexposed portion with residue 0.7 Example 185 38 1.574 33 25 Unexposed portion with crack in the core portion 0.8 Example 186 40 1.578 26 17 The exposed portion has cracks in the residue core portion. Example 187 22 1.556 49 44 Good 0.4 Example 188 20 1.552 56 51 Good 0.3 Example 189 20 1.552 55 50 Good 0.3 Example 190 22 1.561 44 37 Unexposed portion has a residue 0.5 Example 191 26 1.569 31 22 Cracks occurred in the core portion of the unexposed portion 0.5 Example 192 28 1.572 25 19 The unexposed portion has cracks in the residue core. 6 Example 193 21 1.544 53 44 Good 0.5 Example 194 20 1.548 54 51 Good 0.4 Example 195 21 1.548 54 50 Good 0.4 Example 196 22 1.539 43 36 Unexposed part with residue 0.6 -58- 200839331 [Table 22] Paste Composition Composition Dispersion Concentrate Polymerization accelerator decane coupling agent Content of compound A and resin in solid content solid component (Military halo%) Sample name (g) Material amount (g) Material amount (g) Material amount (g Barium sulphate content (% halo) Example 197 Dispersion Μ 9.8 A 5 OXE02 0.1 KBM403 0.2 40 57 Example 198 Dispersion Μ 2.4 A5 OXE02 0.1 KBM403 0.2 15 80 Example 199 Dispersion 3.4 3.4 Resin A 5 OXE02 0.1 KBM403 0.2 20 76 Example 200 Dispersion Μ 15.4 Resin A 3 OXE02 0.06 ICBM403 0.12 60 38 Example 201 Dispersion Μ 26.5 Column A 1 OXE02 0.02 KBM403 0.04 80 20 Example 202 Dispersion Μ 50.1 shed A 0.5 OXE02 0.01 KBM403 0.02 85 15 Example 203 Dispersion Μ 9.4 A5 OXE02 0.1 Μ >fnT Πιί J\\\ 40 59 Example 204 Dispersion Μ 2.3 Resin A 5 OXE02 0.1 4 ml tttr j\w Μ J i 15 83 Example 205 Dispersion Μ 3.3 Resin A 5 OXE02 0.1 ΑττΤ. lHI? J\\\ 4ttT. iitr y\\n 20 79 Example 206 Dispersion Μ 14.8 Resin A 3 OXE02 0.06 'till· J\\\ No 60 39 Example 207 Dispersion Μ 25.5 Resin A 1 OXE02 0.02 M No 80 20 Example 208 Dispersion Μ 48.2 Resin A 0.5 OXE02 0.01 No 85 15 ί -59- 200839331 Table 23] Results Average particle diameter (nm) in the paste composition Refractive index Refractive index Temperature dependence (ppm/°C) Linear expansion ratio (ppm/°C) Developmental light propagation loss (dB/cm) Example 197 35 1.558 51 43 Good 0.6 Example 198 34 1.552 54 52 Good 0.5 Example 199 34 1.553 54 51 Good 0.6 Example 200 37 1.565 45 37 Good 0.6 Example 201 39 1.578 32 24 Unexposed part with residue 0.7 Example 202 40 1.582 26 20 Unexposed part with crack in the core of the residue 0.8 Example 203 36 1.558 52 44 Good 0.6 Example 204 33 1.552 55 51 Good 0.5 Example 205 34 1.553 55 49 Good 0.6 Example 206 38 1.565 45 37 Not exposed Part with residue 0.7 Example 207 39 1.578 31 25 There is residue in the unexposed part. Cracking occurs in the core. 0.8 Example 208 41 1.582 26 19 Residue in the unexposed part Crack in the core 0.9

-60- 200839331 【表24】 糊組成物組成 分散液 棚旨 聚合促進劑 矽烷偶合劑 固體成分 中的硫酸 鋇含量(重 量%) 固體成分中 的化合物A 與樹脂的含 量(重量%) 樣品名 里 (克) 材料 量 (克) 材料 量(克) 材料 量(克) 實施例209 分散液I 9.8 樹脂Β 5 ΟΧΕ02 0.1 ΚΒΜ403 0.2 40 57 實施例210 分散液I 2.4 樹脂Β 5 ΟΧΕ02 0.1 ΚΒΜ403 0.2 15 80 實施例211 分散液I 3.4 樹脂Β 5 ΟΧΕ02 0.1 ΚΒΜ403 0.2 20 76 實施例212 分散液I 15.4 樹脂Β 3 ΟΧΕ02 0.06 ΚΒΜ403 0.12 60 38 實施例213 分散液I 26.5 樹脂Β 1 ΟΧΕ02 0.02 ΚΒΜ403 0.04 80 20 實施例214 分散液I 50.1 棚旨Β 0.5 ΟΧΕ02 0.01 ΚΒΜ403 0.02 85 15 實施例215 分散液J 9.1 樹脂Β 5 ΟΧΕ02 0.1 ΚΒΜ403 0.2 40 57 實施例216 分散液K 9.3 樹脂Β 5 ΟΧΕ02 0.1 ΚΒΜ403 0.2 40 57 實施例217 分散液L 11.0 樹脂Β 5 ΟΧΕ02 0.1 ΚΒΜ403 0.2 40 57 實施例218 分散液I 9.4 觀旨Β 5 ΟΧΕ02 0.1 Μ Μ 40 59 實施例219 分散液I 2.3 樹脂Β 5 ΟΧΕ02 0.1 迦 無 15 83 實施例220 分散液I 3.3 樹脂Β 5 ΟΧΕ02 0.1 Μ j\\\ ^frrr. 無 20 79 實施例221 分散液I 14.8 樹脂Β 3 ΟΧΕ02 0.06 Μ ^\\\ ^πΤ- j \ \\ 60 39 實施例222 分散液I 25.5 棚旨Β 1 ΟΧΕ02 0.02 ίΓ. Μ: /frrr Ι1ΓΓ ^\\\ 80 20 實施例223 分散液I 48.2 樹脂Β 0.5 ΟΧΕ02 0.01 Μ 無 85 15 實施例224 分散液J 8.7 欄旨Β 5 ΟΧΕ02 0.1 4πτ Mil J \ \\ 無 40 59 實施例225 分散液κ 8.9 樹脂Β 5 ΟΧΕ02 0.1 無 >ήττ 40 59 實施例226 分散液L 10.6 樹脂Β 5 ΟΧΕ02 0.1 並 J \ ΝΝ 4rcL 40 59 實施例227 分散液Μ 9.8 樹脂Β 5 ΟΧΕ02 0.1 ΚΒΜ403 0.2 40 57 實施例228 分散液Μ 2.4 樹脂Β 5 ΟΧΕ02 0.1 ΚΒΜ403 0.2 15 80 實施例229 分散液Μ 3.4 樹脂Β 5 ΟΧΕ02 0.1 ΚΒΜ403 0.2 20 76 實施例230 分散液Μ 26.5 樹脂Β 1 ΟΧΕ02 0.02 ΚΒΜ403 0.04 80 20 實施例231 分散液Μ 50.1 樹脂Β 0.5 ΟΧΕ02 0.01 ΚΒΜ403 0.02 85 15 -61 - 200839331 【表25】-60- 200839331 [Table 24] Paste composition composition Dispersion medium polymerization accelerator cerium sulfate coupling agent solid content of barium sulfate content (% by weight) Solid content of compound A and resin content (% by weight) (g) Amount of material (g) Amount of material (g) Amount of material (g) Example 209 Dispersion I 9.8 Resin Β 5 ΟΧΕ 02 0.1 ΚΒΜ 403 0.2 40 57 Example 210 Dispersion I 2.4 Resin Β 5 ΟΧΕ 02 0.1 ΚΒΜ 403 0.2 15 80 Example 211 Dispersion I 3.4 Resin Β 5 ΟΧΕ 02 0.1 ΚΒΜ 403 0.2 20 76 Example 212 Dispersion I 15.4 Resin Β 3 ΟΧΕ 02 0.06 ΚΒΜ 403 0.12 60 38 Example 213 Dispersion I 26.5 Resin Β 1 ΟΧΕ 02 0.02 ΚΒΜ 403 0.04 80 20 Example 214 Dispersion I 50.1 棚 Β 0.5 ΟΧΕ 02 0.01 ΚΒΜ 403 0.02 85 15 Example 215 Dispersion J 9.1 Resin Β 5 ΟΧΕ 02 0.1 ΚΒΜ 403 0.2 40 57 Example 216 Dispersion K 9.3 Resin Β 5 ΟΧΕ 02 0.1 ΚΒΜ 403 0.2 40 57 Example 217 Dispersion L 11.0 Resin Β 5 ΟΧΕ 02 0.1 ΚΒΜ 403 0.2 40 57 Example 218 Dispersion I 9.4 Β Β 5 ΟΧΕ 02 0.1 Μ Μ 40 59 Example 219 Dispersion I 2.3 Resin Β 5 ΟΧΕ 02 0.1 jia no 15 83 Example 220 Dispersion I 3.3 Resin Β 5 ΟΧΕ 02 0.1 Μ j\\\ ^frrr. No 20 79 Example 221 Dispersion I 14.8 Resin Β 3 ΟΧΕ02 0.06 Μ ^\\\ ^πΤ- j \ \\ 60 39 Example 222 Dispersion I 25.5 棚 Β 1 ΟΧΕ02 0.02 ίΓ. Μ: /frrr Ι1ΓΓ ^\\\ 80 20 Example 223 Dispersion I 48.2 Resin Β 0.5 ΟΧΕ02 0.01 Μ No 85 15 Example 224 Dispersion J 8.7 Column Β 5 ΟΧΕ 02 0.1 4πτ Mil J \ \\ No 40 59 Example 225 Dispersion κ 8.9 Resin Β 5 ΟΧΕ 02 0.1 No > ήττ 40 59 Example 226 Dispersion L 10.6 Resin Β 5 ΟΧΕ 02 0.1 and J \ ΝΝ 4rcL 40 59 Example 227 Dispersion Μ 9.8 Resin Β 5 ΟΧΕ 02 0.1 ΚΒΜ 403 0.2 40 57 Example 228 Dispersion Μ 2.4 Resin Β 5 ΟΧΕ 02 0.1 ΚΒΜ 403 0.2 15 80 Example 229 Dispersion Μ 3.4 Resin Β 5 ΟΧΕ 02 0.1 ΚΒΜ 403 0.2 20 76 Example 230 Dispersion Μ 26.5 Resin Β 1 ΟΧΕ 02 0.02 ΚΒΜ 403 0.04 80 20 Example 231 Dispersion Μ 50.1 Resin Β 0.5 ΟΧΕ 02 0.01 ΚΒΜ 4 03 0.02 85 15 -61 - 200839331 [Table 25]

