TWI683420B - Hybrid storage memory having vertical type of fet - Google Patents

Hybrid storage memory having vertical type of fet Download PDF

Info

Publication number
TWI683420B
TWI683420B TW108123213A TW108123213A TWI683420B TW I683420 B TWI683420 B TW I683420B TW 108123213 A TW108123213 A TW 108123213A TW 108123213 A TW108123213 A TW 108123213A TW I683420 B TWI683420 B TW I683420B
Authority
TW
Taiwan
Prior art keywords
layer
oxide
hafnium
storage memory
silicon
Prior art date
Application number
TW108123213A
Other languages
Chinese (zh)
Other versions
TW202103304A (en
Inventor
鄭淳護
Original Assignee
國立臺灣師範大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立臺灣師範大學 filed Critical 國立臺灣師範大學
Priority to TW108123213A priority Critical patent/TWI683420B/en
Priority to US16/579,086 priority patent/US20210005728A1/en
Priority to US16/676,669 priority patent/US10872966B1/en
Application granted granted Critical
Publication of TWI683420B publication Critical patent/TWI683420B/en
Publication of TW202103304A publication Critical patent/TW202103304A/en

Links

Images

Landscapes

  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

This invention provide a hybrid storage memory having vertical type of FET, formed a storage stacked structure by stacking a negative capacitance ferroelectric layer and an anti-ferroelectric layer within the vertical type of FET, thereby effectively improving the leakage current, lowering program/erase voltages and enhancing endurance cycling.

Description

具垂直型場效電晶體的混合式儲存記憶體 Hybrid storage memory with vertical field effect transistors

本發明是有關於一種記憶體,特別是指一種混合式儲存記憶體。The present invention relates to a memory, especially a hybrid storage memory.

傳統的非揮發性記憶體結構包含一基板、一形成於該基板的部分表面的絕緣層、形成於該基板,並分別位於該絕緣層兩側邊的一源極、一汲極,以及由該絕緣層依序向上的一電荷捕捉層、一絕緣阻擋層及一閘極。而為了有效降低元件操作電壓,前述該絕緣阻擋層常利用具有高介電常數的氧化物(如氧化矽、氧化鉿、氧化鋁)為材料,因此,記憶體元件寫入/抹除操作電壓大、且寫入/抹除操作速度也較慢(約100μs~1ms),因而導致元件耐久性差。The conventional non-volatile memory structure includes a substrate, an insulating layer formed on a part of the surface of the substrate, a source electrode, a drain electrode formed on the substrate, and located on both sides of the insulating layer, and A charge trapping layer, an insulating barrier layer, and a gate electrode in the insulating layer sequentially upward. In order to effectively reduce the device operating voltage, the aforementioned insulating barrier layer often uses oxides with high dielectric constants (such as silicon oxide, hafnium oxide, and aluminum oxide) as materials. Therefore, the memory device write/erase operating voltage is large And the write/erase operation speed is also slow (about 100μs~1ms), which leads to poor device durability.

因此,發明人於2018年公開的中華民國專利公開號:TW201824456A,揭示一種具有垂直型場效電晶體的快閃記憶體結構,利用於該垂直型場效電晶體形成具有負鐵電電容層與電荷補捉層的層疊結構,以降低該記憶體的漏電流,並提升元件的操作速度。由其說明書公開內容可知,其可改善次臨界擺幅,並提升讀寫操作速度至約800ns。Therefore, the inventor published the Republic of China Patent Publication No. TW201824456A in 2018, which discloses a flash memory structure with a vertical field effect transistor, which is used to form a negative ferroelectric capacitor layer with the vertical field effect transistor. The stacked structure of the charge trapping layer reduces the leakage current of the memory and improves the operation speed of the device. It can be seen from the disclosure content of its specification that it can improve the subcritical swing and increase the speed of reading and writing operations to about 800ns.

因此,本發明之目的,即在提供一種垂直型場效電晶體的混合式儲存記憶體,相較於傳統電荷儲存型非揮發性記憶體,該混合式儲存記憶體具有較低寫入/抹除操作電壓,以及優越的記憶體操作速度(50ns)等特性。Therefore, the purpose of the present invention is to provide a hybrid storage memory of vertical field effect transistors, which has a lower write/erase than the conventional charge storage type non-volatile memory In addition to operating voltage, and superior memory operating speed (50ns) and other characteristics.

於是,本發明的混合式儲存記憶體,包含多個儲存元,每一個儲存元包括一垂直型場效電晶體。Therefore, the hybrid storage memory of the present invention includes a plurality of storage cells, and each storage cell includes a vertical field effect transistor.

該垂直型場效電晶體包括一半導體基板、第一絕緣層、一源極、一汲極、一儲存層疊結構,及一閘極單元。The vertical field effect transistor includes a semiconductor substrate, a first insulating layer, a source electrode, a drain electrode, a storage stack structure, and a gate unit.

該半導體基板具有一底部及自該底部向遠離該底部方向延伸的通道部。The semiconductor substrate has a bottom and a channel portion extending away from the bottom.

該第一絕緣層包覆該通道部的表面,並讓該通道部兩相對遠離端的表面露出。The first insulating layer covers the surface of the channel portion, and exposes two surfaces of the channel portion relatively away from the ends.

該源極及該汲極形成於該通道部的兩相對遠離端,並分別位於該第一絕緣層的兩側邊。The source electrode and the drain electrode are formed at two relatively distant ends of the channel portion, and are respectively located on both sides of the first insulating layer.

