TW200837924A - Optoelectronic device and method for operating an optoelectronic device - Google Patents

Optoelectronic device and method for operating an optoelectronic device Download PDF

Info

Publication number
TW200837924A
TW200837924A TW096149654A TW96149654A TW200837924A TW 200837924 A TW200837924 A TW 200837924A TW 096149654 A TW096149654 A TW 096149654A TW 96149654 A TW96149654 A TW 96149654A TW 200837924 A TW200837924 A TW 200837924A
Authority
TW
Taiwan
Prior art keywords
radiation
light
emission spectrum
additional
power
Prior art date
Application number
TW096149654A
Other languages
Chinese (zh)
Other versions
TWI396272B (en
Inventor
Ewald Karl Michael Gunther
Reiner Windisch
Monika Rose
Original Assignee
Osram Opto Semiconductors Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors Gmbh filed Critical Osram Opto Semiconductors Gmbh
Publication of TW200837924A publication Critical patent/TW200837924A/en
Application granted granted Critical
Publication of TWI396272B publication Critical patent/TWI396272B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67144Apparatus for mounting on conductive members, e.g. leadframes or conductors on insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • F21Y2113/10Combination of light sources of different colours
    • F21Y2113/13Combination of light sources of different colours comprising an assembly of point-like light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate

Abstract

An optoelectronic device (1) comprises a power light-emitting diode (10) and a setting light-emitting diode (20). The power light-emitting diode (10) can emit a first radiation (SL) with a first emission spectrum (EL). The setting light-emitting diode (20) can emit a second radiation (SE) with a second emission spectrum (EE). A total radiation (SO) of the optoelectronic device (1) comprises the first radiation (SL) and the second radiation (SE).