結果 糊組成物 中的平均 粒徑(nm) 折射率 折射率溫度 依賴性 (ppm/°C) 線膨脹率 (ppm/°C) 顯像性 光傳播損失(dB/cm) 實施例209 24 1.560 50 37 良好 0.4 實施例210 23 1.560 53 44 良好 0.3 實施例211 23 1.560 53 43 良好 0.3 實施例212 25 1.559 44 26 未曝光部有殘渣 0.4 實施例213 28 1.559 31 16 未曝光部有殘渣 0.4 實施例214 31 1.559 24 13 未曝光部有殘渣 芯部發生裂紋 0.5 實施例215 34 1.565 49 32 良好 0.6 實施例216 22 1.564 49 35 良好 0.4 實施例217 24 1.552 51 35 良好 0.5 實施例218 21 1.560 51 36 未曝光部有殘渣 0.4 實施例219 22 1.560 54 44 良好 0.3 實施例220 23 1.560 53 43 良好 0.3 實施例221 23 1.559 42 28 未曝光部有殘渣 0.5 實施例222 27 1.559 32 17 未曝光部有殘渣 芯部發生裂紋 0.5 實施例223 32 1.559 22 12 未曝光部有殘渣 芯部發生裂紋 0.6 實施例224 34 1.565 49 30 未曝光部有殘渣 0.7 實施例225 25 1.564 50 35 未曝光部有殘渣 0.4 實施例226 26 1.552 52 33 未曝光部有殘渣 0.5 實施例227 34 1.566 53 37 良好 0.6 實施例228 33 1.562 54 44 良好 0.5 實施例229 35 1.562 53 41 良好 0.6 實施例230 38 1.580 34 18 未曝光部有殘渣 0.8 實施例231 41 1.583 25 12 未曝光部有殘渣 芯部發生裂紋 0.9 -62- 200839331 【表26】 糊組成物組 成 分散货 1 樹脂 聚合促進劑 矽烷偶合劑 固體成 分中的 硫酸鋇 含量(重 量%) 固體成分中 的化合物A 與樹脂的含 量(雷量 樣品名 量 (克) 材料 量(克) 材料 量 (克) 材料 旦 里 (克) 實施例232 分散液I 9.8 樹脂A 2.5 OXE02 0.1 KBM403 0.2 40 57 樹脂B 2.5 實施例233 分散液I 2.4 樹脂A 2.5 OXE02 0.1 KBM403 0.2 15 80 棚旨B 2.5 實施例234 分散液I 3.4 樹脂A 2.5 OXE02 0.1 KBM403 0.2 20 76 樹脂B 2.5 實施例235 分散液I 15.4 樹脂A 1.5 OXE02 0.06 KBM403 0.12 60 38 樹脂B 1.5 實施例236 分散液I 26.5 測旨A 0.5 OXE02 0.02 KBM403 0.04 80 20 樹脂B 0.5 實施例237 分散液I 50.1 樹脂A 0.25 OXE02 0.01 KBM403 0.02 85 15 樹脂B 0.25 實施例238 分散液J 9.1 樹脂A 2.5 OXE02 0.1 KBM403 0.2 40 57 樹脂B 2.5 實施例239 分散液J 2.3 樹脂A 2.5 OXE02 0.1 KBM403 0.2 15 81 IB 2.5 實施例240 分散液J 3.3 樹脂A 2.5 OXE02 0.1 KBM403 0.2 20 76 測旨B 2.5 實施例241 分散液J 12.7 翻旨A 1.5 OXE02 0.06 KBM403 0.12 60 37 樹脂B 1.5 實施例242 分散液J 12.6 樹脂A 0.5 OXE02 0.02 KBM403 0.04 80 18 樹脂B 0.5 實施例243 分散液J 9.7 樹脂A 0.25 OXE02 0.01 KBM403 0.02 85 14 樹脂B 0.25 實施例244 分散液κ 9.3 樹脂A 2.5 OXE02 0.1 KBM403 0.2 40 57 樹脂B 2.5 實施例245 分散液κ 2.4 樹脂A 2.5 OXE02 0.1 KBM403 0.2 15 80 樹脂B 2.5 實施例246 分散液K 3.4 樹脂A 2.5 OXE02 0.1 KBM403 0.2 20 75 樹脂B 2.5 實施例247 分散液κ 13.3 樹脂A 1.5 OXE02 0.06 KBM403 0.12 60 38 樹脂B 1.5 實施例248 分散液κ 14.7 樹脂A 0.5 OXE02 0.02 KBM403 0.04 80 20 樹脂B 0.5 實施例249 分散液κ 12.4 樹脂A 0.25 OXE02 0.01 KBM403 0.02 85 15 樹脂B 0.25 -63- 200839331 【表27】 結果 糊組成物 中的平均 粒徑(nm) 折射率 折射率溫度依 賴性 (ppm/°C) 線膨脹率 (ppm/°C) 顯像性 光傳播損失 (dB/cm) 實施例232 22 1.556 50 41 良好 0.3 實施例233 21 1.555 54 49 良好 0.3 實施例234 23 1.555 53 47 良好 0.3 實施例235 25 1.557 40 33 良好 0.3 實施例236 27 1.558 31 20 良好 0.4 實施例237 32 1.558 24 16 未曝光部有殘渣 芯部發生裂紋 0.5 實施例238 36 1.561 51 41 良好 0.6 實施例239 37 1.557 55 47 良好 0.5 實施例240 34 1.558 53 46 良好 0.6 實施例241 38 1.567 42 33 良好 0.6 實施例242 39 1.577 29 21 良好 0.7 實施例243 41 1.580 25 15 未曝光部有殘渣 芯部發生裂紋 0.8 實施例244 25 1.560 51 41 良好 0.3 實施例245 23 1.556 56 48 良好 0.3 實施例246 23 1.557 55 47 良好 0.3 實施例247 25 1.564 44 34 良好 0.3 實施例248 28 1.571 31 22 良好 0.4 實施例249 30 1.574 24 17 未曝光部有殘渣 芯部發生裂紋 0.5 -64- 200839331 【表28】 糊組成物組成 分散液 樹脂 聚合促進劑 矽烷偶合劑 固髒成分 固體成分 中的化合 物A與樹 脂的含量 (雷量%) 樣品名 量 (克) 材料 量(克) 材料 量(克) 材料 量(克) 中的硫酸 鋇含量 (重量%) 實施例250 分散液L 11.0 樹脂A 2.5 OXE02 0.1 KBM403 0.2 40 57 樹脂B 2.5 實施例251 分散液L 2.5 樹脂A 2.5 OXE02 0.1 KBM403 0.2 15 81 樹脂B 2.5 實施例252 分散液L 3.6 樹脂A 2.5 OXE02 0.1 KBM403 0.2 20 76 樹脂B 2.5 實施例253 分散液L 21.7 樹脂A 1.5 OXE02 0.06 KBM403 0.12 60 39 樹脂B 1.5 實施例254 分散液I 9.4 樹脂A 2.5 OXE02 0.1 Μ V V ΝΝ 並 J \ w 40 59 樹脂B 2.5 實施例255 分散液I 2.3 樹脂A 2.5 OXE02 0.1 4ητ m >frrr. iMtr j\\\ 15 83 樹脂B 2.5 實施例256 分散液I 3.3 樹脂A 2.5 OXE02 0.1 Μ. j\w 並 j\\\ 20 79 樹脂B 2.5 實施例257 分散液I 14.8 樹脂A 1.5 OXE02 0.06 無 inL 视 60 39 樹脂B 1.5 實施例258 分散液I 25.5 樹脂A 0.5 OXE02 0.02 無 80 20 樹脂B 0.5 實施例259 分散液I 48.2 樹脂A 0.25 OXE02 0.01 Μ j\\\ 並 j\\\ 85 15 樹脂B 0.25 實施例260 分散液J 8.7 樹脂A 2.5 OXE02 0.1 無 40 59 樹脂B 2.5 實施例261 分散液K 8.9 樹脂A 2.5 OXE02 0.1 Μ j \\\ 魅 >\\N 40 59 樹脂B 2.5 實施例262 分散液L 10.6 樹脂A 2.5 OXE02 0.1 4rrr tfir j\\\ 40 59 樹脂B 2.5 實施例263 分散液Μ 9.8 樹脂A 2.5 OXE02 0.1 KBM403 0.2 40 57 樹脂B 2.5 實施例264 分散液Μ 2.4 樹脂A 2.5 OXE02 0.1 KBM403 0.2 15 80 樹脂B 2.5 實施例265 分散液Μ 3.4 樹脂A 2.5 OXE02 0.1 KBM403 0.2 20 76 樹脂B 2.5 實施例266 分散液Μ 26.5 樹脂A 0.5 OXE02 0.02 KBM403 0.04 80 20 樹脂B 0.5 實施例267 分散液Μ 50.1 樹脂A 0.25 OXE02 