TWI412784B - A modulating method for cct and a led light module with variable cct - Google Patents

A modulating method for cct and a led light module with variable cct Download PDF

Info

Publication number
TWI412784B
TWI412784B TW98128432A TW98128432A TWI412784B TW I412784 B TWI412784 B TW I412784B TW 98128432 A TW98128432 A TW 98128432A TW 98128432 A TW98128432 A TW 98128432A TW I412784 B TWI412784 B TW I412784B
Authority
TW
Taiwan
Prior art keywords
light
white
wide
generate
blue
Prior art date
Application number
TW98128432A
Other languages
Chinese (zh)
Other versions
TW201107917A (en
Inventor
Chia Tai Kuo
chao wei Li
Hung Lieh Hu
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW98128432A priority Critical patent/TWI412784B/en
Publication of TW201107917A publication Critical patent/TW201107917A/en
Application granted granted Critical
Publication of TWI412784B publication Critical patent/TWI412784B/en

Links

Landscapes

  • Led Device Packages (AREA)

Abstract

A modulating method for CCT and a LED light module with variable CCT are adapted to produce a mixed light with predetermined color coordinate (CC) or predetermined color rendering index (CRI). The LED light module includes a first broad-spectrum LED, a second broad-spectrum LED and a controller. The first and second broad-spectrum LEDs are modulated by the controller to emit a first and second broad-spectrum monochromatic lights, respectively. The FWHM of the first and the second monochromatic lights are greater than 20. The CC of the first light is different from that of the second light. The first light is mixed with the second light to product the mixed light. Accordingly, the CC of the mixed light falls on the line connecting CC of the first light with CC of the second light.

Description

LED光源裝置及其出光方法 LED light source device and light emitting method thereof

本發明係關於一種發光二極體光源模組,特別是一種光色可變之LED光源裝置及光色調制方法。 The invention relates to a light emitting diode light source module, in particular to a light color variable LED light source device and a light color modulation method.

發光二極體(Light Emitting Diode,LED)是由半導體材料所製成之發光元件,其具有體積小、壽命長、低驅動電壓、耗電量低、耐震性佳等優點。目前LED已廣泛應用於指示燈、照明與背光源(backlight)等領域。 Light Emitting Diode (LED) is a light-emitting element made of a semiconductor material, which has the advantages of small volume, long life, low driving voltage, low power consumption, and good shock resistance. LEDs have been widely used in the fields of indicator lights, lighting and backlights.

一般照明用的光大都為白光,而由於單一LED晶片的發光頻譜窄,且本身無法發出白光,因而需要藉由一些技巧來達到產生白光的目的。目前常見產生白光的方法有二種。一種為利用藍光LED產生的藍光激發螢光粉而產生黃光,此產生的黃光與藍光混合後以形成白光;第二種是同時使用紅光LED、綠光LED及藍光LED來混合成白光。 Generally, the light used for illumination is mostly white light, and since a single LED chip has a narrow spectrum of light emission and cannot emit white light by itself, it is necessary to use some techniques to achieve the purpose of generating white light. There are two common methods for producing white light. A yellow light is generated by using blue light generated by a blue LED to generate yellow light, and the generated yellow light is mixed with blue light to form white light; the second is to use a red light LED, a green light LED and a blue light LED to be mixed into white light. .

不同光色的光,有不同的色溫度(Color Temperature,以下簡稱色溫),例如當光源色溫在3000 K以下時,光色開始有偏紅的現象,給人溫暖的感覺;色溫超過5000 K時,顏色則偏向藍光,給人清冷的感覺。因此光源色溫的高低變化將影響室內的氣氛。為了能讓使用者可以調控室內照明的色溫,習知的LED光色可調模組多半使用由紅光LED、綠光LED及藍光LED來混光得到光色可變之LED模組。由於單色光LED的發光頻譜普遍不寬,屬於窄頻譜光源,因此混光出來的白光色頻譜大多連續性不佳,進而使得其演色性(color rendering index,CRI)不佳。對照明領域的應用而言,其所需白光的品質要求較高,需要較連續的光譜(例如:白光需要高演色性)。而使用習知的紅光LED、綠光LED及藍光LED來調變光色的方法,無法得到頻譜較連續的光譜(意即具高演色性的白光)。 Light of different light colors has different color temperatures (Color Temperature, hereinafter referred to as color temperature). For example, when the color temperature of the light source is below 3000 K, the light color begins to be reddish, giving a warm feeling; when the color temperature exceeds 5000 K The color is biased towards blue light, giving a cold feeling. Therefore, the change in the color temperature of the light source will affect the indoor atmosphere. In order to allow the user to control the color temperature of the indoor lighting, the conventional LED light color adjustable module mostly uses a red light LED, a green light LED and a blue light LED to mix light to obtain a light color variable LED module. Since the light-emitting spectrum of monochromatic LEDs is generally not wide and belongs to a narrow-spectrum light source, the white-light spectrum of the mixed light is mostly poor in continuity, which in turn makes its color rendering index (CRI) poor. For applications in the field of lighting, the quality of white light required is higher and requires a more continuous spectrum (for example, white light requires high color rendering). The use of conventional red LEDs, green LEDs, and blue LEDs to modulate the color of light does not result in a spectrum with a relatively continuous spectrum (ie, white light with high color rendering).

本發明提供一種光色調制方法及光色可變之發光二極體光源模組,以藉由該調制方法而產生光頻譜較為連續的光線,並得到高演色性的白光。 The invention provides a light color modulation method and a light color variable light emitting diode light source module, wherein the light modulation method generates a relatively continuous light spectrum and obtains a high color rendering white light.

本文以下所謂「一個以上」、「二個以上」、「三個以上」、「至少一」乃具連本數計算;「多個」不包含一個。 In the following, "one or more", "two or more", "three or more" and "at least one" are calculated in the same number; "multiple" does not include one.

依據本發明之光色調制方法,其包含調變多個具高演色性的白光發光二極體(LED)以產生至少第一白光與第二白光、其後再混合第一白光與第二白光,此第一白光與第二白光的色座標相異,且第一白光與第二白光之演色性大於或等於85,較佳狀態可令至少一白光之演色性為大於或等於90,最佳狀況可令至少一白光之演色性大於95。 A light color modulation method according to the present invention, comprising: modulating a plurality of white light emitting diodes (LEDs) having high color rendering to generate at least a first white light and a second white light, and then mixing the first white light and the second white light The color coordinates of the first white light and the second white light are different, and the color rendering properties of the first white light and the second white light are greater than or equal to 85. Preferably, the color rendering property of at least one white light is greater than or equal to 90, and the best The condition can cause at least one white light to have a color rendering greater than 95.

前述產生第一白光與第二白光之步驟係為激發藍光LED晶片以產生藍光,續使藍光通過一螢光層以分別產生一綠光與一紅光,再將藍光、紅光與綠光混合後產生前述第一白光或第二白光。 The step of generating the first white light and the second white light is to excite the blue LED chip to generate blue light, and continue to pass the blue light through a phosphor layer to respectively generate a green light and a red light, and then mix the blue light, the red light and the green light. The aforementioned first white light or second white light is then generated.

前述使藍光通過螢光層之步驟亦可更改為使藍光通過螢光層以分別產生黃光與紅光,續將黃光、紅光與藍光混合以產生第一白光或第二白光。此外,亦可使藍光通過螢光層以分別產生綠光、黃光及紅光,再將綠光、黃光、紅光及藍光混合後,產生前述第一白光或第二白光。 The foregoing step of passing blue light through the phosphor layer may also be modified such that the blue light passes through the phosphor layer to respectively generate yellow light and red light, and the yellow light, the red light and the blue light are continuously mixed to generate the first white light or the second white light. In addition, the blue light may be passed through the phosphor layer to respectively generate green light, yellow light, and red light, and then the green light, the yellow light, the red light, and the blue light may be mixed to generate the first white light or the second white light.

再者,前述產生第一白光與第二白光之步驟亦可為激發紫外光(UV,ultraviolet)LED晶片以產生紫外光,續使紫外光通過一螢光層以分別產生一紅光、綠光及一藍光,再將紅光、綠光與藍光混合後產生前述第一白光或第二白光。 Furthermore, the step of generating the first white light and the second white light may also be to activate an ultraviolet (UV) ultraviolet LED to generate ultraviolet light, and continue to pass the ultraviolet light through a phosphor layer to respectively generate a red light and a green light. And a blue light, and then mixing the red light, the green light and the blue light to generate the first white light or the second white light.

前述光色調制方法另包含調變單色LED以產生一單色光,續將該單色光、第一白光與第二白光混光,該單色光為窄頻譜單色光,或較佳者,該單色光可為寬頻譜單色光,其可由包含UV LED激發單色螢光粉形成;或者,其可由包含藍光LED激發單色螢光粉形成,其中藍光完全為單色螢光粉吸收,此亦為寬頻譜單色光定義的範疇之一。 The foregoing light color modulation method further comprises modulating the monochromatic LED to generate a monochromatic light, and continuously mixing the monochromatic light, the first white light and the second white light, the monochromatic light being a narrow spectrum monochromatic light, or preferably The monochromatic light may be a wide-spectrum monochromatic light, which may be formed by exciting a monochromatic phosphor containing UV LEDs; or it may be formed by exciting a monochromatic phosphor containing a blue LED, wherein the blue light is completely monochromatic fluorescent Powder absorption, which is also one of the categories defined by wide-spectrum monochromatic light.

根據本發明光色調制方法之另一實施例,其包含調變多個寬頻譜單色LEDs以產生第一寬頻譜單色光與第二寬頻譜單色光、及混合第一寬頻譜單色光與第二寬頻譜單色光。其中第一與第二寬頻譜單色光的半波寬大於或等於20奈米,較佳為大於或等於25奈米,最佳為大於或等於30奈米,值得注意的是:當半波寬的值越大,混合出來的光色頻譜連續性越佳。 Another embodiment of the light color modulation method according to the present invention includes modulating a plurality of wide-spectrum monochromatic LEDs to generate a first wide-spectrum monochromatic light and a second wide-spectrum monochromatic light, and mixing the first wide-spectrum monochrome Light and second wide spectrum monochromatic light. Wherein the first and second wide-spectrum monochromatic lights have a half-wave width greater than or equal to 20 nm, preferably greater than or equal to 25 nm, and most preferably greater than or equal to 30 nm, notable: when half-wave The larger the value of the width, the better the spectral continuity of the mixed light color.

依據本發明光色可變之LED光源模組之第一實施例,此LED光源模組包含第一白光LED、第二白光LED及控制單元。第一白光LED被控制單元激發以產生第一白光且其演色性大於或等於85。第二白光LED被控制單元激發以產生第二白光並與第一白光混合。第二白光之演色性大於或等於85。第一白光之色座標係相異於該第二白光之色座標。 According to a first embodiment of the light color variable LED light source module of the present invention, the LED light source module comprises a first white LED, a second white LED and a control unit. The first white LED is excited by the control unit to produce a first white light and its color rendering is greater than or equal to 85. The second white LED is excited by the control unit to generate a second white light and mix with the first white light. The color rendering of the second white light is greater than or equal to 85. The color coordinates of the first white light are different from the color coordinates of the second white light.

其中第一白光LED與第二白光LED可以是分別包含一藍光LED晶片及一螢光層。此螢光層包含有多個螢光粉。藍光LED晶片被激發後產生藍光。藍光通過螢光層時,激發螢光粉而產生多種單色光,該些單色光與藍光混合以產生前述第一白光或第二白光。控制單元藉由調變第一、第二白光LED之電流、脈衝寬度或電流及脈衝寬度而調整混合光的色座標或演色性。 The first white LED and the second white LED may respectively include a blue LED chip and a fluorescent layer. This phosphor layer contains multiple phosphors. The blue LED chip is excited to generate blue light. When the blue light passes through the phosphor layer, the phosphor powder is excited to generate a plurality of monochromatic lights mixed with the blue light to generate the first white light or the second white light. The control unit adjusts the color coordinates or color rendering of the mixed light by modulating the current, pulse width or current and pulse width of the first and second white LEDs.

依據本發明光色可變之LED光源模組之第二實施例,其包含第一白光LED、第二白光LED、單色光LED及控制單元。單色LED係被控制單元激發而產生一單色光。此單色光係與該第一白光及該第二白光混合而產生混合光。控制單元藉由調變第一白光LED、第二白光LED、及單色LED而得到預定色座標或演色性的混合光。 According to a second embodiment of the light color variable LED light source module of the present invention, the first white light LED, the second white light LED, the monochromatic light LED and the control unit are included. The monochromatic LED is excited by the control unit to produce a monochromatic light. The monochromatic light system is mixed with the first white light and the second white light to generate mixed light. The control unit obtains a mixed color of a predetermined color coordinate or color rendering by modulating the first white LED, the second white LED, and the monochromatic LED.