Description

200837924 麵 九、發明說明: 【發明所屬之技術領域】 本發明係有關一種光電裝置及用於操作該光電裝置之 方法。 [優先權之主張] 本專利申睛案主張德國專利申請案H20〇6 oh “I. 2 之優先權,於此併入該專利申請案之内容,以供參照。 【先前技術】 光電裝置可包含複數個發光二極體。該光電裝置之發 .射光譜係因個別發光二極體之發射光譜而產生。由於該等 發光二極體在連續生產期間的發射光譜之變化,所以可能 使在預定間隔中得到該光電裝置的輻射之色座標複雜化。 文件WO 2006/002607揭示了一種包含兩個發光二極體 之發光二極體裝置。該兩個發光二極體係相互反向並聯。 〜^光一極體裝置包含用來提供具有該等兩個發光二極體 的交替方向的之電流之裝置。 壯文件US 5, 861,990說明了 一種結合了光散射及集中之 衣置其中材料之第―表面自人射角度範圍接收光,且該 材料之第二表面在發射角度範圍中發光。 ,【發明内容】 - v / ♦壯本發明之目的在於說明一種光電裝置及用於操作該光 电裝置之方法’該裝置及方法能夠彈性地設定該光電裝置 之輻射。 係利用本發明申請專利範圍第1項之主題以及根據本 94167 5 200837924 '發明申請專利範圍第23項之方法而達到該 利範圍附屬項運㈣目的各申睛專 • 貝係刀々丨J有關發展及結構。 '光-;^本毛明的光電裳置包含功率發光二極體及設定發 往魃了挺供弟一電磁輻射。該設 發射光呀版可發射第二電磁輻射。該第一輻射具有第-=,,且該第二輕射具有第二發 之總輻:包含該第一輕射及該第二輕射。 春特身^功率發光二極體而有利地實現該光電裝置的 :幸:::物。為了得到可預先決定的總輕射,將該 .又疋广二—極體提供之該第二輻射加入該第一輻射。 該弟-發射光譜最好是不同於該第—發射光譜。該第 Jx射光譜可包含第—波長,且該第一波長不同於該第二 每射,譜包含的波長。該第二發射光譜可包含第二波長, t該第二波長不同於該第一發射光譜包含的波長。在替代 實施例中,該第-及該第二發射光譜包含相同的波長,宜 ·:該第-發射光譜中之第一強度分佈不同於該第二發射: 譜中之第二強度分佈。 - · · :' - 在一個實施例中,係使甩該設定發光二極體來精確地 設定該總輻射之發射光譜。 在一個實施例中,將該第二輻射與該第一輻射混合, 而在可預先決定的間隔中得到該光電裝置的總輻射之色座 標。在此種情形中,該等色座標係在國際照明委員會色度 圖(CIE chromaticity diagram)中標出 X 座標及 標了 因此,可利用該設定發光二極體發射的該第二輻射,使單 94167 6 200837924 -獨由該功率發光二極體的操作而得到的但不在該預定間隔 中的色座標有利地移動,因而該第一及該第二輕射的總和 產生了在該預定間隔中之色座標。 在一個實施例中’第一半導體本體(其中該半導體本體 也被稱為晶粒或晶片)具有該功率發光二極體,且第二半導 體本體具有該設定發光二極體。 、 在一個發展中,該第一半導體本體具有第-輻射離去 ^ ’而自該第-輻射離去區發生具有該第—發射光譜之节 =一_ ’且該第二半導體本體具有第二㈣離去區,而 自該弟二輻射離去區發生具有該第二發射光 實,,該第-輕射離去區比該第二輕射:; -少大四倍。該第一輻射離去區最好 離去區大五仵。苛筮^必昂一季田射 ^ , δκ 田子兵該第二輻射間之強度比是該 田—肖去區與該第二輻射離去區間之面積比的函數。 :個實施例中,該光電裝置包含载體,而該第一及 體本體被固定在該載體上。可將該載體實施為 该弟一及該弟二半導體本體之外殼。' 體,::個Γ中’第一電源被供應到該功率錢 例中供應到該設定發以 第—中電源的值比該第二電源的值至少大四倍。該 -電::珍!弟二電源的值最好是大五倍。可以該第 原一該弟一電源間之比率設宏兮筮一 6 射間之強度比。在一個較佳實例中第-輻 於該第二輻㈣值。 弟—輪射的值大 94167 7 200837924 在们貝%例中,係以使該光電裝置的總輕射之色座 •:票在度圖中之該預定間隔内之方式,提供該第二發 射光瑨及該第二電源。 -個實施例中,該光電裝置包含至少一個另外的設 Γ=體。為了發射至少一個另外的輕射而提供該至 另卜的设定發光二極體。該至少一 :額:::至的發射光… 鋇卜地包含該至少一個另外的輻射。 光-=二!另外的發射光譜最好是不同於該第一發射 光'且:樣地不同於該第二發射光譜。 取好是可將該另外的設定發光於 =㈣發射光譜之更精確的細微設:用== =疋鲞光―極體之該第二輻射及該至 定 而有助於可能使該光電裝 ’田射心 設定在該預定間隔。 4射之色座標被更精確地 在一個實施例中,至少一加口, ' 至少一個另外的設定發光二極濟外的半導體本體包含該 體本體具有至少—個料的_離^少―㈣外的半導 在一個實施例中,該第一丰、首、品。在此種情形中’ 比該至少-個另外的¥體本體之該第-輻射離去區 在個:另外的輪射離去區至少大四倍。 在一個貫施例中,至 少-個另外的設定發光二極粬^:卜的電源被饋入到該至 少一個另外的電源至少大四弟:;電源最好是比該至 °猎由远擇該至少_個另外 94167 200837924 的發射光譜以及該第一發射光雄,p十〜 ^ 日即可得到在CIE色度圖 中之該預定間隔内之色座標。 & 在-個實施例中,該光電裝置包含至少一個另外的功 率發光二極體。該至少一個另外 力卜的功率發光二極體提供至 個額外的輻射。該至少一個額外的輻射具有至少一個 額外的發射光譜。利用兩個或更多個功率發光二極體,而 有利地提供該光電裝置的總輻射之.主要部分。該一個或多 個設定發光二極體可制來更細微地設定⑽ 中 之色座標。 —最好是在相同的極性下並聯該功率發光二極體及該設 疋發光一極體、以及(在豸當的情形下)該另外的功率及(或) 设定發光二極體。 在一個實施例中,該光電裝置包含光混合裝置,且係 朝發射方向而在該功率發光二極體及該設定發光二極體以 及(在適當的情形下)該另外的功率及(或)設定發光二極體 #的下游處(down Sfream)配置該光混合裝置。該第一及該第 二輻射被供應到該光混合裝置。該第一及該第二輻射被多 人内反射’且因而係在該光混合裝置中被混合。該光電裝 置因而根據該第一及該第二輻射以及(亦在適當的情形下) "亥另外的δ又疋及功率發光二極體的輻射之混合,而在輸出 _上提供總輻射。因而有利地實現了下列結果:經由該光 電裝置而朝不同方向發射的輻射有大致相同的發射光譜。 口而利用該.光混合裝置而得到了總輻射的發射光譜之角度 3卜Can.gle independence)。在此.種情形中總幸昌.射 9 94167 200837924 , 的強度可具有角度相關性。 在一個實施例中,該光混人梦 及集中之配置,其中材料自包=結合光散射 ^ 表面自入射角度範園技价 、、且該材料之第二表面在發射角度範圍中發光。 1-個發展中,該光電裝置包含至少 (ph_⑻。仙該發射方“在該功轉光二 = 定發光二極體以及(在適當的愔艰丁、兮ν Μ 、牡、田的ί月形下)該另外的功率及或 發光二極體的下游處配置該磷光質。可將該碟 入被施加到該功率發光二極體及 _ 、 厂产A A 主…、 又疋知尤—極體以及 (在^的^形下)該另外的設^及功率發光二極體之 灌注化合物(potting comp〇und)中。在一個實施例中,ς 光混合裝置包含該至少一個碟光質。 利用該磷光質’可在至少一個波長下至少部分地轉換 該弟-輕射及⑷該第二輕射及(或)(在適當的情形下)由 該另外的功率及(或)設定發光二極體發射之另外的輻射。 #該填光質通常吸收該等發光二極體所發射的柄之至少一 個部分,且最好是立即發射具有大於原先被該發光二極體 .發射的輻射的波長的波長之輻射。將該發光二極體原先發 射的輻射的經過波長轉換之部分與該原先發射的㈣^ 合,而產生最終的輻射。該磷光質被有利地用來設定該光 電裝置的總輻射之發射光譜。/ Λ 可將該功率發光二極體及(或)該設定發光二極體以及 該等另外的功率發光二極體及(或)該等另外的設定發光二 極體貫現為薄膜發光二極體晶片。 94167 10 200837924 薄膜發光一極體晶片不同之處尤其在於下列特徵: “ 〇 *在輻射產生磊晶層序列的面對載體元件之第一主要 •區^施加或形成反射層,該反射層將該屋晶層序列中產生 的電磁輻射之至少一個部分反射回該磊晶層序列; *半導體層序列沒有生長基材。在本例子中,“沒有 生^基材意指自半導體層序列去除了或至少大幅削薄了 可能被用於生長之生長基材。尤其係以單獨的方式,或在 ⑩該生長基材並非單獨自行支承之情形下以連同該蠢晶層序 歹彳之方式’將該生長基材削薄。被大幅削薄的生長基材之 殘餘物尤其不適用於生長基材的功能; *該磊晶層序列具有範圍在20微米或更小且尤其是範 圍在10微米的區域之厚度;以及 *該磊晶層序列包含至少一個半導體層,其中該至少, 一個半導體層之至少-健域具有混合結構,該混合結構 理想上將導致該|晶層序财之光的大致各態歷經的分佈 修(ergodic distribution),亦即,該磊晶層序列具有所能 達到的最大各態歷經隨機散射特性。 例如,在I· Schnitzer (16),18 October 1 993,2174-2176 所發表的論文中述及 了薄膜發光一極體晶片之基本原理,本發明特此引用該論 文在這一方面之揭示内容以供參照。 薄膜發光二極體晶片是朗伯表面發射器抓 surface emitter)之良好近似,且因而特別適用於車前大 燈中之應用。 94167 11 200837924 可根據根據波長而以不同的半導體材料系統製造該功 率發光一極體及該設定發光二極體以及該另外的功去及 (或)另外的設定發光二極體。例如,基於InxGayAh lAs 的半導體本體適於長波輻射;例如,基於InxGayAh”W 半導體本體適於可見光紅色至黃色輻射;且例如,基於 InjayAlmN的半導體本體適於短波可見光(尤其是綠色 至藍色)輻射或紫外光輻射’其中在0糾且Q中主 形下都適用。 月 該磊晶層序列最好是包含適於產生電磁輻射之至少一 個^動區。為達到此目的,該主動區可具有諸如PN接面、 又兴貝I口構(double heterostructtire)、以及單量手井或 ^^*^^^t^ + (Multiple Qu^ ; nmm) 在本申請案的上下文中,術語量子井結構尤其包含可 =電荷載子因侷限而經歷其能階的量化之任何結構。術語 里子結構尤其並不包含與量化的維度有關之指示。因 =子井結構尤其包含量子井、量子線(quantum Wire)、 量子點(quantum dot)、以及這些結構之任何組合。 去根據本發明,一種操作光電裝置之方法包含:利用功 :¾光一極體提供第一輻射。該第一輻射具有第一發射光 人μ 利甩叹疋發光二極體提供第二輻射。該第二輻射包 ^表射光瑨。利用該第二輻射更精確地設定該光電裝 置的總輻射之發射光譜。 有利的方式下,该功率發光二極體可提供總輻射之 94167 12 200837924 主要部分,且該設定發光二極體可提供較小部分。 在一個實施例中,係實質上同時地發射該第一及該第 二輻射。 在一個實施例中,第一電源被饋入到該功率發光二極 體,且第二電源被饋入到該設定發光二極體。在一個實施 例中,該第一電源的值是該第二電源的值之至少四倍。該 第一電源的值最好是該第二電源的值之五倍。可利用該第 一電源與該第二電源間之比率設定該第一輻射與該第二輻 ⑩射間之比率。因此,可精確地設定該光電裝置的總輻射之 發射光譜。 在一個實施例中,該第一及該第二電源實質上被分別 同時饋入到該功率發光二極體及該設定發光二極體。該兩 個電源可分別是恆定的。 在另一實施例中,經過脈寬調變之第一電流被供應到 該功率發光二極體,且經過脈寬調變之第二電流被供應到 馨該設定發光二極體。因此,該第一及該第二電源不是怪定 的,而是被時脈驅動的。對該兩個電流之調變可以是大致 相同的。因此,該兩個電源可在實質上分別被同時饋入到 該功率發光二極體及該設定發光二極體。在替代實施例 中’可以不同於該弟*一電流的方式調變該弟一電流。 該第一及(或)該第二電源可以是暫時可變的。因此, 色座標在操作期間的改變是可能的。因此,可於操作期間 有利地設定不同的色座標。 '' 在該第一及(或)該第二電源有可暫時可變的值之情形 13 94167 200837924 ” 下,亦可補償色座標自原始色座標的長期性偏移。可能因 ,該功率及(或)設定發光二極體的發射光譜中之個別波長的 不同衰減而造成此種長期性偏移。 下文中將參照各圖式而根據複數個實施例更詳細地說 明本發明。功能上相同或效果上相同的結構元件及組件將 有相π的代號。只要各結構元件及組件在功能上相互對 應,則將不參照每一圖式而重複對該等結構元件及組件之 說明。、 「•【實施方式】 第1A圖是根據本發明的光電裝置的實施例之橫斷面 圖。光電裝置(1)包含功率發光二極體(1〇)、設定發光二極 體(20)、以及載體(2)。功率發光二極體(1〇)及設定發光二 極體(20)被配置在載體(2)上。功率發光二極體(丨〇)具有第 一半導體本體(11),且設定發光二極體(2〇)具有第二半導 體本體(21)。第一半導體本體(11)包含第一輻射離去區 ⑩FL。第二半導體本體(21)相應地包含第二輻射離去區fe。 載體(2)包含第一連接墊(31),而功率發光二極體(1〇) 被配置在第一連接墊(31)上;以及第二連接墊(32),而設 定發光二極體(20)被配置在第二連接墊(32)上。第一半導 體本體(11)在導電性上被連接到第一連接墊(31),且第、二 半導體本體(21)在導電性上被連接到第二連接墊。此 外,載體(2)包含第三及第四連接墊(33)、(34)。第一半導 體本體(11)被耦合到第三連接墊(33),且第二半導體本體 (21)被耦合到第四連接墊(34)。為達到此目的,利=打線 94167 14 200837924 (35)將該第一輻射離去區上的連接區連接到第三連接 塾(33)’且利用另外的打線(36)將第二輻射離去區FE上的 連接區連接到第四連接墊(34)。功率發光二極體〇〇)被配 置在接近光電裝置Π)的中點或對稱軸(7)。因此,係以一 種與對稱軸(7)間隔開之方式配置設定發光二極體(2〇)。光 電衣置進一步包含光混合裝置(5)。光混合裝置(5)被配 置在載體(2)上。 弟 ,电源PL被供應到功率發光二極體(10)。第二電茨 PE被相應地饋入到設定發光二極體 ㈤、第三連接編)、及打線⑽實現該第弟一電連 的饋入。利用第二連接墊(32)、第四連接墊(34)、及另夕: 的打線(36)相應地執行該第二電源PE的饋人。功率發光: 極體⑽發射第一輻射SL。該第一輻射乩具有第二發身 光碭EL。以類似的方式,設定發光二極體發射第二幸丨 射SE。該第二輻射SE包含第二發射光譜別。係在該第一 _去區FL上發射該第一輻射SL,且係在該第二輻身 雔去區FE上發射該第二輻射SE。係以_種盥一 ” 二該第一輕射SL之發射,:係:』: Γ 依之方式執行該第二_之 =之蝴供該第 值。利用光、、:…“於該第二輻射SE , 5衣置(5)混合該第一及該第二輻射st ςρ 因而達到了下列目的:光電裝置⑴之該總輻射 94167 200837924 輻射方向有大致相同的發射光譜。該總輻射之總強度係與 方向相依。 、利用該第二輻射SE與該第一輻射SL《混合而有利地 達到了下列目的:總輕射S0具有在可預先決定的範圍中之 發射光譜E0。 光混合裝置(5)有利地補償了下列現象:功率發光二極 體(10)及設定發光二極體(20)無法被同時地配置在光電裝 置(1)的對稱轴(7)或中點上。 在替代實施例中,光電裝置⑴又包含磷光質⑻。磷 光質⑻被加人光電裝置⑴之方式為使磷光f(6)被配置 在該第-及該第二輻射SL、SE的光束路徑上。磷光質⑻ 被用來設定光電裝置⑴的總輻射如之發射光譜e〇、。因 此,可㈣於該第-及該第二發射光譜EL、EE而有利地改 k總輪射S0之發射光譜E0。利甩碟光質(6),而相對於該 第-及該第二發射光譜EL、EE使該發射光譜e〇變寬。 w第Μ圖是第的橫斷面圖所示的根據本發明的光 包衣置(1)的實施例之平視圖。 第-及第三連接墊(31)、(33)被用來將功率發光二極 體αο)在導電性上連接到光電裝置⑴的兩個外連 工,。第二及第四連接塾(32)、⑽购^ 將故疋發光二極體(20)在導電性上連接到光電裝置(丨)的 兩個另外的外部連線(49)、(5〇)。 在替代貫施例(圖中未示出)中,光電裝置(丨)包含至少 一個另外的設定發光二極體。 94167 16 200837924 ’ 在替代實施例(圖中去+ φ、 r禾不出)中,光電裝置(1)具有至少 、一個另外的功率發光二極體。 . =2圖是根據本發明的光電|置的實施例之平視圖。 根據第2圖的光电裝置⑴是根據第1A及圖的光電裝置 ⑴之發展。根據第2圖的光電装置⑴包含被配置在載體 ⑵γ第-及第二串聯電阻(37)、(38)。載體⑵包含第 -及第二電氣連線⑶、⑷。第—連接墊⑶)及第二連接 墊(32)被連接到第一電氣連線⑶。功率發光二極體⑽ 係經由第一串聯電阻(37)而被連接到第二電氣連線⑷。設 疋每光-極體(20)係相應地經由第二串聯電阻⑽)而被連 接到第一電氣連線(4)。為達到此目的,第一串聯電阻ο?) 被配置在第三連接墊⑽與第二電氣連線⑷之間。第二串 聯電阻(38)被相應地配置在第四連接塾⑽與第:電氣連 線⑷之間。該第一及該第二電氣連線⑶、⑷被用來作為 光電裝置(1)之外部連線。光電裝置(1)因而包含由其中包 鲁括功率發光二極體(10)及第一串聯電阻(37)的第一串聯電 路以及其中包括設定發光二極體(2〇)及第二串聯電阻 的弟《一串聯電路構成之並聯電路。 係利用第一及第二電氣連線(3)、(4)將該第一及該第 二電源PL、PE之總和饋入到光電裝置(^ 。第一及第二串 聯電阻(37)、(38)因而可被用來將總電源分割成第一電源 PL及第二電源PE。可利用對該第一及該第二電源pL、pE 之設定,而分別設定該第一輻射SL及該第二輻射邠之輻 射功率。因此,可細微地調整總輻射s〇的發射光譜E〇中 17 94167 200837924 , 之強度分佈。 , 在替代實施例(圖中未示出 ♦-個另外的串聯電路,該至少’光電裝置⑴包含至少 外的設定發光二極體及另外的串^外的串聯電路具有另 的串聯電路被連接到第一與第 力卜 产枯电乳連線(3)、(4)之間。 在日代貫施例(圖中未示出)中,‘ 一個額外的串聯電路,該至少—個置⑴具有至少 外的功率發光二極體及另外的串、二;,路包含另 m ^ , 啊私阻。该至少一個額外 的串,電路被連接到第一與第二電氣連線⑶、⑷之間。 弟3圖是根據本發明的光電裴置的實施 圖。根據第3圖之該光電裝置是第U、1B、及2圖所示; 先電裳置之發展。根據第3圖,光電裝置⑴包含功率發光 二極體⑽及第-設定發光二極體(2())。此外,光電裝置 (1)包含第二、第三、及第四設定發光二極體(22)、(24)、 (26)。係以與對稱軸(7)對稱之方式配置功率發光二極體 _ (10)以及四個設定發光二極體(20)、(22)、(24)、(26)。 彳系以一種在圓弧(8)上均勻分佈之方式配置談四個設定發 光二極體(20)、(22)、(24)、(26)。圓弧(8)係以對稱轴(7) 為中點。第二設定發光二極體(22)具有第三半導體本體 (23) ’該第三半導體本體(23)具有第三輻射離去區FE1。 第三設定發光二極體(24)相應地具有第四半導體本體 (25),該第四半導體本體(25)具有第四輻射離去區FE2。' 在類似的方式下,第四設定發光二極體(26)包含第五半導 體本體(27),該第五半導體本體(27)具、有第五輻射離去區 18 94167 200837924 • FE3 〇 • 功率發光二極體(10)以一種與第一電源PL相依之方 式發射弟一輪射SL。設定發光二極體(2〇)以一種與第二電 源PE相依之方式發射第二輻射SE。第三電源ρΕι被相應 地饋入到第二設定發光二極體(22)。第二設定發光二極體 (22)¾射弟二輻射SE1。第三輪射SE1包含第三發射光譜 EE 1。苐四電源PE2被類似地供應到第三設定發光二極體 (24)。第二設定發光二極體(24)發射第四輻射SE2。第四 •輻射SE2包含第四發射光譜EE2。在類似的方式下,第五 電源PE3被供應到第四設定發光二極體(26)。第四設定發 光二極體(26)發射第五輻射SE3。第五輻射SE3包含第五 發射光譜£E3。光電裝置(1)的總輻射s〇是第一至第五輻 射SL、SE、SE1、SE2、SE3的函數。光電裝置(1)的總輻射 S0是第一至第五輻射Sl、SE、SE1、sE2、SE3的總和。