JP2008311670A - White light emitting diode - Google Patents

White light emitting diode Download PDF

Info

Publication number
JP2008311670A
JP2008311670A JP2008187420A JP2008187420A JP2008311670A JP 2008311670 A JP2008311670 A JP 2008311670A JP 2008187420 A JP2008187420 A JP 2008187420A JP 2008187420 A JP2008187420 A JP 2008187420A JP 2008311670 A JP2008311670 A JP 2008311670A
Authority
JP
Japan
Prior art keywords
light
white light
emitting diode
light emitting
phosphors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008187420A
Other languages
Japanese (ja)
Inventor
Kengen O
健 源 王
Nyoki Ryu
如 熹 劉
Ryosho Ki
喨 勝 紀
Kogen So
宏 元 蘇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lite On Technology Corp
Original Assignee
Lite On Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lite On Technology Corp filed Critical Lite On Technology Corp
Priority to JP2008187420A priority Critical patent/JP2008311670A/en
Publication of JP2008311670A publication Critical patent/JP2008311670A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a white light emitting diode having improved brightness and greatly improved similarity between a mixed color spectrum of phosphors and an actual sunlight spectrum. <P>SOLUTION: The white light emitting diode uses the phosphors which can be excited by a plurality of types of ultraviolet rays. Part of the phosphors forms a basic structure of the white light spectrum such as three types of red, green and blue light. The other part of the phosphors provides modification colored lights. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は白色光発光ダイオードに関し、特に複数種の蛍光特性の粉末を配合することによって製造される白色光発光ダイオードに関する。   The present invention relates to a white light-emitting diode, and more particularly to a white light-emitting diode manufactured by blending a plurality of types of fluorescent powder.

白色光は複数の顔色の混合合成光であり、人間の目に白色光であると識別される光線には少なくとも2種類以上の波長の混合光線を含んでいる。例えば、人間の眼部が同時に赤、青、緑の光線に刺激される場合に、または同時に青と黄色の光線に刺激される場合にすべて白色光として感じられるので、そのような原理に基づいて白色光を発光するLED光源を製造できる。従来の白色光LEDの製造方法には五種類あり、第一種の方法はAlInGaPとGaPとGaNを材質とする3個のLEDを使用し、それぞれのLEDを通過する電流を制御することによって赤、緑、青の色の光線を発光させる。これらの3個の結晶顆粒子が同一のランプに配置されるため、レンジを介してそれらの発光する光線を混合して白色光を発光させることができる。第二種の方法はGaNとAlInGaPを材質とする2個のLEDを使用し、これらのLEDを通過する電流を制御することによって青と黄緑の色の光線を発光させることにより白色光を生成するものである。目前では、これらの二種類の方法は発光効率が20 lm/Wに達することができる。第三種の方法は1996年に日本の日亜化学会社(Nichia Chemical)が開発された、窒化インジウムガリウム青色光発光ダイオードに黄色光を発光するイットリウムアルミニウムガーネット型蛍光粉を合わせることによって白色光光源を製造する方法である。この方法の発光効率は目前の場合では(15 lm/W以上に達することできる)前記に種類の方法よりやや低いが、単に1セットのチップを要しないため、製造コストを大幅に低減でき、また、合わせて使用される蛍光粉の調製技術も既に完璧であるので、目前では既に商品が提出されている。第四種の白色光を生成できる方法は二本の住友電工(Sumitomo Electric Industries,Ltd)が1999年1月に開発された、ZnSe材料を使用する白色光LEDであり、その技術はまずZnSeシングルチップ基板にCdZnSe薄膜を形成し、通電後に薄膜が青色光を発光すると共に、一部の青色光が基板に照射して黄色光を発光し、最後にそれらの青色光と黄色光とを相互に相補させて白色光を発光するものである。この方法の場合でも1個のLED結晶顆粒子しか採用しないので、その操作電圧が単に2.7Vで、InGaNのLEDの3.5Vより低くなり、且つ蛍光物質をなくても白色光を取得できる。第五種の白色光を生成するための方法として現在では開発中の紫外線白色光LEDのことであり、つまり本発明の分野の方法であり、その原理は紫外線LEDによって三種類の蛍光粉を励起して蛍光を生じさせ、混色によって白色光を生成するものであり、その分野の従来の方法は下記の通りである。   White light is a mixed combined light of a plurality of facial colors, and a light beam identified as white light by the human eye includes a mixed light beam having at least two types of wavelengths. For example, if the human eye is stimulated by red, blue and green rays at the same time, or if it is stimulated by blue and yellow rays at the same time, it will all feel as white light, so based on such principles An LED light source that emits white light can be manufactured. There are five types of conventional white light LED manufacturing methods. The first type of method uses three LEDs made of AlInGaP, GaP, and GaN, and controls the current passing through each LED. , Emit light of green and blue colors. Since these three crystal granules are disposed in the same lamp, white light can be emitted by mixing the light beams emitted through the range. The second type uses two LEDs made of GaN and AlInGaP, and generates white light by emitting blue and yellow-green light by controlling the current passing through these LEDs. To do. At present, these two methods can reach a luminous efficiency of 20 lm / W. The third type is a white light source that was developed by Nichia Chemical Company in Japan in 1996 by combining an indium gallium nitride blue light emitting diode with a yttrium aluminum garnet fluorescent powder that emits yellow light. It is a method of manufacturing. The luminous efficiency of this method is slightly lower than the above-mentioned methods in the present case (which can reach 15 lm / W or more), but it does not require a single set of chips, so the manufacturing cost can be greatly reduced, Since the preparation technology of the fluorescent powder used together is already perfect, products have already been submitted. A fourth type of white light can be generated by a white light LED using ZnSe material, which was developed in January 1999 by two Sumitomo Electric Industries, Ltd. A CdZnSe thin film is formed on a chip substrate, and the thin film emits blue light after energization. A part of the blue light irradiates the substrate to emit yellow light. Finally, the blue light and yellow light are mutually transmitted. It complements and emits white light. Even in this method, since only one LED crystal granule is employed, the operating voltage is simply 2.7 V, which is lower than 3.5 V of InGaN LED, and white light can be obtained even without a fluorescent material. . It is an ultraviolet white light LED that is currently under development as a method for generating the fifth type of white light, that is, a method in the field of the present invention, and its principle is to excite three types of fluorescent powder by the ultraviolet LED. Thus, fluorescence is generated and white light is generated by color mixture. Conventional methods in the field are as follows.

1.組成がY:Eu型の蛍光粉、例えば(Y1.9Eu0.1)Oを合成し、当該合成方法として固体反応法や化学合成法、例えばクエン酸塩ゲル法や共沈殿法やマイクロコロイド法などを採用できる。 1. A fluorescent powder having a composition of Y 2 O 3 : Eu, such as (Y 1.9 Eu 0.1 ) O 3, is synthesized. As the synthesis method, a solid reaction method or a chemical synthesis method such as a citrate gel method or A precipitation method or a microcolloid method can be employed.

2.組成がSrAl:Eu型蛍光粉、例えば(Sr0.96Eu0.04)Alを合成取得し、その合成方法として固体反応法や化学合成法、例えばクエン酸塩ゲル法や共沈殿法やマイクロコロイド法などを採用できる。 2. SrAl 2 O 4 : Eu type fluorescent powder such as (Sr 0.96 Eu 0.04 ) Al 2 O 4 is synthesized and obtained as a synthesis method, such as a solid reaction method or a chemical synthesis method such as a citrate gel method. Or a coprecipitation method or a microcolloid method can be employed.

3.組成がBaMgAl1017:Eu型蛍光粉、例えば(Ba0.9Eu0.1)MgAl1017を合成取得し、その合成方法として固体反応法や化学合成法、例えばクエン酸塩ゲル法や共沈殿法やマイクロコロイド法などを採用できる。 3. BaMgAl 10 O 17 : Eu type fluorescent powder such as (Ba 0.9 Eu 0.1 ) MgAl 10 O 17 is synthesized and obtained as a synthesis method, such as a solid reaction method or a chemical synthesis method such as a citrate gel method. Or a coprecipitation method or a microcolloid method can be employed.

4.前記三種類の蛍光粉同士を所定の比例によって調製し、且つ波長が396nmの紫外線を励起源としてその発射スペクトルを検出し、図1に示すようである。その発射スペクトルのデータを1931年に国際照明委員会(Commission Internationale de 1’ Eclairage,CIE)の制定する色度座標図(Chromaticity diagram)のフォーミュラによって当該蛍光体の代表する色度座標に換算し、且つA点にて図3に標記する。   4). The three types of fluorescent powders are prepared in a predetermined proportion and the emission spectrum is detected using ultraviolet light having a wavelength of 396 nm as an excitation source, as shown in FIG. The emission spectrum data is converted into a chromaticity coordinate representative of the phosphor by a formula of a chromaticity coordinate diagram established by the International Commission on Illumination (Commission Internationale de 1 'Eclairage, CIE) in 1931. And it is marked in FIG.

前記の説明から分かるように、目前では紫外線発光ダイオードによって白色光LEDを製造する方法は主に紫外線によって赤、緑、青の三原色の蛍光体を励起し、且つ蛍光体を適当な比例に調製し、それからその色光を混色することによって白色光を取得するものである。   As can be seen from the above description, the method of manufacturing a white light LED by using an ultraviolet light emitting diode is to excite phosphors of the three primary colors of red, green and blue mainly by ultraviolet rays, and to prepare the phosphors in an appropriate proportion. Then, white light is obtained by mixing the colored light.

しかしながら、このようなそれぞれの原色蛍光体のスペクトル構成を組み合わせることによって生成される白色光の場合では、個別の蛍光粉が所定のスペクトル構成を有することによる影響を受けるため、その組成される白色光のスペクトルの波長の分布と連続性が真実の太陽光に及ばないため、白色光に色彩が不均一になることや飽和度が低いことなどの欠点を有する。人間の眼部がこれらの現象を略すことができ、白色光しか見えないが、精密さが高い光学検出器の検出によって例えばビデオやカメラなどによって検出する場合、その演色性が実質では依然として低いと見なされ、即ち、物体の色彩を還元する場合に誤差を生じることがあるので、この種の方式によって生成される白色光光源が単に一般の照明用の用途にしか適さなくなってしまう。   However, in the case of white light generated by combining the spectrum configurations of the respective primary color phosphors, since the individual fluorescent powder is affected by having a predetermined spectrum configuration, the white light composed thereof Since the distribution and continuity of the wavelength of this spectrum do not reach true sunlight, it has disadvantages such as non-uniform color for white light and low saturation. The human eye can abbreviate these phenomena and only white light can be seen, but when it is detected by an optical detector with high precision, for example, by video or camera, its color rendering is still low. Considered, i.e., errors may occur when reducing the color of an object, so that a white light source produced by this type of scheme is only suitable for general lighting applications.

本発明の主要な目的は新しい白色光発光ダイオードを提案することにあり、当該白色光発光ダイオードの製造方法の特徴は複数種の紫外線によって励起できる蛍光体を利用し、それらの中の一部の蛍光体によって赤、緑、青などの三種類の白色光のスペクトルの基本構成を形成し、他の部分の蛍光体によって修飾用色光を提供すると共に、その明るさを向上し、蛍光体同士の混色スペクトルと実際の太陽光のスペクトルとの間の相似程度を大幅に向上する。そのため、本発明は複数種の蛍光粉の補強及び修飾技術によって取得する白色光発光ダイオードに高度の明るさと高度の演色性を有させることができる優れた点を有する。   The main object of the present invention is to propose a new white light emitting diode, and the white light emitting diode manufacturing method uses phosphors that can be excited by a plurality of types of ultraviolet light, and some of them are used. The phosphor forms the basic structure of the spectrum of three types of white light, such as red, green, and blue, and the other portion of the phosphor provides color light for modification, improves its brightness, The degree of similarity between the color mixture spectrum and the actual sunlight spectrum is greatly improved. Therefore, the present invention has an excellent point that white light-emitting diodes obtained by a technique for reinforcing and modifying a plurality of types of fluorescent powders can have high brightness and high color rendering properties.

本発明の他の目的は変色発光可能な発光ダイオードを提供することにある。目前では、光色を変更できる発光ダイオードを取得するための方法として複数個の単色発光ダイオード同士を組み合わせると共に、電気回路によってその発光順番を制御し、またはそれぞれ異なる顔色の光線ろ過片または帽子カバーなどによって光色を変換している。しかしながら、このような方法の場合では、製造コストが高くて利便性を有さず、そのため、新しい実行可能な方法を開発する必要がある。例えば前記のような複数種の蛍光粉同士の補強及び修飾の技術を採用し、そのうちの全部または一部の粉末体に同時に蛍光または燐光の特性を有させ、紫外線による励起の停止後に、前記粉末体が時間の経過に従ってその光色を変更する効果を取得し、即ち、本発明の方法による場合、変色可能な発光ダイオードを製造できる。また、前記粉末対同士の組成比例を変更させることによって異なる変色順番を有する発光ダイオードを提供できる。   Another object of the present invention is to provide a light emitting diode capable of changing color emission. At present, as a method for obtaining a light-emitting diode capable of changing the light color, a plurality of single-color light-emitting diodes are combined with each other, the light emission order is controlled by an electric circuit, or a light-filtering piece or a hat cover having a different facial color. The light color is converted by. However, in the case of such a method, the manufacturing cost is high and it is not convenient, so it is necessary to develop a new feasible method. For example, a technique for reinforcing and modifying a plurality of kinds of fluorescent powders as described above is adopted, and all or some of the powder bodies have fluorescent or phosphorescent properties at the same time. The body obtains the effect of changing its light color over time, i.e., according to the method of the present invention, a light-emitting diode capable of changing color can be produced. Moreover, the light emitting diode which has a different color change order can be provided by changing the composition proportion of the powder pairs.

従来技術と比べる場合、本発明の方法はかなり簡単で、コストが低く、産業上の利用価値に富む。   Compared with the prior art, the method of the present invention is considerably simpler, lower in cost and rich in industrial utility.

以下に添付図面を参照しながら本発明の特徴と技術内容を詳細に説明するが、それらの説明は単に本発明の好適な実施の形態の一部に過ぎず、本発明の範囲を狭義的に定義するものではない。   The features and technical contents of the present invention will be described in detail below with reference to the accompanying drawings, but these descriptions are merely a part of preferred embodiments of the present invention, and the scope of the present invention is narrowly defined. It is not defined.

本発明は発光ダイオードに応用される、複数種の蛍光特性を有する粉末体を利用して白色光発光ダイオードを製造する方法およびその白色光発光ダイオードに係わる。当該方法は、紫外線を発光可能な発光ダイオードや電子ビームやプラズマなどを励起光源とし、三種類の蛍光粉同士を励起してそれぞれ波長が585nm−640nmの赤色光と500nm−570nmの緑色光と430nm−490nmの青色光を発光させる。同時に、これらの3つの波長の蛍光の特性、例えば発光強度や色彩飽和度などに鑑みて、他の一種以上の蛍光粉の蛍光特性によって補強や修飾を実行し、これらの4つ以上の波長を備える蛍光を混色してから白色光を生成するようになる。従来の単に赤、緑、青の三原色の蛍光体を使用する方法より、本発明の蛍光補強と修飾の技術によって得られる白色光には高明るさと高演色性を有する優れた点を有する。   The present invention relates to a method of manufacturing a white light-emitting diode using a powder body having a plurality of types of fluorescent characteristics, applied to the light-emitting diode, and the white light-emitting diode. In this method, a light emitting diode capable of emitting ultraviolet light, an electron beam, plasma, or the like is used as an excitation light source, and three types of fluorescent powders are excited with each other to emit red light having a wavelength of 585 nm to 640 nm, green light having a wavelength of 500 nm to 570 nm, and 430 nm. Emits blue light of -490 nm. At the same time, in view of the fluorescence characteristics of these three wavelengths, such as emission intensity and color saturation, reinforcement or modification is performed by the fluorescence characteristics of one or more other fluorescent powders, and these four or more wavelengths are changed. The white light is generated after mixing the fluorescence provided. The white light obtained by the fluorescent reinforcement and modification technique of the present invention has an excellent point of high brightness and high color rendering than the conventional method of simply using phosphors of the three primary colors of red, green and blue.

本発明の白色光発光ダイオードの所要する合成用及び調製用の蛍光粉の実施の形態の1つとして(本発明の方法の1つで、スペクトル構成を修飾後に得られる白色光のスペクトルを示す方法)下記のような方法を挙げられる。   As one embodiment of the required fluorescent powder for synthesis and preparation of the white light emitting diode of the present invention (in one of the methods of the present invention, a method of showing the spectrum of white light obtained after modifying the spectrum structure) ) The following methods are mentioned.

1.組成がY:Eu型の蛍光粉、例えば(Y1.9Eu0.1)Oを合成し、当該合成方法として固体反応法や化学合成法、例えばクエン酸塩ゲル法や共沈殿法やマイクロコロイド法などを採用できる。 1. A fluorescent powder having a composition of Y 2 O 3 : Eu, such as (Y 1.9 Eu 0.1 ) O 3, is synthesized. As the synthesis method, a solid reaction method or a chemical synthesis method such as a citrate gel method or A precipitation method or a microcolloid method can be employed.

2.組成がSrAl:Eu型蛍光粉、例えば(Sr0.96Eu0.04)Alを合成取得し、その合成方法として固体反応法や化学合成法、例えばクエン酸塩ゲル法や共沈殿法やマイクロコロイド法などを採用できる。 2. SrAl 2 O 4 : Eu type fluorescent powder such as (Sr 0.96 Eu 0.04 ) Al 2 O 4 is synthesized and obtained as a synthesis method, such as a solid reaction method or a chemical synthesis method such as a citrate gel method. Or a coprecipitation method or a microcolloid method can be employed.

3.組成がBaMgAl1017:Eu型蛍光粉、例えば(Ba0.9Eu0.1)MgAl1017を合成取得し、その合成方法として固体反応法や化学合成法、例えばクエン酸塩ゲル法や共沈殿法やマイクロコロイド法などを採用できる。 3. BaMgAl 10 O 17 : Eu type fluorescent powder such as (Ba 0.9 Eu 0.1 ) MgAl 10 O 17 is synthesized and obtained as a synthesis method, such as a solid reaction method or a chemical synthesis method such as a citrate gel method. Or a coprecipitation method or a microcolloid method can be employed.

4.組成がYAl12:Ce,Gd型蛍光粉、例えば(Y2.3Ce0.05Gd0.65)Al12を合成取得し、その合成方法として固体反応法や化学合成法、例えばクエン酸塩ゲル法や共沈殿法やマイクロコロイド法などを採用できる。 4). The composition is Y 3 Al 5 O 12 : Ce, Gd type fluorescent powder, for example, (Y 2.3 Ce 0.05 Gd 0.65 ) Al 5 O 12 is synthesized and acquired, and as its synthesis method, solid reaction method or chemical synthesis For example, a citrate gel method, a coprecipitation method, or a microcolloid method can be employed.