除單色光與該第一白光及該第二白光混合而產生混合光外,亦可選用寬頻譜單色光,例如,該寬頻譜單色光LED包含UV LED晶片及螢光層。螢光層具有一螢光粉,UV LED晶片被激發時係產生一紫外光。紫外光係通過該螢光 層並發出該寬頻譜單色光,將寬頻譜單色光與該第一白光及該第二白光混合而產生混合光;或者,寬頻譜單色光也可由藍光LED晶片,搭配單色螢光粉,單色螢光粉完全吸收藍光LED所發出光線,並轉換為所需的寬頻譜單色光。 In addition to the monochromatic light mixed with the first white light and the second white light to produce mixed light, a wide-spectrum monochromatic light may also be selected. For example, the wide-spectrum monochromatic light LED includes a UV LED chip and a fluorescent layer. The phosphor layer has a phosphor, and the UV LED wafer is excited to generate an ultraviolet light. Ultraviolet light passes through the fluorescent light Layering and emitting the wide-spectrum monochromatic light, mixing the wide-spectrum monochromatic light with the first white light and the second white light to generate mixed light; or, the wide-spectrum monochromatic light may also be a blue LED chip, with a monochromatic fluorescent light The powder, monochromatic phosphor completely absorbs the light emitted by the blue LED and converts it into the desired wide-spectrum monochromatic light.

依據本發明光色可變之LED光源模組之第三實施例,其包含第一寬頻譜單色LED、第二寬頻譜單色LED、及控制單元。第一寬頻譜單色LED被控制單元激發以產生第一寬頻譜單色光。第二寬頻譜單色LED被控制單元激發以產生第二寬頻譜單色光。第二寬頻譜單色光係與第一寬頻譜單色光混合而產生混合光。 A third embodiment of the light color variable LED light source module according to the present invention comprises a first wide spectrum monochrome LED, a second wide spectrum monochrome LED, and a control unit. The first wide spectrum monochromatic LED is excited by the control unit to produce a first wide spectral monochromatic light. The second wide spectrum monochromatic LED is excited by the control unit to produce a second wide spectral monochromatic light. The second wide-spectrum monochromatic light system is mixed with the first wide-spectrum monochromatic light to produce mixed light.

藉由上述本發明之光色調制方法與光色可變之LED光源模組,即可調制出預定色座標、色溫或演色性之光線,並得到光頻譜連續之混合光。 According to the light color modulation method and the light color variable LED light source module of the present invention, light of a predetermined color coordinate, color temperature or color rendering property can be modulated, and a mixed light of a continuous optical spectrum can be obtained.

有關本發明的特徵與實作,茲配合圖式作最佳實施例詳細說明如下。 The features and implementations of the present invention are described in detail below with reference to the drawings.

40‧‧‧燈具 40‧‧‧Lights

42‧‧‧燈體 42‧‧‧Light body

44a,44b‧‧‧光色可變之LED光源模組 44a, 44b‧‧‧Light color variable LED light source module

52‧‧‧基板 52‧‧‧Substrate

520,522,524,526‧‧‧單色LED晶片 520,522,524,526‧‧‧Monochrome LED chip

60,70,80‧‧‧光色可變之LED光源模組 60,70,80‧‧‧Light color LED light source module

62,72‧‧‧第一白光LED 62,72‧‧‧First white LED

64,74‧‧‧第二白光LED 64,74‧‧‧second white LED

56,66,76,86‧‧‧控制單元 56,66,76,86‧‧‧Control unit

620,640,720,740,780,820,840‧‧‧基板 620, 640, 720, 740, 780, 820, 840 ‧ ‧ substrates

622,642,722‧‧‧藍光LED晶片 622,642,722‧‧‧Blue LED chip

624,644,724,744,784‧‧‧螢光層 624,644,724,744,784‧‧‧Fluorescent layer

621,641‧‧‧承載杯 621,641‧‧‧ Carrying Cup

625,645,728,748,786,825,845‧‧‧導光膠質 625,645,728,748,786,825,845‧‧‧Light-guided colloid

626,646,725,745,826‧‧‧第一螢光粉 626,646,725,745,826‧‧‧First fluorescent powder

627,647,726,746,846‧‧‧第二螢光粉 627,647,726,746,846‧‧‧second phosphor powder

727,747‧‧‧第三螢光粉 727, 747‧‧‧ Third phosphor powder

785‧‧‧第四螢光粉 785‧‧‧Four Fluorescent Powder

742,782,822,842‧‧‧UV LED晶片 742,782,822,842‧‧‧UV LED chip

824‧‧‧第一螢光層 824‧‧‧First fluorescent layer

844‧‧‧第二螢光層 844‧‧‧Second fluorescent layer

78,82,84‧‧‧寬頻譜單色LED 78,82,84‧‧‧ Wide spectrum monochrome LED

90,92,94‧‧‧峰值(藍光、綠光、紅光) 90,92,94‧‧‧peak (blue light, green light, red light)

W1,W2,W3‧‧‧第一、二、三白光 W1, W2, W3‧‧‧ first, second and third white light

第1圖係為依據本發明光色調制方法第一實施例之流程示意圖。 1 is a schematic flow chart of a first embodiment of a light color modulation method according to the present invention.

第2A圖、第2B圖及第2C圖係為依據本發明之第一白光與第二白光之光頻譜示意圖。 2A, 2B, and 2C are schematic views of the light spectrum of the first white light and the second white light according to the present invention.

第3A圖與第3B圖係為第2A、2B與2C圖在CIE色座標圖上的色座標位置示意圖。 3A and 3B are schematic views of the color coordinates of the 2A, 2B, and 2C diagrams on the CIE color map.

第4圖係為依據本發明光色調制方法第一實施例步驟S10之流程示意圖。 Figure 4 is a flow chart showing the step S10 of the first embodiment of the light color modulation method according to the present invention.

第5圖係為依據本發明光色調制方法步驟S100之第一實施例的流程示意圖。 Figure 5 is a flow chart showing the first embodiment of the light color modulation method step S100 according to the present invention.

第6圖係為依據本發明光色調制方法步驟S100之第二實施例的流程示意圖。 Figure 6 is a flow chart showing the second embodiment of the light color modulation method step S100 according to the present invention.

第7圖係為依據本發明光色調制方法步驟S100之第三實施例的流程示意圖。 Figure 7 is a flow chart showing a third embodiment of the light color modulation method step S100 according to the present invention.

第8圖係為依據本發明光色調制方法步驟S100之第四實施例的流程示意圖。 Figure 8 is a flow chart showing the fourth embodiment of the light color modulation method step S100 according to the present invention.

第9圖係為依據本發明光色調制方法第一實施例之第一附加流程示意圖。 Figure 9 is a first additional flow chart of the first embodiment of the light color modulation method according to the present invention.

第10圖係為依據本發明光色調制方法步驟S14之流程示意圖。 Figure 10 is a flow chart showing the step S14 of the light color modulation method according to the present invention.

第11圖係為依據本發明光色調制方法第一實施例之第二附加流程示意圖。 Figure 11 is a second additional flow chart of the first embodiment of the light color modulation method according to the present invention.

第12圖係為依據本發明光色調制方法第二實施例之流程示意圖。 Figure 12 is a flow chart showing the second embodiment of the light color modulation method according to the present invention.

第13圖係為依據本發明光色調制方法步驟S20之流程示意圖。 Figure 13 is a flow chart showing the step S20 of the light color modulation method according to the present invention.

第14圖係為依據本發明光色可變之發光二極體(LED)光源模組第一實施例之結構示意圖。 Figure 14 is a schematic view showing the structure of a first embodiment of a light-colored variable-emitting diode (LED) light source module according to the present invention.

第15圖係為依據本發明光色可變之LED光源模組第二實施例之結構示意圖。 Figure 15 is a schematic view showing the structure of a second embodiment of a light color variable LED light source module according to the present invention.

第16圖係為依據本發明光色可變之LED光源模組第三實施例之結構示意圖。 Figure 16 is a schematic structural view of a third embodiment of a light color variable LED light source module according to the present invention.

第17圖係為依據本發明光色可變之LED光源模組第四實施範圍之結構示意圖。 Figure 17 is a schematic view showing the structure of the fourth embodiment of the light color variable LED light source module according to the present invention.

第18圖係為依據本發明光色可變之LED光源模組應用於燈具之結構示意圖。 Figure 18 is a schematic view showing the structure of a light-colored variable LED light source module applied to a lamp according to the present invention.

光色調制方法第一實施例Light color modulation method first embodiment

「第1圖」係為依據本發明光色調制方法第一實施例之流程示意圖。從圖中可以見悉此光色調制方法包含S10:調變多個白光LED以產生至少一第一白光與一第二白光;以及S12:混合第一白光與第二白光。 Fig. 1 is a schematic flow chart showing the first embodiment of the light color modulation method according to the present invention. It can be seen from the figure that the light color modulation method includes S10: modulating a plurality of white LEDs to generate at least one first white light and a second white light; and S12: mixing the first white light and the second white light.

前述光色調制方法係指調整所產生光線的色座標之方法。第一白光與第二白光之演色性大於或等於85。較佳狀態可令至少一白光之演色性大於或等於90,最佳狀態可令至少一白光之演色性大於95。第一白光的色座標相異於第二白光的色座標。 The aforementioned light color modulation method refers to a method of adjusting the color coordinates of the generated light. The color rendering of the first white light and the second white light is greater than or equal to 85. Preferably, the color rendering of at least one white light is greater than or equal to 90, and the optimum state is such that the color rendering of at least one white light is greater than 95. The color coordinates of the first white light are different from the color coordinates of the second white light.

請參考「第2A圖」、「第2B圖」與「第2C圖」,其係為依據本發明之第一白光與第二白光之光頻譜示意圖。「第2A圖」中的水平軸表示波長,單位為奈米,垂直軸為光強度,單位為相對強度(A.U.)。從「第2A圖」中可以看出此光頻譜具有三個主要峰值90,92,94,分別代表三個不同的顏色。標示為94的光譜附近代表紅光。標示為92的光譜附近代表綠光。標示為90的光譜附近代表藍光。由「第2A圖」的光譜圖可以看出其所產生的光線為白光。此白光的成份中,藍光90的光強度大於綠光92的光強度。綠光92的光強度大於紅光94的光強度。在此例中,紅光94、綠光92與藍光90三色的峰值強度比值約為1:0.6:0.46。但本發明並不以此為限。從「第2A圖」中另可以見悉在可見光的光譜範圍中(400-780奈米),各波長的光強度相當連續。「第2A圖」中的白光的演色性為94。 Please refer to "2A", "2B" and "2C", which are schematic diagrams of the light spectrum of the first white light and the second white light according to the present invention. The horizontal axis in "Picture 2A" represents the wavelength in nanometers, the vertical axis is the light intensity, and the unit is the relative intensity (A.U.). It can be seen from "Fig. 2A" that this light spectrum has three main peaks 90, 92, 94, representing three different colors, respectively. The vicinity of the spectrum labeled 94 represents red light. The vicinity of the spectrum labeled 92 represents green light. The vicinity of the spectrum labeled 90 represents blue light. It can be seen from the spectrum of "Fig. 2A" that the light produced by it is white light. Among the components of the white light, the light intensity of the blue light 90 is greater than the light intensity of the green light 92. The light intensity of the green light 92 is greater than the light intensity of the red light 94. In this example, the peak intensity ratio of the three colors of red light 94, green light 92, and blue light 90 is about 1:0.6:0.46. However, the invention is not limited thereto. It can also be seen from "Phase 2A" that in the spectral range of visible light (400-780 nm), the light intensity of each wavelength is relatively continuous. The color rendering of white light in "Fig. 2A" is 94.

在「第2B圖」中可以見悉,「第2B圖」的白光 亦具有紅光94、綠光92及、藍光90三種光色。其與「第2A圖」之差異在於「第2B圖」光譜圖中主要色光的光強度由強到弱依序為藍光90、紅光94、綠光92。且三個光色的強度雖有差異,但差異不大。同樣地,「第2B圖」中各波長的光強度相當連續,「第2B圖」中的白光的演色性經量測,其值亦為94。 It can be seen in "Picture 2B" that the white light of "Picture 2B" It also has three light colors: red light 94, green light 92 and blue light 90. The difference from the "Fig. 2A" is that the light intensity of the main color light in the "B2B" spectrum is from strong to weak in order of blue light 90, red light 94, and green light 92. Although the intensity of the three light colors is different, the difference is not large. Similarly, in "B2B", the light intensity of each wavelength is relatively continuous, and the color rendering of the white light in "B2B" is measured, and the value is also 94.

在「第2C圖」中白光的各主要光色的光強度由強到弱亦序為紅光94、綠光92及、藍光90。其中,藍光90與綠光92之光強度非常接近。此白光的各波長的光強度相當連續,其演色性亦為94。 In the "2Cth diagram", the light intensity of each of the main light colors of white light is from strong to weak, and is also red light 94, green light 92, and blue light 90. Among them, the light intensity of the blue light 90 and the green light 92 is very close. The light intensity of each wavelength of this white light is relatively continuous, and its color rendering property is also 94.

請續參考「第3A圖」與「第3B圖」。其為係為「第2A圖」、「第2B圖」、與「第2C圖」在CIE色座標圖上的色座標位置示意圖。圖中標示W1的點為對應「第2A圖」之白光的色座標所在位置。圖中標示W2的點為對應「第2B圖」之白光的色座標所在位置。圖中標示W3的點為對應「第2C圖」之白光的色座標所在位置。 Please continue to refer to "3A" and "3B". It is a schematic diagram of the color coordinate positions on the CIE color chart in "2A", "2B", and "2C". The point indicating W1 in the figure is the position of the color coordinates corresponding to the white light of "2A". The point indicated by W2 in the figure is the position of the color coordinate corresponding to the white light of "2B". The point indicated by W3 in the figure is the position of the color coordinates corresponding to the white light of "2C".

「第2A圖」之白光W1所在位置較接近藍光位置(亦因為其藍光的比例較高的緣故),一般稱為冷白光(Cool White)。其色溫值約為6000K。「第2B圖」之白光W2所在位置較接近肉眼的白光位置,一般稱為中性白光(Neutral White)。其色溫值約為4200K。「第2C圖」之白光W3所在位置較接近紅光的位置,一般稱為暖白光(Warm White)。其色溫值約為3700K。 The white light W1 of "Fig. 2A" is located closer to the blue light position (also because of the higher proportion of blue light), and is generally called Cool White. Its color temperature value is about 6000K. The white light W2 of "Fig. 2B" is located closer to the white light position of the naked eye, and is generally called Neutral White. Its color temperature value is about 4200K. The position of the white light W3 in "2C" is closer to the position of red light, and is generally called Warm White. Its color temperature value is about 3700K.

步驟S10之第一白光或第二白光可以為「第2A圖」、「第2B圖」與「第2C圖」所示意的白光W1,W2,W3其中兩種,但並不以此為限。 The first white light or the second white light in the step S10 may be two types of white light W1, W2, W3 indicated in "2A", "2B" and "2C", but not limited thereto.

步驟S10所述調變多個白光LED以至少產生第一白光與第二白光係指調變二個或二個以上的白光LED。若僅有二個白光LED,則其各別產生第一白光與第二白光。若有三個具有相異色座標的白光LED,則將會產生三種白光。 也就是可能是如「第2A圖」、「第2B圖」與「第2C圖」所示之三種白光W1,W2,W3。若有超過二個白光LED被調變,但所有白光LED僅能產生二種白光(第一白光或第二白光),亦屬本發明之範疇。 In step S10, the plurality of white LEDs are modulated to generate at least two or more white LEDs that are modulated by the first white light and the second white light. If there are only two white LEDs, they respectively generate the first white light and the second white light. If there are three white LEDs with different color coordinates, three white lights will be produced. That is, it may be three types of white light W1, W2, W3 as shown in "2A", "2B" and "2C". It is also within the scope of the invention if more than two white LEDs are modulated, but all white LEDs can only produce two white light (first white or second white).

步驟S10所述「調變」多個白光LED以產生第一白光與第二白光中的調變可以是調變該些白光LED之電流、或脈衝寬度等參數以調變第一白光與第二白光各別的發光強度。調變白光LED的電流指的是調整供給白光LED的電流強度來控制該白光LED的發光亮度。調變白光LED的脈衝寬度指的是以脈衝寬度變調(PWM,Pulse Width Modulation)方式驅動白光LED發光,藉由調整單位時間內脈衝為高位準的總時間,以控制其發光強度。值得注意的是,前述調變參數可選擇其一或結合運用,並且,前述調變參數僅為例示,非用來限定本發明之調變方式,凡習知技藝領域中可思及或已運用的調變參數及方法,皆為本發明可運用手段之範疇。 Step S10, "modulating" a plurality of white LEDs to generate modulations in the first white light and the second white light may be modulating parameters such as current, or pulse width of the white LEDs to modulate the first white light and the second The luminous intensity of each white light. The current of the modulated white LED refers to adjusting the intensity of the current supplied to the white LED to control the luminance of the white LED. The pulse width of the modulated white LED refers to the white LED illumination driven by Pulse Width Modulation (PWM), which is controlled by adjusting the total time of the pulse to a high level per unit time. It should be noted that the foregoing modulation parameters may be selected or used in combination, and the foregoing modulation parameters are merely exemplary and are not intended to limit the modulation mode of the present invention, and may be considered or applied in the field of the prior art. The modulation parameters and methods are all applicable to the scope of the invention.

前述調變白光LED的電流、脈衝寬度或亮度之方式,並不會對各別的白光LED所產生的第一白光或第二白光的光譜或色座標產生變化,但將會對於所混合出來的混合白光的色座標、色溫與光譜產生變化。 The manner of modulating the current, pulse width or brightness of the white LED does not change the spectral or color coordinates of the first white light or the second white light generated by the respective white LEDs, but will be mixed for The color coordinates, color temperature, and spectrum of the mixed white light change.

步驟S10中的調變白光LED後,若以僅產生第一白光與第二白光為例,請參考「第3B圖」。圖中若第一白光的色座標為W1,第二白光的色座標為W2。因此,當調變第一白光與第二白光的發光強度時,S12步驟所混合出來的混合光的色座標將落在W1與W2的連線上。如此一來,即達到光色調制的目的。得以適應各種不同場合應用的需求。此外,由於第一白光與第二白光的演色性高,因此,所混合出來的光線亦具有高演色性。 After the white LED is modulated in step S10, if only the first white light and the second white light are generated, please refer to "3B". In the figure, if the color coordinates of the first white light are W1 and the color coordinates of the second white light are W2. Therefore, when the luminous intensities of the first white light and the second white light are modulated, the color coordinates of the mixed light mixed in step S12 will fall on the line connecting W1 and W2. In this way, the purpose of light color modulation is achieved. Adapted to the needs of a variety of occasions. In addition, since the first white light and the second white light have high color rendering properties, the mixed light also has high color rendering properties.

請再參閱「第3A圖」,同樣地。若S10步驟產生了三種白光(以下稱第一白光W1、第二白光W2、第三白光W3)。則步驟S10調變多個白光LED後,步驟S12混合出來的 混合光的色座標將會落在「第3A圖」的W1、W2、與W3的色座標之間(即圖式三角形內)。以此類推,若步驟S10產生了四種白光,則混合光可調整的色座標區域可能更大、更具彈性。同時亦能滿足高演色性的需求。 Please refer to "3A" again, in the same way. If the S10 step produces three kinds of white light (hereinafter referred to as first white light W1, second white light W2, and third white light W3). Then, after step S10 modulates a plurality of white LEDs, the step S12 is mixed. The color coordinates of the mixed light will fall between the color coordinates of W1, W2, and W3 in Figure 3A (ie, within the triangle of the drawing). By analogy, if four white lights are generated in step S10, the mixed light adjustable color coordinate area may be larger and more flexible. At the same time, it can also meet the needs of high color rendering.

前述第一白光與第二白光的色座標相異係表示第一白光與第二白光的色差(Color Difference,△E)大於等於0.01。雖然同一種LED晶片(或稱同一材質與製程)且同一種螢光粉所產生的白光在微觀角度來看,其色座標亦有些微差異,但若將此同一種LED晶片應用於步驟S10,其可調整之光色將非常有限,故較不建議採用。此外,雖然,「第3A圖」中各種白光的色座標的距離相對較遠,但本發明並不以此為限,只要滿足色座標相異之條件,即應屬本發明之範疇。 The color coordinates of the first white light and the second white light are different from each other, and the color difference (ΔE) of the first white light and the second white light is greater than or equal to 0.01. Although the same kind of LED chip (or the same material and process) and the white light produced by the same kind of phosphor powder have a slight difference in color coordinates from the microscopic point of view, if the same LED chip is applied to step S10, The adjustable light color will be very limited and is less recommended. Further, although the distance of the color coordinates of the various white lights in "Fig. 3A" is relatively far, the present invention is not limited thereto, and it should be within the scope of the present invention as long as the conditions of the color coordinates are different.

步驟S12中的「混合」第一白光與第二白光,係可將第一白光與第二白光的照光路徑直接重疊,亦可利用導光介質將兩者混合。此導光介質可以是但不限於透鏡與光導管。此外,亦可利用反射面將之反射而疊合。 In the step S12, the "mixing" of the first white light and the second white light may directly overlap the illumination paths of the first white light and the second white light, or may be mixed by the light guiding medium. The light guiding medium can be, but is not limited to, a lens and a light pipe. In addition, the reflective surface can also be used to reflect and overlap.

請參閱「第4圖」,其為依據本發明光色調制方法第一實施例步驟S10之流程示意圖。步驟S10包含S100:調變該些白光之一以產生該第一白光;以及S118:調變該些白光之另一以產生該第二白光。 Please refer to FIG. 4, which is a schematic diagram of the process of step S10 of the first embodiment of the light color modulation method according to the present invention. Step S10 includes S100: modulating one of the white lights to generate the first white light; and S118: modulating the other of the white lights to generate the second white light.

續請參考「第5圖」閱覽之。其係為依據本發明光色調制方法步驟S100之第一實施例的流程示意圖。步驟S100的第一實施例包含S101:激發一藍光LED晶片以產生一藍光;S102:使該藍光通過一螢光層以分別產生一綠光與一紅光;以及S103:混合該綠光、該紅光與該藍光而產生該第一白光。 Please refer to "Figure 5" for continued reading. It is a schematic flowchart of the first embodiment of the light color modulation method step S100 according to the present invention. The first embodiment of step S100 includes S101: exciting a blue LED chip to generate a blue light; S102: passing the blue light through a phosphor layer to respectively generate a green light and a red light; and S103: mixing the green light, the The red light and the blue light produce the first white light.

在此步驟S100之第一實施例中,關於如何能使藍光通過螢光層而產生紅光與綠光之內容,容後詳述。 In the first embodiment of this step S100, the contents of red light and green light are generated in terms of how to enable blue light to pass through the phosphor layer, which will be described in detail later.

步驟S103混合紅光、綠光與藍光所產生的白光的光譜即可能類似於「第2A圖」、「第2B圖」與「第2C圖」 的白光。 The spectrum of white light generated by mixing red, green and blue light in step S103 may be similar to "2A map", "2B map" and "2C map". White light.

請參考「第6圖」。其係為依據本發明光色調制方法步驟S100之第二實施例的流程示意圖。步驟S100的第二實施例包含:S105:激發一藍光LED晶片以產生一藍光;S106:使該藍光通過一螢光層以分別產生一黃光與一紅光;以及S107:混合該黃光、該紅光與該藍光而產生該第一白光。 Please refer to "Figure 6". It is a schematic flowchart of the second embodiment of the light color modulation method step S100 according to the present invention. The second embodiment of step S100 includes: S105: exciting a blue LED chip to generate a blue light; S106: passing the blue light through a phosphor layer to respectively generate a yellow light and a red light; and S107: mixing the yellow light, The red light and the blue light generate the first white light.

此步驟S100之第二實施例所混合而成之第一白光在黃光部分較為明顯,綠光則較弱。不過此情形亦可藉由適當調變螢光層之材質、結構與成份來改變。 The first white light mixed by the second embodiment of this step S100 is more pronounced in the yellow light portion, and the green light is weaker. However, this situation can also be changed by appropriately adjusting the material, structure and composition of the phosphor layer.

請參閱「第7圖」。其係為依據本發明光色調制方法步驟S100之第三實施例的流程示意圖。步驟S100的第三實施例包含:S109:激發一藍光LED晶片以產生一藍光;S110:使該藍光通過一螢光層以分別產生一黃光、一綠光與一紅光;以及S111:混合該黃光、該綠光、該紅光與該藍光而產生該第一白光。 Please refer to "Figure 7." It is a schematic flowchart of the third embodiment of the light color modulation method step S100 according to the present invention. The third embodiment of step S100 includes: S109: exciting a blue LED chip to generate a blue light; S110: passing the blue light through a phosphor layer to respectively generate a yellow light, a green light, and a red light; and S111: mixing The yellow light, the green light, the red light, and the blue light generate the first white light.

步驟S100的第三實施例所得之混合光色具有四個主要單色光(黃光、綠光、紅光與藍光),因此,僅需適當調配各單色光之比例,混合光即可得到較佳的演色性。 The mixed light color obtained in the third embodiment of step S100 has four main monochromatic lights (yellow light, green light, red light and blue light), so that only the proportion of each monochromatic light needs to be properly adjusted, and the mixed light can be obtained. Better color rendering.

請參閱「第8圖」。其係為依據本發明光色調制方法步驟S100之第四實施例的流程示意圖。步驟S100的第四實施例包含:S113:激發一紫外光(Ultraviolet,UV)LED晶片以產生一紫外光;S114:使該紫外光通過一螢光層以分別產生藍光、一綠光、與一紅光;以及S115:混合該綠光、該紅光與該藍光而產生該第一白光。 Please refer to "Figure 8." It is a schematic flowchart of the fourth embodiment of the light color modulation method step S100 according to the present invention. The fourth embodiment of step S100 includes: S113: exciting an ultraviolet (UV) LED chip to generate an ultraviolet light; S114: passing the ultraviolet light through a phosphor layer to respectively generate blue light, a green light, and a Red light; and S115: mixing the green light, the red light and the blue light to generate the first white light.

此S100的第四實施例與第一至三實施例之差別在於第四實施例使用紫外光通過螢光層,而非使用藍光通過螢光層。此四個實施例的螢光層的材質並不全然相同,同時,四個實施例所產生之各種單色光的特性亦不相同,茲說明如下:關於步驟S100的第一至三實施例所使用的藍光 LED晶片所發出藍光的中心波長可以是在440-490nm。 The fourth embodiment of this S100 differs from the first to third embodiments in that the fourth embodiment uses ultraviolet light to pass through the phosphor layer instead of using blue light to pass through the phosphor layer. The materials of the phosphor layers of the four embodiments are not completely the same, and the characteristics of the various monochromatic lights generated by the four embodiments are also different, as explained below. With regard to the first to third embodiments of step S100, Blu-ray used The center wavelength of the blue light emitted by the LED wafer may be 440-490 nm.

前述螢光層可以包含一導光膠材及散佈在導光膠材中的螢光粉。前述螢光粉在被藍光激發後會產生特定波長的光線,例如產生綠色波長、黃色波長、或紅色波長的光線。 The phosphor layer may comprise a light guiding glue and a phosphor powder dispersed in the light guiding glue. The aforementioned phosphor powder generates light of a specific wavelength after being excited by blue light, for example, light of a green wavelength, a yellow wavelength, or a red wavelength.

關於前述用以產生特定波長的螢光粉的材質,請參考下表。此螢光粉的材質雖以下表做為舉例,但並不以此為限。 For the material of the above-mentioned phosphor powder used to generate a specific wavelength, please refer to the table below. The material of the phosphor powder is exemplified by the following table, but it is not limited thereto.

在步驟S102中所使用的螢光層係得以產生綠光與紅光,即代表該螢光層中具有第一螢光粉與第二螢光粉。其中第一螢光粉即為上述被藍光激發後會產生綠光的螢光粉。第二螢光粉即為上述被藍光激發後會產生紅光的螢光粉。第一螢光粉與第二螢光粉在螢光層中的比例(例如重量百分比)可以被適當地調配,以得到所需的第一白光的色座標及演色性。例如,若第一螢光粉相對於整個螢光層的比例高於第二螢光粉,則所產生白光LED的綠光將多於紅光。 The phosphor layer used in step S102 is capable of generating green light and red light, that is, having the first phosphor powder and the second phosphor powder in the phosphor layer. The first fluorescent powder is the above-mentioned fluorescent powder which generates green light after being excited by blue light. The second phosphor is the above-mentioned phosphor which generates red light after being excited by blue light. The ratio (e.g., weight percent) of the first phosphor to the second phosphor in the phosphor layer can be suitably formulated to obtain the desired color coordinates and color rendering of the first white light. For example, if the ratio of the first phosphor to the entire phosphor layer is higher than the second phosphor, the white LED produced will have more green light than red.

上述實施例中的不同螢光粉佔整個螢光層的重量百分比並不限定於一特定的比例,而是視使用者所需的色座標與演色性而調整。即便兩個白光LED中的螢光粉的重量百分比設定成相同,但亦有可能因各螢光粉所在螢光層的位置不同,而使得此二個白光LED所發出的光線的色座標有所差異。例如:若第一螢光粉與第二螢光粉的比例一樣,但第一白光LED的第一螢光粉大多位於藍光LED晶片的主要出光區(亦可稱出光光軸位置附近),而第二白光LED的第一螢光粉所在位置則遠離藍光LED晶片的主要出光區,如此一來,第一白光LED的第一螢光粉會被較多的藍光所激發,而第二白光LED的第二螢光粉則僅會被較少的藍光所激發,因此,雖第一白光LED與第二白光LED的螢光粉的比例相近,但所產生的第一白光不盡相同。 The weight percentage of the different phosphors in the above embodiment to the entire phosphor layer is not limited to a specific ratio, but is adjusted according to the color coordinates and color rendering properties desired by the user. Even if the weight percentage of the phosphor powder in the two white LEDs is set to be the same, it is also possible that the color coordinates of the light emitted by the two white LEDs are different due to the different positions of the phosphor layers of the respective phosphors. difference. For example, if the ratio of the first phosphor powder to the second phosphor powder is the same, the first phosphor powder of the first white LED is mostly located in the main light exit region of the blue LED chip (which can also be called near the optical axis position), and The first fluorescent powder of the second white LED is located away from the main light exiting area of the blue LED chip, so that the first fluorescent powder of the first white LED is excited by more blue light, and the second white LED The second phosphor is only excited by less blue light. Therefore, although the ratio of the first white LED to the second white LED is similar, the first white light produced is not the same.

前述步驟S10的所述「調變」多個白光LED以產生第一白光與第二白光中的「調變」另可以是調變該些白 光LED的色溫、色座標或光頻譜,以產生不同色座標、不同演色性的第一白光或第二白光。調變其色溫、色座標或光頻譜的方法即同前述調整其螢光層中螢光粉的比例或所在位置、分佈情形等等。 The "modulating" a plurality of white LEDs in the foregoing step S10 to generate "modulation" in the first white light and the second white light, and may also modulate the white light The color temperature, color coordinates or light spectrum of the light LED to produce first white light or second white light of different color coordinates, different color rendering properties. The method of modulating its color temperature, color coordinates or light spectrum is the same as adjusting the ratio or location of the phosphor in the phosphor layer, the distribution, and the like.

前述第一白光與第二白光之光譜範圍在400nm到850nm之間。且第一白光LED與第二白光LED在個別被調變的範圍內,其所產生的第一白光與第二白光的色溫變化個別小於200K。 The spectral range of the first white light and the second white light is between 400 nm and 850 nm. And the first white LED and the second white LED are individually modulated, and the color temperature changes of the first white light and the second white light generated are less than 200K.

對應前述紫外光之螢光層與對應藍光之螢光層的材質有所不同。步驟S100的第四實施例的螢光層包含一導光膠質與散佈於該導光膠質的螢光粉。此螢光粉的材質請見於上表,故不再贅述。其中所採用第一螢光粉、第二螢光粉、第三螢光粉在被紫外光激發後產生紅光、綠光及藍光。前述用於紫外光的螢光粉佔整個螢光層的比例亦可視所需而調變,以得到所預定的色座標、色溫、演色性或光譜。調變方式同前,不再贅述。 The material corresponding to the ultraviolet light layer and the corresponding blue light phosphor layer are different. The phosphor layer of the fourth embodiment of step S100 comprises a light guiding colloid and a phosphor powder dispersed on the light guiding colloid. The material of this phosphor powder can be found in the above table, so it will not be described again. The first phosphor powder, the second phosphor powder and the third phosphor powder are excited by ultraviolet light to generate red light, green light and blue light. The proportion of the aforementioned phosphor powder for ultraviolet light to the entire phosphor layer can also be modulated as desired to obtain a predetermined color coordinate, color temperature, color rendering or spectrum. The modulation method is the same as before, and will not be described again.

前述步驟S100的第一、二、三、及第四實施例雖用以說明第一白光產生之方式,但亦可應用於步驟S118中來產生與調變第二白光。 The first, second, third, and fourth embodiments of the foregoing step S100 are used to describe the manner in which the first white light is generated, but may be applied to the step S118 to generate and modulate the second white light.

前述第一白光與第二白光之產生雖先以一單色LED晶片發出一單色光,之後再藉由此單色光來激發螢光層而產生其他光色的光,再將各光色混合而產生的,但第一白光與第二白光之產生方式並不以此混合白光之方式為限。前述第一白光與第二白光亦可由白光LED晶片直接被調變而產生。 The first white light and the second white light are generated by first emitting a monochromatic light with a monochromatic LED chip, and then exciting the fluorescent layer by the monochromatic light to generate light of other light colors, and then respectively coloring the respective colors. Mixed, but the first white light and the second white light are produced in a manner that is not limited by the way of mixing white light. The first white light and the second white light may also be generated by directly modifying the white LED chip.

接著,請參考「第9圖」。其為依據本發明光色調制方法第一實施例之第一附加流程示意圖。前述光色調制方法的第一實施例另可包含S14:調變一寬頻譜單色LED以產生一寬頻譜單色光;以及S16:混合該寬頻譜單色光、該第一白光與第二白光。 Next, please refer to "Figure 9". It is a schematic diagram of the first additional flow of the first embodiment of the light color modulation method according to the present invention. The first embodiment of the foregoing light color modulation method may further include S14: modulating a wide-spectrum monochromatic LED to generate a wide-spectrum monochromatic light; and S16: mixing the wide-spectrum monochromatic light, the first white light, and the second White light.

請參閱「第10圖」。步驟S14包含S140產生一紫外光;以及:S142:使該紫外光通過一螢光層以產生該寬頻譜單色光。 Please refer to "Figure 10". Step S14 includes S140 generating an ultraviolet light; and: S142: passing the ultraviolet light through a phosphor layer to generate the wide-spectrum monochromatic light.

步驟S140所產生之紫外光係為經由調變UV LED晶片而產生之紫外光。此紫外光通過僅具有單色螢光粉之螢光層,即會產生寬頻譜單色光。步驟S140之單色螢光粉可以為但不限於前述步驟S100的第四實施例所述螢光粉。 The ultraviolet light generated in step S140 is ultraviolet light generated by modulating the UV LED wafer. This ultraviolet light passes through a phosphor layer having only a monochromatic phosphor, which produces a wide-spectrum monochromatic light. The monochromatic phosphor of step S140 may be, but not limited to, the phosphor described in the fourth embodiment of the foregoing step S100.

步驟S14之寬頻譜單色光亦可以是由一藍光晶片與一螢光層的組合而產生的。例如,在螢光層內充份散佈有可產生黃光的螢光粉,此藍光晶片所發出的藍光經過螢光層後完全轉換被吸收即可產生黃光,此黃光即可做為步驟S14的寬頻譜單色光。再舉一例,若將螢光層內的YaG成分增加,使藍光晶片所發出的藍光充份為YaG吸收,即可達到以藍光晶片形成步驟S14的寬頻譜單色光,此種寬頻譜單色光雖於其頻譜圖上可以看到二個峰值,但,肉眼所見屬於黃光,亦屬步驟S14之寬頻譜單色光。 The wide-spectrum monochromatic light of step S14 may also be produced by a combination of a blue light wafer and a phosphor layer. For example, a fluorescent powder capable of generating yellow light is sufficiently dispersed in the phosphor layer, and the blue light emitted by the blue light wafer is completely converted and absorbed by the fluorescent layer to generate yellow light, and the yellow light can be used as a step. S14's wide spectrum monochromatic light. As another example, if the YaG component in the phosphor layer is increased, and the blue light emitted by the blue light wafer is sufficiently absorbed by YaG, the wide-spectrum monochromatic light in the blue wafer forming step S14 can be achieved. Although the light can see two peaks on the spectrogram, it is yellow light, which is also the wide-spectrum monochromatic light of step S14.

續請參考「第11圖」。前述光色調制方法的第一實施例另可包含S18:調變一單色LED以產生一單色光;以及S19:混合該單色光、該第一白光與第二白光。步驟S18之單色LED係指調變單色LED晶片以產生該單色光。此單色LED晶片可以是但不限於紅光LED晶片、藍光LED晶片、或綠光LED晶片。 Please refer to "Figure 11" for continued. The first embodiment of the foregoing light color modulation method may further include S18: modulating a monochromatic LED to generate a monochromatic light; and S19: mixing the monochromatic light, the first white light, and the second white light. The monochromatic LED of step S18 refers to a modulated monochromatic LED wafer to produce the monochromatic light. This monochromatic LED wafer can be, but is not limited to, a red LED wafer, a blue LED wafer, or a green LED wafer.

此單色光與前述寬頻譜單色光並不相同。此單色光係指單色LED晶片直接被激發(調變)所發出來之單色光線。例如紅光LED晶片、藍光LED晶片、綠光LED晶片被激發所產生的光線。寬頻譜單色光則是指將UV LED晶片激發而產生的紫外光通過螢光層而產生的寬頻譜單色光(包含單色LED晶片的單色光與被激發的光線)。因此,寬頻譜單色LED的中心波長範圍在400奈米至850奈米之間。寬頻譜單色光的半波寬(FWHM,Full Width At Half Maximum)可以是大於或等 於20奈米,較佳為大於或等於25奈米,最佳為大於或等於30奈米。相對地,單色光的半波寬則約為10奈米。因此,藉由上述單色光或寬頻譜單色光與第一、二白光混合,即可使可調變的色座標、色溫的範圍大增,增加光色可調的彈性與空間。 This monochromatic light is not the same as the aforementioned wide-spectrum monochromatic light. This monochromatic light refers to the monochromatic light emitted by the monochromatic LED wafer directly excited (modulated). For example, red LED chips, blue LED chips, and green LED chips are excited to generate light. The wide-spectrum monochromatic light refers to a wide-spectrum monochromatic light (including monochromatic light and excited light of a monochromatic LED wafer) generated by passing ultraviolet light generated by excitation of a UV LED wafer through a fluorescent layer. Therefore, the wide wavelength monochromatic LED has a center wavelength ranging from 400 nm to 850 nm. The half-wave width (FWHM, Full Width At Half Maximum) of a wide-spectrum monochromatic light can be greater than or equal to At 20 nm, preferably greater than or equal to 25 nm, and most preferably greater than or equal to 30 nm. In contrast, the half-wave width of monochromatic light is about 10 nm. Therefore, by mixing the monochromatic light or the wide-spectrum monochromatic light with the first and second white lights, the range of the adjustable color coordinates and the color temperature can be greatly increased, and the elasticity and space with adjustable light color can be increased.

此外,由於上述寬頻譜單色光具有較大的半波寬,因此,在與第一白光與第二白光混合時,可以使其光譜的連續性增加,提高演色性。 Further, since the wide-spectrum monochromatic light has a large half-wave width, when mixed with the first white light and the second white light, the continuity of the spectrum can be increased, and the color rendering property can be improved.

光色調制方法第二實施例Light color modulation method second embodiment

其次,依據本發明光色調制方法之第二實施例,請參考「第12圖」。光色調制方法之第二實施例包含:S20:調變多個寬頻譜單色LED以產生至少一第一寬頻譜單色光及一第二寬頻譜單色光;以及S22:混合該第一寬頻譜單色光與該第二寬頻譜單色光。其中第一寬頻譜單色光及第二寬頻譜單色光之半波寬大於或等於20奈米(nm)且第一、二寬頻譜單色光之色座標不同。 Next, according to the second embodiment of the light color modulation method of the present invention, please refer to "Fig. 12". A second embodiment of the light color modulation method includes: S20: modulating a plurality of wide-spectrum monochrome LEDs to generate at least one first wide-spectrum monochromatic light and a second wide-spectrum monochromatic light; and S22: mixing the first Wide spectrum monochromatic light with the second wide spectrum monochromatic light. The half-wave width of the first wide-spectrum monochromatic light and the second wide-spectrum monochromatic light is greater than or equal to 20 nanometers (nm) and the color coordinates of the first and second wide-spectrum monochromatic lights are different.

步驟S20之「調變」多個寬頻譜單色LED的方式與前述說明相同,包含調變寬頻譜單色LED的電流、脈衝寬度、頻譜、色溫或亮度。第一、二寬頻譜單色光經由調變與混光後,即可得到色座標介於第一、二寬頻譜單色光的各別色座標的連線上。此外,由於寬頻譜單色光的半波寬較一般單色光之半波寬為大,故調變後的頻譜連續性及演色性亦較佳。 The manner of "modulating" a plurality of wide-spectrum monochrome LEDs in step S20 is the same as described above, and includes the current, pulse width, spectrum, color temperature, or brightness of the modulated wide-spectrum monochrome LED. After the first and second wide-spectrum monochromatic lights are modulated and mixed, the color coordinates of the respective color coordinates of the first and second wide-spectrum monochromatic lights can be obtained. In addition, since the half-wave width of the wide-spectrum monochromatic light is larger than the half-wave width of the general monochromatic light, the spectral continuity and color rendering after modulation are also preferable.

S20之調變多個寬頻譜單色LED的步驟亦可以產生三種寬頻譜單色光(意即產生第一、二、三寬頻譜單色光)。且此三種寬頻譜單色光之半波寬均大於或等於20奈米且其色座標不同。因此,藉由調變多個寬頻譜單色LED並經混光後,此混合光的色座標即可被適當的調整在介於第一、二、三寬頻譜單色光的色座標之間。 The step of modulating a plurality of wide-spectrum monochromatic LEDs of S20 can also produce three kinds of wide-spectrum monochromatic light (that is, generating first, second, and third wide-spectrum monochromatic lights). And the half-wave widths of the three kinds of wide-spectrum monochromatic lights are greater than or equal to 20 nm and their color coordinates are different. Therefore, by modulating a plurality of wide-spectrum monochromatic LEDs and mixing them, the color coordinates of the mixed light can be appropriately adjusted between the color coordinates of the first, second, and third wide-spectrum monochromatic lights. .

請參閱「第13圖」,其係為依據本發明光色調制 方法步驟S20之流程示意圖。步驟S20調變多個寬頻譜單色LED的步驟包含S200:調變該些寬頻譜單色LED之一以產生該第一寬頻譜單色光;以及S202:調變該些寬頻譜單色LED之另一以產生該第二寬頻譜單色光。 Please refer to "Fig. 13", which is a light color modulation according to the present invention. Method flow diagram of step S20. Step S20: modulating the plurality of wide-spectrum monochrome LEDs includes: S200: modulating one of the wide-spectrum monochrome LEDs to generate the first wide-spectrum monochromatic light; and S202: modulating the wide-spectrum monochrome LEDs The other is to generate the second wide spectrum monochromatic light.

步驟S200與S202之實施方式與前述步驟S14相同,故不再贅述。 The implementation manners of steps S200 and S202 are the same as the foregoing step S14, and therefore will not be described again.

光色可變之發光二極體光源模組第一實施例Light-color variable light-emitting diode light source module first embodiment

再者,請配合「第14圖」閱覽之。其係為光色可變之LED光源模組第一實施例的結構示意圖。 In addition, please read it in "Figure 14". It is a schematic structural view of the first embodiment of the LED light source module with variable light color.

光色可變之LED光源模組60包含一第一白光LED 62、一第二白光LED 64、以及一控制單元66。 The light color variable LED light source module 60 includes a first white LED 62, a second white LED 64, and a control unit 66.

第一白光LED 62被激發以產生第一白光。此第一白光之演色性大於85。第二白光LED 64被激發以產生第二白光。第二白光與第一白光混合。第二白光之演色性大於85。第一白光之色座標相異於第二白光之色座標。控制單元66分別用以激發第一白光LED 62與該第二白光LED 64。 The first white LED 62 is energized to produce a first white light. The color rendering of this first white light is greater than 85. The second white LED 64 is activated to produce a second white light. The second white light is mixed with the first white light. The color rendering of the second white light is greater than 85. The color coordinates of the first white light are different from the color coordinates of the second white light. The control unit 66 is configured to excite the first white LED 62 and the second white LED 64, respectively.

第一白光LED 62包含一基板620、一藍光LED晶片622、及一螢光層624。基板620具有一承載杯621。藍光LED晶片622被配置於承載杯621內並用以被激發以產生藍光。此藍光從藍光LED晶片622發出後,即穿入螢光層624。 The first white LED 62 includes a substrate 620, a blue LED chip 622, and a phosphor layer 624. The substrate 620 has a carrier cup 621. The blue LED chip 622 is disposed within the carrier cup 621 and is used to be excited to generate blue light. After the blue light is emitted from the blue LED chip 622, it penetrates the phosphor layer 624.

螢光層624包含一導光膠質625、一第一螢光粉626、及一第二螢光粉627。導光膠質625係供藍光穿透。第一螢光粉626及第二螢光粉627被散佈在導光膠質625之內。第一螢光粉626在經藍光激發後,即會產生綠光。第二螢光粉627在經藍光激發後,即會產生紅光。因此,藍光通過螢光層624後即激發第一螢光粉626以及第二螢光粉627而分別產生一綠光、紅光。此綠光、紅光即與藍光混合後即形成前述第一白光。 The phosphor layer 624 includes a light guiding gel 625, a first phosphor powder 626, and a second phosphor powder 627. The light-guiding colloid 625 is for blue light transmission. The first phosphor 626 and the second phosphor 627 are dispersed within the light guiding gel 625. The first phosphor 626 emits green light after being excited by blue light. The second phosphor 627 emits red light after being excited by blue light. Therefore, after the blue light passes through the phosphor layer 624, the first phosphor powder 626 and the second phosphor powder 627 are excited to generate a green light and a red light, respectively. The green light and the red light are mixed with the blue light to form the first white light.

前述之基板620可以是一導線架。 The aforementioned substrate 620 can be a lead frame.

第二白光LED 64包含一基板640、一藍光LED 晶片642、及一螢光層644。基板640具有一承載杯641。藍光LED晶片642被配置於承載杯641內並用以被激發以產生藍光並穿入螢光層644內。 The second white LED 64 includes a substrate 640 and a blue LED. A wafer 642 and a phosphor layer 644. The substrate 640 has a carrier cup 641. The blue LED chip 642 is disposed within the carrier cup 641 and is used to be excited to generate blue light and penetrate into the phosphor layer 644.

第二白光LED 64的螢光層644類似於第一白光LED 62的螢光層624。差別在於第二白光LED 64的第一螢光粉646與第二螢光粉647的材質、重量百分比、或散佈於導光膠質645的方式與第一白光LED 62的第一螢光粉626與第二螢光粉627的材質、重量百分比、或散佈於導光膠質625至少部份相異。例如:第二白光LED 64的第一、二螢光粉646,647的材質可以在藍光晶片642所產生的藍光經過螢光層644之後產生黃光與紅光。黃光、紅光與藍光經過混合後,即產生第二白光。因此,此第二白光之色座標即與第一白光的色座標相異。 The phosphor layer 644 of the second white LED 64 is similar to the phosphor layer 624 of the first white LED 62. The difference is the material of the first phosphor powder 646 and the second phosphor powder 647 of the second white LED 64, the weight percentage, or the manner of being dispersed in the light guiding colloid 645 and the first phosphor powder 626 of the first white LED 62. The material, weight percentage, or dispersion of the second phosphor 627 is at least partially different. For example, the materials of the first and second phosphors 646, 647 of the second white LED 64 may generate yellow light and red light after the blue light generated by the blue light wafer 642 passes through the fluorescent layer 644. After the yellow, red and blue light are mixed, a second white light is produced. Therefore, the color coordinates of the second white light are different from the color coordinates of the first white light.

雖然第一白光LED 62與第二白光LED 64舉例如上,但並不以此為限。任何能產生演色性大於85的白光均屬本發明之範疇。例如,若將第一白光LED 62的螢光層所選用的材質,在經過藍光晶片激發後可產生黃光、綠光以及紅光,經混合後演色性可大於85者,亦能達到本發明之目的。 Although the first white LED 62 and the second white LED 64 are exemplified above, they are not limited thereto. Any white light that produces a color rendering greater than 85 is within the scope of the present invention. For example, if the material selected for the phosphor layer of the first white LED 62 is yellow, green, and red after being excited by the blue light wafer, the color rendering property may be greater than 85 after mixing, and the invention can also be achieved. The purpose.

前述第一白光與第二白光之「混合」係可藉由調整第一白光LED 62與第二白光LED 64的出光角度來達成。或者可以藉由反射罩、導光元件(如光導管)、或透鏡來完成。 The "mixing" of the first white light and the second white light can be achieved by adjusting the light exit angles of the first white LED 62 and the second white LED 64. Or it can be done by a reflector, a light guiding element such as a light pipe, or a lens.

「第14圖」中所示的第一白光LED 62與第二白光LED 64係以相互分離的二個元件來表示,但亦可以單獨一個元件的方式實施。例如,將前述藍光LED晶片622,642分別設置在同一基板上並各別覆蓋其對應的螢光層624,644,換言之,以至少二晶片位於單一封裝體內,續由控制單元經邏輯運算個別提供不同的電流或脈衝寬度或電流及脈衝寬度以改變第一白光或第二白光的發光強度,達到相異的色座標;或藉由對應螢光層中螢光粉材質的選用、重量百分比、及分佈在導光介質的位置,來改變其色溫、色坐標及頻譜,達到 相異的色坐標,再混合該第一白光及該第二白光,亦能達到本發明之功效。 The first white LED 62 and the second white LED 64 shown in Fig. 14 are shown as two separate elements, but they may be implemented as a single element. For example, the foregoing blue LED chips 622, 642 are respectively disposed on the same substrate and respectively cover their corresponding fluorescent layers 624, 644, in other words, at least two wafers are located in a single package, and the control unit provides different currents by logical operation. Pulse width or current and pulse width to change the luminous intensity of the first white light or the second white light to achieve different color coordinates; or by selecting, weighting, and distributing the phosphor material in the corresponding phosphor layer The position of the medium to change its color temperature, color coordinates and spectrum The effect of the present invention can also be achieved by mixing the first white light and the second white light with different color coordinates.

以實際設計結果,可令其為四顆晶片位於同一封裝體內,其中,晶片種類可為藍光晶片或是UV晶片,晶片所發出光線激發對應螢光層中的螢光粉,可形成色溫相異的一第一白光、一第二白光、一第三白光、一第四白光,其中,螢光粉材質的選用已如上述,故不重述。或者,也可令晶片所發出光線激發對應螢光層中的螢光粉,可形成色溫相異的一第一紅光、一第二紅光、一綠光、一藍光,將該些光線混合達到色溫可調變的效果;或者令晶片所發出光線激發對應螢光層中的螢光粉,可形成色溫相異的一第一綠光、一第二綠光、一藍光、一紅光,將該些光線混合達到色溫可調變的效果;或者令晶片所發出光線激發對應螢光層中的螢光粉,可形成色溫相異的一紅光、一綠光、一藍光及一白光,將該些光線混合達到色溫可調變的效果。 According to the actual design result, the four wafers can be in the same package, wherein the wafer type can be a blue wafer or a UV wafer, and the light emitted by the wafer excites the phosphor powder in the corresponding phosphor layer, and the color temperature is different. A first white light, a second white light, a third white light, and a fourth white light, wherein the material of the phosphor powder has been selected as described above, and therefore will not be repeated. Alternatively, the light emitted by the wafer may be excited by the phosphor in the corresponding phosphor layer, and a first red light, a second red light, a green light, and a blue light having different color temperatures may be formed, and the light is mixed. The color temperature can be adjusted to change; or the light emitted by the wafer is excited to the phosphor in the corresponding phosphor layer, and a first green light, a second green light, a blue light, and a red light having different color temperatures can be formed. Mixing the light to achieve a color temperature tunable effect; or causing the light emitted by the wafer to excite the phosphor in the corresponding phosphor layer to form a red light, a green light, a blue light, and a white light having different color temperatures. The light is mixed to achieve a color temperature tunable effect.

前述控制單元66係各別提供驅動藍光LED晶片642,622所需之電能。例如控制單元66可輸出連續性的直流電流給藍光LED晶片642,622並控制各別電流的大小,以達到調變之目的。或者,控制單元66輸出脈衝寬度變調之電流給藍光LED晶片642,622,以適當的控制第一白光與第二白光的發光亮度,並得到預定之色座標、色溫或演色性。 The aforementioned control unit 66 provides the electrical energy required to drive the blue LED chips 642, 622, respectively. For example, the control unit 66 can output a continuous DC current to the blue LED chips 642, 622 and control the magnitude of the respective currents for modulation purposes. Alternatively, the control unit 66 outputs a pulse width modulated current to the blue LED chips 642, 622 to appropriately control the luminance of the first white light and the second white light, and to obtain a predetermined color coordinate, color temperature or color rendering.

光色可變之發光二極體光源模組第二實施例Light-colored variable light-emitting diode light source module second embodiment

請參閱「第15圖」,其為依據本發明光色可變之LED光源模組第二實施例之結構示意圖。圖中可以看見光色可變之LED光源模組70包含第一白光LED 72、第二白光LED 74、寬頻譜單色LED 78與控制單元76。 Please refer to FIG. 15 , which is a structural diagram of a second embodiment of a light color variable LED light source module according to the present invention. The light color variable LED light source module 70 can be seen to include a first white LED 72, a second white LED 74, a wide spectrum monochrome LED 78 and a control unit 76.

此光色可變之LED光源模組的第二實施例的架構與第一實施例類似,差別在於(a)第一白光LED 72與第二白光LED 74之細部結構、及(b)第二實施例增加了一個寬頻譜單色LED 78。 The architecture of the second embodiment of the light color variable LED light source module is similar to that of the first embodiment except that (a) the detailed structure of the first white LED 72 and the second white LED 74, and (b) the second The embodiment adds a wide spectrum monochrome LED 78.

第二實施例之第一白光LED 72包含基板720、藍光LED晶片722及螢光層724。螢光層724包含導光膠質728、第一螢光粉725、第二螢光粉726、及第三螢光粉727。藍光LED晶片722在被控制單元76激發後發出藍光。此藍光通過螢光層724後,分別激發第一、第二、第三螢光粉725,726,727而產生紅光、黃光、及綠光。此紅光、黃光、綠光、與藍光混合後即產生第一白光。 The first white LED 72 of the second embodiment includes a substrate 720, a blue LED chip 722, and a phosphor layer 724. The phosphor layer 724 includes a light guiding gel 728, a first phosphor powder 725, a second phosphor powder 726, and a third phosphor powder 727. The blue LED chip 722 emits blue light after being excited by the control unit 76. After the blue light passes through the phosphor layer 724, the first, second, and third phosphors 725, 726, and 727 are respectively excited to generate red light, yellow light, and green light. The red, yellow, green, and blue light combine to produce a first white light.

關於能被藍光激發而產生紅光、黃光、及綠光之螢光粉725,726,727的材質,前文已敘及,不再贅述。 The material of the fluorescent powder 725, 726, 727 which can be excited by blue light to generate red light, yellow light, and green light has been described above and will not be described again.

第二白光LED 74包含基板740、UV LED晶片742、及螢光層744。此螢光層744包含有導光膠質748、第一螢光粉745、第二螢光粉746及第三螢光粉747。UV LED晶片742被控制單元76激發而產生紫外光。此紫外光通過螢光層744則分別激發了第一、二、三螢光粉745,746,747而產生紅光、綠光與藍光。紅光、綠光與藍光經過混光後,即產生第二白光。 The second white LED 74 includes a substrate 740, a UV LED wafer 742, and a phosphor layer 744. The phosphor layer 744 includes a light guiding gel 748, a first phosphor powder 745, a second phosphor powder 746, and a third phosphor powder 747. The UV LED wafer 742 is excited by the control unit 76 to produce ultraviolet light. The ultraviolet light passes through the phosphor layer 744 to respectively excite the first, second and third phosphors 745, 746, 747 to generate red, green and blue light. After the red, green and blue light are mixed, a second white light is produced.

控制單元76藉由適當調變第一白光LED 72與第二白光LED 74,即可調整混合光的色座標與演色性。混光的方法、原理因與上述光色調制方法之實施例相同,故在此不加贅述。 The control unit 76 can adjust the color coordinates and color rendering properties of the mixed light by appropriately modulating the first white LED 72 and the second white LED 74. The method and principle of the light mixing are the same as those of the above-described light color modulation method, and thus will not be described herein.

而本第二實施例中的寬頻譜單色LED包含基板780、UV LED晶片782及螢光層784。螢光層784包含導光膠質786及第四螢光粉785。此第四螢光粉785在被UV LED晶片782所產生的紫外光所激發而發出一寬頻譜單色光。此寬頻譜單色光即與前述第一白光及第二白光混合並產生混合光。此混合光的光色(色座標)、色溫或演色性即可藉由控制單元76的適當調變而達到預設值。 The wide-spectrum monochrome LED in the second embodiment includes a substrate 780, a UV LED chip 782, and a phosphor layer 784. The phosphor layer 784 includes a light guiding gel 786 and a fourth phosphor powder 785. This fourth phosphor 785 is excited by the ultraviolet light generated by the UV LED wafer 782 to emit a broad spectrum of monochromatic light. The wide-spectrum monochromatic light is mixed with the first white light and the second white light to generate mixed light. The color (color coordinates), color temperature or color rendering of the mixed light can be preset to a predetermined value by the appropriate modulation of the control unit 76.

第四螢光粉的材質與上述步驟S100的第四實施例的任一種螢光粉材質相同,不再贅述。 The material of the fourth phosphor is the same as that of any of the phosphor powders of the fourth embodiment of the above step S100, and will not be described again.

最後,此第二實施例另外亦可包含一單色LED, 此單色LED之材質可同於前述步驟S18的單色LED。仍能達到光色可變之目的。 Finally, this second embodiment may additionally comprise a monochromatic LED. The material of the monochromatic LED can be the same as the monochromatic LED of the foregoing step S18. Still achieve the purpose of variable light color.

光色可變之發光二極體光源模組第三實施例Light-colored variable light-emitting diode light source module third embodiment

接著,請參閱「第16圖」,其係為依據本發明光色可變之LED光源模組第三實施例之結構示意圖。此光色可變之LED光源模組80包含一第一寬頻譜單色LED 82、一第二寬頻譜單色LED 84、及一控制單元86。 Next, please refer to FIG. 16 , which is a schematic structural view of a third embodiment of a light color variable LED light source module according to the present invention. The light color variable LED light source module 80 includes a first wide spectrum monochrome LED 82, a second wide spectrum monochrome LED 84, and a control unit 86.

第一寬頻譜單色LED 82被控制單元86激發以產生一第一寬頻譜單色光。第二寬頻譜單色LED 84被控制單元86激發以產生一第二寬頻譜單色光,該第二寬頻譜單色光係與該第一寬頻譜單色光混合。 The first wide spectrum monochrome LED 82 is excited by control unit 86 to produce a first wide spectral monochromatic light. The second wide spectral monochromatic LED 84 is excited by control unit 86 to produce a second wide spectral monochromatic light that is mixed with the first wide spectral monochromatic light.

第一寬頻譜單色LED 82包含一基板820、一UV LED晶片822及一第一螢光層824。第一螢光層824包含導光膠質825及第一螢光粉826。此第一螢光粉826在被UV LED晶片822所發出之紫外光所激發後即會產生第一寬頻譜單色光。 The first wide-spectrum monochrome LED 82 includes a substrate 820, a UV LED chip 822, and a first phosphor layer 824. The first phosphor layer 824 includes a light guiding paste 825 and a first phosphor powder 826. The first phosphor powder 826, upon being excited by the ultraviolet light emitted by the UV LED chip 822, produces a first broad spectrum monochromatic light.

第二寬頻譜單色LED 84的UV LED晶片842被配置於基板840上。第二螢光層844包含導光膠質845及第二螢光粉846。UV LED晶片842所產生的紫外光通過第二螢光層844的第二螢光粉846即會產生第二寬頻譜單色光。此第二寬頻譜單色光的色座標與第一寬頻譜單色光的色座標相異。因此,當控制單元86分別調變第一、二寬頻譜單色LED 82,84時,混合光的色座標將會落在第一、二寬頻譜單色光色座標的連線。 The UV LED chip 842 of the second wide spectrum monochromatic LED 84 is disposed on the substrate 840. The second phosphor layer 844 includes a light guiding gel 845 and a second phosphor powder 846. The ultraviolet light generated by the UV LED wafer 842 passes through the second phosphor 846 of the second phosphor layer 844 to produce a second broad spectrum monochromatic light. The color coordinates of the second wide-spectrum monochromatic light are different from the color coordinates of the first wide-spectrum monochromatic light. Therefore, when the control unit 86 modulates the first and second wide-spectrum monochrome LEDs 82, 84, respectively, the color coordinates of the mixed light will fall on the lines connecting the first and second wide-spectrum monochromatic color coordinates.

前述第一、第二寬頻譜單色光之半波寬大於或等於20奈米,較佳為大於或等於25奈米,最佳為大於或等於30奈米。第一、第二寬頻譜單色光的中心波長範圍在400奈米至850奈米之間。是以,混合光的演色性將優於習知技術。 The half-wave width of the first and second wide-spectrum monochromatic lights is greater than or equal to 20 nm, preferably greater than or equal to 25 nm, and most preferably greater than or equal to 30 nm. The center wavelengths of the first and second wide-spectrum monochromatic lights range from 400 nm to 850 nm. Therefore, the color rendering of mixed light will be superior to the conventional technology.

前述第一、二螢光粉826,846之材質係可選用如上述步驟S100的第四實施例的任一種螢光粉材質,故不再贅 述。 The material of the first and second phosphor powders 826, 846 can be selected from any of the phosphor powder materials of the fourth embodiment of the above step S100, so that it is no longer defective. Said.

前述UV LED晶片742,782,822,842所產生的紫外光可以是但不限於紫外光、近紫外光或深紫外光。 The ultraviolet light generated by the aforementioned UV LED wafers 742, 782, 822, 842 may be, but not limited to, ultraviolet light, near ultraviolet light or deep ultraviolet light.

光色可變之發光二極體光源模組之第四實施範例The fourth embodiment of the light-color variable light-emitting diode light source module

請配合「第17圖」閱覽之。「第17圖」係為本發明光色可變之發光二極體光源模組第四實施範例之結構示意。上述「第14圖」、「第15圖」及「第16圖」之實施例係在單一基板上放置一發光晶片後進行封裝的方式為之,而「第17圖」則是將多個發光晶片配置於單一基板(或稱載板)上再進行封裝的實施範圍。從「第17圖」可以見悉,此實施例包含基板52、第一單色LED晶片520、第二單色LED晶片522、第三單色LED晶片524、第四單色LED晶片526及控制單元56。在第一、二、三、四單色LED晶片520,522,524,526上方可選擇性地使各別具有螢光層(由於視角關係,故未進行編號標示)。而此螢光層內另具有至少一種前述之螢光粉(由於視角關係,故未進行編號標示)。舉例說明,前述第一、二、三、四單色LED晶片520,522,524,526所發出的單色光(可以是可見光或UV光)可經過螢光層並混合後,即產生色溫可調之白光。 Please read it in conjunction with "Figure 17". Fig. 17 is a schematic structural view showing a fourth embodiment of the light-color variable light-emitting diode light source module of the present invention. The above embodiments of "14th", "fifteenth" and "fifth" are based on a method in which a light-emitting chip is placed on a single substrate and then packaged, and "17th" is a plurality of light-emitting devices. The implementation range in which the wafer is placed on a single substrate (or carrier plate) and then packaged. As can be seen from "Fig. 17," this embodiment includes a substrate 52, a first monochromatic LED wafer 520, a second monochromatic LED wafer 522, a third monochromatic LED wafer 524, a fourth monochromatic LED wafer 526, and control. Unit 56. Optionally, each of the first, second, third, and fourth monochromatic LED wafers 520, 522, 524, 526 has a phosphor layer (not labeled by the viewing angle relationship). The phosphor layer further has at least one of the aforementioned phosphors (not labeled due to the viewing angle relationship). For example, the monochromatic light (which may be visible light or UV light) emitted by the first, second, third, and fourth monochromatic LED chips 520, 522, 524, 526 may pass through the phosphor layer and be mixed to produce white light with adjustable color temperature.

前述第一、二、三、四單色LED晶片520,522,524,526所發出的單色光(可以是可見光或UV光)可選擇性地經過螢光層後,即各別產生四種光線。此四種光線可以有多種組合,端視單色LED晶片520,522,524,526及螢光層內的螢光粉之選擇而定。舉例說明,該四種光線可以是但不限於(A)四種前述白光、(B)第一紅光、第二紅光、綠光、及藍光、(C)紅光、第一綠光、第二綠光、及藍光、(D)紅光、綠光、藍光及白光。 The monochromatic light (which may be visible light or UV light) emitted by the first, second, third, and fourth monochromatic LED chips 520, 522, 524, 526 may selectively pass through the phosphor layer, that is, each of the four types of light is generated. The four types of light can be combined in a variety of ways, depending on the choice of the monochromatic LED wafers 520, 522, 524, 526 and the phosphor in the phosphor layer. For example, the four types of light may be, but are not limited to, (A) four kinds of the foregoing white light, (B) first red light, second red light, green light, and blue light, (C) red light, first green light, Second green light, and blue light, (D) red light, green light, blue light, and white light.

關於如何選擇前述單色LED晶片520,522,524,526及螢光粉由於前文已述及,不再重覆。 How to select the aforementioned single-color LED chips 520, 522, 524, 526 and phosphor powder is not repeated as described above.

此外,「第17圖」中可以見悉,該第一、二、三、 四單色LED晶片520,522,524,526係以陣列方式配置,但並不以此為限,亦可採用一維陣列、環狀或其他任何形狀方式配置或排列。 In addition, it can be seen in "Figure 17" that the first, second and third, The four-color LED chips 520, 522, 524, and 526 are arranged in an array, but are not limited thereto, and may be configured or arranged in a one-dimensional array, a ring shape, or any other shape.

光色可變之發光二極體光源模組應用之實施範例Example of application of light-color variable light-emitting diode light source module application

最後,請參閱「第18圖」。其係為依據本發明光色可變之LED光源模組應用於燈具之結構示意圖。此燈具40包含一燈體42及光色可變之LED光源模組44a,44b。燈具40可為固定式燈具或可移動式燈具。而固定式燈具亦可為室內固定式燈具或戶外固定式燈具。室內固定式燈具可以是但不限於內嵌燈、吸頂燈、投射燈或壁燈。室外固定式燈具則可以是但不限於投射燈、地底燈、或壁燈。可移動式燈具可以是手電筒或照明燈。 Finally, please refer to "Figure 18." The utility model relates to a structural diagram of a light source variable LED light source module applied to a lamp according to the invention. The luminaire 40 includes a lamp body 42 and light color variable LED light source modules 44a, 44b. The luminaire 40 can be a stationary luminaire or a movable luminaire. The fixed luminaire can also be an indoor fixed luminaire or an outdoor fixed luminaire. Indoor stationary luminaires can be, but are not limited to, in-line lights, ceiling lights, projection lights or wall lights. The outdoor fixed luminaire can be, but is not limited to, a projection lamp, a ground lamp, or a wall lamp. The portable luminaire can be a flashlight or an illuminator.

前述光色可變之LED光源模組44a,44b可採用上述第一、第二、第三、或第四實施例之光源模組。簡言之,可採用二個白光混合式的光色可變之LED光源模組44a,44b,或者二個寬頻譜單色光混合、或者至少一個寬頻譜單色光再加上白光的混合。此外,雖然「第18圖」中採用多個光色可變之LED光源模組44a,44b設置於一燈體42內,但並不以此為限,實際應用時可以僅採用一個、二個光色可變之LED光源模組,視實際應用之需求而定。 The light source color changing LED light source modules 44a, 44b may adopt the light source module of the first, second, third or fourth embodiment described above. In short, two white light hybrid light color variable LED light source modules 44a, 44b, or two wide spectral monochromatic light blends, or at least one wide spectral monochromatic light plus white light mixing may be employed. In addition, although the plurality of light color variable LED light source modules 44a and 44b are disposed in a lamp body 42 in the "18th drawing", it is not limited thereto, and only one or two may be used in practical applications. The light color variable LED light source module depends on the needs of the actual application.

雖然本發明以前述之較佳實施例揭露如上,然其並非用以限定本發明,任何熟習相像技藝者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之專利保護範圍須視本說明書所附之申請專利範圍所界定者為準。 While the present invention has been described above in terms of the preferred embodiments thereof, it is not intended to limit the invention, and the invention may be modified and modified without departing from the spirit and scope of the invention. The patent protection scope of the invention is subject to the definition of the scope of the patent application attached to the specification.

Claims (36)

一種光色調制方法,該方法包含:調變多個白光LED以產生至少一第一白光與一第二白光,該第一白光與該第二白光之演色性大於或等於85,該第一白光之色座標係相異於該第二白光之色座標,該第一白光與該第二白光之色差(Color Difference)大於0.01;以及混合該第一白光與該第二白光。 A light color modulation method, comprising: modulating a plurality of white LEDs to generate at least one first white light and a second white light, wherein the first white light and the second white light have a color rendering greater than or equal to 85, the first white light The color coordinates are different from the color coordinates of the second white light, the color difference between the first white light and the second white light is greater than 0.01; and the first white light and the second white light are mixed. 如請求項1所述之調制方法,其中前述調變多個白光LED以產生至少一第一白光與一第二白光之步驟係為調變該些白光LED之電流或脈衝寬度參數至少其一。 The modulation method of claim 1, wherein the step of modulating the plurality of white LEDs to generate the at least one first white light and the second white light is to modulate at least one of a current or a pulse width parameter of the white LEDs. 如請求項1所述之調制方法,其中該第一白光或該第二白光之演色性大於95。 The modulation method of claim 1, wherein the color rendering of the first white light or the second white light is greater than 95. 如請求項1所述之調制方法,其中前述調變多個白光LED以產生至少一第一白光與一第二白光之步驟包含:調變該些白光LED之一以產生該第一白光;以及調變該些白光LED之另一以產生該第二白光。 The modulation method of claim 1, wherein the step of modulating the plurality of white LEDs to generate the at least one first white light and the second white light comprises: modulating one of the white light LEDs to generate the first white light; The other of the white LEDs is modulated to produce the second white light. 如請求項4所述之調制方法,其中前述調變該些白光之一以產生該第一白光之步驟包含:激發一藍光LED晶片以產生一藍光;使該藍光通過一螢光層以分別產生一綠光與一紅光;以及混合該綠光、該紅光與該藍光而產生該第一白光。 The modulation method of claim 4, wherein the step of modulating one of the white lights to generate the first white light comprises: exciting a blue LED chip to generate a blue light; and causing the blue light to pass through a phosphor layer to respectively generate a green light and a red light; and mixing the green light, the red light and the blue light to generate the first white light. 如請求項4所述之調制方法,其中前述調變該些白光之一以產生該第一白光之步驟包含:激發一藍光LED晶片以產生一藍光;使該藍光通過一螢光層以分別產生一黃光與一紅光;以及混合該黃光、該紅光與該藍光而產生該第一白光。 The modulation method of claim 4, wherein the step of modulating one of the white lights to generate the first white light comprises: exciting a blue LED chip to generate a blue light; and causing the blue light to pass through a phosphor layer to respectively generate a yellow light and a red light; and mixing the yellow light, the red light and the blue light to generate the first white light. 如請求項4所述之調制方法,其中前述調變該些白光之一以產生該第一白光之步驟包含:激發一藍光LED晶片以產生一藍光;使該藍光通過一螢光層以分別產生一黃光、一綠光與一紅光;以及混合該黃光、該綠光、該紅光與該藍光而產生該第一白光。 The modulation method of claim 4, wherein the step of modulating one of the white lights to generate the first white light comprises: exciting a blue LED chip to generate a blue light; and causing the blue light to pass through a phosphor layer to respectively generate a yellow light, a green light, and a red light; and mixing the yellow light, the green light, the red light, and the blue light to generate the first white light. 如請求項4所述之調制方法,其中前述調變該些白光之一以產生該第一白光之步驟包含:激發一紫外光(UV)LED晶片以產生一紫外光;使該紫外光通過一螢光層以分別產生藍光、一綠光、與一紅光;以及混合該綠光、該紅光與該藍光而產生該第一白光。 The modulation method of claim 4, wherein the step of modulating one of the white light to generate the first white light comprises: exciting an ultraviolet (UV) LED chip to generate an ultraviolet light; and passing the ultraviolet light through a The phosphor layer respectively generates blue light, a green light, and a red light; and mixes the green light, the red light and the blue light to generate the first white light. 如請求項4所述之調制方法,其中前述調變該些白光之另一以產生該第二白光之步驟包含:激發一藍光LED晶片以產生一藍光;使該藍光通過一螢光層以分別產生一綠光與一紅光;以及 混合該綠光、該紅光與該藍光而產生該第二白光。 The modulation method of claim 4, wherein the step of modulating the other of the white lights to generate the second white light comprises: exciting a blue LED chip to generate a blue light; and passing the blue light through a phosphor layer to respectively Producing a green light and a red light; The green light, the red light, and the blue light are mixed to generate the second white light. 如請求項4所述之調制方法,其中前述調變該些白光之另一以產生該第二白光之步驟包含:激發一藍光LED晶片以產生一藍光;使該藍光通過一螢光層以分別產生一黃光與一紅光;以及混合該黃光、該紅光與該藍光而產生該第二白光。 The modulation method of claim 4, wherein the step of modulating the other of the white lights to generate the second white light comprises: exciting a blue LED chip to generate a blue light; and passing the blue light through a phosphor layer to respectively Generating a yellow light and a red light; and mixing the yellow light, the red light and the blue light to generate the second white light. 如請求項4所述之調制方法,其中前述調變該些白光之另一以產生該第二白光之步驟包含:激發一藍光LED晶片以產生一藍光;使該藍光通過一螢光層以分別產生一黃光、一綠光與一紅光;以及混合該黃光、該綠光、該紅光與該藍光而產生該第二白光。 The modulation method of claim 4, wherein the step of modulating the other of the white lights to generate the second white light comprises: exciting a blue LED chip to generate a blue light; and passing the blue light through a phosphor layer to respectively Generating a yellow light, a green light, and a red light; and mixing the yellow light, the green light, the red light, and the blue light to generate the second white light. 如請求項4所述之調制方法,其中前述調變該些白光之另一以產生該第二白光之步驟包含:激發一紫外光(UV)LED晶片以產生一紫外光;使該紫外光通過一螢光層以分別產生藍光、一綠光、與一紅光;以及混合該綠光、該紅光與該藍光而產生該第二白光。 The modulation method of claim 4, wherein the step of modulating the other of the white lights to generate the second white light comprises: exciting an ultraviolet (UV) LED chip to generate an ultraviolet light; and passing the ultraviolet light a phosphor layer to respectively generate blue light, a green light, and a red light; and to mix the green light, the red light and the blue light to generate the second white light. 如請求項1所述之調制方法,另包含:調變至少一寬頻譜單色LED以產生一寬頻譜單色光;以及 混合該至少一寬頻譜單色光、該第一白光與第二白光。 The modulation method of claim 1, further comprising: modulating at least one wide-spectrum monochromatic LED to generate a wide-spectrum monochromatic light; The at least one wide spectrum monochromatic light, the first white light and the second white light are mixed. 如請求項13所述之調制方法,其中前述產生至少一寬頻譜單色光之步驟包含:產生一紫外光;以及使該紫外光通過一螢光層以產生該至少一寬頻譜單色光。 The modulation method of claim 13, wherein the step of generating at least one broad-spectrum monochromatic light comprises: generating an ultraviolet light; and passing the ultraviolet light through a phosphor layer to generate the at least one wide-spectrum monochromatic light. 如請求項1所述之調制方法,另包含:調變一單色LED以產生一單色光;以及混合該單色光、該第一白光與第二白光。 The modulation method of claim 1, further comprising: modulating a monochromatic LED to generate a monochromatic light; and mixing the monochromatic light, the first white light and the second white light. 一種光色調制方法,包含:調變由多個螢光粉激發之多個寬頻譜單色LED以產生至少一第一寬頻譜單色光及一第二寬頻譜單色光,該第一寬頻譜單色光及該第二寬頻譜單色光之半波寬大於或等於20奈米(nm),該第一寬頻譜單色光之色座標係相異於該第二寬頻譜單色光之色座標;以及混合該第一寬頻譜單色光與該第二寬頻譜單色光。 A light color modulation method includes: modulating a plurality of wide-spectrum monochromatic LEDs excited by a plurality of phosphors to generate at least a first wide-spectrum monochromatic light and a second wide-spectrum monochromatic light, the first broadband The half-width of the spectral monochromatic light and the second wide-spectrum monochromatic light is greater than or equal to 20 nanometers (nm), and the color coordinate of the first wide-spectrum monochromatic light is different from the second wide-spectrum monochromatic light a color coordinate; and mixing the first wide-spectrum monochromatic light with the second wide-spectrum monochromatic light. 如請求項16所述之調制方法,其中前述調變多個寬頻譜單色LED以產生至少一第一寬頻譜單色光及一第二寬頻譜單色光之步驟係為調變該些寬頻譜單色LED之電流或脈衝寬度參數至少其一。 The modulation method of claim 16, wherein the step of modulating the plurality of wide-spectrum monochromatic LEDs to generate at least one of the first wide-spectrum monochromatic light and the second wide-spectrum monochromatic light is to modulate the broadband At least one of the current or pulse width parameters of the spectral monochromatic LED. 如請求項16所述之調制方法,其中該第一寬頻譜單色光或該第二寬頻譜單色光之半波寬大於或等於25奈米。 The modulation method of claim 16, wherein the first wide-spectrum monochromatic light or the second wide-spectrum monochromatic light has a half-wave width greater than or equal to 25 nm. 如請求項16所述之調制方法,其中前述調變多個寬頻譜單色LED以產生至少一第一寬頻譜單色光及一第二寬頻譜單色光之步驟包含:調變該些寬頻譜單色LED之一以產生該第一寬頻譜單色光;以及調變該些寬頻譜單色LED之另一以產生該第二寬頻譜單色光。 The modulation method of claim 16, wherein the step of modulating the plurality of wide-spectrum monochromatic LEDs to generate the at least one first wide-spectrum monochromatic light and the second wide-spectrum monochromatic light comprises: modulating the broadband One of the monochromatic LEDs is spectrally generated to produce the first wide-spectrum monochromatic light; and the other of the wide-spectrum monochromatic LEDs is modulated to produce the second wide-spectrum monochromatic light. 如請求項19所述之調制方法,其中前述調變該些寬頻譜單色LED之一以產生該第一寬頻譜單色光之步驟包含:產生一紫外光;以及使該紫外光通過一螢光層以產生該第一寬頻譜單色光。 The modulation method of claim 19, wherein the step of modulating one of the wide-spectrum monochromatic LEDs to generate the first wide-spectrum monochromatic light comprises: generating an ultraviolet light; and passing the ultraviolet light through a fluorescent The optical layer produces the first broad spectrum monochromatic light. 如請求項19所述之調制方法,其中前述調變該些寬頻譜單色LED之另一以產生該第二寬頻譜單色光之步驟包含:產生一紫外光;以及使該紫外光通過一螢光層以產生該第二寬頻譜單色光。 The modulation method of claim 19, wherein the step of modulating the other of the wide-spectrum monochromatic LEDs to generate the second wide-spectrum monochromatic light comprises: generating an ultraviolet light; and passing the ultraviolet light through a A phosphor layer to produce the second wide spectrum monochromatic light. 一種光色可變之發光二極體(LED)光源模組,包含:一第一白光LED,被激發以產生一第一白光,該第一白光之演色性大於或等於85;一第二白光LED,被激發以產生一第二白光,該第二白光之演色性大於或等於85,該第一白光之色座標係相異於該第二白光之色座標,該第一白光與該第二白光之照光 路徑部分重疊,該第一白光與該第二白光之色差大於0.01;以及一控制單元,分別激發該第一白光LED與該第二白光LED。 A light color variable light emitting diode (LED) light source module, comprising: a first white light LED, being excited to generate a first white light, the first white light having a color rendering greater than or equal to 85; a second white light The LED is excited to generate a second white light having a color rendering greater than or equal to 85, the color coordinate of the first white light being different from the color coordinates of the second white light, the first white light and the second White light The paths partially overlap, the color difference between the first white light and the second white light is greater than 0.01; and a control unit respectively excites the first white LED and the second white LED. 如請求項22所述之光源模組,其中該第一白光LED包含一藍光LED晶片及一螢光層,該螢光層具有多個螢光粉,該藍光LED晶片被激發時係產生一藍光,該藍光係通過該螢光層以發出該第一白光。 The light source module of claim 22, wherein the first white LED comprises a blue LED chip and a phosphor layer, the phosphor layer having a plurality of phosphors, and the blue LED chip is excited to generate a blue light The blue light passes through the phosphor layer to emit the first white light. 如請求項23所述之光源模組,其中該藍光通過該螢光層時係分別產生一綠光與一紅光,該綠光、該紅光與該藍光混合產生該第一白光。 The light source module of claim 23, wherein the blue light passes through the phosphor layer to generate a green light and a red light, respectively, and the green light and the red light are mixed with the blue light to generate the first white light. 如請求項23所述之光源模組,其中該藍光通過該螢光層時係分別產生一黃光、綠光、及一紅光,該黃光、該綠光、該紅光與該藍光混合產生該第一白光。 The light source module of claim 23, wherein the blue light passes through the phosphor layer to generate a yellow light, a green light, and a red light, respectively, and the yellow light, the green light, and the red light are mixed with the blue light. The first white light is generated. 如請求項23所述之光源模組,其中該藍光通過該螢光層時係分別產生一黃光與一紅光,該黃光、該紅光與該藍光混合產生該第一白光。 The light source module of claim 23, wherein the blue light passes through the phosphor layer to generate a yellow light and a red light, respectively, and the yellow light and the red light are mixed with the blue light to generate the first white light. 如請求項22所述之光源模組,其中該第一白光LED包含一UV LED晶片及一螢光層,該UV LED晶片被激發時係產生一紫外光,該螢光層具有多個螢光粉,該紫外光係通過該螢光層以發出該第一白光。 The light source module of claim 22, wherein the first white LED comprises a UV LED chip and a phosphor layer, wherein the UV LED chip is excited to generate an ultraviolet light, and the phosphor layer has a plurality of phosphors. a powder that passes through the phosphor layer to emit the first white light. 如請求項22所述之光源模組,其中該第二白光LED包含一藍光LED晶片及一螢光層,該藍光LED晶片被激發時 係產生一藍光,該藍光係通過該螢光層以發出該第二白光。 The light source module of claim 22, wherein the second white LED comprises a blue LED chip and a phosphor layer, and the blue LED chip is excited A blue light is generated that passes through the phosphor layer to emit the second white light. 如請求項22所述之光源模組,另包含至少一寬頻譜單色LED,該寬頻譜單色LED係被該控制單元激發而產生一寬頻譜單色光,該寬頻譜單色光之半波寬大於或等於20奈米。 The light source module of claim 22, further comprising at least one wide-spectrum monochromatic LED that is excited by the control unit to generate a wide-spectrum monochromatic light, the half of the wide-spectrum monochromatic light The wave width is greater than or equal to 20 nm. 如請求項29所述之光源模組,該至少一寬頻譜單色LED包含一UV LED晶片及一螢光層,該UV LED晶片被激發時係產生一紫外光,該紫外光係通過該螢光層並發出該寬頻譜單色光。 The light source module of claim 29, wherein the at least one wide-spectrum monochromatic LED comprises a UV LED chip and a phosphor layer, wherein the UV LED chip is excited to generate an ultraviolet light, and the ultraviolet light passes through the firefly The light layer emits the wide-spectrum monochromatic light. 如請求項29所述之光源模組,該寬頻譜單色光之半波寬大於或等於25奈米。 The light source module of claim 29, wherein the half-wave width of the wide-spectrum monochromatic light is greater than or equal to 25 nm. 一種光色可變之發光二極體(LED)光源模組,包含:由多個螢光粉激發之一第一寬頻譜單色LED,被激發以產生一第一寬頻譜單色光;由多個螢光粉激發之一第二寬頻譜單色LED,被激發以產生一第二寬頻譜單色光,其中,該第一寬頻譜單色LED及該第二寬頻譜單色LED之半波寬大於或等於20奈米,該第一寬頻譜單色光之色座標係相異於該第二寬頻譜單色光之色座標,該第一寬頻譜單色光與該第二寬頻譜單色光之照光路徑部分重疊;以及一控制單元,分別激發該第一寬頻譜單色LED與該第二寬頻譜單色LED。 A light color variable light emitting diode (LED) light source module comprising: a first wide spectrum monochromatic LED excited by a plurality of phosphors, excited to generate a first wide spectrum monochromatic light; The plurality of phosphors excite one of the second wide-spectrum monochromatic LEDs to be excited to generate a second wide-spectrum monochromatic light, wherein the first wide-spectrum monochromatic LED and the second wide-spectrum monochromatic LED are half The color width of the first wide-spectrum monochromatic light is different from the color coordinate of the second wide-spectrum monochromatic light, and the first wide-spectrum monochromatic light and the second wide spectrum are greater than or equal to 20 nm. The illumination paths of the monochromatic light partially overlap; and a control unit respectively exciting the first wide spectrum monochrome LED and the second wide spectrum monochrome LED. 如請求項32所述之光源模組,該第一寬頻譜單色LED包含一UV LED晶片及一螢光層,該UV LED晶片被激發時係產生一紫外光,該紫外光係通過該螢光層並發出該第一寬頻譜單色光。 The light source module of claim 32, the first wide-spectrum monochromatic LED comprises a UV LED chip and a phosphor layer, wherein the UV LED chip is excited to generate an ultraviolet light, and the ultraviolet light passes through the firefly The light layer emits the first wide-spectrum monochromatic light. 如請求項32所述之光源模組,該第二寬頻譜單色LED包含一UV LED晶片及一螢光層,該UV LED晶片被激發時係產生一紫外光,該紫外光係通過該螢光層並發出該第二寬頻譜單色光。 The light source module of claim 32, wherein the second wide-spectrum monochrome LED comprises a UV LED chip and a phosphor layer, wherein the UV LED chip is excited to generate an ultraviolet light, and the ultraviolet light passes through the firefly The light layer emits the second wide-spectrum monochromatic light. 如請求項32所述之光源模組,該第一寬頻譜單色光之半波寬大於或等於25奈米,或該第二寬頻譜單色光之半波寬大於或等於25奈米。 The light source module of claim 32, wherein the first wide-spectrum monochromatic light has a half-wave width greater than or equal to 25 nm, or the second wide-spectrum monochromatic light has a half-wave width greater than or equal to 25 nm. 如請求項32所述之光源模組,該第一寬頻譜單色光之半波寬大於或等於30奈米,或該第二寬頻譜單色光之半波寬大於或等於30奈米。 The light source module of claim 32, wherein the first wide-spectrum monochromatic light has a half-wave width greater than or equal to 30 nm, or the second wide-spectrum monochromatic light has a half-wave width greater than or equal to 30 nm.
TW98128432A 2009-08-24 2009-08-24 A modulating method for cct and a led light module with variable cct TWI412784B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98128432A TWI412784B (en) 2009-08-24 2009-08-24 A modulating method for cct and a led light module with variable cct

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98128432A TWI412784B (en) 2009-08-24 2009-08-24 A modulating method for cct and a led light module with variable cct

Publications (2)

Publication Number Publication Date
TW201107917A TW201107917A (en) 2011-03-01
TWI412784B true TWI412784B (en) 2013-10-21

Family

ID=44835432

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98128432A TWI412784B (en) 2009-08-24 2009-08-24 A modulating method for cct and a led light module with variable cct

Country Status (1)

Country Link
TW (1) TWI412784B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI663746B (en) * 2018-05-30 2019-06-21 國立清華大學 Luminance and color temperature tunable light source and use thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI610457B (en) * 2016-10-19 2018-01-01 隆達電子股份有限公司 White light source device
TWI685988B (en) * 2018-06-01 2020-02-21 宏齊科技股份有限公司 Handheld electronic device and color temperature tunable flip-chip type light-emitting element thereof
CN113531411B (en) * 2020-04-21 2023-10-10 厦门立达信数字教育科技有限公司 Light source structure and lamp
CN114484381B (en) * 2022-01-21 2024-05-28 漳州立达信光电子科技有限公司 Luminous unit for artificial illumination and lamp composed of luminous unit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5851063A (en) * 1996-10-28 1998-12-22 General Electric Company Light-emitting diode white light source
US6817735B2 (en) * 2001-05-24 2004-11-16 Matsushita Electric Industrial Co., Ltd. Illumination light source
TW200509411A (en) * 2003-08-28 2005-03-01 Genesis Photonics Inc Aluminum indium gallium nitride light-emitting diode having wide bandwidth and solid-state white-light device
TW200807753A (en) * 2006-03-31 2008-02-01 Seoul Semiconductor Co Ltd Light emitting device and lighting system having the same
TWM361610U (en) * 2009-02-06 2009-07-21 High Power Lighting Corp High color rendering LED apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5851063A (en) * 1996-10-28 1998-12-22 General Electric Company Light-emitting diode white light source
US6817735B2 (en) * 2001-05-24 2004-11-16 Matsushita Electric Industrial Co., Ltd. Illumination light source
TW200509411A (en) * 2003-08-28 2005-03-01 Genesis Photonics Inc Aluminum indium gallium nitride light-emitting diode having wide bandwidth and solid-state white-light device
TW200807753A (en) * 2006-03-31 2008-02-01 Seoul Semiconductor Co Ltd Light emitting device and lighting system having the same
TWM361610U (en) * 2009-02-06 2009-07-21 High Power Lighting Corp High color rendering LED apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI663746B (en) * 2018-05-30 2019-06-21 國立清華大學 Luminance and color temperature tunable light source and use thereof

Also Published As

Publication number Publication date
TW201107917A (en) 2011-03-01

Similar Documents

Publication Publication Date Title
US8884508B2 (en) Solid state lighting device including multiple wavelength conversion materials
US8212466B2 (en) Solid state lighting devices including light mixtures
TWI452670B (en) Modulating method for cct and led light module and package structure thereof
CN104303298B (en) White luminous module
US9530944B2 (en) High color-saturation lighting devices with enhanced long wavelength illumination
CN102036435B (en) Light color toning method and light color variable light-emitting diode light source module
TWI463636B (en) High cri lighting device with added long-wavelength blue color
TWI355097B (en) Wavelength converting system
WO2012165524A1 (en) Semiconductor light-emitting device, exhibit irradiation illumination device, meat irradiation illumination device, vegetable irradiation illumination device, fresh fish irradiation illumination device, general-use illumination device, and semiconductor light-emitting system
JP2008140704A (en) Led backlight
JP2014531709A (en) Lighting device and lighting control method
JP2003124526A (en) White light source manufacturing method
JP2010050438A (en) White light-emitting diode
TWI412784B (en) A modulating method for cct and a led light module with variable cct
TW200947665A (en) High color rendering light-emitting diodes
JP6616047B2 (en) Lighting device comprising a plurality of different light sources having similar off-state appearance
CA2475289A1 (en) White-light emitting device, and phosphor and method of its manufacture
US8222652B2 (en) Method for controlling color accuracy in a light-emitting semiconductor-based device and process for producing a light-emitting semiconductor-based device with controlled color accuracy
JPWO2018016047A1 (en) Light emitting device
JP2005079500A (en) White light emitting device
JP4219621B2 (en) Manufacturing method of white light emitting diode
TW572994B (en) Method for manufacturing white light source
JP2008311670A (en) White light emitting diode
TWI396302B (en) A method of making white light source with high color rendering index and high color gamut