總 輻射S0的發射光譜E0係取決於第一至第五發射光譜EL、 _ EE、EE卜EE2、EE3。總輻射SO的發射光譜E0之強度分佈 是該五個發射光譜EL、EE、EE1、EE2、EE3的強度分佈之 函數。 在有利的方式下,可利用該四個設定發光二極體 (20)、(22)、(24)、(26)細微地設定總輻射s〇之發射光譜 E0 p 在替代實施例中,提供了磷光質(6),該磷光質(6)轉 換功率發光二極體(1〇)及(或)四個設定發光二極體(2〇)、 (22)、(24)、(26)所提供的輻射 SL、SE、SE1、SE2、SE3 19 94167 200837924 ‘的部分。因此,比只加入該等五個發射光譜EL、EE、EEl、 .EE2、EE3更有利地改變總輻射s〇之發射光譜E〇。 ’ 在替代實施例(圖中未示出)中,係以一種在橢圓形上 均勻分佈之方式配置該四個設定發光二極體(2〇)、(22)、 (24) 、 (26)。 在替代實施例(圖中未示出)中,光電裝置(1)包含至少 一個另外的設定發光二極體。 在替代實施例(圖中未示出)中,光電裝置(1)具有至少 一個另外的功率發光二極體。 第4圖示出根據本發明的光電裝置之實施例,該實施 例代表根據第1A、1B、及2圖的光電裝置之發展。根據第 4圖之光電裝置(1)包含功率發光二極體(1〇)及另外的功 卞务光一極體(12)。係以鄰接之方式配置功率發光二極體 ⑽及另外的功率發光二極體(12)。另外的功率發光二極 體(12)具有另外的半導體本體(13)。另外的半導體本體⑴ 包含另外的迪離去區FL1。光電裝置⑴又包含設定發光: =體⑽及第二設定發光二極體⑽。功率發光二極體 及另外的功率發光二極體(12)被配置在設定發光二極 體(2 0 )與第二設定發光—極2 虫 叹疋土尤一極體(22)之間。係在直線(9)上配 .(20).(22)〇|tEg ^ =極體(1G)、⑽、⑽、⑽之裝置係與對讀 另:的電源PL1被饋入到另外的功率發光二極體 。另外的功率發光:極體⑽在料的輻射離去區 94167 20 200837924 ‘ Ff1 ^毛射另外的輻射SL1。該另外的輻射su包含另外的 ♦卷射光"曰紅1。總輻射s〇之發射光譜E〇因而實質上是第 ,一 $射光譜EL及另外的發射光譜EU之函數,且係利用 及該第三發射光譜邱、EE1更細微地設定該發射光 因此,係以一種與兩個功率發光二極體的第一輻射乩 及j外的輻射SL1相依之方式有利地提供總輻射s〇之發射 光譜E0 〇 •—纟替代實施例中’光電襄置⑴包含至少一個另外的設 疋每光一極體。在替代實施例中,光電裝置⑴具有至少— 個另外的功率發光二極體。 本發明並不限於根據該等實施例之說明。更確切地 說,本發明包含任何新的特徵及任何特徵之組合,且尤其 包含本發明申請專利範圍中之特徵的任何組合,縱然在^ 發明申請專利範圍或實施例中並未明確地指明該特徵或該 _組合本身,本發明也包含該特徵或該缸合本身。 【圖式簡單說明】 第1A及1B圖是根據本發明的光電裝置的例 斷面圖及平視圖;、 之檢 .第2圖是根據本發明的光電裝置的替代實施例之平視 第3圖是根據本發明的光電裝置的替代實施例之平导 示意圖;以及 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ % 帛4®是根據本發明的光電裝置的另外的實施例之平 94167 21 200837924 % 視示意圖。 【主要元件符號說明】 光電裝置 1 第一電氣連線 1 光混合裝置 對稱轴 I 直線 2 載體 4 第二電氣連線 6 磷光質 8 圓弧 10 功率發光二極體 11 第一半導體本體 另外的功率發光二極體 13 另外的半導體本體 20 設定發光二極體 21 第二半導體本體 22 第二設定發光二極體 23 第三半導體本體 24 第三設定發光二極體 25 第四半導體本體 26 第四設定發光二極體 27 第五半導體本體/ 31 第一連接墊 32 第二連接墊 33 第三連接墊 34 第四連接墊 35 打線 36 另外的打線 37 第一串聯電阻 38 第二串聯電阻 EE 第二發射光譜 EE1 EE3 ELI FE1 FE3 FL1 EE 2 第四發射光譜 EL 第一發射光譜 F E 第二輻射離去區 FE2 第四輻射離去區 F L 第一輻射離去區 第三發射光譜 第五發射光譜 另外的發射光譜 第三輻射離去區 第五輻射離去區 另外的輻射離去 94167 22 200837924 PE 第二電源 PE1 第三電源 PE2 第四電源 PE3 第五電源 PL 第一電源 PL1 另外的電源 SE 第二輻射 SE1 第三輻射 SE2 第四輻射 SE3 弟五輕射 SL 第一輻射 SL1 另外的輻射 SO 總輻射 E0 發射光譜 23 94167BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optoelectronic device and a method for operating the same. [Priority of Claim] This patent application claims the priority of the German Patent Application No. H20-6 oh "I. 2, the disclosure of which is incorporated herein by reference. A plurality of light-emitting diodes are included. The emission spectrum of the photovoltaic device is generated by the emission spectrum of the individual light-emitting diodes. Due to the change of the emission spectrum of the light-emitting diodes during continuous production, it may be predetermined The color coordinates of the radiation of the optoelectronic device are complicated in the interval. Document WO 2006/002607 discloses a light-emitting diode device comprising two light-emitting diodes. The two light-emitting diode systems are connected in anti-parallel to each other. The photo-polar device includes means for providing an electric current having alternating directions of the two light-emitting diodes. U.S. Patent No. 5,861,990 describes a material which incorporates light scattering and concentrated clothing. ―The surface receives light from a range of angles of incidence, and the second surface of the material emits light in a range of emission angles. [Invention] - v / ♦ The purpose of the invention is to illustrate a light Apparatus and method for operating the same. The apparatus and method are capable of elastically setting the radiation of the photovoltaic device. The subject matter of claim 1 of the present invention is applied and the patent application scope is 23rd according to the present invention. The method of the item achieves the scope of the sub-project (4). The purpose of each project is to develop and structure. It is quite suitable for the younger brother to emit electromagnetic radiation. The set of emitted light can emit the second electromagnetic radiation. The first radiation has the first -=, and the second light has the second radiation of the second radiation: including the first A light shot and the second light shot. The spring special body ^ power light-emitting diode advantageously realizes the photoelectric device: fortunately::: in order to obtain a predetermined total light shot, the The second radiation provided by the diode is added to the first radiation. The dipole-emission spectrum is preferably different from the first emission spectrum. The Jx-ray spectrum may include a first wavelength, and the first wavelength is different from The second shot, the spectrum contains the wave The second emission spectrum may comprise a second wavelength, t the second wavelength being different from the wavelength included in the first emission spectrum. In an alternative embodiment, the first and second emission spectra comprise the same wavelength, : the first intensity distribution in the first-emission spectrum is different from the second emission: a second intensity distribution in the spectrum. - - · : - - In one embodiment, the illuminating diode is set to be accurate Setting the emission spectrum of the total radiation. In one embodiment, the second radiation is mixed with the first radiation, and the color coordinates of the total radiation of the photovoltaic device are obtained at predetermined intervals. In the CIE chromaticity diagram, the X coordinate and the standard are marked. Therefore, the second radiation emitted by the LED can be used to make the single 94167 6 200837924 - The color coordinates obtained by the operation of the power light-emitting diode but not in the predetermined interval are advantageously moved, so that the sum of the first and the second light shots produces color coordinates in the predetermined interval. In one embodiment, the first semiconductor body (wherein the semiconductor body is also referred to as a die or wafer) has the power LED, and the second semiconductor body has the set LED. In a development, the first semiconductor body has a first-radiation departure and a node having the first-emission spectrum is generated from the first-radiation leaving region and the second semiconductor body has a second (4) The departure area, and the second emission light is generated from the second radiation leaving area, and the first light-light leaving area is four times smaller than the second light shot; The first radiation leaving zone is preferably a departure zone of the Great Five. The ratio of the intensity of the second radiation is the function of the ratio of the area of the field to the second radiation leaving interval. In one embodiment, the optoelectronic device comprises a carrier and the first body body is secured to the carrier. The carrier can be implemented as an outer casing of the first and second semiconductor bodies. The first power source supplied to the power supply is supplied with the value of the first-to-medium power source at least four times larger than the value of the second power source. The - electricity:: Jane! The value of the second power supply is preferably five times larger. It is possible to set the intensity ratio of the macro to the ratio between the power sources of the first one and the other. In a preferred embodiment, the second (four) value is transmitted. The value of the round-off is 94167 7 200837924. In the case of %, the second launch is provided in such a way that the total light-emitting color of the optoelectronic device is: within the predetermined interval in the graph. The aperture and the second power source. In one embodiment, the optoelectronic device comprises at least one additional device. The set light-emitting diodes are provided for emitting at least one additional light shot. The at least one: amount::: to the emitted light... the at least one additional radiation is included. Light-=two! The additional emission spectrum is preferably different from the first emitted light' and is different from the second emission spectrum. It is preferable to illuminate the other setting to a more precise subtle setting of the = (four) emission spectrum: using the == = 疋鲞 - the second radiation of the polar body and the determinate to help the photonic device 'The field is set at this predetermined interval. The four-color coordinates are more precisely, in one embodiment, at least one of the ports, 'at least one additional semiconductor body that sets the light-emitting diodes to include the body body has at least one material------ The outer semi-conductor, in one embodiment, the first abundance, the first, the product. In this case, the first radiation leaving zone is at least four times larger than the at least one additional body body. In one embodiment, at