TW200837310A - System for generating brown gas and uses thereof - Google Patents

System for generating brown gas and uses thereof Download PDF

Info

Publication number
TW200837310A
TW200837310A TW096134337A TW96134337A TW200837310A TW 200837310 A TW200837310 A TW 200837310A TW 096134337 A TW096134337 A TW 096134337A TW 96134337 A TW96134337 A TW 96134337A TW 200837310 A TW200837310 A TW 200837310A
Authority
TW
Taiwan
Prior art keywords
flue gas
water
chamber
gas
combustion
Prior art date
Application number
TW096134337A
Other languages
Chinese (zh)
Inventor
Siong Cheak Steven Mok
Original Assignee
Siong Cheak Steven Mok
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from SG200606177-4A external-priority patent/SG141247A1/en
Priority claimed from SG200702442-5A external-priority patent/SG146493A1/en
Application filed by Siong Cheak Steven Mok filed Critical Siong Cheak Steven Mok
Publication of TW200837310A publication Critical patent/TW200837310A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • C25B1/044Hydrogen or oxygen by electrolysis of water producing mixed hydrogen and oxygen gas, e.g. Brown's gas [HHO]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/22Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being gaseous at standard temperature and pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Incineration Of Waste (AREA)
  • Treating Waste Gases (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

A system for the generation, storage and use of Brown gas comprising at least one Brown gas generator 116, in communication with an electricity supply 104 and water supply 102; at least one first storage chamber 122, in fluid communication with the generator, for storing the Brown gas generated from said generator 116; and Brown gas application means 146, 200, 300 in communication with said at least one first storage chamber, wherein said generator and first storage chamber are located proximate the Brown gas application means. For example, the Brown gas may be used for the production of hot water 146, for the production of chilled water 200 and as fuel in an incineration unit 300.

Description

200837310 九、發明說明: I:發明所屬之技術領域3 發明領域 本發明係關於一種產生布朗氣之系統及其用於不同應 5 用之用途。 L· 發明背景 天然氣常用於家用及工業用用途。但對天然氣用作為 燃料來滿足逐漸增高的需求,諸如家庭及工廠加熱用途的 10憂慮日增。來自於天然氣燃燒之溫室排放物包括二氧化 碳、二氧化硫、氧化亞氮及水蒸氣。實際上,天然氣的燃 燒被視為促成全球暖化的主要環境因素之一。其它有關天 然氣之問題為:相較於全球天然氣供應的短缺,因全球需 求量增高,因而長期經濟可行性及利用性有問題。另一個 15問題為並非每個國家都有其本身的天然氣來源,如此嚴重 仰賴其它國家來取得天然氣。也必要有全面性基礎建設網 路來支援天然氣的供應、貯存及配送給終端使用者。於序 闊區域暴露的管路及終端網路非僅於建立及維持上、、二 昂貴,同時對外來影響諸如天然災害或恐怖份:代價 20當跪弱。 填脅也相 〜個實例 一偏實例為 方式併入此 用之適當能 曾經提示數種替代燃料來源來替代天然氣 係使用太陽能,將太陽能轉換成可用能源。另 布朗氣,如US 4,081,656所述,該案内容以引用 處。布朗氣被描述為純粹工業焊接及切削應 200837310 ’ us 4,〇81,656描述—種由水的電解產生氧氣與氮 乱此合物之方法。產物亦即布朗氣有顯著特徵,諸如高熱 值布朗氣可與選用之金屬進行反應性燃燒,放出低量污 染。 5 右干專利案描述布朗氣的使用。例如仍6,761,558描述 户布朗氣熱反應之加熱裝置,其内容以引用方式併入此 处進步描述一種於布朗氣已經通過己烷液體後捕捉來 ;布朗氣之反應性燃燒之熱量之方法qUs 6,443,725說明 、種於燃燒器内循環加熱熱產生單^而燃燒布朗氣之方 10法,其内容以引用方式併入此處。 此=前文說明,可知技藝界需要有可靠安全的系統來 一 w月b里供豕用及卫業用,該系統可迎合能量需求的增 门對%〇兄極少造成衝擊。進一步,如此顯示具有此等優 點之新穎技術範圍。 15 ^如焚化為最常見之摧毀大部分家庭廢料及工業廢料 中出現的病原、病毒及毒性有機體之最常見方法。但習知 焚化爐日漸面對多項問題。舉例言之,焚化廠耗用大量燃 料來燃燒廢料。燃料可包括天然氣、丙燒或輕燃料油。由 ;對天然氣的全球需求量增高與全球天然氣的供應量短 夫、傳統加熱焚化變成一種極為昂貴的廢料處理手段。為 了木減輕衝擊,_焚⑽座落遠離人群補區,結果導致 人化薇操作上而要的廢料、燃料以及其它供應來源長距離 運送之高運送成本。 另一項問題為家庭廢料及工業廢料焚化期間由於燃燒 6 200837310 不完全結果造成戴奥辛類及呋喃類排放,造成對社群健康 的嚴重威脅。結果導致來自於環保人士的壓力日增,對於 可能產生戴奥辛和呋喃的廢料的拋棄上加諸苛刻的管制與 規範。高燃燒溫度,超過12〇(TC,伴以廢料的高擾動混合(使 5用強制通風空氣擾動混合)及煙道氣的高滯留時間至少2 秒,可於焚化過程中,於燃燒室有效摧毀戴奥辛及呋喃。 因此一種確保廢料完全燃燒,減少燃燒期間的戴奥辛與呋 喃形成之方式係修改既有之焚化過程,實質上提升焚化爐 溫,俾便提升燃燒效率。但如此將於燃料耗用增加時導致 10操作成本的升高。 曾經提示若干替代途徑來達成高燃燒溫度。一個實例 係切換至流化床丙烷焚化爐。另一個實例係使用熱電漿焚 化爐,其使用高能、高強度電漿喷射來摧毁廢料。但此等 辦法無法直接結合既有焚化設施。另一項辦法係使用廉 15價、熱值高、對環境衝擊小之替代燃料來源。 於另一個實例中,放出於空氣中漂浮的顆粒物質及放 出煙道氣仍舊是個普及的問題。廣泛已知放出此等氣體造 成顯著環境及健康風險。此等物質的排放可能係由工業製 程、燃煤及焚化廠由燃燒廢料所產生(僅舉出少數例子)。由 20於該等製程的結果,若排放物未經進一步處理即直接排放 入大氣中,則排放物之成分可能對環境有害。 既有之排放物及煙道氣之控制與處理措施包括使用旋 風器、靜電沉殿器(ESP)、沉降室、濕務氣器、及織物過濾 系統。但至最大程度,此等措施僅有助於減少排放物及煙 7 200837310 道氣中之顆粒物質,以及部分處理煙道氣及排放物成分。 因此’田經過處理」之排放物及煙道氣排放入大氣時, 排放物触道氣中仍然含有對環境可能有害之有害成分。 +例σ之旋風II之總顆粒收集效率低,特別對小於 10¾米之顆粒之收集效率低。而靜電沉殿器雖'然可有效處 理排放物質及煙道氣,但安裝及維持上極為昂貴。也需要 大型安裝空間。此外,於氣體游離期間由靜電沉殿器之帶 可能產生臭氧,臭氧增加環保上的問題。需 10 15 20 »曰生有素的人心㈣靜電㈣器。織物職系統也極 為叩貝,當於超過約29(rc之溫度操 礦物織物或金屬織物。於意外產生火二 些濃度的某錄塵也有爆炸職的風險U純在下,某 解決==:較佳需要有環保友善且能量有效之手段來 【聲明内容3 發明概要 根據第一態樣,本發明提供一種 朗氣之系統,包含: f產生、貯存及使用布 -至少一個布朗氣產生器,該布朗 水源連通; /、產生為係與電源及 至少一個第一貯存室,係與該產 由該產生器所產生之布朗氣;以及 通’用來貯存200837310 IX. INSTRUCTIONS: I: TECHNICAL FIELD OF THE INVENTION The present invention relates to a system for generating Brownian gas and its use for different applications. L· BACKGROUND OF THE INVENTION Natural gas is commonly used in domestic and industrial applications. But the use of natural gas as a fuel to meet increasing demand, such as household and factory heating applications, is growing. Greenhouse emissions from natural gas combustion include carbon dioxide, sulfur dioxide, nitrous oxide and water vapor. In fact, natural gas combustion is considered to be one of the main environmental factors contributing to global warming. Other issues related to natural gas are: Compared to the global shortage of natural gas supply, the long-term economic feasibility and availability are problematic due to the increase in global demand. Another 15 problem is that not every country has its own natural gas source, so it is so serious that it depends on other countries to obtain natural gas. A comprehensive infrastructure network is also necessary to support the supply, storage and distribution of natural gas to end users. The pipelines and terminal networks exposed in the pre-existing area are not only expensive to establish and maintain, but also externally affecting such as natural disasters or terrorists: the price is weak. Filling the threats also ~ Instances One example is the way to incorporate this with the appropriate energy. Several alternative fuel sources have been suggested to replace natural gas. Solar energy is used to convert solar energy into usable energy. Another Brown gas, as described in US 4,081,656, is incorporated by reference. Brown gas is described as purely industrial welding and cutting. 200837310 ‘us 4, 〇81, 656 describes a method for producing oxygen and nitrogen from the electrolysis of water. The product, also known as Brownian gas, is characterized by a high calorific value of Brownian gas which can be reactively combusted with the selected metal to give off low levels of contamination. 5 The right-hand patent case describes the use of Brown gas. For example, still 6,761,558 describes a heating device for the Brown's aerothermal reaction, the contents of which are incorporated herein by reference. A description describes a method for capturing the heat of reactive combustion of Brown gas after the Brown gas has passed through the hexane liquid. 6, 443, 725 illustrates the method of circulating a heat of heat generated in a combustor to produce a single gas and burning brown gas, the contents of which are incorporated herein by reference. This = the previous description, we know that the art world needs a reliable and safe system for the use of the military and the health industry for a month, the system can cater to the increase in energy demand. Further, this shows a novel range of technologies having such advantages. 15 ^ If incineration is the most common method of destroying pathogens, viruses and toxic organisms found in most household wastes and industrial wastes. However, the incinerators are increasingly facing a number of problems. For example, incineration plants consume large amounts of fuel to burn waste. The fuel may include natural gas, acrylic or light fuel oil. The increase in global demand for natural gas and the short supply of natural gas in the world, traditional heating incineration has become an extremely expensive means of waste disposal. In order to mitigate the impact of the wood, _Chong (10) is located away from the crowd replenishment area, resulting in high transportation costs for long-distance transportation of waste, fuel and other sources of supply. Another problem is the dioxin and furan emissions caused by incomplete results during the incineration of household waste and industrial waste. This poses a serious threat to the health of the community. As a result, pressure from environmentalists has increased, and harsh regulations and regulations have been imposed on the abandonment of wastes that may cause dioxin and furan. High combustion temperature, over 12 〇 (TC, accompanied by high-disturbance mixing of waste (mixing 5 with forced air turbulence) and high residence time of flue gas for at least 2 seconds, can be effectively destroyed in the combustion chamber during incineration Dioxin and furan. Therefore, a way to ensure complete combustion of waste and reduce the formation of dioxin and furan during combustion is to modify the existing incineration process, substantially increase the temperature of the incinerator, and improve the combustion efficiency. However, the fuel consumption will increase. This results in an increase in operating costs of 10. Several alternative approaches have been suggested to achieve high combustion temperatures. One example is switching to a fluidized bed propane incinerator. Another example uses a thermal plasma incinerator that uses high energy, high strength plasma. Jets are used to destroy waste. However, these methods cannot be directly combined with existing incineration facilities. Another method is to use an alternative fuel source that is cheaper, has a higher calorific value, and has less impact on the environment. In another example, it is released into the air. Floating particulate matter and the release of flue gas are still a widespread problem. It is widely known that the release of such gases creates a significant environment and The risk of such substances may be generated by industrial processes, coal-fired and incineration plants from combustion waste (to name a few). From the results of these processes, if the emissions are not further processed, they are directly When discharged into the atmosphere, the composition of the emissions may be harmful to the environment. Controls and treatments for existing emissions and flue gases include the use of cyclones, electrostatic sinks (ESP), settling chambers, wet gas servers, And fabric filtration systems. However, to the greatest extent, these measures only help to reduce emissions and particulate matter in the pipelines of 200837310, as well as partial treatment of flue gas and emissions components. When the flue gas is discharged into the atmosphere, the flue gas of the effluent still contains harmful components that may be harmful to the environment. + σ Cyclone II has low total particle collection efficiency, especially for collection of particles less than 103⁄4 m. Although the electrostatic sinker is 'effective in handling emissions and flue gas, it is extremely expensive to install and maintain. It also requires a large installation space. In addition, during the gas release period The belt of the electrostatic sinker may generate ozone, which increases the environmental protection problem. It needs 10 15 20 » the human heart (4) electrostatic (four) device. The fabric system is also extremely mussel, when it exceeds about 29 (rc temperature Manipulating mineral fabrics or metal fabrics. In the case of accidentally generating a certain concentration of fire, there is also a risk of explosion. U is pure, and a solution ==: better need to be environmentally friendly and energy efficient means [Declaration Content 3 Summary of Invention According to a first aspect, the present invention provides a system for generating a gas comprising: f generating, storing and using a cloth - at least one Brown gas generator, the Brown water source being connected; /, generating a system and a power source and at least one first storage Room, and the Brown gas produced by the generator; and the 'for storage'

布朗氣施用裝置與該至少一個第〜P 其中該產生器及該第一貯存室位置=通’ 近5亥布朗氣施用 200837310 裝置。 須瞭解「鄰近」係參照本發明之期望用途。例如用於 建築物内部之用途’則要求「鄰近」之定義係落入該建集 物之基地範圍内,諸如廠房室内有習知錦爐、屋了頁的^ ^ 5 類似工業空氣調節器,或鄰近於建築物的外部殼體,諸如 配電箱。 於不同用途中,諸如用於住宅開發。「鄰近」包括於住 宅開發内部的中央位置。此係可與習知能量供應諸如主電 力作比較與區別’藉此發電可能遠離該住宅開發案之數公 10里之外。如此,於此種情況下,比較習知就產生以及儲存 而言位在「遠方」之習知能量供應源需要相當大量配送能 源的基礎建設,「鄰近」係定義為於可用位置以内,於最終 配送供使用之前無需實質基礎建設。如此,本發明中,產 生器以及第一貯存室位置鄰近布朗氣施用裝置之一項優點 15為系統效率提高。此種配置比較仰賴外部能源,也可降低 設置較少基礎建設的成本。 比較其它形式天然氣,布朗氣顯示有高熱值與污染物 排放可忽略。如此,可優異地使用布朗氣供家用與工業用。 例如所產生之布朗氣可用來提供供下列用途使用之管路輪 2〇送氣體^烹調與空間加熱;或製造過程用之工業加熱處理· 洗衣、清潔衛生、與洗滌用之熱水;製造空間冷卻用之冷 卻水;以及提供分解垃圾、廢料及其它家庭廢料或工業廢 料之焚化單元之燃料。 於第二態樣中,本發明提供一種製造熱水用之鋼爐與 9 200837310 燃燒器單元,該鍋爐與燃燒器單元包含: •接納進給水用之一第一入口; -接納來自於一布朗氣產生器之布朗氣用之一第二入 口;以及 5 -排放所產生之熱水用之一出口, 根據又一實施例,施用裝置包含至少一個製造熱水之 第一室,其中加熱該熱水之熱係由布朗氣之燃燒衍生而 得,布朗氣係得自至少一個第一貯存室。特別,該至少一 個第一室可為一鍋爐與燃燒器單元。至少一個第一室包含: 10 •供由該至少一個第一貯存室接納布朗氣之一第一入 π ; -接納水之一第二入口; -一氣體燃燒器;以及 -排放所產生之熱水用之一出口, 15 其中來自該第一入口的布朗氣可由該氣體燃燒器燃 燒,藉此加熱來自該第二入口之水;以及其中該經加熱之 水可由出口排放。 接納水之第二入口可連接至含於該至少一個布朗氣產 生器内部之至少一個熱交換器出口。 20 供接納水之第二入口也可連接至至少一個太陽能熱收 集器之出口。 於第一入口前方,可設置至少一個閃火遏止器。該閃 火遏止器包括常用於揮發性氣體諸如氫氣、乙炔及其它燃 料氣體之供應管線上之裝置,閃火遏止器用來防止火焰傳 10 200837310 播至供應源,諸士“阿、^ 0 ^ 軋體貯存槽或氣體產生器。供本發 明之目的,閃火遏止 态可架設於布朗氣供應源之多個接 火點燃部分填充以液化烴氣作為卿^ 5 該至少一個第_含γ ^ 至可進一步包含反應性金屬元件。例 如,可用於至少_個第“ 蜀騎 至之反應性金屬元件包括但非限 於下列之任一者:麵、細 鋼、鎳_鉻合金或其它高溫鎳合金。 反應性金屬元件可呈單曲殼體或雙曲殼體形式,有穿孔於 殼體表面上來最大化金屬元件與布朗氣火焰間之接觸面 10積。錄-鉻合金可呈鎳路線形式。反應性金屬元件可置於布 朗氣火焰路徑上來執行反應性燃燒,俾進-步提高第二室 之焰溫。 本發明之系統進一步包含至少一個第二貯存室,第二 貯存室係用來貯存由該至少一個第一室所產生的熱水。如 15此,該至少-個第二貯存室可連接至該至少_個第一室出 口。製造的熱水可貯存於貯存室内供未來空間加熱用、洗 衣、清潔衛生與洗滌用。 … 根據又一實施例,施用裝置進一步包含至少_個第二 室用來製造冷卻水。特別 20卻單元。 该至少一個弟一室可為吸收冷 該至少一個第二室包括: -接納一吸收劑之一第一入口 -接納一冷媒之一第二入口; -接納冷卻水之一第三入口; 11 200837310 -接納溫水之一第四入口, -一第一熱交換器; -一第二熱交換器; -排放溫水之一第一出口;及 5 -排放所製造之冷卻水之一第二出口, 其中該第三入口及第一出口可連接至該第一熱交換 器,以及該第四入口及第二出口可連接至該第二熱交換器。 吸收劑可為溴化鋰(LiBr)、氨(NH3)或其它適當吸收 劑,諸如熟諳技藝人士顯然易知之乾燥劑或除濕劑。冷媒 10 可為水。其它適當冷媒也可用於本發明之目的。 至少一個第二室可利用熱來氣化冷媒及吸收劑,來執 行一冷卻循環,該熱係由流動來自於至少第二貯存室之熱 水之一熱交換器所產生之熱,或直接由至少一個第一室由 布朗氣燃燒所產生之熱。 15 由於冷卻循環結果,來自該至少一個第二室之水被冷 卻。所製造的冷卻水可貯存於至少一個第三貯存室。冷卻 水可用於多項應用。例如供空間冷卻用。特別,來自該至 少一個第三貯存室之冷卻水可流入一空氣處理單元來提供 空間冷卻,該空氣處理單元包含一帶有一鼓風機之熱交換 20 器。 根據又一實施例,本發明之施用裝置進一步包含燃燒 廢料之至少一個第三室。特別,該至少一個第三室為焚化 單元。該至少一個第三室包含: -藉燃燒布朗氣來燃燒廢料之一燃燒單元; 12 200837310 _供接納廢料之連接至該燃燒單元之_第一入 氣之連 -供接納來自於該至少一個第一貯存室之布朗 接至該燃燒單元之一第二入口;以及 之連接至該 -供排放由該燃燒單元所製造之煙道氣用 5 燃燒單元之一出口。 廢料可分離成固體廢料及液體廢料。廢料可於進、一 燃燒單元之前處理來減少廢料中之水含量。 、給入 10 15 根據本發明之系統也包含供排放具有較低溫之煙道氣 之連接至該出口之-熱交換器。另外,根據本發明之系^ 包含連接至$連接至賊單元之出口之_祕氣器,俾驟 冷由該出口所排放之煙道氣溫度,及/或移除煙道氣中之顆 粒及飛灰。濕滌氣器為處理氣流來去除次微米或較大的飛 灰。濕滌氣器可有一系列高容積喷水喷嘴來提供由該出口 所排放之煙道氣的快速驟冷。舉例言之,煙道氣可被驟冷 至200°C至300°C。可遏止戴奥辛類及呋喃類於空氣中重新 形成。出口也可連接至空氣過濾系統。系統内部有一焚化 爐較優異,有害廢料可經處理不會延遲,如此可避免排放 至環境中之有害排放物。焚化爐也可組配成廢料至能量焚 化爐,藉此廢料之燃燒熱被回收用於產生水蒸氣或發電。 2〇 根據第二態樣,本發明提供一種製造熱水之锅爐與燃 燒器單元’該锅爐與燃燒器單元包含: -接納進給水之一第一入口; _接納來自於一布朗氣產生器之布朗氣之一弟二入 口;及 13 200837310 -排放所製造之熱水之一出口, 其中該布朗氣經燃燒來產生熱量,該熱量加熱進料水 來製造熱水。 供排放所製造之熱水之出口可連接至供貯存所製造之 5 熱水之一貯存槽。該锅爐與燃燒器單元之第一入口可連接 至:布朗氣產生器之一第一熱交換器之出口;至少一個太 陽能熱收集器之出口,及/或供貯存所製造之熱水之該貯存 槽。 於第三態樣中,本發明提供一種回收由燃燒材料燃燒 10 所產生之熱之系統,包含: -至少一個布朗氣產生器,其係與一電源及水源連通; -用來貯存由該產生器所產生之布朗氣之與該產生器 做流體連通之至少一個第一貯存室; -供燃燒該燃燒材料之與該至少一個第一貯存室連通 15 之至少一個燃燒室;以及 -適合接納來自於該燃燒材料燃燒之由該燃燒室所產 生之熱之至少一個熱沒取室, 其中該產生器及該第一貯存室之位置係鄰近於該燃燒 室及該熱沒取室。 20 於一第四態樣中,本發明提供一種回收經由燃燒材料 燃燒所產生之熱之方法,該方法包含下列步驟: -藉燃燒布朗氣而燃燒於該至少一個燃燒室中之燃燒 材料;以及 -接納由該燃燒室所製造之煙道氣供回收其中之熱。 14 200837310 該至少一個布朗氣產生器利用電力來於電解過程中將 水解離成為氧氣及氫氣。至少一個布朗氣產生器可包括一 電解室。氧氣與氫氣之混合物可藉管路輸送至該至少一個 第一貯存室。該至少一個第一貯存室可含有預定量之液化 5 烴,其可用作為焰冷卻劑。舉例言之,液化烴可選自於由 下列所組成之組群:己烷、庚烷、甲醇、乙醇、及其組合。 液化烴可維持於低溫,例如維持於低於烴沸點之溫度。熟 諳技藝人士瞭解施用之烴之適當貯存溫度,此種貯存溫度 為普通常識。舉例言之,溫度為20°C至l〇〇°C。特別,溫度 10 為10°C至20°c。特別,當所使用之烴為己烷時,溫度為20 °C。液化烴係作為催化劑來修改布朗氣之焰溫。特別,液 化烴可為己烷。 根據又一實施例,廢料係於該至少一個燃燒室中燃 燒。該至少一個燃燒室係使用布朗氣作為燃料。布朗氣可 15 得自該至少一個第一貯存室。特別,燃燒室可為焚化單元。 燃燒室可為單級組態或多級組態。該至少一個燃燒室可包 含: -藉燃燒布朗氣供燃燒該燃燒材料之一燃燒單元; -供接納燃燒材料之連接至該燃燒單元之一第一入口; 20 -供接納來自於該至少一個貯存室之布朗氣之連接至 該燃燒單元之一第二入口;以及 -供排放由該燃燒單元所製造之煙道氣之連接至該燃 燒單元之一出口。 該燃燒材料可為廢料、廢物、垃圾及其它家庭廢料或 15 200837310 業笔料燃燒室進一步包含一前處理單元,用來於燃燒 材料進給至燃燒單元之前,前處理該燃燒材料。燃燒材料 可被刀離成固體燃燒材料及液體燃燒材料。燃燒材料可經 分選來去除可循環利用之非可燃性材料及有害燃燒材料。 5燃燒材料可經過緊壓及/或乾燥來減少燃燒材料中之水含 量0 燃燒材料係於燃燒單元中燃燒。燃燒材料係藉任何適 田方去進給至燃燒單元。例如,燃燒材料可藉重力裝置或 機械裝置而進給入燃燒單元。燃燒單元可包含一布朗氣燃 1〇燒器,來將一高溫焰投射入該燃燒單元内部來燃燒該燃燒 材料。燃燒單元也包含一額外入口,俾允許供給新鮮空氣 予忒燃燒單元來達成燃燒材料之更完整燃燒。燃燒單元可 以耐火材料作為内襯,來維持燃燒單元内部之高溫。經燃 燒之燃燒材料炭化之非可燃燒材料可收集於該燃燒單元内 邛且由燃燒單元移出拋棄。燃燒後之燃燒材料及炭化之 非可燃材料於拋棄之前可接受進一步處理。 除了燃燒單元之外,燃燒室也包含一再氧化室。再氧 化至可為煙道氣排放入大氣前,於燃燒單元中所製造的煙 道氣用之熱滌氣裝置。舉例言之,由燃燒材料於該燃燒單 2〇元中燃燒所製造之煙道氣可於再氧化室内氧化,來進一步 刀解煙道氣或氧化煙道氣成為對環境較為無害之形式。再 氧化室也可使用布朗氣來操作。因此再氧化室包含布朗氣 燃燒器來將煙道氣加熱至適當溫度。舉例言之,煙道氣之 加熱溫度可為煙道氣成分之還原反應溫度。該溫度可為 16 200837310 1〇〇〇°〇至2_。(:。特別該溫度可為1_。(:至1500。(:。 為了進-步減少氧化亞氮的排放,於再氧化室之布朗 氣燃燒器可使用純氧與布朗氣之混合物來燃燒而非使用新 鮮空亂。新鮮空氣中之高氮含量可能於高溫反應而形成氧 5化亞氮類,氧化亞氮類可能對環保有害。 再氧化至可包合-網格方塊。網格方塊可設置成直接 接觸再氧化室内之布朗氣焰俾達到高溫。網格方塊可支栽 於金屬架上。網格方塊可由任一種適當材料製成。例如, 網格方塊可由麵、不鏽鋼、鎳-鉻合金或㈣各合金製成。由 10燃燒單元輸入之煙道氣可讓其通過經加熱而發輝光之網格 方塊,來執行熱化學反應,其完全氧化煙道氣中之煙道氣 成分,諸如一氧化碳、氧化亞氮類及其它顆粒。經處理之 煙道氣可用於本發明之系統之其它應用,或可於排放入大 氣前進一步處理。 15 於燃燒室之多級組態中,諸如二級燃燒室,燃燒材料 可於燃燒單元中以空氣不充分條件燃燒,俾製造煙道氣, 該煙道氣包含二氧化碳氣、水蒸氣、一氧化碳氣、氫氣及 烴化合物氣體。然後煙道氣藉導管導引至再氧化室。再氡 化室可供應足量空氣條件以及富氧條件來進—步氧化煙道 20 氣之各種成分。 為了確保所製造之煙道氣藉導管導引出該燃燒單元, 燃燒單元及再氧化室係維持於適當負壓。例如,壓力為_50 帕(Pa)。可藉安裝一抽吸扇於燃燒單元之出口來維持負壓。 如前文說明,於燃燒室中之燃燒材料之燃燒,製造煙 17 200837310 道氣。來自於煙道氣之熱係用於糸統中之其它應用。舉例 言之,所製造之煙道氣可被導引至至少一個熱汲取室。特 別,該至少一個熱汲取室可為鍋爐單元或乾燥器。 鍋爐單元可用於製造水蒸氣,讓用於製造水蒸氣之熱 5係衍生自由燃燒室被導引至鍋爐單元之煙道氣。可使用任 一種適當鍋爐單元。鍋爐單元可經設計,故納入不超過預 定溫度之煙道氣,容許煙道氣於預定最低體積流速。於此 種情況下,鼓風機可架設於鍋爐單元進氣口,來降低輪入 之煙道氣溫度,以及提高輸入之煙道氣之體積流速。舉例 10言之,鍋爐單元可呈金屬管逆流式熱交換器鍋爐單元形 式。該至少一個熱汲取室可包含: -一水入口; •接納由燃燒單元所產生之煙道氣之煙道氣進氣口; -排放所產生之水蒸氣之一第一出氣口;以及 15 -排放煙道氣之一第二出氣口, 故來自水入口之水藉來自煙道氣進氣口之煙道氣所加 熱’藉此產生水蒸氣,以及其中水蒸氣係由該第一出氣口 排放’煙道氣係由該第二出氣口排放。如此,該至少一個 熱沒取室之煙道氣進氣口可連接至該至少一個燃燒室之出 20 氣口。 進入熱汲取室之進給水可得自系統内部之一水供應 源。於該熱汲取室中之進給水吸收來自於由燃燒室所產生 之煙道氣之熱來形成水蒸氣。水蒸氣可上升至水蒸氣轉 鼓’供進一步於升壓加熱來製造超熱水蒸氣。 18 200837310 進於至7襄少/個熱汲取室之進給水可於燃燒室預 ^ %蛤水管子可於燃燒室室頂及順著壁面行 熱。舉例言之,進終 % 心於來自於由燃燒室所產生之煙道氣之熱或 :露=:〆。管子内部之進給水可藉對流熱或 5輻射熱加敎。管子中么進給水之容積流速可控制為,水被 加熱至約赃或以卞°經加熱之進給水隨後可被果送至至 少一個熱及取室供製造水蒸氣0 根據又一個實施例,本發明之系統進一步包含一種與 該至少一個第一室連通之電力產生裝置。該電力產生裝置 !〇 可包含: -適合接納由該至少一個第一室所產生之水蒸氣之至 少一個水蒸氣渦輪; •與該至少一個水蒸氣渦輪連通之至少一個發電用之 發電機;以及 15 -排放由該發電機所製造之電力之裝置。 來自該至少一個熱汲取室例如鍋爐單元之水蒸氣轉動 渦輪,製造機械能,機械能於該至少一個發電機轉成電能, 藉此t電,以及其中所產生之電力經排放。任何適當水蒸 2〇氣屑輪皆可使用。舉例言之,水蒸氣滿輪可為單級水蒸氣 ^輪或夕級水蒸氣渦輪。水蒸氣或超熱水蒸氣供應至水蒸 =渦輪可藉_控制系統調節。舉例言之,水蒸氣供給至水 …氣屑輪可經由變更進給水流人渦輪單元之流速調節。 所產生之電力可供給該至少一個布朗氣產生器用來產 生布朗痛 “,及/或供給一電力袼栅。因此本發明之系統之優 19 200837310 點之一為由水蒸氣發電,可降低對外部電源的依賴。 系統進一步包含與該至少一個水蒸氣滿輪連通之一熱 交換器。特別,熱交換器可為一冷卻單元。該熱交換器可 包含: 5 -供接納來自於該水蒸氣渦輪之水蒸氣之一水蒸氣進 氣口;以及 -一水出口, 其中該熱交換器冷卻由該水蒸氣進氣口所接納之水蒸 氣,藉此冷凝水蒸氣來製造水;以及其中水係由水出口排 10 放。由該熱交換器所排放之水可於系統内部循環利用。舉 例言之,由該熱交換器所排放之水可用作為進給至鍋爐單 元之進給水。 熱交換器也可與該至少一個熱汲取室連通。特別,當 水蒸氣渦輪達到最大容量時,渦輪單元所製造的水蒸氣可 15 被導引至該熱交換器而被冷卻成為水。如此,該熱交換器 可包含一第二進氣口,當水蒸氣渦輪達到其最大容量時, 該第二進氣口適合接納由該至少一個熱汲取室所製造之水 蒸氣。 根據又一實施例,該至少一個熱汲取室可包含一乾燥 20 器,用來於燃燒室内燃燒燃燒材料之前,乾燥該燃燒材料。 舉例言之,至少一個熱汲取室可構成如前文說明之燃燒室 之前處理單元之一部分。特別,於燃燒材料於燃燒單元中 燃燒之前,乾燥器可降低該燃燒材料之水含量。於該至少 一個熱汲取室内乾燥燃燒材料用之熱可衍生自從該燃燒室 20 200837310 所排放之煙道氣。如此’來自於職燒室之煙道氣可導引 至乾餘⑨。來自於峨單元之煙道氣也可被導引至乾燥器 用來乾燥該崎㈣。乾職域賴料㈣至燃燒室用 來於燃燒室内燃燒。 ,、外仏巴含於煙道氣排放入大氣之前,用來 處理煙道氣之-後處理單元。如此,來自於燃燒室、乾燥 為及/或鋼爐單7°之煙道氣可被導引人後處理單it。後處理 =70可包含至少—個再氧化室、―濕務氣^、及/或一驟冷 10 15 20 2再,化室諸如前述再氧化室,係藉燃燒布朗氣而熱務 之氣屬;條氣益為處理氣體流來去除次微米或更大的 氣灰,裝置。濕I氣器可有—㈣大容量水喷霧喷嘴來提 ,由該出氣口所排放的煙道氣之快速驟冷。例如,煙道氣 ::::至20(rc至30(rc。如此可抑制於大氣中再度形 類。出氣口也可連接至-空氣過渡器系 =驟Γ降低由出氣口所排放之煙道氣之溫度及/或去除 煙、乳中之顆粒及飛灰。 根據一第二態樣,本發明提供一 燒所產生之熱之方法,該枝包含下燃燒材料燃 料二燃燒布朗氣而於至少-個燃燒室中燃燒燃料 -接納藉該燃燒室所產生之煙道氣用來回收立中之熱 』1法二—步包:於一鋼爐製造水蒸氣之步驟,二 錢用之熱係衍生自由該燃燒室所產生之煙道 乳。水錢可祕至與發電狀發電機連通之—水塞氣、馬 21 200837310 輪0 該方法進一步包含於該至少一個燃燒室内燃燒前乾燥 该燃燒材料之步驟,故乾燥該燃燒材料之熱係衍生自由該 燃燒室所產生之煙道氣。 5 於一第五態樣中,本發明提供一種於煙道氣排放入大 氣之前處理該煙道氣之總成,包含: -至少一個接納與加熱煙道氣之處理室; -燃燒布朗氣來供給煙道氣加熱用熱之裝置;以及 -排放經加熱之煙道氣之部分。 10 於一第六態樣中,本發明提供一種於排放入大氣前處 理煙道氣之方法,包含下列步驟: -提供煙道氣至該至少一個處理室; •提供布朗氣予一布朗氣燃燒裝置;以及 -藉燃燒該布朗氣而加熱煙道氣至一預定溫度。 15 布朗氣之燃燒裝置可為布朗氣燃燒器。任何適當之布 朗氣燃燒器皆可用於本發明之目的。布朗氣燃燒器可投射 高溫焰至該處理室内來加熱該煙道氣。處理室也包含又一 進氣口,來允卉新鮮空氣供給該處理室。處理室可被供給 足量空氣及*氧條件來進一步氧化煙道氣成分。處理室可 2〇以耐火材料襯墊來維持處理室内之高溫。當煙道氣經加熱 時,煙道氣可於處理室内氧化,來進一步分解或氧化成為 對環境較為無害的成分。例如,煙道氣可被加熱至適當溫 度。煙道氣可被加熱至燃點。煙道氣被加熱之溫度可高於 威。特別,煙道氣可被加熱至動。⑶㈣之溫度。 22 200837310 件,a中力瓿:包含於邊至少-個處理室内之至少一個構 5 10 15 20 之較高加2^^,^縣讀錢料煙道氣 鋼戟、桿、以至夕一個構件包含—篩網、 特別,該構件、或其組合。構件可由適當材料製成。 該至少-個,二3—網格方槐,其中該網格方塊係被罩於 矿鉻人金或内。網格方塊可由舶、鋼、鎖-路合金、 理室内之布朗^合製成。構件可設置成直接接觸投射於處 例如===。構件可支載於支_ 煙、首— &找於金屬托架上。輸入該處理室内之 可讓其通過經加熱之構件來獲得更高加熱效率。特 執行煙道乳可讓其通過經加熱之輝光網格方塊,來 氣化亞反應而完全氧化煙道氣成分,諸如-氧化碳、 於其它^及其它煙道氣中之顆粒。經處理之煙道氣可用 、、匕k,或於排放入大氣前進—步接受處理。 總成内可包含一個或多個處理室。 ,、一 — ^ _ __丨 、 處理〜之棒或八個處理至特別有二個處理室。有多個 至之k點為被加熱之煙道氣之滞留時間增加,因此可 成煙道氣成分之完全氧化。當有多於—個處理室時,處 一至之可輯财式係串聯,讓魄氣财通過 二個處理室。 勺加熱後之煙道氣可用於其它用途。如此,總成進一步 個駿取室,該熱脉室適合接納來自於該至少一 個處理室之經加熱之煙道氣。特別,熱沒取室包含_ 早元。又更制,賊取室包含-水蒸氣鋼爐單元。 23 200837310 熱汲取室包含一製造水蒸氣用之鍋爐單元,故製造水 蒸氣之熱係由從該至少一個處理室導引至該鍋爐單元之經 加熱之煙道氣衍生而得。可使用任何適當锅爐單元。例如, 鍋爐單元可呈金屬管或板型逆流式熱交換器鍋爐單元形 5 式。該熱汲取室包含: 一水入口; -一水蒸氣出氣口;以及 -一煙道氣出氣口, 熱沒取室配置來允許煙道氣加熱水而製造水蒸氣。特 10 別,來自水入口之水藉來自該至少一個處理單元之煙道氣 加熱,藉此製造水蒸氣;以及其中該水蒸氣及煙道氣係分 別由該水蒸氣出氣口及煙道氣出氣口排放。 進給入鍋爐單元之進給水可得自水供應源。鍋爐單元 中之進給水吸收由該至少一個處理室所產生之煙道氣之熱 15 而形成水蒸氣。水蒸氣上升至水蒸氣轉鼓,來進一步於升 壓加熱而製造超熱水蒸氣。進給至鍋爐單元之進給水可經 預熱。例如,進給水管子可於該至少一個處理室之屋頂及 沿著壁面行進,讓管子暴露於來自於進給至該等處理室之 煙道氣之熱,或暴露於處理室内部之熱。管子内部之進給 20 水可藉對流熱及輻射熱加熱。管子内部之進給水之體積流 速可控制成水被加熱至約90°C或以下。然後加熱後之進給 水泵送入鍋爐單元供製造水蒸氣。 根據又一個實施例,本發明之系統進一步包含一種與 該至少一個第一室連通之電力產生裝置。該電力產生裝置 24 200837310 可包含: -適合接納由該熱沒取室所產生之水蒸氣之至少一個 水蒸氣渦輪; -與該至少個水蒸氣渦輪連通之至少一個發電用之 發電機;以及 -排放由該發電機所製造之電力之裝置。 10 15 來自該熱及取室特別鋼爐單元之水蒸氣轉動滿輪,製 造機械能,機械能於該至少—個發電機轉成電能,藉此發 電,以及其中所產生之電力經排放。任何適當水蒸氣满輪 皆可使用。舉例言之,水I㈣輪可為單級水蒸氣渦輪或 。錄纟域或超熱水蒸氣供應至水蒸氣满輪 :藉-控制系統調節。舉例言之,水蒸氣供給至水蒸氣渦 2經由變更進給水流W單元之流速。所產生之 口戈供认h 布月乱產生為用來產生布朗氣,及/ 給1力格栅。因此本發明之系統之優 ㈣:電,可降低對外部電源的依賴。 , 交換i成步包含與該至少—個水蒸氣渴輪連通之一教 又換益。特別,熱交換写 … 包含· &了為^卩早7^。該熱交換器可 20 Ώ 仏接納來自於該水蒸氣渦輪之水 以及 蒸氣之一第一 進氣 • 一水出〇, 其中該熱交換器 水係由水^排放。 可冷凝水蒸氣而製造水;以及其中該 由熱交換器排放之水可於總成内部循 25 200837310 環。例如由熱交換器排放之水可用作為供給鍋爐單元之進 給水。如此,該熱交換器之水出口可連結至熱沒取室之水 入口。 熱交換器也可與熱汲取室連通。特別當水蒸氣渦輪達 5 到最大容量時,熱沒取室之鋼爐單元所產生之水蒸氣可被 導引至熱交換器來冷卻成水。如此,熱交換器可包含一第 二進氣口,當水蒸氣渦輪達到其最大容量時,該第二進氣 口適合接納由熱沒取室所產生之水蒸氣。 本發明之總成也包含一後處理單元,來於煙道氣排放 10 入大氣之前進一步處理煙道氣。例如,後處理單元可為滌 氣總成。滌氣總成可包含煙道氣之滌氣裝置。滌氣總成適 合接納由加熱後煙道氣之排放部分及/或熱沒取室之煙道 氣出氣口接納煙道氣。特別,煙道氣之;:條氣裝置為滌氣器。 可使用任一種適當滌氣器。例如,滌氣器可為濕滌氣器、 15 細腰管滌氣器、衝射板滌氣器或喷淋塔滌氣器。煙道氣之 滌氣單元包含重力沉降室及機械收集器。 要緊地,煙道氣之滌氣裝置可將粒子由煙道氣移轉至 液體流,來減少煙道氣中之顆粒含量。如此於煙道氣排放 入大氣前,減少煙道氣中之顆粒物質含量。煙道氣之滌氣 20 裝置可去除具有平均直徑為約3微米或以上之顆粒物質。煙 道氣之滌氣裝置可由煙道氣同時收集顆粒物質及氣態污染 物。氣體可藉吸收去除或藉化學反應移除。例如,於滌氣 器中,粒子載荷之煙道氣被強制接觸填充材料上之液體小 滴或液體薄片或來自於一板之液體喷射。顆粒中濕滌氣器 26 200837310 由氣體流中移除粒子的能力係依據下列變數決定: -粒子大小,亦即氣體動力學直徑; -粒子速度;及/或 -小滴、薄片或喷霧速度。 5 ㈣聽氣裝置進—步包含前置W或終過濾器, 來進-步移除煙道氣内部之顆粒物質。例如,前 可安裝於務氣器上游,意圖捕捉有較大平均直徑之齡物 質。而務氣器本身也可移除此種較大顆粒物質,於氣體流 經務氣器之前移除較大粒子,允許務氣器較為倒落:且2 10為有效地集中在有較小平均直徑之顆粒物質。終過遽器可 安裝於蘇氣器下游。終過攄器意圖捕捉於務氣過程中未被 去除的粒子。 藉由從氣體流中移除次微米或更大的飛灰,濕務氣器 可處理氣體流。濕務氣器除了由氣體流中移除顆粒物質之 15外,也可快速驟冷煙道氣。例如,濕務氣器可有一串列高 量水喷灑喷嘴來提供煙道氣的快速驟冷。 滌氣總成進-步包含於煙道氣排放入大氣之前冷卻煙 道氣用之裝置。任-種適當煙道氣冷卻裝置皆可使用。例 如煙道氣冷卻裝置為驟冷器。煙道氣冷卻裝置可將煙道氣 冷卻至低於30(TC之溫度。於排放入大氣前冷卻煙道氣之優 點為,可防止於大氣中再度形成戴奥辛類及咬喃類。冷卻 裝置可連接至空氣過遽器系統,來進一步去除煙道氣中之 微粒及飛灰。 根據-第二態樣,本發明提供一種於排放入大氣前處 27 200837310 理煙道氣之方法,包含下列步驟: -提供煙道氣至該至少一個處理室; -提供布朗氣予一布朗氣燃燒裝置;以及 -藉燃燒該布朗氣而加熱煙道氣至一預定溫度。 5 加熱步驟包含於至少一個用來達成較高加熱效率之構 件存在下,加熱煙道氣。預定溫度可高於700°C。布朗氣燃 燒裝置可為布朗氣燃燒器。 根據特定實施例,煙道氣提供至三個處理室,煙道氣 循序通過個別三個處理室。特別,該方法包含下列步驟: 10 _煙道氣提供至一第一處理室; -藉燃燒布朗氣,將該第一處理室内之煙道氣加熱至一 第一預定溫度; -將加熱後之煙道氣由該第一處理室導引至第二處理 室; 15 -藉燃燒布朗氣,將該第二處理室内之煙道氣加熱至一 第二預定溫度; -將加熱後之煙道氣由該第二處理室導引至第三處理 室;以及 -藉燃燒布朗氣,將該第三處理室内之煙道氣加熱至一 20 第三預定溫度。 例如,該第一預定溫度可為約800°C。該第二預定溫度 可為約1000°C。該第三預定溫度可為大於1200°C。特別該 第三預定溫度可為約1600°C。 該方法進一步包含於熱汲取室中製造水蒸氣之步驟, 28 200837310 其中該製造水蒸氣之熱係衍生自經加熱之煙道氣。所製造 之水蒸氣可進給至與發電用之發電機連通之至少一個水蒸 氣渦輪。 該方法進一步包含進一步處理加熱後之煙道氣之步 5 驟。例如,該方法包含下列步驟: -於煙道氣滌氣裝置中滌氣加熱後之煙道氣;及/或 -於煙道氣冷卻裝置中冷卻加熱後之煙道氣。 煙道氣可冷卻至適當溫度。例如煙道氣可冷卻至低於 300°C之溫度。 10 圖式簡單說明 方便就附圖進一步說明本發明,附圖舉例說明本發明 之可能之配置。其它本發明之配置亦屬可能,結果附圖之 規格細節絕非意圖囿限本發明。 第1圖為根據本發明之一個實施例之系統之示意圖。 15 第2圖為根據本發明之又一實施例,一種吸收冷卻器之 示意圖。 第3圖為根據本發明之又一實施例,一種焚化單元之示 意圖。 第4圖為根據本發明之又一實施例,一種導引布朗氣及 20 熱水及冷卻水至一多樓層建築物之局部產生、貯存及輸送 系統之示意圖。 第5圖為根據本發明之又一實施例,一種系統之示意 圖。 第6圖為根據本發明之又一實施例,一種利用來自於燃 29 200837310 燒至所產生之煙道氣之熱之系統之示意圖。 第7圖為根據本發明之又一實施例,一種利用來自於燃 燒室所產生之煙道氣之熱之系統之示意圖。 第8圖為根據本發明之又一實施例,一種總成之示咅 5 圖。The Brown gas application device and the at least one first to the second of the generator and the first storage chamber position = pass 'nearly 5 hl Brown gas application 200837310 device.  It is to be understood that "adjacent" refers to the intended use of the present invention. For example, the use of the interior of a building requires that the definition of "adjacent" fall within the base of the building. Such as the factory room has a well-known furnace, The house has a ^ ^ 5 similar to an industrial air conditioner, Or adjacent to the outer casing of the building, Such as distribution boxes.  For different purposes, Such as for residential development. "Proximity" is included in the central location within the development of the home. This system can be compared and differentiated from conventional energy supplies such as main power, whereby power generation may be far removed from the residential development. in this way, In this case, It is a well-known infrastructure that generates and stores a well-known energy source that is located in a "far location" that requires a considerable amount of energy to be distributed. "Proximity" is defined as being within the available location. No substantial infrastructure is required until the final distribution is available for use. in this way, In the present invention, An advantage of the generator and the first storage chamber adjacent to the Brown gas application device is the increased system efficiency. This configuration relies on external energy sources. It also reduces the cost of setting up less infrastructure.  Comparing other forms of natural gas, Brown gas shows high calorific value and contaminant emissions are negligible. in this way, Brown gas is excellent for domestic and industrial use.  For example, the Brown gas produced can be used to provide a pipeline wheel for use in the following applications: 2 gas delivery, cooking and space heating; Or industrial heat treatment for the manufacturing process · laundry, Clean and hygienic, Hot water for washing; Manufacture of cooling water for space cooling; And provide decomposition of garbage, Fuel for incineration units of waste and other household waste or industrial waste.  In the second aspect, The invention provides a steel furnace for manufacturing hot water and a burner unit of 200883373, The boiler and burner unit contains:  • accept one of the first inlets for feed water;  - accepting a second inlet from the Brown gas of a Brown gas generator; And 5 - one of the hot water produced by the discharge,  According to yet another embodiment, The applicator includes at least one first chamber for producing hot water, The heat in which the hot water is heated is derived from the combustion of Brown gas. The Brown gas system is obtained from at least one first storage chamber. particular, The at least one first chamber can be a boiler and burner unit. At least one first room contains:  10 • for receiving one of the Brown gases by the at least one first storage chamber first into π;  - accepting one of the second inlets of water;  - a gas burner; And - one of the outlets for the hot water produced by the discharge,  15 wherein Brown gas from the first inlet is combustible by the gas burner, Thereby heating water from the second inlet; And wherein the heated water can be discharged from the outlet.  A second inlet for receiving water may be coupled to at least one heat exchanger outlet contained within the at least one Brown gas generator.  A second inlet for receiving water may also be connected to the outlet of at least one solar heat collector.  In front of the first entrance, At least one flash arrester can be provided. The flash arrester includes a volatile gas such as hydrogen, a device on the supply line of acetylene and other fuel gases, The flash fire suppressor is used to prevent the flame from being transmitted to the supply source. All the priests ^ 0 ^ Rolling stock tank or gas generator. For the purposes of the present invention, The flash fire suppression state may be installed in a plurality of ignition ignition portions of the Brown gas supply to be filled with the liquefied hydrocarbon gas as the at least one γ-containing γ ^ to further include a reactive metal component. E.g, Reactive metal components that can be used for at least _th" rides include, but are not limited to, any of the following: surface, Fine steel, Nickel-chromium alloy or other high temperature nickel alloy.  The reactive metal component can be in the form of a single curved shell or a hyperbolic shell. There are perforations on the surface of the housing to maximize the contact area between the metal component and the Brown gas flame. Recording - Chromium alloy can be in the form of a nickel route. Reactive metal components can be placed on the flame path of the flame to perform reactive combustion. Into the step - step to increase the flame temperature of the second chamber.  The system of the present invention further includes at least one second storage chamber, The second storage compartment is for storing hot water produced by the at least one first chamber. Such as 15 this, The at least one second storage chamber can be coupled to the at least one first chamber outlet. The hot water produced can be stored in the storage room for heating in the future space. Washing clothes, Clean and wash.  According to yet another embodiment, The applicator further comprises at least one second chamber for making cooling water. Special 20 but unit.  The at least one brother room may be absorbing cold. The at least one second chamber comprises:  Receiving a first inlet of an absorbent - receiving a second inlet of a refrigerant;  - receiving a third inlet of cooling water;  11 200837310 - Accepting one of the fourth entrances to warm water,  a first heat exchanger;  a second heat exchanger;  - one of the first outlets for discharging warm water; And 5 - one of the second outlets of the cooling water produced by the discharge,  The third inlet and the first outlet are connectable to the first heat exchanger. And the fourth inlet and the second outlet are connectable to the second heat exchanger.  The absorbent can be lithium bromide (LiBr), Ammonia (NH3) or other suitable absorbent, A desiccant or dehumidifying agent such as is apparent to those skilled in the art. Refrigerant 10 can be water. Other suitable refrigerants can also be used for the purposes of the present invention.  At least one second chamber can utilize heat to vaporize the refrigerant and the absorbent. To perform a cooling cycle, The heat is generated by a heat exchanger flowing from one of the hot waters of at least the second storage chamber. Or the heat generated by the combustion of the Brown gas directly from at least one of the first chambers.  15 due to the cooling cycle results, Water from the at least one second chamber is cooled. The manufactured cooling water can be stored in at least one third storage chamber. Cooling water can be used in a variety of applications. For example, for space cooling. particular, Cooling water from the at least one third storage chamber can flow into an air handling unit to provide space cooling. The air handling unit includes a heat exchange unit 20 with a blower.  According to yet another embodiment, The applicator of the present invention further comprises at least one third chamber of combustion waste. particular, The at least one third chamber is an incineration unit. The at least one third chamber comprises:  - burning a unit of combustion waste by burning Brown gas;  12 200837310 _ a connection for receiving waste to the combustion unit - a connection for receiving a second inlet from the at least one first storage chamber to one of the combustion units; And being connected to the outlet for discharging the flue gas produced by the combustion unit with one of the 5 combustion units.  The waste can be separated into solid waste and liquid waste. Waste can enter, A combustion unit is previously treated to reduce the water content of the waste.  , Feeding 10 15 The system according to the invention also comprises a heat exchanger for discharging flue gas having a lower temperature to the outlet. In addition, The system according to the present invention includes a _ a gas trap connected to an outlet connected to the thief unit, 俾 quenching the temperature of the flue gas emitted by the outlet, And/or remove particles and fly ash from the flue gas. The wet scrubber treats the gas stream to remove sub-micron or larger fly ash. The wet scrubber can have a series of high volume spray nozzles to provide rapid quenching of the flue gas discharged from the outlet. For example, The flue gas can be quenched to 200 ° C to 300 ° C. It can prevent the formation of dioxin and furans in the air. The outlet can also be connected to an air filtration system. There is an incinerator inside the system, which is excellent. Hazardous waste can be disposed of without delay. This avoids harmful emissions to the environment. Incinerators can also be assembled into waste to energy incinerators. The heat of combustion of the waste is thereby recovered for the production of water vapor or power generation.  2〇 According to the second aspect, The present invention provides a boiler and a burner unit for producing hot water. The boiler and burner unit comprises:  - accepting one of the first inlets of the feed water;  _ accepting one of the Brownian gas imports from a Brown gas generator; And 13 200837310 - one of the hot water exports from the discharge,  Where the Brown gas is burned to generate heat, This heat heats the feed water to make hot water.  The outlet for the hot water produced by the discharge can be connected to one of the 5 hot water storage tanks manufactured by the storage. The first inlet of the boiler and burner unit can be connected to: An outlet of the first heat exchanger of one of the Brown gas generators; At least one outlet of the solar heat collector, And/or the storage tank for storing the hot water produced.  In the third aspect, The present invention provides a system for recovering heat generated by combustion of a combustion material 10, contain:  - at least one Brown gas generator, It is connected to a power source and a water source;  - at least one first storage chamber for storing Brownian gas produced by the generator in fluid communication with the generator;  At least one combustion chamber for communicating the combustion material with the at least one first storage chamber 15; And - at least one heat culling chamber adapted to receive heat generated by the combustion chamber from the combustion chamber,  Wherein the generator and the first storage chamber are located adjacent to the combustion chamber and the thermal chamber.  20 In a fourth aspect, The present invention provides a method of recovering heat generated by combustion of a combustion material, The method consists of the following steps:  - a combustion material that is burned in the at least one combustion chamber by burning Brown gas; And - receiving the flue gas produced by the combustion chamber for recovering heat therein.  14 200837310 The at least one Brown gas generator utilizes electricity to hydrolyze into oxygen and hydrogen during electrolysis. At least one Brown gas generator can include an electrolysis chamber. A mixture of oxygen and hydrogen may be piped to the at least one first storage chamber. The at least one first storage chamber may contain a predetermined amount of liquefied 5 hydrocarbons, It can be used as a flame coolant. For example, The liquefied hydrocarbon may be selected from the group consisting of: Hexane, Heptane, Methanol, Ethanol, And their combinations.  Liquefied hydrocarbons can be kept at low temperatures. For example, it is maintained at a temperature below the boiling point of the hydrocarbon. Cooked artisans understand the proper storage temperature of the hydrocarbons applied, This storage temperature is common knowledge. For example, The temperature is from 20 ° C to 10 ° C. particular, The temperature 10 is 10 ° C to 20 ° C. particular, When the hydrocarbon used is hexane, The temperature is 20 °C. The liquefied hydrocarbon system acts as a catalyst to modify the flame temperature of the Brownian gas. particular, The liquefied hydrocarbon can be hexane.  According to yet another embodiment, The waste is burned in the at least one combustion chamber. The at least one combustion chamber uses Brown gas as a fuel. Brown gas 15 is obtained from the at least one first storage chamber. particular, The combustion chamber can be an incineration unit.  The combustion chamber can be a single-stage configuration or a multi-stage configuration. The at least one combustion chamber can include:  - burning a unit of combustion material by burning Brown gas;  - a first inlet for receiving a connection of the combustion material to the combustion unit;  20 - for receiving a connection of Brown gas from the at least one storage chamber to a second inlet of the combustion unit; And - for discharging the flue gas produced by the combustion unit to an outlet of the combustion unit.  The burning material can be waste, waste, Garbage and other household waste or 15 200837310 pen burners further comprise a pre-processing unit, Used to feed the combustion material to the combustion unit, The combustion material is pretreated. The combustion material can be separated into solid combustion materials and liquid combustion materials by a knife. The combustion materials can be sorted to remove recyclable non-combustible materials and hazardous combustion materials.  5 The combustion material can be pressed and/or dried to reduce the water content in the combustion material. 0 The combustion material is burned in the combustion unit. The combustion material is fed to the combustion unit by any suitable field. E.g, The combustion material can be fed into the combustion unit by gravity or mechanical means. The combustion unit may comprise a Brown gas burner 1 burner. A high temperature flame is projected into the combustion unit to burn the combustion material. The combustion unit also contains an additional entrance. 俾 Allow fresh air to be supplied to the combustion unit for a more complete combustion of the combustion material. The combustion unit can be lined with refractory material. To maintain the high temperature inside the combustion unit. The non-combustible material charred by the combusted combustion material may be collected in the combustion unit and removed by the combustion unit for disposal. Combustion materials after combustion and charred non-combustible materials can be further processed prior to disposal.  In addition to the combustion unit, The combustion chamber also contains a reoxidation chamber. Reoxidation until the flue gas is released into the atmosphere, A hot scrubber for flue gas produced in a combustion unit. For example, The flue gas produced by burning the combustion material in the combustion unit can be oxidized in the reoxidation chamber. Further clarification of flue gas or oxidizing flue gas becomes a form that is less harmful to the environment. The reoxidation chamber can also be operated using Brown gas. The reoxidation chamber therefore contains a Brown gas burner to heat the flue gas to the appropriate temperature. For example, The heating temperature of the flue gas may be the reduction reaction temperature of the flue gas component. This temperature can be 16 200837310 1〇〇〇°〇 to 2_. (: . In particular, the temperature can be 1_. (: To 1500. (: .  In order to further reduce the emission of nitrous oxide, The Brown gas burner in the reoxidation chamber can be burned using a mixture of pure oxygen and brown gas instead of using fresh air. The high nitrogen content in fresh air may react at high temperatures to form oxygenated nitrous oxides. Nitrous oxides may be harmful to the environment.  Reoxidize to the closable-grid square. The grid block can be set to directly contact the Brown gas flame in the reoxidation chamber to reach a high temperature. The grid cubes can be supported on a metal frame. The grid blocks can be made of any suitable material. E.g,  Grid squares can be surfaced, stainless steel, Made of nickel-chromium alloy or (iv) each alloy. The flue gas input by the 10 combustion unit allows it to pass through the heated glow grid. To perform a thermochemical reaction, It completely oxidizes the flue gas component of the flue gas, Such as carbon monoxide, Nitrous oxides and other particles. The treated flue gas can be used in other applications of the system of the present invention, It may be further processed before being discharged into the atmosphere.  15 In the multi-stage configuration of the combustion chamber, Such as a secondary combustion chamber, The combustion material can be burned in an insufficient air condition in the combustion unit. 俾 Manufacture of flue gas,  The flue gas contains carbon dioxide gas, water vapor, Carbon monoxide gas, Hydrogen and hydrocarbon compound gases. The flue gas is then directed through the conduit to the reoxidation chamber. The re-chemical chamber can supply sufficient air conditions and oxygen-rich conditions to further oxidize the various components of the flue gas.  In order to ensure that the flue gas produced is guided out of the combustion unit by means of a conduit,  The combustion unit and the reoxidation chamber are maintained at an appropriate negative pressure. E.g, The pressure is _50 Pa (Pa). The negative pressure can be maintained by installing a suction fan at the outlet of the combustion unit.  As explained above, Combustion of the combustion material in the combustion chamber, Making cigarettes 17 200837310 Road gas. The heat from the flue gas is used for other applications in the system. For example, The produced flue gas can be directed to at least one hot extraction chamber. Special, The at least one hot extraction chamber can be a boiler unit or a dryer.  The boiler unit can be used to make water vapor, The heat that is used to make the water vapor is derived from the flue gas that is directed to the boiler unit. Any suitable boiler unit can be used. The boiler unit can be designed. Therefore, the flue gas that does not exceed the predetermined temperature is included. The flue gas is allowed to flow at a predetermined minimum volume flow rate. In this case, The blower can be installed at the inlet of the boiler unit. To reduce the temperature of the flue gas that is turned in, And increase the volumetric flow rate of the incoming flue gas. For example, in 10 words, The boiler unit can be in the form of a metal tube counterflow heat exchanger boiler unit. The at least one hot extraction chamber can include:  - a water inlet;  • a flue gas inlet that receives the flue gas produced by the combustion unit;  - discharging the first outlet of one of the water vapors produced; And 15 - one of the second outlets for the flue gas,  Therefore, the water from the water inlet is heated by the flue gas from the flue gas inlet to generate water vapor. And wherein the water vapor is discharged from the first gas outlet, and the flue gas system is discharged from the second gas outlet. in this way, The flue gas inlet of the at least one hot chamber may be connected to the outlet 20 of the at least one combustion chamber.  The feed water entering the hot extraction chamber is available from one of the water sources inside the system. The feed water in the heat extraction chamber absorbs heat from the flue gas generated by the combustion chamber to form water vapor. The water vapor can be raised to the water vapor drum for further heating by boosting to produce super hot water vapor.  18 200837310 The feed water entering the 7/slow heat extraction chamber can be preheated in the combustion chamber. The water pipe can be heated at the top of the combustion chamber and along the wall. For example, At the end of the year, the heart comes from the heat of the flue gas produced by the combustion chamber or: Dew =: Hey. The feed water inside the pipe can be twisted by convection heat or 5 radiant heat. The volumetric flow rate of the feed water in the pipe can be controlled to The water is heated to about 赃 or the feed water heated by 卞° can then be sent to at least one heat and the chamber for the manufacture of water vapor. According to yet another embodiment, The system of the present invention further includes a power generating device in communication with the at least one first chamber. The power generation device! 〇 can contain:  - at least one steam turbine adapted to receive water vapor produced by the at least one first chamber;  • at least one generator for power generation in communication with the at least one water vapor turbine; And 15 - means for discharging electricity produced by the generator.  Water vapor from the at least one heat extraction chamber, such as a boiler unit, rotates the turbine, Manufacturing mechanical energy, Mechanical energy is converted into electrical energy by the at least one generator,  By t, And the electricity generated therein is discharged. Any suitable water steaming can be used. For example, The steam full wheel can be a single stage steam or a steam turbine. Water vapour or super hot water vapour is supplied to the water vapour = the turbine can be adjusted by the control system. For example, Water vapor is supplied to the water ... The air ball can be adjusted by changing the flow rate of the feed water turbine unit.  The generated electricity can be supplied to the at least one Brown gas generator for Brownian pain. And/or supply a power grid. Therefore, one of the advantages of the system of the present invention 19 200837310 is that electricity is generated by steam. Reduces reliance on external power supplies.  The system further includes a heat exchanger in communication with the at least one water vapor full wheel. particular, The heat exchanger can be a cooling unit. The heat exchanger can comprise:  5 - for receiving a water vapor inlet of one of the water vapors from the steam turbine; And - a water outlet,  Wherein the heat exchanger cools the water vapor received by the water vapor inlet, Thereby condensing water vapor to produce water; And the water system is discharged from the water outlet. The water discharged from the heat exchanger can be recycled inside the system. For example, The water discharged from the heat exchanger can be used as the feed water fed to the boiler unit.  A heat exchanger can also be in communication with the at least one heat extraction chamber. particular, When the steam turbine reaches its maximum capacity, The water vapor produced by the turbine unit can be directed to the heat exchanger to be cooled to water. in this way, The heat exchanger can include a second air inlet. When the steam turbine reaches its maximum capacity,  The second air inlet is adapted to receive water vapor produced by the at least one heat extraction chamber.  According to yet another embodiment, The at least one hot extraction chamber may comprise a drying device, Used to burn combustion materials in the combustion chamber, The burning material is dried.  For example, At least one of the heat extraction chambers may form part of a prior processing unit of the combustion chamber as previously described. particular, Before the combustion material is burned in the combustion unit, The dryer reduces the water content of the combustion material. The heat for drying the combustion material in the at least one heat extraction chamber may be derived from the flue gas discharged from the combustion chamber 20 200837310. So the flue gas from the job room can be guided to dry. The flue gas from the helium unit can also be directed to a dryer for drying the crucible (4). The dry field (4) is used in the combustion chamber to burn in the combustion chamber.  , , The outer sputum is contained before the flue gas is released into the atmosphere. The post-processing unit used to treat the flue gas. in this way, From the combustion chamber, Drying and / or steel furnace single 7 ° flue gas can be directed to the post-processing single it. Post-treatment = 70 can contain at least one reoxidation chamber, ― wet service gas ^, And/or a sudden cold 10 15 20 2 again, a chemical chamber such as the aforementioned reoxidation chamber, By the burning of Brown gas and the heat of the genus; The gas is used to treat the gas stream to remove sub-micron or larger gas ash. Device. Wet I gas turbines can have - (four) large-capacity water spray nozzles to mention Rapid quenching of the flue gas discharged from the gas outlet. E.g, Flue gas: : : : To 20 (rc to 30 (rc. This can be suppressed from re-formation in the atmosphere. The air outlet can also be connected to the -air transition system = the temperature of the flue gas discharged from the air outlet is reduced and/or the smoke is removed. Granules and fly ash in milk.  According to a second aspect, The present invention provides a method of burning heat generated, The branch comprises a lower combustion material fuel, a second combustion gas, and a fuel in at least one of the combustion chambers - a flue gas generated by the combustion chamber is used to recover the heat of the center. 1 Method 2 - Step package: The step of making water vapor in a steel furnace, The heat used by the money is derived from the flue milk produced by the combustion chamber. Water money can be secreted to connect with the power generator - water plug gas, Horse 21 200837310 Wheel 0 The method further comprises the step of drying the combustion material prior to combustion in the at least one combustion chamber, Therefore, the heat that dries the combustion material is derived from the flue gas produced by the combustion chamber.  5 In a fifth aspect, The present invention provides an assembly for treating a flue gas before it is discharged into the atmosphere. contain:  - at least one processing chamber for receiving and heating the flue gas;  - burning Brown gas to supply heat to the flue gas heating device; And - discharging part of the heated flue gas.  10 In a sixth aspect, The present invention provides a method of treating flue gas prior to discharge into the atmosphere, Contains the following steps:  Providing flue gas to the at least one processing chamber;  • Provide Brown gas to a Brown gas burner; And - heating the flue gas to a predetermined temperature by burning the brown gas.  15 The Brown gas burner can be a Brown gas burner. Any suitable broth burner can be used for the purposes of the present invention. The Brown gas burner can project a high temperature flame into the processing chamber to heat the flue gas. The processing chamber also contains a further air inlet. The fresh air is supplied to the processing chamber. The processing chamber can be supplied with sufficient air and oxygen conditions to further oxidize the flue gas components. The processing chamber can be tempered with a refractory liner to maintain the high temperature in the processing chamber. When the flue gas is heated, The flue gas can be oxidized in the treatment chamber. To further decompose or oxidize into a component that is less harmful to the environment. E.g, The flue gas can be heated to an appropriate temperature. The flue gas can be heated to the ignition point. The temperature at which the flue gas is heated can be higher than the temperature. particular, The flue gas can be heated to move. (3) The temperature of (4).  22 200837310 pieces, a medium force: Included in the at least one structure of at least one processing chamber, 5 10 15 20, plus 2^^, ^ County reading money flue gas steel 戟, Rod, Even a component contains a sieve,  particular, The component, Or a combination thereof. The member can be made of a suitable material.  At least one, Two 3 - grid square, The grid cube is covered in gold or gold. Grid squares can be imported, steel, Lock-road alloy,  Made of Brown in the room. The member can be placed in direct contact with the projection such as ===. Components can be carried on the branch _ smoke, First - & Look for the metal bracket. Entering the chamber allows it to pass through the heated components for higher heating efficiency. Executing the flue milk allows it to pass through the heated glow grid cubes. To gasify the sub-reaction and completely oxidize the flue gas component, Such as - carbon oxide,  Particles in other and other flue gases. Treated flue gas is available, , 匕k, Or proceed to discharge into the atmosphere and follow the steps.  One or more processing chambers may be included in the assembly.  , , One — ^ _ __丨 ,  Handle ~ stick or eight treatments to have two treatment chambers. There are multiple points to the point where the residence time of the heated flue gas increases. This results in complete oxidation of the flue gas components. When there are more than one processing room, At the same time, the financial system is connected in series. Let the gas pass through the two processing rooms.  The flue gas heated by the spoon can be used for other purposes. in this way, The assembly is further a room for the military. The heat pulse chamber is adapted to receive heated flue gas from the at least one processing chamber. particular, The hot no room contains _ early yuan. Further system, The thief taking room contains a steam steam furnace unit.  23 200837310 The heat extraction chamber contains a boiler unit for the manufacture of steam. Thus, the heat of the manufacture of water vapor is derived from the heated flue gas directed from the at least one processing chamber to the boiler unit. Any suitable boiler unit can be used. E.g,  The boiler unit can be in the form of a metal tube or plate type counterflow heat exchanger boiler unit. The hot extraction room contains:  a water inlet;  - a water vapor outlet; And - a flue gas outlet,  The heat is not configured to allow the flue gas to heat the water to produce water vapor. Special 10, The water from the water inlet is heated by the flue gas from the at least one processing unit. Thereby producing water vapor; And wherein the water vapor and the flue gas system are discharged from the water vapor outlet and the flue gas outlet respectively.  The feed water fed into the boiler unit can be obtained from a water supply source. The feed water in the boiler unit absorbs the heat 15 of the flue gas produced by the at least one processing chamber to form water vapor. The water vapor rises to the water vapor drum, To further produce super hot water vapor by heating under pressure. The feed water fed to the boiler unit can be preheated. E.g, The feed water pipe can travel on the roof of the at least one processing chamber and along the wall surface. Exposing the tubes to heat from the flue gas fed to the processing chambers, Or exposed to heat inside the treatment chamber. Feeding inside the pipe 20 Water can be heated by convection heat and radiant heat. The volumetric flow rate of the feed water inside the tube can be controlled so that the water is heated to about 90 ° C or below. The heated feed water pump is then sent to the boiler unit for the manufacture of water vapor.  According to yet another embodiment, The system of the present invention further includes a power generating device in communication with the at least one first chamber. The power generating device 24 200837310 can include:  - at least one water vapor turbine adapted to receive water vapor generated by the hot chamber;  - at least one generator for power generation in communication with the at least one steam turbine; And - means for discharging electricity produced by the generator.  10 15 The steam from the special steel furnace unit of the heat and the room is turned to the full wheel. Manufacturing mechanical energy, Mechanical energy is converted into electrical energy by the at least one generator, Use this to generate electricity, And the electricity generated therein is discharged. Any suitable water vapor full wheel can be used. For example, The water I (four) wheel can be a single stage steam turbine or . Record the field or super hot water vapor supply to the steam full wheel: Borrow - control system adjustment. For example, The water vapor is supplied to the steam vortex 2 by changing the flow rate of the feed water flow W unit. The resulting confession is used to generate Brownian gas. And / give a force grid. Therefore, the system of the present invention is superior (4): Electricity, Reduces reliance on external power supplies.  ,  The exchange i step consists of communicating with the at least one steam thirst wheel to teach and benefit. particular, Hot swap write ... contains · & It is ^^ early 7^. The heat exchanger can receive water from the steam turbine and one of the first air inlets of the steam.  Wherein the heat exchanger water system is discharged by water.  Condensing water vapor to produce water; And wherein the water discharged from the heat exchanger can be looped inside the assembly 25 200837310. For example, water discharged from a heat exchanger can be used as feed water for the boiler unit. in this way, The water outlet of the heat exchanger can be coupled to the water inlet of the hot chamber.  The heat exchanger can also be in communication with the heat extraction chamber. Especially when the steam turbine reaches 5 to the maximum capacity, The water vapor generated by the steel furnace unit of the heat-free chamber can be guided to a heat exchanger to be cooled into water. in this way, The heat exchanger can include a second air inlet. When the steam turbine reaches its maximum capacity, The second air inlet is adapted to receive water vapor generated by the hot chamber.  The assembly of the present invention also includes a post-processing unit, The flue gas is further processed before the flue gas is discharged into the atmosphere. E.g, The aftertreatment unit can be a scrubber assembly. The scrubber assembly may include a flue gas scrubber. The scrubber assembly is adapted to receive the flue gas from the flue gas outlet of the heated flue gas and/or the flue gas outlet of the hot fetch chamber. particular, Flue gas : The gas device is a scrubber.  Any suitable scrubber can be used. E.g, The scrubber can be a wet scrubber,  15 thin waist pipe scrubber, Ejector plate scrubber or spray tower scrubber. The flue gas scrubber unit contains a gravity settling chamber and a mechanical collector.  Importantly, The flue gas scrubber moves the particles from the flue gas to the liquid stream. To reduce the amount of particles in the flue gas. So before the flue gas is released into the atmosphere, Reduce the particulate matter content in the flue gas. The flue gas scrubbing 20 unit removes particulate matter having an average diameter of about 3 microns or more. The flue gas scrubber can collect particulate matter and gaseous pollutants simultaneously from the flue gas. The gas can be removed by absorption or by chemical reaction. E.g, In the scrubber, The particulate loaded flue gas is forced to contact liquid droplets or liquid flakes on the fill material or liquid jets from a plate. Wet scrubber in pellets 26 200837310 The ability to remove particles from a gas stream is determined by the following variables:  - particle size, That is, the aerodynamic diameter;  - particle velocity; And / or - droplets, Sheet or spray speed.  5 (4) The listening device includes a front W or a final filter.  To step in and remove the particulate matter inside the flue gas. E.g, It can be installed upstream of the gas processor. It is intended to capture ageing materials with a larger average diameter. The gas eliminator itself can also remove such larger particulate matter. Remove larger particles before the gas flows through the gas distributor. Allow the gas purifier to fall more: And 2 10 is effective to concentrate on particulate matter having a smaller average diameter. The final filter can be installed downstream of the gas depressor. The finalizer is intended to capture particles that have not been removed during the duty cycle.  By removing sub-micron or larger fly ash from the gas stream, The wet gas processor can handle the gas flow. In addition to removing particulate matter from the gas stream, the wet gas service 15 It can also quickly quench the flue gas. E.g, Wet gas servers can have a series of high water spray nozzles to provide rapid quenching of the flue gas.  The scrubber assembly step includes means for cooling the flue gas before it is vented to the atmosphere. Any suitable flue gas cooling device can be used. For example, a flue gas cooling device is a quench. The flue gas cooling unit cools the flue gas to a temperature below 30 (TC). The advantage of cooling the flue gas before it is released into the atmosphere is, It can prevent the formation of Dioxin and the biting in the atmosphere. The cooling unit can be connected to the air filter system. To further remove particulates and fly ash from the flue gas.  According to the second aspect, The present invention provides a method for controlling flue gas before being discharged into the atmosphere 27 200837310, Contains the following steps:  Providing flue gas to the at least one processing chamber;  - providing Brown gas to a Brown gas burner; And - heating the flue gas to a predetermined temperature by burning the brown gas.  5 the heating step is included in the presence of at least one component for achieving higher heating efficiency, Heat the flue gas. The predetermined temperature can be higher than 700 °C. The Brown gas burner can be a Brown gas burner.  According to a particular embodiment, Flue gas is supplied to three processing chambers, The flue gas passes through three individual processing chambers in sequence. particular, The method consists of the following steps:  10 _ flue gas is supplied to a first processing chamber;  - By burning Brown gas, Heating the flue gas in the first processing chamber to a first predetermined temperature;  - directing the heated flue gas from the first processing chamber to the second processing chamber;  15 - by burning Brown gas, Heating the flue gas in the second processing chamber to a second predetermined temperature;  - directing the heated flue gas from the second processing chamber to the third processing chamber; And - by burning Brown gas, The flue gas in the third processing chamber is heated to a third predetermined temperature.  E.g, The first predetermined temperature can be about 800 °C. The second predetermined temperature can be about 1000 °C. The third predetermined temperature can be greater than 1200 °C. In particular, the third predetermined temperature may be about 1600 °C.  The method further includes the step of producing water vapor in the hot extraction chamber,  28 200837310 wherein the heat of the manufacture of water vapor is derived from heated flue gas. The produced steam can be fed to at least one water vapor turbine in communication with the generator for power generation.  The method further includes the step of further processing the heated flue gas. E.g, The method consists of the following steps:  - flue gas heated by scrubbing in a flue gas scrubber; And/or - cooling the heated flue gas in a flue gas cooling device.  The flue gas can be cooled to an appropriate temperature. For example, the flue gas can be cooled to a temperature below 300 °C.  10 Brief Description of the Drawings The present invention will be further described with reference to the accompanying drawings. The drawings illustrate possible configurations of the invention. Other configurations of the present invention are also possible, The specification details of the figures are in no way intended to limit the invention.  Figure 1 is a schematic illustration of a system in accordance with one embodiment of the present invention.  Figure 2 is a still further embodiment of the present invention, A schematic of an absorption chiller.  Figure 3 is a still further embodiment of the present invention, An indication of an incineration unit.  Figure 4 is a still further embodiment of the present invention, A localization that directs Brown gas and 20 hot water and cooling water to a multi-storey building. Schematic diagram of the storage and delivery system.  Figure 5 is a still further embodiment of the present invention, A schematic diagram of a system.  Figure 6 is a view showing still another embodiment of the present invention, A schematic diagram of a system utilizing heat from a flue gas produced by burning 29 200837310.  Figure 7 is a still further embodiment of the present invention, A schematic diagram of a system utilizing heat from a flue gas produced by a combustion chamber.  Figure 8 is a still further embodiment of the present invention, An illustration of the assembly 咅 5 figure.

【貧施方式;J 較佳實施例之詳細說明 第1圖顯示本發明之一個實施例之分離系統之一部 分。特別本發明顯示於一分離系統中之鍋爐及燃燒器單元 10中之布朗氣的產生及布朗氣的使用。布朗氣係於布朗氣產 生器116中產生,布朗氣產生器116之一種形式係說明於美 國專利第4,081,656號。產生器116包括一電解室。一電源i〇4 連接至一控制面板1〇6,該面板監視與控制操作參數,諸如 監視與控制透過電源線114供給產生器116之電源供應。也 15 設置一水供應源1〇2。水供應源102可呈水貯存槽形式。來 自於水供應源102之水通過一逆滲透(RO)水過濾器,過 渡後之RO水貯存於RO水槽110。來自於R0水槽11〇之水藉 一幫浦112而進給入產生器116。 結果,產生器116攝取RO水及電力來於電解過程解離 20氧氣及氫氣。所產生之氧氣及氫氣之混合氣體透過管路121 泵送至一布朗氣貯存槽122。產生器116進一步包含一熱交 換器118。電解過程之即刻副產物為來自於水解離成為其組 成分之熱。熱交換器118係利用水冷卻。水係由水供應源1〇2 通過管路152供給熱交換器118。隨後,經過預熱之水藉管 30 200837310 路154由熱交換器118流出。 布朗氣貯存槽122係以液化烴部分填充。於此種情況 下—液化烴為己烷124。也設置一己烷貯存槽126。來自於 己烧貯存槽m之己烧m利用幫浦⑵而泵送入布朗氣貯 5存槽122。氧氣與氫氣之混合物與己㈣氣混合而形成布朗 氣120°布朗氣貯存槽122進—步裝配有…狀闊128。 控制面板106也監視與控制其它操作參數,諸如尺〇水 由RO水槽11〇供給產生器116、己貌124供給布朗氣貯存槽 122產生器116及布朗氣貯存槽122内部之氣體壓力、產生 10器116之操作溫度、及來自於產生器116之氧氣與氣氣之混 合物之流速。 來自布朗氣貯存槽122之布朗氣120可透過管路網路 130直接供給終端使用者。管路可裝配有至少一個止回閥 132來確保氣體的流動只於單向進行。管路13〇進一步包含 15 一壓力調節器133、一控制閥134、及一閃火遏止器136。除 了直接供給布朗氣120予終端使用者之外,布朗氣12〇也可 供給一銷爐予燃燒器單元146用來製造熱水。 特別,布朗氣120藉管路138供給燃燒器單元146之燃燒 器148。管路138包含一止回閥140、一壓力調節器14ι、一 20控制閥142、及一閃火遏止器144。燃燒器148為配備有氣體 點燃裝置、焰形及焰樣式控制裝置、及焰檢測裝置之標準 工業氣體燃燒器。燃燒器148係於布朗氣120上操作,燃燒 器148有一馬達驅動鼓風機、氣體供應電磁閥及一氣體喷 嘴。燃燒器148係組配來產生高達l〇〇(TC溫度之焰。燃燒器 31 200837310 148將焰投射入銷爐内。 鍋爐150為圓柱形結構,内部有空間來罩住水管束(圖 中未顯示),貯存欲供給銷爐15〇加熱來製造熱水之進給 水。此外,於鍋爐150内部,有〆層反應性金屬元素,該層 5 金屬元素置於焰燃燒布朗氣12〇執行反應性燃燒之路徑 上,輔助進一步升高焰溫。由燃燒器148中布朗氣120燃燒 所製造的熱氣接觸水管束,結果水管内部的進給水被加 熱。為了儘可能大量保有燃燒熱,鍋爐150外部包覆一層絕 熱材料。來自燃燒器148中燃燒难朗氣120之熱用來加熱供 10 給鋼爐150之進給水,俾便製造熱水。 進給鋼爐150的進給水來自於三個來源。第一,來自水 供應源102作為補充水。該水藉幫浦158沿管路156而泵送入 銷爐内。第二,作為布朗氣產生器116中由熱交換器118所 排放之管路154中經過預熱之水。第三,作為由至少一個太 15 陽能集熱器159所排放之管路157中經過預熱之水。該至少 一個太陽能集熱器159攝取來自於水供應源1〇2之水,且經 由管路157將經過預熱之水排放而進給鍋爐及燃燒器單元 146。特別,來自於管路154、156、及157之水經組合且藉 幫浦158而泵送入鍋爐及燃燒器單元146。由鍋爐150所製造 20 的熱水可用於空間加熱、衛生用途及洗滌用途。由鍋爐150 所製造的熱水於用於空間加熱' 衛生與洗滌用途之前,可 經由摻混機閥將該熱水混合來自於水供應源102之水而達 到約50°C至70°C之溫度(依據應用用途決定)。所製造之熱水 可貯存於熱水貯存槽。 32 200837310 第2圖顯示含括於本發明之系統中之又一單元。特別, 第2圖顯示吸收冷卻器200之配置。吸收冷卻器200製造冷卻 水,冷卻水可用於空間冷卻用途。吸收冷卻器2〇〇被劃分為 四個區段:冷凝器202、產生器204、氣化器206、及吸收器 5 208。吸收冷卻器200係基於於接近真空氣化冷媒來由周圍 玉哀境吸收熱之熱化學程序而操作。 氣化器206區段及吸收器208區段係維持於接近真空條 件。特別,於氣化器206之條件如下:氣化器206係維持於 真空狀態來執行於較低溫之氣化。例如,壓力可為1 kPa, 10 溫度可為約4°C。吸收冷卻器200係藉熱交換器205流動來自 於熱水槽201之熱水而被加熱。此外,為了補充熱,吸收冷 卻器200可設置於鍋爐及燃燒器單元146之燃燒器148緊 鄰。溴化鋰(LiBr)210亦即吸收劑及水212亦即冷媒進給吸收 冷卻器200之產生器區段2〇4。由鍋爐及燃燒器單元146所製 15 造之熱水產生之熱,或來自於布朗氣120藉燃燒器148燃燒 所產生之熱氣化於產生器區段204中之LiBr溶液210中之水 含量。呈水蒸氣214形式之冷媒蒸氣循環至冷凝器區段 202,釋放其潛熱予於冷凝器區段202中之一熱交換器216中 之冷卻水242。於該程序中,水蒸氣214冷凝回冷媒水212。 2〇 冷媒水212流經管路218,管路218包含一膨脹閥220來 於該氣化器區段206形成冷媒喷淋222。來自於冷媒喷淋222 之水喷淋於氣化器區段206中之冷卻水管束224上。來自於 喷淋222之水部分由吸收器區段208之濃縮之LiBr 230所吸 收,以及部分係由氣化器區段206收集於223,且藉助於幫 33 200837310 浦238通過管路218而循環返回冷凝器區段202。冷媒噴淋 222之水溫之溫度低,因此冷媒喷淋222之水由冷卻水管224 中之溫水246吸熱以及氣化(於真空下氣化)。結果,冷卻水 由冷卻水管224排放。於此過程中所製造之冷媒蒸氣係由吸 5收器區段208之濃縮LiBr 2〇3所吸收。如此冷媒蒸氣的快速 吸收,於氣化器206形成真空狀態,原因在於氣化器2〇6與 吸收器208係互連之故。特別,有一幫浦(圖中未顯示)連接 至氣化器206及吸收器208。幫浦形成小於ί ο%大氣壓之高 度真空。濃縮之LiBr係於產生器區段2〇4製造。當LiBr溶液 10中之水含量於產生器區段204氣化時,形成濃縮的溴化鋰。 濃縮溴化鋰經管路226流至吸收器區段208,管路226包含一 膨脹閥228來形成溴化鐘喷淋230。來自溴化鐘噴淋230之溴 化鋰係收集於吸收器區段208底部,當於來自於氣化器206 之冷媒蒸氣組合時,形成稀溴化鋰溶液匯集物232,冷媒蒸 15 氣係藉幫浦236而循環返回產生器區段204之溴化鋰匯集物 210。溴化鋰喷淋230將溴化鋰喷淋於吸收器區段208中之一 熱交換器215。熱交換器215具有溫度約為25°C之冷卻水240 由冷卻水塔250進給熱交換器,同時略為高溫水242由熱交 換器215排放,且進給入冷凝器區段202中之熱交換器216。 20 結果,於冷凝器區段202吸收來自於冷媒蒸氣214之熱後, 高溫水244由熱交換器216排放,且進給冷卻水塔250。 於氣化器區段206製造的冷卻水248藉管路輸送至一貯 存槽,或直接輸送至終端使用者來用於各項用途,諸如空 間冷卻用途。例如,冷卻水248可流至各個家庭之空調單元 34 200837310 (具有鼓風機之熱交換器)來提供空間冷卻應用。 本發明之系統也包括_焚化單元·。焚化單元細之 配置顯不於第3圖。特別,焚化單元3〇〇使用由布朗氣產生 器U6所產生的布_12()作為_。焚化單元獅氧化於系 5統所在位置之家庭廢料及工業廢料。焚化單元3〇〇係基於得 自布朗氣貯存槽之布朗氣12〇操作。布朗氣12()藉管路網路 302而由貯存槽122輸送至一燃燒室312及一再氧化室314。 官路網路302進-步包含—壓力調節器綱、於貯存槽122出 氣口之-止回閥303、及-多頭閥3〇6來將布朗氣12〇之氣流 分裂進入燃燒室312及再氧化室314。壓力調節器3〇4控制且 維持官路網路302中之一致出氣口布朗氣12〇壓力。燃燒室 312及再氧化室314各自裝配有一布朗氣燃燒器313及315。 布朗氣燃燒器313及315為配備有氣體點火裝置、焰形及焰 樣式控制裝置、及焰檢測裝置之標準工業氣體燃燒器。布 15朗氣燃燒器313及315係基於布朗氣120操作,也具有一馬達 傳動豉風機、一氣體供應電磁閥及一氣體喷嘴。燃燒器313 及315係組配來於燃燒室312及再氧化室314產生溫度高達 15〇〇°C之焰。也於燃燒室312及再氧化室314各自之進氣口 設置一閃火遏止器308及31〇及控制閥3〇5及3〇7。 20 焚化單元30〇也包含前置處理單元316及318。前置處理 單元316係用於固體廢料的前置處理,而前置處理單元318 係用於液體廢料的前處理。前置處理單元316包含一收集單 兀320、一分類器322及一乾燥器324。收集單元32〇收集固 體廢料,而分類器322將廢料分類。固體廢料也可藉手動分 35 200837310 類器透過視覺手段實體分類來去除玻璃、砂礫、金屬及其 它龐大物項。廢料之水含量於乾燥器324中降低,於乾燥器 324中,廢料經加熱。廢料係藉管束加熱。管束中有水蒸氣 通過管束之管子來加熱管束,因而加熱廢料。來自於乾燥 5器324之廢料隨後進給燃燒室312。同理,用於液體廢料的 前置處理,於前置處理單元318設置收集液體廢料之一收集 單兀326、由液體廢料移除淤渣之一過濾器328,以及由淤 渣移除水含量之一氣化器330。過濾器328可為任一種適當 過濾器。例如過濾器可為織物過濾器或膜過濾器。另外, 10也可使用過濾壓機或離心過濾器。液體廢料之前處理程序 可包括固體_水分離來由原水中過濾出於逢。於渣可收集於 氣化器用來去除水。然後過濾後之原水可經化學處理隨後 排放至排水系統。處理後之廢料隨後進給至燃燒室。 燃燒室312係藉布朗氣12〇的燃燒而被加熱至高達15〇〇 15 c溫度,該溫度係咼於大部分固體廢料的閃火點。一旦燃 燒室312由廢料及布朗氣120的燃燒而達到約1〇〇(rc溫度 時,布朗氣燃燒器313停止運作。唯有於燃燒室312溫度降 至低於iooo°c時,布朗氣燃燒器313才重新點火。燃燒室312 内部也具有一熱交換器338。熱交換器338可擴大熱回收。 20例如,熱交換器338之管束中所含之循環水由燃燒室312吸 收燃燒熱’及於廢料乾燥器324釋放該熱,於廢料乾燥器324 中,該熱可用來由固體廢料移除水分。焚化單元3〇〇也含括 一循環系統,來提供進給水予焚化單元3〇〇中之熱交換器。 循環系統包含多頭閥348、350、352、-水蒸氣沉降槽344、 36 200837310 一幫浦346、及管路網路342。 •廢料於燃齡312燃燒結果所製造的煙道氣332進 給再乳化室314,藉由進一步氧化有機材料及其它有害物質 來兀王刀解煙道軋332中所剩餘之任何廢料。 5 #乳化至314係藉煙道氣332的燃燒及藉燃燒器315之 補充燃燒布朗氣⑽而維持於1〇〇叱或以上之溫度。再氧化 室314配備有供給新鮮空氣來讓煙道氣332進行富氧燃燒之 裝置。再氧化室藉燃燒器315加熱達到約⑽叱溫度,該溫 度為煙道氣組成分諸如-氧化碳(c〇)、氯氣㈣、及甲烧 10 (CH4)之自燃溫度。一旦由煙道氣332的燃燒及布朗氣12〇之 補充燃燒,再氧化室314達到約i〇〇〇°c溫度時,燃燒器315 停止運作。當再氧化室314溫度降至低於100(rc時,燃燒器 315開始燃燒布朗氣120。再氧化室314進一步裝配有一網格 方塊311 ’網格方塊311係支載於再氧化室314内部之一金屬 15托架上。高度通透性之穿孔網格方塊311可由鉑、鋼、鎳_ 鉻合金或其它鎳合金製成。網格方塊311之空泡可為任何適 當形狀,諸如方形、三角形或多角形。網格方塊3Η可組成 為交織多層結構來最大化與輸入之煙道氣332之接觸,及最 大化暴露於由燃燒器315所製造的布朗氣焰。 20 煙道氣332及燃燒器315所製造之布朗氣焰相對於網格 方塊311之流動方向為彼此垂直或彼此平行。網格方塊311 係設置成與由燃燒器315所製造的布朗氣焰排齊。來自於燃 燒室312之煙道氣332係藉導槽導引而通過網格方塊311。網 格方塊311當直接暴露於燃燒器315所製造的煙道氣焰時, 37 200837310 網格方塊311產生輝光,達到可與輸入之煙道氣332反應之 溫度。於此程序中,煙道氣成分諸如一氧化碳(c〇)、氫氣 (¾)、及其它氣態烴化合物氧化成對環境較非有害之形式, 諸如二氧化碳(C〇2)、水及其它較非有害氣體。 5 自再氧化室314所得煙道氣335通過包含濕務氣器336 之一室334,隨後排放入大氣中作為廢氣34〇。濕滌氣器336 處理所得煙道氣335來移除次微米或更大的飛灰。濕滌氣器 336有一系列高容積水噴淋噴嘴,來提供煙道氣之快速 驟冷至約200X:至30(TC溫度,隨後呈廢氣34〇釋放,來遏止 1〇於大氣中再度形成戴奥辛類及呋喃類。進給至濕滌氣器336 之進給水係得自於水供應源102。由室334所釋放之廢氣34〇 可連接至一空氣過濾器系統。 第4圖顯示如前述系統之各個單元之配置實例。特別, 第4圖顯不諸如布朗氣產生器116、銷爐與燃燒器單元、 15吸收冷卻器200及焚化單元3〇〇等單元如何用於一分離的系 、、先來產生布朗氣,貯存布朗氣,以及輸送布朗氣用於多樓 層建築物之各種不同用途。 第5圖顯示本發明之一個實施例之一大致上分離之系 統。特別,第5圖顯示於一分離之系統之一燃燒室内布朗氣 20之產生及布朗氣之用途。布朗氣係於布朗氣產生系統1113 中產生,其中該布朗氣產生系統1113包含一布朗氣產生器 1114、一熱父換器1116、及一布朗氣貯存槽1122。特別布 朗氣係於布朗氣產生器1114中產生,一種布朗氣產生器 U14之形式已經說明於美國專利案第丨,656號。產生器 38 200837310 1114包括一電解室。電源11〇4連接至一控制面板11〇6,控 制面板1106監視與控制操作參數,諸如透過電源線1112之 電力供給產生器1114。也設置一水供應源1102。水供應源 1102可呈水貯存槽形式。來自於水供應源11〇2之水係利用 5幫浦111〇而通過一逆滲透(R0)水過濾器1108,過濾後之尺〇 水進給產生器1114之電解室内。 結果’產生器1114攝取入r〇水及電力,來於電解過程 解離氧氣及氫氣。所產生之氧氣與氫氣之混合物透過管路 1121而導引至布朗氣貯存槽1122。布朗氣產生系統1113進 10 一步包含一熱交換器1116。電解過程之即刻副產物為水解 離成為其成分所得之熱。熱交換器1116經過水冷卻。來自 冷卻水塔1118之冷水經由管路in而循環至熱交換器 1116 °隨後,溫熱藉管路1119導引出熱交換器1116之外, 返回冷卻水塔1Π8。 15 布朗氣貯存槽1122係以液化烴部分填充。於此種情況 下,液化烴為己烷1124。也設置一己烷貯存槽1126。來自 於己烷貯存槽1126之己烷1124係利用幫浦(圖中未顯示)而 被泵送入布朗氣貯存槽1122。氧氣與氫氣之混合物與己烷 蒸氣混合來形成布朗氣112〇。布朗氣貯存槽1122進一步裝 20配有一洩放閥u28。洩放閥為一種閥門,設定於某個壓力 位準開啟來防止容器或系統的壓力達到不安全的程度。 來自於布朗氣貯存槽1122之布朗氣1120係經由管路網 路1130而直接供給燃燒室1142。管路網路丨丨刈之管路裝配 有至少一個止回閥1132,來確保布朗氣112〇的流動只於— 39 200837310 個方向前進。管路網路1130進一步包含至少一個壓力調節 器㈣、至少-個控制閥1136、及至少—個閃火遏止器 1138。壓力調節器為用來控制與維持至—管路之一致出氣 口氣體壓力之裝置,閃火遏止器為防止由外火經由開放安 5 全管接口而「回閃火」之裝置。 特別’布朗氣mo藉管路網路113〇供給燃燒室浦之 至少-個燃燒器114 G。燃燒器i i 4 〇為配備有氣體點火裝 置、焰形及樣式控制裝置、及焰檢測裝置之標準工業氣體 燃燒器。燃燒器U40係基於布朗氣112〇操作,且具有一馬 達傳動鼓風機、氣體供應電磁I及氣體喷嘴。燃燒器麗 經組配來產生溫度高於120代之焰。燃燒器麗可位在燃 燒室m2之側邊且投射焰至燃燒室1142内部。當廢料於燃 燒室1142内部燃燒時,製造煙道氣。來自於煙道氣之熱可 用來發電,容後詳述。 15 20 第6圖顯示本發明之系統之配置,其中來自於由燃燒室 H42所製造之煙道氣之熱被用於多種額外用途。第6圖所示 。燃鮮心必利用由 布朗氣產生系統1113所產生之布朗氣⑽作為燃料來燃燒 燃燒材料。職材料可為廢料,包括家庭純紅業廢料。 來自於布朗氣產生祕1113之布朗氣藉如前文於& 圖所述之管路網路⑽而藉管路通至燃燒單元1142a。壓力 於燃燒單元 調節器1134控制於管路網路113〇中適合用 1142a之-致出口布朗氣壓力。例如,氣體壓力可為約叫 水壓(亦即於2738帕)。 40 200837310 燃燒單元lM2a之内壁襯墊以财火材料,來將燃燒熱含 於燃燒單元1142a内部,且保護燃燒單元U42a之結構。例 如,耐火材料包括可於酸性環境工作之硬質耐熱材料。耐 火材料之實例包括但非限於鋁氧、碳化矽、黏土、磚、及 5矽氧。間隙噴射加壓空氣經由於燃燒單元叫以側邊或底部 之穿孔而供給燃燒單元1M2a。壓縮空氣用來促進廢料之擾 流混合,廢料將於燃燒單元1142a中以空氣燃燒。間隙喷射 壓縮空氣有助於防止供應壓縮空氣至燃燒單元U42a之穿 孔的堵塞。於燃燒單元1142a底部之格柵(圖中未顯示)將乾 10固體廢料與灰分分離。於燃燒單元1142a中來自於廢料燃燒 之底灰分1201係經於燃燒單元1142&底部之料斗(圖中未顯 示)收集供廢棄。 由於廢料於燃燒單元1142a燃燒的結果產生煙道氣 1202。若干煙道氣12〇2由燃燒單元U42a被導引至水管水蒸 15氣锅爐1204。水藉幫浦1212而泵送至水蒸氣銷爐1204。於 水蒸氣锅爐1204中,水於管子1206内部循環,管子係藉由 燃燒單元1142a被導引至水蒸氣鍋爐1204之煙道氣1202由 外部加熱。例如煙道氣可為9〇〇t:。當包含於水蒸氣鍋爐 1204中之填充有水之管子12〇6暴露於高溫煙道氣12〇2時, 20管子1206中之水溫升高,由於熱虹吸效應,熱水上升至水 蒸氣鋼爐1204中之水蒸氣轉鼓1208。由煙道氣1202進一步 加熱水蒸氣轉鼓1208中之熱水產生水蒸氣1214。水蒸氣 1214由水蒸氣轉鼓1208頂部抽離,視需要可於超加熱器(圖 中未顯示)中加熱來製造超熱水蒸氣。煙道氣1202隨後透過 200837310 通道1228a導引至—後處理單元123〇來處理煙道氣1202,隨 後被排放人大氣料廢氣η%。後處理單元容後詳述。 然後水錢1214或超熱水蒸氣用來驅動水蒸氣滿輪 1216。例如超熱水蒸氣可為39(rc或以上。水蒸氣漏輪⑵6 5可為單級水蒸氣渴輪或多級水蒸氣渴輪。水蒸氣渦輪㈣ 藉軸Π18連接至發電用之發電機咖。水蒸氣⑵4於約μ 巴(2·3 xl〇6帕)之高壓下進給水蒸氣渦輪1216。水蒸氣滿輪 1216自旋,造成主軸1218也自旋。結果由於主軸⑽之自 方疋’也轉動發電機1220中所含之磁鐵。磁鐵有金屬線線圈 10盤捲。當發電機1220内部的磁鐵旋轉時,金屬線中產生電 流。發電機1220將機械能轉成電能。然後發電機122〇所產 生之電力傳輸至一系列電壓及電流調整用之電氣裝置,供 布朗氣產生系統1113用來產生布朗氣112〇,或傳輸至系統 内部之電力格網,其為該系統之電源11〇4。 15 通過水蒸氣渦輪1216之水蒸氣1214或超熱水蒸氣隨後 藉導槽通至熱交換器I222。水蒸氣1214於熱交換器1222中 冷卻而冷凝成水。冷凝水隨後藉幫浦1212被泵送返回水蒸 氣銷爐1204之管子1206,用來由煙道氣1202吸熱製造水蒸 氣1214。用來冷卻來自於水蒸氣渦輪丨216之水蒸氣1214或 20超熱水蒸氣之流入熱交換器1222之進給水係藉管路網路 1224而得自水供應源1102。熱交換器1222也冷卻過量超熱 水蒸氣或過量水蒸氣1214。當水蒸氣渦輪12i6達到其最大 容量,而無法再攝取任何更大量水蒸氣1214或超熱水蒸氣 時,水蒸氣1214被視為過量。當出現此種情況時,過量水 42 200837310 蒸氣1214或過量超熱水蒸氣經由旁通管1226而被導引至熱 交換器1222。如前文說明,過量水蒸氣1214及過量超熱水 蒸氣於熱交換器1222中被冷卻且冷凝成水。然後水藉幫浦 1212而被果送返回水蒸氣锅爐1204之管子1206,來由煙道 5 氣1202中吸熱製造水蒸氣1214。 燃燒室1142也包含一前置處理單元1242。特別,前置 處理單元1242係用於固體廢料之前處理。前置處理單元 1242包含一乾燥器,來於廢料進給入燃燒單元H42a供燃燒 前’降低廢料之水含量。廢料係藉乾燥器内部之管束1243 10 加熱。管束1243有煙道氣1202通過管束之管子,由外部加 熱廢料。特別,管束1243之管子高度導熱。若干來自於燃 燒單元1142a之煙道氣1202經由槽道1229被導引至管束 1243。來自於水蒸氣鍋爐1204之煙道氣1202也透過槽道 1228a被導引至管束1243。隨後通過管束1243之煙道氣1202 15經槽道丨244被導引至後處理單元1230,供處理煙道氣 1202 ’隨後排放入大氣成為廢氣1236。後處理單元123〇容 後詳述。 來自於水蒸氣鍋爐1204及前置處理單元1242之煙道氣 1202分別通過槽道1228&及1244而被導引至後處理單元 20 1230。後處理單元1230包含一濕滌氣器1232及一驟冷器 1234。來自於水蒸氣鍋爐12〇4及前置處理單元1242之煙道 氣1202被下洗入濕滌氣器1232。濕滌氣器1232可為化學濕 开条氣器、°例如化學濕滌氣器中所使用的化學品可為由氫氧 化約或氫氧化鈉所形成之水性料漿。濕滌氣器1232可為有 43 200837310 多個互連式的包圍體。各個室係由穿孔板形成來減慢煙道 氣1202的通過濕滌氣器1232。濕滌氣器1232處理煙道氣 1202來去除次微米或更大的飛灰、粉塵及顆粒。濕滌氣器 1232有一系列尚壓流體噴淋噴嘴。例如,流體為驗性溶液, 5諸如氫氧化鈉或氫氧化鈣。鹼性溶液中和可能為酸性之煙 道氣1202。鹼性溶液也洗滌去除煙道氣12〇2中之飛灰及大 型顆粒。 於煙道氣1202通過濕滌氣器1232後,經過半處理之煙 道軋1202被下洗入驟冷器1234中供快速驟冷。驟冷器1234 1〇有一系列高體積水喷淋噴嘴來提供煙道氣1202之快速驟冷 至約200°C至300°C溫度,隨後煙道氣12〇2被釋放成為廢氣 1236,來遏止於大氣中之戴奥辛類及呋喃類的形成。驟冷 也可降低經過半處理之煙道氣丨2〇2的氣味。進給至驟冷器 1234之進給水係得自於水供需源11〇2。來自於水供需源 15 Η02之水藉幫浦1239透過管路網路1238而泵送至驟冷器 1234。於後處理單元123〇底部所收集之含飛灰及大型顆粒 之流體可通過過濾系統,隨後藉幫浦1233而循環返回濕滌 氣器1232之噴淋噴嘴。於固定時間間隔,於後處理單元123〇 底部之流體可被排放至處理單元124〇,於該處接受化學處 20理。經化學處理之流體可循環返回濕滌氣器1232,或可排 放入排水糸統。 任選地,由驟冷器1234所釋放之廢氣1236可連接至一 空氣過渡器系統,接受進一步處理,隨後排放入大氣。廢 氣1236也包含飽和水蒸氣。因此一氣化器可架設於驟冷器 44 200837310 1234的出氣口,來移除廢氣1236中的飽和水蒸氣,以防於 大氣中形成羽流煙雲。至於另一個選項,經處理後之煙道 氣1202也可通過氣體過濾系統,隨後排放入大氣來移除次 微米大小之粒子。 5 本發明之系統之又一配置為其中來自於由燃燒室114 2 所製造之煙道氣之熱被用於各項用途,該系統配置顯示於 第7圖。第6圖之系統與第7圖之系統大致上相同,例外為燃 燒室1142。第7圖所示燃燒室1142包含一二級燃燒室。特 別,第7圖之燃燒室1142包含燃燒單元1142a及再氧化室 10 1302。再氧化室1302可為熱再氧化室。如同燃燒單元 1142a,再氧化室13〇2也利用由布朗氣產生系統1113所產生 之布朗氣1120為燃料。如此,布朗氣112〇藉管路網路113〇 而由布朗氣產生系統1113藉管路通至再氧化室13〇2。管路 網路1130包含-多頭閥1303,來將布朗氣之流分裂入 15燃燒單元丨丨似及再氧化室13()2。管路網路1⑽進—步包含 止回閥1304、壓力調節器1306、控制閥13〇8及閃火遏止器 1310。壓力调節器13〇6控制且維持管路網路11川中之一致 布朗氣壓力。 再氧化室1302裝配有一布朗氣燃燒器1312。布朗氣燃 燒器1312為裝配有氣體點火裝置、焰形狀及樣式控制裝置 及:Μ欢測裝置之標準工業氣體燃燒器。布朗氣燃燒器⑶2 係基於布朗氣112〇操作,也具有一馬達傳動鼓風機、一氣 體供應電磁閥及-氣體噴嘴。布朗氣燃燒器⑽可經組配 來於再氧化室1302製造溫度高於12〇〇t:之焰。特別,再氧 45 200837310 化室1302係維持於約1〇〇(rc之溫度,該溫度為煙道氣組成 分諸如一氧化碳(CO)、氫氣(HO、及曱烷(Ch4)之還原反應 溫度。 於焚化(燃燒)過程開始時,燃燒單元1142a及再氧化室 5 1302分別之布朗氣燃燒器114〇及1312燃燒布朗氣1120來加 熱燃燒單元1142a及再氧化室1302内部之爐内空間。布朗氣 1120之&L動速率及燃燒時間經控制來於燃燒單元1142&達 到預設溫度。典型地,於無廢料之存在下,燃燒單元1142a 可達到超過1000 C之溫度。於焚化過程中,乾廢料恒常進 10給至燃燒單元U42a來被燃燒。於穩定速率,恆常供給廢 料,燃燒單元1142a可達到超過1200°C之溫度。於燃燒過程 中,製造富含一氧化碳、氣態烴化合物及氮氧化物(Ν〇χ) 之煙道氣。所產生之煙道氣1202被攜帶至再氧化室1302供 進一步處理。再氧化室1302可為細長結構,來允許至少2秒 15之滯留時間讓煙道氣1202完全燃燒。另外,再氧化室13〇2 可由兩個或多個具有類似或不同組成之互連的小型爐組 成,用於藉由延長煙道氣1202之暴露於處理時間來達成煙 道氣1202之更完全處理。 再氧化室1302裝配有支載於再氧化室13〇2内部之一金 20屬架上之網格方塊1313。高度通透性之穿孔網格方塊ι313 可由鉑、鋼、鎳-鉻合金或鎳合金製造。網格方塊1313與由 布朗氣燃燒器1312所產生的布朗氣焰產生陽性反應,來於 再氧化室1302内部達到高溫。網格方塊1313的空泡可具有 任何適當形狀,諸如方形、三角形或多角形。特別,網格 46 200837310 方塊1313可組成為互連之多層結構,來最大化與輸入之布 朗氣1120之接觸及最大化暴露於由布朗氣燃燒器丨312所產 生之布朗氣焰。 由布朗氣燃燒器1312所產生之煙道氣流及布朗氣焰方 5向相對於網格方塊1313之定向為其彼此垂直或彼此平行。 網格方塊1313係定位成與由布朗氣燃燒器1312所產生之布 朗氣焰排齊。來自於燃燒單元1142a之煙道氣1202藉槽道通 過網格方塊1313。當網格方塊1313暴露於由布朗氣燃燒器 1312所產生之布朗氣焰時,網格方塊1313發輝光且達到可 10與輸入之煙道氣1202反應之溫度。於該程序中,煙道氣成 分諸如CO、Η:、及其它氣態烴化合物被氧化成為對環境較 為無害之形式,如二氧化碳(C02)、水及其它較為無害之氣 體。特別於氧與布朗氣1120中之氫進一步反應前,含氮煙 道氣1202被還原氮與氧之元素成分,因而產生氮氣及水蒸 15 氣。 如上第6圖所述,部分來自於再氧化室13〇2之煙道氣 1314被導引至水蒸氣鍋爐12〇4用來製造水蒸氣(或超熱水 蒸氣)’來驅動水蒸氣渴輪1216及發電機1220來發電。部分 來自於再氧化室1302之煙道氣1314也透過槽道1315被導引 20至管束1243來於前置處理單元1242中乾燥廢料。 整個焚化過程中,燃燒單元1142a及再氧化室13〇2皆係 維持於負壓來確保對由燃燒單元1142a及再氧化室13〇2至 水蒸氣鍋爐1204及前置處理單元1242之煙道氣12〇2流形成 正確通風。舉例言之,壓力約為_5〇帕。於燃燒單元n42a 47 200837310 及再氧化至1302之負壓可透過架設於燃燒單元n42a之煙 4乳排放端(於第6圖所n统之情況下)、架設於再氧化室 1302之煙道氣排放端(於第7圖所示祕之情況下),或架設 &後處理單元123G之通風口端之抽風扇來達成。 5 第8圖顯示本發明之一個實施例之大致總成。特別,第 8圖顯不由煙道氣排放器所排放之煙道氣之處理,隨後讓煙 道氣釋放入大氣。來自於煙道氣排放器2102之煙道氣2103 被導引至第一處理室21〇4。煙道氣排放器21〇2可為任一種 排放煙道氣之系統。例如,煙道氣排放器21〇2可為焚化單 1〇兀、燒煤窯等。煙道氣2103可富含一氧化碳、氣態烴化合 物及氮氧化物(NOx)。煙道氣21〇3典型具有300°C或以上之 溫度。於第一處理室21〇4中,煙道氣2103進一步經加熱。 例如,煙道氣2103於第一處理室21〇4被進一步加熱至約8〇〇 C。然後經加熱之煙道氣21〇3被導引入第二處理室21〇6接 15文進一步加熱處理。例如,煙道氣可於第二處理室2106被 加熱至約1000 C溫度。加熱後之煙道氣2103由第二處理室 2106被導引入第三處理室21〇8,欲被加熱至高於12〇0。(:之 溫度。特別,第三處理室2108中之溫度約為1600°C。 煙道氣2103於第一處理室21〇4、第二處理室21〇6及第 20三處理室2108中藉燃燒布朗氣被加熱。布朗氣可於布朗氣 產生器中產生,布朗氣產生器之一種形式說明於美國專利 案第4,081,656號。布朗氣可藉管路網路2112而由一布朗氣 貯存槽2110直接供給處理室21〇4、2106及2108。布朗氣貯 存槽2110可配備有一洩放閥2111。洩放閥為一閥,該閥設 48 200837310 定來於某個壓力位準開啟以防容器或系統的壓力達到不安 全的程度。管路網路2112可裝配有至少一個止回閥2114。 官路網路2112可進一步包含多頭閥2116來將布朗氣流分裂 至各個處理室2104、2106及2108。例如布朗氣流可經分裂, 5讓布朗氣藉管路網路2118、2120及2122分別供給第一處理 室2104、第二處理室2106及第三處理室2108。各個管路網 路2118、2120及2122分別包含至少一個壓力調節器2124、 2132、2140、至少一個控制閥2126、2134、2142、及至少 一個閃火遏止器2128、2136、2144。壓力調節器為用來控 10制與維持至一管路之一致出氣口氣體壓力之裝置;而閃火 遏止器為防止外火通過開放之安全管接口而「回閃火」之 裝置。壓力調節器2124、2132、及2140控制及維持於管路 網路2118、2120及2122中適合處理室2104、2106及2108之 一致出氣口布朗氣壓力。例如,氣體壓力約為11吋水壓(亦 15 即約2738帕)。 特別,布朗氣分別供給處理室2104、2106及2108之燃 燒器2130、2138及2146。燃燒器2130、2138及2146可為裝 配有氣體點火裝置、焰形狀與樣式控制裝置、及焰檢測裝 置之標準工業燃燒器。燃燒器2130、2138及2146係基於布 20 朗氣操作,且有馬達傳動鼓風機、氣體供應電磁閥及氣體 噴嘴。燃燒器2130、2138及2146組配來產生高於1200°C溫 度之焰。燃燒器2130、2138及2146可設置成將以焰分別投 射入處理室2104、2106及2108内部。 布朗氣燃燒器2130、2138及2146經組配來於第一處理 49 200837310 室2104、第二處理室2106及第三處理室2108分別產生於約 800°C、1000°C及1200°C溫度之焰。特別,煙道氣成分諸如 一氧化碳(CO)、氫氣(H2)、及甲烷(CH4)之自燃溫度為約800 °(:至1600°(:間。一旦由煙道氣2103的燃燒及布朗氣之補充 5燃燒,於處理室2104、2106及2108達到期望溫度時,布朗 氣燃燒器2130、2138及2146停止運作。當第一處理室2104、 第二處理室2106及第三處理室21〇8之溫度分別降至800 °C、1000°C 及 1200°C 時,布朗氣燃燒器 2130、2138 及 2146 開始燃燒布朗氣。於處理過程開始時,布朗氣燃燒器213〇、 10 2138及2146燃燒布朗氣來加熱於第一處理室2104、第二處 理室2106及第二處理室2108内部之爐内空間。布朗氣流速 及燃燒時間控制成可於各個處理室21〇4、21〇6及21〇8達成 預設溫度。 第一處理室2104、第二處理室21〇6及第三處理室21〇8 15可具有細長結構,來允許至少2秒的滯留時間來完成煙道氣 2103之燃燒。另外,第一處理室21〇4、第二處理室21〇6及 第三處理室2108各自可由類似或不同構造之兩個或多個互 連小型爐製成,藉由延長煙道氣21〇3暴露於處理之暴露時 間,來達成煙道氣2103之更完整處理。第一處理室21〇4、 20第二處理室2106及第三處理室2108中之至少一者可進一步 裝配有一網格方塊(圖中未顯示)。 網格方塊可支載於第一處理室21〇4、第二處理室21〇6 及第三處理室2108中之至少一者之内部金屬架上。高度通 透性之穿孔網格方塊可由鉬、鋼、鎳—鉻合金、錄合金或其 50 200837310 組合製成。網袼方塊與布朗氣燃燒器2130、2138及2146所 產生之布朗氣焰陽性反應來於第一處理室21〇4、第二處理 至2106及弟二處理室2108内部達到高溫。網格方塊中的空 泡可具有任何適當形狀及大小。例如網格方塊之空泡可為 方形、三角形或多角形。特別,網格方塊可組成為交織之 多層結構,來最大化與輸入煙道氣21〇3之接觸,且最大化 暴露於由布朗氣燃燒器2130、2138及2146所產生之布朗氣 焰0 煙道氣流及由布朗氣燃燒器2130、2138及2146產生之 10布朗氣焰方向相對於網格方塊之方向性為彼此垂直或彼此 平行。網格方塊定位成與由布朗氣燃燒器2130、2138及2146 所產生之布朗氣焰排齊。來自於煙道氣排放器21〇2、第一 處理室2104或第二處理室2106之煙道氣2103經槽道導引而 分別通過第一處理室2104、第二處理室2106及第三處理室 15 2108之網格方塊。當網格方塊暴露於由布朗氣燃燒器 2130、2138及2146所產生之布朗氣焰時,網格方塊發輝光 且達到可與輸入之煙道氣21〇3反應之溫度。於該過程中, 煙道氣成分諸如CO、H2、及其它氣態烴化合物被氧化成為 對環境較為無害之成分,諸如二氧化碳((3〇2)、水及較為無 20害之氣體。特別,含氮煙道氣2103於與布朗氣中之氫氣反 應刖被解離成為元素成分,藉此製造氮氣。 來自於第一處理室2104、第二處理室2106及第三處理 室2108各自之部分經加熱之煙道氣2103可被導引入後處理 單兀。後處理單元可為一滌氣總成2176,容後詳述。另外, 51 200837310 部分來自於處理室特別為第三處理室21〇8之經加熱之煙道 軋被導引入水管水蒸氣鍋爐2148。水藉幫浦2170而被泵送 入水蒸氣銷爐2148。於水蒸氣锅爐2148中,水於水管2150 中循環,水管藉由第三處理室2108被導引至水蒸氣鍋爐 5 2148之、、二加熱的煙道氣21〇3由外部加熱。當水蒸氣锅爐 2148中所含之填充有水之管子2150暴露於高溫煙道氣2103 時,水官2150中之水溫升高,製造水蒸氣2154,然後水蒸 氣上升至水蒸氣鍋爐2148中之水蒸氣轉鼓2152。水蒸氣 2154由水瘵氣轉鼓2152頂部抽離,視需要可於超加熱器(圖 ίο中未顯示)中加熱來製造超熱水蒸氣。然後煙道氣2103被導 引至後處理單元供處理煙道氣2103,隨後排放入大氣成為 廢氣2194。後處理單元可為滌氣總成2176,容後詳述。 水療氣2154或超熱水蒸氣隨後用來驅動水蒸氣渦輪 2156。例如,超熱水蒸氣可為25(rc或以上。水蒸氣渦輪2156 15可為單級水蒸氣渦輪或多級水蒸氣渦輪。水蒸氣渦輪2156 藉一主軸2160連接至發電用之發電機2158。水蒸氣2154於 高壓進給至水蒸氣渦輪2156。水蒸氣渦輪2156自旋,造成 主軸2160也自旋。因主軸216〇自旋的結果,發電機2158中 之磁鐵也轉動。磁鐵有金屬線圈捲繞於磁鐵周圍。當發電 20機2158内部的磁鐵轉動時,線圈產生電流。發電機2158將 機械能轉成電能。發電機2158所產生之電力隨後傳輸至電 力格網2168。 通過水蒸氣渦輪2156之水蒸氣2154或超熱水蒸氣隨後 被導引至熱交換器2166。水蒸氣2154於熱交換器2166中被 52 200837310 冷卻來冷凝成水。然後冷凝水藉幫浦2170泵送入水蒸氣鍋 爐2148之水管2150中供吸收來自於煙道氣2103之熱用來製 造水蒸氣2154。流入熱交換器2166供冷卻來自於水蒸氣渦 輪2156之超熱水蒸氣之進給水係藉管路網路2174而得自水 5 供應源2172。熱交換器2166也冷卻過量超熱水蒸氣或過量 水蒸氣2154。當水蒸氣渦輪2156達到最大容量且無法再攝 取任何水蒸氣2154或超熱水蒸氣時,水蒸氣2154被視為過 量。出現此種情況時,過量水蒸氣2154或過量超熱水蒸氣 藉旁通管2162而被導引至熱交換器。如前文說明,過量水 10 蒸氣2154及過量超熱水蒸氣於熱交換器2166經冷卻且冷凝 成水。然後藉幫浦2170被泵送返回水蒸氣鍋爐2148之水管 2150内,用來由煙道氣2103吸熱供製造水蒸氣2154。 來自於水蒸氣鍋爐2148、第一處理室2104、第二處理 室2106及/或第三處理室2108之煙道氣2103被導引入滌氣 15 總成2176内部。滌氣總成2176包含濕滌氣器2178及驟冷器 2188。來自於水蒸氣鍋爐2148、第一處理室2104、第二處 理室2106及/或第三處理室2108之煙道氣2103被下洗入濕 滌氣器2178。濕滌氣器2178可為化學濕滌氣器。濕滌氣器 2178可為有多個互連式之一包圍體。各個室係由穿孔板形 20 成來減慢煙道氣2103的通過濕滌氣器2178。濕滌氣器2178 處理煙道氣2103來去除次微米或更大型的飛灰、粉塵及顆 粒。濕滌氣器2178有一系列高壓流體喷淋喷嘴2180。例如, 流體可為鹼性溶液,諸如氫氧化鈉或氫氧化鈣。鹼性流體 中和酸性之煙道氣2103。鹼性流體也洗滌去除煙道氣2103 53 200837310 中之飛灰及大型顆粒。 於煙道氣2103通過濕滌氣器2178後,經過半處理之煙 道氣2103被下洗入驟冷器2188來進行快速驟冷。驟冷器 2188有一系列高體積水喷淋喷嘴2190來提供煙道氣2103之 5快速驟冷至約200°C至300°C溫度,隨後煙道氣2103釋放入 大氣中廢氣2194,來遏止於大氣中再度形成戴奥辛類及吱 喃類。驟冷也可減少經過半處理煙道氣2103之氣味。進給 至驟冷器2188之進給水係得自於水供需源2172。來自於水 供需源2172之水透過管路網路2196而藉幫浦2192泵送至驟 10冷器2188。收集於滌氣總成2176底部之含飛灰及大型顆粒 之流體2182可通過過濾系統,隨後藉幫浦2184而循環返回 濕滌氣器2178之喷淋喷嘴2180。於常規時間間隔,於滌氣 總成2176底部之流體2182可排放入處理單元2186,於該處 接受化學處理。經化學處理後的流體循環返回濕滌氣器 15 2178,或可排放入排水系統。 任選地,由滌氣總成2176所釋放之廢氣2194可連接至 一空氣過濾器系統’接受進一步處理,隨後排放入大氣。 廢氣2194也包含飽和水蒸氣。因此一氣化器可架設於滌氣 總成2176的出氣口 ’來移除廢氣2194中的飽和水蒸氣,以 20 防於大氣中形成羽流煙雲。至於另一個選項,經處理後之 煙道氣2103也可通過氣體過遽糸統,隨後排放入大氣來移 除次微米大小之粒子。 整個處理過程中,第一處理室21〇4、第二處理室21〇6 及第二處理室2108係維持於負壓來確保由處理室21 〇4、 54 200837310 2106及2108至水蒸氣鍋爐2148及滌氣總成2176之煙道氣 2103流形成正確通風。例如壓力約為-50帕。於第一處理室 2104、第二處理室2106及第三處理室2108之負壓可透過架 設於第一處理室2104、第二處理室2106及第三處理室2108 5 之煙道氣排放端或架設於滌氣總成2176之通風端之抽風扇 來達成。 【圖式簡單說明3 第1圖為根據本發明之一個實施例之系統之示意圖。 第2圖為根據本發明之又一實施例,一種吸收冷卻器之 10 示意圖。 第3圖為根據本發明之又一實施例,一種焚化單元之示 意圖。 第4圖為根據本發明之又一實施例,一種導引布朗氣及 熱水及冷卻水至一多樓層建築物之局部產生、貯存及輸送 15 系統之示意圖。 第5圖為根據本發明之又一實施例,一種系統之示意 圖。 第6圖為根據本發明之又一實施例,一種利用來自於燃 燒室所產生之煙道氣之熱之系統之示意圖。 20 第7圖為根據本發明之又一實施例,一種利用來自於燃 燒室所產生之煙道氣之熱之系統之示意圖。 第8圖為根據本發明之又一實施例,一種總成之示意 圖。 55 200837310 【主要元件符號說明】 102.. .水供應源 104.. .電源供應器 106…控制面板 108···逆滲透(RO)水過濾器 110.. .RO 水槽 112…幫浦 114…電源、線 116.. .布朗氣產生器 118.. .熱交換器 120.. .布朗氣 121…管路 122.. .布朗氣貯存槽 124…己烷 126…己烷貯存槽 127…幫浦 128.. .洩放閥 130.. .管路網路 132··.止回閥 133…壓力調節器 134.. .控制閥 136.. .閃火遏止器 138…管路 140.. .止回閥 141…壓力調節器 142.. .控制閥 144…閃火遏止器 146…鋼爐與燃燒器單元 148.. .燃燒器 150…锅爐 152.. .管路 154…管路 156…管路 157…管路 158…幫浦 159.. .太陽能集熱器 200.. .吸收冷卻器 201.. .熱水槽 202.. .冷凝器 204.. .產生器 205…熱交換器 206.. .氣化器 208.. .吸收器 210.. .溴化鋰、溴化鋰匯集處 212.. .水 214…水蒸氣 215.. .熱交換器 56 200837310 216.. .熱交換器 218…管路 220.. .膨脹閥 222…冷媒喷淋 223…收集水 224.. .冷卻水管 226.. .管路 228.. .膨脹閥 230.. .濃縮之溴化鋰 232.. .溴化鋰溶液 236…幫浦 238…幫浦 240.. .冷卻水 242.. .微高溫水 244.. .南溫水 248…冷卻水 250.. .冷卻水塔 300…焚化單元 302.. .管路網路 303··.止回閥 305.. .控制閥 306.. .多頭閥 307.. .控制閥 308.. .閃火遏止器 310.. .閃火遏止器 311.. .網格方塊 312.. .燃燒室 313.. .布朗氣燃燒器 314…再氧化室 315.. .布朗氣燃燒器 316.. .前置處理單元 318.. .前置處理單元 320…收集單元 322.. .分類器 324.. .乾燥器 326…收集單元 328.. .過濾器 330.. .氣化器 332.. .煙道氣 334.. .室 335.. .煙道氣 336.. .濕滌氣器 338.. .熱交換器 340.. .廢氣 342…管路網路 344…水蒸氣沈降槽 346…幫浦 348.. .多頭閥 57 200837310 350.. .多頭閥 352.. .多頭閥 1102.. .水供應源 1104…電源供應器 1106…控制面板 1108.. .逆滲透(RO)水過濾器 1110…幫浦 1112…電源線 1113…布朗氣產生系統 1114.. .布朗氣產生器 1116…熱交換器 1117.··管路 1118…冷卻水塔 1119…管路 1120.. .布朗氣 1121…管路 1122.. .布朗氣貯存槽 1124.. .己烷 1126…己烷貯存槽 1128.. .洩放閥 1130.. .管路網路 1132…止回閥 1134…壓力調節器 1136.. .控制閥 1138.. .閃火遏止器 1140.. .燃燒器 1142…燃燒室 1142a.··單級燃燒單元 1201.. .底灰分 1202.. .煙道氣 1204…水管水蒸氣鍋爐 1206.. .填充水之水管 1208.. .水蒸氣轉鼓 1212.. .幫浦 1214.. .水蒸氣 1216…水蒸氣渦輪 1218···主軸 1220.. .發電機 1222.. .熱交換器 1224.. .管路網路 1226.. .旁通管 1228a...槽道 1228b...槽道 1229.. .槽道 1230.. .前置處理單元、後處理 订ΰ —- 早兀 1232…濕滌氣器 1233.. .幫浦 58 200837310 1234.. .驟冷器 1236.. .廢氣 1238.. .管路網路 1242.. .前置處理單元 1243.. .管束 1244.. .槽道 1302…再氧化室 1303.. .多頭閥 1304·.·止回閥 1306…壓力調節器 1308.. .控制閥 1310.. .閃火遏止器 1312.. .布朗氣燃燒器 1313.. .網格方塊 1314.. .煙道氣 2102.. .煙道氣排放器 2103.. .煙道氣 2104…第一處理室 2106…第二處理室 2108.··第三處理室 2110.. .布朗氣貯存槽 2111.. .洩放閥 2112.. .管路網路 2114.. .止回閥 2116.. .角頭閥 2118.. .管路網路 2121.. .管路網路 2122.. .管路網路 2124…壓力調節器 2126.. .控制閥 2128.. .閃火遏止器 2130…燃燒器 2132…壓力調節器 2134.. .控制閥 2136.. .閃火遏止器 2138.. .燃燒器 2140.··壓力調節器 2142.. .控制閥 2144.. .閃火遏止器 2146.. .燃燒器 2148…水管水蒸氣鍋爐 2150…經水填充之水管 2152.. .水蒸氣轉鼓 2154.. .水蒸氣 2156.. .水蒸氣渦輪 2158.. .發電機 2160.··主軸 2162.. .旁通管 59 200837310 2166…熱交換器 2168···電力格柵 2170···幫浦 2172.. .水供應源 2174.. .管路網路 2176.. .滌氣總成 2178…濕滌氣器 2180…流體喷淋喷嘴 2182.. .流體 2184·.·幫浦 2186…處理單元 2188.. .驟冷器 2190.. .水噴淋噴嘴 2192.. .幫浦 2194…廢氣 2196.. .管路網路 2194…廢氣 60[poor way; DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Figure 1 shows a portion of a separation system in accordance with one embodiment of the present invention. In particular, the invention shows the generation of Brownian gas and the use of Brownian gas in a boiler and burner unit 10 in a separate system. Brown gas is produced in the Brown gas generator 116, One form of the Brown gas generator 116 is illustrated in U.S. Patent No. 4, 081, No. 656. Generator 116 includes an electrolysis chamber. A power source i〇4 is connected to a control panel 1〇6, The panel monitors and controls operating parameters, The power supply to the generator 116 is monitored and controlled via a power line 114, such as by monitoring and controlling. Also 15 Set a water supply source 1〇2. The water supply source 102 can be in the form of a water storage tank. Water from the water supply source 102 passes through a reverse osmosis (RO) water filter, The RO water after the transition is stored in the RO tank 110. The water from the R0 tank 11 is fed into the generator 116 by a pump 112.  result, The generator 116 takes in RO water and electricity to dissociate 20 oxygen and hydrogen during the electrolysis process. The resulting mixed gas of oxygen and hydrogen is pumped through line 121 to a Brown gas storage tank 122. Generator 116 further includes a heat exchanger 118. The immediate by-product of the electrolysis process is the heat derived from the hydrolysis to its constituents. The heat exchanger 118 is cooled by water. The water system is supplied to the heat exchanger 118 through the line 152 from the water supply source 1〇2. Subsequently, The preheated water manifold 30 200837310 The road 154 flows out of the heat exchanger 118.  The Brown gas storage tank 122 is partially filled with liquefied hydrocarbons. In this case, the liquefied hydrocarbon is hexane 124. A hexane storage tank 126 is also provided. The burned m from the burned storage tank m is pumped into the Brown gas storage tank 14 by the pump (2). The mixture of oxygen and hydrogen is mixed with the (tetra) gas to form a Brownian gas 120° Brown gas storage tank 122. The step is assembled with a width of 128.  Control panel 106 also monitors and controls other operational parameters, For example, the water of the ruler is supplied to the generator 116 by the RO water tank 11 The appearance 124 is supplied to the gas pressure of the inside of the Brown gas storage tank 122 generator 116 and the Brown gas storage tank 122, Producing an operating temperature of 10, 116 And the flow rate of the mixture of oxygen and gas from the generator 116.  Brown gas 120 from Brown gas storage tank 122 can be supplied directly to the end user via line network 130. The line can be fitted with at least one check valve 132 to ensure that the flow of gas is only in one direction. The pipeline 13 further includes a pressure regulator 133, a control valve 134, And a flash fire suppressor 136. In addition to the direct supply of Brown Gas 120 to the end user, Brown gas 12 〇 can also be supplied to a furnace to the burner unit 146 for the production of hot water.  particular, Brown gas 120 is supplied to burner 148 of burner unit 146 via line 138. The line 138 includes a check valve 140, a pressure regulator 14ι, a 20 control valve 142, And a flash fire suppressor 144. The burner 148 is equipped with a gas ignition device, Flame and flame style control device, Standard for gas detectors Industrial gas burners. The burner 148 is operated on the Brown gas 120. The burner 148 has a motor driven blower, The gas supply solenoid valve and a gas nozzle. The burners 148 are assembled to produce a flame of up to 1 Torr (TC temperature. Burner 31 200837310 148 Projects the flame into the pin furnace.  The boiler 150 has a cylindrical structure. There is space inside to cover the water pipe bundle (not shown). The feed is to be supplied to a pin furnace for heating to produce hot water feed water. In addition, Inside the boiler 150, a layer of reactive metal elements, The layer 5 metal element is placed on the path of the flame burning Brown gas 12 〇 to perform reactive combustion. Help to further increase the flame temperature. The hot gas produced by the combustion of the Brown gas 120 in the burner 148 contacts the water tube bundle, As a result, the feed water inside the water pipe is heated. In order to maintain the heat of combustion as much as possible, The boiler 150 is externally coated with a layer of insulating material. The heat from the burner 148 burning the hard gas 120 is used to heat the feed water for the steel furnace 150. Hot water is produced by the cockroach.  The feed water to the feed steel furnace 150 comes from three sources. the first, Water supply source 102 is used as makeup water. The water is pumped into the furnace by pump 158 along line 156. second, The preheated water is passed through the line 154 discharged from the heat exchanger 118 in the Brown gas generator 116. third, As the preheated water in the line 157 discharged from at least one of the solar energy collectors 159. The at least one solar heat collector 159 takes in water from the water supply source 〇2, The preheated water is discharged via line 157 to the boiler and burner unit 146. particular, From the pipeline 154, 156. The water of 157 and 157 are combined and pumped into boiler and burner unit 146 by pump 158. The hot water produced by boiler 150 can be used for space heating, Hygienic use and washing use. The hot water produced by boiler 150 is used for space heating 'sanitary and washing applications, The hot water may be mixed with water from the water supply source 102 via a blender valve to a temperature of from about 50 ° C to 70 ° C (depending on the application). The hot water produced can be stored in a hot water storage tank.  32 200837310 Figure 2 shows yet another unit included in the system of the present invention. particular,  Figure 2 shows the configuration of the absorption chiller 200. The absorption chiller 200 manufactures cooling water, Cooling water can be used for space cooling purposes. The absorption chiller 2〇〇 is divided into four sections: Condenser 202, Generator 204, Gasifier 206, And absorber 5 208. The absorption chiller 200 operates based on a thermochemical procedure that approximates the vacuum gasification of the refrigerant to absorb heat from the surrounding jade.  The gasifier 206 section and the absorber 208 section are maintained near vacuum conditions. particular, The conditions for the gasifier 206 are as follows: The gasifier 206 is maintained in a vacuum state to perform gasification at a lower temperature. E.g, The pressure can be 1 kPa.  10 The temperature can be about 4 °C. The absorption chiller 200 is heated by the heat exchanger 205 flowing hot water from the hot water tank 201. In addition, To supplement the heat, The absorption chiller 200 can be disposed adjacent to the burner 148 of the boiler and burner unit 146. Lithium bromide (LiBr) 210, i.e., absorbent and water 212, i.e., refrigerant feeds the generator section 2〇4 of the absorption chiller 200. The heat generated by the hot water produced by the boiler and burner unit 146, Or the water content of the LiBr solution 210 generated in the generator section 204 by the heat generated by the combustion of the Brown gas 120 by the burner 148. The refrigerant vapor in the form of water vapor 214 is recycled to the condenser section 202, The latent heat is released to the cooling water 242 in one of the heat exchangers 216 in the condenser section 202. In the program, The water vapor 214 is condensed back to the refrigerant water 212.  2〇 The refrigerant water 212 flows through the line 218, Line 218 includes an expansion valve 220 to form a refrigerant spray 222 in the gasifier section 206. Water from the refrigerant spray 222 is sprayed onto the cooling water pipe bundle 224 in the gasifier section 206. The portion of water from spray 222 is absorbed by the concentrated LiBr 230 of absorber section 208. And a portion is collected by the gasifier section 206 at 223, The condenser section 202 is circulated back through the line 218 by means of the gang 33 200837310. Refrigerant spray 222 The temperature of the water temperature is low, Therefore, the water of the refrigerant spray 222 is absorbed by the warm water 246 in the cooling water pipe 224 and vaporized (vaporized under vacuum). result, The cooling water is discharged by the cooling water pipe 224. The refrigerant vapor produced in this process is absorbed by the concentrated LiBr 2 〇 3 of the absorber section 208. Such rapid absorption of refrigerant vapor, Forming a vacuum state in the gasifier 206, The reason is that the gasifier 2〇6 is interconnected with the absorber 208. particular, A pump (not shown) is coupled to gasifier 206 and absorber 208. The pump creates a high vacuum of less than ί%% atmospheric pressure. The concentrated LiBr is produced in the generator section 2〇4. When the water content in the LiBr solution 10 is vaporized in the generator section 204, A concentrated lithium bromide is formed.  Concentrated lithium bromide flows through line 226 to absorber section 208, Line 226 includes an expansion valve 228 to form brominated clock spray 230. The lithium bromide from the brominated clock spray 230 is collected at the bottom of the absorber section 208. When combined with refrigerant vapor from gasifier 206, Forming a dilute lithium bromide solution pool 232, The refrigerant vapor 15 gas is recycled back to the lithium bromide pool 210 of the generator section 204 by the pump 236. Lithium bromide spray 230 sprays lithium bromide into one of heat exchangers 215 in absorber section 208. The heat exchanger 215 has a cooling water 240 having a temperature of about 25 ° C and is fed to the heat exchanger by the cooling water tower 250. At the same time, the slightly high temperature water 242 is discharged by the heat exchanger 215. And fed into the heat exchanger 216 in the condenser section 202.  20 results, After the condenser section 202 absorbs heat from the refrigerant vapor 214,  The high temperature water 244 is discharged by the heat exchanger 216. And the cooling water tower 250 is fed.  The cooling water 248 produced in the gasifier section 206 is piped to a storage tank. Or directly to the end user for each purpose, Such as space cooling applications. E.g, Cooling water 248 can be passed to air conditioning units in various homes 34 200837310 (heat exchangers with blowers) to provide space cooling applications.  The system of the present invention also includes an incineration unit. The detailed configuration of the incineration unit is not shown in Figure 3. particular, The incineration unit 3 uses the cloth _12() produced by the Brown gas generator U6 as _. The incineration unit lion is oxidized to household waste and industrial waste at the location of the system. The incineration unit 3 is based on Brownian 12 得 operation from a Brown gas storage tank. Brown gas 12() is transported from storage tank 122 to a combustion chamber 312 and a reoxidation chamber 314 via line network 302.  The official road network 302 step-by-step - pressure regulator, a check valve 303 at the outlet of the storage tank 122, The multi-head valve 3〇6 splits the Brownian gas stream into the combustion chamber 312 and the reoxidation chamber 314. The pressure regulator 3〇4 controls and maintains a uniform air outlet pressure of 12 〇 in the official network 302. The combustion chamber 312 and the reoxidation chamber 314 are each equipped with a Brown gas burner 313 and 315.  Brown gas burners 313 and 315 are equipped with a gas ignition device, Flame and flame style control device, Standard industrial gas burner for flame detection devices. Cloth 15 gas burners 313 and 315 are based on Brown gas 120 operation. Also has a motor drive fan, A gas supply solenoid valve and a gas nozzle. Burners 313 and 315 are combined to produce a flame at a temperature of up to 15 ° C in combustion chamber 312 and reoxidation chamber 314. A flash arrester 308 and 31 and a control valve 3〇5 and 3〇7 are also provided at the respective intake ports of the combustion chamber 312 and the reoxidation chamber 314.  20 The incineration unit 30A also includes pre-processing units 316 and 318. The pre-processing unit 316 is used for pre-processing of solid waste. The pre-processing unit 318 is used for pre-treatment of liquid waste. The pre-processing unit 316 includes a collection unit 320, A classifier 322 and a dryer 324. The collecting unit 32 collects solid waste, The classifier 322 classifies the waste. Solid waste can also be removed by visual means by means of manual classification. gravel, Metal and other huge items. The water content of the waste is reduced in the dryer 324, In the dryer 324, The waste is heated. The waste is heated by the bundle. There is water vapor in the tube bundle. The tube bundle is used to heat the tube bundle. The waste is thus heated. The waste from the dryer 324 is then fed to the combustion chamber 312. Similarly, For pretreatment of liquid waste, The pre-processing unit 318 is configured to collect one of the collected liquid wastes, 326, One of the sludge removal filters 328 is removed from the liquid waste, And a gasifier 330 that removes water content from the sludge. Filter 328 can be any suitable filter. For example, the filter can be a fabric filter or a membrane filter. In addition,  10 Filter presses or centrifugal filters can also be used. The liquid waste pre-treatment procedure may include solid_water separation to filter out of the raw water. The slag can be collected in a gasifier to remove water. The filtered raw water can then be chemically treated and then discharged to the drainage system. The treated waste is then fed to the combustion chamber.  The combustion chamber 312 is heated to a temperature of up to 15 〇〇 15 c by the combustion of Brownian gas 12 ,. This temperature is at the flash point of most solid waste. Once the combustion chamber 312 is burned by the waste material and the Brown gas 120 to about 1 Torr (rc temperature, The Brown Gas Burner 313 stops operating. Only when the temperature of the combustion chamber 312 drops below iooo °c, The Brown gas burner 313 is re-ignited. The interior of the combustion chamber 312 also has a heat exchanger 338. The heat exchanger 338 can expand heat recovery.  20 for example, The circulating water contained in the tube bundle of the heat exchanger 338 absorbs the heat of combustion by the combustion chamber 312 and releases the heat from the waste dryer 324. In the waste dryer 324, This heat can be used to remove moisture from the solid waste. The incineration unit 3〇〇 also includes a circulation system. The feed water is supplied to the heat exchanger in the incineration unit.  The circulation system includes a multi-head valve 348, 350, 352, - water vapor settling tank 344,  36 200837310 A pump 346, And the pipeline network 342.  • The flue gas 332 produced by the waste burning at the age of 312 is fed to the re-emulsification chamber 314, By further oxidizing organic materials and other harmful substances, the King's knife will dissolve any waste remaining in the flue rolling 332.  5 #emulsified to 314 is a combustion of flue gas 332 and maintained at a temperature of 1 Torr or more by supplemental combustion of Brown gas (10) by burner 315. The reoxidation chamber 314 is equipped with means for supplying fresh air to allow the flue gas 332 to undergo oxy-combustion. The reoxidation chamber is heated by the burner 315 to a temperature of about (10) Torr. The temperature is a component of the flue gas such as carbon monoxide (c〇), Chlorine (four), And the self-ignition temperature of A-burn 10 (CH4). Once the combustion of the flue gas 332 and the addition of the Brown gas 12 ,, When the reoxidation chamber 314 reaches a temperature of about i〇〇〇°c, The burner 315 is stopped. When the temperature of the reoxidation chamber 314 drops below 100 (rc, Burner 315 begins to burn Brown gas 120. The reoxidation chamber 314 is further provided with a grid block 311'. The grid block 311 is supported on one of the metal 15 brackets inside the reoxidation chamber 314. The highly permeable perforated grid block 311 can be made of platinum, steel, Made of nickel _ chrome or other nickel alloy. The bubble of the grid block 311 can be any suitable shape. Such as a square, Triangle or polygon. The grid block 3 can be composed of an interwoven multilayer structure to maximize contact with the input flue gas 332, And maximizing exposure to the Brown gas flame produced by the burner 315.  The flow directions of the Brown gas flames produced by the flue gas 332 and the burner 315 with respect to the grid block 311 are perpendicular to each other or parallel to each other. The grid block 311 is arranged in line with the Brown gas flame produced by the burner 315. The flue gas 332 from the combustion chamber 312 is guided through the grid block 311 by the guide channel. When the grid block 311 is directly exposed to the flue gas flame produced by the burner 315,  37 200837310 Grid block 311 produces glow, A temperature at which it can react with the incoming flue gas 332 is reached. In this program, Flue gas components such as carbon monoxide (c〇), Hydrogen (3⁄4), And other gaseous hydrocarbon compounds are oxidized into a form that is less harmful to the environment,  Such as carbon dioxide (C〇2), Water and other less harmful gases.  5 The flue gas 335 from the reoxidation chamber 314 passes through a chamber 334 containing a wet gastor 336. It is then discharged into the atmosphere as an exhaust gas 34. The wet scrubber 336 treats the resulting flue gas 335 to remove fly ash of sub-micron or larger. The wet scrubber 336 has a series of high volume water spray nozzles. To provide rapid flue gas cooling to about 200X: To 30 (TC temperature, Then released as exhaust gas 34〇, To curb the formation of dioxins and furans in the atmosphere. The feed water fed to the wet scrubber 336 is derived from the water supply source 102. The exhaust gas 34 释放 released by the chamber 334 can be connected to an air filter system.  Fig. 4 shows a configuration example of each unit of the aforementioned system. particular,  Figure 4 shows no such as Brown gas generator 116, Pin furnace and burner unit,  How to use 15 absorption chiller 200 and incineration unit 3 用于 for a separate system, , First to produce Brown gas, Store Brown gas, And the delivery of Brown gas for various purposes in multi-story buildings.  Figure 5 shows a system substantially separated from one of the embodiments of the present invention. particular, Figure 5 shows the use of Brown gas 20 and Brown gas in a combustion chamber of a separate system. Brown gas is produced in the Brown gas generation system 1113, Wherein the Brown gas generation system 1113 comprises a Brown gas generator 1114, a hot parent converter 1116, And a Brown gas storage tank 1122. The special Braun gas is produced in the Brown gas generator 1114, A form of Brown gas generator U14 has been described in the US Patent No. No. 656. Generator 38 200837310 1114 includes an electrolysis chamber. The power source 11〇4 is connected to a control panel 11〇6, Control panel 1106 monitors and controls operating parameters, A power supply generator 1114 such as a power supply line 1112. A water supply source 1102 is also provided. The water supply source 1102 can be in the form of a water storage tank. The water system from the water supply source 11〇 passes through a reverse osmosis (R0) water filter 1108 using 5 pumps 111〇. The filtered ruler is fed into the electrolysis chamber of the water generator 1114.  As a result, the generator 1114 takes in water and electricity. Come from the electrolysis process to dissociate oxygen and hydrogen. The resulting mixture of oxygen and hydrogen is directed through line 1121 to Brown gas storage tank 1122. The Brown gas generation system 1113 further includes a heat exchanger 1116. The immediate by-product of the electrolysis process is the heat obtained by hydrolysis into its constituents. Heat exchanger 1116 is cooled by water. The cold water from the cooling water tower 1118 is circulated to the heat exchanger 1116 ° via the line in, then Warming is led out of heat exchanger 1116 by line 1119.  Return to the cooling tower 1Π8.  15 Brown gas storage tank 1122 is partially filled with liquefied hydrocarbons. In this case, The liquefied hydrocarbon is hexane 1124. A hexane storage tank 1126 is also provided. The hexane 1124 from the hexane storage tank 1126 is pumped into the Brown gas storage tank 1122 by means of a pump (not shown). A mixture of oxygen and hydrogen is mixed with hexane vapor to form Brown gas 112. The Brown gas storage tank 1122 is further provided with a bleed valve u28. The relief valve is a valve, Set to a certain pressure level to prevent the pressure of the container or system from becoming unsafe.  Brown gas 1120 from Brown gas storage tank 1122 is supplied directly to combustion chamber 1142 via line network 1130. The pipeline network is equipped with at least one check valve 1132, To ensure that the flow of the Brown gas 112 只 is only in the direction of - 39 200837310. The pipe network 1130 further includes at least one pressure regulator (four), At least one control valve 1136, And at least one flash arrester 1138. The pressure regulator is a device for controlling and maintaining the gas pressure of the outlet gas corresponding to the pipeline. The flash fire suppressor is a device that prevents "flashback" from the external fire through the open coaxial port.  In particular, the Brown gas is supplied to the combustion chamber by at least one burner 114G via the pipeline network 113. The burner i i 4 is equipped with a gas ignition device, Flame shape and style control device, Standard industrial gas burner for flame detection devices. The burner U40 is based on Brown gas 112〇 operation. And has a motor drive blower, The gas supplies electromagnetic I and gas nozzles. The burner ray is combined to produce a flame with a temperature higher than 120 generations. The burner is located on the side of the combustion chamber m2 and projects the flame into the interior of the combustion chamber 1142. When the waste is burned inside the combustion chamber 1142, Produce flue gas. The heat from the flue gas can be used to generate electricity, Details are detailed later.  15 20 Figure 6 shows the configuration of the system of the present invention, The heat from the flue gas produced by the combustion chamber H42 is used for a variety of additional purposes. Figure 6 shows. The burning heart will use the Brown gas (10) generated by the Brown gas generation system 1113 as a fuel to burn the combustion material. Job materials can be scrap, Including household pure red industry waste.  Brown gas from Brown's gas to produce secret 1113 is as previously mentioned in &  The pipeline network (10) is shown in the drawing and is passed to the combustion unit 1142a. The pressure in the combustion unit regulator 1134 is controlled in the line network 113 适合 to use the 1142a-to-export Brown gas pressure. E.g, The gas pressure can be about the water pressure (i.e., 2738 Pa).  40 200837310 The inner wall gasket of the combustion unit lM2a is made of fossil fuel material. To include combustion heat inside the combustion unit 1142a, And the structure of the combustion unit U42a is protected. E.g, Refractory materials include hard, heat resistant materials that work in an acidic environment. Examples of fire resistant materials include, but are not limited to, aluminum oxide, Tantalum carbide, Clay, brick, And 5 矽 oxygen. The gap injection pressurized air is supplied to the combustion unit 1M2a via a perforation of the side or bottom of the combustion unit. Compressed air is used to promote the turbulent mixing of the waste, The waste will be burned with air in the combustion unit 1142a. The gap injection compressed air helps to prevent clogging of the supply of compressed air to the perforations of the combustion unit U42a. The dry solid waste is separated from the ash by a grid (not shown) at the bottom of the combustion unit 1142a. The bottom ash 1201 from the combustion of the waste in the combustion unit 1142a is passed through the combustion unit 1142& The bottom hopper (not shown) is collected for disposal.  The flue gas 1202 is produced as a result of the combustion of the waste in the combustion unit 1142a. A plurality of flue gases 12〇2 are directed by the combustion unit U42a to a water-steamed 15-gas boiler 1204. The water is pumped to the steam pin furnace 1204 by the pump 1212. In the steam boiler 1204, Water circulates inside the tube 1206, The tubes are externally heated by the flue gas 1202 that is directed to the steam boiler 1204 by the combustion unit 1142a. For example, the flue gas can be 9〇〇t: . When the water-filled tube 12〇6 contained in the steam boiler 1204 is exposed to the high-temperature flue gas 12〇2,  20 the temperature of the water in the tube 1206 rises, Due to the thermosiphon effect, The hot water rises to the water vapor drum 1208 in the steam steel furnace 1204. The hot water in the steam drum 1208 is further heated by the flue gas 1202 to produce water vapor 1214. The water vapor 1214 is separated from the top of the water vapor drum 1208. Ultra-hot water vapor can be produced by heating in a super heater (not shown) as needed. The flue gas 1202 is then directed through the 200837310 channel 1228a to the post-processing unit 123A to process the flue gas 1202. It is then discharged η% of the human exhaust gas. The post-processing unit is detailed later.  Water money 1214 or super hot water vapor is then used to drive the steam full wheel 1216. For example, the super hot water vapor may be 39 (rc or more. The water vapor leaking wheel (2) 65 can be a single-stage steam steamer or a multi-stage steam steamer. The steam turbine (4) is connected to the generator coffee for power generation by the shaft Π18. The water vapor (2) 4 feeds the steam turbine 1216 at a high pressure of about [mu]3 (2. 3 x 〇 6 Pa). Water vapor full wheel 1216 spin, The spindle 1218 is also caused to spin. As a result, the magnet contained in the generator 1220 is also rotated since the spindle (10) is self-contained. The magnet has a wire coil 10 coils. When the magnet inside the generator 1220 rotates, Current is generated in the metal wire. Generator 1220 converts mechanical energy into electrical energy. The power generated by the generator 122 is then transmitted to a series of electrical devices for voltage and current regulation. The Brown gas generation system 1113 is used to generate Brown gas 112〇, Or transmitted to the power grid inside the system, It is the power supply 11〇4 of the system.  15 Water vapor 1214 or super hot water vapor passing through the steam turbine 1216 is then passed to the heat exchanger I222 via the channel. The water vapor 1214 is cooled in the heat exchanger 1222 to be condensed into water. The condensed water is then pumped back to the pipe 1206 of the water vapour furnace 1204 by the pump 1212. Used to produce water vapor 1214 from the heat of the flue gas 1202. The feed water flowing into the heat exchanger 1222 for cooling the water vapor 1214 or 20 super hot water vapor from the steam turbine 216 is obtained from the water supply source 1102 by the pipe network 1224. Heat exchanger 1222 also cools excess superheated water vapor or excess water vapor 1214. When the steam turbine 12i6 reaches its maximum capacity, When it is no longer possible to ingest any larger amounts of water vapor 1214 or super hot water vapor, Water vapor 1214 is considered to be in excess. When this happens, Excess water 42 200837310 Vapor 1214 or excess super hot water vapor is directed to heat exchanger 1222 via bypass tube 1226. As explained above, Excess water vapor 1214 and excess super hot water vapor are cooled in heat exchanger 1222 and condensed into water. The water is then sent back to the tube 1206 of the steam boiler 1204 by the pump 1212. The water vapor 1214 is produced by the endothermic heat of the flue gas 5120.  The combustion chamber 1142 also includes a pre-processing unit 1242. particular, The pre-processing unit 1242 is used for pre-treatment of solid waste. The pre-processing unit 1242 includes a dryer. The waste water is fed into the combustion unit H42a for combustion to reduce the water content of the waste. The waste is heated by a tube bundle 1243 10 inside the dryer. The tube bundle 1243 has a tube through which the flue gas 1202 passes through the tube bundle. Heating waste from the outside. particular, The tube of tube bundle 1243 is highly thermally conductive. A plurality of flue gases 1202 from the combustion unit 1142a are directed to the tube bundle 1243 via channels 1229. The flue gas 1202 from the steam boiler 1204 is also directed through the channel 1228a to the tube bundle 1243. The flue gas 1202 15 passing through the tube bundle 1243 is then directed to the aftertreatment unit 1230 via the channel 丨244. The flue gas 1202' is then discharged into the atmosphere to become the exhaust gas 1236. The post-processing unit 123 is described later in detail.  The flue gas 1202 from the steam boiler 1204 and the pre-processing unit 1242 passes through the channels 1228 & And 1244 is directed to post processing unit 20 1230. The aftertreatment unit 1230 includes a wet scrubber 1232 and a quencher 1234. The flue gas 1202 from the steam boiler 12〇4 and the pre-treatment unit 1242 is washed down into the wet scrubber 1232. The wet scrubber 1232 can be a chemical wet stripper, For example, the chemical used in the chemical wet scrubber may be an aqueous slurry formed by hydrogenation of about or sodium hydroxide. The wet scrubber 1232 can be a plurality of interconnected enclosures having 43 200837310. Each chamber is formed by a perforated plate to slow the passage of the flue gas 1202 through the wet scrubber 1232. The wet scrubber 1232 processes the flue gas 1202 to remove sub-micron or larger fly ash, Dust and particles. The wet scrubber 1232 has a series of still-pressure fluid spray nozzles. E.g, The fluid is an experimental solution,  5 such as sodium hydroxide or calcium hydroxide. The alkaline solution neutralizes the flue gas 1202 which may be acidic. The alkaline solution is also washed to remove fly ash and large particles in the flue gas 12〇2.  After the flue gas 1202 passes through the wet scrubber 1232, The semi-treated flue rolling 1202 is washed down into the quencher 1234 for rapid quenching. The quencher 1234 1 has a series of high volume water spray nozzles to provide rapid quenching of the flue gas 1202 to a temperature of between about 200 ° C and 300 ° C. Then the flue gas 12〇2 is released into the exhaust gas 1236. To curb the formation of dioxin and furans in the atmosphere. Quenching also reduces the odor of the semi-treated flue gas. The feed water fed to the quencher 1234 is derived from the water supply and demand source 11〇2. The water from the supply and demand source 15 Η 02 is pumped to the quencher 1234 via the pipeline network 1238. The fluid containing fly ash and large particles collected at the bottom of the post-processing unit 123 can pass through the filtration system. The spray nozzle of the wet scrubber 1232 is then circulated back by the pump 1233. At fixed time intervals, The fluid at the bottom of the aftertreatment unit 123A can be discharged to the processing unit 124A, I am here to accept the Chemistry Division. The chemically treated fluid can be recycled back to the wet scrubber 1232, Or it can be placed in a drainage system.  Optionally, The exhaust gas 1236 released by the quencher 1234 can be coupled to an air transition system. Accept further processing, It is then discharged into the atmosphere. Waste gas 1236 also contains saturated steam. Therefore, a gasifier can be installed at the air outlet of the quencher 44 200837310 1234. To remove the saturated water vapor in the exhaust gas 1236, In order to prevent the formation of plumes in the atmosphere. As for another option, The treated flue gas 1202 can also pass through a gas filtration system. It is then vented to the atmosphere to remove submicron sized particles.  A further configuration of the system of the present invention is wherein the heat from the flue gas produced by the combustion chamber 114 2 is used for each purpose, The system configuration is shown in Figure 7. The system of Figure 6 is substantially identical to the system of Figure 7. The exception is the combustion chamber 1142. The combustion chamber 1142 shown in Fig. 7 includes a secondary combustion chamber. Special, The combustion chamber 1142 of Fig. 7 includes a combustion unit 1142a and a reoxidation chamber 10 1302. The reoxidation chamber 1302 can be a thermal reoxidation chamber. Like the combustion unit 1142a, The reoxidation chamber 13〇2 also utilizes the Brown gas 1120 generated by the Brown gas generation system 1113 as fuel. in this way, The Brown gas 112 is led to the reoxidation chamber 13〇2 by the Brown gas generation system 1113 via the pipeline network 113〇. Piping network 1130 includes a multi-head valve 1303, To split the Brown gas into the 15 combustion unit and the reoxidation chamber 13 () 2 . Pipeline network 1 (10) further includes a check valve 1304, Pressure regulator 1306, Control valve 13〇8 and flash arrester 1310. The pressure regulator 13〇6 controls and maintains a consistent Brownian pressure in the pipeline network.  The reoxidation chamber 1302 is equipped with a Brown gas burner 1312. The Brown gas burner 1312 is equipped with a gas ignition device, Flame shape and style control device and: A standard industrial gas burner for the device. The Brown Gas Burner (3) 2 is based on Brownian 112 〇 operation. Also has a motor drive blower, A gas supply solenoid valve and a gas nozzle are provided. The Brown gas burner (10) can be assembled to produce a temperature above 12 〇〇t in the reoxidation chamber 1302: Flame. particular, Reoxygenation 45 200837310 The chemical chamber 1302 is maintained at a temperature of about 1 〇〇 (rc). The temperature is a flue gas component such as carbon monoxide (CO), Hydrogen (HO, And the reduction temperature of decane (Ch4).  At the beginning of the incineration (combustion) process, The Brown gas burners 114A and 1312, respectively, of the combustion unit 1142a and the reoxidation chamber 51302 burn Brown gas 1120 to heat the furnace space inside the combustion unit 1142a and the reoxidation chamber 1302. Brown Gas 1120 & The L-rate and combustion time are controlled to the combustion unit 1142& The preset temperature is reached. Typically, In the absence of waste, The combustion unit 1142a can reach temperatures in excess of 1000 C. In the process of incineration, The dry waste is constantly fed to the combustion unit U42a to be burned. At a steady rate, Constantly supplying waste, The combustion unit 1142a can reach temperatures in excess of 1200 °C. During the combustion process, Manufactured with carbon monoxide, Gaseous hydrocarbon compounds and flue gases of nitrogen oxides (Ν〇χ). The resulting flue gas 1202 is carried to a reoxidation chamber 1302 for further processing. The reoxidation chamber 1302 can be an elongated structure. To allow a residence time of at least 2 seconds 15 to allow the flue gas 1202 to completely burn. In addition, The reoxidation chamber 13〇2 may be composed of two or more small furnaces having similar or different interconnections. A more complete treatment of the flue gas 1202 is achieved by extending the exposure of the flue gas 1202 to the processing time.  The reoxidation chamber 1302 is equipped with a grid block 1313 supported on a gold 20 frame inside the reoxidation chamber 13A2. Highly permeable perforated grid block ι313 can be made of platinum, steel, Made of nickel-chromium alloy or nickel alloy. The grid block 1313 positively reacts with the Brown gas flame generated by the Brown gas burner 1312. The high temperature is reached inside the reoxidation chamber 1302. The voids of grid block 1313 can have any suitable shape, Such as a square, Triangle or polygon. particular, Grid 46 200837310 Block 1313 can be constructed as a multilayer structure of interconnects, To maximize the contact with the incoming cloth 1120 and maximize exposure to the Brown gas flame produced by the Brown Gas Burner 312.  The flue gas stream and the Brown gas flame generated by the Brown gas burner 1312 are oriented perpendicular to each other or parallel to each other with respect to the grid block 1313.  Grid block 1313 is positioned to align with the blast of flame generated by Brown gas burner 1312. The flue gas 1202 from the combustion unit 1142a passes through the grid block 1313. When the grid block 1313 is exposed to the Brown gas flame generated by the Brown gas burner 1312, Grid block 1313 glows and reaches a temperature at which 10 can react with the input flue gas 1202. In the program, Flue gas components such as CO, Η: , And other gaseous hydrocarbon compounds are oxidized into a form that is less harmful to the environment, Such as carbon dioxide (C02), Water and other less harmful gases. Especially before the oxygen reacts further with the hydrogen in the brown gas 1120, The nitrogen-containing flue gas 1202 is reduced to the elemental composition of nitrogen and oxygen. This produces nitrogen and water vapor.  As described in Figure 6 above, Part of the flue gas 1314 from the reoxidation chamber 13〇2 is directed to the steam boiler 12〇4 for making steam (or super hot water vapor) to drive the steam thirst wheel 1216 and the generator 1220 to generate electricity. . Part of the flue gas 1314 from the reoxidation chamber 1302 is also directed 20 through the channel 1315 to the tube bundle 1243 to dry the waste material in the pretreatment unit 1242.  Throughout the incineration process, Both the combustion unit 1142a and the reoxidation chamber 13〇2 are maintained at a negative pressure to ensure the formation of a flue gas 12〇2 flow from the combustion unit 1142a and the reoxidation chamber 13〇2 to the steam boiler 1204 and the pretreatment unit 1242. Proper ventilation. For example, The pressure is about _5 〇pa. The negative pressure on the combustion unit n42a 47 200837310 and reoxidation to 1302 can be transmitted through the smoke discharge end of the combustion unit n42a (in the case of Figure 6). The flue gas discharge end of the reoxidation chamber 1302 is installed (in the case of the secret shown in Fig. 7), Or set up & The exhaust fan at the vent end of the post-processing unit 123G is achieved.  5 Figure 8 shows a general assembly of one embodiment of the present invention. particular, Figure 8 shows the treatment of the flue gas emitted by the flue gas vent. The flue gas is then released into the atmosphere. The flue gas 2103 from the flue gas ejector 2102 is directed to the first process chamber 21〇4. The flue gas vent 21 〇 2 can be any system that emits flue gas. E.g, The flue gas ejector 21〇2 can be an incineration unit, Coal kiln and so on. Flue gas 2103 is rich in carbon monoxide, Gaseous hydrocarbon compounds and nitrogen oxides (NOx). The flue gas 21〇3 typically has a temperature of 300 ° C or higher. In the first processing chamber 21〇4, The flue gas 2103 is further heated.  E.g, The flue gas 2103 is further heated to about 8 〇〇 C in the first processing chamber 21〇4. The heated flue gas 21〇3 is then directed into the second processing chamber 21〇6 for further heat treatment. E.g, The flue gas can be heated to a temperature of about 1000 C in the second processing chamber 2106. The heated flue gas 2103 is introduced into the third processing chamber 21〇8 by the second processing chamber 2106. Want to be heated above 12〇0. (: Temperature. particular, The temperature in the third processing chamber 2108 is approximately 1600 °C.  The flue gas 2103 is in the first processing chamber 21〇4, The second processing chamber 21〇6 and the twenty-third processing chamber 2108 are heated by burning Brown gas. Brown gas can be produced in the Brown gas generator. A form of Brown gas generator is described in US Patent No. 4, 081, No. 656. Brown gas can be directly supplied to the processing chamber 21〇4 by a Brown gas storage tank 2110 via the pipeline network 2112. 2106 and 2108. The Brown gas storage tank 2110 can be equipped with a bleed valve 2111. The relief valve is a valve, The valve set 48 200837310 is intended to be opened at a certain pressure level to prevent the pressure of the container or system from becoming unsafe. The pipeline network 2112 can be equipped with at least one check valve 2114.  The official road network 2112 can further include a multi-head valve 2116 to split the Brownian airflow into the various processing chambers 2104, 2106 and 2108. For example, Brownian airflow can be split,  5 let Brown gas through the pipeline network 2118, 2120 and 2122 are respectively supplied to the first processing chamber 2104, The second processing chamber 2106 and the third processing chamber 2108. Each pipeline network 2118, 2120 and 2122 respectively comprise at least one pressure regulator 2124,  2132, 2140, At least one control valve 2126, 2134, 2142, And at least one flash arrester 2128, 2136, 2144. The pressure regulator is a device for controlling and maintaining the gas pressure of the uniform outlet gas to a pipeline; The flash fire suppressor is a device that prevents the external fire from "flashing back" through the open safety pipe interface. Pressure regulator 2124, 2132, And 2140 are controlled and maintained in the pipeline network 2118, Suitable for processing room 2104 in 2120 and 2122, The consistent air outlet Browning pressure of 2106 and 2108. E.g, The gas pressure is about 11 吋 water pressure (also 15 is about 2738 Pa).  particular, Brown gas is supplied to the processing chamber 2104, 2106 and 2108 burners 2130, 2138 and 2146. Burner 2130, 2138 and 2146 can be equipped with a gas ignition device, Flame shape and style control device, Standard industrial burner for flame detection equipment. Burner 2130, 2138 and 2146 are based on cloth 20 gas operation, And there is a motor drive blower, Gas supply solenoid valves and gas nozzles. Burner 2130, The 2138 and 2146 sets are matched to produce a flame above 1200 °C. Burner 2130, 2138 and 2146 may be arranged to be separately injected into the processing chamber 2104 by flame, 2106 and 2108 internal.  Brown gas burner 2130, 2138 and 2146 are assembled for the first process 49 200837310 Room 2104, The second processing chamber 2106 and the third processing chamber 2108 are respectively produced at about 800 ° C, Flames at temperatures of 1000 ° C and 1200 ° C. particular, Flue gas components such as carbon monoxide (CO), Hydrogen (H2), And the self-ignition temperature of methane (CH4) is about 800 ° (: Up to 1600° (: between. Once burned by the combustion of flue gas 2103 and the addition of Brown gas, In the processing room 2104, When 2106 and 2108 reach the desired temperature, Brown gas burner 2130, 2138 and 2146 stopped working. When the first processing chamber 2104,  The temperatures of the second processing chamber 2106 and the third processing chamber 21〇8 are respectively lowered to 800 ° C, At 1000 ° C and 1200 ° C, Brown gas burner 2130, 2138 and 2146 began to burn Brown gas. At the beginning of the process, Brown gas burner 213〇,  10 2138 and 2146 burn Brown gas to heat the first processing chamber 2104, The second processing chamber 2106 and the furnace interior space inside the second processing chamber 2108. The Brown gas flow rate and combustion time are controlled to be available in each processing chamber 21〇4, 21〇6 and 21〇8 reach the preset temperature.  First processing chamber 2104, The second processing chamber 21〇6 and the third processing chamber 21〇8 15 may have an elongated structure. To allow a residence time of at least 2 seconds to complete the combustion of the flue gas 2103. In addition, The first processing chamber 21〇4, The second processing chamber 21〇6 and the third processing chamber 2108 may each be made of two or more interconnected small furnaces of similar or different construction. Exposing the exposure time of the treatment by prolonging the flue gas 21〇3, To achieve a more complete treatment of flue gas 2103. The first processing chamber 21〇4,  At least one of the second processing chamber 2106 and the third processing chamber 2108 may be further equipped with a grid block (not shown).  The grid block can be carried in the first processing chamber 21〇4, The inner metal frame of at least one of the second processing chamber 21〇6 and the third processing chamber 2108. Highly permeable perforated grid blocks can be molybdenum, steel, Nickel-chromium alloy, Recorded alloy or its 50 200837310 combination. Nets and Brown Gas Burner 2130, The Brown gas flame positive reaction generated by 2138 and 2146 comes from the first processing chamber 21〇4, The second process reaches a high temperature inside the 2106 and the second processing chamber 2108. The bubbles in the grid squares can have any suitable shape and size. For example, the bubble of the grid square can be square, Triangle or polygon. particular, The grid blocks can be composed of a multi-layered structure. To maximize contact with the input flue gas 21〇3, And maximize exposure to the Brown Gas Burner 2130, Brown Flame 0 flue gas generated by 2138 and 2146 and by Brown gas burner 2130, The directivity of the 10 Brownian flame directions generated by 2138 and 2146 with respect to the grid squares is perpendicular to each other or parallel to each other. The grid block is positioned and associated with the Brown Gas Burner 2130, The Brown ash produced by 2138 and 2146 is aligned. From the flue gas vent 21 21 The flue gas 2103 of the first processing chamber 2104 or the second processing chamber 2106 is guided through the channel and passes through the first processing chamber 2104, respectively. A grid of second processing chamber 2106 and third processing chamber 15 2108. When the grid block is exposed to the Brown Gas Burner 2130, When the Brown Flames produced by 2138 and 2146, The grid square glows and reaches a temperature that can react with the incoming flue gas 21〇3. In the process,  Flue gas components such as CO, H2 And other gaseous hydrocarbon compounds are oxidized to become environmentally innocuous components, Such as carbon dioxide ((3〇2), Water and relatively no harmful gases. particular, The nitrogen-containing flue gas 2103 is dissociated into an elemental component after reacting with hydrogen in the brown gas. Thereby nitrogen is produced.  From the first processing chamber 2104, The partially heated flue gas 2103 of each of the second process chamber 2106 and the third process chamber 2108 can be directed to a post-treatment unit. The aftertreatment unit can be a scrubbing assembly 2176. Details are detailed later. In addition,  51 200837310 Partially from the processing chamber, in particular the heated flue of the third treatment chamber 21〇8, is introduced into the water tube steam boiler 2148. The water was pumped into the steam pin furnace 2148 by the pump 2170. In the steam boiler 2148, The water circulates in the water pipe 2150, The water pipe is guided to the steam boiler 5 2148 by the third processing chamber 2108. , The second heated flue gas 21〇3 is heated externally. When the water-filled tube 2150 contained in the steam boiler 2148 is exposed to the high-temperature flue gas 2103, The water temperature in the water officer 2150 rises, Manufacture of water vapor 2154, The water vapor then rises to the water vapor drum 2152 in the steam boiler 2148. The water vapor 2154 is separated from the top of the water helium drum 2152. Ultra-hot water vapor can be produced by heating in a super heater (not shown) as needed. The flue gas 2103 is then directed to the aftertreatment unit for processing the flue gas 2103, It is then discharged into the atmosphere to become the exhaust gas 2194. The aftertreatment unit can be a scrubber assembly 2176. Details are detailed later.  The spa gas 2154 or super hot water vapor is then used to drive the water vapor turbine 2156. E.g, The super hot water vapor can be 25 (rc or more. The water vapor turbine 2156 15 can be a single stage steam turbine or a multi-stage steam turbine. The steam turbine 2156 is coupled to a generator 2158 for power generation by a spindle 2160. Water vapor 2154 is fed to steam turbine 2156 at a high pressure. The water vapor turbine 2156 spins, Causes the spindle 2160 to also spin. As a result of the spin of the spindle 216, The magnet in generator 2158 also rotates. The magnet has a metal coil wound around the magnet. When the magnet inside the power generation unit 2158 rotates, The coil generates a current. Generator 2158 converts mechanical energy into electrical energy. The power generated by the generator 2158 is then transmitted to the power grid 2168.  Water vapor 2154 or super hot water vapor passing through steam turbine 2156 is then directed to heat exchanger 2166. Water vapor 2154 is cooled in heat exchanger 2166 by 52 200837310 to condense into water. The condensed water is then pumped into a water vapor pot 2150 in a water tube 2150 by a pump 2170 for absorption of heat from the flue gas 2103 to produce water vapor 2154. The feed water flowing into the heat exchanger 2166 for cooling the super hot water vapor from the steam turbine 2156 is supplied from the water supply source 2172 via the pipeline network 2174. Heat exchanger 2166 also cools excess super hot water vapor or excess water vapor 2154. When the steam turbine 2156 reaches its maximum capacity and is unable to take any water vapor 2154 or super hot water vapor, Water vapor 2154 is considered excessive. When this happens, Excess water vapor 2154 or excess superheated water vapor is directed to the heat exchanger by bypass tube 2162. As explained above, Excess water 10 Vapor 2154 and excess superheated water vapor are cooled in heat exchanger 2166 and condensed into water. Then, the pump 2170 is pumped back into the water pipe 2150 of the steam boiler 2148, Used to absorb heat from the flue gas 2103 for the manufacture of water vapor 2154.  From the steam boiler 2148, First processing chamber 2104, The flue gas 2103 of the second process chamber 2106 and/or the third process chamber 2108 is directed into the interior of the scrubber 15 assembly 2176. The scrubber assembly 2176 includes a wet scrubber 2178 and a quench 2188. From the steam boiler 2148, First processing chamber 2104, The flue gas 2103 of the second process chamber 2106 and/or the third process chamber 2108 is submerged into the wet scrubber 2178. The wet scrubber 2178 can be a chemical wet scrubber. The wet scrubber 2178 can be one of a plurality of interconnected enclosures. Each chamber is formed by a perforated plate 20 to slow the passage of flue gas 2103 through the wet scrubber 2178. The wet scrubber 2178 processes the flue gas 2103 to remove sub-micron or larger fly ash, Dust and granules. The wet scrubber 2178 has a series of high pressure fluid spray nozzles 2180. E.g,  The fluid can be an alkaline solution, Such as sodium hydroxide or calcium hydroxide. The alkaline fluid neutralizes the acidic flue gas 2103. The alkaline fluid is also washed to remove fly ash and large particles from the flue gas 2103 53 200837310.  After the flue gas 2103 passes through the wet scrubber 2178, The semi-treated flue gas 2103 is washed down into the quench 2188 for rapid quenching. The quencher 2188 has a series of high volume water spray nozzles 2190 to provide rapid cooling of the flue gas 2103 to a temperature of between about 200 ° C and 300 ° C. Then the flue gas 2103 is released into the atmosphere 2194, To curb the formation of Dioxin and urethanes in the atmosphere. Quenching also reduces the odor of the semi-treated flue gas 2103. The feed water fed to the quench 2188 is derived from the water supply and demand source 2172. Water from the water supply and demand source 2172 is pumped through the line network 2196 to the chiller 2188 by the pump 2192. The fluid 2182 containing fly ash and large particles collected at the bottom of the scrubber assembly 2176 can pass through a filtration system. The spray nozzle 2180 of the wet scrubber 2178 is then circulated back by the pump 2184. At regular intervals, The fluid 2182 at the bottom of the scrubber assembly 2176 can be discharged into the processing unit 2186. It is chemically treated there. The chemically treated fluid is circulated back to the wet scrubber 15 2178, Or it can be discharged into the drainage system.  Optionally, Exhaust gas 2194 released by scrubber assembly 2176 can be connected to an air filter system for further processing. It is then discharged into the atmosphere.  Exhaust gas 2194 also contains saturated water vapor. Therefore, a gasifier can be installed at the gas outlet of the scrubber assembly 2176 to remove the saturated water vapor in the exhaust gas 2194. Take 20 to prevent the formation of plumes in the atmosphere. As for another option, The treated flue gas 2103 can also pass through the gas system. It is then vented to the atmosphere to remove submicron sized particles.  Throughout the process, The first processing chamber 21〇4, The second processing chamber 21〇6 and the second processing chamber 2108 are maintained at a negative pressure to ensure the processing chamber 21〇4,  54 200837310 2106 and 2108 to steam boiler 2148 and flue gas 2103 flue gas 2103 flow to form proper ventilation. For example, the pressure is about -50 Pa. In the first processing chamber 2104, The negative pressure of the second processing chamber 2106 and the third processing chamber 2108 can be transmitted through the first processing chamber 2104. The flue gas discharge end of the second process chamber 2106 and the third process chamber 2108 5 or the exhaust fan of the ventilating end of the scrubber assembly 2176 is achieved.  BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of a system in accordance with an embodiment of the present invention.  Figure 2 is a still further embodiment of the present invention, A schematic diagram of an absorption cooler 10 .  Figure 3 is a still further embodiment of the present invention, An indication of an incineration unit.  Figure 4 is a still further embodiment of the present invention, A localization that directs Brown gas and hot water and cooling water to a multi-storey building, Storage and transport 15 System schematic.  Figure 5 is a still further embodiment of the present invention, A schematic diagram of a system.  Figure 6 is a view showing still another embodiment of the present invention, A schematic diagram of a system utilizing heat from a flue gas produced by a combustion chamber.  20 is a still further embodiment of the present invention, A schematic diagram of a system utilizing heat from a flue gas produced by a combustion chamber.  Figure 8 is a still further embodiment of the present invention, A schematic diagram of an assembly.  55 200837310 [Explanation of main component symbols] 102. .  . Water supply source 104. .  . Power Supply 106...Control Panel 108···Reverse Osmosis (RO) Water Filter 110. .  . RO sink 112... pump 114... power supply, line 116. .  . Brown gas generator 118. .  . Heat exchanger 120. .  . Brown gas 121... pipeline 122. .  . Brown gas storage tank 124...hexane 126...hexane storage tank 127... pump 128. .  . Relief valve 130. .  . Pipeline network 132··. Check valve 133...pressure regulator 134. .  . Control valve 136. .  . Flash fire suppressor 138...pipeline 140. .  . Check valve 141...pressure regulator 142. .  . Control valve 144... flash fire suppressor 146... steel furnace and burner unit 148. .  . Burner 150... boiler 152. .  . Line 154... Line 156... Line 157... Line 158... Pump 159. .  . Solar collector 200. .  . Absorption cooler 201. .  . Hot water tank 202. .  . Condenser 204. .  . Generator 205... heat exchanger 206. .  . Gasifier 208. .  . Absorber 210. .  . Lithium bromide, lithium bromide collection 212. .  . Water 214... water vapor 215. .  . Heat exchanger 56 200837310 216. .  . Heat exchanger 218...pipeline 220. .  . Expansion valve 222... refrigerant spray 223... collect water 224. .  . Cooling water pipe 226. .  . Pipeline 228. .  . Expansion valve 230. .  . Concentrated lithium bromide 232. .  . Lithium bromide solution 236... pump 238... pump 240. .  . Cooling water 242. .  . Micro-high temperature water 244. .  . South Wenshui 248...cooling water 250. .  . Cooling water tower 300... Incineration unit 302. .  . Pipeline network 303··. Check valve 305. .  . Control valve 306. .  . Multi-head valve 307. .  . Control valve 308. .  . Flash fire suppressor 310. .  . Flash fire suppressor 311. .  . Grid block 312. .  . Combustion chamber 313. .  . Brown gas burner 314...reoxidation chamber 315. .  . Brown gas burner 316. .  . Pre-processing unit 318. .  . Pre-processing unit 320...collection unit 322. .  . Classifier 324. .  . Dryer 326...collection unit 328. .  . Filter 330. .  . Gasifier 332. .  . Flue gas 334. .  . Room 335. .  . Flue gas 336. .  . Wet scrubber 338. .  . Heat exchanger 340. .  . Exhaust gas 342... pipeline network 344... water vapor settling tank 346... pump 348. .  . Multi-head valve 57 200837310 350. .  . Multi-head valve 352. .  . Multi-head valve 1102. .  . Water supply source 1104... power supply 1106... control panel 1108. .  . Reverse Osmosis (RO) Water Filter 1110... Pump 1112... Power Cord 1113... Brown Gas Generation System 1114. .  . Brown gas generator 1116...heat exchanger 1117. ··Line 1118...Cooling tower 1119...Line 1120. .  . Brown gas 1121... pipeline 1122. .  . Brown gas storage tank 1124. .  . Hexane 1126...hexane storage tank 1128. .  . Relief valve 1130. .  . Pipeline network 1132...check valve 1134...pressure regulator 1136. .  . Control valve 1138. .  . Flash fire suppressor 1140. .  . Burner 1142...combustion chamber 1142a. ·· Single stage combustion unit 1201. .  . The bottom ash is 1202. .  . Flue gas 1204... water pipe steam boiler 1206. .  . Water filling pipe 1208. .  . Water vapor drum 1212. .  . Pump 1214. .  . Water vapor 1216... water vapor turbine 1218···spindle 1220. .  . Generator 1222. .  . Heat exchanger 1224. .  . Pipeline network 1226. .  . Bypass tube 1228a. . . Channel 1228b. . . Channel 1229. .  . Channel 1230. .  . Pre-processing unit, post-processing ordering —- early 兀 1232... wet scrubber 1233. .  . Pumps 58 200837310 1234. .  . Quench cooler 1236. .  . Exhaust gas 1238. .  . Pipeline network 1242. .  . Pre-processing unit 1243. .  . Tube bundle 1244. .  . Channel 1302...reoxidation chamber 1303. .  . Multi-head valve 1304·. ·Check valve 1306...pressure regulator 1308. .  . Control valve 1310. .  . Flash fire suppressor 1312. .  . Brown gas burner 1313. .  . Grid block 1314. .  . Flue gas 2102. .  . Flue gas venting device 2103. .  . Flue gas 2104...first processing chamber 2106...second processing chamber 2108. ··The third processing room 2110. .  . Brown gas storage tank 2111. .  . Relief valve 2112. .  . Pipeline network 2114. .  . Check valve 2116. .  . Corner valve 2118. .  . Pipeline network 2121. .  . Pipeline network 2122. .  . Pipeline network 2124...pressure regulator 2126. .  . Control valve 2128. .  . Flash fire suppressor 2130...burner 2132...pressure regulator 2134. .  . Control valve 2136. .  . Flash fire suppressor 2138. .  . Burner 2140. ··Pressure regulator 2142. .  . Control valve 2144. .  . Flash fire suppressor 2146. .  . Burner 2148...water pipe steam boiler 2150...water filled water pipe 2152. .  . Water vapor drum 2154. .  . Water vapor 2156. .  . Water vapor turbine 2158. .  . Generator 2160. ··Spindle 2162. .  . Bypass pipe 59 200837310 2166...Heat exchanger 2168···Power grid 2170···帮浦 2172. .  . Water supply source 2174. .  . Pipeline network 2176. .  . Gas scrubbing assembly 2178...wet scrubber 2180...fluid spray nozzle 2182. .  . Fluid 2184·. ·The pump 2186...processing unit 2188. .  . Quench cooler 2190. .  . Water spray nozzle 2192. .  . Pump 2194... exhaust gas 2196. .  . Pipeline network 2194... exhaust gas 60

Claims (1)

200837310 十、申請專利範圍: 1. 一種產生、貯存及使用布朗氣之系統,包含: •至少一個布朗氣產生器,該布朗氣產生器係與電 源及水源連通; -至少一個第一貯存室,係與該產生器連通,用來 貯存由該產生器所產生之布朗氣;以及 -布朗氣施用裝置與該至少一個第一貯存室連通, 其中該產生器及該第一貯存室位置鄰近該布朗氣 施用裝置。 * 10 15 20 2·如申請專利範圍第1項之系統,其中該至少一個第一貯 存槽含有預定量之液化烴。 3·如申請專利範圍第2項之系統,其中該液化煙係選自於 包含··己烷、庚烷、甲醇及乙醇之組群。 4· ^前述中請專利範圍各項中任_項之系統,#中該施用 裝置包含至少一個製造熱水之第一室,其中加熱該熱水 之熱係由布_之職衍生而得,布朗氣係得自至 個第一貯存室。 5.如申請專利範圍第4項之系統,其中該至少—個第一室 為一鍋爐與燃燒器單元。 h如申請專利範圍第4或5項之系統,其中該至少 室包含: 罘一 入口 -供由該至少一個第一 貯存室接納布朗氣之一第一 -接納水之一第二入口; 61 200837310 -一氣體燃燒器;以及 -排放所產生之熱水用之一出口, 其中來自該第-入口的布朗氣可由該氣體燃燒器 燃燒,藉此加熱來自該第二入口之水;以及其中該經加 熱之水可由出口排放。 7.如申請專利範圍第6項之系統,其中該接納水之第二入 口係連接至含於該至少一個布朗氣產生器内部之至少 一個熱交換器之一出口。 8·如申睛專利範圍第6或7項之系統,進一步包含於該第一 入口前方之至少一個閃火遏止器。 9.如申請專利範圍第4至8項中任一項之系统,其中該至少 一個第一室包含一反應性金屬元素。 10·如申請專利範圍第9項之系統,其中該反應性金屬元素 係選自於包含:始、鋼、錦鉻合金或高溫錄合金之組 群。 、、 U·如申請專利範圍第4至1〇項中任一項之系統,進一步包 含用來貯存熱水之至少一個第二貯存室。 12.如申請專利範圍第U項之純,其中該至少_個第二貯 存室係連接至該至少一個第一室之出口。 13·^前述巾請專利範圍各射任—項之純,其中該施用 裝置進一步包含用來製造冷卻水之至少一個第二室。 14.如申請專利範圍第13項之系統,其中該至少—個第^室 為一吸收冷卻器單元。 15·如申請專利範圍第13或14項之系統,其中該至少—個第 62 200837310 二室包括: -接納一吸收劑之一第一入口; -接納一冷媒之一第二入口; -接納冷卻水之一第三入口; 5 -接納溫水之一第四入口; -一第一熱交換器; -一第二熱交換器; -排放溫水之一第一出口;及 -排放所製造之冷卻水之一第二出口, 10 其中該第三入口及第一出口可連接至該第一熱交 換器,以及該第四入口及第二出口可連接至該第二熱交 換器。 16 ·如申請專利範圍第15項之系統,其中該吸收劑係選自於 包含:溴化鋰(LiBr)及氨(NH3)之組群。 15 17.如申請專利範圍第15或16項之系統,其中該冷媒為水。 18. 如申請專利範圍第15至17項中任一項之系統,其中該第 四入口係連接至該至少一個第二貯存室。 19. 如申請專利範圍第13至18項中任一項之系統,進一步包 含貯存冷卻水之至少一個第三貯存室。 20 20.如前述申請專利範圍各項中任一項之系統,其中該施用 裝置進一步包含燃燒廢料之至少一個第三室。 21.如申請專利範圍第20項之系統,其中該至少一個第三室 包含: -藉燃燒布朗氣來燃燒廢料之一燃燒單元; 63 200837310 -供接納廢料之連接至該燃燒單元之一第一入口; -供接納來自於該至少一個第一貯存室之布朗氣之 連接至該燃燒單元之一第二入口;以及 -供排放由該燃燒單元所製造之煙道氣用之連接至 5 該燃燒單元之一出口。 22. 如申請專利範圍第21項之系統,進一步包含於該第一入 口前方之至少一個閃火遏止器。 23. 如申請專利範圍第21或22項之系統,進一步包含連接至 該出口供排放煙道氣之一個熱交換器。 10 24. —種製造熱水用之鍋爐與燃燒器單元,該鍋爐與燃燒器 單元包含: -接納進給水之一第一入口; -接納來自於一布朗氣產生器之布朗氣之一第二入 口;及 15 -排放所製造之熱水之一出口, 其中該布朗氣經燃燒來產生熱量,該熱量加熱進料 水來製造熱水。 25. 如申請專利範圍第24項之鍋爐及燃燒器單元,其中該供 排放所製造之熱水用之出口係連接至貯存所製造之熱 20 水用之一貯存槽。 26. 如申請專利範圍第25項之鍋爐及燃燒器單元,其中該鍋 爐與燃燒器單元之第一入口可連接至:布朗氣產生器之 一第一熱交換器之出口;至少一個太陽能熱收集器之出 口,及/或供貯存所製造之熱水之該貯存槽。 64 200837310 27. —種回收由燃燒材料燃燒所產生之熱之系統,包含: -至少一個布朗氣產生器,其係與一電源及水源連 通; -用來貯存由該產生器所產生之布朗氣之與該產生 5 器做流體連通之至少一個第一貯存室; -供燃燒該燃燒材料之與該至少一個第一貯存室連 通之至少一個燃燒室;以及 -適合接納來自於該燃燒材料燃燒之由該燃燒室所 產生之熱之至少一個熱沒取室, 10 其中該產生器及該第一貯存室之位置係鄰近於該 燃燒室及該熱汲取室。 28. 如申請專利範圍第27項之系統,其中該至少一個燃燒室 包含: -藉燃燒布朗氣供燃燒該燃燒材料之一燃燒單元; 15 -供接納燃燒材料之連接至該燃燒單元之一第一入 V ; -供接納來自於該至少一個貯存室之布朗氣之連接 至該燃燒單元之一第二入口;以及 -供排放由該燃燒單元所製造之煙道氣之連接至該 20 燃燒單元之一出口。 29. 如申請專利範圍第27或28項之系統,其中該燃燒材料為 廢料。 30. 如申請專利範圍第28或29項之系統,其中該至少一個熱 汲取室為一製造水蒸氣之鍋爐單元,讓製造水蒸氣用之 65 200837310 熱係衍生自由該燃燒單元所產生之煙道氣。 31. 如申請專利範圍第28至30項中任一項之系統,其中該至 少一個熱汲取室包含: -一水入口; 5 -接納由燃燒單元所產生之煙道氣之煙道氣進氣 口; -排放所產生之水蒸氣之一第一出氣口;以及 -排放煙道氣之一第二出氣口, 故來自水入口之水藉來自煙道氣進氣口之煙道氣 10 所加熱,藉此產生水蒸氣,以及其中水蒸氣係由該第一 出氣口排放,煙道氣係由該第二出氣口排放。 32. 如申請專利範圍第31項之系統,其中該至少一個熱汲取 室之煙道氣進氣口係連接至該至少一個燃燒室之出氣 D 〇 15 33.如申請專利範圍第27至32項中任一項之系統,進一步包 含發電裝置與該至少一個熱汲取室連通。 34. 如申請專利範圍第33項之系統,其中該發電裝置包含: -適合接納由該至少一個第一室所產生之水蒸氣之 至少一個水蒸氣渦輪; 20 -與該至少一個水蒸氣渦輪連通之至少一個發電用 之發電機;以及 -排放由該發電機所製造之電力之裝置。 35. 如申請專利範圍第34項之系統,其中該至少一個水蒸氣 渦輪為單級水蒸氣渦輪或多級水蒸氣渦輪。 66 200837310 36. 如申請專利範圍第33至35項中任一項之系統,其中該發 電之電力供給該至少一個布朗氣產生器及/或一電力格 柵。 37. 如申請專利範圍第34至36項中任一項之系統,進一步包 5 含與該至少一個水蒸氣渦輪及該至少一個熱汲取室連 通之一熱交換器。 38. 如申請專利範圍第37項之系統,其中該熱交換器包含: -供接納來自於該水蒸氣渦輪之水蒸氣之一水蒸氣 進氣口;以及 10 -—水出口, 其中該熱交換器冷卻由該水蒸氣進氣口所接納之 水蒸氣,藉此冷凝水蒸氣來製造水;以及其中水係由水 出口排放。 39. 如申請專利範圍第38項之系統,其中該熱交換器進一步 15 包含一第二進氣口,當水蒸氣渦輪達到其最大容量時, 該第二進氣口適合接納由該至少一個熱汲取室所製造 之水蒸氣。 40. 如申請專利範圍第38或39項之系統,其中該熱交換器之 水出口係連接至該至少一個熱汲取室之水入口。 20 41.如申請專利範圍第27至40項中任一項之系統,其中該至 少一個熱汲取室包含一乾燥器,用來於燃燒室燃燒該燃 燒材料前乾燥該燃燒材料。 42.如申請專利範圍第41項之系統,其中該乾燥燃燒材料之 熱係衍生自由該燃燒單元所排放之煙道氣。 67 200837310 43. 如申請專利範圍第41或42項之系統,其中來自該乾燥器 之經乾燥之燃燒材料係於至少一個燃燒室内燃燒。 44. 一種回收由燃燒材料燃燒所產生之熱之方法,該方法包 含下列步驟: 5 -藉燃燒布朗氣而於至少一個燃燒室中燃燒燃燒材 料;以及 -接納藉該燃燒室所產生之煙道氣用來回收其中之 熱。 45. 如申請專利範圍第44項之方法,進一步包含下列步驟: 10 於一鍋爐製造水蒸氣,其中該製造水蒸氣用之熱係衍生 自由該燃燒室所製造之煙道氣。 46. 如申請專利範圍第45項之方法,其中該方法進一步包含 下列步驟: -將所製造之水蒸氣進給至至少一個水蒸氣渦輪; 15 以及 -設置與該至少一個水蒸氣渦輪連通用來發電之發 電機。 47. 如申請專利範圍第46項之方法,其中該發電之電力供給 該至少一個布朗氣產生器及/或一電力格柵。 20 48.如申請專利範圍第46或47項之方法,其中該至少一個水 蒸氣渦輪為單級水蒸氣渦輪或多級水蒸氣渦輪。 49.如申請專利範圍第44項之方法,進一步包含於該至少一 個燃燒室内燃燒前乾燥該燃燒材料之步驟,故乾燥該燃 燒材料之熱係衍生自由該燃燒室所產生之煙道氣。 68 200837310 50. 如申請專利範圍第44項之方法,其中來自該乾燥器之經 乾燥之燃燒材料係於至少一個燃燒室内燃燒。 51. —種於煙道氣排放入大氣之前處理煙道氣之總成,包 含: 5 -至少一個接納與加熱煙道氣之處理室; -燃燒布朗氣來供給煙道氣加熱用熱之裝置;以及 排放經加熱之煙道氣之部分。 52. 如申請專利範圍第51項之總成,進一步包含於該至少一 個處理室内之至少一個構件,其中加熱鄰近於該至少一 10 個構件之煙道氣達成煙道氣之較高加熱效率。 53. 如申請專利範圍第52項之總成,其中該至少一個構件包 含一網格方塊,其中該網格方塊係罩於該至少一個處理 室内。 54. 如申請專利範圍第53項之總成,其中該網格方塊係由 15 鉑、鋼、鎳-鉻合金或鋁·鉻合金或其組合所製成。 55. 如申請專利範圍第51至54項中任一項之總成,其中該布 朗氣燃燒裝置為一布朗氣燃燒器。 56. 如申請專利範圍第51至55項中任一項之總成,其中該至 少一個處理室經加熱至高於500°C之溫度。 20 57.如申請專利範圍第56項之總成,其中該至少一個處理室 經加熱至高於800°C至1600°C之溫度。 58.如申請專利範圍第51至57項中任一項之總成,其中該總 成包含三個處理室,該三個處理室係配置成煙道氣循序 通過該等三個處理室之各室。 69 200837310 59. 如申請專利範圍第51至58項中任一項之總成,進一步包 含適合接納加熱後之煙道氣之一熱汲取室。 60. 如申請專利範圍第59項之總成,其中該熱汲取室包含一 製造水蒸氣之鍋爐單元,讓製造水蒸氣用之熱係衍生自 5 該加熱後之煙道氣。 61. 如申請專利範圍第59或60項之總成,其中該熱汲取室包 含: -一水入口; -一水蒸氣出氣口;以及 10 -一煙道氣出氣口, 熱沒取室配置來允許煙道氣加熱水而製造水蒸氣。 62. 如申請專利範圍第51至61項中任一項之總成,進一步包 含與該熱汲取室連通之發電裝置。 63. 如申請專利範圍第62項之總成,其中該發電裝置包含: 15 -適合接納由該熱汲取室所產生之水蒸氣之至少一 個水蒸氣渦輪; -與該至少一個水蒸氣渦輪連通之至少一個發電用 之發電機;以及 -排放由該發電機所製造之電力之裝置。 20 64.如申請專利範圍第63項之總成,其中該至少一個水蒸氣 渦輪為一單級水蒸氣渦輪或多級水蒸氣渦輪。 65. 如申請專利範圍第62至64項中任一項之總成,其中該所 產生之電力係供給一電力格柵。 66. 如申請專利範圍第63至65項中任一項之總成,進一步包 70 200837310 含與該至少一個水蒸氣渦輪及熱汲取室連通之一熱交 換器。 67. 如申請專利範圍第66項之總成,其中該熱交換器包含: -供接納來自於該水蒸氣渦輪之水蒸氣之一第一進 5 氣口;以及 -一水出口, 其中該熱交換器可冷凝水蒸氣而製造水;以及其中 該水係由水出口排放。 68. 如申請專利範圍第67項之總成,其中該熱交換器進一步 10 包含一第二進氣口,當水蒸氣渦輪達到其最大容量時, 該第二進氣口適合接納由熱沒取室所產生之水蒸氣。 69. 如申請專利範圍第67或68項之總成,其中該熱交換器之 水出口係連接至該熱汲取室之水入口。 70. 如申請專利範圍第51至69項中任一項之總成,進一步包 15 含一滌氣總成,該滌氣總成含有煙道氣滌氣裝置;以及 其中該滌氣總成係適合接納來自於加熱後煙道氣排放 部分及/或該熱沒取室之煙道氣出氣口之煙道氣。 71. 如申請專利範圍第70項之總成,其中該煙道氣滌氣裝置 為一務氣器。 20 72.如申請專利範圍第71項之總成,其中該滌氣器係選自於 包含:濕滌氣器、細腰管滌氣器、衝壓板滌氣器及噴淋 塔滌氣器之組群。 73.如申請專利範圍第70至72項中任一項之總成,其中該滌 氣總成進一步包含於於排放入大氣前冷卻煙道氣之裝 71 200837310 置。 74. 如申請專利範圍第73項之總成,其中該煙道氣之冷卻裝 置為一驟冷器。 75. 如申請專利範圍第73或74項之總成,其中該煙道氣之冷 5 卻裝置係將煙道氣冷卻至低於300°C之溫度。 76. —種於排放入大氣前處理煙道氣之方法,包含下列步 驟: -提供煙道氣至該至少一個處理室; -提供布朗氣予一布朗氣燃燒裝置;以及 10 -藉燃燒該布朗氣而加熱煙道氣至一預定溫度。 77. 如申請專利範圍第76項之方法,其中該加熱步驟包含於 至少一個達成較高加熱效率之構件之存在下加熱該煙 道氣。 78. 如申請專利範圍第76或77項之方法,其中該布朗氣燃燒 15 裝置為一布朗氣燃燒器。 79. 如申請專利範圍第76至78項中任一項之方法,其中該預 定溫度係高於700°C。 80. 如申請專利範圍第76至79項中任一項之方法,其中煙道 氣係提供予三個處理室,該煙道氣係循序通過三個處理 20 室之各室。 81. 如申請專利範圍第80項之方法,進一步包含下列步驟: -煙道氣提供至一第一處理室; -藉燃燒布朗氣,將該第一處理室内之煙道氣加熱 至一第一預定溫度; 72 200837310 -將加熱後之煙道氣由該第一處理室導引至第二處 理室; -藉燃燒布朗氣,將該第二處理室内之煙道氣加熱 至一第二預定溫度; 5 -將加熱後之煙道氣由該第二處理室導引至第三處 理室;以及 -藉燃燒布朗氣,將該第三處理室内之煙道氣加熱 至一第三預定溫度。 82. 如申請專利範圍第81項之方法,其中該第一預定溫度約 10 為 800°C。 83. 如申請專利範圍第81或82項之方法,其中該第二預定溫 度約為1000°C。 84. 如申請專利範圍第81至83項中任一項之方法,其中該第 一預定溫度約為1200°C。 15 85.如申請專利範圍第76至84項中任一項之方法,進一步包 含於一熱汲取室製造水蒸氣之步驟,其中製造水蒸氣之 熱係衍生自經加熱之煙道氣。 86. 如申請專利範圍第85項之方法,進一步包含下列步驟: -將所製造之水蒸氣進給至至少一個水蒸氣渦輪; 20 以及 -設置與該至少一個水蒸氣渦輪連通用來發電之發 電機。 87. 如申請專利範圍第76至86項中任一項之方法,進一步包 含下列步驟: 73 200837310 -於煙道氣滌氣裝置中滌氣加熱後之煙道氣;及/或 -於煙道氣冷卻裝置中冷卻加熱後之煙道氣。 88.如申請專利範圍第87項之方法,其中該煙道氣係冷卻至 低於300°C之溫度。 74200837310 X. Patent application scope: 1. A system for generating, storing and using Brown gas, comprising: • at least one Brown gas generator connected to a power source and a water source; at least one first storage chamber, Connected to the generator for storing Brownian gas produced by the generator; and - the Brown gas application device is in communication with the at least one first storage chamber, wherein the generator and the first storage chamber are located adjacent to the Brown Gas application device. * 10 15 20 2. The system of claim 1, wherein the at least one first storage tank contains a predetermined amount of liquefied hydrocarbon. 3. The system of claim 2, wherein the liquefied tobacco is selected from the group consisting of hexane, heptane, methanol, and ethanol. 4. The system of any of the preceding claims, wherein the applicator comprises at least one first chamber for producing hot water, wherein the heat for heating the hot water is derived from the cloth, Brown The gas system is obtained from the first storage chamber. 5. The system of claim 4, wherein the at least one first chamber is a boiler and burner unit. H. The system of claim 4, wherein the at least the chamber comprises: a first inlet - a second inlet for receiving one of the Brown gas by the at least one first storage chamber - a second inlet; 61 200837310 a gas burner; and - discharging one of the hot water produced by the discharge, wherein Brown gas from the first inlet is combustible by the gas burner, thereby heating water from the second inlet; and wherein the The heated water can be discharged from the outlet. 7. The system of claim 6 wherein the second inlet for receiving water is connected to an outlet of at least one heat exchanger contained within the at least one Brown gas generator. 8. The system of claim 6 or claim 7, further comprising at least one flash arrester in front of the first inlet. The system of any one of claims 4 to 8, wherein the at least one first chamber comprises a reactive metal element. 10. The system of claim 9, wherein the reactive metal element is selected from the group consisting of: primary, steel, chrome or high temperature alloy. The system of any one of claims 4 to 1 further comprising at least one second storage chamber for storing hot water. 12. The purity of item U of the patent application, wherein the at least one second storage chamber is connected to an outlet of the at least one first chamber. 13·^ The foregoing claims are in the purview of each of the patents, wherein the applicator further comprises at least one second chamber for making cooling water. 14. The system of claim 13 wherein the at least one chamber is an absorption chiller unit. 15. The system of claim 13 or 14, wherein the at least one of the 62th 200837310 two chambers comprises: - receiving a first inlet of an absorbent; - receiving a second inlet of a refrigerant; - receiving cooling a third inlet of water; 5 - a fourth inlet for receiving warm water; - a first heat exchanger; - a second heat exchanger; - a first outlet for discharging warm water; and - a discharge manufactured One of the second outlets of the cooling water, 10 wherein the third inlet and the first outlet are connectable to the first heat exchanger, and the fourth inlet and the second outlet are connectable to the second heat exchanger. The system of claim 15, wherein the absorbent is selected from the group consisting of lithium bromide (LiBr) and ammonia (NH3). 15. The system of claim 15 or 16, wherein the refrigerant is water. The system of any one of claims 15 to 17, wherein the fourth inlet is connected to the at least one second storage chamber. 19. The system of any one of claims 13 to 18, further comprising at least one third storage chamber storing the cooling water. The system of any of the preceding claims, wherein the applicator further comprises at least one third chamber of the combustion waste. 21. The system of claim 20, wherein the at least one third chamber comprises: - a combustion unit that burns waste by burning Brown gas; 63 200837310 - a connection for receiving waste to one of the combustion units An inlet for receiving a Brownian gas from the at least one first storage chamber to a second inlet of the combustion unit; and - for discharging a flue gas produced by the combustion unit for connection to the combustion One of the units is exported. 22. The system of claim 21, further comprising at least one flash arrester in front of the first inlet. 23. The system of claim 21 or 22, further comprising a heat exchanger coupled to the outlet for discharging flue gas. 10 24. A boiler and burner unit for the manufacture of hot water, the boiler and burner unit comprising: - a first inlet for receiving feed water; - a second of Brown gas from a Brown gas generator An outlet; and 15 - an outlet for the hot water produced by the discharge, wherein the Brown gas is combusted to generate heat, which heats the feed water to produce hot water. 25. The boiler and burner unit of claim 24, wherein the outlet for hot water produced by the discharge is connected to a storage tank for heat 20 water produced by the storage. 26. The boiler and burner unit of claim 25, wherein the first inlet of the boiler and the burner unit is connectable to: an outlet of the first heat exchanger of one of the Brown gas generators; at least one solar heat collection The outlet of the device, and/or the storage tank for storing the hot water produced. 64 200837310 27. A system for recovering heat generated by combustion of a combustion material, comprising: - at least one Brown gas generator connected to a power source and a water source; - for storing Brownian gas produced by the generator At least one first storage chamber in fluid communication with the generating device; - at least one combustion chamber for communicating the combustion material in communication with the at least one first storage chamber; and - adapted to receive combustion from the combustion material At least one heat eliminator chamber from the heat generated by the combustion chamber, wherein the generator and the first storage chamber are located adjacent to the combustion chamber and the heat extraction chamber. 28. The system of claim 27, wherein the at least one combustion chamber comprises: - a combustion unit for burning the combustion material by burning Brown gas; 15 - a connection for receiving the combustion material to the combustion unit One into V; - a connection to receive a Brownian gas from the at least one storage chamber to a second inlet of the combustion unit; and - a connection to discharge the flue gas produced by the combustion unit to the 20 combustion unit One of the exports. 29. The system of claim 27 or 28, wherein the combustion material is waste. 30. The system of claim 28 or 29, wherein the at least one hot extraction chamber is a boiler unit for making steam, and the hot water is used to produce a steam. The 2008 200310 heat system is derived from the flue generated by the combustion unit. gas. The system of any one of claims 28 to 30, wherein the at least one hot extraction chamber comprises: - a water inlet; 5 - a flue gas inlet that receives the flue gas produced by the combustion unit Port; - one of the first outlets of the water vapor produced by the discharge; and - one of the second outlets of the flue gas, so that the water from the water inlet is heated by the flue gas 10 from the flue gas inlet Thereby, water vapor is generated, and wherein the water vapor is discharged from the first air outlet, and the flue gas is discharged from the second air outlet. 32. The system of claim 31, wherein the flue gas inlet of the at least one heat extraction chamber is connected to the outlet gas D 〇 15 of the at least one combustion chamber. 33, as claimed in claims 27 to 32. The system of any of the preceding claims, further comprising a power generating device in communication with the at least one heat extraction chamber. 34. The system of claim 33, wherein the power generating device comprises: - at least one water vapor turbine adapted to receive water vapor generated by the at least one first chamber; 20 - in communication with the at least one water vapor turbine At least one generator for power generation; and - a device that discharges power generated by the generator. 35. The system of claim 34, wherein the at least one water vapor turbine is a single stage steam turbine or a multi-stage steam turbine. The system of any one of claims 33 to 35, wherein the power of the power is supplied to the at least one Brown gas generator and/or a power grid. 37. The system of any one of claims 34 to 36, further comprising a heat exchanger in communication with the at least one water vapor turbine and the at least one hot extraction chamber. 38. The system of claim 37, wherein the heat exchanger comprises: - a water vapor inlet for receiving water vapor from the steam turbine; and a water outlet, wherein the heat exchange The device cools the water vapor received by the steam inlet, thereby condensing the water vapor to produce water; and wherein the water is discharged from the water outlet. 39. The system of claim 38, wherein the heat exchanger further comprises a second air inlet adapted to receive the at least one heat when the water vapor turbine reaches its maximum capacity Draw water vapor from the room. 40. The system of claim 38, wherein the water outlet of the heat exchanger is connected to a water inlet of the at least one hot extraction chamber. The system of any one of claims 27 to 40, wherein the at least one hot extraction chamber comprises a dryer for drying the combustion material prior to burning the combustion material in the combustion chamber. 42. The system of claim 41, wherein the heat of the dry combustion material is derived from the flue gas emitted by the combustion unit. The system of claim 41, wherein the dried combustion material from the dryer is combusted in at least one combustion chamber. 44. A method of recovering heat generated by combustion of a combustion material, the method comprising the steps of: - burning combustion material in at least one combustion chamber by burning Brownian gas; and - receiving a flue generated by the combustion chamber Gas is used to recover the heat. 45. The method of claim 44, further comprising the step of: 10 producing water vapor in a boiler, wherein the heat system for producing steam is derived from the flue gas produced by the combustion chamber. 46. The method of claim 45, wherein the method further comprises the steps of: - feeding the produced water vapor to at least one water vapor turbine; 15 and - providing communication with the at least one water vapor turbine for use Generator for power generation. 47. The method of claim 46, wherein the power generated by the power is supplied to the at least one Brown gas generator and/or a power grid. The method of claim 46, wherein the at least one steam turbine is a single stage steam turbine or a multi-stage steam turbine. 49. The method of claim 44, further comprising the step of drying the combustion material prior to combustion in the at least one combustion chamber, whereby the heat from drying the combustion material is derived from the flue gas produced by the combustion chamber. The method of claim 44, wherein the dried combustion material from the dryer is combusted in at least one combustion chamber. 51. An assembly for treating flue gas before it is discharged into the atmosphere, comprising: 5 - at least one processing chamber for receiving and heating the flue gas; - a device for burning brown gas to supply flue gas heating And discharging part of the heated flue gas. 52. The assembly of claim 51, further comprising at least one component in the at least one processing chamber, wherein heating the flue gas adjacent to the at least one component achieves a higher heating efficiency of the flue gas. 53. The assembly of claim 52, wherein the at least one component comprises a grid block, wherein the grid block is encased in the at least one processing chamber. 54. The assembly of claim 53, wherein the grid block is made of 15 platinum, steel, nickel-chromium alloy or aluminum-chromium alloy or a combination thereof. 55. The assembly of any one of clauses 51 to 54, wherein the apparatus is a Brown gas burner. 56. The assembly of any one of clauses 51 to 55, wherein the at least one processing chamber is heated to a temperature above 500 °C. The assembly of claim 56, wherein the at least one processing chamber is heated to a temperature above 800 °C to 1600 °C. 58. The assembly of any one of clauses 51 to 57, wherein the assembly comprises three processing chambers configured to sequentially pass flue gas through each of the three processing chambers room. The assembly of any one of claims 51 to 58 further comprising a heat extraction chamber adapted to receive a heated flue gas. 60. The assembly of claim 59, wherein the hot extraction chamber comprises a boiler unit for producing steam, and the heat system for producing steam is derived from the heated flue gas. 61. The assembly of claim 59 or 60, wherein the hot extraction chamber comprises: - a water inlet; - a water vapor outlet; and a 10 - a flue gas outlet, the heat is not configured The flue gas is allowed to heat the water to produce water vapor. 62. The assembly of any one of claims 51 to 61, further comprising a power generating device in communication with the hot extraction chamber. 63. The assembly of claim 62, wherein the power generating device comprises: 15 - at least one water vapor turbine adapted to receive water vapor generated by the hot extraction chamber; - in communication with the at least one water vapor turbine At least one generator for power generation; and - means for discharging power produced by the generator. The assembly of claim 63, wherein the at least one water vapor turbine is a single stage steam turbine or a multi-stage steam turbine. The assembly of any one of clauses 62 to 64, wherein the generated power is supplied to a power grid. 66. The assembly of any one of clauses 63 to 65, further comprising 70 200837310 comprising a heat exchanger in communication with the at least one water vapor turbine and the hot extraction chamber. 67. The assembly of claim 66, wherein the heat exchanger comprises: - a first inlet 5 port for receiving water vapor from the steam turbine; and - a water outlet, wherein the heat exchange The device can condense water vapor to produce water; and wherein the water system is discharged from the water outlet. 68. The assembly of claim 67, wherein the heat exchanger further comprises a second air inlet adapted to receive heat from the water when the water turbine reaches its maximum capacity. The water vapor produced by the chamber. 69. The assembly of claim 67 or 68, wherein the water outlet of the heat exchanger is connected to the water inlet of the hot extraction chamber. 70. The assembly of any one of claims 51 to 69, further comprising a scrubber assembly comprising a flue gas scrubber; and wherein the scrubber assembly is It is suitable for receiving flue gas from the flue gas outlet portion of the heated flue gas and/or the flue gas outlet of the hot chamber. 71. The assembly of claim 70, wherein the flue gas scrubber is a gas eliminator. 20 72. The assembly of claim 71, wherein the scrubber is selected from the group consisting of: a wet scrubber, a thin waist pipe scrubber, a stamped plate scrubber, and a spray tower scrubber. group. The assembly of any one of claims 70 to 72, wherein the scrubber assembly is further included in a device for cooling flue gas before being discharged into the atmosphere. 74. The assembly of claim 73, wherein the flue gas cooling device is a quench. 75. For the assembly of claim 73 or 74, wherein the flue gas is cooled, the device cools the flue gas to a temperature below 300 °C. 76. A method of treating flue gas prior to discharge into the atmosphere, comprising the steps of: - providing flue gas to the at least one processing chamber; - providing Brown gas to a Brown gas combustion device; and 10 - burning the brown The flue gas is heated to a predetermined temperature. 77. The method of claim 76, wherein the heating step comprises heating the flue gas in the presence of at least one member that achieves a higher heating efficiency. 78. The method of claim 76, wherein the Brown Gas Combustion 15 device is a Brown Gas burner. The method of any one of claims 76 to 78, wherein the predetermined temperature is higher than 700 °C. The method of any one of claims 76 to 79, wherein the flue gas system is supplied to three processing chambers, the flue gas system sequentially passing through three chambers of three treatment chambers. 81. The method of claim 80, further comprising the steps of: - providing flue gas to a first processing chamber; - heating the flue gas in the first processing chamber to a first by burning Brown gas a predetermined temperature; 72 200837310 - directing the heated flue gas from the first processing chamber to the second processing chamber; - heating the flue gas in the second processing chamber to a second predetermined temperature by burning Brown gas 5 - directing the heated flue gas from the second processing chamber to the third processing chamber; and - heating the flue gas in the third processing chamber to a third predetermined temperature by burning Brown gas. 82. The method of claim 81, wherein the first predetermined temperature is about 10 ° 800 ° C. 83. The method of claim 81, wherein the second predetermined temperature is about 1000 °C. The method of any one of claims 81 to 83, wherein the first predetermined temperature is about 1200 °C. The method of any one of claims 76 to 84, further comprising the step of producing water vapor in a heat extraction chamber, wherein the heat of the water vapor is derived from the heated flue gas. 86. The method of claim 85, further comprising the steps of: - feeding the produced water vapor to at least one steam turbine; 20 and - providing a connection with the at least one water vapor turbine for generating electricity Motor. 87. The method of any one of claims 76 to 86, further comprising the steps of: 73 200837310 - flue gas after scrubbing in a flue gas scrubber; and/or - in the flue The heated flue gas is cooled in the air cooling device. 88. The method of claim 87, wherein the flue gas system is cooled to a temperature below 300 °C. 74
TW096134337A 2006-09-13 2007-09-13 System for generating brown gas and uses thereof TW200837310A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SG200606177-4A SG141247A1 (en) 2006-09-13 2006-09-13 System for generating brown gas and uses thereof
SG200702442-5A SG146493A1 (en) 2007-04-04 2007-04-04 System for recovering heat and uses thereof

Publications (1)

Publication Number Publication Date
TW200837310A true TW200837310A (en) 2008-09-16

Family

ID=39184233

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096134337A TW200837310A (en) 2006-09-13 2007-09-13 System for generating brown gas and uses thereof

Country Status (6)

Country Link
US (1) US20100206248A1 (en)
EP (1) EP2089495A2 (en)
KR (1) KR20090077777A (en)
AU (1) AU2007295112A1 (en)
TW (1) TW200837310A (en)
WO (1) WO2008033107A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114799143A (en) * 2022-05-23 2022-07-29 氢环环保科技(上海)有限公司 Ladle preheating device and method using brown gas
TWI833206B (en) * 2021-09-09 2024-02-21 日商中外爐工業股份有限公司 Ammonia fuel combustion device

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005013051A1 (en) * 2005-03-18 2006-09-21 BSH Bosch und Siemens Hausgeräte GmbH Condensation Dryer
DE202007016125U1 (en) * 2007-11-19 2009-05-28 Burkhardt, Roswitha Particulate filter with variably controlled soot combustion
US20100187321A1 (en) * 2009-01-29 2010-07-29 Randy Morrell Bunn Home heating system utilizing electrolysis of water
EP2233843A1 (en) * 2009-03-23 2010-09-29 OPAi-NL B.V. Installation for generating heat and/or electricity in buildings
CN103282734A (en) * 2010-05-27 2013-09-04 江森自控科技公司 Thermosyphon coolers for cooling systems with cooling towers
US20110315096A1 (en) * 2010-06-01 2011-12-29 ITI Group Corporation Gasifier Hybrid combined cycle power plant
CN101968041B (en) * 2010-09-29 2012-05-30 武汉凯迪工程技术研究总院有限公司 Solar power generation method and system taking biomass boiler as auxiliary heat source
CN102095194B (en) * 2010-12-09 2012-09-05 沈阳威德新能源有限公司 Hydrogen energy boiler
US9447705B2 (en) * 2011-03-14 2016-09-20 Pyrogenesis Canada Inc. Method to maximize energy recovery in waste-to-energy process
US20130145763A1 (en) * 2011-12-09 2013-06-13 Parsa Mirmobin Recovery for thermal cycles
US9551487B2 (en) 2012-03-06 2017-01-24 Access Energy Llc Heat recovery using radiant heat
KR101532508B1 (en) * 2014-01-27 2015-06-29 충남대학교산학협력단 a mixture fuel of water electrolysis gas and the water vapor, and this mixture blended fossil fuel, and the combustion method with these
EP3023693B1 (en) * 2014-11-21 2018-03-21 Iris S.r.l. System for plasma treatment of solid waste
DK3124781T3 (en) 2015-07-29 2018-03-19 Fuelsave Gmbh SHIP PROGRESS SYSTEM AND PROCEDURE FOR USING A SHIP PROGRESS SYSTEM
NO3124780T3 (en) * 2015-07-29 2018-02-10
KR101767250B1 (en) * 2016-12-12 2017-08-14 김준영 Apparatus for combustion electricity generation using organic raw material
WO2018222152A1 (en) * 2017-05-30 2018-12-06 Rov Enerji̇ Sanayi̇ Ve Ti̇caret Anoni̇m Şi̇rketi̇ Next generation industrial heating
WO2020241656A1 (en) * 2019-05-28 2020-12-03 徳田 美幸 Combustion reactor and combustion method
EP3990829A4 (en) * 2019-06-28 2023-08-02 Eco-Global Energy Pty Limited An apparatus, system and method for pyrolysing and combusting a material
CN113563918B (en) * 2021-08-13 2023-04-25 捷创(东营)能源技术有限责任公司 Catalytic cracking method with participation of Brown gas

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000039123A (en) * 1998-07-24 2000-02-08 Ekoo Kk Method and device for incinerating waste using blown gas
AU2000267366A1 (en) * 2000-08-22 2002-03-04 Sang Nam Kim Heating apparatus using thermonuclear reaction of brown gas
KR100403311B1 (en) * 2001-02-21 2003-10-23 주식회사 이앤이 Back fire elimination machine and method for brown gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI833206B (en) * 2021-09-09 2024-02-21 日商中外爐工業股份有限公司 Ammonia fuel combustion device
CN114799143A (en) * 2022-05-23 2022-07-29 氢环环保科技(上海)有限公司 Ladle preheating device and method using brown gas

Also Published As

Publication number Publication date
WO2008033107A2 (en) 2008-03-20
EP2089495A2 (en) 2009-08-19
AU2007295112A1 (en) 2008-03-20
US20100206248A1 (en) 2010-08-19
WO2008033107A3 (en) 2008-07-10
KR20090077777A (en) 2009-07-15

Similar Documents

Publication Publication Date Title
TW200837310A (en) System for generating brown gas and uses thereof
CN105090997A (en) Method for treating high-concentration salty waste water and waste residue at low cost, and device thereof
CN105903313A (en) Exhaust gas concentrating regenerative thermal oxidization system
CN104310746B (en) The method of a kind of dewatered sludge drying and incineration process
EA023478B1 (en) Waste management system
CN102192512B (en) Garbage incinerator
EP3030838B1 (en) Apparatus for generating energy by gasification
CN206398724U (en) A kind of refuse pyrolysis carbide furnace and gas cleaning integrated apparatus
CN103306717B (en) Counter flow oxidation and residual-heat utilization method after ventilation air gas is concentrated
CN105864792B (en) The processing method of dioxin from incineration flue gas of household garbage class atmosphere pollution
CN105987376B (en) A kind of fuel clean combustion and the combustion apparatus of purification discharge
JP2005180880A (en) Waste thermal decomposition treatment device and thermal decomposition treatment control system
WO2018097757A1 (en) Device for processing scrap rubber
CN207913462U (en) Adsorbent desorption and regeneration retracting device
CN204853508U (en) High enriched salt waste water, low -cost processing apparatus of waste residue of containing
CN201697133U (en) Garbage incinerator
CN106903135A (en) The system and method for processing house refuse
JP2003238972A (en) Apparatus for producing lignous biomass gas
CN101583699A (en) System for generating Brown gas and uses thereof
KR101125580B1 (en) Hydrogen burning type warm-air heater, hydrogen burning type warm-air generating method and burner used for the method
CN105885952A (en) Waste carbon recycling method and system
CN207378845U (en) A kind of heat accumulating type VOC emission-control equipments
KR20170135090A (en) Biomass combustion system for low Nox System for using waste heat
CN105698187B (en) Treatment device for dioxin-like atmospheric pollutants in household garbage incineration flue gas
CN208824256U (en) A kind of exhaust gas processing device in Supercapacitor carbon preparation process