0.01 KBM403 0.02 85 15 樹脂B 0.25 -65- 200839331 【表29】 結果 糊組成物 中的平均 粒徑(nm) 折射率 折射率溫度 依賴性 (ppm/°C) 線膨脹率 (ppm/°C) 顯像性 光傳播損失 (dB/cm) 實施例250 25 1.548 51 39 良好 0.5 實施例251 24 1.553 55 48 良好 0.4 實施例252 24 1.552 54 46 良好 0.5 實施例253 27 1.543 42 33 良好 0.6 實施例254 23 1.556 50 41 良好 0.4 實施例255 21 1.555 55 47 良好 0.3 實施例256 24 1.555 55 45 良好 0.3 實施例257 25 1.557 42 32 良好 0.4 實施例258 27 1.558 32 22 芯部發生裂紋 0.4 實施例259 30 1.558 23 18 未曝光部有殘渣 芯部發生裂紋 0.5 實施例260 25 1.561 50 40 良好 0.6 實施例261 24 1.560 51 39 良好 0.4 實施例262 24 1.548 52 41 良好 0.5 實施例263 34 1.562 52 40 良好 0.5 實施例264 33 1.557 55 48 良好 0.3 實施例265 34 1.558 55 47 良好 0.4 實施例266 38 1.579 31 22 良好 0.5 實施例267 41 1.583 24 16 未曝光部有殘渣 芯部發生裂紋 0.6 -66 - 200839331 【表30】Results Average particle diameter (nm) in the paste composition Refractive index Refractive index Temperature dependence (ppm/°C) Linear expansion ratio (ppm/°C) Developmental light propagation loss (dB/cm) Example 209 24 1.560 50 37 good 0.4 Example 210 23 1.560 53 44 Good 0.3 Example 211 23 1.560 53 43 Good 0.3 Example 212 25 1.559 44 26 Unexposed portion has a residue 0.4 Example 213 28 1.559 31 16 Unexposed portion has a residue 0.4 Example 214 31 1.559 24 13 Unexposed part with crack in the core of the residue 0.5 Example 215 34 1.565 49 32 Good 0.6 Example 216 22 1.564 49 35 Good 0.4 Example 217 24 1.552 51 35 Good 0.5 Example 218 21 1.560 51 36 Not Residue in the exposed portion 0.4 Example 219 22 1.560 54 44 Good 0.3 Example 220 23 1.560 53 43 Good 0.3 Example 221 23 1.559 42 28 Unexposed portion has a residue 0.5 Example 222 27 1.559 32 17 Unexposed portion has a residue core Crack occurrence 0.5 Example 223 32 1.559 22 12 Unexposed portion has cracks in the core portion 0.6 Example 224 34 1.565 49 30 Unexposed portion has residue 0.7 Example 225 25 1.564 50 35 Not exposed Residues 0.4 Example 226 26 1.552 52 33 Unexposed part with residue 0.5 Example 227 34 1.566 53 37 Good 0.6 Example 228 33 1.562 54 44 Good 0.5 Example 229 35 1.562 53 41 Good 0.6 Example 230 38 1.580 34 18 Residues in the unexposed part 0.8 Example 231 41 1.583 25 12 Cracks in the core of the residue in the unexposed part 0.9 -62- 200839331 [Table 26] Composition of the paste composition Dispersion 1 Resin polymerization accelerator In the solid content of the decane coupling agent Barium sulphate content (% by weight) Content of Compound A and resin in solid content (Thunder amount of sample name (g) Material amount (g) Material amount (g) Material dan (g) Example 232 Dispersion I 9.8 Resin A 2.5 OXE02 0.1 KBM403 0.2 40 57 Resin B 2.5 Example 233 Dispersion I 2.4 Resin A 2.5 OXE02 0.1 KBM403 0.2 15 80 shed B 2.5 Example 234 Dispersion I 3.4 Resin A 2.5 OXE02 0.1 KBM403 0.2 20 76 Resin B 2.5 Example 235 Dispersion I 15.4 Resin A 1.5 OXE02 0.06 KBM403 0.12 60 38 Resin B 1.5 Example 236 Dispersion I 26.5 Test A 0.5 OXE02 0.02 KBM403 0. 04 80 20 Resin B 0.5 Example 237 Dispersion I 50.1 Resin A 0.25 OXE02 0.01 KBM403 0.02 85 15 Resin B 0.25 Example 238 Dispersion J 9.1 Resin A 2.5 OXE02 0.1 KBM403 0.2 40 57 Resin B 2.5 Example 239 Dispersion J 2.3 Resin A 2.5 OXE02 0.1 KBM403 0.2 15 81 IB 2.5 Example 240 Dispersion J 3.3 Resin A 2.5 OXE02 0.1 KBM403 0.2 20 76 Test B 2.5 Example 241 Dispersion J 12.7 Reversal A 1.5 OXE02 0.06 KBM403 0.12 60 37 Resin B 1.5 Example 242 Dispersion J 12.6 Resin A 0.5 OXE02 0.02 KBM403 0.04 80 18 Resin B 0.5 Example 243 Dispersion J 9.7 Resin A 0.25 OXE02 0.01 KBM403 0.02 85 14 Resin B 0.25 Example 244 Dispersion κ 9.3 Resin A 2.5 OXE02 0.1 KBM403 0.2 40 57 Resin B 2.5 Example 245 Dispersion κ 2.4 Resin A 2.5 OXE02 0.1 KBM403 0.2 15 80 Resin B 2.5 Example 246 Dispersion K 3.4 Resin A 2.5 OXE02 0.1 KBM403 0.2 20 75 Resin B 2.5 Example 247 Dispersion κ 13.3 Resin A 1.5 OXE02 0.06 KBM403 0.12 60 38 Resin B 1.5 Example 248 Dispersion κ 14.7 Resin A 0.5 OXE02 0.02 KBM403 0.04 80 20 Resin B 0.5 Example 249 Dispersion κ 12.4 Resin A 0.25 