least one additional set of light-emitting diodes is fed to the at least one additional power source at least four younger brothers; the power source is preferably selected from the The emission spectrum of the at least another 94167 200837924 and the first emitted light, p ten to ^ day, can obtain the color coordinates within the predetermined interval in the CIE chromaticity diagram. & In one embodiment, the optoelectronic device comprises at least one additional power illuminating diode. The at least one additional power illuminating diode provides additional radiation. The at least one additional radiation has at least one additional emission spectrum. The main part of the total radiation of the optoelectronic device is advantageously provided by means of two or more power illuminating diodes. The one or more setting LEDs can be made to finely set the color coordinates in (10). Preferably, the power LED and the illuminating diode are connected in parallel at the same polarity, and (in the case of a jingle) the additional power and/or the illuminating diode is set. In one embodiment, the optoelectronic device comprises a light mixing device and is in the direction of emission of the power LED and the set LED and, where appropriate, the additional power and/or The light mixing device is disposed downstream of the light-emitting diode # (down Sfream). The first and the second radiation are supplied to the light mixing device. The first and second radiation are internally reflected by a plurality of ' and thus are mixed in the light mixing device. The optoelectronic device thus provides total radiation on the output _ according to the first and second radiation and (also where appropriate) the additional δ and the mixing of the radiation of the power illuminating diode. It is thus advantageously achieved that the radiation emitted in different directions via the optoelectronic device has substantially the same emission spectrum. Using the light mixing device, the angle of the emission spectrum of the total radiation is obtained. 3 Can.gle independence). In this case, the intensity of the total Xingchang. Shot 9 94167 200837924 can be angularly correlated. In one embodiment, the light blends a dream and a concentrated configuration in which the material self-package = combined light scattering ^ surface from the angle of incidence, and the second surface of the material emits light in the range of emission angles. In one development, the optoelectronic device contains at least (ph_(8). The emitter of the emitter is in the work of the second light = the light-emitting diode and (in the appropriate 愔 丁, 兮 Μ 、, 牡, 田The phosphor or the phosphor is disposed downstream of the additional power and or the LED. The dish can be applied to the power LED and the AA main product, and the A-pole is And (in the shape of the ^) the additional device and the potting compound of the power LED (potting comp〇und). In one embodiment, the phosphor mixing device comprises the at least one disc quality. The phosphorescent substance can at least partially convert the dipole-light shot and (4) the second light shot and/or (where appropriate) from the additional power and/or set the light-emitting diode at at least one wavelength Additional radiation emitted by the body. The fill material generally absorbs at least a portion of the handle emitted by the light emitting diodes, and preferably emits light having a wavelength greater than that originally emitted by the light emitting diode. Radiation of the wavelength. The light emitting diode was originally emitted The wavelength-converted portion of the radiation is combined with the originally emitted (four) to produce the final radiation. The phosphor is advantageously used to set the emission spectrum of the total radiation of the photovoltaic device. / Λ The power can be illuminated And/or the set light emitting diode and the additional power light emitting diodes and/or the other set light emitting diodes are formed as thin film light emitting diode chips. 94167 10 200837924 The polar body wafer differs in particular in the following features: " 〇 * applies or forms a reflective layer in the first main region facing the carrier element of the radiation-producing epitaxial layer sequence, the reflective layer is generated in the sequence of the roof layer At least one portion of the electromagnetic radiation is reflected back to the epitaxial layer sequence; * the semiconductor layer sequence has no growth substrate. In this example, "no substrate is meant to be removed from the semiconductor layer sequence or at least greatly reduced a growth substrate that is used for growth, especially in a separate manner, or in the case where the growth substrate is not supported by itself alone, in conjunction with the stupid sequence. The growth substrate is thinned. The residue of the substantially thinned growth substrate is particularly unsuitable for the function of growing the substrate; * the epitaxial layer sequence has a range of 20 microns or less and especially a range of 10 microns The thickness of the region; and * the epitaxial layer sequence comprises at least one semiconductor layer, wherein at least one of the semiconductor layers has a hybrid structure that ideally results in the light of the crystal layer The ergodic distribution of the various states, that is, the epitaxial layer sequence has the random scattering characteristics of the largest states that can be achieved. For example, in I·Schnitzer (16), 18 October 1 993, 2174- The basic principle of a thin film light-emitting monolithic wafer is described in the paper published in 2176, the disclosure of which is incorporated herein by reference. Thin film LEDs are a good approximation of the surface emitter and are therefore particularly suitable for use in headlights. 94167 11 200837924 The power illuminating body and the set illuminating diode and the additional operative and/or additional illuminating diodes can be fabricated from different semiconductor material systems depending on the wavelength. For example, a semiconductor body based on InxGayAhlAs is suitable for long-wave radiation; for example, an InxGayAh"W semiconductor body is suitable for visible red to yellow radiation; and for example, an InjayAlmN based semiconductor body is suitable for short-wave visible light (especially green to blue) radiation Or ultraviolet radiation 'where is applicable in both 0 and Q. The month of the epitaxial layer sequence preferably comprises at least one active region suitable for generating electromagnetic radiation. To achieve this, the active region may have Such as PN junction, double heterostructtire, and single hand well or ^^*^^^t^ + (Multiple Qu^; nmm) In the context of this application, the term quantum well structure In particular, any structure that can be quantified by its energy level can be quantified. The term neutron structure does not specifically include indications related to the quantized dimensions. The sub-well structure includes quantum wells and quantum wires. ), quantum dot, and any combination of these structures. According to the present invention, a method of operating an optoelectronic device includes: utilizing work: 3⁄4 light one body a first radiation having a first emitted light and a second emitting radiation providing a second radiation. The second radiation is configured to emit light. The second radiation is used to more accurately set the photovoltaic device The emission spectrum of the total radiation. In an advantageous manner, the power LED can provide a major portion of the total radiation of 94167 12 200837924, and the set LED can provide a smaller portion. In one embodiment, the essence The first and the second radiation are simultaneously emitted. In one embodiment, a first power source is fed to the power LED, and a second power source is fed to the set LED. In an embodiment, the value of the first power source is at least four times the value of the second power source. The value of the first power source is preferably five times the value of the second power source. The first power source and the first The ratio between the two power sources sets the ratio of the first radiation to the second radiation 10. Thus, the emission spectrum of the total radiation of the photovoltaic device can be accurately set. In one embodiment, the first and second The power supply is essentially divided Don't feed the power LED and the set LED at the same time. The two power sources can be respectively constant. In another embodiment, the pulse width modulated first current is supplied to the power. a light emitting diode, and