TWI333692B - Image sensor and fabrication method thereof - Google Patents

Image sensor and fabrication method thereof Download PDF

Info

Publication number
TWI333692B
TWI333692B TW96104146A TW96104146A TWI333692B TW I333692 B TWI333692 B TW I333692B TW 96104146 A TW96104146 A TW 96104146A TW 96104146 A TW96104146 A TW 96104146A TW I333692 B TWI333692 B TW I333692B
Authority
TW
Taiwan
Prior art keywords
layer
image sensor
electrode
pixel
shielding
Prior art date
Application number
TW96104146A
Other languages
Chinese (zh)
Other versions
TW200834896A (en
Inventor
Hsin Heng Wang
Chiu Tsung Huang
Shih Siang Lin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to TW96104146A priority Critical patent/TWI333692B/en
Publication of TW200834896A publication Critical patent/TW200834896A/en
Application granted granted Critical
Publication of TWI333692B publication Critical patent/TWI333692B/en

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Description

1333692 九、發明說明: 【發明所屬之技術領域】 本發明提供一種影像感測器,尤指一種包含一遮蔽元件之影 像感測器,以解決載子跨越干擾之問題。 【先前技術】 互補式金屬氧化物半導體(complementary metal oxide semiconductors,CMOS )或電荷耦合裝置(charge coupled device, CCD)等影像感測器是一種矽半導體裝置,設計用來捕捉光子, 並將其轉換成電子’經傳輸後再次轉換為可量測之電壓,而得到 數位資料。目前業界已進行研究一種光導體覆主動像素 (photoconductor-on-active-pixel,POAP)影像感測器,其結構係 以氮化非晶矽(hydrogenated amorphous silicon,a-Si:H)為感光元 件基礎並堆疊於CCD或CMOS元件上,能得到比傳統CCD或 CMOS影像感測器具有更良好表現之影像感測器。由於光導體覆 主動像素影像感測器具有特殊的堆疊結構,因此有高集光有效面 積比(fill faetoO之優點,能使得整個像素面積都能絲感測光子, 再配合滅·Η獅有效轉換能量的雜,便能_高量子效率。 然而’在已知研究中,此種感測器仍然有跨越干擾(_s taik)、 影像延遲(image iag)以及漏電流訊號等問題。其中,載子跨越 干擾相鄰像素的問題尤其會造成嚴重的解析度與均勻性不足的問 題’也會在像賴秋色彩上的跨越谓,祕色彩失真。 6 1333692 請參考第1圖與第2圖,第1圖為習知一光導體覆主動像素之 影像感測器10的側剖面示意圖,第2圖為第丨圖所示之像素電極 間的模擬電位圖。習知影像感測器10包含複數個像素14a、14b 以及一介電層16設於一基底12上、複數個像素電路(圖未示) 設於各像素14a、14b之内、複數個像素電極18a、18b設於該等 像素電路以及介電層16上、一光導層2〇設於像素電極18a、18b1333692 IX. Description of the Invention: [Technical Field] The present invention provides an image sensor, and more particularly, an image sensor including a shielding element to solve the problem of carrier crossover interference. [Prior Art] A complementary metal oxide semiconductor (CMOS) or charge coupled device (CCD) image sensor is a germanium semiconductor device designed to capture photons and convert them. The electrons are converted into measurable voltages after transmission, and digital data is obtained. At present, a photoconductor-on-active-pixel (POAP) image sensor has been studied in the industry, and its structure is a hydrogenated amorphous silicon (a-Si:H) as a photosensitive element. Fundamentally and stacked on CCD or CMOS components, image sensors with better performance than traditional CCD or CMOS image sensors can be obtained. Since the photo-conductor-covered active pixel image sensor has a special stack structure, it has a high light-collecting effective area ratio (fill faetoO), which enables the entire pixel area to be sensed by the photon, and then cooperates with the lion to effectively convert energy. Miscellaneous, can _ high quantum efficiency. However, in known research, such sensors still have problems such as crosstalk (_s taik), image delay (image iag) and leakage current signals. Among them, carrier crossover interference The problem of adjacent pixels, especially causing serious problems of insufficient resolution and uniformity, will also be caused by the leap in color like Lai Qiu. 6 1333692 Please refer to Figure 1 and Figure 2, Figure 1 FIG. 2 is a schematic diagram showing a side view of an image sensor 10 with a light-receiving active pixel, and FIG. 2 is an analog potential diagram between pixel electrodes shown in a second figure. The conventional image sensor 10 includes a plurality of pixels 14a. And a dielectric layer 16 is disposed on a substrate 12, a plurality of pixel circuits (not shown) are disposed in each of the pixels 14a and 14b, and a plurality of pixel electrodes 18a and 18b are disposed in the pixel circuits and the dielectric 16, an optical guide layer disposed on the pixel electrode 2〇 18a, 18b

上、以及一透明導電層28設於光導層2〇上,其中光導層2〇由下 至上包含一 η 型層(n_layer)22、一本徵層(intrinsiclayer,i layer) 24以及一 p型層(ptype iayer) 26,形成所謂的堆疊層結構, 用來接受光線並將光線依照強度轉換成對應之電荷量。 然而’在照光情形下,習知影像感測器1〇的不同像素電極⑹、 16b會具有不同的電壓,導致相鄰像素丨如、撕之間產生具有電 壓差的電場。舉例言之,若照光後像素電極具有高電位^, 而像素電極18a具有低電位Vl,透明導電層28則處於接地狀離, 則在相鄰像素14a、地之_會發生漏電流,由高電位%的像 素電極⑽流至相鄰具低電位Vl的像素電極恤,如第2圖所示。 跨越干擾_,而影響到影像感_正確性,導致感測 因此,如何改良光導體覆主動像素之影像减測器姓構,以射 =素_越干_而提供_感測結免 *界亟需解決之議題。 I兩 7 ^^3692 【發明内容】 之主要目的’在於提供—種具有遮蔽元件之影像感測 二’作方法’以改善上述習知影像制H發生跨越干擾之問 根據本㈣之h專她圍,本發明雜朗器包含一半導 3基底、概個像素定義於半導體基底上、—光導層以及一透明 電層。其中,各像素包含有—像素電極,而光導層與透明導電 :係依序設於各像素電極之上。本發像細料包含有一遮 ^件設於任二_之像钱極之間,且賴元件包含一遮蔽電 '及包覆遮蔽<t極之絕緣結構,以使遮蔽i 根據本發明之中請專利範圍,另提供—種製作影像感測器之 方法首先,提供-基底,然後於基底表面形成一第一導電層, 再移除部分第-導電層以形成複數個像素電極。接著於基底^面 依序形成-第-絕緣層以及―第二導電層,移除部分設於像素電 極表面之第二導電層以及第一絕緣層。然後於基底表面形成一第 二絕緣層,接著移除部分設於像素電極表面之第二絕緣層,最後 於基底之上依序形成一光導層與一透明導電層。其中,未移除之 第二導電層係於任二相鄰之像素電極之間形成—遮蔽電極二且 未移除之第-絕緣層與第二絕緣層係形成1緣結構包覆該遮蔽 電極,並且該遮蔽電極與絕緣結構係共同形成—遮蔽元件。 8 1333692 由於本發明係於任二相鄰之像素或像素電極之間形成一遮蔽 元件’所以可以防止習知影像感測器中像素間的跨越干擾問題, 能有效改善影像感測器的影像感測效果與敏感度。 【實施方式】 請參考第3圖至第9圖,第3圖至第9圖為本發明影像感測 器1〇〇的結構及製裎示意圖。本發明影像感測器1〇〇係為一光導 體覆主動像素影像感測器。首先,如第3圖所示,提供一半導體 晶片102,其包含有一半導體基底1〇4 ,例如一矽基底,且半導體 基底104表面定義有複數個像素1〇8,形成一像素矩陣。接著,於 半導體基底104上提供複數個電子元件,以形成像素電路11〇設 於介電層106中。接著,於介電層1〇6上形成一第一導電層ιΐ2, 位於像素電路110之上,其中第—導電層112可包含金屬材料, 較佳為氮化鈦(titaniumnitride,顶)。接著如第4圖所示,進行 :第-微影製程,先於半導體基底1()4表面形成—光阻層(圖未 不),然後细-具有像素電極圖案之鮮於光阻層上定義出像素 電極圖案’再進行_而移除部分第—導電層ιΐ2,並移除光阻、 層,以於各像素108中形成—像素電極114,藉由接觸洞】2 電連接於對應之像素電路11〇,且相鄰像錢極u 板na π η 〇 、方更 凊參考第5圖’於半導體基底1〇4上依序形成一第 116與第一導電層118’覆蓋像素電極叫以及暴露之介電層二 9 ^33692 表面。第-絕緣層116可包含氧化材料,例如氧切,以冗積方 式所形成,而第二導電層118可包含多晶石夕材料或金屬材料。由 於第二導電層118可以沉積方式所形成,因此能以自行對準之方 式填於相鄰像素電極m之間。接著,如第6圖所示,進行一微 影暨蝕刻 S程(phGtolithGgfaphy-etehingp_ss,pEp),其包含一 第二微影製程,纽第二導電層118表面形成—光阻層(圖未 並利用前述具有像素電__解進㈣光郷,將相反於像 素電極圖案的互補_ 12〇微影至該絲層上。然後湘圖案化 之光阻層當作働j遮罩,_移除部分第二導電層ιΐ8與第一絕 緣層116暴露出大部分之像素電極114。未移除之第二導電 看118係形成:遮蔽電極122,設於任二相鄰之像素電極114之 1且八有 T」子形之剖面形狀。此外,蝕刻後留下的第一絕 緣層116則认於遮蔽電極122的下方,將遮蔽電極m與像素電 極114以及"電層1()6隔離。在本發明之較佳實施例中可利用 曝光微〜比例而使像素電極圖案的互補圖案⑽的寬度稍大於電 極間距G ’因此像素電極m的邊緣部分會被第—絕緣層⑽,以 及遮蔽電極122所覆蓋。 接著’吻參考第7圖,於半導體基底104上全面形成-第二 絕緣層126,其可 , —、 化矽或氮化矽材料。然後如第8圖所示, 、行$_微衫製程:首先於第二絕緣層⑼表面形成一光阻層 圖^丁)利用該具有像素電極圖案的光罩進行曝光而於該光阻 S &義㈣目反於像素電極®案的互麵案。接著,再以圖案化 光阻層當作_鮮,雜科H騎126。她佳實施例 中’可利用曝光比例之設定使得留τ的第二絕緣層126,猶大於遮 蔽電極⑵的寬度以及電極間距0,以覆蓋像素電極⑴之邊緣 並隔離韻f極122與其他元件。_,在其他實_中,亦可 利用雜刻來移除部分第二絕緣層126而形成第8圖中的第二絕 緣層126’。值得—提的是,由於第—微影製程與第二、第三微影 製程係利朗-光罩定義出二互補_,因此所使關光阻應為 :才目同的正型光阻或負型光阻。例如,當第—微影製程係以正型 先阻定義出像素電極114的圖案時,則第二以及第三微影製程即 义須使用貞型光阻域出相反於像素電極難的互湖案反之 二第8圖所示’第一絕緣層116,、第二絕緣層126’及遮蔽電 -糸域遮蔽讀⑽’設於任二相鄰之像素電極μ或任 出像素1〇8之間’並覆蓋部分像素電極114的邊緣而暴露 的像素電極114,其中第—絕緣層Μ,與第二絕緣層126, 乃:飞件130的絕緣結構128,包覆於遮蔽電極122之下方以 =崎峨鍾雜她_賴形成之其他 極此外,由第8圖可知,絕緣結構128之底面與像素電 面上。底面躺略位於同一平面上,亦即設於介電層n〇之表 -月參考第9圖’接著形成—光導層132設於像素電極叫以 1333692 . 及遮蔽元件130之上,光導層132由下而上依序包含一 η变層 (n,layer) 134、一本徵層(intrinsic layer,i-layer) 136 以及一 ρ 型層(p-type layer) 138。η型層134與p型層138可分別包含氫 化非晶質碳化矽(hydrogenated amorphous silicon carbide,〜SiC:H) 材料,而本徵層136則可包含氫化非晶矽(hydr〇genated am()rph〇us silicon,o?-Si:H)材料。η型層134可直接與未被遮蔽元件〗3〇覆 蓋之像素電極114相接觸而電連接於像素電極114。在其他實施例 鲁 中,光導層132由下至上則可依序包含一 ρ型層、一本徵層以及 一 η型層。接著,再於光導層132之上形成一透明導電層14〇,其 可包含氧化銦錫(IndiumTin Oxide,ΙΤΟ),以完成本發明影像感 測器100的製作。 μ參考第ίο 11,第ίο圖為本發郷像制n丨⑻的俯視示 意圖。影像感測器100包含一像素矩陣142,其具有複數個像素 108疋義於半導體基底104 Λ,且各像素1〇8冑包含一像素電極 114。值得注意的是,由於遮蔽元件130係覆蓋於各像素電極114 的邊緣部分’耻賴元件13G係如_狀圍繞各像素電極114。 此外’在較佳實施例中,由於遮蔽元件130之圖案係利用具有像 f電極圖案之同—料所定義,因此遮蔽元件⑽與鄰近像素電 玉1U的重疊部分之面積大小皆為相同。 本發明遮航件13时的遮蔽電極122係處於—接地狀態 所不)’其0伏電壓電位可藉由設於像素矩陣142外圍 1333692 ‘=冑健應電輯提供,而像素轉Μ2巾的遮蔽電極122並 沒有電流流過。因此遮蔽電極116能藉由降低接近電極間隙G表 面的電位而電性隔離相鄰的像素108。 5月參考第11圖’第U圖為第i圖所示習知影像感測器川 .與第9圖所示本發明影像感測器1⑻的電位圖表。當兩相鄰之像 素電極/7顺有低電位Vl(例如:丨2伏特)與高電位Vh(例如:2 6 • ^特)時’習知影像感測器1〇的二像素電極收、脱之間的間隙 區域不具有電位能障高度或僅有很小的電位能障高度。所以,在 本徵層24中產生的電子很容易由右側高電位的像素電極他移動 到左側低電位的像素電極18a,造成跨越干制題(如第2圖所 丁)相反的’由第11圖可知,第9圖所示本發明影像感測器⑽ 之二相鄰像素電極114雖然具有分別高與低電位ν[,但 像素電極m之間_極間距G則具有一很大的能障高度,能有 B 效避免跨越干擾問題。 請參考第12圖,第12圖為第9圖所示本發明影像感測器卿 之兩相鄰像素108之_電賴麵。如第12騎示,雖然相鄰 像素電極m分別具有高電位Vh與低電位Vl,但電流並不會由 具有高電位的右側像素電極114流向具低電位的左側像素電極 U4,因此不會發生跨越干擾問題。 相較於習知技術’本發明的影像_器結構係在相鄰像素或 13 1333692 像素電極之間設置有舰元件,使得電極_具有高電位阻障, 以避免跨越干擾之情形,能有效改善影像感測器的影像感測效 果1此外’祕本發_於製作遮蔽元件的第二、第三微影魏 亥燦程皆使馳同於定躲素電極_之光罩,因此並不會增加 製程的光罩成本。所以,根據本發明製作影像感測器之方二,曰可 增加大f的触成本便能製作遮蔽元件結構,以提供感測 效果良好的影像感測器。And a transparent conductive layer 28 is disposed on the photoconductive layer 2, wherein the photoconductive layer 2 includes an n-type layer (n_layer) 22, an intrinsic layer (i layer) 24, and a p-type layer from bottom to top. (ptype iayer) 26, forming a so-called stacked layer structure for receiving light and converting the light into a corresponding amount of charge according to the intensity. However, in the case of illumination, the different pixel electrodes (6), 16b of the conventional image sensor 1 会 will have different voltages, resulting in an electric field having a voltage difference between adjacent pixels, for example, tearing. For example, if the pixel electrode has a high potential ^ after illumination, and the pixel electrode 18a has a low potential V1, the transparent conductive layer 28 is grounded, and a leakage current occurs in the adjacent pixel 14a and the ground. The pixel electrode (10) of the potential % flows to the adjacent pixel electrode shirt having the low potential V1 as shown in Fig. 2. Crossing the interference _, and affecting the image sense _ correctness, resulting in sensing, therefore, how to improve the image of the optical conductor over the active pixel image reducer, to provide the _ _ _ _ _ _ _ _ _ _ There is an urgent need to solve the problem. I 2 7 ^^3692 [Summary of the Invention] The main purpose of the invention is to provide an image sensing method with a shielding element to improve the cross-interference of the above-mentioned conventional image system H. According to this (4) h The present invention comprises a half-conductor substrate, a substantially pixel defined on the semiconductor substrate, a photoconductive layer and a transparent electrical layer. Each of the pixels includes a pixel electrode, and the photoconductive layer and the transparent conductive layer are sequentially disposed on each of the pixel electrodes. The hair image-like fine material includes a mask member disposed between any two of the image poles, and the component includes a shielding electric and a covering structure of the insulating layer to make the shielding i according to the present invention. In the scope of the patent application, a method for fabricating an image sensor is provided. First, a substrate is provided, then a first conductive layer is formed on the surface of the substrate, and a portion of the first conductive layer is removed to form a plurality of pixel electrodes. Then, a first-first insulating layer and a second conductive layer are sequentially formed on the surface of the substrate, and a second conductive layer and a first insulating layer disposed on the surface of the pixel electrode are removed. Then, a second insulating layer is formed on the surface of the substrate, and then a second insulating layer disposed on the surface of the pixel electrode is removed, and finally a light guiding layer and a transparent conductive layer are sequentially formed on the substrate. The second conductive layer that is not removed is formed between any two adjacent pixel electrodes, and the first insulating layer and the second insulating layer are formed to form a first edge structure to cover the shielding electrode. And the shielding electrode and the insulating structure form together - a shielding element. 8 1333692 The present invention is capable of preventing a cross-talk problem between pixels in a conventional image sensor by forming a shielding element between any adjacent pixel or pixel electrode, and can effectively improve the image sense of the image sensor. Measuring effects and sensitivity. [Embodiment] Please refer to Figures 3 to 9, and Figures 3 to 9 are schematic views showing the structure and structure of the image sensor 1 of the present invention. The image sensor 1 of the present invention is a light-guide-covered active pixel image sensor. First, as shown in Fig. 3, a semiconductor wafer 102 is provided which includes a semiconductor substrate 1?4, such as a germanium substrate, and a plurality of pixels 1?8 are defined on the surface of the semiconductor substrate 104 to form a matrix of pixels. Next, a plurality of electronic components are provided on the semiconductor substrate 104 to form a pixel circuit 11 disposed in the dielectric layer 106. Next, a first conductive layer ι 2 is formed on the dielectric layer 1〇6, and is disposed on the pixel circuit 110. The first conductive layer 112 may comprise a metal material, preferably titanium nitride. Then, as shown in FIG. 4, the first lithography process is performed on the surface of the semiconductor substrate 1 () 4 to form a photoresist layer (not shown), and then fine-defined on the photoresist layer having a pixel electrode pattern. The pixel electrode pattern is further removed _ while a portion of the first conductive layer ι 2 is removed, and the photoresist and the layer are removed to form a pixel electrode 114 in each pixel 108, and the contact hole is electrically connected to the corresponding pixel. The circuit 11 is adjacent to the pixel electrode, and adjacent to the pixel substrate u π η 〇, 凊 凊 凊 凊 凊 ' 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体The exposed dielectric layer is 2 9 ^ 33692 surface. The first insulating layer 116 may comprise an oxidizing material, such as oxygen dicing, formed in a redundant manner, and the second conductive layer 118 may comprise a polycrystalline material or a metallic material. Since the second conductive layer 118 can be formed by deposition, it can be filled between adjacent pixel electrodes m in a self-aligned manner. Next, as shown in FIG. 6, a lithography and etching S process (phGtolithGgfaphy-etehingp_ss, pEp) is performed, which includes a second lithography process, and a surface of the second conductive layer 118 is formed as a photoresist layer. Using the foregoing pixel __decomposing (four) pupil, the complementary _ 12 相反 opposite to the pixel electrode pattern is lithographically onto the silk layer. Then the patterned photoresist layer is treated as a 働j mask, _ removed A portion of the second conductive layer ι 8 and the first insulating layer 116 expose a majority of the pixel electrode 114. The second conductive view 118 that is not removed is formed by: the shielding electrode 122 is disposed on any one of the adjacent pixel electrodes 114 and There is a cross-sectional shape of the T-shaped sub-shape. Further, the first insulating layer 116 left after etching is recognized below the shielding electrode 122, and the shielding electrode m is isolated from the pixel electrode 114 and the electric layer 1 (6). In a preferred embodiment of the present invention, the width of the complementary pattern (10) of the pixel electrode pattern can be made slightly larger than the electrode pitch G' by the exposure micro-ratio. Therefore, the edge portion of the pixel electrode m is covered by the first insulating layer (10), and the shielding electrode. Covered by 122. Then 'kiss reference to Figure 7, A second insulating layer 126 is formed on the semiconductor substrate 104, which can be made of - or a tantalum nitride material. Then, as shown in FIG. 8, the $_micro-shirt process is first performed on the second insulating layer (9). Forming a photoresist layer on the surface) is exposed by the photomask having the pixel electrode pattern, and the photoresist S & (4) is opposite to the pixel electrode® case. Then, the patterned photoresist layer is used as the _ fresh, and the hybrid H rides 126. In her preferred embodiment, the exposure ratio can be set such that the second insulating layer 126 leaving τ is larger than the width of the shielding electrode (2) and the electrode spacing 0 to cover the edge of the pixel electrode (1) and isolate the rhyme 122 and other components. . In other embodiments, a portion of the second insulating layer 126 may also be removed by moiré to form the second insulating layer 126' in FIG. It is worth mentioning that, because the first lithography process and the second and third lithography process systems are defined as two complementary _, the light resistance is such that the positive photoresist or negative type is the same. Light resistance. For example, when the first lithography process defines the pattern of the pixel electrode 114 with a positive type first resistance, then the second and third lithography processes have to use the 贞-type photoresist field to be opposite to the pixel electrode. The second insulating layer 116, the second insulating layer 126', and the shielding electric-electrode shielding read (10)' are disposed on any two adjacent pixel electrodes μ or any of the pixels 1〇8. The pixel electrode 114 is exposed to cover the edge of the portion of the pixel electrode 114, wherein the first insulating layer Μ and the second insulating layer 126 are: the insulating structure 128 of the flying member 130 is covered under the shielding electrode 122. = 峨 峨 杂 她 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The bottom surface lies slightly on the same plane, that is, on the surface of the dielectric layer n--refer to FIG. 9 and then formed. The light guiding layer 132 is disposed on the pixel electrode and is located on the shielding element 130, and the light guiding layer 132. From bottom to top, an n-layer layer 134, an intrinsic layer (i-layer) 136, and a p-type layer 138 are sequentially included. The n-type layer 134 and the p-type layer 138 may respectively comprise a hydrogenated amorphous silicon carbide (~SiC:H) material, and the intrinsic layer 136 may comprise a hydrogenated amorphous germanium (hydr〇genated am() Rph〇us silicon, o?-Si: H) material. The n-type layer 134 is directly electrically connected to the pixel electrode 114 in contact with the pixel electrode 114 which is not covered by the shielding member. In other embodiments, the photoconductive layer 132 may sequentially include a p-type layer, an intrinsic layer, and an n-type layer from bottom to top. Then, a transparent conductive layer 14〇 is formed on the photoconductive layer 132, which may include indium tin oxide (Indium Tin Oxide) to complete the fabrication of the image sensor 100 of the present invention. μ refers to the ίο 11, ίο is a top view of the hairpin system n 丨 (8). The image sensor 100 includes a pixel matrix 142 having a plurality of pixels 108 conjugated to the semiconductor substrate 104 Λ, and each of the pixels 1 〇 8 胄 includes a pixel electrode 114. It is to be noted that since the shielding member 130 covers the edge portion of each of the pixel electrodes 114, the shame element 13G surrounds each of the pixel electrodes 114 in a _ shape. Further, in the preferred embodiment, since the pattern of the shielding member 130 is defined by the same material having the image of the f electrode, the overlapping portions of the shielding member (10) and the adjacent pixel jade 1U are the same. When the shielding member 13 of the present invention is in the grounding state, the shielding electrode 122 is in the grounding state. The 0 volt potential can be provided by the periphery of the pixel matrix 142, 1336692 '=胄健应电, and the pixel is switched to 2 There is no current flowing through the shielding electrode 122. Thus, the shield electrode 116 can electrically isolate adjacent pixels 108 by reducing the potential near the surface of the electrode gap G. In May, reference is made to Fig. 11 which shows the potential map of the image sensor 1 (8) of the present invention shown in Fig. 9 and the conventional image sensor shown in Fig. 9. When two adjacent pixel electrodes /7 are followed by a low potential V1 (for example, 丨 2 volts) and a high potential Vh (for example, 2 6 • ^ tex), the two-pixel electrode of the conventional image sensor 1 、 The gap region between the strips does not have a potential barrier height or only a small potential barrier height. Therefore, the electrons generated in the intrinsic layer 24 are easily moved from the right-side high-potential pixel electrode to the left-side low-potential pixel electrode 18a, causing the cross-cutting problem (as shown in Fig. 2) to be the opposite 'by the eleventh As can be seen, the adjacent pixel electrodes 114 of the image sensor (10) of the present invention shown in FIG. 9 have high and low potentials ν[, respectively, but the pixel pitch m has a large energy barrier. Height, can have B effect to avoid cross-interference problems. Please refer to FIG. 12, which is a schematic diagram of the two adjacent pixels 108 of the image sensor of the present invention shown in FIG. As shown in the twelfth riding, although the adjacent pixel electrodes m have the high potential Vh and the low potential V1, respectively, the current does not flow from the right pixel electrode 114 having a high potential to the left pixel electrode U4 having a low potential, and thus does not occur. Cross the interference problem. Compared with the prior art, the image structure of the present invention is provided with a ship element between adjacent pixels or 13 1333692 pixel electrodes, so that the electrode_ has a high potential barrier to avoid cross-interference and can effectively improve. Image sensor sensing effect of image sensor 1 In addition, 'secret hair _ in the second and third lithography of the shielding element, the Weihai process is the same as the mask of the fixed electrode _, so it will not increase the process The cost of the reticle. Therefore, according to the second aspect of the present invention, the image sensor can be fabricated by adding a large f touch cost to provide an image sensor with good sensing effect.

_====:r 專- 【圖式簡單說明】 ί知一糾體覆主動像素影像感測器的側剖面示意圖 第圖為第1圖所不之像素電極間的模擬電位圖。_====:r Special - [Simplified Schematic] 知 侧 纠 纠 纠 纠 主动 主动 主动 主动 主动 主动 主动 主动 侧 侧 侧 侧 侧 侧 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第

第3圖至第9 ®為本發明影像感測器的結構及製程示意圖。 第10圖為本發明影像感測器的俯視示意圖。 、θ 9圖所示本發明影像感 第U圖為第1®所示習知影像感測器與第 測器的電位圖表。 第12圖為第9圖卿本發日像感測器之相鄰像素的電位模擬圖 【主要元件符號說明】 12基底 16 介電層 10 影像感測器 14a、Mb 像素 14 13336923 to 9 are schematic diagrams showing the structure and process of the image sensor of the present invention. Figure 10 is a top plan view of the image sensor of the present invention. The image sense of the present invention shown in Fig. θ 9 is a potential map of the conventional image sensor and the first detector shown in Fig. 1®. Figure 12 is a potential simulation diagram of the adjacent pixels of the image sensor in Figure 9. [Main component symbol description] 12 substrate 16 dielectric layer 10 image sensor 14a, Mb pixel 14 1333692

18a、18b 像素電極 20 光導層 22 n型層 24 本徵層 26 ρ型層 28 透明導電層 100 影像感測器 102 半導體晶片 104 半導體基底 106 介電層 108 像素 110 像素電路 112 第一導電層 114 像素電極 116 第一絕緣層 116’ 蝕刻後第一絕緣層 118 第二導電層 120 互補圖案 122 遮蔽電極 124 接觸洞 126 第二絕緣層 126, 蝕刻後第二絕緣層 128 絕緣結構 130 遮蔽元件 132 光導層 134 η型層 136 本徵層 138 ρ型層 140 透明導電層 142 像素矩陣 G 電極間距 1518a, 18b pixel electrode 20 photoconductive layer 22 n-type layer 24 intrinsic layer 26 p-type layer 28 transparent conductive layer 100 image sensor 102 semiconductor wafer 104 semiconductor substrate 106 dielectric layer 108 pixel 110 pixel circuit 112 first conductive layer 114 Pixel electrode 116 first insulating layer 116' after etching first insulating layer 118 second conductive layer 120 complementary pattern 122 shielding electrode 124 contact hole 126 second insulating layer 126, second insulating layer 128 after etching insulating structure 130 shielding element 132 light guide Layer 134 n-type layer 136 intrinsic layer 138 p-type layer 140 transparent conductive layer 142 pixel matrix G electrode spacing 15

Claims (1)

, 十、申請專利範圍: L 一種影像感測器,其包含: 一半導體基底; 複數個像素定義於該半導體基底上,且各該像素包含有一像素 電極; 一光導層以及-透明導電層依序設於雜素電極上;以及 -遮蔽元件設於任二⑽之該等像素電極之間,該遮蔽元 • 含有: 一遮蔽電極;以及 邑緣構、该遮蔽電極’以使該遮蔽電極隔離於該等 • 像素電極和該光導層。 2’如申凊專利範圍第i項所述之影像感測器,其中該遮蔽電極之 -剖面形狀係為「丁」字形狀。 • 3 ^ 卜 •如申凊專利範圍第!項所述之影像感測器,其中該遮蔽電極之 材料為多晶辦料或金屬材料。 如申π專利$|圍第i項所述之影像感測器,其中該絕緣結構之 底面與該等像素電極之底面係位於同一平面上。 _ +如申叫專利範圍第1項所述之影像感測器,其中該遮蔽元件係 • 边等像素電極之邊緣部分’而未被該遮蔽元件覆蓋之各該 像素電極係與該光導層直接接觸。 6. 如申請專利範圍第丨項所述之影減測器,其中該遮蔽元件係 如同網狀圍繞各該像素電極。 7. 如申請專利範圍第丨項所述之影像感測器,其中該絕緣結構包 含氣化石夕(silicon oxide ’ Si02)或氮化石夕(siiicon nitride,SiN) 材料。 8. 如申請專利範圍第丨項所述之影像感測器,其中該遮蔽電極係 處於接地狀態。 9. 如申請專利範圍第1項所述之影像感測器,其中該光導層係由 n 型層(n_layer)、一本徵層(intrinsic iayer ’ i_iayer)以及一 p 型層(p-typelayer)依序堆疊而形成。 10. 如申睛專利範圍第9項所述之影像感測器,其中該η型層以及 該Ρ型層包含氫化非晶質碳化石夕(hydrogenated amorphous silicon carbide,a-SiC:H)材料。 11. 如申請專利範圍第9項所述之影像感測器,其中該本徵層包含 有虱化非晶石夕(hydrogenated amorphous silicon,〇f-Si:H)材料。 12. —種製作一影像感測器之方法,該方法包含有: 17 1333692 提供一基底; 於該基底表面形成一第一導電層; 移除部分該第,層嗔魏個像素電極; 於該基絲面依序形成一第一絕緣層以及一第二導電層. 緣 移除^分設崎她槪账導電相綱—絕 層, 於該基底表面形成—第二絕緣層; 移除部分設於該像素電極表面之該第二絕緣層;以及 =底成一光導層與一透明導電層,其中未移除 ^極’並且未移除之該第-絕緣層與該第二絕 3 =:,極’並—與_二 =·如申請專利範圍第12項所述之方法,其中該移除部分 導電層以及該第-絕緣層之步驟係藉由一微影暨綱製^第- (photolithography-etchingprocess,PEP)所完成。 14.如申請專利範圍第13項所述之方法,其中在完戍 刻製程之後,未鎌之該第-絕緣騎隔絕 ’影麥钱 素電極。 電杻與該像 •辍影製 15.如申請專利範圍第12項所述之方法,其包含一第 18 1333692 程’係利光罩定義該等像素電涵案⑽賴像素電極,以 及-第二微影製程以及—第三微影製程,侧用同—光罩定義相 反於該等像錢極_之互補_,以形親遮蔽電極以及該絕 16. 如申請專利範圍第15項所述之方法其中該第一微影製程係 使用-正型光阻來進行醜齡,而該第二_第三微影製程係 φ 分別利用一負型光阻來進行圖案轉移。 、 17. 如申請專利範圍第15項所述之方法,其中該第—微影製程係 使用-負型光阻來進行圖_移,而該第二與該第三微影製程係 . 分別利用一正型光阻來進行圖案轉移。 18. 如申請專利範圍第12項所述之方法,其中該遮蔽電極之一剖 面形狀係為「T」字形狀。 » 以曰如申請專利範圍第12項所述之方法,其中該遮蔽電極包含有 多日日石夕材料或金屬材料。 申請專概_ 12項所述之方法,射該遮蔽電極與該絕 緣、,^覆__修之邊緣部分,响_緣結構覆 盍之各該像素電極係直接設於該光導層之下方。 其中該遮蔽元件係如同 21.如申請專利範圍第12項所述之方法 1333692 網狀圍繞各該像素電極。 22. 如申請專利範圍第12項所述之方法,其中該遮蔽電極係處於 接地狀態。 23. 如申請專利範圍第12項所述之方法,其中該光導層係由一 η 型層、一本徵層以及一 ρ型層依序堆疊而形成。X. Patent application scope: L. An image sensor comprising: a semiconductor substrate; a plurality of pixels defined on the semiconductor substrate, wherein each pixel comprises a pixel electrode; a light guiding layer and a transparent conductive layer sequentially Provided on the impurity electrode; and - the shielding member is disposed between the pixel electrodes of any two (10), the shielding element includes: a shielding electrode; and a germanium edge structure, the shielding electrode 'to isolate the shielding electrode The • pixel electrode and the photoconductive layer. 2' The image sensor of claim i, wherein the mask electrode has a cross-sectional shape of a "D" shape. • 3 ^ Bu • If you apply for a patent range! The image sensor of claim, wherein the material of the shielding electrode is a polycrystalline material or a metal material. The image sensor of claim 1, wherein the bottom surface of the insulating structure is on the same plane as the bottom surface of the pixel electrodes. The image sensor of claim 1, wherein the shielding element is an edge portion of a pixel electrode such as an edge, and each of the pixel electrode systems not covered by the shielding element is directly connected to the photoconductive layer contact. 6. The shadow reducer of claim 2, wherein the shielding element surrounds each of the pixel electrodes as a mesh. 7. The image sensor of claim 2, wherein the insulating structure comprises a silicon oxide SiO2 or a siiicon nitride (SiN) material. 8. The image sensor of claim 2, wherein the shielding electrode is in a grounded state. 9. The image sensor of claim 1, wherein the light guiding layer is an n-type layer (n_layer), an intrinsic layer (intrinsic iayer 'i_iayer), and a p-type layer. Formed in sequence. 10. The image sensor of claim 9, wherein the n-type layer and the ruthenium layer comprise a hydrogenated amorphous silicon carbide (a-SiC:H) material. 11. The image sensor of claim 9, wherein the intrinsic layer comprises a hydrogenated amorphous silicon (〇f-Si:H) material. 12. A method of fabricating an image sensor, the method comprising: 17 1333692 providing a substrate; forming a first conductive layer on the surface of the substrate; removing a portion of the first layer, a plurality of pixel electrodes; The base wire surface sequentially forms a first insulating layer and a second conductive layer. The edge is removed, and the conductive layer is formed, and the second insulating layer is formed on the surface of the substrate; The second insulating layer on the surface of the pixel electrode; and = a light guiding layer and a transparent conductive layer, wherein the first insulating layer and the second insulating layer are not removed; The method of claim 12, wherein the step of removing a portion of the conductive layer and the first insulating layer is performed by a lithography and image method - (photolithography) -etchingprocess, PEP) is done. 14. The method of claim 13, wherein the first insulation-insulated rider is isolated from the photographic microphone electrode after the etch process. The method of claim 12, wherein the method of claim 12, comprising a method of defining a pixel mask (10), a pixel electrode, and a second The lithography process and the third lithography process, the side uses the same - the mask definition is opposite to the complementary pixels of the image poles, and the electrodes are shielded by the shape and the 16. The invention is as described in claim 15 In the method, the first lithography process uses a positive-type photoresist to perform ugly age, and the second-third lithography process φ uses a negative-type photoresist to perform pattern transfer. 17. The method of claim 15, wherein the first lithography process uses a negative photoresist to perform a map shift, and the second and the third lithography process system respectively utilize A positive photoresist is used for pattern transfer. 18. The method of claim 12, wherein the one of the masking electrodes has a "T" shape. The method of claim 12, wherein the masking electrode comprises a plurality of daytime materials or metal materials. Applying the method described in the above-mentioned § 12, the shielding electrode and the insulating edge are covered, and the pixel portion of the ring-shaped structure is directly disposed under the photoconductive layer. Wherein the shielding element is as in the method of claim 12, wherein the method 1333692 mesh surrounds each of the pixel electrodes. 22. The method of claim 12, wherein the shielding electrode is in a grounded state. 23. The method of claim 12, wherein the photoconductive layer is formed by sequentially stacking an n-type layer, an intrinsic layer, and a p-type layer. 十一、圖式:XI. Schema:
TW96104146A 2007-02-05 2007-02-05 Image sensor and fabrication method thereof TWI333692B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96104146A TWI333692B (en) 2007-02-05 2007-02-05 Image sensor and fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96104146A TWI333692B (en) 2007-02-05 2007-02-05 Image sensor and fabrication method thereof

Publications (2)

Publication Number Publication Date
TW200834896A TW200834896A (en) 2008-08-16
TWI333692B true TWI333692B (en) 2010-11-21

Family

ID=44819567

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96104146A TWI333692B (en) 2007-02-05 2007-02-05 Image sensor and fabrication method thereof

Country Status (1)

Country Link
TW (1) TWI333692B (en)

Also Published As

Publication number Publication date
TW200834896A (en) 2008-08-16

Similar Documents

Publication Publication Date Title
US7671385B2 (en) Image sensor and fabrication method thereof
KR101977422B1 (en) High charge capacity pixel, pixel architecture, photoelectric conversion apparatus, radiation image pickup system and methods for same
US6288435B1 (en) Continuous amorphous silicon layer sensors using doped poly-silicon back contact
JP5366400B2 (en) Integrated MIS photoelectric device using continuous film
US6740884B2 (en) Imaging array and methods for fabricating same
JP4961590B2 (en) Image sensor and manufacturing method thereof
JP4384416B2 (en) Image sensor with performance enhancement structure
CN110854147B (en) Detection substrate and manufacturing method thereof
US20100059804A1 (en) Photoelectric conversion device and method of manufacturing the same
CN103730533A (en) Photoelectric conversion device, method of manufacturing the same, and x-ray image detector
CN103474474B (en) TFT and preparation method thereof, array base palte and preparation method thereof, X-ray detector
JP6125017B2 (en) X-ray image sensor substrate
WO2016163347A1 (en) Photosensor substrate
TW201036187A (en) Active device array substrate and method for fabricating thereof
US6777685B2 (en) Imaging array and methods for fabricating same
TWI573257B (en) Sensing apparatus
JP2008112907A (en) Image sensor, and manufacturing method thereof
US6300648B1 (en) Continuous amorphous silicon layer sensors using sealed metal back contact
JP4559036B2 (en) Imaging array and manufacturing method thereof
CN111584512A (en) Array substrate, manufacturing method thereof and display device
CN101494256A (en) X ray sensor and manufacturing method thereof
KR101674207B1 (en) Detector of X-ray
TWI333692B (en) Image sensor and fabrication method thereof
CN109411335B (en) Pixel structure and manufacturing method thereof
TW200843093A (en) Image sensor structure and fabrication method thereof