WO2017033288A1 - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
WO2017033288A1
WO2017033288A1 PCT/JP2015/073864 JP2015073864W WO2017033288A1 WO 2017033288 A1 WO2017033288 A1 WO 2017033288A1 JP 2015073864 W JP2015073864 W JP 2015073864W WO 2017033288 A1 WO2017033288 A1 WO 2017033288A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
chromaticity
light emitting
mixed
emitted
Prior art date
Application number
PCT/JP2015/073864
Other languages
French (fr)
Japanese (ja)
Inventor
仁 室伏
匡紀 星野
芳憲 田中
Original Assignee
サンケン電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンケン電気株式会社 filed Critical サンケン電気株式会社
Priority to PCT/JP2015/073864 priority Critical patent/WO2017033288A1/en
Publication of WO2017033288A1 publication Critical patent/WO2017033288A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the present invention relates to a light emitting device that excites a phosphor and outputs light.
  • a light emitting device using a light emitting diode (LED) composed of a light emitting element and a phosphor excited by the light emitting element has been put into practical use.
  • LED light emitting diode
  • a lighting device having a color temperature of about 2000K to 8000K it is possible to make the output light of the lighting device have a desired chromaticity by mixing and mixing light having different chromaticities emitted from a plurality of LEDs.
  • “mixing” is to mix a plurality of lights having different characteristics such as chromaticity.
  • desired output light can be obtained by combining LEDs having different chromaticities. Therefore, it is possible to reduce the number of LEDs that cannot be used for the lighting fixture, and to reduce the waste of the LEDs. Further, the degree of freedom of chromaticity can be increased.
  • An object of the present invention is to provide a light emitting device that excites a phosphor by a light emitting element and outputs output light in which variation in color rendering properties is suppressed.
  • the first blue light emitting element that emits the first emitted light having a relatively short peak wavelength, and the first blue light emitting element excited by the first emitted light, A first light emitting diode having a first phosphor layer that emits excitation light, and that outputs first mixed color light having a first chromaticity obtained by mixing the first emitted light and the first excitation light; (A) a second blue light emitting element that emits second emitted light having a relatively long peak wavelength, and a second that emits second excited light when excited by the second emitted light.
  • the present invention it is possible to provide a light emitting device that excites a phosphor with a light emitting element and outputs output light in which variation in color rendering is suppressed.
  • the light emitting device 1 As shown in FIG. 1, the light emitting device 1 according to the first embodiment of the present invention includes a first light emitting diode 10 that outputs a first color mixture light L1 having a first chromaticity, and a second chromaticity. And the second light emitting diode 20 that outputs the second mixed color light L2.
  • the light emitting device 1 outputs output light L0 having a predetermined chromaticity obtained by mixing the first mixed color light L1 and the second mixed color light L2.
  • the chromaticities of the first mixed color light L1 and the second mixed color light L2 are adjusted so that the output light L0 has a predetermined chromaticity. Details of these chromaticities will be described later.
  • the first light-emitting diode 10 includes a first blue light-emitting element 11 that emits first emitted light having a relatively short wavelength (peak wavelength) of a peak value of relative intensity in an emission spectrum,
  • the first phosphor layer 12 is excited by the emitted light and emits the first excitation light.
  • the first color mixture light L1 is light obtained by mixing the first emission light and the first excitation light.
  • the second light emitting diode 20 is excited by the second blue light emitting element 21 that emits the second emitted light whose peak wavelength is relatively longer than that of the first emitted light, and the second emitted light. And a second phosphor layer 22 that emits second excitation light.
  • the second color mixture light L2 is light in which the second emitted light and the second excitation light are mixed.
  • the first light emitting diode 10 shown in FIG. 1 has a structure in which the first blue light emitting element 11 is arranged on the bottom surface of the concave portion of the first package 13 having the concave portion.
  • the concave portion of the first package 13 is filled with the first phosphor layer 12.
  • the second light emitting diode 20 has a structure in which the second blue light emitting element 21 is disposed on the bottom surface of the concave portion of the second package 23 having the concave portion.
  • the concave portion of the second package 23 is filled with the second phosphor layer 22.
  • the first phosphor layer 12 and the second phosphor layer 22 contain a green phosphor 201 and a red phosphor 202. Silicon resin or the like can be used for the first phosphor layer 12 and the second phosphor layer 22.
  • the first light emitting diode 10 and the second light emitting diode 20 are mounted on the substrate 40 in the lamp 50.
  • the first mixed color light L1 and the second mixed color light L2 are mixed in the lamp 50, and output light L0 having a predetermined chromaticity C0 is output from the lamp 50.
  • a translucent resin cover or the like can be used for the lamp 50.
  • the first blue light emitting element 11 and the second blue light emitting element 21 are blue LED light emitting elements that emit blue light. Electrical wiring (not shown) is disposed on the substrate 40, and the first blue light emitting element 11 and the second blue light emitting element 21 are connected to the electrical wiring, respectively. When a voltage is applied through the electric wiring, a driving current flows, and the first blue light emitting element 11 and the second blue light emitting element 21 emit light.
  • an indium gallium nitride (InGaN) blue LED light emitting element can be used as the first blue light emitting element 11 and the second blue light emitting element 21.
  • the first blue light emitting element 11 and the second blue light emitting element 21 are respectively selected from two light emitting element groups whose peak wavelengths are in different wavelength ranges. That is, the first blue light-emitting element 11 is included in a group of blue light-emitting elements that emits blue light having a relatively short wavelength (hereinafter referred to as “short wavelength group”). The second blue light-emitting element 21 is included in a group of blue light-emitting elements that emits blue light having a longer wavelength than that of the short-wavelength group (hereinafter referred to as “long wavelength group”).
  • the green phosphor 201 is excited by the light emitted from the first blue light emitting element 11 or the second blue light emitting element 21 and emits green light.
  • the red phosphor 202 is excited by the light emitted from the first blue light-emitting element 11 or the second blue light-emitting element 21 and emits red light. That is, the first light emitting diode 10 includes the blue light emitted from the first blue light emitting element 11 and the green light and the red phosphor emitted from the green phosphor 201 included in the first phosphor layer 12.
  • the first mixed color light L1 in which the red light emitted from 202 is mixed is output.
  • the second light emitting diode 20 includes blue light emitted from the second blue light emitting element 21, and green light emitted from the green phosphor 201 included in the second phosphor layer 22 and the red phosphor 202.
  • the second mixed color light L2 in which the emitted red light is mixed is output.
  • the first color mixture light is adjusted by adjusting the blending ratio of the green phosphor 201 and the red phosphor 202 included in the first phosphor layer 12.
  • the first chromaticity of L1 is set.
  • the second color mixture light is obtained.
  • the second chromaticity of L2 is set.
  • the first chromaticity C1 and the second chromaticity C2 are in symmetrical positions with respect to the chromaticity C0.
  • an additive law is established for the chromaticity, so that variation in chromaticity with respect to the output light L0 is suppressed.
  • the first chromaticity C1 and the second chromaticity C2 are set so as to be positioned along the color temperature characteristic T of black body radiation in the xy chromaticity diagram.
  • the color temperature characteristic T is a characteristic of the color temperature of light that is approximately expressed by the output light L0 of the light emitting device 1.
  • the first chromaticity C1 and the second chromaticity C2 are preferably closer to the characteristic line of the color temperature characteristic T. At least, in the xy chromaticity diagram, when the chromaticity C0 is the origin, the first quadrant is the same as the color temperature characteristic T, and the x coordinate and the y coordinate are within ⁇ 0.05 from the chromaticity C0.
  • the chromaticity C1 and the second chromaticity C2 are located.
  • FIG. 3 shows a position where the first chromaticity C1 can be taken as a range A1 and a position where the second chromaticity C2 can be taken as a range A2 in the xy chromaticity diagram. Range A1 and range A2 are rectangular ranges with one side of 0.01.
  • the first chromaticity C1 and the second chromaticity C2 are in the range of chromaticity C0 to 0.05.
  • the first chromaticity C1 of the first mixed-color light L1 and the second chromaticity C2 of the second mixed-color light L2 are set according to the color temperature of light that is desired to be approximately expressed by the output light L0. Is preferred.
  • the slope of the relative intensity with respect to the wavelength of the spectrum of black body radiation varies depending on the color temperature. That is, when the color temperature is 5500 K or less, the relative intensity is smaller as the wavelength is shorter in the wavelength band of blue light. On the other hand, when the color temperature is higher than 5500 K, the shorter the wavelength in the blue light wavelength band, the greater the relative intensity.
  • the chromaticity of the first mixed color light L1 and the second mixed color light L2 is set.
  • the chromaticity of the first mixed color light L1 and the second mixed color light L2 is set.
  • the chromaticity of the first mixed color light L1 and the second mixed color light L2 can be set by the blending ratio of the green phosphor 201 and the red phosphor 202.
  • the xy chromaticity diagram shown in FIG. 2 shows the first chromaticity C1 of the first mixed color light L1 and the second chromaticity of the second mixed color light L2 when the color temperature of the black body radiation is 5500K or less. It is an example of the relationship between C2 and predetermined chromaticity C0. Relationship between the first chromaticity C1 of the first mixed light L1, the second chromaticity C2 of the second mixed light L2, and the predetermined chromaticity C0 when the color temperature of the black body radiation is higher than 5500K. An example is shown in the xy chromaticity diagram of FIG.
  • the following effects can be obtained by setting the first chromaticity C1 and the second chromaticity C2 as described above according to the color temperature of the black body radiation. It was.
  • FIG. 6 shows a simulation result of a spectrum of mixed color light of a light emitting diode using a blue light emitting element and a phosphor.
  • a characteristic P1 indicated by a solid line in FIG. 6 is a spectrum of mixed color light of the sample S1 using a plurality of blue light emitting elements having peak wavelengths in the range of 450 nm to 462.5 nm.
  • sample S1 Assuming that the color temperature of blackbody radiation is 5000K, sample S1 generates a mixed color light of high chromaticity with a blue light emitting element selected from the short wavelength group and emits blue light selected from the long wavelength group.
  • the device produced mixed color light with low chromaticity.
  • a characteristic P2 indicated by a broken line in FIG. 6 is a spectrum of mixed color light of the sample S2 using a single blue light emitting element having a peak wavelength in the range of 455 nm to 457.5 nm.
  • YAG (Ga dope) and SCASN were used for the phosphor.
  • the longer wavelength side of the blue wavelength region swells in the wavelength direction in the characteristic P1 than in the characteristic P2. Only the long wavelength side swells due to the absorption characteristics of the phosphor.
  • FIG. 7 shows an enlarged view of the blue wavelength region of FIG. The sharper the peak of the spectrum, the greater the variation in color rendering. Therefore, the expansion of the spectrum as shown in FIGS. 6 and 7 indicates that the variation in color rendering properties is suppressed.
  • the characteristic P1 does not have a plurality of peaks because a plurality of blue light emitting elements having continuous peak wavelengths are used.
  • FIG. 8 shows the color rendering index of the output light of sample S1 and the color rendering index of the output light of sample S2.
  • the light emitting device 1 can be configured by using blue light emitting elements whose peak wavelengths vary over a wide range. That is, a group of blue light emitting elements having a large peak wavelength distribution due to manufacturing variations can be used with little waste.
  • the distribution of the peak wavelength of the prepared blue light emitting element is as shown in FIG.
  • the width from the shortest wavelength of the short wavelength group G1 to the longest wavelength of the long wavelength group G2 is, for example, about 40 nm.
  • the blue light emitting elements on the short wavelength side are set as the short wavelength group G1 and the blue light emitting elements on the long wavelength side are set as the long wavelength group G2 around the center wavelength ⁇ c of the peak wavelength distribution.
  • the blending ratio of the green phosphor 201 and the red phosphor 202 included in the first phosphor layer 12 is adjusted in accordance with the wavelength of the short wavelength group G1, and the chromaticity of the first mixed color light L1 is set to the first.
  • the chromaticity C1 is set. Similarly, the mixing ratio of the green phosphor 201 and the red phosphor 202 included in the second phosphor layer 22 is adjusted to correspond to the wavelength of the long wavelength group G2, and the chromaticity of the second mixed light L2 is changed to the first. 2 chromaticity C2.
  • the blending ratio of the respective phosphors in the first phosphor layer 12 and the second phosphor layer 22 is set as follows. That is, the first light-mixed light L1 emitted from the first light-emitting diode 10 is excited by the blue light-emitting elements included in the short wavelength group G1 so that the first chromaticity C1 of the first mixed color light L1 is higher than the chromaticity C0.
  • the blending ratio of the phosphors in the first phosphor layer 12 is set.
  • the second light-emitting diode 20 is excited by the blue light-emitting elements included in the long wavelength group G2 such that the second chromaticity C2 of the second mixed light L2 emitted from the second light-emitting diode 20 is lower than the chromaticity C0.
  • the mixing ratio of the phosphor in the second phosphor layer 22 is set.
  • the short wavelength group G1 is set so that the first chromaticity C1 of the first mixed color light L1 is lower than the chromaticity C0.
  • the blending ratio of the phosphor in the first phosphor layer 12 excited by the included blue light emitting element is set.
  • the blue light emitting element is divided into the short wavelength group G1 and the long wavelength group G2, and the first light emitting diode 10 and the second light emitting diode 20 are configured according to the respective chromaticities. Is completed. Thereby, the number of blue light emitting elements which cannot be used can be suppressed. In addition, it is possible to suppress generation of useless light-emitting diodes that cannot be used as compared with the case where a light-emitting device is configured by combining light-emitting diodes according to the characteristics of the completed light-emitting diodes.
  • the green phosphor 201 includes blue light such as cerium-activated yttrium aluminate phosphor (YAG), cerium-activated lutetium aluminum garnet phosphor (LuAG), and europium-activated alkaline earth silicate phosphor (BOSS). Common green phosphors that are excited can be used.
  • YAG cerium-activated yttrium aluminate phosphor
  • LiAG cerium-activated lutetium aluminum garnet phosphor
  • BOSS europium-activated alkaline earth silicate phosphor
  • YAG-based Y 3 Al 5 O 12 Ce +3
  • Y 3 (Al, Ga) 5 O 12 Ce +3
  • (Y, Gd) 3 Al 5 O 12 Ce +3
  • BOSS-based (Ba, Sr, Ca) 2 SiO 4 Eu +2
  • LSN phosphor La 3 Si 6 N 11 Ce +3
  • scandate-based CaSc 2 O 4 Ce +3 and the like
  • scandium oxide-based Ca 3 Sc 2 Si 3 O 12 Ce +3 and Those similar to the above can be used for the green phosphor 201.
  • red phosphor 202 aluminum nitride-based CaAlSiN 3 : Eu +2 , (Sr, Ca) AlSiN 3 : Eu +2 and the like can be used.
  • first light emitting diodes 10 and second light emitting diodes 20 which are contained in the light-emitting device 1 are one each was shown in illustration.
  • any number of first light emitting diodes 10 and second light emitting diodes 20 may be used depending on the luminous intensity required for the light emitting device 1.
  • several tens to several hundreds of first light emitting diodes 10 and second light emitting diodes 20 are arranged in the lamp 50.
  • the number of the first light emitting diodes 10 and the second light emitting diodes 20 is adjusted so that the output light L0 has a predetermined chromaticity C0 by mixing.
  • the blue light emitting elements selected from the groups having different peak wavelengths are used, and the color mixture is different from the predetermined chromaticity C0.
  • a first light emitting diode 10 and a second light emitting diode 20 that output light are configured. Then, the first mixed color light L1 output from the first light emitting diode 10 and the second mixed color light L2 output from the second light emitting diode 20 are mixed, and output light L0 is output from the light emitting device 1. Is done.
  • the first chromaticity C1 of the first mixed color light L1 and the second chromaticity C2 of the second mixed color light L2 are colored along the color temperature characteristic T of blackbody radiation in the xy chromaticity diagram.
  • the light emitting device 1 that outputs the output light L0 having the chromaticity C0 in which variations in chromaticity and color rendering are suppressed.
  • the light emitting device 1 is economical because it can use blue light emitting elements whose peak wavelengths vary over a wide range.
  • FIG. 9 shows a case where blue light emitting elements are classified into two groups according to the distribution of peak wavelengths.
  • the blue light emitting elements may be classified into three groups as shown in FIG.
  • a medium wavelength group G3 including a blue light emitting element having a peak wavelength in a wavelength band including the central wavelength ⁇ c of the distribution is set between the short wavelength group G1 and the long wavelength group G2.
  • the width from the shortest wavelength of the short wavelength group G1 to the longest wavelength of the long wavelength group G2 is about 40 nm
  • the distribution width of the medium wavelength group G3 is about 5 nm.
  • Light emitting device using first blue light emitting element 11 included in short wavelength group G1, second blue light emitting element 21 included in long wavelength group G2, and third blue light emitting element 31 included in medium wavelength group G3 An example in which 1 is configured is shown in FIG.
  • the light-emitting device 1 shown in FIG. 11 includes a third blue light emission in addition to the first light-emitting diode 10 having the first blue light-emitting element 11 and the second light-emitting diode 20 having the second blue light-emitting element 21.
  • the difference from the light emitting device 1 shown in FIG. 1 is that a third light emitting diode 30 having an element 31 is further provided.
  • a third light emitting diode 30 having an element 31 is further provided.
  • the first chromaticity C1 of the first mixed color light L1 output from the first light emitting diode 10 and the second mixed color output from the second light emitting diode 20 are used.
  • the second chromaticity C2 of the light L2 is in a symmetrical position with respect to a predetermined chromaticity C0 along the color temperature characteristic of black body radiation in the xy chromaticity diagram.
  • the third light emitting diode 30 includes a third blue light emitting element 31 and a third phosphor layer that is excited by the third emitted light emitted from the third blue light emitting element 31 and emits the third excitation light. 32.
  • the peak wavelength of the third emitted light is the peak wavelength of the first emitted light emitted from the first blue light emitting element 11 and the peak wavelength of the second emitted light emitted from the second blue light emitting element 21. It is in the middle.
  • the third blue light emitting element 31 is disposed on the bottom surface of the concave portion of the third package 33 having the concave portion, and the concave portion of the third package 33 is the third fluorescent light.
  • the structure is filled with the body layer 32.
  • the third light emitting diode 30 outputs the third mixed light L3 in which the third emitted light and the third excitation light are mixed.
  • the blending ratio of the green phosphor 201 and the red phosphor 202 included in the third phosphor layer 32 so that the chromaticity of the third mixed color light L3 becomes a predetermined chromaticity C0 in the xy chromaticity diagram. Has been adjusted. Therefore, the first color mixture light L1 output from the first light emitting diode 10, the second color mixture light L2 output from the second light emitting diode 20, and the third color mixture light L3 output from the third light emitting diode 30.
  • the output light L0 having the chromaticity C0 in which variations in chromaticity and color rendering properties are suppressed can be output.
  • the first light emitting diode 10, the second light emitting diode 20, and the third light emitting diode 30 are mounted on the substrate 40 in the lamp 50.
  • the first mixed color light L 1, the second mixed color light L 2, and the third mixed color light L 3 are mixed in the lamp 50, and output light L 0 having a predetermined chromaticity C 0 is output from the lamp 50.
  • first light emitting diodes 10, second light emitting diodes 20, and third light emitting diodes 30 may be disposed in the lamp 50. At this time, the number of the first light emitting diode 10, the second light emitting diode 20, and the third light emitting diode 30 is adjusted so that the output light L0 has a predetermined chromaticity C0 by mixing.
  • the blue light emitting elements are classified into two to three groups according to the peak wavelength.
  • the blue light emitting elements may be classified into four or more groups.
  • the chromaticities of the light emitting diodes using the blue light emitting elements of the group symmetrical to each other with respect to the center wavelength of the peak wavelength distribution are set so as to be symmetric with respect to the predetermined chromaticity C0.
  • the light-emitting device of the present invention can be used for a light-emitting device that emits light by exciting a phosphor with a light-emitting element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

A light-emitting device is provided with: a first light-emitting diode which includes a first blue light emitting element emitting first emitted light having a relatively short peak wavelength and a first fluorescence material layer emitting first excited light by being excited by the first emitted light, and which outputs first mixed color light of first chromaticity in which the first emitted light and the first excited light are mixed; and a second light-emitting diode which includes a second blue light emitting element emitting second emitted light having a relatively long peak wavelength and a second fluorescence material layer emitting second excited light by being excited by the second emitted light, and which outputs second mixed color light of second chromaticity in which the second emitted light and the second excited light are mixed. The first chromaticity and the second chromaticity are located at symmetric positions with respect to a predetermined chromaticity along the color temperature characteristics of black-body radiation in an xy chromaticity diagram, and the first mixed color light and the second mixed color light are mixed to output output light of predetermined chromaticity.

Description

発光装置Light emitting device
 本発明は、蛍光体を励起して光を出力する発光装置に関する。 The present invention relates to a light emitting device that excites a phosphor and outputs light.
 発光素子とこの発光素子によって励起される蛍光体により構成される発光ダイオード(LED)を用いた発光装置が実用化されている。色温度が2000K~8000K程度の照明器具では、複数のLEDから出射される色度の異なる光をミキシングして混色することにより、照明器具の出力光を所望の色度にすることが可能である。ここで、「ミキシング」とは、色度などの特性の異なる複数の光を混ぜ合わせることである。この方法によれば、色度の異なるLEDを組み合わせて所望の出力光を得ることができる。したがって、照明器具に使用できないLEDを減少させ、LEDの無駄を少なくできる。また、色度の自由度を増大させることができる。 A light emitting device using a light emitting diode (LED) composed of a light emitting element and a phosphor excited by the light emitting element has been put into practical use. In a lighting device having a color temperature of about 2000K to 8000K, it is possible to make the output light of the lighting device have a desired chromaticity by mixing and mixing light having different chromaticities emitted from a plurality of LEDs. . Here, “mixing” is to mix a plurality of lights having different characteristics such as chromaticity. According to this method, desired output light can be obtained by combining LEDs having different chromaticities. Therefore, it is possible to reduce the number of LEDs that cannot be used for the lighting fixture, and to reduce the waste of the LEDs. Further, the degree of freedom of chromaticity can be increased.
 このため、発光素子と蛍光体を使用する種々の方法が検討されている。例えば、異なる波長範囲から選択された2つの青色発光素子によって蛍光体を励起し、蛍光体からの出射光を混色する発光装置が提案されている(例えば、特許文献1参照。)。1つの発光素子による励起によって白色光を生成する場合は、発光素子の製造ばらつきによって白色光の色度ばらつきが発生する。特許文献1に記載された発光装置では、2つの青色発光素子によって特性ばらつきの小さい蛍光体を励起することによって、発光素子の製造ばらつきをキャンセルする。 For this reason, various methods using a light emitting element and a phosphor have been studied. For example, there has been proposed a light-emitting device that excites a phosphor by two blue light-emitting elements selected from different wavelength ranges and mixes light emitted from the phosphor (for example, see Patent Document 1). When white light is generated by excitation by one light emitting element, chromaticity variation of white light occurs due to manufacturing variation of the light emitting element. In the light emitting device described in Patent Document 1, the manufacturing variation of the light emitting element is canceled by exciting the phosphor having a small characteristic variation with the two blue light emitting elements.
特許第4932078号公報Japanese Patent No. 4932978
 CIExy色度図上において、色度と光度の積が同じであるLED同士の出射光をミキシングした場合、混色光の色度がこれらのLEDの色度の平均値になるという加法法則が成り立つ。このため、色度や光度などのばらつきに対しては、複数の出射光をミキシングして混色する上記方法は有効である。 In the CIExy chromaticity diagram, when the emitted light of LEDs having the same product of chromaticity and luminous intensity is mixed, an additive law is established that the chromaticity of the mixed color light becomes the average value of the chromaticity of these LEDs. For this reason, the above-mentioned method of mixing a plurality of emitted lights and mixing them is effective for variations in chromaticity and luminous intensity.
 一方、照明器具では、ばらつきの少ない安定した演色性も求められる。このため、発光素子と蛍光体を用いた場合にも、ミキシングによって演色性が低下したりばらついたりしないことが必要である。しかしながら、演色性のばらつきを抑制するためには、加法法則が成立しないスペクトルの重なりを考慮する必要がある。これまで、演色性のばらつきを低減する方法についての検討が十分にされてこなかった。本発明は、発光素子によって蛍光体を励起して、演色性のばらつきが抑制された出力光を出力する発光装置を提供することを目的とする。 On the other hand, lighting equipment also requires stable color rendering with little variation. For this reason, even when the light emitting element and the phosphor are used, it is necessary that the color rendering properties are not reduced or varied by mixing. However, in order to suppress the variation in color rendering properties, it is necessary to consider the overlap of spectra where the additive law is not satisfied. Until now, the method for reducing the variation in color rendering properties has not been sufficiently studied. An object of the present invention is to provide a light emitting device that excites a phosphor by a light emitting element and outputs output light in which variation in color rendering properties is suppressed.
 本発明の一態様によれば、(ア)ピーク波長が相対的に短波長である第1の出射光を出射する第1の青色発光素子、及び第1の出射光に励起されて第1の励起光を出射する第1の蛍光体層を有し、第1の出射光と第1の励起光が混色された第1の色度の第1の混色光を出力する第1の発光ダイオードと、(イ)ピーク波長が相対的に長波長である第2の出射光を出射する第2の青色発光素子、及び第2の出射光に励起されて第2の励起光を出射する第2の蛍光体層を有し、第2の出射光と第2の励起光が混色された第2の色度の第2の混色光を出力する第2の発光ダイオードとを備え、第1の色度と第2の色度とが、xy色度図において黒体放射の色温度特性に沿って所定の色度について対称の位置にあり、第1の混色光と第2の混色光とを混色させて所定の色度の出力光を出力する発光装置が提供される。 According to one aspect of the present invention, (a) the first blue light emitting element that emits the first emitted light having a relatively short peak wavelength, and the first blue light emitting element excited by the first emitted light, A first light emitting diode having a first phosphor layer that emits excitation light, and that outputs first mixed color light having a first chromaticity obtained by mixing the first emitted light and the first excitation light; (A) a second blue light emitting element that emits second emitted light having a relatively long peak wavelength, and a second that emits second excited light when excited by the second emitted light. A second light emitting diode having a phosphor layer and outputting a second mixed light of a second chromaticity obtained by mixing the second outgoing light and the second excitation light, and the first chromaticity And the second chromaticity are in a symmetric position with respect to a predetermined chromaticity along the color temperature characteristic of the black body radiation in the xy chromaticity diagram, and the first mixed color light and the second mixed color light are Emitting device is provided by mixing outputs the output light of a predetermined chromaticity.
 本発明によれば、発光素子によって蛍光体を励起して、演色性のばらつきが抑制された出力光を出力する発光装置を提供できる。 According to the present invention, it is possible to provide a light emitting device that excites a phosphor with a light emitting element and outputs output light in which variation in color rendering is suppressed.
本発明の第1の実施形態に係る発光装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the light-emitting device which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る発光装置が備える発光ダイオードの出力光の色度を説明するための色度図である。It is a chromaticity diagram for demonstrating the chromaticity of the output light of the light emitting diode with which the light-emitting device which concerns on the 1st Embodiment of this invention is provided. 本発明の第1の実施形態に係る発光装置が備える発光ダイオードの出力光の色度の範囲を説明するための色度図である。It is a chromaticity diagram for demonstrating the range of chromaticity of the output light of the light emitting diode with which the light-emitting device which concerns on the 1st Embodiment of this invention is provided. 黒体放射のスペクトルを示すグラフである。It is a graph which shows the spectrum of black body radiation. 本発明の第1の実施形態に係る発光装置が備える発光ダイオードの出力光の色度を説明するための他の色度図である。It is another chromaticity diagram for demonstrating the chromaticity of the output light of the light emitting diode with which the light-emitting device which concerns on the 1st Embodiment of this invention is provided. 青色発光素子と蛍光体を用いた発光ダイオードについてのシミュレーションにより得られた出力光のスペクトルを示すグラフである。It is a graph which shows the spectrum of the output light obtained by the simulation about the light emitting diode using a blue light emitting element and fluorescent substance. 図6の一部を拡大したグラフである。It is the graph which expanded a part of FIG. 青色発光素子と蛍光体を用いた発光ダイオードについてのシミュレーションにより得られた出力光の演色評価数を示す表である。It is a table | surface which shows the color rendering index of the output light obtained by the simulation about the light emitting diode using a blue light emitting element and fluorescent substance. 青色発光素子のピーク波長の分布の例を示すグラフである。It is a graph which shows the example of distribution of the peak wavelength of a blue light emitting element. 青色発光素子のピーク波長の分布の他の例を示すグラフである。It is a graph which shows the other example of distribution of the peak wavelength of a blue light emitting element. 本発明の第2の実施形態に係る発光装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the light-emitting device which concerns on the 2nd Embodiment of this invention.
 次に、図面を参照して、本発明の実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。また、以下に示す実施形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は、構成部品の形状、構造、配置等を下記のものに特定するものでない。この発明の実施形態は、請求の範囲において、種々の変更を加えることができる。 Next, an embodiment of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. Further, the embodiments described below exemplify apparatuses and methods for embodying the technical idea of the present invention, and the technical idea of the present invention includes the shape, structure, arrangement, etc. of components. It is not specified to the following. The embodiment of the present invention can be variously modified within the scope of the claims.
 (第1の実施形態)
 本発明の第1の実施形態に係る発光装置1は、図1に示すように、第1の色度の第1の混色光L1を出力する第1の発光ダイオード10と、第2の色度の第2の混色光L2を出力する第2の発光ダイオード20とを備える。発光装置1は、第1の混色光L1と第2の混色光L2とが混色された所定の色度の出力光L0を出力する。出力光L0が所定の色度となるように、第1の混色光L1と第2の混色光L2の色度が調整される。これらの色度の詳細については後述する。
(First embodiment)
As shown in FIG. 1, the light emitting device 1 according to the first embodiment of the present invention includes a first light emitting diode 10 that outputs a first color mixture light L1 having a first chromaticity, and a second chromaticity. And the second light emitting diode 20 that outputs the second mixed color light L2. The light emitting device 1 outputs output light L0 having a predetermined chromaticity obtained by mixing the first mixed color light L1 and the second mixed color light L2. The chromaticities of the first mixed color light L1 and the second mixed color light L2 are adjusted so that the output light L0 has a predetermined chromaticity. Details of these chromaticities will be described later.
 第1の発光ダイオード10は、発光スペクトルにおける相対強度のピーク値の波長(ピーク波長)が相対的に短波長である第1の出射光を出射する第1の青色発光素子11と、第1の出射光に励起されて第1の励起光を出射する第1の蛍光体層12を有する。第1の混色光L1は、第1の出射光と第1の励起光が混色された光である。 The first light-emitting diode 10 includes a first blue light-emitting element 11 that emits first emitted light having a relatively short wavelength (peak wavelength) of a peak value of relative intensity in an emission spectrum, The first phosphor layer 12 is excited by the emitted light and emits the first excitation light. The first color mixture light L1 is light obtained by mixing the first emission light and the first excitation light.
 第2の発光ダイオード20は、第1の出射光よりもピーク波長が相対的に長波長である第2の出射光を出射する第2の青色発光素子21と、第2の出射光に励起されて第2の励起光を出射する第2の蛍光体層22を有する。第2の混色光L2は、第2の出射光と第2の励起光が混色された光である。 The second light emitting diode 20 is excited by the second blue light emitting element 21 that emits the second emitted light whose peak wavelength is relatively longer than that of the first emitted light, and the second emitted light. And a second phosphor layer 22 that emits second excitation light. The second color mixture light L2 is light in which the second emitted light and the second excitation light are mixed.
 図1に示した第1の発光ダイオード10は、凹部を有する第1のパッケージ13の凹部底面に、第1の青色発光素子11が配置された構造である。第1のパッケージ13の凹部は、第1の蛍光体層12により充填されている。また、第2の発光ダイオード20は、凹部を有する第2のパッケージ23の凹部底面に、第2の青色発光素子21が配置された構造である。第2のパッケージ23の凹部は、第2の蛍光体層22により充填されている。第1の蛍光体層12及び第2の蛍光体層22は、緑色蛍光体201及び赤色蛍光体202を含有する。第1の蛍光体層12及び第2の蛍光体層22には、シリコン樹脂などを使用可能である。 The first light emitting diode 10 shown in FIG. 1 has a structure in which the first blue light emitting element 11 is arranged on the bottom surface of the concave portion of the first package 13 having the concave portion. The concave portion of the first package 13 is filled with the first phosphor layer 12. The second light emitting diode 20 has a structure in which the second blue light emitting element 21 is disposed on the bottom surface of the concave portion of the second package 23 having the concave portion. The concave portion of the second package 23 is filled with the second phosphor layer 22. The first phosphor layer 12 and the second phosphor layer 22 contain a green phosphor 201 and a red phosphor 202. Silicon resin or the like can be used for the first phosphor layer 12 and the second phosphor layer 22.
 図1に示すように、第1の発光ダイオード10及び第2の発光ダイオード20は、灯具50内で基板40上に実装されている。第1の混色光L1と第2の混色光L2が灯具50内で混色され、所定の色度C0の出力光L0が灯具50から出力される。灯具50には、例えば透光性の樹脂カバーなどを使用可能である。 As shown in FIG. 1, the first light emitting diode 10 and the second light emitting diode 20 are mounted on the substrate 40 in the lamp 50. The first mixed color light L1 and the second mixed color light L2 are mixed in the lamp 50, and output light L0 having a predetermined chromaticity C0 is output from the lamp 50. For the lamp 50, for example, a translucent resin cover or the like can be used.
 第1の青色発光素子11及び第2の青色発光素子21は、青色光を出射する青色LED発光素子である。図示を省略した電気配線が基板40に配置されており、この電気配線に第1の青色発光素子11と第2の青色発光素子21がそれぞれ接続されている。電気配線によって電圧を印加することによって駆動電流が流れ、第1の青色発光素子11と第2の青色発光素子21が発光する。第1の青色発光素子11及び第2の青色発光素子21には、例えば窒化インジウムガリウム(InGaN)系の青色LED発光素子などを使用可能である。 The first blue light emitting element 11 and the second blue light emitting element 21 are blue LED light emitting elements that emit blue light. Electrical wiring (not shown) is disposed on the substrate 40, and the first blue light emitting element 11 and the second blue light emitting element 21 are connected to the electrical wiring, respectively. When a voltage is applied through the electric wiring, a driving current flows, and the first blue light emitting element 11 and the second blue light emitting element 21 emit light. As the first blue light emitting element 11 and the second blue light emitting element 21, for example, an indium gallium nitride (InGaN) blue LED light emitting element can be used.
 第1の青色発光素子11と第2の青色発光素子21は、ピーク波長が互いに異なる波長範囲である2つの発光素子グループからそれぞれ選択される。即ち、第1の青色発光素子11は、相対的に短波長の青色光を出射する青色発光素子のグループ(以下において、「短波長グループ」という。)に含まれる。第2の青色発光素子21は、短波長グループの出射光よりも相対的に長波長の青色光を出射する青色発光素子のグループ(以下において、「長波長グループ」という。)に含まれる。 The first blue light emitting element 11 and the second blue light emitting element 21 are respectively selected from two light emitting element groups whose peak wavelengths are in different wavelength ranges. That is, the first blue light-emitting element 11 is included in a group of blue light-emitting elements that emits blue light having a relatively short wavelength (hereinafter referred to as “short wavelength group”). The second blue light-emitting element 21 is included in a group of blue light-emitting elements that emits blue light having a longer wavelength than that of the short-wavelength group (hereinafter referred to as “long wavelength group”).
 緑色蛍光体201は、第1の青色発光素子11や第2の青色発光素子21の出射光に励起されて、緑色光を出射する。一方、赤色蛍光体202は、第1の青色発光素子11や第2の青色発光素子21の出射光に励起されて赤色光を出射する。つまり、第1の発光ダイオード10は、第1の青色発光素子11から出射される青色光、及び、第1の蛍光体層12に含まれる緑色蛍光体201から出射される緑色光と赤色蛍光体202から出射される赤色光が混色された、第1の混色光L1を出力する。第2の発光ダイオード20は、第2の青色発光素子21から出射される青色光、及び、第2の蛍光体層22に含まれる緑色蛍光体201から出射される緑色光と赤色蛍光体202から出射される赤色光が混色された、第2の混色光L2を出力する。 The green phosphor 201 is excited by the light emitted from the first blue light emitting element 11 or the second blue light emitting element 21 and emits green light. On the other hand, the red phosphor 202 is excited by the light emitted from the first blue light-emitting element 11 or the second blue light-emitting element 21 and emits red light. That is, the first light emitting diode 10 includes the blue light emitted from the first blue light emitting element 11 and the green light and the red phosphor emitted from the green phosphor 201 included in the first phosphor layer 12. The first mixed color light L1 in which the red light emitted from 202 is mixed is output. The second light emitting diode 20 includes blue light emitted from the second blue light emitting element 21, and green light emitted from the green phosphor 201 included in the second phosphor layer 22 and the red phosphor 202. The second mixed color light L2 in which the emitted red light is mixed is output.
 したがって、第1の青色発光素子11のピーク波長を考慮して、第1の蛍光体層12に含まれる緑色蛍光体201と赤色蛍光体202の配合比率を調整することにより、第1の混色光L1の第1の色度が設定される。同様に、第2の青色発光素子21のピーク波長を考慮して第2の蛍光体層22に含まれる緑色蛍光体201と赤色蛍光体202の配合比率を調整することによって、第2の混色光L2の第2の色度が設定される。 Accordingly, in consideration of the peak wavelength of the first blue light-emitting element 11, the first color mixture light is adjusted by adjusting the blending ratio of the green phosphor 201 and the red phosphor 202 included in the first phosphor layer 12. The first chromaticity of L1 is set. Similarly, by considering the peak wavelength of the second blue light emitting element 21 and adjusting the blending ratio of the green phosphor 201 and the red phosphor 202 contained in the second phosphor layer 22, the second color mixture light is obtained. The second chromaticity of L2 is set.
 第1の混色光L1の第1の色度C1、第2の混色光L2の第2の色度C2、及び出力光L0の所定の色度C0の関係の例を、図2のxy色度図に示す。第1の色度C1と第2の色度C2とは、色度C0について対称の位置にある。これにより、色度は加法法則が成り立つため、出力光L0について色度のばらつきが抑制される。更に、図2に示すように、第1の色度C1と第2の色度C2は、xy色度図において黒体放射の色温度特性Tに沿って位置するように設定されている。色温度特性Tは、発光装置1の出力光L0によって近似的に表現したい光の色温度の特性である。 An example of the relationship among the first chromaticity C1 of the first mixed color light L1, the second chromaticity C2 of the second mixed color light L2, and the predetermined chromaticity C0 of the output light L0 is shown in FIG. Shown in the figure. The first chromaticity C1 and the second chromaticity C2 are in symmetrical positions with respect to the chromaticity C0. As a result, an additive law is established for the chromaticity, so that variation in chromaticity with respect to the output light L0 is suppressed. Further, as shown in FIG. 2, the first chromaticity C1 and the second chromaticity C2 are set so as to be positioned along the color temperature characteristic T of black body radiation in the xy chromaticity diagram. The color temperature characteristic T is a characteristic of the color temperature of light that is approximately expressed by the output light L0 of the light emitting device 1.
 第1の色度C1と第2の色度C2は、色温度特性Tの特性線に近いほど好ましい。少なくとも、xy色度図において色度C0を原点としたときに、色温度特性Tと同一の象限で、且つ、色度C0からx座標とy座標が±0.05の範囲に、第1の色度C1と第2の色度C2が位置する。図3に、xy色度図において第1の色度C1の取り得る位置を範囲A1、第2の色度C2の取り得る位置を範囲A2として示す。範囲A1及び範囲A2は、一辺が0.01の矩形範囲である。 The first chromaticity C1 and the second chromaticity C2 are preferably closer to the characteristic line of the color temperature characteristic T. At least, in the xy chromaticity diagram, when the chromaticity C0 is the origin, the first quadrant is the same as the color temperature characteristic T, and the x coordinate and the y coordinate are within ± 0.05 from the chromaticity C0. The chromaticity C1 and the second chromaticity C2 are located. FIG. 3 shows a position where the first chromaticity C1 can be taken as a range A1 and a position where the second chromaticity C2 can be taken as a range A2 in the xy chromaticity diagram. Range A1 and range A2 are rectangular ranges with one side of 0.01.
 このように、第1の色度C1と第2の色度C2を黒体放射の色温度特性Tに沿った色度とすることによって、出力光L0の色度を表現したい光の色温度に近づけることができる。なお、本発明者らの検討によれば、第1の色度C1や第2の色度C2が色度C0から0.05の範囲内であることが好ましい。 Thus, by setting the first chromaticity C1 and the second chromaticity C2 to the chromaticity along the color temperature characteristic T of the black body radiation, the color temperature of the light for expressing the chromaticity of the output light L0 is obtained. You can get closer. According to the study by the present inventors, it is preferable that the first chromaticity C1 and the second chromaticity C2 are in the range of chromaticity C0 to 0.05.
 なお、出力光L0によって近似的に表現したい光の色温度に応じて、第1の混色光L1の第1の色度C1と第2の混色光L2の第2の色度C2を設定することが好ましい。図4に示すように、黒体放射のスペクトルは色温度によって波長に対する相対強度の傾きが異なる。即ち、色温度が5500K以下の場合は、青色光の波長帯において波長が短いほど相対強度が小さい。一方、色温度が5500Kよりも高い場合は、青色光の波長帯において波長が短いほど相対強度が大きい。 Note that the first chromaticity C1 of the first mixed-color light L1 and the second chromaticity C2 of the second mixed-color light L2 are set according to the color temperature of light that is desired to be approximately expressed by the output light L0. Is preferred. As shown in FIG. 4, the slope of the relative intensity with respect to the wavelength of the spectrum of black body radiation varies depending on the color temperature. That is, when the color temperature is 5500 K or less, the relative intensity is smaller as the wavelength is shorter in the wavelength band of blue light. On the other hand, when the color temperature is higher than 5500 K, the shorter the wavelength in the blue light wavelength band, the greater the relative intensity.
 このため、黒体放射の色温度が5500K以下の場合には、第1の色度C1が所定の色度C0よりも高く、且つ、第2の色度C2が所定の色度C0よりも低いように、第1の混色光L1と第2の混色光L2の色度が設定される。一方、黒体放射の色温度が5500Kよりも高い場合には、第1の色度C1が所定の色度C0よりも低く、且つ、第2の色度C2が所定の色度C0よりも高いように、第1の混色光L1と第2の混色光L2の色度が設定される。既に述べたように、第1の混色光L1と第2の混色光L2の色度は、緑色蛍光体201と赤色蛍光体202の配合比率によって設定可能である。 For this reason, when the color temperature of blackbody radiation is 5500K or less, the first chromaticity C1 is higher than the predetermined chromaticity C0, and the second chromaticity C2 is lower than the predetermined chromaticity C0. As described above, the chromaticity of the first mixed color light L1 and the second mixed color light L2 is set. On the other hand, when the color temperature of the black body radiation is higher than 5500K, the first chromaticity C1 is lower than the predetermined chromaticity C0, and the second chromaticity C2 is higher than the predetermined chromaticity C0. As described above, the chromaticity of the first mixed color light L1 and the second mixed color light L2 is set. As already described, the chromaticity of the first mixed color light L1 and the second mixed color light L2 can be set by the blending ratio of the green phosphor 201 and the red phosphor 202.
 図2に示したxy色度図は、黒体放射の色温度が5500K以下の場合における、第1の混色光L1の第1の色度C1、第2の混色光L2の第2の色度C2、及び所定の色度C0の関係の例である。黒体放射の色温度が5500Kよりも高い場合における、第1の混色光L1の第1の色度C1、第2の混色光L2の第2の色度C2、及び所定の色度C0の関係の例を、図5のxy色度図に示す。 The xy chromaticity diagram shown in FIG. 2 shows the first chromaticity C1 of the first mixed color light L1 and the second chromaticity of the second mixed color light L2 when the color temperature of the black body radiation is 5500K or less. It is an example of the relationship between C2 and predetermined chromaticity C0. Relationship between the first chromaticity C1 of the first mixed light L1, the second chromaticity C2 of the second mixed light L2, and the predetermined chromaticity C0 when the color temperature of the black body radiation is higher than 5500K. An example is shown in the xy chromaticity diagram of FIG.
 本発明者らの検討によれば、黒体放射の色温度に応じて上記のように第1の色度C1と第2の色度C2を設定することによって、以下のような効果が得られた。 According to the study by the present inventors, the following effects can be obtained by setting the first chromaticity C1 and the second chromaticity C2 as described above according to the color temperature of the black body radiation. It was.
 まず、出力光L0において演色性のばらつきが抑制される。これは、複数の発光ダイオードの出射光を混色させた効果である。図6に、青色発光素子と蛍光体を用いた発光ダイオードの混色光のスペクトルのシミュレーション結果を示す。図6に実線で示した特性P1は、450nm~462.5nmの範囲にピーク波長を有する複数の青色発光素子を用いたサンプルS1の混色光のスペクトルである。黒体放射の色温度が5000Kである場合を想定して、サンプルS1では、短波長グループから選択された青色発光素子で高い色度の混色光を生成し、長波長グループから選択された青色発光素子で低い色度の混色光を生成した。また、図6に破線で示した特性P2は、455nm~457.5nmの範囲にピーク波長を有する単体の青色発光素子を用いたサンプルS2の混色光のスペクトルである。なお、蛍光体にはYAG(Gaドープ)とSCASNを使用した。 First, the variation in color rendering in the output light L0 is suppressed. This is an effect obtained by mixing light emitted from a plurality of light emitting diodes. FIG. 6 shows a simulation result of a spectrum of mixed color light of a light emitting diode using a blue light emitting element and a phosphor. A characteristic P1 indicated by a solid line in FIG. 6 is a spectrum of mixed color light of the sample S1 using a plurality of blue light emitting elements having peak wavelengths in the range of 450 nm to 462.5 nm. Assuming that the color temperature of blackbody radiation is 5000K, sample S1 generates a mixed color light of high chromaticity with a blue light emitting element selected from the short wavelength group and emits blue light selected from the long wavelength group. The device produced mixed color light with low chromaticity. A characteristic P2 indicated by a broken line in FIG. 6 is a spectrum of mixed color light of the sample S2 using a single blue light emitting element having a peak wavelength in the range of 455 nm to 457.5 nm. In addition, YAG (Ga dope) and SCASN were used for the phosphor.
 図6に示すように、特性P2に比べて特性P1では青色波長領域の長波長側が波長方向に広がるように膨らんでいる。長波長側のみが膨らむのは、蛍光体の吸収特性に起因する。図7に、図6の青色波長領域を拡大した図を示す。スペクトルのピークが鋭いほど、演色性のばらつきが大きい。したがって、図6及び図7に示すようにスペクトルが膨らむことは、演色性のばらつきが抑制されていることを示している。なお、特性P1が複数のピークを持たないのは、ピーク波長が連続する複数の青色発光素子を使用したためである。 As shown in FIG. 6, the longer wavelength side of the blue wavelength region swells in the wavelength direction in the characteristic P1 than in the characteristic P2. Only the long wavelength side swells due to the absorption characteristics of the phosphor. FIG. 7 shows an enlarged view of the blue wavelength region of FIG. The sharper the peak of the spectrum, the greater the variation in color rendering. Therefore, the expansion of the spectrum as shown in FIGS. 6 and 7 indicates that the variation in color rendering properties is suppressed. The characteristic P1 does not have a plurality of peaks because a plurality of blue light emitting elements having continuous peak wavelengths are used.
 更に、上記のように第1の色度C1と第2の色度C2を設定することによって、主要演色性である平均演色評価数Ra及び特殊演色評価数R9が出力光L0において改善されるという効果が得られた。図8に、サンプルS1の出力光の演色評価数とサンプルS2の出力光の演色評価数を示す。 Further, by setting the first chromaticity C1 and the second chromaticity C2 as described above, the average color rendering index Ra and the special color rendering index R9, which are main color rendering properties, are improved in the output light L0. The effect was obtained. FIG. 8 shows the color rendering index of the output light of sample S1 and the color rendering index of the output light of sample S2.
 なお、本発明者らの検討によれば、波長ピークが分布の両端に位置する青色発光素子の個数を増加させることによって、スペクトルの膨らみは増大し、演色評価数は更に改善する。 Note that according to the study by the present inventors, by increasing the number of blue light emitting elements whose wavelength peaks are located at both ends of the distribution, the expansion of the spectrum is increased and the color rendering index is further improved.
 上記のように、ピーク波長が広範囲にばらついた青色発光素子を使用して発光装置1を構成できる。即ち、製造ばらつきなどに起因してピーク波長の分布が大きい青色発光素子のグループを、無駄を少なく使用することができる。 As described above, the light emitting device 1 can be configured by using blue light emitting elements whose peak wavelengths vary over a wide range. That is, a group of blue light emitting elements having a large peak wavelength distribution due to manufacturing variations can be used with little waste.
 例えば、用意された青色発光素子のピーク波長の分布が図9に示すようであったとする。ここで、短波長グループG1の最短の波長から長波長グループG2の最長の波長までの幅は、例えば40nm程度である。このとき、ピーク波長の分布の中心波長λcを中心にして、短波長側の青色発光素子を短波長グループG1とし、長波長側の青色発光素子を長波長グループG2とする。そして、短波長グループG1の波長に対応させて第1の蛍光体層12に含まれる緑色蛍光体201と赤色蛍光体202の配合比率を調整し、第1の混色光L1の色度を第1の色度C1に設定する。同様に、長波長グループG2の波長に対応させて第2の蛍光体層22に含まれる緑色蛍光体201と赤色蛍光体202の配合比率を調整し、第2の混色光L2の色度を第2の色度C2に設定する。 For example, it is assumed that the distribution of the peak wavelength of the prepared blue light emitting element is as shown in FIG. Here, the width from the shortest wavelength of the short wavelength group G1 to the longest wavelength of the long wavelength group G2 is, for example, about 40 nm. At this time, the blue light emitting elements on the short wavelength side are set as the short wavelength group G1 and the blue light emitting elements on the long wavelength side are set as the long wavelength group G2 around the center wavelength λc of the peak wavelength distribution. Then, the blending ratio of the green phosphor 201 and the red phosphor 202 included in the first phosphor layer 12 is adjusted in accordance with the wavelength of the short wavelength group G1, and the chromaticity of the first mixed color light L1 is set to the first. The chromaticity C1 is set. Similarly, the mixing ratio of the green phosphor 201 and the red phosphor 202 included in the second phosphor layer 22 is adjusted to correspond to the wavelength of the long wavelength group G2, and the chromaticity of the second mixed light L2 is changed to the first. 2 chromaticity C2.
 出力光L0によって表現したい光の色温度が5500K以下の場合には、以下のように第1の蛍光体層12と第2の蛍光体層22におけるそれぞれの蛍光体の配合比率が設定される。即ち、第1の発光ダイオード10から出射される第1の混色光L1の第1の色度C1が色度C0よりも高くなるように、短波長グループG1に含まれる青色発光素子に励起される第1の蛍光体層12における蛍光体の配合比率が設定される。また、第2の発光ダイオード20から出射される第2の混色光L2の第2の色度C2が色度C0よりも低くなるように、長波長グループG2に含まれる青色発光素子に励起される第2の蛍光体層22における蛍光体の配合比率が設定される。 When the color temperature of light desired to be expressed by the output light L0 is 5500K or less, the blending ratio of the respective phosphors in the first phosphor layer 12 and the second phosphor layer 22 is set as follows. That is, the first light-mixed light L1 emitted from the first light-emitting diode 10 is excited by the blue light-emitting elements included in the short wavelength group G1 so that the first chromaticity C1 of the first mixed color light L1 is higher than the chromaticity C0. The blending ratio of the phosphors in the first phosphor layer 12 is set. Further, the second light-emitting diode 20 is excited by the blue light-emitting elements included in the long wavelength group G2 such that the second chromaticity C2 of the second mixed light L2 emitted from the second light-emitting diode 20 is lower than the chromaticity C0. The mixing ratio of the phosphor in the second phosphor layer 22 is set.
 一方、出力光L0によって表現したい光の色温度が5500Kよりも高い場合には、第1の混色光L1の第1の色度C1が色度C0よりも低くなるように、短波長グループG1に含まれる青色発光素子に励起される第1の蛍光体層12における蛍光体の配合比率が設定される。また、第2の混色光L2の第2の色度C2が色度C0よりも高くなるように、長波長グループG2に含まれる青色発光素子に励起される第2の蛍光体層22における蛍光体の配合比率が設定される。 On the other hand, when the color temperature of light desired to be expressed by the output light L0 is higher than 5500K, the short wavelength group G1 is set so that the first chromaticity C1 of the first mixed color light L1 is lower than the chromaticity C0. The blending ratio of the phosphor in the first phosphor layer 12 excited by the included blue light emitting element is set. In addition, the phosphor in the second phosphor layer 22 excited by the blue light emitting element included in the long wavelength group G2 so that the second chromaticity C2 of the second mixed color light L2 is higher than the chromaticity C0. Is set.
 このように、青色発光素子を短波長グループG1と長波長グループG2に分けた上で、第1の発光ダイオード10と第2の発光ダイオード20をそれぞれの色度に合わせて構成し、発光装置1が完成する。これにより、使用できない青色発光素子の個数を抑制できる。また、完成した発光ダイオードの特性に応じて発光ダイオードを組み合わせて発光装置を構成する場合に比べて、使用できない無駄な発光ダイオードの発生を抑制できる。 As described above, the blue light emitting element is divided into the short wavelength group G1 and the long wavelength group G2, and the first light emitting diode 10 and the second light emitting diode 20 are configured according to the respective chromaticities. Is completed. Thereby, the number of blue light emitting elements which cannot be used can be suppressed. In addition, it is possible to suppress generation of useless light-emitting diodes that cannot be used as compared with the case where a light-emitting device is configured by combining light-emitting diodes according to the characteristics of the completed light-emitting diodes.
 なお、緑色蛍光体201には、セリウム賦活イットリウムアルミン酸塩蛍光体(YAG)、セリウム賦活ルテチウムアルミニウムガーネット蛍光体(LuAG)、ユーロビウム賦活アルカリ土類珪酸塩蛍光体(BOSS)などの、青色光によって励起される一般的な緑色蛍光体を使用可能である。例えば、YAG系のY3Al512:Ce+3、Y3(Al,Ga)512:Ce+3、(Y,Gd)3Al512:Ce+3、LuAG系のLu31512:Ce+3、BOSS系の(Ba,Sr,Ca)2SiO4:Eu+2、LSN蛍光体のLa3Si611:Ce+3、CSS蛍光体のCa3(Sc,Mg)2Si312:Ce+3、スカンデート系のCaSc24:Ce+3及びこれに類するもの、スカンジウム酸化物系のCa3Sc2Si312:Ce+3及びこれに類するもの、などを緑色蛍光体201に使用可能である。 The green phosphor 201 includes blue light such as cerium-activated yttrium aluminate phosphor (YAG), cerium-activated lutetium aluminum garnet phosphor (LuAG), and europium-activated alkaline earth silicate phosphor (BOSS). Common green phosphors that are excited can be used. For example, YAG-based Y 3 Al 5 O 12 : Ce +3 , Y 3 (Al, Ga) 5 O 12 : Ce +3 , (Y, Gd) 3 Al 5 O 12 : Ce +3 , LuAG-based Lu 3 A 15 O 12 : Ce +3 , BOSS-based (Ba, Sr, Ca) 2 SiO 4 : Eu +2 , LSN phosphor La 3 Si 6 N 11 : Ce +3 , CSS phosphor Ca 3 ( Sc, Mg) 2 Si 3 O 12 : Ce +3 , scandate-based CaSc 2 O 4 : Ce +3 and the like, scandium oxide-based Ca 3 Sc 2 Si 3 O 12 : Ce +3 and Those similar to the above can be used for the green phosphor 201.
 赤色蛍光体202には、アルミニウム窒化物系のCaAlSiN3:Eu+2、または(Sr,Ca)AlSiN3:Eu+2及びこれらに類するもの、などを使用可能である。 As the red phosphor 202, aluminum nitride-based CaAlSiN 3 : Eu +2 , (Sr, Ca) AlSiN 3 : Eu +2 and the like can be used.
 ところで、図1では、発光装置1に含まれる第1の発光ダイオード10と第2の発光ダイオード20が1個ずつである場合を例示的に示した。しかし、発光装置1に要求される光度などに応じて、任意の個数の第1の発光ダイオード10と第2の発光ダイオード20を使用してもよい。例えば、数十乃至数百個ずつの第1の発光ダイオード10と第2の発光ダイオード20を灯具50内に配置する。ミキシングによって出力光L0が所定の色度C0になるように、第1の発光ダイオード10と第2の発光ダイオード20の個数は調整される。 By the way, in FIG. 1, the case where the 1st light emitting diode 10 and the 2nd light emitting diode 20 which are contained in the light-emitting device 1 are one each was shown in illustration. However, any number of first light emitting diodes 10 and second light emitting diodes 20 may be used depending on the luminous intensity required for the light emitting device 1. For example, several tens to several hundreds of first light emitting diodes 10 and second light emitting diodes 20 are arranged in the lamp 50. The number of the first light emitting diodes 10 and the second light emitting diodes 20 is adjusted so that the output light L0 has a predetermined chromaticity C0 by mixing.
 以上に説明したように、本発明の第1の実施形態に係る発光装置1では、ピーク波長が互いに異なるグループから選択された青色発光素子を用いて、所定の色度C0と異なる色度の混色光をそれぞれ出力する第1の発光ダイオード10と第2の発光ダイオード20が構成される。そして、第1の発光ダイオード10から出力される第1の混色光L1と第2の発光ダイオード20から出力される第2の混色光L2とが混色されて、発光装置1から出力光L0が出力される。このとき、第1の混色光L1の第1の色度C1と第2の混色光L2の第2の色度C2とを、xy色度図において黒体放射の色温度特性Tに沿って色度C0について対称の位置に設定する。その結果、色度及び演色性のばらつきが抑制された色度C0の出力光L0を出力する発光装置1を提供できる。また、発光装置1ではピーク波長が広範囲にばらついた青色発光素子を使用できるため、経済的である。 As described above, in the light emitting device 1 according to the first embodiment of the present invention, the blue light emitting elements selected from the groups having different peak wavelengths are used, and the color mixture is different from the predetermined chromaticity C0. A first light emitting diode 10 and a second light emitting diode 20 that output light are configured. Then, the first mixed color light L1 output from the first light emitting diode 10 and the second mixed color light L2 output from the second light emitting diode 20 are mixed, and output light L0 is output from the light emitting device 1. Is done. At this time, the first chromaticity C1 of the first mixed color light L1 and the second chromaticity C2 of the second mixed color light L2 are colored along the color temperature characteristic T of blackbody radiation in the xy chromaticity diagram. Set to a symmetrical position about degree C0. As a result, it is possible to provide the light emitting device 1 that outputs the output light L0 having the chromaticity C0 in which variations in chromaticity and color rendering are suppressed. In addition, the light emitting device 1 is economical because it can use blue light emitting elements whose peak wavelengths vary over a wide range.
 (第2の実施形態)
 図9では、青色発光素子をピーク波長の分布に応じて2つのグループに分類する場合を示した。しかし、青色発光素子を図10に示すように3つのグループに分類してもよい。図10に示した例では、短波長グループG1と長波長グループG2との間に、分布の中心波長λcを含む波長帯にピーク波長を有する青色発光素子を含む中波長グループG3が設定されている。例えば、短波長グループG1の最短の波長から長波長グループG2の最長の波長までの幅は40nm程度、中波長グループG3の分布幅は5nm程度である。
(Second Embodiment)
FIG. 9 shows a case where blue light emitting elements are classified into two groups according to the distribution of peak wavelengths. However, the blue light emitting elements may be classified into three groups as shown in FIG. In the example shown in FIG. 10, a medium wavelength group G3 including a blue light emitting element having a peak wavelength in a wavelength band including the central wavelength λc of the distribution is set between the short wavelength group G1 and the long wavelength group G2. . For example, the width from the shortest wavelength of the short wavelength group G1 to the longest wavelength of the long wavelength group G2 is about 40 nm, and the distribution width of the medium wavelength group G3 is about 5 nm.
 短波長グループG1に含まれる第1の青色発光素子11、長波長グループG2に含まれる第2の青色発光素子21、及び中波長グループG3に含まれる第3の青色発光素子31を用いて発光装置1を構成した例を、図11に示す。図11に示した発光装置1は、第1の青色発光素子11を有する第1の発光ダイオード10及び第2の青色発光素子21を有する第2の発光ダイオード20に加えて、第3の青色発光素子31を有する第3の発光ダイオード30を更に備えることが図1に示した発光装置1と異なる点である。その他の構成については、図1に示す発光装置1と同様である。即ち、図11に示した発光装置1においても、第1の発光ダイオード10の出力する第1の混色光L1の第1の色度C1と、第2の発光ダイオード20の出力する第2の混色光L2の第2の色度C2とは、xy色度図において黒体放射の色温度特性に沿って所定の色度C0について対称の位置にある。 Light emitting device using first blue light emitting element 11 included in short wavelength group G1, second blue light emitting element 21 included in long wavelength group G2, and third blue light emitting element 31 included in medium wavelength group G3 An example in which 1 is configured is shown in FIG. The light-emitting device 1 shown in FIG. 11 includes a third blue light emission in addition to the first light-emitting diode 10 having the first blue light-emitting element 11 and the second light-emitting diode 20 having the second blue light-emitting element 21. The difference from the light emitting device 1 shown in FIG. 1 is that a third light emitting diode 30 having an element 31 is further provided. About another structure, it is the same as that of the light-emitting device 1 shown in FIG. That is, also in the light emitting device 1 shown in FIG. 11, the first chromaticity C1 of the first mixed color light L1 output from the first light emitting diode 10 and the second mixed color output from the second light emitting diode 20 are used. The second chromaticity C2 of the light L2 is in a symmetrical position with respect to a predetermined chromaticity C0 along the color temperature characteristic of black body radiation in the xy chromaticity diagram.
 第3の発光ダイオード30は、第3の青色発光素子31と、第3の青色発光素子31の出射する第3の出射光によって励起されて第3の励起光を出射する第3の蛍光体層32を有する。第3の出射光のピーク波長は、第1の青色発光素子11から出射される第1の出射光のピーク波長と第2の青色発光素子21から出射される第2の出射光のピーク波長との中間である。図11に示すように、第3の発光ダイオード30は、凹部を有する第3のパッケージ33の凹部底面に第3の青色発光素子31が配置され、第3のパッケージ33の凹部が第3の蛍光体層32により充填された構造である。 The third light emitting diode 30 includes a third blue light emitting element 31 and a third phosphor layer that is excited by the third emitted light emitted from the third blue light emitting element 31 and emits the third excitation light. 32. The peak wavelength of the third emitted light is the peak wavelength of the first emitted light emitted from the first blue light emitting element 11 and the peak wavelength of the second emitted light emitted from the second blue light emitting element 21. It is in the middle. As shown in FIG. 11, in the third light emitting diode 30, the third blue light emitting element 31 is disposed on the bottom surface of the concave portion of the third package 33 having the concave portion, and the concave portion of the third package 33 is the third fluorescent light. The structure is filled with the body layer 32.
 第3の発光ダイオード30は、第3の出射光と第3の励起光とが混色された第3の混色光L3を出力する。このとき、第3の混色光L3の色度がxy色度図において所定の色度C0になるように、第3の蛍光体層32に含まれる緑色蛍光体201と赤色蛍光体202の配合比率が調整されている。このため、第1の発光ダイオード10の出力する第1の混色光L1、第2の発光ダイオード20の出力する第2の混色光L2、第3の発光ダイオード30の出力する第3の混色光L3を混色することにより、色度及び演色性のばらつきが抑制された色度C0の出力光L0を出力することができる。 The third light emitting diode 30 outputs the third mixed light L3 in which the third emitted light and the third excitation light are mixed. At this time, the blending ratio of the green phosphor 201 and the red phosphor 202 included in the third phosphor layer 32 so that the chromaticity of the third mixed color light L3 becomes a predetermined chromaticity C0 in the xy chromaticity diagram. Has been adjusted. Therefore, the first color mixture light L1 output from the first light emitting diode 10, the second color mixture light L2 output from the second light emitting diode 20, and the third color mixture light L3 output from the third light emitting diode 30. , The output light L0 having the chromaticity C0 in which variations in chromaticity and color rendering properties are suppressed can be output.
 図11に示す発光装置1では、第1の発光ダイオード10、第2の発光ダイオード20及び第3の発光ダイオード30は、灯具50内で基板40上に実装されている。第1の混色光L1、第2の混色光L2及び第3の混色光L3が灯具50内で混色され、所定の色度C0の出力光L0が灯具50から出力される。 In the light emitting device 1 shown in FIG. 11, the first light emitting diode 10, the second light emitting diode 20, and the third light emitting diode 30 are mounted on the substrate 40 in the lamp 50. The first mixed color light L 1, the second mixed color light L 2, and the third mixed color light L 3 are mixed in the lamp 50, and output light L 0 having a predetermined chromaticity C 0 is output from the lamp 50.
 他は、第1の実施形態と実質的に同様であり、重複した記載を省略する。例えば、それぞれ複数の第1の発光ダイオード10、第2の発光ダイオード20及び第3の発光ダイオード30を灯具50内に配置してもよい。このとき、ミキシングによって出力光L0が所定の色度C0になるように、第1の発光ダイオード10、第2の発光ダイオード20及び第3の発光ダイオード30の個数が調整される。 Others are substantially the same as those in the first embodiment, and redundant description is omitted. For example, a plurality of first light emitting diodes 10, second light emitting diodes 20, and third light emitting diodes 30 may be disposed in the lamp 50. At this time, the number of the first light emitting diode 10, the second light emitting diode 20, and the third light emitting diode 30 is adjusted so that the output light L0 has a predetermined chromaticity C0 by mixing.
 (その他の実施形態)
 上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
(Other embodiments)
As mentioned above, although this invention was described by embodiment, it should not be understood that the description and drawing which form a part of this indication limit this invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.
 上記では、ピーク波長に応じて青色発光素子を2乃至3のグループに分類する例を説明したが、青色発光素子を4つ以上のグループに分類してもよい。このとき、ピーク波長の分布の中心波長について互いに対称なグループの青色発光素子を使用する発光ダイオードは、所定の色度C0について対称になるようにそれぞれの色度が設定される。 In the above description, the example in which the blue light emitting elements are classified into two to three groups according to the peak wavelength has been described. However, the blue light emitting elements may be classified into four or more groups. At this time, the chromaticities of the light emitting diodes using the blue light emitting elements of the group symmetrical to each other with respect to the center wavelength of the peak wavelength distribution are set so as to be symmetric with respect to the predetermined chromaticity C0.
 このように、本発明はここでは記載していない様々な実施形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な請求の範囲に係る発明特定事項によってのみ定められるものである。 Thus, it goes without saying that the present invention includes various embodiments that are not described herein. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.
 本発明の発光装置は、発光素子によって蛍光体を励起して光を出力する発光装置の用途に利用可能である。 The light-emitting device of the present invention can be used for a light-emitting device that emits light by exciting a phosphor with a light-emitting element.

Claims (6)

  1.  ピーク波長が相対的に短波長である第1の出射光を出射する第1の青色発光素子、及び前記第1の出射光に励起されて第1の励起光を出射する第1の蛍光体層を有し、前記第1の出射光と前記第1の励起光が混色された第1の色度の第1の混色光を出力する第1の発光ダイオードと、
     ピーク波長が相対的に長波長である第2の出射光を出射する第2の青色発光素子、及び前記第2の出射光に励起されて第2の励起光を出射する第2の蛍光体層を有し、前記第2の出射光と前記第2の励起光が混色された第2の色度の第2の混色光を出力する第2の発光ダイオードと
     を備え、
     前記第1の色度と前記第2の色度とが、xy色度図において黒体放射の色温度特性に沿って所定の色度について対称の位置にあり、
     前記第1の混色光と前記第2の混色光とを混色させて前記所定の色度の出力光を出力することを特徴とする発光装置。
    A first blue light emitting element that emits first emitted light having a relatively short peak wavelength, and a first phosphor layer that is excited by the first emitted light and emits first excited light. A first light emitting diode that outputs a first mixed light of a first chromaticity obtained by mixing the first emitted light and the first excitation light;
    A second blue light emitting element that emits second emitted light having a relatively long peak wavelength, and a second phosphor layer that is excited by the second emitted light and emits second excited light. A second light emitting diode that outputs a second mixed light of a second chromaticity obtained by mixing the second emitted light and the second excitation light, and
    The first chromaticity and the second chromaticity are in a symmetrical position with respect to a predetermined chromaticity along a color temperature characteristic of black body radiation in the xy chromaticity diagram,
    A light emitting device characterized in that the first mixed color light and the second mixed color light are mixed to output output light of the predetermined chromaticity.
  2.  前記xy色度図において前記所定の色度を原点としたときに前記黒体放射の前記色温度特性と同一の象限で、且つ、前記所定の色度からx座標とy座標が±0.05の範囲に前記第1の色度と前記第2の色度が位置することを特徴とする請求項1に記載の発光装置。 In the xy chromaticity diagram, when the predetermined chromaticity is used as an origin, the x- and y-coordinates are ± 0.05 from the predetermined chromaticity in the same quadrant as the color temperature characteristic of the black body radiation. 2. The light emitting device according to claim 1, wherein the first chromaticity and the second chromaticity are located in a range.
  3.  前記黒体放射の色温度が5500K以下の場合には、前記第1の色度が前記所定の色度よりも高く、且つ前記第2の色度が前記所定の色度よりも低く、
     前記黒体放射の色温度が5500Kよりも高い場合には、前記第1の色度が前記所定の色度よりも低く、且つ前記第2の色度が前記所定の色度よりも高い
     ことを特徴とする請求項1に記載の発光装置。
    When the color temperature of the black body radiation is 5500K or less, the first chromaticity is higher than the predetermined chromaticity, and the second chromaticity is lower than the predetermined chromaticity,
    When the color temperature of the black body radiation is higher than 5500K, the first chromaticity is lower than the predetermined chromaticity and the second chromaticity is higher than the predetermined chromaticity. The light-emitting device according to claim 1.
  4.  前記第1の発光ダイオードから前記第1の色度の前記第1の混色光が出力されるように、前記第1の蛍光体層における緑色蛍光体と赤色蛍光体の配合比率が設定され、
     前記第2の発光ダイオードから前記第2の色度の前記第2の混色光が出力されるように、前記第2の蛍光体層における緑色蛍光体と赤色蛍光体の配合比率が設定されている
     ことを特徴とする請求項1に記載の発光装置。
    The blending ratio of the green phosphor and the red phosphor in the first phosphor layer is set so that the first light mixture of the first chromaticity is output from the first light emitting diode,
    The blending ratio of the green phosphor and the red phosphor in the second phosphor layer is set so that the second light mixture of the second chromaticity is output from the second light emitting diode. The light-emitting device according to claim 1.
  5.  ピーク波長が前記第1の青色発光素子と前記第2の青色発光素子との中間である第3の出射光を出射する第3の青色発光素子、及び前記第3の出射光に励起されて第3の励起光を出射する第3の蛍光体層を有し、前記第3の出射光と前記第3の励起光が混色された前記所定の色度の第3の混色光を出力する第3の発光ダイオードを更に備え、
     前記第1の混色光、前記第2の混色光及び前記第3の混色光を混色させて前記出力光を出力することを特徴とする請求項1に記載の発光装置。
    A third blue light emitting element that emits third emitted light whose peak wavelength is intermediate between the first blue light emitting element and the second blue light emitting element, and the third wavelength emitted by the third emitted light are excited by the third emitted light. A third phosphor layer that emits the third excitation light and outputs a third color mixture light of the predetermined chromaticity obtained by mixing the third emission light and the third excitation light. The light emitting diode is further provided,
    2. The light emitting device according to claim 1, wherein the output light is output by mixing the first mixed light, the second mixed light, and the third mixed light.
  6.  前記第3の発光ダイオードから前記所定の色度の前記第3の混色光が出力されるように、前記第3の蛍光体層における緑色蛍光体と赤色蛍光体の配合比率が設定されていることを特徴とする請求項5に記載の発光装置。 The blending ratio of the green phosphor and the red phosphor in the third phosphor layer is set so that the third light mixture of the predetermined chromaticity is output from the third light emitting diode. The light-emitting device according to claim 5.
PCT/JP2015/073864 2015-08-25 2015-08-25 Light-emitting device WO2017033288A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/073864 WO2017033288A1 (en) 2015-08-25 2015-08-25 Light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/073864 WO2017033288A1 (en) 2015-08-25 2015-08-25 Light-emitting device

Publications (1)

Publication Number Publication Date
WO2017033288A1 true WO2017033288A1 (en) 2017-03-02

Family

ID=58099694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073864 WO2017033288A1 (en) 2015-08-25 2015-08-25 Light-emitting device

Country Status (1)

Country Link
WO (1) WO2017033288A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108767099A (en) * 2017-04-14 2018-11-06 松下知识产权经营株式会社 Wavelength shifting device, light supply apparatus, lighting device and image display
KR20190062326A (en) * 2017-10-30 2019-06-05 산켄덴키 가부시키가이샤 Light emitting device and lighting device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009123489A (en) * 2007-11-14 2009-06-04 Sony Corp Surface light source device and liquid crystal display device
JP2011113941A (en) * 2009-11-30 2011-06-09 Sharp Corp Light emitting module, surface light source, liquid crystal display device, and lighting system
JP2013045839A (en) * 2011-08-23 2013-03-04 Mitsubishi Electric Corp Led module and light-emitting device, and method of manufacturing led module
JP2015126160A (en) * 2013-12-27 2015-07-06 サンケン電気株式会社 Light emitting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009123489A (en) * 2007-11-14 2009-06-04 Sony Corp Surface light source device and liquid crystal display device
JP2011113941A (en) * 2009-11-30 2011-06-09 Sharp Corp Light emitting module, surface light source, liquid crystal display device, and lighting system
JP2013045839A (en) * 2011-08-23 2013-03-04 Mitsubishi Electric Corp Led module and light-emitting device, and method of manufacturing led module
JP2015126160A (en) * 2013-12-27 2015-07-06 サンケン電気株式会社 Light emitting device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108767099A (en) * 2017-04-14 2018-11-06 松下知识产权经营株式会社 Wavelength shifting device, light supply apparatus, lighting device and image display
CN108767099B (en) * 2017-04-14 2022-10-28 松下知识产权经营株式会社 Wavelength conversion device, light source device, illumination device, and image display device
KR20190062326A (en) * 2017-10-30 2019-06-05 산켄덴키 가부시키가이샤 Light emitting device and lighting device
EP3511618A4 (en) * 2017-10-30 2019-10-02 Sanken Electric Co., Ltd. Light-emitting device and illumination device
KR102146430B1 (en) * 2017-10-30 2020-08-20 산켄덴키 가부시키가이샤 Light-emitting device and lighting device
US11244929B2 (en) 2017-10-30 2022-02-08 Sanken Electric Co., Ltd. Light emitting device and lighting device

Similar Documents

Publication Publication Date Title
KR100771811B1 (en) White light emitting device
TWI355097B (en) Wavelength converting system
US9321958B2 (en) Yellow light emitting phosphor and light emitting device package using the same
US20170048941A1 (en) Light emitting device and led light bulb
JP2010080935A (en) Semiconductor light emitting device, backlight source using the same, backlight source system, display, and electronic apparatus
JP2008140704A (en) Led backlight
JP2016219519A (en) Light-emitting device
KR101455595B1 (en) Phosphor compositon and white light emitting device using the same
JP2015126160A (en) Light emitting device
JP2007504644A (en) Color mixing lighting system
JP6782231B2 (en) Light source with adjustable emission spectrum
US11621377B2 (en) LED and phosphor combinations for high luminous efficacy lighting with superior color control
US11949049B2 (en) Tunable lighting system with preferred color rendering
JP2009054633A (en) Led lighting equipment
JP5405355B2 (en) White lighting equipment
TW201706394A (en) Blue emitting phosphor converted LED with blue pigment
US10770629B2 (en) Light emitting device
TWI595803B (en) White light illumination system
WO2017033288A1 (en) Light-emitting device
KR102503519B1 (en) Oxyfluoride phosphor compositions and lighting apparatus thereof
KR102130817B1 (en) White Light Emitting Device with High Color Rendering Index
KR101409489B1 (en) Silicon oxynitride phosphor and light device having the same
KR101855391B1 (en) White Light Emitting Device with High Color Rendering Index
JP7313565B2 (en) Tunable lighting system with favorable color rendering
JP2013145813A (en) White light-emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15902257

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15902257

Country of ref document: EP

Kind code of ref document: A1