OXE02 0.01 KBM403 0.02 85 15 Resin B 0.25 -63- 200839331 [Table 27] Results Average particle diameter (nm) in the paste composition Refractive index Refractive index Temperature dependence ( Ppm/°C) Linear expansion ratio (ppm/°C) Developmental light propagation loss (dB/cm) Example 232 22 1.556 50 41 Good 0.3 Example 233 21 1.555 54 49 Good 0.3 Example 234 23 1.555 53 47 Good 0.3 Example 235 25 1.557 40 33 Good 0.3 Example 236 27 1.558 31 20 Good 0.4 Example 237 32 1.558 24 16 Unexposed portion has cracks in the residue core 0.5 Example 238 36 1.561 51 41 Good 0.6 Example 239 37 1.557 55 47 Good 0.5 Example 240 34 1.558 53 46 Good 0.6 Example 241 38 1.567 42 33 Good 0.6 Example 242 39 1.577 29 21 Good 0.7 Example 243 41 1.580 25 15 Unexposed part has cracks in the core portion 0.8 Example 244 25 1.560 51 41 Good 0.3 Example 245 23 1.556 56 48 Good 0.3 Example 246 23 1.557 55 47 Good 0.3 Example 247 25 1.564 44 34 Good 0.3 Example 248 28 1.571 31 22 Good 0.4 Example 249 30 1.574 24 17 Unexposed part has cracks in the residue core 0.5 -64- 200839331 [Table 28] Paste composition composition Dispersion resin polymerization accelerator decane coupling agent solid content in solid components Content of Compound A and Resin (% by amount of bar) Sample name (grams) Amount of material (g) Amount of material (g) Amount of barium sulfate (% by weight) in the amount of material (g) Example 250 Dispersion L 11.0 Resin A 2.5 OXE02 0.1 KBM403 0.2 40 57 Resin B 2.5 Example 251 Dispersion L 2.5 Resin A 2.5 OXE02 0.1 KBM403 0.2 15 81 Resin B 2.5 Example 252 Dispersion L 3.6 Resin A 2.5 OXE02 0.1 KBM403 0.2 20 76 Resin B 2.5 Example 253 Dispersion L 21.7 Resin A 1.5 OXE02 0.06 KBM403 0.12 60 39 Resin B 1.5 Example 254 Dispersion I 9.4 Resin A 2.5 OXE02 0.1 Μ VV ΝΝ and J \ w 40 59 Resin B 2.5 Example 255 Dispersion I 2.3 Resin A 2.5 OXE02 0.1 4ητ m >frrr. iMtr j\\\ 15 83 Resin B 2.5 Example 256 Dispersion I 3.3 Resin A 2.5 OXE02 0.1 Μ. j\w and j\\\ 20 79 Resin B 2.5 Example 257 Dispersion I 14.8 Resin A 1.5 OXE02 0.06 No inL Vision 60 39 Resin B 1.5 Example 258 Dispersion I 25.5 Resin A 0.5 OXE02 0.02 No 80 20 Resin B 0.5 Example 259 Dispersion I 48.2 Resin A 0.25 OXE02 0.01 Μ j\ \\ and j\\\ 85 15 Resin B 0.25 Example 260 Dispersion J 8.7 Resin A 2.5 OXE02 0.1 No 40 59 Resin B 2.5 Example 261 Dispersion K 8.9 Resin A 2.5 OXE02 0.1 Μ j \\\ Charm > \\N 40 59 Resin B 2.5 Example 262 Dispersion L 10.6 Resin A 2.5 OXE02 0.1 4rrr tfir j\\\ 40 59 Resin B 2.5 Example 263 Dispersion Μ 9.8 Resin A 2.5 OXE02 0.1 KBM403 0.2 40 57 Resin B 2.5 Example 264 Dispersion Μ 2.4 Resin A 2.5 OXE02 0.1 KBM403 0.2 15 80 Resin B 2.5 Example 265 Dispersion Μ 3.4 Resin A 2.5 OXE02 0.1 KBM403 0.2 20 76 Resin B 2.5 Example 266 Dispersion Μ 26.5 Resin A 0.5 OXE02 0.02 KBM403 0.04 80 20 Resin B 0.5 Example 267 Dispersion Μ 50.1 Resin A 0.25 OXE02 0.01 KBM403 0.02 85 15 Resin B 0.25 -65- 200839331 [Table 29] Result Average particle size (nm) Refractive index refractive index in paste composition Degree dependence (ppm/°C) Linear expansion rate (ppm/°C) Developmental light propagation loss (dB/cm) Example 250 25 1.548 51 39 Good 0.5 Example 251 24 1.553 55 48 Good 0.4 Example 252 24 1.552 54 46 Good 0.5 Example 253 27 1.543 42 33 Good 0.6 Example 254 23 1.556 50 41 Good 0.4 Example 255 21 1.555 55 47 Good 0.3 Example 256 24 1.555 55 45 Good 0.3 Example 257 25 1.557 42 32 Good 0.4 Example 258 27 1.558 32 22 Crack occurred in the core 0.4 Example 259 30 1.558 23 18 Crack in the core portion of the unexposed portion 0.5 Example 260 25 1.561 50 40 Good 0.6 Example 261 24 1.560 51 39 Good 0.4 Example 262 24 1.548 52 41 Good 0.5 Example 263 34 1.562 52 40 Good 0.5 Example 264 33 1.557 55 48 Good 0.3 Example 265 34 1.558 55 47 Good 0.4 Example 266 38 1.579 31 22 Good 0.5 Example 267 41 1.583 24 16 Crack in the core of the residue in the unexposed part 0.6 -66 - 200839331 [Table 30]