5.前記四種類の蛍光粉同士を所定の比例によって調製し、且つ波長が396nmの紫外線を励起源としてその発射スペクトルを検出し、図2に示すようである。その発射スペクトルのデータをこの混合蛍光体を代表する色度座標に換算し、且つB点にて図3に標記する。   5. The four types of fluorescent powders are prepared in a predetermined proportion and the emission spectrum is detected using ultraviolet light having a wavelength of 396 nm as an excitation source, as shown in FIG. The data of the emission spectrum is converted into chromaticity coordinates representing this mixed phosphor and is shown in FIG.

また、本発明も一種の変色可能な発光ダイオードの製造方法に関し、燐光特性を有する発光体を前記複数種の蛍光体の中の一種または複数種とし、その光色が時間の経過に従ってそれぞれ異なる顔色の変化を呈させることができる。それらの発光体としてSrAl:Eu,MやCaAl:Eu,MやSrAl1425:Eu,MやYS:Eu,MやZnS:Cu,Mなどを採用でき、そのうち、Mとして遷移金属や希土類元素などを採用できる。 The present invention also relates to a method of manufacturing a kind of light-emitting diode capable of changing color, and a phosphor having phosphorescence characteristics is one or a plurality of phosphors of the plurality of phosphors, and the light colors are different from each other over time. Changes can be exhibited. SrAl 2 O 4 : Eu, M, CaAl 2 O 4 : Eu, M, Sr 4 Al 14 O 25 : Eu, M, Y 2 O 2 S: Eu, M, ZnS: Cu, M, etc. Among them, transition metal, rare earth element, etc. can be adopted as M.

燐光特性を有する粉末体によって製造される変色可能な発光ダイオードの製造実施例の1つに関し、その製造ステップは次の通りである。   Regarding one of the manufacturing examples of a discolorable light emitting diode manufactured by a powder having phosphorescent properties, the manufacturing steps are as follows.

1.組成がY:Eu型の蛍光粉、例えば(Y1.9Eu0.1)Oを合成し、当該合成方法として固体反応法や化学合成法、例えばクエン酸塩ゲル法や共沈殿法やマイクロコロイド法などを採用できる。 1. A fluorescent powder having a composition of Y 2 O 3 : Eu, such as (Y 1.9 Eu 0.1 ) O 3, is synthesized. As the synthesis method, a solid reaction method or a chemical synthesis method such as a citrate gel method or A precipitation method or a microcolloid method can be employed.

2.組成がSrAl:Eu,Dy型蛍光粉、例えば(Sr0.94Eu0.04Dy0.02)Alを合成取得し、その合成方法として固体反応法や化学合成法、例えばクエン酸塩ゲル法や共沈殿法やマイクロコロイド法などを採用できる。 2. The composition is SrAl 2 O 4 : Eu, Dy type fluorescent powder, for example, (Sr 0.94 Eu 0.04 Dy 0.02 ) Al 2 O 4 is synthesized and acquired, and as its synthesis method, solid reaction method or chemical synthesis method, For example, a citrate gel method, a coprecipitation method, a microcolloid method, or the like can be employed.

3.組成がBaMgAl1017:Eu型蛍光粉、例えば(Ba0.9Eu0.1)MgAl1017を合成取得し、その合成方法として固体反応法や化学合成法、例えばクエン酸塩ゲル法や共沈殿法やマイクロコロイド法などを採用できる。 3. BaMgAl 10 O 17 : Eu type fluorescent powder such as (Ba 0.9 Eu 0.1 ) MgAl 10 O 17 is synthesized and obtained as a synthesis method, such as a solid reaction method or a chemical synthesis method such as a citrate gel method. Or a coprecipitation method or a microcolloid method can be employed.

4.組成がYAl12:Ce,Gd型蛍光粉、例えば(Y2.3Ce0.05Gd0.65)Al12を合成取得し、その合成方法として固体反応法や化学合成法、例えばクエン酸塩ゲル法や共沈殿法やマイクロコロイド法などを採用できる。 4). The composition is Y 3 Al 5 O 12 : Ce, Gd type fluorescent powder, for example, (Y 2.3 Ce 0.05 Gd 0.65 ) Al 5 O 12 is synthesized and acquired, and as its synthesis method, solid reaction method or chemical synthesis For example, a citrate gel method, a coprecipitation method, or a microcolloid method can be employed.

5.前記四種類の蛍光粉同士を所定の比例によって調製し、且つ波長が396nmの紫外線を励起源としてその発射スペクトルを検出する。また、前記紫外線励起光源を取り除き、所定の時間の間隔で複数回その発光スペクトルを検出し、これらの発射スペクトルのデータをそれぞれの時間点の色度座標に換算し、且つA点からますますB点へ移行し、且つそれらのことを図4に標記する。   5. The four types of fluorescent powders are prepared in a predetermined proportion, and the emission spectrum is detected using ultraviolet light having a wavelength of 396 nm as an excitation source. In addition, the UV excitation light source is removed, the emission spectrum is detected several times at predetermined time intervals, the data of these emission spectra are converted into the chromaticity coordinates of each time point, and more and more from point A The points go to and are marked in FIG.

下の表に示すように、計算によって得られる従来の方法と本発明の実施の形態の白色光スペクトルを比較する場合、本発明の演色性と色彩温度が従来物よりずっと好ましくなることが分かる。   As shown in the table below, when comparing the white light spectrum of the embodiment of the present invention with the conventional method obtained by calculation, it can be seen that the color rendering properties and the color temperature of the present invention are much more preferable than the conventional one.

Figure 2008311670
本発明の利点は、次の通りである。
Figure 2008311670
The advantages of the present invention are as follows.

1.図3から分かるように、本発明の方法(実施の形態参照)と従来の方法とがすべて色度座標が標準白色光区域に位置する効果を取得でき、例えば従来の方法の(0.3130,0.3245)と実施の形態の(0.3120,0.3285)のようである。そのため、本発明の白色光ダイオードと従来の方法と同様に白色光発光ダイオードを提供できる。   1. As can be seen from FIG. 3, the method of the present invention (see the embodiment) and the conventional method can all obtain the effect that the chromaticity coordinates are located in the standard white light area, for example, (0.3130, 0.3245) and (0.3120, 0.3285) of the embodiment. Therefore, a white light emitting diode can be provided in the same manner as the white light diode of the present invention and the conventional method.

2.表に示すように、従来の方法の場合では、三種類の蛍光粉によって赤、緑、青の三原色より組成される白色光を取得し、その演色性が単に85であり、且つ色彩温度が6524K(絶対温度)である。本発明の実施の形態の場合ではYAl12:Ce,Gd型黄色蛍光粉によってスペクトル構成を修飾し、それで演色性を94に、色彩温度を6550Kになるように向上できる。その主要な原因はスペクトル構成修飾後の白色光スペクトルと真実の太陽光のスペクトルとの分布が近くなるためであり、それによって高演色性を取得し、そのため、本発明の白色光発光ダイオードの場合では演色性が従来の方法よりかなり優れている。 2. As shown in the table, in the case of the conventional method, white light composed of three primary colors of red, green, and blue is obtained by three kinds of fluorescent powders, the color rendering property is simply 85, and the color temperature is 6524K. (Absolute temperature). In the case of the embodiment of the present invention, the spectrum configuration is modified with Y 3 Al 5 O 12 : Ce, Gd type yellow fluorescent powder, so that the color rendering property can be improved to 94 and the color temperature can be improved to 6550K. The main reason is that the distribution of the white light spectrum after modification of the spectral structure and the distribution of the true sunlight spectrum are close, thereby obtaining high color rendering properties. Therefore, in the case of the white light emitting diode of the present invention, Then, the color rendering is much better than the conventional method.

3.本発明の白色光発光ダイオードの場合では、その発光スペクトルが修飾されると、例えば実施の形態におけるYAl12:Ce,Gd型蛍光粉の黄色光またはBaMgAl10O17:Eu,Mn型蛍光粉の青緑色光(蛍光粉においてEu/Mnの比例と発光する青色/緑色の波長の相対的強度と関係があり、そのため、それらも自身の色彩を修飾することと調整制御することの機能を有する)などがすべて緑色光の波長に近くなり、即ち、人間の眼部に対し敏感性を有する区域になり、それらは全体の白色光の強度の向上に作用を有し、そのため、本発明の白色光発光ダイオードの発光効率が従来の方法より優れている。 3. In the case of the white light emitting diode of the present invention, when the emission spectrum is modified, for example, the yellow light of the Y 3 Al 5 O 12 : Ce, Gd type fluorescent powder or the BaMgAl 10 O 17: Eu, Mn type fluorescent powder in the embodiment Of blue / green light (there is a relationship between the ratio of Eu / Mn in fluorescent powder and the relative intensity of the emitted blue / green wavelength, so they also have the functions of modifying and controlling their own color) ) Etc. are all close to the wavelength of green light, that is, areas that are sensitive to the human eye, which have an effect on increasing the intensity of the overall white light, so that the white of the present invention The light emitting efficiency of the light emitting diode is superior to the conventional method.

4.本発明の白色光発光ダイオードの場合では、図4に示すように、混合蛍光粉体における(Sr0.94Eu0.04Dy0.02)Alが緑色の燐光特性を有するので、励起光源を取り除くと、粉末体の光色が白色よりだんだん緑色に変化すると共に、所定の時間を維持できる。同じように、二種類以上の燐光特性を有する粉末体を使用すれば、その生成する光色の変換が多彩多様になる。そのため、本発明の方法に従って所定の比例になるように複数種の粉末体を混合する場合、且つ所定の波長(この例では396nmである)の紫外線発光ダイオードを励起光源として合わせて使用する場合、且つ適当にパッケージングすると、所定の電流を流す場合、混合される粉末体同士が紫外線の照射を受けてから励起を停止すると、随時に光色を変換できる発光ダイオードを入手できる。 4). In the case of the white light emitting diode of the present invention, as shown in FIG. 4, (Sr 0.94 Eu 0.04 Dy 0.02 ) Al 2 O 4 in the mixed fluorescent powder has a green phosphorescence characteristic. When the excitation light source is removed, the light color of the powder body gradually changes from white to green, and a predetermined time can be maintained. Similarly, if a powder body having two or more types of phosphorescence characteristics is used, the conversion of the light color generated becomes diverse. Therefore, when mixing a plurality of types of powder bodies so as to have a predetermined proportion according to the method of the present invention, and when using an ultraviolet light emitting diode of a predetermined wavelength (in this example, 396 nm) as an excitation light source, And when appropriately packaged, when a predetermined current is passed, a light emitting diode capable of converting the light color at any time can be obtained if excitation is stopped after the powder bodies to be mixed are irradiated with ultraviolet rays.

本発明の前記に述べる実施の形態は単に本発明の具体的な実施例に過ぎず、本発明の要旨はそれらのみに狭義的に制限されず、いずれの同時に三種類の主波長が585nm−640nmである赤色光と500nm−570nmである緑色光と430nm−490nmである青色光などの三原色を発光できる蛍光体に他の一種以上の蛍光粉を合わせて白色光スペクトルの補強及び修飾する機能を発揮できる手段によって高明るさと高演色性を取得できる優れる白色光発光ダイオードを取得することを目的として実施される変化や修飾などがすべて本発明の特許主張範囲内に納入されるべきである。本発明も変色可能な発光ダイオードの製造方法に係わり、燐光特性を有する発光体を前記複数種の蛍光体のうちの1つまたはそれ以上の成分とすることによってその光色に時間の経過に従って異なる色彩の変化を生じさせることができる。   The above-described embodiments of the present invention are merely specific examples of the present invention, and the gist of the present invention is not limited to them in a narrow sense, and any of the three main wavelengths is 585 nm to 640 nm at the same time. A phosphor capable of emitting three primary colors, such as red light, 500 nm-570 nm green light, and 430 nm-490 nm blue light, are combined with one or more other fluorescent powders to enhance and modify the white light spectrum. All changes and modifications carried out for the purpose of obtaining an excellent white light emitting diode capable of obtaining high brightness and high color rendering by means capable of being delivered should be delivered within the scope of the patent claim of the present invention. The present invention also relates to a method of manufacturing a light-emitting diode capable of changing color, and a phosphor having phosphorescent characteristics is used as one or more components of the plurality of types of phosphors, so that the light color varies with time. A color change can be produced.

従来のY:Eu,SrAl:Eu,BaMgAl1017:Euなどの三種類の蛍光粉同士によってそれぞれ赤、緑、青の色の蛍光を発光させる場合の白色光スペクトルを示す説明図である。The white light spectrum in the case of emitting fluorescence of red, green, and blue with three kinds of fluorescent powders such as conventional Y 2 O 3 : Eu, SrAl 2 O 4 : Eu, BaMgAl 10 O 17 : Eu, respectively. It is explanatory drawing shown. 本発明のY:Eu,SrAl:Eu,BaMgAl1017:Euなどの三種類の蛍光粉同士によってそれぞれ赤、緑、青の色の蛍光を発光させると共に、YAl12:Ce,Gd蛍光体の発光する黄色蛍光を合わせることによって発光する白色光のスペクトルを示す説明図である。The three kinds of fluorescent powders such as Y 2 O 3 : Eu, SrAl 2 O 4 : Eu, BaMgAl 10 O 17 : Eu of the present invention emit red, green, and blue color fluorescence, respectively, and Y 3 Al 5 O 12: Ce, is an explanatory diagram showing the spectrum of the white light emitted by combining yellow fluorescence emission of Gd phosphor. 図1と図2の発射するベクトルに基づいてそれぞれ計算し得た混合蛍光粉の色度座標AとBを示す説明図である。It is explanatory drawing which shows the chromaticity coordinate A and B of the mixed fluorescent powder which could be calculated based on the vector which FIG. 1 and FIG. 本発明の同時にY:Eu,SrAl:Eu、Dy,BaMgAl1017:Eu、YAl12:Ce,Gd蛍光体を混合して発光される白色光を始発点とし、且つ紫外線励起光源を取り除く場合の光色が時間の経過に従って変化する状況を示す変化図である。Simultaneously with the present invention, Y 2 O 3 : Eu, SrAl 2 O 4 : Eu, Dy, BaMgAl 10 O 17 : Eu, Y 3 Al 5 O 12 : Ce, Gd phosphor is mixed to emit white light first. It is a change figure which shows the condition where the light color at the time of making it a point and removing an ultraviolet excitation light source changes with progress of time.

Claims (3)

紫外光により赤色蛍光体、緑色蛍光体及び青色蛍光体をそれぞれ励起することで発される赤色光、緑色光及び青色光を混合することによって提供される白色発光ダイオードあって、
少なくとも、燐光特性を有する他の蛍光体を含み、
前記他の蛍光体は、時間の経過に伴って異なる色の光を発する、
白色発光ダイオード。
A white light emitting diode provided by mixing red light, green light and blue light emitted by exciting red phosphor, green phosphor and blue phosphor with ultraviolet light, respectively,
Including at least other phosphors having phosphorescent properties,
The other phosphors emit light of different colors over time.
White light emitting diode.
前記他の蛍光体は、紫外光または可視光によって励起される、
請求項1に記載の白色発光ダイオード。
The other phosphor is excited by ultraviolet light or visible light.
The white light emitting diode according to claim 1.
前記他の蛍光体は、SrAl:Eu,Mと、CaAl:Eu,Mと、SrAl1425:Eu,Mと、YS:Eu,Mと、ZnS:Cu,Mと、を含むグループから選択され、そのうち、Mは、遷移金属または希土類元素である、
請求項1に記載の白色発光ダイオード。
The other phosphors include SrAl 2 O 4 : Eu, M, CaAl 2 O 4 : Eu, M, Sr 4 Al 14 O 25 : Eu, M, Y 2 O 2 S: Eu, M, Selected from the group comprising ZnS: Cu, M, wherein M is a transition metal or a rare earth element,
The white light emitting diode according to claim 1.
JP2008187420A 2008-07-18 2008-07-18 White light emitting diode Pending JP2008311670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008187420A JP2008311670A (en) 2008-07-18 2008-07-18 White light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008187420A JP2008311670A (en) 2008-07-18 2008-07-18 White light emitting diode

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002168913A Division JP4219621B2 (en) 2002-06-10 2002-06-10 Manufacturing method of white light emitting diode

Publications (1)

Publication Number Publication Date
JP2008311670A true JP2008311670A (en) 2008-12-25

Family

ID=40238930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008187420A Pending JP2008311670A (en) 2008-07-18 2008-07-18 White light emitting diode

Country Status (1)

Country Link
JP (1) JP2008311670A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102827599A (en) * 2012-08-20 2012-12-19 太原理工大学 Preparation method of red-green-blue blended white light phosphor
RU2541425C2 (en) * 2010-11-09 2015-02-10 Сычуань Санфор Лайт Ко., Лтд Ac white light-emitting diode device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10188649A (en) * 1996-12-24 1998-07-21 Kasei Optonix Co Ltd Luminous light emission element
JP2000031530A (en) * 1998-07-14 2000-01-28 Toshiba Electronic Engineering Corp Semiconductor light emitter and its manufacture
JP2000164935A (en) * 1998-11-26 2000-06-16 Sharp Corp Light emitting diode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10188649A (en) * 1996-12-24 1998-07-21 Kasei Optonix Co Ltd Luminous light emission element
JP2000031530A (en) * 1998-07-14 2000-01-28 Toshiba Electronic Engineering Corp Semiconductor light emitter and its manufacture
JP2000164935A (en) * 1998-11-26 2000-06-16 Sharp Corp Light emitting diode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2541425C2 (en) * 2010-11-09 2015-02-10 Сычуань Санфор Лайт Ко., Лтд Ac white light-emitting diode device
CN102827599A (en) * 2012-08-20 2012-12-19 太原理工大学 Preparation method of red-green-blue blended white light phosphor

Similar Documents

Publication Publication Date Title
JP6363061B2 (en) White light emitting module
US7781953B2 (en) Light-emitting device with open-loop control and manufacturing method thereof
TWI355097B (en) Wavelength converting system
CN108350354B (en) Improved white lighting device for retail lighting
US20050093422A1 (en) White light-emitting device
US6805600B2 (en) Method of manufacturing white light source
US20050242360A1 (en) White light apparatus with adjustable color temperature and method of producing white light thereof
JP2003147351A (en) Manufacturing method of white light source
JP2009054633A (en) Led lighting equipment
US7507353B2 (en) Red phosphor for white light emitting diodes
KR100902988B1 (en) Method for manufacturing white light emitting diode
JP2005079500A (en) White light emitting device
US7059927B2 (en) Method for manufacturing white light source
TWI412784B (en) A modulating method for cct and a led light module with variable cct
CN114806578A (en) Oxyfluoride phosphor composition and lighting device thereof
CN100385690C (en) White light illuminating method and apparatus capable of regulating colour temp.
US7229332B2 (en) Method for manufacturing white light source
CN1303702C (en) A making process for white light light-emitting diode
JP2004182969A (en) Fluorescent powder composition and method for fabricating high brightness white light emitting diode by using the same
US20070034834A1 (en) Compound, phosphor composition and light-emitting device containing the same
JP4219621B2 (en) Manufacturing method of white light emitting diode
JP2008311670A (en) White light emitting diode
CN107339667A (en) A kind of light source module group and the lighting device including the light source module group
WO2017033288A1 (en) Light-emitting device
JP2009096986A (en) New phosphor and fabrication of the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110830