該儲存層疊結構設置於該第一絕緣層反向該通道部的表面,具有一電荷捕捉層,及一鐵電複合層,該鐵電複合層具有彼此層疊連接的一負電容鐵電層,及一反鐵電層,該負電容鐵電層是由以斜方晶相(Orthorhombic)為主要晶相,並具有負電容特性的摻雜氧化鉿構成,該反鐵電層是由以正方晶相(Tetragonal)為主要晶相的摻雜氧化鋯基材料構成。The storage stack structure is disposed on the surface of the first insulating layer opposite to the channel portion, has a charge trapping layer, and a ferroelectric composite layer, the ferroelectric composite layer has a negative capacitance ferroelectric layer stacked and connected to each other, and An antiferroelectric layer, the negative capacitance ferroelectric layer is composed of doped hafnium oxide with an orthorhombic phase as the main crystal phase and has negative capacitance characteristics, and the antiferroelectric layer is composed of a tetragonal crystal phase (Tetragonal) is a doped zirconia-based material with the main crystal phase.

該閘極單元形成於該儲存層疊結構反向該通道部的表面,具有至少一由導體或半體體材料構成的閘極。The gate unit is formed on the surface of the storage stack structure opposite to the channel portion, and has at least one gate electrode made of a conductor or a half body material.

本發明之功效在於:利用於記憶體的垂直型場效電晶體中,形成由負電容鐵電層及反鐵電層堆疊而得的儲存層疊結構,而得以有效改善記憶體元件漏電流、寫入/抹除操作電壓,以及提升記憶體元件操作速度。The effect of the present invention is to use the vertical field effect transistor of the memory to form a storage stack structure obtained by stacking a negative capacitance ferroelectric layer and an antiferroelectric layer, which can effectively improve the memory device leakage current and writing Input/erase the operating voltage and increase the operating speed of the memory device.

在本發明被詳細描述前,應當注意在以下的說明內容中,類似的元件是以相同的編號來表示。Before the present invention is described in detail, it should be noted that in the following description, similar elements are denoted by the same number.

本發明的混合式儲存記憶體是藉由讓該混合式儲存記憶體之儲存元(memory cell)的垂直型場效電晶體形成具有負電容鐵電層及反鐵電層的層疊結構,藉以有效改善記憶體元件漏電流、寫入/抹除操作電壓,以及提升記憶體元件操作速度。The hybrid storage memory of the present invention is formed by stacking a vertical field effect transistor of the memory cell of the hybrid storage memory with a negative capacitance ferroelectric layer and an antiferroelectric layer, thereby effectively Improve memory device leakage current, write/erase operation voltage, and increase memory device operation speed.

參閱圖1、2,本發明該混合式儲存記憶體的實施例包含多個儲存元。每一個儲存元包含一個垂直型場效電晶體2 (1T),及至少一個電容(1C)(圖未示)。圖1中僅顯示其中一個儲存元的垂直型場效電晶體2。Referring to FIGS. 1 and 2, the embodiment of the hybrid storage memory of the present invention includes multiple storage cells. Each storage element includes a vertical field effect transistor 2 (1T), and at least one capacitor (1C) (not shown). The vertical field effect transistor 2 of only one storage cell is shown in FIG. 1.

該垂直型場效電晶體2包含一半導體基板21、一源極22、一汲極23、第一絕緣層24、一儲存層疊結構25,及一閘極單元26,及一絕緣柱27。The vertical field effect transistor 2 includes a semiconductor substrate 21, a source electrode 22, a drain electrode 23, a first insulating layer 24, a storage stack structure 25, a gate unit 26, and an insulating pillar 27.

該半導體基板21,具有一底部211及自該底部211沿一軸向Z,朝向遠離該底部211方向延伸的通道部212,該絕緣柱27是形成於該底部211並自該底部211朝遠離該底部211方向延伸,且該通道部212形成於該絕緣柱27的表面。以該絕緣柱27為成圓柱狀為例,該通道部212也是以環狀方式包覆該絕緣柱27表面。The semiconductor substrate 21 has a bottom portion 211 and a channel portion 212 extending from the bottom portion 211 along an axis Z toward a direction away from the bottom portion 211, the insulating pillar 27 is formed on the bottom portion 211 and away from the bottom portion 211 The bottom portion 211 extends in the direction, and the channel portion 212 is formed on the surface of the insulating pillar 27. Taking the insulating pillar 27 as a cylindrical shape as an example, the channel portion 212 also covers the surface of the insulating pillar 27 in a ring shape.

該第一絕緣層24包覆該通道部212反向該絕緣柱27的部分表面,而讓該通道部212的兩相對遠離端的表面露出。The first insulating layer 24 covers a part of the surface of the channel portion 212 opposite to the insulating pillar 27, and exposes the surfaces of the channel portion 212 at opposite ends.

該源極22及汲極23形成於該通道部212的兩相對遠離端,並分別位於該第一絕緣層24相反的兩側邊。The source electrode 22 and the drain electrode 23 are formed at two relatively distant ends of the channel portion 212, and are located on opposite sides of the first insulating layer 24, respectively.

該儲存層疊結構25設置於該第一絕緣層24反向該通道部212的表面,具有一電荷捕捉層251,及一鐵電複合層252,且該鐵電複合層252具有一負電容鐵電層2521,及一反鐵電層2522。The storage stacked structure 25 is disposed on the surface of the first insulating layer 24 opposite to the channel portion 212, has a charge trapping layer 251, and a ferroelectric composite layer 252, and the ferroelectric composite layer 252 has a negative capacitance ferroelectric Layer 2521, and an antiferroelectric layer 2522.

該閘極單元26形成於該儲存層疊結構25反向該通道部212的表面,具有多個閘極261及多個與該等閘極261彼此交錯排列的閘極絕緣層262。要說明的是,於本實施例中是以該閘極單元26具有多個閘極261及多個閘極絕緣層262為例說明,然實際實施時,也可僅具有一個閘極261,並不以圖1結構為限。The gate unit 26 is formed on the surface of the storage stack structure 25 opposite to the channel portion 212, and has a plurality of gate electrodes 261 and a plurality of gate insulating layers 262 interlaced with the gate electrodes 261. It should be noted that in this embodiment, the gate unit 26 has a plurality of gate electrodes 261 and a plurality of gate insulating layers 262 as an example. However, in actual implementation, it may have only one gate electrode 261, and Not limited to the structure of FIG. 1.

詳細的說,該半導體基板21可為單晶矽、多晶矽,鍺、或其它適用的半導體材料。該絕緣柱27及該第一絕緣層24可以是單層或多層的絕緣材料堆疊而成,該絕緣材料可選自例如氧化矽,或氧化鋁等。In detail, the semiconductor substrate 21 can be monocrystalline silicon, polycrystalline silicon, germanium, or other suitable semiconductor materials. The insulating pillar 27 and the first insulating layer 24 may be formed by stacking a single layer or multiple layers of insulating material, and the insulating material may be selected from, for example, silicon oxide or aluminum oxide.

該儲存層疊結構25的電荷捕捉層251可選自導體、半導體,或具有高介電常數的絕緣材料。其中,該具有高介電常數的絕緣材料可選自氮化矽(SiNx)、碳化矽(SiC),或是非斜方晶相(Orthorhombic)的高介電常數氧化物絕緣材料(相關技術領域者所周知,一般高介電常數氧化物絕緣材料的結晶相是以Monoclinic或Tetragonal晶相為主),例如,氧化鋯(Z rO 2)、氧化鉿(H fO 2)、氧化鈦(T iO 2)、氧化鉭(TaO)、氧化鋁( Al 2O 3)、氮氧化鉿(HfON)、氮氧化鋯(ZrON)、氮氧化鋁(AlON)、氮氧化矽(SiNO)、氮氧化鈦(TiON)、氮氧化鉭(TaON)、矽氧化鉿(HfSiO)、矽氧化鋯(ZrSiO)。 The charge trapping layer 251 of the storage stack structure 25 may be selected from a conductor, a semiconductor, or an insulating material with a high dielectric constant. Wherein, the insulating material with high dielectric constant can be selected from silicon nitride (SiNx), silicon carbide (SiC), or non-orthorhombic phase (Orthorhombic) high dielectric constant oxide insulating material (relevant technical personnel) It is well known that the crystal phase of high dielectric constant oxide insulating materials is mainly Monoclinic or Tetragonal crystal phase), for example, zirconium oxide (Z r O 2 ), hafnium oxide (H f O 2 ), titanium oxide (T i O 2 ), tantalum oxide (TaO), aluminum oxide ( Al 2 O 3 ), hafnium oxynitride (HfON), zirconium oxynitride (ZrON), aluminum oxynitride (AlON), silicon oxynitride (SiNO), nitrogen Titanium oxide (TiON), tantalum oxynitride (TaON), hafnium silicon oxide (HfSiO), zirconium silicon oxide (ZrSiO).

該鐵電複合層252的負電容鐵電層2521及反鐵電層2522彼此層疊連接。The negative capacitance ferroelectric layer 2521 and the antiferroelectric layer 2522 of the ferroelectric composite layer 252 are layered and connected to each other.

要說明的是,不具有斜方晶相(Orthorhombic)的HfO 2基系列材料,並不具備鐵電性及負電容特性,因此,本發明的該負電容鐵電層2521是選自以具有斜方晶相(Orthorhombic)為主要晶相並具有鐵電負電容特性的摻雜氧化鉿為材料構成,例如,但不限於:鋁氧化鉿(HfAlOx)、矽氧化鉿(HfSiOx)、鍶氧化鉿(HfSrOx)、鋯氧化鉿(HfZrOx)、鑭氧化鉿(HfLaOx)、釔氧化鉿(HfYOx)、或釓氧化鉿(HfGdOx)等。 It should be noted that the HfO 2 series materials that do not have an orthorhombic phase do not have ferroelectricity and negative capacitance characteristics. Therefore, the negative capacitance ferroelectric layer 2521 of the present invention is selected to have an oblique Orthorhombic phase is the main crystalline phase and doped hafnium oxide with ferroelectric negative capacitance is composed of materials, such as, but not limited to: aluminum hafnium oxide (HfAlOx), silicon hafnium oxide (HfSiOx), strontium hafnium oxide ( HfSrOx), zirconium hafnium oxide (HfZrOx), lanthanum hafnium oxide (HfLaOx), yttrium hafnium oxide (HfYOx), or hafnium oxide hafnium (HfGdOx), etc.

該反鐵電層2522選自以正方晶相(Tetragonal)為主要晶相的摻雜氧化鋯基材料構成,該摻雜氧化鋯基材料例如,但不限於:氧化鋯(ZrO 2)、矽氧化鋯(ZrSiOx)、鋁氧化鋯(ZrAlOx)、鍺氧化鋯(ZrGeOx)、釔氧化鋯(ZrYOx),鉿氧化鋯(ZrHfOx)、或氮氧化鋯ZrNOx等。 The antiferroelectric layer 2522 is selected from doped zirconia-based materials with a tetragonal crystal phase (Tetragonal) as the main crystal phase. The doped zirconia-based materials are, for example, but not limited to: zirconia (ZrO 2 ), silicon oxide Zirconium (ZrSiOx), aluminum zirconium oxide (ZrAlOx), germanium zirconium oxide (ZrGeOx), yttrium zirconium oxide (ZrYOx), hafnium zirconium oxide (ZrHfOx), or zirconium oxynitride ZrNOx, etc.

此外,前述該具有負電容特性的鐵電材料(摻雜氧化鉿),以及反鐵電材料(摻雜氧化鋯)的摻雜元素的摻雜比例,依據摻雜元素的特性以及所要達成之晶相要求不同,其摻雜比例也有所不同。以前述的摻雜氧化鉿為例,其中,鋁(Al)摻雜比例介於2~10 mol%;矽(Si)摻雜比例介於2~10 mol%;鋯(Zr)摻雜比例介於1~50 mol%;釔(Y)摻雜比例介於2~15 mol%;釓(Gd)摻雜比例介於2~15 mol%;鑭(La)摻雜比例介於2~15 mol%;鍶(Sr)摻雜比例介於2~15 mol%。以前述該摻雜氧化鋯基材料為例,其矽、鋁、鍺、釔、鉿、氮的摻雜比例大於0mol,不大於50 mol%。由於該等摻雜比例為本技術領域者經由一般實驗可知,因此,於此不再多加贅述。In addition, the doping ratio of the aforementioned ferroelectric material with negative capacitance characteristics (doped hafnium oxide) and antiferroelectric material (doped zirconium oxide) depends on the characteristics of the doped element and the crystal to be achieved The phase requirements are different, and the doping ratio is also different. Taking the aforementioned doped hafnium oxide as an example, the doping ratio of aluminum (Al) is between 2 and 10 mol%; the doping ratio of silicon (Si) is between 2 and 10 mol%; the doping ratio of zirconium (Zr) is between At 1~50 mol%; yttrium (Y) doping ratio is between 2~15 mol%; gadolinium (Gd) doping ratio is 2~15 mol%; lanthanum (La) doping ratio is 2~15 mol %; strontium (Sr) doping ratio is between 2~15 mol%. Taking the aforementioned doped zirconia-based material as an example, the doping ratio of silicon, aluminum, germanium, yttrium, hafnium, and nitrogen is greater than 0 mol and not greater than 50 mol%. Since these doping ratios are known to those skilled in the art through general experiments, they will not be repeated here.

該等閘極261可選自金屬或半導體材料。其中,該金屬可以是氮化金屬或碳化金屬,該氮化金屬或碳化金屬例如,但不限於:氮化鉭(TaN)、氮化鎢(WN)、氮化鈦(TiN)、碳化鉭(TaC)、碳化鈦鋁(TiAlC)、碳化鈦(TiC),或碳化鉭鋁(TaAlC)等。該等閘極絕緣層262的材料可選自例如氧化矽,或氧化鋁等。於一些實施例中,該等閘極261及閘極絕緣層262彼此交錯間隔排列,且該等閘極261及閘極絕緣層262於該軸向Z方向的表面為四邊形。The gates 261 can be selected from metal or semiconductor materials. Wherein, the metal may be a metal nitride or a metal carbide, such as, but not limited to: tantalum nitride (TaN), tungsten nitride (WN), titanium nitride (TiN), tantalum carbide ( TaC), titanium aluminum carbide (TiAlC), titanium carbide (TiC), or tantalum aluminum carbide (TaAlC), etc. The material of the gate insulating layer 262 can be selected from, for example, silicon oxide or aluminum oxide. In some embodiments, the gate electrodes 261 and the gate insulating layer 262 are arranged alternately and spaced from each other, and the surfaces of the gate electrodes 261 and the gate insulating layer 262 in the axial Z direction are quadrangular.

本發明藉由令該儲存層疊結構25的鐵電複合層252具有彼此層疊連接的該負電容鐵電層2521及該反鐵電   層2522,利用該負電容鐵電層2521的負電容特性改善電晶體的次臨界擺幅,而減小電晶體的切換耗能及截止狀態電流(off-state current),並再進一步搭配反鐵電層2522,利用反鐵電層2522具有較大矯頑電場(coercive field)的特質,可在高電場寫入抹除操作時,有效最大化該負電容鐵電層2521的飽和極化量(saturated polarization),同時降低負電容鐵電層2521和電荷捕捉層251的橫跨電場,以減少反覆讀寫操作過程中可能產生的缺陷和衍生漏電流,因此,可有效改善記憶體元件漏電流、寫入/抹除操作電壓,以及提升記憶體元件操作速度。In the present invention, by making the ferroelectric composite layer 252 of the storage stack structure 25 have the negative capacitance ferroelectric layer 2521 and the antiferroelectric layer 2522 stacked on each other, the negative capacitance characteristic of the negative capacitance ferroelectric layer 2521 is used to improve electricity The sub-critical swing of the crystal reduces the switching energy consumption and off-state current of the transistor, and is further matched with the antiferroelectric layer 2522. The antiferroelectric layer 2522 has a larger coercive electric field ( coercive field), which can effectively maximize the saturation polarization of the negative-capacitance ferroelectric layer 2521 during high-field writing and erasing operations, while reducing the negative-capacitance ferroelectric layer 2521 and the charge trapping layer 251 Across the electric field to reduce possible defects and derived leakage currents during repeated read and write operations. Therefore, it can effectively improve the memory device leakage current, write/erase operation voltage, and increase the operation speed of the memory device.

要說明的是,圖1中的該儲存層疊結構25是以該電荷捕捉層251及該鐵電複合層252依序自該第一絕緣層24的表面向上形成為例說明,然,實際實施時,也可以是先形成該鐵電複合層252再形成該電荷捕捉層251。It should be noted that the storage stack structure 25 in FIG. 1 is described by taking the charge trapping layer 251 and the ferroelectric composite layer 252 sequentially formed upward from the surface of the first insulating layer 24 as an example. However, when actually implemented Alternatively, the ferroelectric composite layer 252 may be formed before the charge trapping layer 251 is formed.

此外,要再說明的是,圖1中該鐵電複合層252是以先形成該負電容鐵電層2521,再形成該反鐵電層2522為例,然,實際實施時,也可以是先形成該反鐵電層2522再形成該負電容鐵電層2521,其相關形成順序並不影響所要達成的目的及功效。也就是說,該儲存層疊結構25也可以是以電荷捕捉層251/反鐵電層2522/負電容鐵電層2521,或是反鐵電層2522/負電容鐵電層2521/電荷捕捉層251的順序自該第一絕緣層24的表面向上形成。In addition, it should be further explained that in FIG. 1, the ferroelectric composite layer 252 is formed by first forming the negative capacitance ferroelectric layer 2521 and then forming the antiferroelectric layer 2522. However, in actual implementation, it may be first Forming the antiferroelectric layer 2522 and then forming the negative-capacitance ferroelectric layer 2521, the relative formation order does not affect the objective and effect to be achieved. That is to say, the storage stack structure 25 can also be a charge trapping layer 251/antiferroelectric layer 2522/negative capacitance ferroelectric layer 2521, or an antiferroelectric layer 2522/negative capacitance ferroelectric layer 2521/charge trapping layer 251 Is formed upward from the surface of the first insulating layer 24.

參閱圖3,於一些實施例中,該垂直型場效電晶體200還可包含一介於該儲存層疊結構25及該閘極單元26之間的第二絕緣層28,以及該儲存層疊結構25還可包括一介於該電荷捕捉層251及該鐵電複合層252之間的第三絕緣層253。其中,該第二絕緣層28及該第三絕緣層253選自絕緣材料,且該絕緣材料可為非斜方晶系的的高介電常數材料。此外,要說明的是,該第二絕緣層28及該第三絕緣層253可視元件特性及需求擇一設置,或是同時設置,並無特別限制。Referring to FIG. 3, in some embodiments, the vertical field effect transistor 200 may further include a second insulating layer 28 interposed between the storage stacked structure 25 and the gate unit 26, and the storage stacked structure 25 also A third insulating layer 253 between the charge trapping layer 251 and the ferroelectric composite layer 252 may be included. The second insulating layer 28 and the third insulating layer 253 are selected from insulating materials, and the insulating material may be a non-orthorhombic high dielectric constant material. In addition, it should be noted that the second insulating layer 28 and the third insulating layer 253 can be selected according to the characteristics and requirements of the device, or set at the same time, and there is no particular limitation.

於一些實施例中,該電荷捕捉層251、該負電容鐵電層2521,及該反鐵電層2522的厚度介於1~30nm。又,為了維持該負電容鐵電層2521保有較佳的鐵電特性,該負電容鐵電層2521的厚度介於3~20nm。In some embodiments, the thickness of the charge trapping layer 251, the negative-capacitance ferroelectric layer 2521, and the antiferroelectric layer 2522 are between 1 and 30 nm. In addition, in order to maintain the negative ferroelectric layer 2521 with better ferroelectric characteristics, the thickness of the negative capacitor ferroelectric layer 2521 is between 3-20 nm.

要再說明的是,於一些實施例中,也可無須形成該絕緣柱27,此時,該通道部212可以是成實心柱體或是空心環柱的形態自該底部211方向延伸形成。It should be further explained that, in some embodiments, the insulating pillar 27 may not be formed. In this case, the channel portion 212 may be formed as a solid pillar or a hollow ring pillar extending from the bottom 211.

參閱圖4,圖4是一般鐵電(FE)和反鐵電(AFE)記憶體電容元件遲滯曲線圖。由圖4可知反鐵電記憶體電容可具有較大矯頑電場(Coercive Field),因此,當本案使用AFE/FE雙層堆疊結構時,可利用反鐵電具有較大矯頑電場的特性,而使本案的記憶體元件在高電場操作時,可有效提升鐵電飽和極化量(Saturated Polarization)。Referring to FIG. 4, FIG. 4 is a hysteresis curve diagram of general ferroelectric (FE) and antiferroelectric (AFE) memory capacitor elements. It can be seen from FIG. 4 that the antiferroelectric memory capacitor can have a larger coercive field (Coercive Field). Therefore, when the AFE/FE double-layer stacked structure is used in this case, the characteristics of the antiferroelectric having a larger coercive electric field can be used. Therefore, when the memory device in this case is operated in a high electric field, it can effectively increase the ferroelectric saturation polarization (Saturated Polarization).

再參閱圖5~7,圖5~7是以具有本發明AFE/FE/CT儲存層疊結構之記憶體的記憶體特性測試結果。其中,AFE表示反鐵電層,FE表示負電容鐵電層,CT表示電荷補捉層。基板:矽(Si);各層厚度:AFE層材料為氧化鋯(ZrO 2)/厚度10nm、FE層材料為鋯氧化鉿(HfZrOx),鋯摻雜比例為40 mol%/厚度10nm、CT層材料為氮氧化鉿(HfON)/厚度3nm。 Referring again to FIGS. 5-7, FIGS. 5-7 are the memory characteristic test results of the memory having the AFE/FE/CT storage stack structure of the present invention. Among them, AFE represents the antiferroelectric layer, FE represents the negative capacitance ferroelectric layer, and CT represents the charge trapping layer. Substrate: Silicon (Si); Thickness of each layer: AFE layer material is zirconium oxide (ZrO 2 )/thickness 10 nm, FE layer material is zirconium hafnium oxide (HfZrOx), zirconium doping ratio is 40 mol%/thickness 10 nm, CT layer material It is hafnium oxynitride (HfON)/thickness 3nm.

圖5是透過模擬所得到的閘極電壓V G(V)對汲極電流I D(A)的寫入/抹除結果。由圖5的量測結果可知,在使用±10V@50ns的寫入/抹除操作條件下,具有AFE/FE/CT堆疊結構的記憶體元件可獲得超過2V以上的記憶視窗(Memory Window)。圖6是時間(μs)對閘極操作電壓(V)與汲極電劉(A)的量測結果。由圖6所示的汲極電流(I D)響應量測結果,可明顯觀察到鐵電和反鐵電效應,此也可證實AFE/FE/CT堆疊電晶體的電流輸出特性會受到雙層AFE/FE堆疊結構的暫態行為的影響。 FIG. 5 is a result of writing/erasing the gate voltage V G (V) to the drain current I D (A) obtained by simulation. It can be seen from the measurement results in FIG. 5 that under the write/erase operation conditions of ±10V@50ns, a memory device with an AFE/FE/CT stacked structure can obtain a memory window of more than 2V. Fig. 6 is the measurement result of time (μs) on the gate operating voltage (V) and the drain electric current (A). From the measurement results of the drain current (I D ) response shown in Fig. 6, the ferroelectric and antiferroelectric effects can be clearly observed, which also confirms that the current output characteristics of the AFE/FE/CT stacked transistors will be affected by the double layer The effect of the transient behavior of the AFE/FE stack structure.

而再由圖7的讀寫速度量測結果可知,本發明的記憶體藉由整合AFE/FE雙層堆疊結構並搭配厚度更薄的CT,因此,其操作寫入/抹除(Prog/Erase)速度可達50ns,比傳統CT快閃記憶體操作速度快了將近上百倍以上,而可具有極為優越的讀寫速度。According to the reading and writing speed measurement results of FIG. 7, the memory of the present invention integrates the AFE/FE double-layer stack structure and is equipped with a thinner CT. Therefore, the operation write/erase (Prog/Erase) ) The speed can reach 50ns, which is nearly a hundred times faster than the operation speed of traditional CT flash memory, and can have extremely superior read and write speeds.

綜上所述,本發明藉由在混合式儲存記憶體整合電荷捕捉層251和鐵電複合層252,並進一步令該鐵電複合層252形成彼此層疊連接的負電容鐵電層2521及反鐵電層2522,利用該負電容鐵電層2521的負電容特性改善電晶體的次臨界擺幅,減小電晶體的切換耗能及截止狀態電流(off-state current),並再進一步搭配與該負電容鐵電層2521層疊的反鐵電層2522,不僅可有效改善記憶體元件漏電流、以及降低寫入/抹除操作電壓,且能更進一步提升記憶體元件操作速度,故確實能達成本發明之目的。In summary, the present invention integrates the charge trapping layer 251 and the ferroelectric composite layer 252 in the hybrid storage memory, and further enables the ferroelectric composite layer 252 to form a negative capacitance ferroelectric layer 2521 and an antiferroic layer stacked on each other The electric layer 2522 uses the negative capacitance characteristic of the negative-capacitance ferroelectric layer 2521 to improve the sub-critical swing of the transistor, reduce the switching energy consumption and off-state current of the transistor, and further match with the The antiferroelectric layer 2522 stacked by the negative capacitance ferroelectric layer 2521 can not only effectively improve the memory device leakage current, and reduce the write/erase operation voltage, but also further improve the operation speed of the memory device, so it can indeed reach the cost The purpose of the invention.

惟以上所述者,僅為本發明之實施例而已,當不能以此限定本發明實施之範圍,凡是依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。However, the above are only examples of the present invention, and should not be used to limit the scope of the present invention. Any simple equivalent changes and modifications made according to the scope of the patent application of the present invention and the content of the patent specification are still classified as This invention covers the patent.

200‧‧‧垂直型場效電晶體200‧‧‧Vertical field effect transistor

2521‧‧‧負電容鐵電層2521‧‧‧Negative capacitance ferroelectric layer

21‧‧‧半導體基板21‧‧‧Semiconductor substrate

2522‧‧‧反鐵電層2522‧‧‧Antiferroelectric layer

211‧‧‧底部211‧‧‧Bottom

253‧‧‧第三絕緣層253‧‧‧The third insulation layer

212‧‧‧通道部212‧‧‧Channel Department

26‧‧‧閘極單元26‧‧‧Gate unit

22‧‧‧源極22‧‧‧Source

261‧‧‧閘極261‧‧‧Gate

23‧‧‧汲極23‧‧‧ Jiji

262‧‧‧閘極絕緣層262‧‧‧Gate insulation

24‧‧‧第一絕緣層24‧‧‧The first insulating layer

27‧‧‧絕緣柱27‧‧‧Insulation column

25‧‧‧儲存層疊結構25‧‧‧Storage stack structure

28‧‧‧第二絕緣層28‧‧‧Second insulation layer

251‧‧‧電荷捕捉層251‧‧‧ Charge trapping layer

Z‧‧‧軸向Z‧‧‧axial

252‧‧‧鐵電複合層252‧‧‧Ferroelectric composite layer

本發明之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是說明本發明該實施例的一示意圖; 圖2是說明本發明該實施例的一俯視示意圖 圖3是說明該實施例的垂直型場效電晶體還具有第二絕緣層及第三絕緣層的一俯視示意圖; 圖4是說明具有AFE/FE/CT儲存層疊結構的記憶體電容元件的遲滯特性量測結果; 圖5是說明具有AFE/FE/CT儲存層疊結構的記憶體電容元件的閘極電壓(V G)對汲極電流(I D)的量測數據圖; 圖6是說明具有AFE/FE/CT儲存層疊結構的記憶體電容元件的電流響應量測結果;及 圖7是說明具有AFE/FE/CT儲存層疊結構的記憶體電容元件的元件操作速度量測結果。 Other features and functions of the present invention will be clearly presented in the embodiment with reference to the drawings, in which: FIG. 1 is a schematic diagram illustrating the embodiment of the present invention; FIG. 2 is a schematic top view illustrating the embodiment of the present invention FIG. 3 is a schematic top view illustrating the vertical field effect transistor of this embodiment further has a second insulating layer and a third insulating layer; FIG. 4 is a hysteresis illustrating a memory capacitor element having an AFE/FE/CT storage stack structure Characteristic measurement results; FIG. 5 is a measurement data diagram illustrating gate voltage (V G ) versus drain current (I D ) of a memory capacitor element with an AFE/FE/CT storage stack structure; FIG. 6 is a diagram illustrating AFE/FE/CT storage stack structure memory capacitor device current response measurement results; and FIG. 7 is a diagram illustrating the device operation speed measurement result of the AFE/FE/CT storage stack structure memory capacitor device.

200‧‧‧垂直型場效電晶體 200‧‧‧Vertical field effect transistor

21‧‧‧半導體基板 21‧‧‧Semiconductor substrate

211‧‧‧底部 211‧‧‧Bottom

212‧‧‧通道部 212‧‧‧Channel Department

22‧‧‧源極 22‧‧‧Source

23‧‧‧汲極 23‧‧‧ Jiji

251‧‧‧電荷捕捉層 251‧‧‧ Charge trapping layer

252‧‧‧鐵電複合層 252‧‧‧Ferroelectric composite layer

2521‧‧‧負電容鐵電層 2521‧‧‧Negative capacitance ferroelectric layer

2522‧‧‧反鐵電層 2522‧‧‧Antiferroelectric layer

26‧‧‧閘極單元 26‧‧‧Gate unit

261‧‧‧閘極 261‧‧‧Gate

24‧‧‧第一絕緣層 24‧‧‧The first insulating layer

25‧‧‧儲存層疊結構 25‧‧‧Storage stack structure

262‧‧‧閘極絕緣層 262‧‧‧Gate insulation

27‧‧‧絕緣柱 27‧‧‧Insulation column

Claims (11)

一種具垂直型場效電晶體的混合式儲存記憶體,包含多個儲存元,每個儲存元包括一垂直型場效電晶體,該垂直型場效電晶體包括: 一半導體基板,具有一底部及自該底部向遠離該底部方向延伸的通道部; 一第一絕緣層,包覆該通道部的表面,並讓該通道部兩相對遠離端的表面露出; 形成於該通道部的兩相對遠離端,並分別位於該第一絕緣層的兩側邊的一源極,及一汲極; 一儲存層疊結構,設置於該第一絕緣層反向該通道部的表面,具有一電荷捕捉層,及一鐵電複合層,該鐵電複合層具有彼此層疊連接的一負電容鐵電層,及一反鐵電層,該負電容鐵電層是由以斜方晶相為主要晶相,並具有負電容特性的摻雜氧化鉿構成,該反鐵電層是由以正方晶相為主要晶相的摻雜氧化鋯基材料構成;及 一閘極單元,形成於該儲存層疊結構反向該通道部的表面,具有至少一由導體或半體體材料構成的閘極。 A hybrid storage memory with vertical field effect transistors includes a plurality of storage elements, and each storage element includes a vertical field effect transistor. The vertical field effect transistors include: A semiconductor substrate having a bottom portion and a channel portion extending from the bottom portion away from the bottom portion; A first insulating layer covering the surface of the channel portion and exposing the surfaces of the channel portion relatively away from the ends; A source electrode and a drain electrode formed at two relatively distant ends of the channel portion and respectively located on both sides of the first insulating layer; A storage stack structure, which is arranged on the surface of the first insulating layer opposite to the channel part, has a charge trapping layer, and a ferroelectric composite layer, the ferroelectric composite layer has a negative capacitance ferroelectric layer stacked and connected to each other, And an antiferroelectric layer, the negative capacitance ferroelectric layer is composed of doped hafnium oxide with an orthorhombic crystal phase as the main crystal phase and having negative capacitance characteristics, and the antiferroelectric layer is composed of a square crystal phase as the main phase Crystalline phase doped zirconia-based materials; and A gate unit is formed on the surface of the storage stack structure opposite to the channel portion, and has at least one gate electrode made of a conductor or a half body material. 如請求項1所述的混合式儲存記憶體,其中,該電荷捕捉層選自氮化矽、碳化矽,或非斜方晶相的高介電常數氧化物,例如,氧化鋯、氧化鉿、氧化鋁、氧化鈦、氧化鉭、氮氧化鋯、氮氧化鉿、氮氧化矽、氮氧化鋁、氮氧化鈦、氮氧化鉭、矽氧化鉿、矽氧化鋯。The hybrid storage memory according to claim 1, wherein the charge trapping layer is selected from silicon nitride, silicon carbide, or a non-orthorhombic phase high-dielectric-constant oxide, for example, zirconium oxide, hafnium oxide, Aluminum oxide, titanium oxide, tantalum oxide, zirconium oxynitride, hafnium oxynitride, silicon oxynitride, aluminum oxynitride, titanium oxynitride, tantalum oxynitride, hafnium silicon oxide, silicon zirconium oxide. 如請求項1所述的混合式儲存記憶體,其中,該摻雜氧化鉿選自鋁氧化鉿、矽氧化鉿、鍶氧化鉿、鋯氧化鉿、鑭氧化鉿、釔氧化鉿、或釓氧化鉿。The hybrid storage memory according to claim 1, wherein the doped hafnium oxide is selected from aluminum hafnium oxide, silicon hafnium oxide, strontium hafnium oxide, zirconium hafnium oxide, lanthanum hafnium oxide, yttrium hafnium oxide, or hafnium hafnium oxide . 如請求項3所述的混合式儲存記憶體,其中,該鋁氧化鉿的鋁摻雜比例介於2~10 mol%、該矽氧化鉿的矽摻雜比例介於2~10 mol%、該鋯氧化鉿的鋯摻雜比例介於1~50 mol%、該釔氧化鉿的釔摻雜比例介於2~15 mol%、該釓氧化鉿釓的釓摻雜比例介於2~15 mol%、該鑭氧化鉿的鑭摻雜比例介於2~15 mol%、該鍶氧化鉿的為鍶摻雜比例介於2~15 mol%。The hybrid storage memory according to claim 3, wherein the aluminum doping ratio of the hafnium aluminum oxide is between 2 and 10 mol%, and the silicon doping ratio of the hafnium silicon oxide is between 2 and 10 mol%, the The zirconium doping ratio of hafnium zirconium oxide is between 1~50 mol%, the yttrium doping ratio of the yttrium hafnium oxide is between 2~15 mol%, and the hafnium doping ratio of the hafnium oxide is between 2~15 mol% The lanthanum doping ratio of the lanthanum hafnium oxide ranges from 2 to 15 mol%, and the strontium hafnium oxide doping ratio of strontium ranges from 2 to 15 mol%. 如請求項1所述的混合式儲存記憶體,其中,該摻雜氧化鋯基材料選自氧化鋯、矽氧化鋯、鋁氧化鋯、鍺氧化鋯、釔氧化鋯,鉿氧化鋯,或氮氧化鋯,且矽、鋁、鍺、釔、鉿、氮的摻雜比例大於0mol,不大於50 mol%。The hybrid storage memory according to claim 1, wherein the doped zirconia-based material is selected from zirconia, silicon zirconia, aluminum zirconia, germanium zirconia, yttrium zirconia, hafnium zirconia, or oxynitride Zirconium, and the doping ratio of silicon, aluminum, germanium, yttrium, hafnium, nitrogen is greater than 0mol and not greater than 50mol%. 如請求項1所述的混合式儲存記憶體,其中,該負電容鐵電層、該反鐵電層,及該電荷捕捉層的厚度分別介於1~30nm。The hybrid storage memory according to claim 1, wherein the thicknesses of the negative-capacitance ferroelectric layer, the antiferroelectric layer, and the charge trapping layer are respectively 1-30 nm. 如請求項1所述的混合式儲存記憶體,還包含一介於該儲存層疊結構及該閘極之間的第二絕緣層。The hybrid storage memory according to claim 1, further comprising a second insulating layer interposed between the storage stack structure and the gate. 如請求項1所述的混合式儲存記憶體,其中,該儲存層疊結構還包括一介於該電荷捕捉層及該鐵電複合層之間的第三絕緣層。The hybrid storage memory according to claim 1, wherein the storage stack structure further includes a third insulating layer interposed between the charge trapping layer and the ferroelectric composite layer. 如請求項8所述的混合式儲存記憶體,其中,該第三絕緣層為介電絕緣材料,且不具有斜方晶相。The hybrid storage memory according to claim 8, wherein the third insulating layer is a dielectric insulating material and does not have an orthorhombic phase. 如請求項1所述的混合式儲存記憶體,還包含一自該半導體基板的底部向遠離該底部方向延伸的絕緣柱,且該通道部形成於該絕緣柱的表面。The hybrid storage memory according to claim 1, further comprising an insulating pillar extending from the bottom of the semiconductor substrate away from the bottom, and the channel portion is formed on the surface of the insulating pillar. 如請求項1所述的混合式儲存記憶體,其中,該閘極單元包括多個閘極及多個閘極絕緣層,且該等閘極及閘極絕緣層彼此間隔交錯排列。The hybrid storage memory according to claim 1, wherein the gate unit includes a plurality of gates and a plurality of gate insulating layers, and the gates and the gate insulating layers are arranged alternately at intervals.
TW108123213A 2019-07-02 2019-07-02 Hybrid storage memory having vertical type of fet TWI683420B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW108123213A TWI683420B (en) 2019-07-02 2019-07-02 Hybrid storage memory having vertical type of fet
US16/579,086 US20210005728A1 (en) 2019-07-02 2019-09-23 Storage memory device
US16/676,669 US10872966B1 (en) 2019-07-02 2019-11-07 Storage memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108123213A TWI683420B (en) 2019-07-02 2019-07-02 Hybrid storage memory having vertical type of fet

Publications (2)

Publication Number Publication Date
TWI683420B true TWI683420B (en) 2020-01-21
TW202103304A TW202103304A (en) 2021-01-16

Family

ID=69942607

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108123213A TWI683420B (en) 2019-07-02 2019-07-02 Hybrid storage memory having vertical type of fet

Country Status (1)

Country Link
TW (1) TWI683420B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220169503A (en) * 2021-06-18 2022-12-28 삼성전자주식회사 Semiconductor devices

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180226416A1 (en) * 2017-02-03 2018-08-09 International Business Machines Corporation Structure featuring ferroelectric capacitance in interconnect level for steep sub-threshold complementary metal oxide semiconductor transistors

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180226416A1 (en) * 2017-02-03 2018-08-09 International Business Machines Corporation Structure featuring ferroelectric capacitance in interconnect level for steep sub-threshold complementary metal oxide semiconductor transistors
US20180226417A1 (en) * 2017-02-03 2018-08-09 International Business Machines Corporation Structure featuring ferroelectric capacitance in interconnect level for steep sub-threshold complementary metal oxide semiconductor transistors

Also Published As

Publication number Publication date
TW202103304A (en) 2021-01-16

Similar Documents

Publication Publication Date Title
US10622061B2 (en) Oxide based memory
US10043567B2 (en) Multilevel ferroelectric memory cell for an integrated circuit
US10211312B2 (en) Ferroelectric memory device and fabrication method thereof
US9053802B2 (en) Ferroelectric memory cell for an integrated circuit
US9837435B1 (en) Three-dimensional non-volatile memory structure and manufacturing method thereof
Max et al. Retention characteristics of Hf 0.5 Zr 0.5 O 2-based ferroelectric tunnel junctions
US10872966B1 (en) Storage memory device
US10388786B2 (en) Nonvolatile memory device
US20190189627A1 (en) Ferroelectric memory cells including ferroelectric crystalline materials having polar and chiral crystal structures, and related memory devices
US20160308070A1 (en) Semiconductor device
US20180166448A1 (en) Strained-gate Engineered Dynamic Random Access Memory Including Ferroelectric Negative Capacitance Dielectrics And Manufacturing Method Thereof
TWI621215B (en) Flash memory structure and method of manufacturing the same
JP7360203B2 (en) Non-volatile storage device and its operating method
Mikolajick et al. Next generation ferroelectric memories enabled by hafnium oxide
KR20050092880A (en) Sonos type memory device
US20150333258A1 (en) Non-volatile memory device comprising a ferroelectric film and a paraelectric film.
US20050167734A1 (en) Flash memory devices using large electron affinity material for charge trapping
US11978798B2 (en) Semiconductor device
TWI683420B (en) Hybrid storage memory having vertical type of fet
JP6472149B2 (en) Nonvolatile memory element
US20140003122A1 (en) Semiconductor memory structure and control method thereof
TWI744663B (en) Hybrid storage memory
KR101177277B1 (en) Non-volatile memory device using metal-insulator transition material
KR102675782B1 (en) Capacitor and semiconductor device including the same
US20230024729A1 (en) Two-terminal memory device, a method for manufacturing the same, and a semiconductor device including a two-terminal memory device