a second current that is modulated by the pulse width is supplied to the set light emitting diode. Therefore, the first and the second power source are not strange, but are driven by the clock. The modulation of the two currents can be substantially the same. Therefore, the two power sources can be substantially simultaneously fed to the power LED and the set LED respectively. In an alternative embodiment, Different from the younger brother's way of modulating the current. The first and/or the second power source can be temporarily variable. Therefore, changes in color coordinates during operation are possible. Therefore, different color coordinates can be advantageously set during operation. '' In the case where the first and/or the second power source has a temporarily variable value 13 94167 200837924 ”, the long-term offset of the color coordinates from the original color coordinates may also be compensated for. (or) setting different attenuations of individual wavelengths in the emission spectrum of the light-emitting diode to cause such long-term offset. Hereinafter, the present invention will be described in more detail based on a plurality of embodiments with reference to the respective drawings. Structural components and components that have the same effect will have the designation of phase π. As long as the structural components and components functionally correspond to each other, the description of the structural components and components will be repeated without reference to each of the drawings. [Embodiment] Fig. 1A is a cross-sectional view showing an embodiment of a photovoltaic device according to the present invention. The photovoltaic device (1) includes a power LED (1), a light-emitting diode (20), and a carrier (2), a power LED (1), and a set LED (20) are disposed on the carrier (2). The power LED (丨〇) has a first semiconductor body (11), And set the light-emitting diode (2〇) There is a second semiconductor body (21). The first semiconductor body (11) comprises a first radiation leaving region 10FL. The second semiconductor body (21) correspondingly comprises a second radiation leaving region fe. The carrier (2) comprises a first Connecting the pad (31), and the power LED (1) is disposed on the first connection pad (31); and the second connection pad (32), and the setting LED (20) is disposed in the a second connection pad (32). The first semiconductor body (11) is electrically connected to the first connection pad (31), and the second and second semiconductor bodies (21) are electrically connected to the second connection pad Furthermore, the carrier (2) comprises third and fourth connection pads (33), (34). The first semiconductor body (11) is coupled to the third connection pad (33) and the second semiconductor body (21) is Coupled to a fourth connection pad (34). To achieve this, the line = 94167 14 200837924 (35) connects the connection zone on the first radiation leaving zone to the third port (33)' and utilizes additional The wire (36) connects the connection region on the second radiation leaving zone FE to the fourth connection pad (34). Power LEDs) It is disposed near the midpoint of the optoelectronic device (或) or the axis of symmetry (7). Therefore, the light-emitting diode (2〇) is arranged in a manner spaced apart from the axis of symmetry (7). The photo-electric coating further includes light mixing. The device (5). The light mixing device (5) is disposed on the carrier (2). The power source PL is supplied to the power LED (10). The second electrocardiogram PE is correspondingly fed to the setting illumination 2 The polar body (5), the third connection (), and the wire (10) realize the feeding of the first electrical connection. The second connection pad (32), the fourth connection pad (34), and the other day: (36) The feed of the second power source PE is performed accordingly. Power illumination: The polar body (10) emits a first radiation SL. The first radiation pupil has a second hair stop EL. In a similar manner, the LED is set to emit a second lucky shot SE. The second radiation SE comprises a second emission spectrum. The first radiation SL is emitted on the first-going area FL, and the second radiation SE is emitted on the second body-cutting area FE. The first light shot SL is emitted by the _ 盥 ” ” : : : : : : : : : : : : : : : : : : : : 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一The second radiation SE, 5, (5) mixes the first and the second radiation st ς ρ thus achieving the following purpose: the total radiation 94167 200837924 of the optoelectronic device (1) has substantially the same emission spectrum. The total intensity of the total radiation is dependent on the direction. The use of the second radiation SE in combination with the first radiation SL advantageously achieves the object that the total light beam S0 has an emission spectrum E0 in a predeterminable range. The light mixing device (5) advantageously compensates for the fact that the power LED (10) and the set LED (20) cannot be simultaneously arranged at the symmetry axis (7) or midpoint of the optoelectronic device (1) on. In an alternative embodiment, the optoelectronic device (1) in turn comprises phosphorescent material (8). The phosphorescent substance (8) is applied to the photovoltaic device (1) in such a manner that the phosphorescence f(6) is disposed on the beam paths of the first and second radiations SL, SE. Phosphor (8) is used to set the total radiation of the optoelectronic device (1) such as the emission spectrum e〇. Therefore, the emission spectrum E0 of the total shot S0 can be advantageously changed by (d) the first and the second emission spectra EL, EE. The light quality of the dish (6) is increased, and the emission spectrum e〇 is broadened with respect to the first and second emission spectra EL, EE. w is a plan view of an embodiment of the optical coating (1) according to the invention as shown in the cross-sectional view of the first section. The first and third connection pads (31), (33) are used to electrically connect the power light-emitting diodes a) to the two external connections of the photovoltaic device (1). The second and fourth ports (32), (10) are used to electrically connect the two light-emitting diodes (20) to two additional external wires (49) of the photovoltaic device (丨), (5) ). In an alternative embodiment (not shown), the optoelectronic device (丨) comprises at least one additional set of light-emitting diodes. 94167 16 200837924 ' In an alternative embodiment (de + φ, r not shown), the optoelectronic device (1) has at least one additional power illuminating diode. The Fig. 2 is a plan view of an embodiment of the optoelectronic device according to the present invention. The photovoltaic device (1) according to Fig. 2 is a development of the photovoltaic device (1) according to Fig. 1A and Fig. 1 . The photovoltaic device (1) according to Fig. 2 includes γ-first and second series resistors (37) and (38) arranged in the carrier (2). The carrier (2) includes first and second electrical connections (3), (4). The first connection pad (3) and the second connection pad (32) are connected to the first electrical connection (3). The power LED (10) is connected to the second electrical connection (4) via a first series resistor (37). It is assumed that each of the photo-polar bodies (20) is connected to the first electrical connection (4) via the second series resistor (10). To achieve this, the first series resistor ο?) is disposed between the third connection pad (10) and the second electrical connection (4). The second series resistor (38) is correspondingly disposed between the fourth port (10) and the: electrical connection (4). The first and second electrical connections (3), (4) are used as external connections for the optoelectronic device (1). The optoelectronic device (1) thus includes a first series circuit including a power LED (10) and a first series resistor (37), and includes a set LED (2〇) and a second series resistor The younger brother "a parallel circuit composed of a series circuit. Using the first and second electrical connections (3), (4) to feed the sum of the first and second power sources PL, PE to the optoelectronic device (^. The first and second series resistors (37), (38) can thus be used to divide the total power source into the first power source PL and the second power source PE. The first radiation SL and the first and second power sources pL, pE can be set respectively to set the first radiation SL and the The radiation power of the second radiation 。. Therefore, the intensity distribution of the emission spectrum E 〇 17 94167 200837924 of the