TW200837963A - Memory unit structure and operation method thereof - Google Patents
Memory unit structure and operation method thereof Download PDFInfo
- Publication number
- TW200837963A TW200837963A TW96107469A TW96107469A TW200837963A TW 200837963 A TW200837963 A TW 200837963A TW 96107469 A TW96107469 A TW 96107469A TW 96107469 A TW96107469 A TW 96107469A TW 200837963 A TW200837963 A TW 200837963A
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- capture
- doped region
- substrate
- memory unit
- Prior art date
Links
Landscapes
- Non-Volatile Memory (AREA)
- Semiconductor Memories (AREA)
Abstract
Description
200837963 P950202 22692twfdoc/n 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種記憶單元結構(memory unit structure),且特別是有關於一種在操作後降低擺動劣化 (swing degradation)衝擊(impact)的記憶單元結構及其操作 方法。 【先前技術】 φ 目前的非揮發性記憶體產品中,具有可進行多次資料 之存入、讀取、抹除等動作,且可在一個記憶單元中進行 一位元(2 bit)操作的SONOS記憶單元,已成為個人電腦和 電子設備所廣泛採用的一種記憶體元件。 一般而言,SONOS記憶單元是採用一層電荷捕捉層 (charge trapping layer)取代習知快閃記憶體的多晶石夕浮置 閘極(floating gate),並在這種電荷捕捉層上下通常各有一 層氧化矽層,以形成由氧化矽/氮化矽/氧化矽(〇N〇)層所構 _ 成之堆疊式結構(stacked structure)。再者,於0N0層兩側 基底中會有源極與汲極,而在ΟΝΟ層上則設有閘極。 由於傳統的SONOS記憶单元之ΟΝΟ層中的底氧化層 (bottom oxide)是直接利用熱氧化法形成在基底上,所以其 與矽晶片之基底間是低的界面捕捉密度(interface trap density,Dit),約l〇iGcnr2eV-i,但是這個Dit值被發現會 隨記憶單元的循環次數增加而逐漸增加,如圖1所示,其 中不管是最初抹除狀態(initial erase state)還是最初程式化 狀態(initial program state)都與循環一萬次的抹除狀態及程 5 200837963 P950202 22692twfdoc/n 式化狀態的_差_大。因而導致鶴效能(swing (cyde endurance)^ 一 …w -r从佩切双能 performanee)降低’㈣影響記憶單元的操作、 【發明内容】 構,可穩定循環操作後的200837963 P950202 22692twfdoc/n IX. Description of the Invention: [Technical Field] The present invention relates to a memory unit structure, and more particularly to a method of reducing a swing degradation after operation ( Impact memory cell structure and its operation method. [Prior Art] φ Current non-volatile memory products have the ability to store, read, erase, etc. multiple data, and can perform one-bit (2 bit) operation in one memory unit. The SONOS memory unit has become a memory component widely used in personal computers and electronic devices. In general, a SONOS memory cell is a polysilicon floating gate that replaces a conventional flash memory with a charge trapping layer, and usually has a charge trap layer on top of each other. A layer of ruthenium oxide is formed to form a stacked structure composed of a layer of yttrium oxide/yttria/yttria (〇N〇). Furthermore, the source and the drain are in the substrate on both sides of the 0N0 layer, and the gate is provided on the layer. Since the bottom oxide layer in the germanium layer of the conventional SONOS memory cell is directly formed on the substrate by thermal oxidation, it has a low interface trap density (Dit) between the substrate and the substrate of the germanium wafer. , about l〇iGcnr2eV-i, but this Dit value is found to increase gradually as the number of cycles of the memory cell increases, as shown in Figure 1, where either the initial erase state or the initial stylized state ( The initial program state) is _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Therefore, the crane performance (swing (cyde endurance) ^ ... w - r is reduced from the Pei can perform), the operation of the memory unit is affected, and the structure can be stabilized after the loop operation.
’可維持記憶 本發明提供-種記憶單元結構, 擺動效能。 元作===單元的操作方法,可對記憶單 電壓種記鮮A峨作綠,贿決啟始 動劣美供—種記憶單元結構’以降低在操作後擺 。本發明又提供一種記憶單元的操作方法 單元的資料保持性。 —本發明再提供-觀憶單元補作方法,以進行單一 位元刼作且可改善記憶單元之循環持久性。 本發明提出-種記憶單元,包括一個石夕基底、位於石夕 上,一層捕捉層、分別位於捕捉層兩側的矽基底内的 弟一與第二摻雜區、位於捕捉層上的一個閘極、位於閘極 ”捕捉層之間的―層第―氧化層、位於%基底與捕捉層之 ^的層咼界面捕捉岔度((interface trap知仍办,Dit)材料 層,及位於高界面捕捉密度材料層與捕捉層之間的一層第 —氧化層,其中高界面捕捉密度材料層與矽基底之間的界 面捕捉密度在1〇Η〜l〇l3cnf2eV-l之間。 200837963 P950202 22692twfdoc/n 在本發明之一實施例中,上述高界面捕捉密度材料層 與矽基底之間的界面捕捉密度為lO^cm^eV-1。 在本發明之一實施例中,上述高界面捕捉密度材料層 的厚度在10〜70埃之間。 在本發明之一實施例中,上述高界面捕捉密度材料層 的材料包括氮化發。 在本發明之一實施例中,上述高界面捕捉密度材料層 的材料包括二氧化铪(Hf02)、二氧化鍅(Zr〇2)、氮氧化鍅 (ZrOxNy)、氮氧化铪(Hf〇xNy)、矽酸铪(HfSixOy)、矽酸鍅 (ZrSix〇y)、氮氧矽铪(HfSix〇yNz)、三氧化二鋁(Al2〇3)、二 氧化鈦(Ti02)、五氧化钽(Ta205)、三氧化二鑭(La2〇3)、二 氧化鈽(Ce〇2)、矽酸鉍⑼❸仙2)、氧化鎢(w〇3)、氧化釔 (ΥΛ)、铭酸鑭(LaAl〇3)、鈦酸鋇锶(Bai_xSrxTi03)、鈦酸鋇 (BaTi〇3)、锆酸鉛(pbZr〇3)、钽酸銃鉛(ρι^ζΤ&〇3,簡稱 pst)、銳酸鋅鉛(pbZnzNbi z〇3,簡稱PZN)、鍅鈦酸鉛 (PbZr(VPbTi〇3,簡稱 PZT)或鈮酸鎂鉛(PbMgzNbi z〇3,簡 稱 PMN) 〇 在本發明之一實施例中,上述矽基底型矽基底, 且第一摻雜區與第二摻雜區是n型摻雜區。 一 本發明又提出一種記憶單元的操作方法,適用於上述 在高界面捕捉密度材料層與矽基底之間的界面捕 括·程式化記憶單元時,於閘極上施加第—正電壓,於第 二摻雜區施加第二正電壓,並使第一摻雜區為〇伏特:以 200837963 P950202 22692twfdoc/n 利用通道熱電子(channel hot electron,CHE)方式程式化記 憶單元之一侧的位元;抹除記憶單元時,於閘極上施加一 第一負電壓,於第二摻雜區施加一第三正電壓,並使第一 摻雜區為〇伏特,以利用價帶對價帶熱電洞(band4o_ban(1 tunneling hot hole,BTBTHH)方式抹除記憶單元之該側的 位元。 本發明再提出一種記憶單元的操作方法,適用於上述 在高界面捕捉密度材料層與矽基底之間的界面捕捉密度 (Dit)為之間的記憶單元。其操作方法包 括私式化^己彳思早元時,於閘極上施加一第四正電壓,並 使第一摻雜區與第二摻雜區為0伏特,以利用富勒_諾德漢 (Fmvl^^i〇rdheim,FN)方式程式化所述記憶單元;而在抹 除圮憶單元時,於閘極上施加一第二負電壓,並使第一摻 雜區與第二摻雜區為0伏特,以利用富勒_諾德漢方式 抹除所述記憶單元。 “在本發明之一實施例中,上述第一摻雜區是源極、第 —摻雜區是汲極。 在本發明之—實施射,上述第—摻雜區是錄、第 —摻雜區是源極。 電壓在本發明之—實闕巾,上述第—正電壓大於第二正 石夕美^ Μ提出—種記鮮元,包括—辦基底、位於 的層、分別位於捕捉層兩侧的矽基底内 ”弟一㈣區、位於捕捉層上的一個間極、位於閑 200837963 F95U202 22692twfdoc/n 極關從狀卩㈣-層第-介電層以及位於縣底與捕捉 層之間的-層苐二介電層’其中第二介電層財基底之間 的界面捕捉密度(Dit)在ι〇〗ι〜之間。- 在本發明之另一實施例中,上述第二介電層與石夕基底 之間的界面捕捉密度為。 土 & 在本發明之另-實施例中,上述第二介電層包括氧化 層0 ❿ 底 在本發明之另—實施例中,上述⑪基底是p型石夕基 且弟-_區與第二摻雜區是n型摻雜區。 層 在本發明之另-實施例中,上述第一介電層包括氧化 本^ = 種記憶單元賴作枝,_於上述 10〜10 cm eV-i之間的記憶單元。其摔作 j 式化記憶單元時,於·上施加第—於^ 區施加第二正電壓,並使第-摻雜區為。伏特= 子(咖)方式程式化記憶單元之―側的位元;‘ 一第,,於第二摻雜區 =W__TBTHH)方式抹除記憶單元之該側“ 在第本出一種記憶單元的操作方法,適用於上述 I 底之間的界面捕捉密度_為 〜1〇 Cm'eV之間的記憶單元。其操作方法包括:程 9 200837963 伙隨 22692twfd〇c/n 式化兄憶單元時,於閘極上施加—第四正電摩,並使第一 與第二摻雜區為G伏特,以利用富勒_諾德漢㈣) ft式化§己憶單元;而在抹除記憶單元時,於間極上施 :一第二負電壓’並使第一摻雜區與第二摻雜區為〇伏 斗寸,以利用富勒··諾德漢(FN)方式抹除記憶單元。 〜在本發明之另—實施例中,上述第—摻雜區是源極、 第一換雜區是汲極。 • 〜在本發明之另—實施财,上述f —摻雜區是没極、 弟一摻雜區是源極。 在本發明之另一實施例中,上述第一正電壓大於 正電壓。 1本發明因為將梦基底與其上層之間的界面設為在 /〜y^cn^eV-1之間的高界面捕捉密度(Dit),所以當操 作循%次數逐漸增加後,其擺動效能能可維持在一定的程 =*因此記憶單兀的操作、循環持久性以及資料保持性都 魯 會儘可能的維持在可容許的範圍内,而不至於使記憶 失效。 丄為讓本發明之上述特徵和優點能更明顯易懂,下文特 舉較佳實施例,並配合所附圖式,作詳細說明如下。 【實施方式】 以下將隨所附圖式來更充分地描述本發明之實施 =。不過,本發明尚可以多種不同形式來實踐,且不應將 :解釋為限於說明書所陳述之實施例。而且,在圖式中, 為明確起見可能誇示各層以及區域的尺寸,而未按照實際 200837963 P950202 22692twfdoc/n 比例缘示。 此外,在5兒明書中所使士 η 用實施例’且並非用來限制本發二二;=下的應 Ξ :ί:」、「「ΐ二」等用語,只是用來將某-:域所 或是操作順序。心作㈣’料代表其形成順序 第一實施例 、圖2A是依照本發明之第—實施例之一種記 处 構進行,位元程式化操作時的剖面示意圖。〜几、、、口 請茶照圖2A,第-實施例的記憶單元包括—個石夕美 底200、-層捕捉層202、第—推雜區脈與第二換雜^ 204b、-個閘極206、一層第一氧化層2〇8、一層高界面捕 捉密度(high-Dit)材料層210以及一層第二氧化層212。在 本實施例中,矽基底200是p型矽基底,第一摻雜區2〇如 與第二摻雜區204b是η型摻雜區。而捕捉層2〇2是位於矽 基底200上、弟一與弟一掺雜區204a和204b則分別是位 於捕捉層202兩側的矽基底200、閘極206位於捕捉層2〇2 上、第一氧化層208則位於閘極206與捕捉層202之間。 至於南界面捕捉密度材料層210是位於;5夕基底200與捕捉 層202之間,弟一氧化層212則位於高界面捕捉密度材料 層210與捕捉層202之間,其中高界面捕捉密度材料層21〇 與碎基底200之間的界面捕捉密度(inferface trap density, Dit)在1011〜1013cmW之間;較佳為ic^cmW。此外, 高界面捕捉密度材料層210的厚度譬如是在1〇〜7〇埃之 11 200837963 P950202 22692twfdoc/n‘ Maintainable Memory The present invention provides a memory cell structure, swing performance. Yuan Zuo === unit operation method, can be used to remember the memory single voltage type, and the bribe is determined to start the inferior beauty supply--memory unit structure to reduce the pendulum after operation. The present invention further provides data retention of a method of operating a memory unit. - The present invention further provides a method of complementing the memory unit for performing a single bit operation and improving the cyclic persistence of the memory unit. The invention provides a memory unit, comprising a stone slab base, a stone trapping layer, a capturing layer, a first and second doping regions in the enamel base respectively located on both sides of the capturing layer, and a gate on the capturing layer. The layer, the first layer of the oxide layer between the gate and the capture layer, and the layer of the interface between the % substrate and the capture layer capture the temperature (the interface trap knows the Dit material layer, and is located at the high interface). A layer of a first oxide layer between the layer of the density material and the capture layer is captured, wherein an interface capture density between the high interface capture density material layer and the germanium substrate is between 1〇Η~l〇l3cnf2eV-l. 200837963 P950202 22692twfdoc/n In an embodiment of the invention, the interface capture density between the high interface capture density material layer and the germanium substrate is 10^cm^eV-1. In one embodiment of the invention, the high interface capture density material layer The thickness of the high-interface capture density material layer comprises a nitrided hair. In one embodiment of the invention, the high interface captures the density material layer. material The materials include cerium oxide (Hf02), cerium oxide (Zr〇2), cerium oxynitride (ZrOxNy), cerium oxynitride (Hf〇xNy), bismuth citrate (HfSixOy), strontium ruthenate (ZrSix〇y), Nitrogen oxide (HfSix〇yNz), aluminum oxide (Al2〇3), titanium dioxide (Ti02), tantalum pentoxide (Ta205), antimony trioxide (La2〇3), ceria (Ce〇2) , bismuth citrate (9) ❸ 2 2), tungsten oxide (w〇3), yttrium oxide (ΥΛ), lanthanum strontium (LaAl〇3), barium titanate (Bai_xSrxTi03), barium titanate (BaTi〇3), zirconium Lead acid (pbZr〇3), lead bismuth citrate (ρι^ζΤ&〇3, abbreviated as pst), lead zinc sulphate (pbZnzNbi z〇3, PZN for short), lead strontium titanate (PbZr (VPbTi〇3, abbreviation for short) PZT) or lead magnesium niobate (PbMgzNbi z〇3, abbreviated as PMN). In one embodiment of the invention, the germanium-based germanium-based germanium substrate, and the first doped region and the second doped region are n-doped The invention further provides a method for operating a memory unit, which is suitable for applying the first positive voltage to the gate when the interface captures the stylized memory unit between the high density interface material layer and the germanium substrate. Applying a second positive charge to the second doped region Pressing, and making the first doped region 〇Vot: use channel hot electron (CHE) to program the bit on one side of the memory cell with 200837963 P950202 22692twfdoc/n; when erasing the memory cell, Applying a first negative voltage to the pole, applying a third positive voltage to the second doped region, and making the first doped region a volt volt to utilize a quotation band quoting hot hole (BTBTHH) The mode erases the bit on the side of the memory unit. The present invention further provides a method of operating a memory cell suitable for use in the above-described memory cell between the high interface capture density interface material layer and the germanium substrate interface density (Dit). The operation method includes: applying a fourth positive voltage to the gate and making the first doped region and the second doped region 0 volts to utilize the Fuller_Nudehan (Fmvl^^i〇rdheim, FN) way to program the memory unit; and when erasing the memory unit, applying a second negative voltage to the gate, and the first doped region and the second doped region It is 0 volts to erase the memory unit by means of the Fuller_Nordheim method. In an embodiment of the invention, the first doped region is a source, and the first doped region is a drain. In the present invention, the first doped region is recorded and first doped. The voltage is in the present invention. The voltage is in the present invention, the first positive voltage is greater than the second Zhengshi Ximei ^ Μ proposed - a kind of fresh elements, including - the base, the located layer, respectively located on both sides of the capture layer In the base of the 矽 ” 弟 ( ( 四 四 四 弟 弟 弟 弟 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 37 37 37 37 37 37 37 37 37 37 37 37 37 2008 2008 2008 2008 2008 37 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 Layer 2 dielectric layer 'the interface density between the second dielectric layer (Dit) is between ι 〇 ι~. - In another embodiment of the invention, the interface capture density between the second dielectric layer and the lithium substrate is . Soil & In another embodiment of the invention, the second dielectric layer comprises an oxide layer. In another embodiment of the invention, the 11 substrate is a p-type Shi Xiji and a The second doped region is an n-type doped region. Layer In another embodiment of the present invention, the first dielectric layer includes a memory cell that oxidizes the memory cell as a branch, between the above 10 to 10 cm eV-i. When it is dropped into a memory cell, a second positive voltage is applied to the first region, and the first doped region is made. Volt = sub- (cafe) way to program the side of the memory cell; 'one, in the second doping area = W__TBTHH) to erase the side of the memory cell "in the first operation of a memory cell The method is applicable to the interface between the above-mentioned I bottom capture density _ is a memory unit between ~1〇Cm'eV. The operation method includes: Cheng 9 200837963 When 22692twfd〇c/n is used to learn the unit, Applying a fourth positive electric friction on the gate, and making the first and second doped regions G volts to utilize the Fuller_Nodham (4)) ft-type § memory unit; while erasing the memory unit, Applying to the interpole: a second negative voltage 'and the first doped region and the second doped region are squatting to erase the memory cell by using Fuller Nordhorn (FN). In another embodiment of the present invention, the first doped region is a source, and the first impurity-doped region is a drain. • In the other aspect of the present invention, the f-doped region is a immersed brother. A doped region is a source. In another embodiment of the invention, the first positive voltage is greater than a positive voltage. The interface between the substrate and its upper layer is set to a high interface capture density (Dit) between /~y^cn^eV-1, so when the number of operations is gradually increased, the swing performance can be maintained in a certain range. =* Therefore, the operation of the memory unit, the cycle persistence, and the data retention are maintained as far as possible within the allowable range without invalidating the memory. The above features and advantages of the present invention are more apparent. BRIEF DESCRIPTION OF THE DRAWINGS The preferred embodiments are described below in detail with reference to the accompanying drawings, in which: FIG. It can be practiced in many different forms, and should not be construed as limited to the embodiments set forth in the specification. In the drawings, the dimensions of the various layers and regions may be exaggerated for clarity, and not according to actual 200837963 P950202 22692twfdoc/n In addition, in the 5 children's book, the statistic η uses the embodiment 'and is not used to limit the hair of the second paragraph; = the following applies: ί:", ""ΐ二" and other terms, just use To bring a -: domain Or the order of operations. The mind (4) represents the order in which it is formed. The first embodiment and Fig. 2A are schematic cross-sectional views of a first embodiment of the present invention, in which the bit is programmed. Figure 2A, the memory unit of the first embodiment includes a Shi Ximeidi 200, a layer capture layer 202, a first-inferior region pulse The pole 206, a first oxide layer 2〇8, a high interface high-dit material layer 210 and a second oxide layer 212. In the present embodiment, the germanium substrate 200 is a p-type germanium substrate, and the first doping region 2, for example, and the second doping region 204b are n-type doping regions. The capture layer 2〇2 is located on the germanium substrate 200, and the first and second doped regions 204a and 204b are respectively the germanium substrate 200 on both sides of the capturing layer 202, and the gate 206 is located on the capturing layer 2〇2, An oxide layer 208 is between the gate 206 and the capture layer 202. The south interface capture density material layer 210 is located between the 5th substrate 200 and the capture layer 202, and the dioxide layer 212 is located between the high interface capture density material layer 210 and the capture layer 202, wherein the high interface captures the density material layer. The interface indentation trap density (Dit) between 21〇 and the broken substrate 200 is between 1011 and 1013 cmW; preferably ic^cmW. In addition, the thickness of the high interface capture density material layer 210 is, for example, 1 〇 7 7 〇 11 11 200837963 P950202 22692 twfdoc / n
間;較佳為30埃。至於高界面捕捉密度材料層21〇的材料 可為氮化矽;抑或,二氧化铪(Hf〇2)、二氧化锆(Zr〇2)、氮 氧化鍅(ZrOxNy)、氮氧化銓(Hf〇xNy)、矽酸铪(HfSix〇y;)、 矽酸錯(ZrSix〇y)、氮氧矽铪(HfSixOyNz)、三氧化二銘 (Al2〇3)、二氧化鈦印❽^五氧化钽汀七仏^三氧化二鑭 (La203)、二氧化鈽(Ce〇2)、矽酸叙、氧化鶴 (W〇3) '氧化釔(Y2〇3)、鋁酸鑭(LaA1〇3)、鈦酸鋇鳃 (BanSrxTiO3)、鈦酸鋇(BaTi〇3)、鍅酸鉛(pbZr〇3)、钽酸钪 鉛(PbSCzTai-z〇3,簡稱 pST)、鈮酸鋅鉛(PbZnzNbuO3,簡 % PZN)、鍅鈦酸鉛(PbZr〇3_pbTi〇3,簡稱ρζτ)與鈮酸鎂 錯(PbMgzNbkC^,簡稱ΡΜΝ)其中之一。 請繼續參照圖2Α,當對本實施例之記憶單元進行如 圖2Α ^二位元程式化的操作時,可於閘極2〇6上施加第 -正電壓(如vg=i〇伏特),於第二摻雜區2〇4b(此時可作 為汲極)施加第二正電壓(如渉5伏 並 ⑽(此時可作為源極)為^)伏特,以利用通道 khannd hot elect_,CHE)方式程式化記憶單元之:_ 及極侧位元)’而通切基底·是接地,所以立 ysubJ伙特。另-方面,上述第一接雜區綱 ς 可r弋化正=堡、在源極加第二正電壓、錄為G伏特時, ===之源極側位元。而且,上述第-正電壓 圖2B則是圖2八之記憶單元結構進行二位元抹除操作 12 200837963 P950202 22692twfd〇〇/n 時的剖面示意圖。 社二:錢圖2B,當對本實施例之記憶單元進行-位元 ,需要在閉極2〇6上施加一第一負^^ vL伏:f):,於第二摻雜區施加一第三正電壓(如 4士、、寸),亚使第一摻雜區2〇4a為0伏特(如v㈣伏 m (band-to-band tunneling hot e ΒΤΒΊΉΗ)枝抹除f£料元之_齡元(即没位Between; preferably 30 angstroms. As for the material of the high interface capturing density material layer 21〇, it may be tantalum nitride; or, cerium oxide (Hf〇2), zirconium dioxide (Zr〇2), cerium oxynitride (ZrOxNy), cerium oxynitride (Hf〇) xNy), HfSix〇y;, ZrSix〇y, HfSixOyNz, Al2O3, Titanium Dioxide ^Antimony trioxide (La203), cerium oxide (Ce〇2), strontium sulphate, oxidized crane (W〇3) 'yttrium oxide (Y2〇3), barium aluminate (LaA1〇3), barium titanate Barium (BanSrxTiO3), barium titanate (BaTi〇3), lead citrate (pbZr〇3), lead bismuth citrate (PbSCzTai-z〇3, pST for short), zinc lead citrate (PbZnzNbuO3, simple % PZN), Lead bismuth titanate (PbZr〇3_pbTi〇3, abbreviated as ρζτ) and magnesium citrate (PbMgzNbkC^, abbreviated as ΡΜΝ). Continuing to refer to FIG. 2A, when the memory unit of the embodiment is operated as shown in FIG. 2Α, the first positive voltage (eg, vg=i〇volt) can be applied to the gate 2〇6. The second doping region 2〇4b (which can be used as a drain) can apply a second positive voltage (eg, 5 volts and (10) (which can be used as a source) to ^) volts to utilize the channel khannd hot elect_, CHE) The way to program the memory unit: _ and the extreme side bit) 'and the cut-off base · is grounded, so stand ysubJ gang. On the other hand, the first junction region 上述 can be 正 正 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = Further, the above-mentioned first-positive voltage is shown in Fig. 2B as a cross-sectional view of the memory cell structure of Fig. 2, which is subjected to a two-bit erase operation 12 200837963 P950202 22692twfd 〇〇 / n . Society 2: Money Figure 2B, when performing the -bit on the memory cell of this embodiment, it is necessary to apply a first negative ^^ vL volt on the closed-pole 2〇6: f): Apply a first in the second doped region Three positive voltages (such as 4 ±, inch), the first doped region 2 〇 4a is 0 volts (such as v (four) volts m (band-to-band tunneling hot e ΒΤΒΊΉΗ) Age element
兀)。 可刹=二位元操作之外,第一實施例的記憶單元結構還 了_早—位元操作的方式進行,如圖2C與圖2D所示。 圖2C是圖2A之記憶單元結構進行單—位元程式化操 的?面示意圖。請參照圖兀’ #對本實施例之記憶單 j行單—位元程式化操作時,需要在於閘極206上施加 一第四正包壓(如Vg=20伏特),並使第一摻雜區2〇4a盥第 =摻雜區204b為0伏特(Vs=0伏特、Vd=〇伏特),以利用 虽勒-諾德漢(Fowler-Nordheim’FN)方式程式化所述記憶單 元〇 圖2D是圖2A之記憶單元結構進行單一位元抹除操 1日守的剖面不思圖。请蒼照圖2D,當對本實施例之記憶單 兀進行單-位元抹除操作時,需於閘極綱上施加一第二 負電壓(如Vg二-20伏特),並使第一摻雜區2〇4&與第二摻 雜區204b為0伏特(Vs-0伏特、V(H)伏特),以利用富勒 —諾德漢(FN)方式抹除所述記憶單元。 為證實第一實施例的記憶單元確實能在多次循環後 13 200837963 P950202 22692twfdoc/n 仍維持穩定的擺動效能,請參考圖3A與圖3B。兀). In addition to the two-bit operation, the memory cell structure of the first embodiment is also performed in the manner of _early-bit operation, as shown in Figs. 2C and 2D. 2C is a schematic diagram of a single-bit stylized operation of the memory cell structure of FIG. 2A. Referring to the figure 兀 '# For the memory single-single-bit stylized operation of the embodiment, it is necessary to apply a fourth positive voltage (such as Vg=20 volts) on the gate 206 and make the first doping. The region 2 〇 4a 盥 = doping region 204b is 0 volts (Vs = 0 volts, Vd = 〇 volts) to program the memory cell map using the Fowler-Nordheim 'FN method. 2D is a cross-sectional view of the memory cell structure of FIG. 2A for a single bit erase operation. Please refer to FIG. 2D. When performing the single-bit erase operation on the memory unit of this embodiment, a second negative voltage (such as Vg 2-20 volts) is applied to the gate sequence, and the first blend is applied. The impurity region 2〇4& and the second doped region 204b are 0 volts (Vs-0 volts, V(H) volts) to erase the memory cells using a Fuller-Nordheim (FN) method. To confirm that the memory unit of the first embodiment can still maintain stable swing performance after multiple cycles 13 200837963 P950202 22692twfdoc/n, please refer to FIG. 3A and FIG. 3B.
"圖3A是圖2A之記憶單元結構進行二位元程式化操 作最初與經一萬五千(15K)次、三萬(30K)次循環後的 曲,圖。圖3B是圖2B之記憶單元結構進行二位元抹除操 作最初與經15K次、30K次循環後的I-V曲線圖。從圖3A 和圖3B可知,不管是圖3A中的最初程式化狀態(initial program state)還是圖3B中的最初抹除狀態㈣制 stat^) ’都與循環15K次和3〇κ次的程式化狀態以及抹除 狀態的斜率差不多。換句話說,第—實施例的記憶單元能 在多次操作循環後仍維持穩定的擺動效能。 第二實施例 圖_4Α是依照本發明之第二實施例之一種記憶單元結 才進仃二位凡程式化操作時的剖面示意圖。 月ί,、、、圖4Α,第二實施例的記憶單元包括一個石夕基 fj0、一層捕捉層4〇2、第-摻雜區404a與第二摻雜區 人帝個閘極406、一層第一介電層408以及一層第二 ^電,410。在本實施例中,石夕基底400是p型石夕基底, ^ ,雜區404a與第二摻雜區4〇4b*n型摻雜區,1中 電層408例如是氧化層。至於,第二介電層_ i ® i & 之間則具有高界面捕捉(high interfaee traP, ιη^ΙΤί特性的界面412,其界面捕捉密度(Dit)在 人4 dcm eVl之間;較佳為。此外,第二 ”包‘ ίο可以是氧化層;舉例來說,可選擇用最差的熱 14 200837963 ry^uzu^ 22692twfdoc/n ,化衣或者在熱氧化製⑽仏植人方^㈣咖幽i〇n)使 =412的Μ介於WWWeV·1之間。而在本實施 二命亡述矽基底_例如是P型矽基底,且第-摻雜區 a,、弟二摻雜區4〇4b例如是n型摻雜區。 請繼續參照圖4A,㈣本實關之記鮮it進行二 ,兀程式化的操作時,可於閘極4〇6上施加第一正電墨(如 一Π。簡},於第二摻雜區侧(此時可作為祕〉施加第 τ'伏特),並使第一摻雜區4〇4a(此時可作 為源極)為Vs=0伏特,以利用通道熱電子(che) 化記憶單元之一側的位元(即汲極侧位元),且通常V二〇 伏特。再者,上述第一摻雜區刚a和第二摻雜區1〇二 可換作絲與雜,科限於第二實施例述;換 况,當在閘極上施加第—正電壓、在源極加第二正電壓°、 j為G伏特時,可程式化記憶單元之源極侧位元 述第一正電壓一般而言是大於第二正電壓。 士圖犯貝1是圖4八之記憶單元結構進行二位元抹 凊麥照圖4B,當對本實施例之記憶單元進行二 抹除操作時,需在閘極4〇6上施加第—負電屋(如^ ^ 伏特),於第二摻雜區404b施加第三正電壓(如Vdy 、 特),並使第一摻雜區404a為〇伏特(如%呻伏 、伏 用價帶對價帶熱電洞(BTBTHH)方式抹除記情时:以利 位元(即没極側位元)。 早兀之側 關於第二實施例的記憶單元結構,尚可利用單—位一 15 200837963 P950202 22692twfdoc/n 操作的方式進行程式化與抹除,如圖4c ”為圖4A之記憶單元結構—位' 圖=示’其 操作時的剖面示意圖。 早位凡私式化及抹除 請參照圖4C,在閘榀^ .伏特),並使第-摻雜區撕正電壓(如 0伏特(,〇伏特、V L 404a與弟-摻雜區404b為 方式程式化雜⑽單^),即可湘富㈣德漢陶 • 請參照圖4D,於閘極404上施知一笛-含* ν§"^20伏特),祐佶笛一 弟一負电壓(如 為〇俠''使摻雜區404a與第二摻雜區404b 為〇伏特(VsK)伏特、Vd=〇 勤匕U4b ㈣方式抹除所述記憶單元。)卩了#Μ ‘右德漢 综上所述,本發明由於將石夕基 設為1011〜土甩及,、上居之間的界面 情覃 eV的鬲界面捕捉密度(Dit),所以當記 奸w人數逐漸增加後,Dit值的變化不大。因此, 作擺動效能不會0稍降低,所以記憶單元的操 _ H 性及倾鋪性在贿錄逐朗加後可獲 a雖然本發明已以難實施例揭露如上,然其並非用以 =本發明,任何所屬技術領域巾具有通常知識者,在不 ^雜本發明之精神和範圍内,當可作些許之更動與潤飾, 此本發明之保護範圍當視後附之申請專利範圍所界定者" Fig. 3A is a diagram of the memory unit structure of Fig. 2A after the two-bit stylized operation is initially performed with a cycle of 15,000 (15K) times and 30,000 (30K) cycles. Fig. 3B is an I-V graph of the memory cell structure of Fig. 2B after the two-bit erase operation is initially performed with 15K cycles and 30K cycles. As can be seen from FIG. 3A and FIG. 3B, whether it is the initial program state in FIG. 3A or the initial erase state (four) stat^) in FIG. 3B is a program that cycles 15K times and 3〇κ times. The slope of the state and the erase state is similar. In other words, the memory unit of the first embodiment can maintain stable swing performance after a plurality of operation cycles. SECOND EMBODIMENT Fig. 4 is a schematic cross-sectional view showing a memory cell junction in accordance with a second embodiment of the present invention. The memory unit of the second embodiment includes a Shiyake base fj0, a capture layer 4〇2, a first doped region 404a, and a second doped region. The first dielectric layer 408 and the second layer of electricity 410. In the present embodiment, the stone substrate 400 is a p-type base, ^, a region 404a and a second doped region 4〇4b*n-doped region, and the first intermediate layer 408 is, for example, an oxide layer. As for the second dielectric layer _ i ® i & between the high interfaee traP, ιη ΙΤ 特性 feature interface 412, the interface capture density (Dit) between the human 4 dcm eVl; preferably In addition, the second "package" ίο can be an oxide layer; for example, it can be selected with the worst heat 14 200837963 ry^uzu^ 22692twfdoc/n, chemical coating or in thermal oxidation system (10) planting people ^ (4)咖 〇 〇 ) = 412 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = The region 4〇4b is, for example, an n-type doped region. Please continue to refer to FIG. 4A, and (4) the actual positive charge is performed. When the program is operated, the first positive ink can be applied to the gate 4〇6. (eg, 简}, on the second doped region side (this can be applied as the τ' volts), and the first doped region 4〇4a (which can be used as the source) is Vs=0 Volt to utilize channel hot electrons to chelate the bit on one side of the memory cell (ie, the drain side bit), and typically V 〇 volt. Further, the first doped region is just a and the second doped Miscellaneous area It can be replaced with wire and miscellaneous, and is limited to the second embodiment; in other cases, when a first positive voltage is applied to the gate, a second positive voltage is applied to the source, and j is G volts, the memory unit can be programmed. The source side bit indicates that the first positive voltage is generally greater than the second positive voltage. The figure is the memory cell structure of FIG. 4 and the two-dimensional eraser is shown in FIG. 4B, when the memory of the embodiment is used. When the cell performs the second erasing operation, a first negative voltage (such as ^^ volts) is applied to the gate 4〇6, and a third positive voltage (such as Vdy, special) is applied to the second doping region 404b, and the first A doped region 404a is a volt-volt (such as a % volt, a valence band with a thermal hole (BTBTHH) method to erase the quotation: the benefit bit (ie, the unequal side bit). The memory cell structure of the second embodiment can be programmed and erased by means of the operation of the single-bit one 15200837963 P950202 22692twfdoc/n, as shown in FIG. 4c" is the memory cell structure of FIG. 4A-bit' diagram=show' Schematic diagram of the cross section of the operation. For the early position, please refer to Figure 4C for the privateization and erasing, in the gate ^. Volt, and Torting the first doped region with a positive voltage (such as 0 volts (〇, volt VL, VL 404a, and doped region 404b is a way to program the miscellaneous (10) single ^), then Xiangfu (four) Dehan Tao • Please refer to Figure 4D On the gate 404, a flute-containing * ν§ "^20 volts is applied, and a negative voltage (such as 〇 ' '' is used to make the doped region 404a and the second doped region 404b The memory unit is erased by means of VsK volts, Vd = 〇 匕 U4b (4). ) 卩 Μ Μ 右 右 右 右 右 右 右 右 右 右 右 右 右 右 右 右 右 右 右 右 右 右 右 右 右 右 右 右 右 右 右 右 右 右 右 右 右 右 右 右 右 右 右 右 右 右After the number of traitors has gradually increased, the value of Dit has not changed much. Therefore, the swing performance is not slightly reduced by 0, so the operation and the tiltability of the memory unit can be obtained after the bribe is added. Although the present invention has been disclosed as a difficult embodiment, it is not used for = The scope of the present invention is defined by the scope of the appended claims, and the scope of the present invention is defined by the scope of the appended claims. By
為準D 【圖式簡單說明】 圖1是習知SONOS記憶單元在操作最初與經一萬次 16 200837963 P950202 22692twfdoc/n 循環後的I_V曲線圖。 圖2A是依照本發明之第—實施例之—種記憶單元結 構違行二位元程式化操作時的抑示意圖。 圖2B是圖2A之記憶單元結構進行二位元抹除操作時 的剖面示意圖。 圖2C是圖2Α(記憶單元結構進行單一位元程式化操 Μ時的剖面示意圖。Standard D [Simplified Schematic] FIG. 1 is an I_V graph of a conventional SONOS memory cell after initial operation and after 10,000 cycles of 16200837963 P950202 22692twfdoc/n. Fig. 2A is a diagram showing the simplification of a two-element stylized operation of a memory cell structure in accordance with a first embodiment of the present invention. Fig. 2B is a schematic cross-sectional view showing the structure of the memory cell of Fig. 2A in a two-bit erase operation. Fig. 2C is a cross-sectional view showing the memory cell structure in a single bit stylized operation.
圖2D是圖2八之記憶單元結 單一位元抹除操 作時的剖面示意圖。 圖3A是圖2A之記憶單元結構進行二位元程式化操 最初與經15K次、30K次循環後的Ι-ν曲線圖。 圖3B疋圖2A之記憶單元結構進行二位元抹除操作最 初與經15K次、30K次循環後的π曲線圖。 圖4Α是賴本發明之第二實施例之—種記憶單元結 進灯-位7L程式倾作_剖面示咅圖。 音是圖4Α之記憶單元結構進行二位元抹除操作時 的剖面示意圖 操 圖4C是圖4Α之記憶單元結構 作時的剖面示意圖。 才冓進仃早-位兀程式化 圖4D是圖4Α之記憶單元社 作時的剖面示意圖。 早7^構知單-位元抹除操 【主要元件符號說明】 200、400 :矽基底 17 200837963 P950202 22692twfdoc/n 202、402 :捕捉層 204a、404a :第一摻雜區 204b、404b :第二摻雜區 206、406 :閘極 208 :第一氧化層 210 :高界面捕捉密度材料層 212 :第二氧化層 408 :第一介電層 410 :第二介電層 412 :界面Fig. 2D is a schematic cross-sectional view showing the memory cell unit of Fig. 2 in a single bit erase operation. Fig. 3A is a Ι-ν graph of the memory cell structure of Fig. 2A after two-bit stylized operations and 15K cycles and 30K cycles. Fig. 3B is a diagram showing the π curve of the memory cell structure of Fig. 2A at the beginning of the two-bit erasing operation and after 15K times and 30K cycles. Fig. 4 is a cross-sectional view showing a memory cell junction lamp-bit 7L program according to a second embodiment of the present invention. The sound is a cross-sectional view of the memory cell structure of FIG. 4 when performing a two-bit erase operation. FIG. 4C is a schematic cross-sectional view of the memory cell structure of FIG.冓 冓 仃 - - - - 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图Early 7^ structuring single-bit erase operation [main component symbol description] 200, 400: 矽 substrate 17 200837963 P950202 22692twfdoc / n 202, 402: capture layer 204a, 404a: first doped region 204b, 404b: Two doped regions 206, 406: gate 208: first oxide layer 210: high interface capture density material layer 212: second oxide layer 408: first dielectric layer 410: second dielectric layer 412: interface
1818
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW96107469A TWI338375B (en) | 2007-03-05 | 2007-03-05 | Memory unit structure and operation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW96107469A TWI338375B (en) | 2007-03-05 | 2007-03-05 | Memory unit structure and operation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200837963A true TW200837963A (en) | 2008-09-16 |
TWI338375B TWI338375B (en) | 2011-03-01 |
Family
ID=44820381
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW96107469A TWI338375B (en) | 2007-03-05 | 2007-03-05 | Memory unit structure and operation method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI338375B (en) |
-
2007
- 2007-03-05 TW TW96107469A patent/TWI338375B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI338375B (en) | 2011-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100688575B1 (en) | Non volatile semiconductor memory device | |
US10622061B2 (en) | Oxide based memory | |
TWI415269B (en) | High-κ capped blocking dieletric bandgap engineered sonos and monos | |
JP4151229B2 (en) | Nonvolatile semiconductor memory device and manufacturing method thereof | |
CN100502009C (en) | SONOS type memory device | |
TWI376809B (en) | Blocking dielectric engineered charge trapping memory cell with high speed erase | |
TWI307158B (en) | Ferroelectric memory, multivalent data recording method and multivalent data reading method | |
US6809371B2 (en) | Semiconductor memory device and manufacturing method thereof | |
US20090189215A1 (en) | Nonvolatile flash memory device and method for producing the same | |
JP2005311379A (en) | Memory device with multiple dielectric layer, and its manufacturing method | |
TW201001622A (en) | Floating gate memory device with interpoly charge trapping structure | |
TW201114022A (en) | Charge trapping memory cell having bandgap engineered tunneling structure with oxynitride isolation layer | |
JP2006114902A (en) | Non-volatile memory element having a plurality of layers of tunneling barrier layers, and manufacturing method thereof | |
CN103180952B (en) | Getter in memorizer charge storage structure | |
TW200929549A (en) | Nonvolatile memory device and method for manufacturing the same | |
TWI473253B (en) | Nonvolatile memory array with continuous charge storage dielectric stack | |
CN106684090B (en) | Three dimensional nonvolatile memory construction and its manufacturing method | |
KR101231456B1 (en) | Flash memory device | |
Zhao et al. | A low voltage SANOS nonvolatile semiconductor memory (NVSM) device | |
TW200837963A (en) | Memory unit structure and operation method thereof | |
TWI683420B (en) | Hybrid storage memory having vertical type of fet | |
JP4734799B2 (en) | Method for manufacturing nonvolatile semiconductor memory device | |
JP2005285935A (en) | Semiconductor memory device | |
KR20100008756A (en) | Memory apparatus | |
JP2009049409A (en) | Nonvolatile memory device and method of fabricating the same |