糊組成物組成 分散液 化合物A 聚合促進劑 矽烷偶合劑 固體成 分中的 固體成分 中的化合 樣品名 量(克) 材料 量(克) 材料 量(克) 材料 量 (克) 硫酸鋇 含量(重 量%) 物A與樹 脂的含量 (重量%) 實施例268 分散液Μ 9.4 樹脂A 2.5 OXE02 0.1 4nC ΤΓΓΓ j\\\ Μ J\\\ 40 59 樹脂B 2.5 實施例269 分散液Μ 2.3 樹脂A 2.5 OXE02 0.1 >fnr ΙΙΙι 並 ^\\\ 15 83 樹脂B 2.5 實施例270 分散液Μ 3.3 棚旨A 2.5 OXE02 0.1 無 dnt, 黑 20 79 樹脂B 2.5 實施例271 分散液Μ 25.5 樹脂A 0.5 OXE02 0.02 並 J\\\ yfmr 80 20 樹脂B 0.5 實施例272 分散液Μ 48.2 樹脂A 0.25 OXE02 0.01 Μ j\\\ M J V N\ 85 15 欄旨B 0.25 實施例273 分散液A 9.8 HOA-MPL 5 OXE02 0.1 KBM403 0.2 40 57 實施例274 分散液A 2.4 HOA-MPL 5 OXE02 0.1 KBM403 0.2 15 80 實施例275 分散液A 3.4 HOA-MPL 5 OXE02 0.1 KBM403 0.2 20 76 實施例276 分散液A 15.4 HOA-MPL 3 OXE02 0.06 KBM403 0.12 60 38 實施例277 分散液A 26.5 HOA-MPL 1 OXE02 0.02 KBM403 0.04 80 20 實施例278 分散液A 50.1 HOA-MPL 0.5 OXE02 0.01 KBM403 0.02 85 15 實施例279 分散液B 9.1 HOA-MPL 5 OXE02 0.1 KBM403 0.2 40 57 實施例280 分散液c 9.3 HOA-MPL 5 OXE02 0.1 KBM403 0.2 40 57 實施例281 分散液ϋ 11.0 HOA-MPL 5 OXE02 0.1 KBM403 0.2 40 57 實施例282 分散液A 9.4 HOA-MPL 5 OXE02 0.1 Μ j \ \\ 無 40 59 實施例283 分散液A 2.3 HOA-MPL 5 OXE02 0.1 4ttT II lit y\\\ 4nf J\\\ 15 83 實施例284 分散液A 3.3 HOA-MPL 5 OXE02 0.1 M j \ \\ J\\\ 20 79 實施例285 分散液A 14.8 HOA-MPL 3 OXE02 0.06 4rrr ιΠν. y\\N 無 60 39 實施例286 分散液A 25.5 HOA-MPL 1 OXE02 0.02 無 80 20 實施例287 分散液A 48.2 HOA-MPL 0.5 OXE02 0.01 M / \ \\ 無 85 15 實施例288 分散液B 8.7 HOA-MPL 5 OXE02 0.1 4πΐ liln J \\\ 無 40 59 實施例289 分散液C 8.9 HOA-MPL 5 OXE02 0.1 無 並 J\\\ 40 59 實施例290 分散液D 10.6 HOA-MPL 5 OXE02 0.1 J\\\ 40 59 -67- 200839331 【表31】 結果 糊組成物 中的平均 粒徑㈣ 折射率 折射率溫度 依賴性 (ppm/°C) 線膨脹率 (ppm/°C) 顯像性 光傳播損失(dB/cm) 實施例268 34 1.562 51 40 良好 0.6 實施例269 32 1.557 54 47 良好 0.5 實施例270 33 1.558 54 46 良好 0.6 實施例271 38 1.579 30 22 芯部發生裂紋 0.7 實施例272 40 1.583 24 16 未曝光部有殘渣 芯部發生裂紋 0.8 實施例273 23 1.531 53 43 良好 0.6 實施例274 24 1.521 56 51 良好 0.5 實施例275 24 1.523 55 52 良好 0.5 實施例276 26 1.543 44 37 良好 0.6 實施例277 29 1.565 30 23 未曝光部有殘渣 0.7 實施例278 32 1.572 24 18 未曝光部有殘渣 芯部發生裂紋 0.8 實施例279 36 1.531 52 42 良好 0.8 實施例280 26 1.531 52 43 良好 0.6 實施例281 26 1.531 52 42 良好 0.6 實施例282 25 1.531 54 42 良好 0.6 實施例283 24 1.521 56 51 良好 0.5 實施例284 25 1.523 55 51 良好 0.5 實施例285 25 1.543 43 36 良好 0.7 實施例286 28 1.565 31 24 未曝光部有殘渣 芯部發生裂紋 0.8 實施例287 31 1.572 24 17 未曝光部有殘渣 芯部發生裂紋 0.9 實施例288 35 1.531 51 42 良好 0.8 實施例289 25 1.531 51 41 良好 0.6 實施例290 27 1.531 52 40 良好 0.6 -68- 200839331 比較例1〜2 藉由與實施例1同樣的方法來製造表3 2〜3 3中所示組 成的糊組成物,使用其來製造物性値評價用硬化物及光導 波路。表3 2〜3 3中顯示評價結果。所得到的硬化物係聚合 不充分而柔軟,無法進行折射率及線膨脹率的評價。又, 於製造光導波路之際,顯像時未曝光部會白色化,5分鐘的 浸漬時間不能去除,藉由搖動基板20分鐘以去除未曝光部 。於未曝光部的基板表面上有薄膜狀的殘渣存在。又,曝 光部的光導波路圖案爲坡度小的山型。嘗試光傳播損失的 測定,但損失過大,傳播光強度在檢測極限以下,無法測 定。 比較例3〜4 藉由與實施例1同樣的方法來製造表3 2〜3 3中所示組 成的糊組成物,使用其來製造物性値評價用硬化物及光導 波路。表3 2〜3 3中顯示評價結果。折射率的溫度依賴性、 線膨脹率皆爲大値。於製造光導波路之際,顯像時未曝光 部會白色化,即使在顯像液中進行20分鐘的搖動,未曝光 部也殘存厚度數微米的膜。嘗試光傳播損失的測定,但、 損失過大,傳播光強度在檢測極限以下,無法測定。 比較例5〜1 0 藉由與實施例1同樣的方法來製造表3 2〜3 3中所示組 成的糊組成物,使用其來製造物性値評價用硬化物及光導 波路。表3 2〜3 3中顯示評價結果。 -69- 200839331 【表32】 糊組成物組成 分散液 樹脂 聚合促進劑 矽烷偶合劑 固體成分 固體成分中 的化合物A 與樹脂的含 量(重量%) 樣品名 量(克) 材料 量(克) 材料 量 (克) 材料 量(克) 屮的硫酸 鋇含量 (重量%) 比較例1 分散液N 9.8 樹脂A 5 OXE02 0.1 KBM403 0.2 40 51 比較例2 分散液N 9.4 樹脂A 5 OXE02 0.1 vfrrr ι1ιτ! j \\\ 4nr. τι In j\\\ 40 53 比較例3 分散液〇 9.1 棚旨A 5 OXE02 0.1 KBM403 0.2 40 55 比較例4 分散液〇 8.8 樹脂A 5 OXE02 0.1 irrL till j \\\ M j\\\ 40 57 比較例5 分散液P 9.8 樹脂A 5 OXE02 0.1 KBM403 0.2 40 57 比較例6 分散液P 2.4 樹脂A 5 OXE02 0.1 KBM403 0.2 15 80 比較例7 分散液P 3.4 樹脂A 5 OXE02 0.1 KBM403 0.2 20 76 比較例8 分散液P 15.4 樹脂A 3 OXE02 0.06 KBM403 0.12 60 38 比較例9 分散液P 26.5 樹脂A 1 OXE02 0.02 KBM403 0.04 80 20 比較例10 分散液P 50.1 樹脂A 0.5 OXE02 0.01 KBM403 0.02 85 15 【表33】 結果 糊組成物 中的平均 粒徑(nm) 折射 率 折射率溫度依賴 性 (ppm/°C) 線膨脹率 (ppm/°C) 顯像性 光傳播損失 (dB/cm) 比較例1 35 膜硬化不充分,無法測定 圖案不清晰 未曝光部有殘渣 比較例2 34 膜硬化不充分,無法測定 圖案不清晰 未曝光部有殘渣 比較例3 52 1.557 74 67 未曝光部去除困難 比較例4 50 1.557 74 68 未曝光部去除困難 比較例5 54 1.556 53 44 良好 1.0 比較例6 55 1.552 58 53 良好 0.8 比較例7 54 1.553 57 51 良好 0.9 比較例8 56 1.562 46 38 良好 1.2 比較例9 61 1.572 33 24 良好 1.5 比較例10 62 1.575 26 19 未曝光部有殘渣 芯部發生裂紋 2.3 -70- 200839331 產業上的利用可能性 本發明的光導波路用糊組成物可較合適地利用於個人 電腦、硬碟記錄器、DVD記錄器、遊戲機、攜帶型電話等 的進行高速信號傳送之資訊機器所用的配線基板內之進行 LSI間的資訊傳送之光配線等。 【圖式簡單說明】 第i圖係顯示通道型光導波路的構造之槪略圖。 第2圖係顯示板型光導波路的構造之槪略圖。 【主要元件符號說明】 芯部 包層部 光信號 1 2 3Paste composition composition Dispersion compound A Polymerization accelerator decane coupling agent Solid component in the solid content of the compound sample amount (g) Material amount (g) Material amount (g) Material amount (g) Barium sulfate content (% by weight Contents of A and Resin (% by weight) Example 268 Dispersion Μ 9.4 Resin A 2.5 OXE02 0.1 4nC ΤΓΓΓ j\\\ Μ J\\\ 40 59 Resin B 2.5 Example 269 Dispersion Μ 2.3 Resin A 2.5 OXE02 0.1 > fnr ΙΙΙι and ^\\\ 15 83 Resin B 2.5 Example 270 Dispersion Μ 3.3 shed A 2.5 OXE02 0.1 no dnt, black 20 79 Resin B 2.5 Example 271 Dispersion Μ 25.5 Resin A 0.5 OXE02 0.02 J\\\ yfmr 80 20 Resin B 0.5 Example 272 Dispersion Μ 48.2 Resin A 0.25 OXE02 0.01 Μ j\\\ MJVN\ 85 15 Column B 0.25 Example 273 Dispersion A 9.8 HOA-MPL 5 OXE02 0.1 KBM403 0.2 40 57 Example 274 Dispersion A 2.4 HOA-MPL 5 OXE02 0.1 KBM403 0.2 15 80 Example 275 Dispersion A 3.4 HOA-MPL 5 OXE02 0.1 KBM403 0.2 20 76 Example 276 Dispersion A 15.4 HOA-MPL 3 OXE02 0.06 KBM403 0.12 60 38 Example 277 Dispersion A 26.5 HOA-MPL 1 OXE02 0.02 KBM403 0.04 80 20 Example 278 Dispersion A 50.1 HOA-MPL 0.5 OXE02 0.01 KBM403 0.02 85 15 Example 279 Dispersion B 9.1 HOA-MPL 5 OXE02 0.1 KBM403 0.2 40 57 Example 280 Dispersion c 9.3 HOA-MPL 5 OXE02 0.1 KBM403 0.2 40 57 Example 281 Dispersion ϋ 11.0 HOA-MPL 5 OXE02 0.1 KBM403 0.2 40 57 Example 282 Dispersion A 9.4 HOA-MPL 5 OXE02 0.1 Μ j \ \\ None 40 59 Example 283 Dispersion A 2.3 HOA-MPL 5 OXE02 0.1 4ttT II lit y\\\ 4nf J\\\ 15 83 Example 284 Dispersion A 3.3 HOA-MPL 5 OXE02 0.1 M j \ \\ J\ \\ 20 79 Example 285 Dispersion A 14.8 HOA-MPL 3 OXE02 0.06 4rrr ιΠν. y\\N No 60 39 Example 286 Dispersion A 25.5 HOA-MPL 1 OXE02 0.02 No 80 20 Example 287 Dispersion A 48.2 HOA-MPL 0.5 OXE02 0.01 M / \ \\ No 85 15 Example 288 Dispersion B 8.7 HOA-MPL 5 OXE02 0.1 4πΐ liln J \\\ No 40 59 Example 289 Dispersion C 8.9 HOA-MPL 5 OXE02 0.1 None And J\\\ 40 59 Example 290 Dispersion D 10.6 HOA-MPL 5 OXE02 0.1 J\\\ 40 59 -67- 200839331 [Table 31] Results Average particle size in the composition (IV) Refractive index Refractive index Temperature dependence (ppm/°C) Linear expansion ratio (ppm/°C) Developmental light propagation loss (dB/cm) Example 268 34 1.562 51 40 Good 0.6 Example 269 32 1.557 54 47 Good 0.5 Example 270 33 1.558 54 46 Good 0.6 Example 271 38 1.579 30 22 Crack occurred in the core 0.7 Example 272 40 1.583 24 16 Unexposed portion has cracks in the core portion 0.8 Example 273 23 1.531 53 43 Good 0.6 Example 274 24 1.521 56 51 Good 0.5 Example 275 24 1.523 55 52 Good 0.5 Example 276 26 1.543 44 37 Good 0.6 Example 277 29 1.565 30 23 Unexposed part with residue 0.7 Example 278 32 1.572 24 18 Unexposed part has cracks in the core of the residue 0.8 Example 279 36 1.531 52 42 Good 0.8 Example 280 26 1.531 52 43 Good 0.6 Example 281 26 1.531 52 42 Good 0.6 Example 282 25 1.531 54 42 Good 0.6 Implementation Example 283 24 1.521 56 51 Good 0.5 Example 284 25 1.523 55 51 Good 0.5 Example 285 25 1.543 43 36 Good 0.7 Example 286 28 1.565 31 24 Unexposed part Crack occurred in the core 0.8 Example 287 31 1.572 24 17 Unexposed portion has a crack in the core of the residue 0.9 Example 288 35 1.531 51 42 Good 0.8 Example 289 25 1.531 51 41 Good 0.6 Example 290 27 1.531 52 40 Good 0.6 - 68-200839331 Comparative Examples 1 to 2 A paste composition having the composition shown in Tables 3 2 to 3 3 was produced in the same manner as in Example 1 and used to produce a cured product for evaluation of physical properties and an optical waveguide. Table 3 shows the evaluation results in 2 to 3 3. The obtained cured product was insufficiently polymerized and soft, and the refractive index and the coefficient of linear expansion could not be evaluated. Further, when the optical waveguide was manufactured, the unexposed portion was whitened during development, and the immersion time of 5 minutes was not removed, and the unexposed portion was removed by shaking the substrate for 20 minutes. A film-like residue is present on the surface of the substrate on the unexposed portion. Further, the optical waveguide pattern of the exposure portion is a mountain shape having a small gradient. Attempts to measure the loss of light propagation, but the loss is too large, and the intensity of the transmitted light is below the detection limit and cannot be measured. Comparative Examples 3 to 4 A paste composition composed of the compositions shown in Tables 3 2 to 3 3 was produced in the same manner as in Example 1 to produce a cured product for evaluation of physical properties and an optical waveguide. Table 3 shows the evaluation results in 2 to 3 3. The temperature dependence of the refractive index and the linear expansion ratio are both large. When the optical waveguide is manufactured, the unexposed portion is whitened during development, and even if it is shaken for 20 minutes in the developing solution, a film having a thickness of several micrometers remains in the unexposed portion. Attempts to measure the loss of light propagation, but the loss is too large, and the intensity of the transmitted light is below the detection limit and cannot be measured. Comparative Examples 5 to 10 0 A paste composition composed of the compositions shown in Tables 3 2 to 3 3 was produced in the same manner as in Example 1 and used to produce a cured product for physical property evaluation and an optical waveguide. Table 3 shows the evaluation results in 2 to 3 3. -69- 200839331 [Table 32] Paste composition composition dispersion resin polymerization accelerator decane coupling agent Solid content solid content Solid content of compound A and resin content (% by weight) Sample name (g) Material amount (g) (g) Amount of material (g) Barium sulfate content (% by weight) Comparative Example 1 Dispersion N 9.8 Resin A 5 OXE02 0.1 KBM403 0.2 40 51 Comparative Example 2 Dispersion N 9.4 Resin A 5 OXE02 0.1 vfrrr ι1ιτ! j \ \\ 4nr. τι In j\\\ 40 53 Comparative Example 3 Dispersion 〇 9.1 A 5 OXE02 0.1 KBM403 0.2 40 55 Comparative Example 4 Dispersion 〇 8.8 Resin A 5 OXE02 0.1 irrL till j \\\ M j\ \\ 40 57 Comparative Example 5 Dispersion P 9.8 Resin A 5 OXE02 0.1 KBM403 0.2 40 57 Comparative Example 6 Dispersion P 2.4 Resin A 5 OXE02 0.1 KBM403 0.2 15 80 Comparative Example 7 Dispersion P 3.4 Resin A 5 OXE02 0.1 KBM403 0.2 20 76 Comparative Example 8 Dispersion P 15.4 Resin A 3 OXE02 0.06 KBM403 0.12 60 38 Comparative Example 9 Dispersion P 26.5 Resin A 1 OXE02 0.02 KBM403 0.04 80 20 Comparative Example 10 Dispersion P 50.1 Resin A 0.5 OXE02 0.01 KBM403 0.02 85 15 [Table 33] Results paste Average particle diameter (nm) of the refractive index Refractive index Refractive index Temperature dependence (ppm/°C) Linear expansion ratio (ppm/°C) Developmental light propagation loss (dB/cm) Comparative Example 1 35 Film hardening Sufficient, the pattern could not be measured. The unexposed portion had residue. Comparative Example 2 34 Film hardening was insufficient, and the pattern could not be measured. Unclear portions were not residue. Comparative Example 3 52 1.557 74 67 Unexposed portion removal difficulty Comparative Example 4 50 1.557 74 68 Unexposed portion removal difficulty Comparative Example 5 54 1.556 53 44 Good 1.0 Comparative Example 6 55 1.552 58 53 Good 0.8 Comparative Example 7 54 1.553 57 51 Good 0.9 Comparative Example 8 56 1.562 46 38 Good 1.2 Comparative Example 9 61 1.572 33 24 Good 1.5 Comparative Example 10 62 1.575 26 19 Crack in the core portion of the unexposed portion 2.3 - 70 - 200839331 Industrial Applicability The optical waveguide paste composition of the present invention can be suitably used for a personal computer, a hard disk recorder, An optical wiring for transmitting information between LSIs in a wiring board used for an information device for high-speed signal transmission such as a DVD recorder, a game machine, or a portable telephone. [Simple description of the drawing] The i-th image shows a schematic diagram of the structure of the channel type optical waveguide. Fig. 2 is a schematic diagram showing the structure of a plate type optical waveguide. [Description of main component symbols] Core Cladding section Optical signal 1 2 3

Claims (1)

200839331 十、申請專利範圍: 1.一種光導波路用糊組成物,其係包含(A)平均粒徑lnm以 上且50 nm以下的硫酸鋇粒子,(B)具有聚合性基及羧基的 化合物、或具有聚合性基的磷酸酯化合物,及(C)有機溶 齊!I。 2 ·如申請專利範圍第1項之光導波路用糊組成物,其中該具 有聚合性基及羧基的化合物包含下述通式(1)所示的化合 物, R1 CH2=C—c—〇-~R2—j:—OH (1) Ο Ο (上述通式(1)中,R1表示氫原子或甲基,R2表示下述通式 (2)〜(4)中任一者所示的2價基) -fCH2 弋 O-0CH七 (2) 0 (3) 〇 vJ -f 一^^ (4) (上述通式(2)〜(4)中,η及m各自爲1〜3的整數)。 -72- 200839331 3 .如申請專利範圍第2項之光導波路用糊組成物,其中該通 式(1)中的R1爲氫原子,R2爲通式(4)所示的2價基,η爲 2。 4 .如申請專利範圍第1項之光導波路用糊組成物,其中該具 有聚合性基的磷酸酯化合物包含下述通式(5)所示的化合 物, 0 . II Λ R3~〇—ρ—ο—R4 ⑸ Ο R5 (上述通式(5)中R3〜R5表示下述通式(6)〜(1〇)中任—者 所示的1價基或氫原子,R3〜R5可爲相同或不同,但是 r3〜r5不是全部爲氫原子), C v\cno \ (6 (7 73- (8) (8)200839331200839331 X. Patent application scope: 1. A paste composition for an optical waveguide comprising (A) barium sulfate particles having an average particle diameter of 1 nm or more and 50 nm or less, (B) a compound having a polymerizable group and a carboxyl group, or Phosphate compound with polymerizable group, and (C) organic solvent! I. 2. The optical waveguide paste composition according to claim 1, wherein the polymerizable group and the carboxyl group-containing compound comprise a compound represented by the following formula (1): R1 CH2=C-c-〇-~ R2—j: —OH (1) Ο Ο (In the above formula (1), R1 represents a hydrogen atom or a methyl group, and R2 represents a divalent value represented by any one of the following formulae (2) to (4). ()) -fCH2 弋O-0CH seven (2) 0 (3) 〇vJ -f a ^^ (4) (in the above general formulae (2) to (4), η and m are each an integer of 1 to 3) . The light-wave-wave paste composition of the second aspect of the invention, wherein R1 in the formula (1) is a hydrogen atom, and R2 is a divalent group represented by the formula (4), η Is 2. 4. The optical waveguide paste composition according to claim 1, wherein the polymerizable group-containing phosphate compound comprises a compound represented by the following formula (5), 0. II Λ R3~〇-ρ- ——R4 (5) Ο R5 (R3 to R5 in the above formula (5) represent a monovalent group or a hydrogen atom represented by any one of the following formulae (6) to (1〇), and R3 to R5 may be the same. Or different, but r3~r5 are not all hydrogen atoms), C v\cno \ (6 (7 73- (8) (8) 200839331 R9 H2C=C〔 C-〇—r12— ⑼ II o p H2c—CH—R11— do) (上述通式(6)〜(lo)中,R6〜r9表示氫原子或曱基,Rio 〜R11爲碳數1〜10的2價基,R12爲具有羥基的碳數1〜 1 〇之2價基)。 5 ·如申請專利範圍第4項之光導波路用糊組成物,其中該通 式(5)中的R3〜R5中至少1個爲該通式(8)所表示的1價 基。 6 ·如申請專利範圍第1至5項中任一項之光導波路用糊組成 % ’其中更含有具聚合性基的樹脂。 7 · $D $ |靑專利範圍第6項之光導波路用糊組成物,其中該具 @ # 1生S的樹脂包含下述式(11)或(12)所示的樹脂, -74- 200839331 (U)£ο=Ηυιυιο」ΗυΙΗό」Ηο—οR9 H2C=C[ C-〇-r12—(9) II op H2c—CH—R11—do) (In the above formula (6) to (lo), R6 to r9 represent a hydrogen atom or a fluorenyl group, and Rio to R11 are carbon. A divalent group having a number of 1 to 10, and R12 is a divalent group having a carbon number of 1 to 1 fluorene having a hydroxyl group). 5. The optical waveguide paste composition of claim 4, wherein at least one of R3 to R5 in the general formula (5) is a monovalent group represented by the general formula (8). 6. The optical waveguide paste composition %' of any one of claims 1 to 5, further comprising a polymer having a polymerizable group. 7 · $D $ | 靑 Patent scope No. 6 of the optical waveguide paste composition, wherein the resin having @#1生S comprises a resin represented by the following formula (11) or (12), -74- 200839331 (U)£ο=Ηυιυιο"ΗυΙΗό"Ηο—ο Ο Η—Ο (ζ L)£υΗΗϋ—υ=ιο」Ηοιδ」Ηυ—οΟ Η—Ο (ζ L)£υΗΗϋ—υ=ιο”Ηοιδ”Ηυ—ο 9 ο r * 7 = 7 ouslsuKU—0—υιδπί 〇=; ΗΟ οικυ1ΗΟ」Ηο丨 ο—υ—Ηο ΗΟ ===0 成 組 糊 用 路 波 導 光 之 項 1 任 ο 中_ 項齊 71合 至偶 1烷 第矽 圍有 範含 利更 專中 請其 申 , 如物 8 任 中 項 8 至 11 第 圍 斤B ξ車 利 專 請 串 如 使 由 係 其 成 而 化 硬 物 成 組 糊 用 路 路波 波導 導光 光之 種項一· 一 9 -75-9 ο r * 7 = 7 ouslsuKU—0—υιδπί 〇=; ΗΟ οικυ1ΗΟ”Ηο丨ο—υ—Ηο ΗΟ ===0 Groups of pastes used in the light of the waveguide 1 ο ο _ _ _ _ _ 1 Alkane Dimensional Fan Fanli is more specialized in the application, such as the object 8 Renzhong 8 to 11 The first quarter of the pound B ξ 利 专 专 专 专 专 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如Lubo waveguide light guiding light one item one - 9 -75-
TW096142467A 2006-11-10 2007-11-09 Paste composition for optical waveguide and optical waveguide using it TWI421551B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006304942 2006-11-10
JP2007116469 2007-04-26