total radiation s 可 can be finely adjusted. In an alternative embodiment (not shown in the figure ♦ an additional series circuit The at least 'optoelectronic device (1) includes at least an outer set of LEDs and another series of series circuits having another series circuit connected to the first and the first force to produce a dry milk connection (3), ( Between 4) In a daily embodiment (not shown), 'an additional series circuit, the at least one (1) has at least an outer power LED and another string, two; The road contains another m ^ , ah private resistance. The at least one extra string, the circuit is connected to the first The second electrical connection between (3) and (4) is shown in Figure 3. The photoelectric device according to Figure 3 is shown in Figures U, 1B, and 2; According to Fig. 3, the photovoltaic device (1) comprises a power LED (10) and a first-set LED (2()). In addition, the optoelectronic device (1) includes second, third, and fourth settings. The light-emitting diodes (22), (24), and (26) are arranged such that the power light-emitting diodes _ (10) and the four light-emitting diodes (20) are symmetrically arranged with respect to the axis of symmetry (7), 22), (24), (26). The system is arranged in such a way as to be evenly distributed on the arc (8). Four sets of light-emitting diodes (20), (22), (24), (26) The arc (8) is centered on the axis of symmetry (7). The second set of light-emitting diodes (22) has a third semiconductor body (23) 'the third semiconductor body (23) has a third radiation leaving Region FE1. The third set light-emitting diode (24) correspondingly has a fourth semiconductor body (25) having a fourth radiation leaving region FE2. 'In a similar manner, the fourth The fixed LED (26) comprises a fifth semiconductor body (27) having a fifth radiation leaving region 18 94167 200837924 • FE3 〇 • Power LED (10) A second-shot SL is transmitted in a manner dependent on the first power source PL. The light-emitting diode (2〇) is set to emit the second radiation SE in a manner compatible with the second power source PE. The third power source ρΕι is correspondingly fed to The second set of light-emitting diodes (22). The second set of light-emitting diodes (22) 3⁄4 emits two radiations SE1. The third round of shots SE1 comprises a third emission spectrum EE1. The fourth power source PE2 is similarly supplied to the third set light-emitting diode (24). The second set of light emitting diodes (24) emits a fourth radiation SE2. Fourth • Radiation SE2 contains a fourth emission spectrum EE2. In a similar manner, the fifth power source PE3 is supplied to the fourth set light-emitting diode (26). The fourth setting light emitting diode (26) emits a fifth radiation SE3. The fifth radiation SE3 contains a fifth emission spectrum £E3. The total radiation s 光电 of the optoelectronic device (1) is a function of the first to fifth radiations SL, SE, SE1, SE2, SE3. The total radiation S0 of the photovoltaic device (1) is the sum of the first to fifth radiations S1, SE, SE1, sE2, SE3. The emission spectrum E0 of the total radiation S0 depends on the first to fifth emission spectra EL, _ EE, EE EE2, EE3. The intensity distribution of the emission spectrum E0 of the total radiation SO is a function of the intensity distribution of the five emission spectra EL, EE, EE1, EE2, EE3. In an advantageous manner, the four sets of light-emitting diodes (20), (22), (24), (26) can be used to finely set the emission spectrum E0 p of the total radiation s 在 in an alternative embodiment, provided Phosphorescent (6), the phosphorescent (6) conversion power LED (1〇) and/or four set LEDs (2〇), (22), (24), (26) Part of the provided radiation SL, SE, SE1, SE2, SE3 19 94167 200837924 '. Therefore, the emission spectrum E〇 of the total radiation s〇 is more advantageously changed than the addition of only the five emission spectra EL, EE, EE1, .EE2, EE3. In an alternative embodiment (not shown), the four set light-emitting diodes (2〇), (22), (24), (26) are arranged in a manner uniformly distributed over the ellipse. . In an alternative embodiment (not shown), the optoelectronic device (1) comprises at least one further set light-emitting diode. In an alternative embodiment (not shown), the optoelectronic device (1) has at least one further power illuminating diode. Fig. 4 shows an embodiment of an optoelectronic device according to the invention, which represents the development of optoelectronic devices according to Figs. 1A, 1B, and 2. The photovoltaic device (1) according to Fig. 4 comprises a power light-emitting diode (1) and an additional power light-emitting diode (12). The power LED (10) and the additional power LED (12) are arranged adjacent to each other. The further power illuminating diode (12) has an additional semiconductor body (13). The further semiconductor body (1) comprises an additional de-allocation zone FL1. The optoelectronic device (1) further comprises a set illumination: = body (10) and a second set of light-emitting diodes (10). The power LED and the further power LED (12) are disposed between the set LED (20) and the second set emitter 2 (22). It is matched on the straight line (9). (20). (22) 〇 | tEg ^ = the device of the polar body (1G), (10), (10), (10) and the power supply PL1 of the read: the other power is fed to the other power Light-emitting diode. Additional power illumination: polar body (10) in the radiation leaving zone of the material 94167 20 200837924 ‘Ff1 ^shake additional radiation SL1. This additional radiation su contains an additional **rejected light "blush 1" The emission spectrum E〇 of the total radiation 〇 is thus essentially a function of the first, the emission spectrum EL and the additional emission spectrum EU, and the emission light is set more finely using the third emission spectrum Qiu, EE1, The emission spectrum E0 of the total radiation s 有利 is advantageously provided in a manner dependent on the first radiation 两个 and the radiation SL1 outside the two power illuminating diodes. In the alternative embodiment, the photoelectric device (1) comprises At least one additional device is provided for each light pole. In an alternative embodiment, the optoelectronic device (1) has at least one additional power LED. The invention is not limited by the description of the embodiments. Rather, the invention encompasses any novel features and combinations of any features, and particularly includes any combination of features in the scope of the invention, even if not explicitly indicated in the scope or embodiments of the invention. The feature or the combination itself, the invention also encompasses the feature or the cylinder itself. BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1A and 1B are a cross-sectional view and a plan view of an optoelectronic device according to the present invention; and FIG. 2 is a plan view of an alternative embodiment of the optoelectronic device according to the present invention. Figure is a plan view of an alternative embodiment of an optoelectronic device according to the present invention; and ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 帛 4® is a further embodiment of the optoelectronic device according to the present invention, flat 94167 21 200837924 % See the schematic. [Major component symbol description] Optoelectronic device 1 First electrical connection 1 Optical hybrid device symmetry axis I Straight line 2 Carrier 4 Second electrical connection 6 Phosphorescent 8 Arc 10 Power LEDs 11 Additional power of the first semiconductor body LEDs 13 further semiconductor body 20 sets LEDs 21 second semiconductor body 22 second setting LEDs 23 semiconductor body 24 third setting LEDs 25 semiconductor body 26 fourth setting Light-emitting diode 27 fifth semiconductor body / 31 first connection pad 32 second connection pad 33 third connection pad 34 fourth connection pad 35 wire 36 additional wire 37 first series resistance 38 second series resistance EE second emission Spectrum EE1 EE3 ELI FE1 FE3 FL1 EE 2 Fourth emission spectrum EL First emission spectrum FE Second radiation leaving zone FE2 Fourth radiation leaving zone FL First radiation leaving zone Third emission spectrum Fifth emission spectrum Additional emission Spectral third radiation leaving zone fifth radiation leaving zone additional radiation leaving 94167 22 200837924 PE second power supply PE1 third power supply PE2 fourth Fifth power source PE3 PL PL1 the first power supply additional third radiation SE second radiation SE1 SE2 SE3 fourth radiation emitted light SL brother five additional radiation of the first radiation SL1 SO E0 total radiation emission spectrum 2394167

Claims (1)

200837924 - 十、申請專利範圍: 1· 一種光電裝置,包括: 、 功率發光一極體(1〇),該功率發光二極體(1 〇)可發 射具有第一發射光譜(EL)之第一輻射(SL);以及 設定發光二極體(2〇),該設定發光二極體(2〇)可發 射具有第二發射光譜(ΕΕ)之第二輻射(SE),使該光電裝 置(1)之總輕射(S0)包括該第一輻射(SL)及該第二輻射 (SE)。 2·如申請專利範圍第1項之光電裝置,其中,該第二發射 光譜(EE)不同於該第一發射光譜(EL)。 3·如申請專利範圍第1或2項之光電裝置,其中,係為了 細微地設定該光電裝置(1)的總輻射(s〇)之發射光譜 (E0)而提供該設定發光二極體(2〇)。 4·如申請專利範爵第1至3項中任一項之光電裝置,其 中,可利用該第二輻射(SE)與該第一輻射(SL)的混合, ⑩ 而將該光電裝置(1)的總輻射(S0)之色座標設定在可預 先決定的間隔中。 5·如申請專利範圍第1至4項中任一項之光電裝置,其 中’第一半導體本體(11)包括讓功率發光二極體(1〇), 且第二半導體本體(21)包括該設定發光二極體(20)。 6·如申請專利範圍第5項之光電裝置,其中,該第一半導 體本體(11)的第一輻射離去區(FL)比該第二半導體本 體(21〇的第二輻射離去區(FE)至少大四倍。 7·如申請專利範圍第5或6項之光電裝置,復包括載體 24 94167 .200837924 (2)’而該第一半導體本體(11)及該第二半導體本體(21) 被配置在該载體(2)上。 〜 8·如申明專利範圍第j至7項中任一項之光電裝置,復包 括苐串如電阻(3 7 ),該第一串聯電阻(3 7 )被串聯到 該功率發光二極體(10);以及第二串聯電阻(38),該第 一串聯電阻(38)被串聯到該設定發光二極體(2〇),該兩 個串聯電路係相互並聯。200837924 - X. Patent application scope: 1. An optoelectronic device comprising: , a power illuminating diode (1 〇), the power illuminating diode (1 〇) emitting the first emission spectrum (EL) Radiation (SL); and setting a light-emitting diode (2〇), the set light-emitting diode (2〇) emitting a second radiation (SE) having a second emission spectrum (ΕΕ), such that the photovoltaic device (1) The total light shot (S0) includes the first radiation (SL) and the second radiation (SE). 2. The photovoltaic device of claim 1, wherein the second emission spectrum (EE) is different from the first emission spectrum (EL). 3. The photovoltaic device according to claim 1 or 2, wherein the set light-emitting diode is provided for finely setting an emission spectrum (E0) of the total radiation (s) of the photovoltaic device (1) ( 2〇). 4. The optoelectronic device of any one of claims 1 to 3, wherein the second radiation (SE) and the first radiation (SL) are mixed, 10 and the optoelectronic device (1) The color coordinates of the total radiation (S0) are set at predeterminable intervals. 5. The photovoltaic device of any one of claims 1 to 4, wherein the first semiconductor body (11) comprises a power illuminating diode (1 〇), and the second semiconductor body (21) comprises the Set the light-emitting diode (20). 6. The photovoltaic device of claim 5, wherein the first radiation leaving region (FL) of the first semiconductor body (11) is larger than the second semiconductor body (21 second second radiation leaving region ( FE) is at least four times larger. 7. The photovoltaic device according to claim 5 or 6, further comprising a carrier 24 94167 .200837924 (2)' and the first semiconductor body (11) and the second semiconductor body (21) And the photoelectric device according to any one of the items of the invention, wherein the first series resistance (3) 7) is connected in series to the power LED (10); and a second series resistor (38), the first series resistor (38) is connected in series to the set LED (2〇), the two series The circuits are connected in parallel with each other. 9.如申請專利範圍第7及8項之光電裝置,其中,該第一 及該第二串聯電阻(37)、(38)被配置在該載體 , 且該載體(2)包括第一及第二電氣連線(3)、(4),其中, 包括該第一串聯電阻(37)及該功率發光二極體(1〇)之 該第一串聯電路被連接到該第一與該第二電氣連線 «)、(4)之間,且包括該第二串聯電阻(38)及該設定發 ,二極體(2〇)之該第二串聯電路被連接到該第一與該 第二電氣連線(3)、(4)之間。9. The photovoltaic device of claim 7 and 8, wherein the first and second series resistors (37), (38) are disposed on the carrier, and the carrier (2) comprises first and a second electrical connection (3), (4), wherein the first series circuit including the first series resistance (37) and the power LED (1) is connected to the first and second Between the electrical connections «) and (4), and including the second series resistor (38) and the set, the second series circuit of the diode (2〇) is connected to the first and second Electrical connection between (3) and (4). 10·如申請專利範圍第」至9項中任一項之光電裝置,、 中’被供應到該功率發光二極體(10)之第—電源(PL 比被供應到該設定發光二極體(20)之第二電源(PE)J 少大四倍。 ^ ^ ” 11.如申請專利範圍第10項之光電裝置,其中,該設定 被設定成使該光電裝置⑴的總輻射_之色座桿在. 預先決定的間隔中。 巴压.心在 12·如申請專利範圍第1至11項中任一馆夕丄 貝甲任項之光電裝置q 94167 25 -200837924 • 包括至少一個另外的設定發光二極體(22、24、26),該 _ 至少一個另外的設定發光二極體(22、24、26)可發射具 、 有至少一個另外的發射光譜(EE1、EE2、EE3)之至少一 個另外的輻射(SE1、SE2、SE3),因而使該光電裝置(1) 之總輻射(so)包括該至少一個另外的輻射(SE1、SE2、 S E 3 ) 〇 13·如申請專利範圍第l 2項之光電裝置,其中,該至少一 馨 個另外的發射光譜(EE1、EE2、EE3)不同於該第一發射 光譜(EL)及該第二發射光譜(EE)。 丨也如申請專利範圍第12或13項之光電裝置,其中,係為 了細微地設定該光電裝置U)的總輻射(S0)之發射光譜 而提供該至少一個另外的設定發光二極體(22、24、26)。 I5·如申請專利範圍第12至14項中任一項之光電裝置,其 中’可利用該設定發光二極體(20)的該第二輻射(SE) 及該至少一個另外的設定發光二極體(22、24、26)的該 • 至少一個另外的輻射(SE1、SE2、SE3)與該功率發光二 植脰(10)的該弟一輻射(SL)的混合,而將該光電裝置(1) 的總輻射(S0)之色座標設定在可預先決定的間隔中。 16·如申請專利範圍第12至15項中任一項之光電裝置,其 中,至少一個另外的半導體本體(23、25、27)包括該至 少一個另外的設定發光二極體(22、24、26)。 Γ7·如申請專利範圍第16項之光電裝置,在該項之範圍内 再參照申請專利範圍第6項,其中,該第一半導體本體 (11)的該第一輻射離去區(FL)比該至少一個另外的半 94167 26 ,200837924 、. • 導體本體(23、25、27)的至少-個另外的韓射離去區 . (FE卜FE2、FE3)至少大四倍。 、18.如申請專利範圍第12幻7項中任一項之光電裝置,在 ,項之範圍内再參照申請專利範圍第1〇項,其中,該 第-電源(PL)比被供應到該至少—個另外的設定發^ 極體(22、24、26)之另外的電源(pE1、pE2、pE3)至 少大四倍。 ·=申明專利辈巳圍第1 8項之光電裝置,其中,提供該至 J 一個另外的設定發光二極體(22、24、26)之該至少一 個另外的發射光譜(EE1、EE2、EE3),且設定該至少一 個另外的電源〇^、叩2、卯3),因而使該光電裝置(1) 之色座〜標在可預先決定的間隔中。 申明專利範圍第1至19項中任一項之光電裝置,復 包括至少一個另外的功率發光二極體(12),該至少一個 另外的功率發光二極體(12)可發射具有至少一個另外 ♦的發射光譜(叫之至少一個另外的輻射(sli)。 I如中,專利_第項中任―項之光電裝置,復 —_光此5衣置(5),用以混合該第一輻射(81〇及該第 —輪射(SE) 〇 22.如申請專利範圍第!至21項中任一項之光電裝置,復 包括至少-個磷光質⑻,用以設定該光電裝置⑴的總 輪射(SO)之發射光譜(E0)。 23·—種操作光電裝置之方法,包括: 利用功率發光二極體no)發射具有第一發射光譜 27 200837924 ^ (EL)之第一輻射(SL);以及 利用設定發光二極體(20)發射具有第二發射光譜 (EE)之第二輻射(SE),而細微地設定該光電裝置(1)的 ’ 總輻射(S0)之發射光譜(E0)。 24.如申請專利範圍第23項之方法,其中,第一電源(PL) 被供應到該功率發光二極體(10),第二電源(PE)被供應 到該設定發光二極體(20),且該第一電源(PL)的值是該 第二電源(PE)的值之至少四倍。 28 9416710. The photovoltaic device according to any one of claims ninth to 9th, wherein the first power source is supplied to the power illuminating diode (10) (the PL ratio is supplied to the set light emitting diode) (20) The second power source (PE) J is four times smaller. ^ ^ " 11. The photovoltaic device of claim 10, wherein the setting is set such that the total radiation of the photovoltaic device (1) The seatpost is in a predetermined interval. Bar pressure. Heart is in the 12th of the patent application range 1 to 11 丄 丄 任 任 任 任 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 A light-emitting diode (22, 24, 26) is provided, which at least one further set light-emitting diode (22, 24, 26) can emit light with at least one additional emission spectrum (EE1, EE2, EE3) At least one additional radiation (SE1, SE2, SE3), such that the total radiation (so) of the optoelectronic device (1) comprises the at least one additional radiation (SE1, SE2, SE3) 〇 13 l 2 photoelectric devices, wherein the at least one additional emission light (EE1, EE2, EE3) is different from the first emission spectrum (EL) and the second emission spectrum (EE). 光电 is also the photoelectric device of claim 12 or 13 in which the The at least one further set of light-emitting diodes (22, 24, 26) is provided by the emission spectrum of the total radiation (S0) of the optoelectronic device U). The light-emitting device according to any one of claims 12 to 14 Means, wherein the second radiation (SE) of the set light-emitting diode (20) and the at least one additional radiation of the at least one further set light-emitting diode (22, 24, 26) are utilized ( SE1, SE2, SE3) is mixed with the first radiation (SL) of the power illuminating device (10), and the color coordinates of the total radiation (S0) of the photovoltaic device (1) are set in advance. The photovoltaic device of any one of claims 12 to 15, wherein the at least one additional semiconductor body (23, 25, 27) comprises the at least one additional set light-emitting diode (22) , 24, 26). Γ 7 · If the photoelectric device of claim 16 is applied, Referring again to the scope of the item, reference is made to item 6 of the patent application, wherein the first radiation leaving region (FL) of the first semiconductor body (11) is more than the at least one other half 94167 26 , 200837924 , . At least one additional Korean departure zone of the body (23, 25, 27). (FE BU FE2, FE3) is at least four times larger. 18. The photoelectricity of any one of the 12th and 7th claims of the patent application scope The device, in the scope of the item, refers to the first aspect of the patent application, wherein the first power source (PL) ratio is supplied to the at least one other set of body (22, 24, 26) The other power supplies (pE1, pE2, pE3) are at least four times larger. · = a photovoltaic device of claim 18, wherein the at least one additional emission spectrum (EE1, EE2, EE3) of the additional set of light-emitting diodes (22, 24, 26) is provided. And setting the at least one additional power source 〇^, 叩2, 卯3), thereby causing the color seat of the photovoltaic device (1) to be marked in a predetermined interval. The optoelectronic device of any one of claims 1 to 19, further comprising at least one additional power LED (12), the at least one further power LED (12) being emitable having at least one additional ♦ The emission spectrum (called at least one additional radiation (sli). I, in the patent, the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Radiation (81 〇 and the first-ray (SE) 〇 22. The photovoltaic device according to any one of claim 21, comprising at least one phosphor (8) for setting the photovoltaic device (1) Total emission (SO) emission spectrum (E0). 23 - A method of operating an optoelectronic device comprising: emitting a first radiation having a first emission spectrum 27 200837924 ^ (EL) using a power LED (no) SL); and using the set light-emitting diode (20) to emit a second radiation (SE) having a second emission spectrum (EE), and finely setting the emission spectrum of the total radiation (S0) of the photovoltaic device (1) (E0) 24. The method of claim 23, wherein a first power source (PL) is supplied to the power LED (10), and a second power source (PE) is supplied to the set LED (20), and the value of the first power source (PL) is At least four times the value of the second power source (PE). 28 94167
TW096149654A 2006-12-29 2007-12-24 Optoelectronic device and method for operating an optoelectronic device TWI396272B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006061941A DE102006061941A1 (en) 2006-12-29 2006-12-29 Optoelectronic arrangement, has power light emitting diode, where radiation is emitted from power light emitting diode, and adjusting light emitting diode, where another radiation is emitted from adjusting light emitting diode

Publications (2)

Publication Number Publication Date
TW200837924A true TW200837924A (en) 2008-09-16
TWI396272B TWI396272B (en) 2013-05-11

Family

ID=39312968

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096149654A TWI396272B (en) 2006-12-29 2007-12-24 Optoelectronic device and method for operating an optoelectronic device

Country Status (6)

Country Link
EP (1) EP2054937A1 (en)
KR (1) KR20090099000A (en)
CN (1) CN101573793A (en)
DE (1) DE102006061941A1 (en)
TW (1) TWI396272B (en)
WO (1) WO2008080383A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8742448B2 (en) 2009-04-02 2014-06-03 Osram Opto Semiconductors Gmbh Optoelectronic component

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100924912B1 (en) 2008-07-29 2009-11-03 서울반도체 주식회사 Warm white light emitting apparatus and back light module comprising the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5381309A (en) * 1993-09-30 1995-01-10 Honeywell Inc. Backlit display with enhanced viewing properties
US5861990A (en) 1996-03-08 1999-01-19 Kaiser Optical Systems Combined optical diffuser and light concentrator
US6577073B2 (en) * 2000-05-31 2003-06-10 Matsushita Electric Industrial Co., Ltd. Led lamp
JP3940596B2 (en) * 2001-05-24 2007-07-04 松下電器産業株式会社 Illumination light source
US7055987B2 (en) * 2001-09-13 2006-06-06 Lucea Ag LED-luminous panel and carrier plate
US7005679B2 (en) * 2003-05-01 2006-02-28 Cree, Inc. Multiple component solid state white light
US20070001177A1 (en) * 2003-05-08 2007-01-04 Koninklijke Philips Electronics N.V. Integrated light-emitting diode system
DE10347463A1 (en) * 2003-10-02 2005-04-21 Pintsch Bamag Ag LED signal light for railway vehicles has first (white), second (green), third (yellow) and fourth (red) LEDs that radiate simultaneously in while light mode
JP3983793B2 (en) * 2004-04-19 2007-09-26 松下電器産業株式会社 Manufacturing method of LED illumination light source and LED illumination light source
TWI228841B (en) * 2004-04-29 2005-03-01 Lite On Technology Corp Luminescence method and apparatus for color temperature adjustable white light
KR100658700B1 (en) * 2004-05-13 2006-12-15 서울옵토디바이스주식회사 Light emitting device with RGB diodes and phosphor converter
JP2008504698A (en) 2004-06-30 2008-02-14 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング LIGHT EMITTING DIODE DEVICE, OPTICAL RECORDING DEVICE, AND METHOD FOR OPERATING AT LEAST ONE LIGHT EMITTING DIODE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8742448B2 (en) 2009-04-02 2014-06-03 Osram Opto Semiconductors Gmbh Optoelectronic component

Also Published As

Publication number Publication date
KR20090099000A (en) 2009-09-18
TWI396272B (en) 2013-05-11
DE102006061941A1 (en) 2008-07-03
EP2054937A1 (en) 2009-05-06
CN101573793A (en) 2009-11-04
WO2008080383A1 (en) 2008-07-10

Similar Documents

Publication Publication Date Title
JP5203597B2 (en) Encapsulated laminate film containing phosphor covering LED
US9012926B2 (en) Radiation-emitting semiconductor component
CN105051899B (en) Transistor chip is engaged to LED wafer to form active light-emitting diode (LED) module
TWI375336B (en) Radiation emitting device with a conversion element
US8598608B2 (en) Light emitting device
TW200952153A (en) Solid state lighting component
TW201106460A (en) White light-emitting diode packages with tunable color temperature
JP5443959B2 (en) Lighting device
TW201025557A (en) Array layout for color mixing
TW201218358A (en) Modulating method for CCT and LED light module and package structure thereof
TW200807759A (en) Submounts for semiconductor light emitting device packages and semiconductor light emitting device packages including the same
TW200830589A (en) Coating process
JP6782231B2 (en) Light source with adjustable emission spectrum
JP2011211189A (en) Photonic device for generating white light or color light
TW201806191A (en) Display device
JP2006093671A (en) Method and device for mixing multiple light sources
CN104718470B (en) Launch the device of radiation
US20080121902A1 (en) Small footprint high power light emitting package with plurality of light emitting diode chips
TW200837924A (en) Optoelectronic device and method for operating an optoelectronic device
TWM253059U (en) Full-color light emitting diode formed by overlapping three primary colors
US10651356B2 (en) Light-emitting component
US8273588B2 (en) Method for producing a luminous device and luminous device
EP1835537A1 (en) Light emission device and adjustment process for its chromaticity
JP2008311670A (en) White light emitting diode
TWI272733B (en) Mixed light LED device, and manufacturing method thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees