TW200837934A - Image sensor and fabrication method thereof - Google Patents

Image sensor and fabrication method thereof Download PDF

Info

Publication number
TW200837934A
TW200837934A TW96107389A TW96107389A TW200837934A TW 200837934 A TW200837934 A TW 200837934A TW 96107389 A TW96107389 A TW 96107389A TW 96107389 A TW96107389 A TW 96107389A TW 200837934 A TW200837934 A TW 200837934A
Authority
TW
Taiwan
Prior art keywords
layer
dielectric constant
image sensor
high dielectric
pixel
Prior art date
Application number
TW96107389A
Other languages
Chinese (zh)
Inventor
Michael-Y Liu
Original Assignee
Powerchip Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Powerchip Semiconductor Corp filed Critical Powerchip Semiconductor Corp
Priority to TW96107389A priority Critical patent/TW200837934A/en
Publication of TW200837934A publication Critical patent/TW200837934A/en

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Abstract

A fabrication method of an image sensor is disclosed. A semiconductor substrate is provided, wherein a plurality of pixels is defined on the semiconductor substrate. A plurality of pixel electrodes is formed on the pixels and then a barrier element is filled between adjacent pixel electrodes, wherein the barrier element contains a high k material. A photoconductive layer and a transparent conductive layer are successively formed on the high-k material layer and the pixel electrodes.

Description

200837934 九、發明說明: 【發明所屬之技術領域】 本發明提供一種影像感測器,尤指一種包含有設於像素電極之 間的阻障元件之影像感測器。 【先前技術】 隨著科技發展,各種影像感測器已被大量應用於數位電子商品 中’例如%描器或數位相機等產品,而目前較為廣泛的影像感測 裔包括互補式金屬氧化物半導體(C〇mplementary metal 〇xide semiconductors ’ CMOS)或電荷_合裝置(charge coupled device, CCD)。上述影像感測器皆為矽半導體裝置,可用來捕捉光子,然 後將光子轉換成電子,經傳輸後再次轉換為可量測之電壓,而得 到數位資料。 目前業界已研發出一種光導體覆主動像素200837934 IX. Description of the Invention: [Technical Field] The present invention provides an image sensor, and more particularly to an image sensor including a barrier element disposed between pixel electrodes. [Prior Art] With the development of technology, various image sensors have been widely used in digital electronic products such as % scanners or digital cameras, and the current wide range of image sensing includes complementary metal oxide semiconductors. (C〇mplementary metal 〇xide semiconductors ' CMOS) or charge coupled device (CCD). The image sensors are all germanium semiconductor devices, which can be used to capture photons, then convert the photons into electrons, and then convert them into measurable voltages to obtain digital data. At present, the industry has developed a photoconductor overlay active pixel

(photoconductor-on-active-pixel,POAP)影像感測器,其結構係 將 δ 有虱化非晶石夕(hydrogenated amorphous silicon,〇Si:H)的感 光元件堆璺於CCD或CMOS元件上,能得到比傳統CCD或CMOS 影像感測器有更良好表現之影像感測器。由於光導體覆主動像素 影像感測器具有特殊的堆疊結構,因此具有高集光有效面積比(611 factor)之優點’能使得整個像素面積都能用來感測光子,再配合 a-Si:H材料有效轉換能量的特性,便能達到高量子效率。然而, 在已知研究中,光導體覆主動像素影像感測器仍然有跨越干擾 200837934 (cross-talk)、影像延遲(imagelag)以及漏電流訊號等問題。其 中’載子跨越干擾相鄰像素的問題尤其會造成嚴重的解析度與均 勻性不足的問題,也會在像素間造成色彩上的跨越干擾,導致色 彩失真。 請參考第1圖與第2圖,第1圖為習知一光導體覆主動像素之 影像感測器10的側剖面示意圖,第2圖為第1圖所示之像素電極 間的模擬電位圖。習知影像感測器10包含複數個像素14a、14b 以及一介電層16設於一基底12上、複數個像素電路(圖未示) 设於各像素14a、14b之内、複數個像素電極18a、18b設於該等 像素電路以及介電層16上、一光導層20設於像素電極iga、18b 上、以及一透明導電層28設於光導層20上,其中光導層2〇由下 至上包含一 η型層(n-iayer) 22、一本徵層(如111^%61',^^61〇 24以及一 p型層(p-typeiayer)26,形成所謂的堆疊卜“層結構, 用來接受光線並將光線依照強度轉換成對應之電荷量。 然而,在照光情形下,影像感測器10之不同像素電極18a、18b 會具有不同的電壓,導致相鄰像素14a、14b之間產生具有電壓差 的電場。舉例而言,如果照光後像素電極18b具有高電位Vh,而 像素電極18a具有低電位Vl,透明導電層28處於接地狀態,則在 相鄰像素14a、14b之間會發生漏電流,由具高電位VH的像素電 極18b流至相鄰具低電位VL的像素電極18a,如第2圖中以箭頭 表不漏電流的移動方向。因此發生跨越干擾問題,而影響了影像 6 200837934 感測的正確性,導致感測結果失真。 因此,如何改良光導體覆主動像素之影像感測器結構,以避免 相鄰像素關跨越干制題而提供切触像_結果,仍然為 業界亟需解決之議題。 【發明内容】 本發明之主要目的在於提供—種具有轉元件的光導體覆主 動像素影像❹》m,以解決上述習知影像制器的跨越干擾問題。 根據本發明之申請專利範圍,提供了一種製作影像感測器的方 法。首先提供-基底’其表面定義有複數個像素。接著於基底上 形成複數轉素雜各該像細,織_雜素電極之間 填入阻障元件’其包含有高介ff數(high_k)材料。最後於阻障 元件以及像素電極上依序形成—光騎與-透明導電層。 根據本發明之中請專利職,另揭露一種影像感測器,其包含 -半導體基底、複數個像素絲於該半導體基底上、以及一光導 層與-透明導電層依序設於像素_各像素電極上。本發明影像 感測為另包含-轉元件設於任二相鄰之像素電極之間,且遮蔽 元件包含有高介電常數材料。 由於本發明係在影像感測器的各像素電極之間設置具有高介 200837934(photoconductor-on-active-pixel, POAP) image sensor, the structure of which is stacked on a CCD or CMOS device with a δ-densified amorphous silicon (〇Si:H) photosensitive element. It can get an image sensor that performs better than traditional CCD or CMOS image sensors. Since the photo-conductor-covered active pixel image sensor has a special stacked structure, it has the advantage of high-concentration effective area ratio (611 factor), which enables the entire pixel area to be used for sensing photons, and then with a-Si:H material. By effectively converting the energy characteristics, high quantum efficiency can be achieved. However, in known studies, the photo-conductor-covered active pixel image sensor still has problems such as cross-talk, 200837934 (cross-talk), image delay (imagelag), and leakage current signals. Among them, the problem that the carrier crosses the adjacent pixels in particular causes serious problems of insufficient resolution and uniformity, and also causes color interference between pixels, resulting in color distortion. Please refer to FIG. 1 and FIG. 2 . FIG. 1 is a side cross-sectional view of a conventional image sensor 10 with a light-emitting active pixel, and FIG. 2 is an analog potential diagram between pixel electrodes shown in FIG. 1 . . The conventional image sensor 10 includes a plurality of pixels 14a, 14b and a dielectric layer 16 disposed on a substrate 12, a plurality of pixel circuits (not shown) disposed within each of the pixels 14a, 14b, and a plurality of pixel electrodes. 18a, 18b are disposed on the pixel circuits and the dielectric layer 16, a photoconductive layer 20 is disposed on the pixel electrodes iga, 18b, and a transparent conductive layer 28 is disposed on the photoconductive layer 20, wherein the photoconductive layer 2 is bottom to top Including an n-type layer (n-iayer) 22, an intrinsic layer (such as 111^%61', ^^61〇24, and a p-type layer (p-typeiayer) 26, forming a so-called stacking layer "layer structure, It is used to receive light and convert the light into a corresponding amount of charge according to the intensity. However, in the case of illumination, the different pixel electrodes 18a, 18b of the image sensor 10 will have different voltages, resulting in between adjacent pixels 14a, 14b. An electric field having a voltage difference is generated. For example, if the pixel electrode 18b has a high potential Vh after illumination, and the pixel electrode 18a has a low potential V1, and the transparent conductive layer 28 is in a grounded state, between adjacent pixels 14a, 14b Leakage current occurs, by pixel electrode with high potential VH 18b flows to the pixel electrode 18a adjacent to the low potential VL, as shown in FIG. 2, the direction of movement of the leakage current is not indicated by the arrow. Therefore, the crosstalk problem occurs, which affects the correctness of the image 6 200837934 sensing, resulting in sensing. The result is distorted. Therefore, how to improve the image sensor structure of the photo-conductor-covered active pixel to avoid the adjacent pixel to cross the dry problem and provide the contact image_result is still an urgent problem to be solved in the industry. The main object of the present invention is to provide an optical pixel-coated active pixel image with a rotating element to solve the problem of cross-interference of the above-mentioned conventional imager. According to the patent application scope of the present invention, a sense of image is provided. The method of the detector first provides a substrate having a plurality of pixels defined on its surface. Then, a plurality of pixels are formed on the substrate, and the image is filled with a barrier element. Ff (high_k) material. Finally, a light riding and a transparent conductive layer are sequentially formed on the barrier element and the pixel electrode. According to the present invention, the patent is disclosed, and another one is disclosed. The image sensor includes a semiconductor substrate, a plurality of pixel wires on the semiconductor substrate, and a light guiding layer and a transparent conductive layer sequentially disposed on the pixel-pixel electrodes. The image sensing of the present invention further includes The rotating component is disposed between any adjacent pixel electrodes, and the shielding component comprises a high dielectric constant material. Since the present invention is disposed between each pixel electrode of the image sensor, it has a high dielectric 200837934

V 電常數材料的轉元件巾,因此在補像錢極之間_成車▲大 的能障,㈣免漏電赫-像素電極流向相鄰像素電^或透明又導 電層中,所以可財效聽跨軒題,提高影像感測器的正 【實施方式】 請參考第3至8圖,第3至8圖為本發明影像感測器卿之繁 鲁作方法的製程示意圖。首先,如第3圖所示,提供一半導體晶片、V electric constant material of the rotating component towel, so between the complement of the money pole _ into the car ▲ large energy barrier, (four) leakage-free He-pixel electrode flow to the adjacent pixel electric or transparent and conductive layer, so the financial effect Listening to the cross-theft question, improving the positive of the image sensor [Embodiment] Please refer to Figures 3 to 8, and Figures 3 to 8 are schematic views of the process of the image sensor of the present invention. First, as shown in FIG. 3, a semiconductor wafer is provided,

102 ’其包含一料體基底腦,例如為絲底。半導體基底L 表面定義有複數個像素108 ’形成一像素矩陣。接著,於半導體基 底104上製作複數個電子元件,以形成像素電路工⑺設於介電層 應中。然後於介電層鹰上形成一導電層m,位於像素電路 與介電層106之上’其中導電層112可包含金屬材料,例如為氮 化鈦(titaniumnitride,TiN)。 接著如第4圖所示,進行一微影暨蝕刻製程,先於半導體基底 104表面形成一光阻層(圖未示),然、後利用一具有像素電極圖案 之光罩於光阻層上定義出像素電極圖案,再進行蝕刻而移除部分 導私層112,並移除光阻層,以於各像素1〇8中形成一像素電極 114 ’藉由接觸洞116分別電連接於對應之像素電路11〇,且相鄰 像素電極114之間具有一電極間距G。 接著,在相鄰像素電極114之間形成一阻障元件12〇。阻障元 200837934 件120的形成方法請參考第5圖與第6圖,首先如第5圖所示, 於半導體基底104之上形成一高介電常數材料(highkmaterial) 層118,覆蓋於介電層1〇6與像素電極114之上,且部分高介電常 數材料層118亦會填入相鄰像素電極114的電極間距G。高介電 系數材料層118可利用化學氣相沉積(chemicalv叩〇rdep〇siti〇n, CVD)製私或物理氣相沉積(physicalv叩印⑽製 私所形成。尚介電常數材料層118之介電常數可為約25至3〇,例 如可包含五氧化组(tantalumpentoxide,也⑻材料。接著,如第 囷斤示進行化學機械研磨製程,或利用回餘刻製程來移除部 分位於像素電極114表面之高介電材料層ιΐ8,而使高介電常 數材料層II8的厚度約略等於像素電㈣4的厚度,以於相鄰像 素電極m之咖成—轉元件12()。由於轉元件I%係由填入 電極間距G的高介電常數材 118所形成,所以阻障元件120 之底面與像素電極114之底面係位於同-平面上,亦即位於介電 層106的上表面。 m *考第7圖’第7圖為第6圖所示像素電極114與阻障元件 120 &他# 一-102' contains a basal brain, such as a silk bottom. A plurality of pixels 108' are defined on the surface of the semiconductor substrate L to form a matrix of pixels. Next, a plurality of electronic components are fabricated on the semiconductor substrate 104 to form a pixel circuit (7) disposed in the dielectric layer. A conductive layer m is then formed over the dielectric layer eagle, above the pixel and dielectric layers 106. The conductive layer 112 may comprise a metallic material, such as titanium nitride (TiN). Then, as shown in FIG. 4, a lithography and etching process is performed to form a photoresist layer (not shown) on the surface of the semiconductor substrate 104, and then a photomask having a pixel electrode pattern is used on the photoresist layer. A pixel electrode pattern is defined, and a portion of the conductive layer 112 is removed by etching, and the photoresist layer is removed to form a pixel electrode 114 ′ in each of the pixels 1 〇 8 electrically connected to the corresponding via the contact hole 116 The pixel circuit 11A has an electrode pitch G between adjacent pixel electrodes 114. Next, a barrier element 12A is formed between the adjacent pixel electrodes 114. For the formation method of the barrier element 200837934 120, please refer to FIG. 5 and FIG. 6. First, as shown in FIG. 5, a high-k material layer 118 is formed on the semiconductor substrate 104 to cover the dielectric. The layer 1〇6 and the pixel electrode 114 are over, and a portion of the high dielectric constant material layer 118 is also filled in the electrode pitch G of the adjacent pixel electrode 114. The high-k material layer 118 can be formed by chemical vapor deposition (CVD) or physical vapor deposition (physical v-print (10). The dielectric constant material layer 118 The dielectric constant may be about 25 to 3 Å, for example, may include a pentoxide group (tantalumpent oxide, also (8) material. Then, as shown in the first step, a chemical mechanical polishing process is performed, or a re-etching process is used to remove a portion of the pixel electrode. The surface of the high dielectric material layer ι 8 is such that the thickness of the high dielectric constant material layer II8 is approximately equal to the thickness of the pixel (4) 4, so as to be adjacent to the pixel electrode m of the adjacent pixel electrode m. The % is formed by the high dielectric constant material 118 filled in the electrode pitch G, so that the bottom surface of the barrier element 120 and the bottom surface of the pixel electrode 114 are located on the same plane, that is, on the upper surface of the dielectric layer 106. *Test Figure 7 'Figure 7 is the pixel electrode 114 and the barrier element 120 shown in Figure 6 & he #一-

成一 120 114 ι 接著,請參考第8a圖, 依序於半導體基底104表面形成光導 200837934 層122與一透明導電層130,其中光導層122由下至上依序包含有 一 η 型層(n-layer) 124、一本徵層(intrinsic layer,i-layer) 126 以及一 p型層(p-type layer) 128。η型層124與p型層128可分 別包含摻雜η型摻質或者p型摻質之氫化非晶質碳化石夕 (hydrogenated amorphous silicon carbide,a_SiC:H)材料,而本徵 層 126 則可包含氫化非晶矽(hydrogenated amorphous silicon, a_Si:H)材料。由第8a圖可知,形成於像素電極114之上的η型 φ 層124係直接與阻障元件120以及像素電極Π4相接觸。然而, 在其他實施例中,光導層122由下至上亦可依序包含一 ρ型層、 一本徵層以及一 η型層。此外,透明導電層13〇可包含氧化銦錫 (Indium Tin Oxide,ITO)材料。待形成光導層122與透明導電層 130之後,便完成本發明光導體覆主動像素影像感測器1〇〇。 在本發明之其他實施例中,亦可先於像素電極114之上形成11 _ 型層124/p型層128,然後進行乾式蝕刻以移除部分n型層124 /ρ型層128,而於相鄰像素電極ι〗4之間形成複數個凹槽132(此 時各像素電極114表面仍被!!型層124/ρ型層128所覆蓋),再 於凹槽132中填入高介電常數材料而形成阻障元件12〇,並且阻障 元件120之咼度係約略等於η型層124/p型層128之高度。其中, 袋作阻障元件120之方法係於半導體基底1〇4之上以(:;¥1)或1>乂〇 製程形成一高介電常數材料層(圖未示),覆蓋於n型層124/p 型層128之上,並填入凹槽132内,然後以化學機械研磨或回蝕 . 刻方式移除部分高於n型層以/p型層⑶表面的高介電常數材 200837934 料層。最後,依序於半導體基底104表面形成本徵層126、p型層 128/n型層124、以及透明導電層13G,便完成如第%圖所示之 光導體覆主動像素影像感測器100。 請參考第9 ,第9圖為習知影像感測器10與本發明影像感 測器100的電位圖表。當兩相鄰之像素電極分別具有低電位W與 馬電位vH時’習知影像感測器10的二像素電極版、^之間的 鲁 _區域不具有電位能障高度或僅有很小的電位能障高度。所 以’在本徵層24中產生的電子很容易由右側高電位%的像素電 極18b移動到左側低電位Vl的像素電極收,造成跨越干擾問題 (如第2圖所示)。相反的’由第9圖可知,本發明影像感測器· 之二相鄰像素電極m雖然分別具有高電位%與低電位、,但 像素電極m之間的電極間距0則具有一很大的能障高度, 效避免跨越干擾問題。 第10圖為本發明影像感測器觸之兩相鄰像素⑽之間的槿 擬電位圖。如第1G圖所示,雖然相鄰像素電極114分別具雷 位VH與低電位Vl ’但由於阻障元件⑽於相鄰像素電極^ 電極間距G提供了較高的能鮮度,耻電流料會由1有古雷 位的右側像素電極114流向具低電位%的左側像素電極^ 因此不會發生跨越干擾問題,導致_影像的色彩發生誤差。’ 相較於習知技術,本發明的影像感測器結構係在相鄰像素或像 200837934 素電極之間設置-阻障元件,使得電極間距具有高電位阻障,以 避免跨越干擾之情形’能有魏善影賴卿的影像感測絲。 由於本發明之阻障元件係由高介電常數材料所形成,能阻斷相鄰 像素之間的電場分佈,避免像素電極之_漏電流所造成的跨越 干擾。所以,根據本發明影像感測器之結構與製作方法,可利用 ft単的製程與低廉成本來製作出避免跨越干擾問題的影像感測 益,有效提升影像感測的正確性。 以上所述僅為本發明之較佳實施例,凡依本發财請專利範圍 所做之均㈣化與修飾’皆應屬本發明之涵蓋範圍。 【圖式簡單說明】 =1圖為習知-光導體覆主動像素之影像_器的側剖面示意圖 第2圖為第1圖所示之像素電極間的模擬電位圖。 第3至8a圖為本發明影像感測器之製作方法的製程示音圖。 第8b圖為本發明影像感測器之另一實施例的剖面示意圖。 第9圖為習知影像感測器與本發明影像感測器的電位圖表。 第10圖為本發明影像感測器之兩相鄰像素的模擬電位圖。 12 200837934 【主要元件符號說明】 10 影像感測器 14a、 14b 像素 18a、 18b 像素電極 22 η型層 26 Ρ型層 100 影像感測器 104 半導體基底 108 像素 112 導電層 116 接觸洞 120 阻障元件 124 η型層 128 Ρ型層 132 凹槽 12 基底 16 介電層 20 光導層 24 本徵層 28 透明導電層 102 半導體晶片 106 介電層 110 像素電路 114 像素電極 118高介電常數材料層 122 光導層 126 本徵層 130 透明導電層Forming a 120 114 ι Next, please refer to FIG. 8a, sequentially forming a light guide 200837934 layer 122 and a transparent conductive layer 130 on the surface of the semiconductor substrate 104, wherein the light guide layer 122 sequentially includes an n-layer layer from bottom to top. 124. An intrinsic layer (i-layer) 126 and a p-type layer 128. The n-type layer 124 and the p-type layer 128 may respectively comprise a hydrogenated amorphous silicon carbide (a_SiC:H) material doped with an n-type dopant or a p-type dopant, and the intrinsic layer 126 may A hydrogenated amorphous silicon (a_Si:H) material is included. As can be seen from Fig. 8a, the n-type φ layer 124 formed on the pixel electrode 114 is in direct contact with the barrier element 120 and the pixel electrode Π4. However, in other embodiments, the photoconductive layer 122 may sequentially include a p-type layer, an intrinsic layer, and an n-type layer from bottom to top. Further, the transparent conductive layer 13A may include an Indium Tin Oxide (ITO) material. After the photoconductive layer 122 and the transparent conductive layer 130 are to be formed, the photoconductor-covered active pixel image sensor 1 of the present invention is completed. In other embodiments of the present invention, the 11-type layer 124/p-type layer 128 may be formed on the pixel electrode 114, and then dry-etched to remove a portion of the n-type layer 124 / p-type layer 128. A plurality of grooves 132 are formed between the adjacent pixel electrodes ι 4 (the surface of each pixel electrode 114 is still covered by the !! type layer 124 / p type layer 128), and the high dielectric is filled in the groove 132 The barrier element 12A is formed by a constant material, and the mobility of the barrier element 120 is approximately equal to the height of the n-type layer 124/p-type layer 128. The method for forming the barrier element 120 is to form a high dielectric constant material layer (not shown) on the semiconductor substrate 1〇4, and to cover the n-type. Above the layer 124/p-type layer 128, and filled into the recess 132, and then chemically polished or etched back. The high dielectric constant material partially higher than the surface of the /p-type layer (3) is removed. 200837934 Material layer. Finally, the intrinsic layer 126, the p-type layer 128/n-type layer 124, and the transparent conductive layer 13G are sequentially formed on the surface of the semiconductor substrate 104, thereby completing the photo-conductor-covered active pixel image sensor 100 as shown in FIG. . Please refer to Chapters 9 and 9, which are potential diagrams of the conventional image sensor 10 and the image sensor 100 of the present invention. When two adjacent pixel electrodes respectively have a low potential W and a horse potential vH, the Lu_region between the two-pixel electrode plate of the conventional image sensor 10 does not have a potential barrier height or only a small The height of the potential barrier is high. Therefore, the electrons generated in the intrinsic layer 24 are easily moved by the right-side high-potential pixel electrode 18b to the left-side low-potential V1 pixel electrode, causing a cross-interference problem (as shown in Fig. 2). In contrast, as can be seen from FIG. 9, the adjacent pixel electrodes m of the image sensor of the present invention have a high potential % and a low potential, respectively, but the electrode pitch 0 between the pixel electrodes m has a large The energy barrier is high and the effect is avoided. Figure 10 is a diagram of the pseudo potential between two adjacent pixels (10) touched by the image sensor of the present invention. As shown in FIG. 1G, although the adjacent pixel electrodes 114 have a lightning potential VH and a low potential V1 ', respectively, since the barrier element (10) provides a higher energy density at the adjacent pixel electrode electrode spacing G, the shaky current will be The right pixel electrode 114 having an ancient lightning position flows to the left pixel electrode having a low potential %. Therefore, the interference problem does not occur, resulting in an error in the color of the image. Compared with the prior art, the image sensor structure of the present invention is provided with a barrier element between adjacent pixels or like the 200837934 element electrode, so that the electrode spacing has a high potential barrier to avoid the situation of crossing interference' Can have Wei Shanying Lai Qing's image sensing silk. Since the barrier element of the present invention is formed of a high dielectric constant material, the electric field distribution between adjacent pixels can be blocked, and the crosstalk caused by the leakage current of the pixel electrode can be avoided. Therefore, according to the structure and the manufacturing method of the image sensor of the present invention, the ft単 process and the low cost can be utilized to create an image sensing benefit that avoids the problem of crossing interference, and effectively improve the correctness of the image sensing. The above description is only the preferred embodiment of the present invention, and all the modifications and modifications made by the scope of the present invention should be within the scope of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS =1 is a side cross-sectional view of a conventional optical-reflector image of an active pixel. FIG. 2 is an analog potential diagram between pixel electrodes shown in FIG. 3 to 8a are diagrams showing the process of the image sensor of the present invention. Figure 8b is a cross-sectional view showing another embodiment of the image sensor of the present invention. Figure 9 is a potential diagram of a conventional image sensor and an image sensor of the present invention. Figure 10 is an analog potential diagram of two adjacent pixels of the image sensor of the present invention. 12 200837934 [Main component symbol description] 10 image sensor 14a, 14b pixel 18a, 18b pixel electrode 22 n-type layer 26 germanium layer 100 image sensor 104 semiconductor substrate 108 pixel 112 conductive layer 116 contact hole 120 barrier element 124 n-type layer 128 germanium layer 132 recess 12 substrate 16 dielectric layer 20 photoconductive layer 24 intrinsic layer 28 transparent conductive layer 102 semiconductor wafer 106 dielectric layer 110 pixel circuit 114 pixel electrode 118 high dielectric constant material layer 122 light guide Layer 126 intrinsic layer 130 transparent conductive layer

1313

Claims (1)

200837934 十、申請專利範圍: L -種製作-影像感測器之方法,該方法包含有: 提供一半導縣底,其表面絲有複數個像素; 於該半導體基底上形成複數個像素電極設於各該像素内; 於相鄰之該等像素電極之間填入一阻障元件,該阻障元件包含 回;丨電常數材料(high k material);以及 於該阻卩早7〇相及該等像素電極上依序形成—光導層與一透明 導電層。 2. 如申請專利範圍第 法包含: 1項所述之方法,其中該阻障元件之形成方 於。亥半V體基底表面形成一高介電常數材料層;以及 移除部分位_#像素雜表面之該高介電常數材料層。200837934 X. Patent application scope: L-type production-image sensor method, the method comprises: providing a half-lead bottom, the surface of the wire has a plurality of pixels; forming a plurality of pixel electrodes on the semiconductor substrate Each of the pixels is filled with a barrier element between the adjacent pixel electrodes, the barrier element includes a back material; a high k material; and the first and second phase of the resistor The photoconductive layer and a transparent conductive layer are sequentially formed on the pixel electrode. 2. The method of claim 2 includes the method of claim 1, wherein the barrier element is formed. Forming a high dielectric constant material layer on the surface of the half-V body substrate; and removing the high dielectric constant material layer of the partial surface of the pixel. Pv_ 、 (Physical vapor deposition » 制和、程或—化學氣相沉積(vapc)r depGsiti()n,cv〇 ) 4+撕述之綠,其中移除部分該高介電常 、方法包含—化學機械研賴程或-_刻製程。 5·如申轉利範園第1項所述之方法,其中該轉元件之高度係 200837934 m 、約略專於該等像素電極之高度。 6·如申請專利範圍第1項所述之方法,其中該高介電常數材料之 介電常數為約25至3〇。 7·如申請專利範圍第1項所述之方法,其中該高介電常數材料包 含五氧化纽(tantalum pentoxide,Ta2〇5)。 8·如申請專利範關丨項所述之方法,其中該光導層係由一打型 層、-本徵層(intrinsic layer,i妨er)以及一 ρ型層依序堆疊 9.,申請專·圍第i項所述之方法,其中該轉元件係如同網 狀圍繞各該像素電極。Pv_, (Physical vapor deposition), process or chemical vapor deposition (vapc)r depGsiti()n, cv〇) 4+ tear green, which removes part of the high dielectric constant, method contains - chemistry Mechanical research process or -_ engraving process. 5. The method of claim 1, wherein the height of the rotating element is 200837934 m, approximately the height of the pixel electrodes. 6. The method of claim 1, wherein the high dielectric constant material has a dielectric constant of about 25 to 3 Å. 7. The method of claim 1, wherein the high dielectric constant material comprises tantalum pentoxide (Ta2〇5). 8. The method of claim 2, wherein the photoconductive layer is sequentially stacked by a one-layer layer, an intrinsic layer (intrinsic layer), and a p-type layer. The method of item i, wherein the rotating element surrounds each of the pixel electrodes as a mesh. 10· —種影像感測器,其包含·· 一半導體基底; 複Z像素絲於該铸體基底上,料該像素包含有一像素 一光導層以及導鶴依序餅該 一阻障元伽Η叫目岐蝴_ = 包含有高介電常數材料。 且麵敝兀件 器’其中該高介電常 11.如申請專利範圍第1G項所述之影像感測 15 200837934 m 數材料之介電常數為約25至30。 12. 如申請專利範圍第1〇項所述之影像感測器,其中該高介電當 數材料包含錢恤。 13. 如申請專利範圍第1()項所述之影像感測器,其中該阻障元件 係如同網狀圍繞各該像素電極。 • ^ 14·如申請專利範圍第1〇項所述之影像感測器,其中該阻障元件 之底面亥專像素電極之底面係位於同一平面上。 15·如申請專利範圍第1〇項所述之影像感測器,其中該光導層係 由一第一導電型摻雜層、一本徵層以及一第二導電型摻雜層依 序堆疊形成。 • 16.如申請專利範圍第15項所述之影像感測器,其中該第一導電 型摻雜層以及該第二導電型摻雜層包含氫化非晶質碳化矽 (hydrogenated amorphous silicon carbide,a-SiC:H)材料0 17·如申請專利範圍第15項所述之影像感測器,其中該本徵層包 含有虱化非晶石夕(hydrogenated amorphous silicon,〇Si:H)讨 料。 . 18·如申請專利範圍第15項所述之影像感測器,其中該第一導電 16 200837934 型捧雜層係覆蓋於該阻障元件以及該像素電極之表面,並且該 阻障元件之高度係約略等於該像素電極之高度。 " 19.如申請專利範圍第15項所述之影像感·,其中該第一導電 型摻雜層健蓋於鱗素雜之絲,並·轉元件之高度 係約略等於該第一導電型摻雜層之高度。 20· —種製作一影像感測器之方法,該方法包含有: &ί、半導體基底,其表面定義有複數個像素; 於該半導縣底上形賴數轉素電贿於各雜素内; 於該半導體基底上形成-第一導電型摻雜層覆蓋該等像素電 極; 移除部分該第-導電型摻雜層,以於任二相鄰之 極 之間形成一凹槽; 电枝 於=填入-阻障元件’該阻障元件包含高介電常數材 於該半導體基底上依序形成一本徵層、一第 與-透明導電層。 电认雜層、 21.如申請專利範圍第20項所述之影像感測器,其中該第 :摻雜層係為一 η型層,並且該第二導電型摻雜層係為—ρ型 200837934 22·如申睛專利範圍第2〇項所述之影像感測器,其中該第一導電 型#雜層係為一ρ型層,並且該第二導電型摻雜層係為一 η型 層。 23·如申請專利範圍第2〇項所述之方法,其中該阻障元件之形成 方法包含: 於該半導體基底表面形成一高介電常數材料層;以及. • 移除部分位於該第一導電型摻雜層表面之該高介電常數材料 層。 24·如申請專利範圍第23項所述之方法,其中形成該高介電常數 材料層之方法包含一物理氣相沉積製程或一化學氣相沉積製 程。 % 如申請專利範圍第23項所述之方法,其中移除部分該高介電 常數材料層之方法包含一化學機械研磨製程或一回蝕刻製程。 %·如申請專利範圍第20項所述之方法,其中該阻障元件之高度 係約略等於該第一導電蜇摻雜層之高度。 27.如申請補細第20賴述之方法,其情高介電常數材料 之介電常數為約25至30。 ' 28.如申請專利範圍第2_所述之方法’其中該高介電常數材料 18 200837934 包含五氧化短。 29. 如申請專利範圍第20項所述之方法,其中該第一導電型摻雜 層、該本徵層以及該第二導電型摻雜層係形成一光導層。 30. 如申請專利範圍第20項所述之方法,其中該阻障元件係如同 網狀圍繞各該像素電極。 參 十一、圖式: 19An image sensor comprising: a semiconductor substrate; a complex Z pixel filament on the substrate of the casting body, wherein the pixel comprises a pixel-photoconductive layer and a guiding layer of the barrier gamma It is called a butterfly _ = contains a high dielectric constant material. And the surface device is in which the high dielectric constant is 11. The image sensing according to the claim 1G of the patent claim 15 200837934 m material has a dielectric constant of about 25 to 30. 12. The image sensor of claim 1, wherein the high dielectric material comprises a money shirt. 13. The image sensor of claim 1 wherein the barrier element surrounds each of the pixel electrodes as a mesh. The image sensor of claim 1, wherein the bottom surface of the pixel element of the barrier element is on the same plane. The image sensor of claim 1, wherein the light guiding layer is formed by sequentially stacking a first conductive type doping layer, an intrinsic layer and a second conductive type doping layer. . The image sensor of claim 15, wherein the first conductive type doped layer and the second conductive type doped layer comprise hydrogenated amorphous silicon carbide (a) The image sensor of claim 15, wherein the intrinsic layer comprises a hydrogenated amorphous silicon (〇Si:H) material. The image sensor of claim 15, wherein the first conductive layer 1637937934 is covered with the barrier element and the surface of the pixel electrode, and the height of the barrier element The system is approximately equal to the height of the pixel electrode. " 19. The image sensing method of claim 15, wherein the first conductive type doped layer is covered by the spheroidal wire, and the height of the rotating element is approximately equal to the first conductive type The height of the doped layer. 20) A method for fabricating an image sensor, the method comprising: & ί, a semiconductor substrate having a plurality of pixels defined on a surface thereof; and a plurality of transposons on the bottom of the semi-conducting county Forming a first conductive type doped layer covering the pixel electrodes on the semiconductor substrate; removing a portion of the first conductive type doped layer to form a groove between any two adjacent poles; The electric barrier is filled with a barrier element. The barrier element comprises a high dielectric constant material to sequentially form an intrinsic layer and a first-transparent conductive layer on the semiconductor substrate. The image sensor of claim 20, wherein the first doped layer is an n-type layer, and the second conductive type doped layer is -p type The image sensor of claim 2, wherein the first conductive type is a p-type layer, and the second conductive type doped layer is an n-type Floor. The method of claim 2, wherein the method of forming the barrier element comprises: forming a high dielectric constant material layer on a surface of the semiconductor substrate; and: removing the portion at the first conductive The layer of high dielectric constant material on the surface of the doped layer. The method of claim 23, wherein the method of forming the high dielectric constant material layer comprises a physical vapor deposition process or a chemical vapor deposition process. The method of claim 23, wherein the method of removing a portion of the high dielectric constant material layer comprises a chemical mechanical polishing process or an etching process. The method of claim 20, wherein the height of the barrier element is approximately equal to the height of the first conductive germanium doped layer. 27. The method of claim 20, wherein the dielectric constant material has a dielectric constant of about 25 to 30. 28. The method of claim 2, wherein the high dielectric constant material 18 200837934 comprises a short pentoxide. 29. The method of claim 20, wherein the first conductive type doped layer, the intrinsic layer, and the second conductive type doped layer form a light guiding layer. 30. The method of claim 20, wherein the barrier element surrounds each of the pixel electrodes as a mesh. Reference XI, schema: 19
TW96107389A 2007-03-03 2007-03-03 Image sensor and fabrication method thereof TW200837934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96107389A TW200837934A (en) 2007-03-03 2007-03-03 Image sensor and fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96107389A TW200837934A (en) 2007-03-03 2007-03-03 Image sensor and fabrication method thereof

Publications (1)

Publication Number Publication Date
TW200837934A true TW200837934A (en) 2008-09-16

Family

ID=44820376

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96107389A TW200837934A (en) 2007-03-03 2007-03-03 Image sensor and fabrication method thereof

Country Status (1)

Country Link
TW (1) TW200837934A (en)

Similar Documents

Publication Publication Date Title
JP5366400B2 (en) Integrated MIS photoelectric device using continuous film
US7671385B2 (en) Image sensor and fabrication method thereof
JP4384416B2 (en) Image sensor with performance enhancement structure
CN102254924B (en) Solid photographic device, its manufacture method and electronic installation
JP5441721B2 (en) Integrated MIS photoelectric device using continuous film
TWI505451B (en) Coplanar high fill factor pixel architecture
JP4961590B2 (en) Image sensor and manufacturing method thereof
KR100882467B1 (en) Image sensor and method for manufacturing thereof
WO2012035702A1 (en) Solid-stage imaging device and manufacturing method therefor
JPWO2013001809A1 (en) Solid-state imaging device
US8334164B2 (en) Image sensor and fabrication method thereof
EP2652788A2 (en) High charge capacity pixel architecture, photoelectric conversion apparatus, radiation image pickup system and methods for same
TWI540711B (en) Bsi sensor apparatus and method for manufacturing the same and bsi sensor device
JP6125017B2 (en) X-ray image sensor substrate
TWI532159B (en) Image sensor apparatus and method for manufacturing the same and image sensor array device
JP2008112907A (en) Image sensor, and manufacturing method thereof
EP1351310A2 (en) Imaging array and methods for fabricating same
CN100578800C (en) Image sensor and manufacturing method thereof
TW200837934A (en) Image sensor and fabrication method thereof
US20080277754A1 (en) Image sensor and fabrication method thereof
TWI333692B (en) Image sensor and fabrication method thereof
TW200843093A (en) Image sensor structure and fabrication method thereof
TWI325634B (en) Image sensor and fabrication method thereof
KR100990559B1 (en) Image Sensor and Method for Manufacturing thereof
CN101271909B (en) Image sensor and production method thereof