Publications (2)

Publication Number Publication Date
TW200839331A true TW200839331A (en) 2008-10-01
TWI421551B TWI421551B (en) 2014-01-01

Family

ID=39364455

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096142467A TWI421551B (en) 2006-11-10 2007-11-09 Paste composition for optical waveguide and optical waveguide using it

Country Status (8)

Country Link
US (1) US7960462B2 (en)
EP (1) EP2080773B1 (en)
JP (1) JP4165616B2 (en)
KR (1) KR101309601B1 (en)
CN (1) CN101528781B (en)
AT (1) ATE509961T1 (en)
TW (1) TWI421551B (en)
WO (1) WO2008056639A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2234118A4 (en) * 2008-01-18 2017-08-16 Toray Industries, Inc. High dielectric constant paste composition and dielectric composition using the same
JP5286913B2 (en) * 2008-04-24 2013-09-11 東レ株式会社 Optical waveguide paste composition and optical waveguide using the same
JP5286914B2 (en) * 2008-04-24 2013-09-11 東レ株式会社 Uncured sheet for optical waveguide, optical waveguide member and optical waveguide using the same
JP5256921B2 (en) * 2008-08-07 2013-08-07 東レ株式会社 Insulating layer forming materials and electronic components.
JP5632146B2 (en) * 2009-09-02 2014-11-26 太陽ホールディングス株式会社 Curable resin composition
JP5604853B2 (en) * 2009-11-12 2014-10-15 東レ株式会社 Paste and optical waveguide using the same
JP5532419B2 (en) * 2010-06-17 2014-06-25 富士電機株式会社 Insulating material, metal base substrate, semiconductor module, and manufacturing method thereof
WO2013161859A1 (en) * 2012-04-27 2013-10-31 地方独立行政法人 大阪市立工業研究所 Metal oxide dispersion, metal oxide dispersion-containing polymerizable composition, and polymerized product of same
CN107670606B (en) * 2013-05-21 2020-12-08 荷兰应用自然科学研究组织Tno Chemical conversion process
KR101685257B1 (en) * 2013-09-30 2016-12-09 주식회사 엘지화학 Radical curable adhesive composition and polarizing plate comprising the same
TW201819439A (en) * 2016-06-23 2018-06-01 日商迪愛生股份有限公司 Active energy ray-curable resin composition and laminated film

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0108985B1 (en) * 1982-11-01 1986-10-15 Hitachi, Ltd. Transparent resin material containing metal atoms
US5492776A (en) 1994-01-25 1996-02-20 Eastman Kodak Company Highly oriented metal fluoride thin film waveguide articles on a substrate
JP2003146992A (en) 2001-11-13 2003-05-21 Kyoeisha Chem Co Ltd Method for producing phosphoric acid ester monomer having unsaturated group and polymerizable resin composition containing the same
JP4222120B2 (en) * 2002-10-07 2009-02-12 Jsr株式会社 Photosensitive resin composition for optical waveguide formation and optical waveguide
JP4066247B2 (en) 2002-10-07 2008-03-26 日本ペイント株式会社 Nickel colloid solution and method for producing the same
JP2005010770A (en) 2003-05-22 2005-01-13 Sanyo Chem Ind Ltd Composition for forming optical waveguide, and optical waveguide
TWI285664B (en) * 2003-12-25 2007-08-21 Kansai Paint Co Ltd Curable resin composition for optical waveguide, curable dry film for optical waveguide, waveguide, and, method for manufacturing optical waveguide
KR20060113791A (en) * 2004-02-25 2006-11-02 간사이 페인트 가부시키가이샤 Title : curable resin composition for light gyide, curable dry film for light guide, light guide and method of forming core portion for light guide
CN100507622C (en) * 2004-02-25 2009-07-01 关西涂料株式会社 Photocurable resin composition for forming optical waveguide, photocurable dry film for forming optical waveguide, and optical waveguide
WO2005091068A1 (en) * 2004-03-24 2005-09-29 Fuji Photo Film Co., Ltd. Image-forming process, lithographic printing plate, and lithography process
JP4547188B2 (en) * 2004-05-25 2010-09-22 太陽インキ製造株式会社 Photocurable / thermosetting resin composition for optical waveguide material, cured product thereof, and optical / electrical hybrid substrate
TWI352105B (en) * 2004-07-26 2011-11-11 Eternal Chemical Co Ltd Optical film resistant to uv light
JP3901201B2 (en) 2004-09-08 2007-04-04 東レ株式会社 Optical wiring resin composition and photoelectric composite wiring board
EP1788412A4 (en) * 2004-09-08 2013-05-01 Toray Industries Optical wiring resin composition and photo-electric composite wiring board

Also Published As

Publication number Publication date
WO2008056639A1 (en) 2008-05-15
TWI421551B (en) 2014-01-01
ATE509961T1 (en) 2011-06-15
US20090270541A1 (en) 2009-10-29
JPWO2008056639A1 (en) 2010-02-25
EP2080773B1 (en) 2011-05-18
KR101309601B1 (en) 2013-09-17
US7960462B2 (en) 2011-06-14
KR20090086512A (en) 2009-08-13
EP2080773A1 (en) 2009-07-22
CN101528781A (en) 2009-09-09
EP2080773A4 (en) 2010-06-02
JP4165616B2 (en) 2008-10-15
CN101528781B (en) 2012-05-16

Similar Documents

Publication Publication Date Title
TW200839331A (en) Paste composition for optical waveguide and optical waveguide using it
CN107406690B (en) Resin composition for forming hard coat layer and cured product thereof
JP6331464B2 (en) Photosensitive resin composition and coating film using the same
CN108368211B (en) Curable composition and cured product
JP2012116975A (en) Photosensitive resin composition and insulating film for touch panel
JP2015193758A (en) Photosensitive resin composition for overcoat and coating film using the same
WO2019069594A1 (en) Curable composition and cured product
CN107922742B (en) Resin composition
JP6617785B2 (en) Photosensitive resin composition and coating film using the same
JP2007204567A (en) Active energy ray-curable resin composition
JP6436315B2 (en) Composite resin composition and method for producing the resin composition
KR101659129B1 (en) Resin film, method for producing resin film, and coating liquid
JP2010111805A (en) Transparent composite sheet
JP5604853B2 (en) Paste and optical waveguide using the same
JP2016017172A (en) Fluorine-containing pyrolytic resin, resist composition, composition for color filter protective film, resist film, and color filter protective film
JP5286914B2 (en) Uncured sheet for optical waveguide, optical waveguide member and optical waveguide using the same
JP2005338202A (en) Photosetting-thermosetting resin composition for optical waveguide material, cured material thereof and optoelectronic packaging substrate
JP5286913B2 (en) Optical waveguide paste composition and optical waveguide using the same
JP5407164B2 (en) Paste composition and dielectric composition using the same
KR102581660B1 (en) Nanocomposite insulation materials including organic nanoparticles, organic nanoparticles with controllabilities of thermal and optical properties, solvent resistance and their manufacturing method
JP2011140611A (en) Photocurable composition for embossing and cured product thereof
JP2009073874A (en) Method for producing dispersion of inorganic particles, paste composition and hardened product
JP2017179201A (en) Active energy ray curable composition
JPWO2017111098A1 (en) Surface-modified metal oxide particles, production method, dispersion, curable composition, and cured product

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees