TW200836385A - Electric energy storage device - Google Patents

Electric energy storage device Download PDF

Info

Publication number
TW200836385A
TW200836385A TW096139345A TW96139345A TW200836385A TW 200836385 A TW200836385 A TW 200836385A TW 096139345 A TW096139345 A TW 096139345A TW 96139345 A TW96139345 A TW 96139345A TW 200836385 A TW200836385 A TW 200836385A
Authority
TW
Taiwan
Prior art keywords
storage device
oxide
power storage
sample
titanium oxide
Prior art date
Application number
TW096139345A
Other languages
Chinese (zh)
Other versions
TWI431833B (en
Inventor
Masaki Yoshio
Toshihiko Kawamura
Nariaki Moriyama
Masatoshi Honma
Tokuo Suita
Hirofumi Taniguchi
Tomoyuki Sotokawa
Original Assignee
Ishihara Sangyo Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha filed Critical Ishihara Sangyo Kaisha
Publication of TW200836385A publication Critical patent/TW200836385A/en
Application granted granted Critical
Publication of TWI431833B publication Critical patent/TWI431833B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

To provide an energy storage device with high electric capacitance in relation to an electrical double layer storage device. The energy storage device comprises a positive electrode material containing graphite, a negative electrode material containing an oxide of at least one metal element selected from Ti, Zr, V, Cr, Mo, Mn, Fe, Co, Ni, Cu, Zn, Sn, Sb, Bi, W and Ta, which may preferably contains a metal oxide containing at least Ti as a metal element, and an electrolyte solution. This energy storage device has high capacitance and high discharge voltage, thereby having high energy, and the device can have high energy density, while being excellent in cycle characteristics and rate characteristics.

Description

200836385 九、發明說明 [發明所屬之技術領域】 本發明係關於電容量大的蓄電裝置。 【先前技術】 以正極、負極及非水電解液作爲主要構成要素之蓄電 裝置’迄今有各種構成曾被提出,業已實際應用於行動器 材等之電源與再生用蓄電系統、個人電腦之備用電源等。 其中’用石墨作爲正極材料,用碳質材料作爲負極材料之 電雙層的蓄電裝置,與以往的以活性碳作爲電極之蓄電裝 置比較,於電容量及耐電壓性較爲優異(參照專利文獻 1 ) 〇 [專利文獻1]日本專利特開2005-294780號公報 【發明內容】 (發明所欲解決之課題) 記載於專利文獻1中之電雙層蓄電裝置雖如上述般於 電容量及耐電壓性優異’然而,電容量更大的蓄電裝置仍 備受期盼。 (解決課題之手段) 本發明者等,爲解決上述問題而刻意進行硏究之結 果,發現包含含有石墨之正極材料、含有特定之金屬氧化 物之負極材料、及電解液之蓄電裝置不但電容量大,且安 -5- 200836385 定性、安全性優異,本發明於焉得以完成。 亦即’本發明爲包含含有石墨之正極材料、含有選自200836385 IX. Description of the Invention [Technical Field of the Invention] The present invention relates to a power storage device having a large capacitance. [Prior Art] A power storage device having a positive electrode, a negative electrode, and a non-aqueous electrolyte as a main component has been proposed so far, and has been put into practical use in power storage and power storage systems for mobile devices, and standby power supplies for personal computers. . Among them, the electric storage device using graphite as the positive electrode material and the carbonaceous material as the negative electrode material is superior in electric capacity and withstand voltage compared with the conventional electric storage device using activated carbon as an electrode (refer to the patent literature). [Patent Document 1] Japanese Laid-Open Patent Publication No. 2005-294780 (Invention) The electric double-layer power storage device described in Patent Document 1 has capacitance and resistance as described above. Excellent voltage performance' However, power storage devices with larger capacitance are still expected. (Means for Solving the Problem) The inventors of the present invention have found that the electric storage device including the cathode material containing graphite, the anode material containing a specific metal oxide, and the electrolytic solution not only has a capacitance. Large, and An-5-200836385 is qualitative and safe, and the present invention can be completed. That is, the present invention is a cathode material containing graphite, which is selected from the group consisting of

Ti、Zr、V、Cr、Mo、Mn、Fe、Co、Ni、Cu、Zn、Sn、Ti, Zr, V, Cr, Mo, Mn, Fe, Co, Ni, Cu, Zn, Sn,

Sb、Bi、W及Ta中之至少一種金屬元素的氧化物之負極 材料、及電解液之蓄電裝置。 (發明之效果) 本發明之蓄電裝置由於使用含有特定之金屬氧化物的 負極材料,故電容量增大。藉由含有石墨之正極材料可於 高電壓下充放電而可謀求高能量密度化。尤其,本發明中 藉由以石墨作爲正極、以特定之金屬氧化物作爲負極達成 高輸出化。 【實施方式】 本發明之蓄電裝置,特徵爲包含:含有石墨之正極材 料、含有選自 Ti、Zr、V、Cr、Mo、Mn、Fe、Co、Ni、 Cu、Zn、Sn、Sb、Bi、W及Ta中之至少一種金屬元素的 氧化物之負極材料、及電解液。 本發明中作爲負極材料係使用選自丁丨、2^、乂、〇1·、 Mo、Mn、Fe、Co、Ni、Cu、Zn、Sn、Sb、Bi、W 及 Ta 中之至少一種金屬元素的氧化物。作爲上述金屬元素之氧 化物,若使用至少含有鈦之金屬氧化物,電容量可增大, 故爲較佳。又,於用含有鋰鹽之電解液的情況,若以鋰之 氧化還原電位作爲0V,含有鈦之金屬氧化物的氧化還原 -6 - 200836385 電位皆爲1〜2 V之程度,由於對鋰而言爲甚高,可抑制金 屬鋰之析出至負極,故安全性亦高、更佳者爲鈦氧化物及 鈦與鹼金屬或鹼土金屬元素之複合氧化物。作爲上述複合 氧化物可舉出:鈦酸鋰/鈦酸鈣、鈦酸鋇、碳酸緦、或以 M2Ti307 (M表示鹼金屬)表示之層狀鈦酸鹼金屬等。此 等之粒子形狀可爲多面體狀等之等向性形狀、棒狀、纖維 狀、薄片狀等之異向性形狀等之任一者,並無特別限制。 再者,於不妨礙本發明之效果的範圍內,可對未摻雜其他 雜金屬之前述氧化物、或前述氧化物之粒子表面以二氧化 矽、氧化鋁等無機物、界面活性劑與偶合劑等有機物施行 表面處理。 上述金屬氧化物中尤以鈦氧化物其結晶格安定爲更 佳。又,本發明中之鈦氧化物包含鈦與氧之化合物及其含 氫化合物、含水化合物、或水合物,可舉出例如:氧化鈦 (二氧化鈦、三氧化二鈦、一氧化鈦等)、鈦氧化合物 (二氫三氧化鈦(偏鈦酸)、四氫三氧化鈦(正鈦酸)、 以 H2Ti3〇7 以 Η4χ/3Τί(2·χ)/3〇4(Χ = 〇.50 〜1.0)等表示之層 狀鈦氧化合物等)、氫氧化鈦(四氫氧化鈦等)等。鈦氧 化物之粒徑並無特別限定,就謀求高輸出輸入化考量,較 佳者爲,以比表面積表示爲0.1〜500 m2/g的範圍者。 本發明中,作爲鈦氧化物可用金紅石型、板鈦礦 (brookite )型、銳鈦礦型、青銅型、直錳礦務型 (ramsdellite )型等之具有結晶性者、或無定形者之任一 者’惟以銳鈦礦型及/或金紅石型氧化鈦爲佳,理由在於 200836385 與其他氧化鈦相比有更佳的電容量。尤其更佳者爲銳鈦礦 型之比表面積爲5〜500m2/g的範圍者,以5〜350m2/g的 範圍爲特佳。又,更佳者爲金紅石型之比表面積爲50〜 500m2/g的範圍者,以50〜3 5 0m2/g的範圍爲特佳。 或者亦可用對層狀鈦氧化合物進行加熱得到之鈦氧化 物。具體而言,可舉出於日本特願2007-22 1 3 1 1號說明書 與特願2007-223722號說明書中所記載之鈦氧化物。亦 即,日本特願2007-22 1 3 1 1號說明書中所記載之鈦氧化物 爲對以H2Ti307表示之層狀鈦氧化合物在200〜3 5 0°C的溫 度範圍(以高於260°C、未達3〇〇t:的範圍爲佳)內進行 加熱燒成所得者,而特願2007-223 722號說明書中所記載 之欽氧化物爲對以H4x/3Ti(2-x)/3〇4(x = 〇.50〜1.0)表示之 層狀鈦氧化合物在250〜45 0°C的溫度範圍內進行加熱燒成 所得者。 鈦氧化物可使一次粒子集結成二次粒子而使用。本發 明中之二次粒子爲一次粒子彼此強固結合之狀態,並非以 凡德伐爾力等之粒子間相化作用而凝集或經機械性壓密化 者,於通常的混合、碎解、過濾、水洗、運送、秤量、裝 袋、堆積等工業上的操作下不會容易崩解,幾乎都以二次 粒子之狀態存在。二次粒子之空隙量,於電池特性上以 0.005〜1.0 cm3/g的範圍爲佳,以〇·〇5〜1.0 cm3/g的範圍 爲更佳。二次粒子之平均粒徑(用雷射散射法所得之5 0 % 中値粒徑),於電極製作上而言,以〇·5〜1〇〇 μ m之範圍 爲佳。 -8- 200836385 又,一次粒子之平均粒徑(用電子顯微鏡法所得之 5 0%中値粒徑)若於1〜500 nm的範圍,容易得到所要之 空隙量,以1〜1 0 0 n m的範圍爲更佳。比表面積並無特別 限制,以0.1〜200 m2/g的範圍爲佳,以3〜200 m2/g的 範圍爲特佳。又粒子形狀亦不受限制,可用等向性形狀、 異向性形狀等各種形狀。 又,本發明中亦可用粒子形狀爲薄片狀之鈦氧化物, 薄片狀粒子通常包含稱爲板狀、片狀(sheet )、薄片狀 (flake )者。薄片狀粒子之大小以厚度爲1〜1 〇〇 nm的範 圍,寬及長度爲0.1〜500//m的範圍爲佳。或亦可用稱爲 奈米薄片之微細的薄片狀粒子,其以厚度爲0.5〜100 nm 的範圍,寬及長度爲0 · 1〜3 0 // m的範圍爲佳,以分別爲 厚度爲〇·5〜10 nm的範圍,寬及長度爲1〜10/zm的範圍 爲更佳。 其次,本發明中之用於正極材料之石墨並無特別限 制。又,本發明中所謂「石墨」係指由X光繞射〇〇2面之 波峰位置求出之d(QQ2)爲0.33 5〜0.344 nm的範圍者。其 中,以用比表面積爲0.5〜3 00 m2/g的範圍之石墨爲佳, 以.5〜100 m2/g的範圍爲更佳。 作爲浸漬上述正極及負極之電解液可用例如使溶質溶 解於非水溶劑中者。作爲於電解液中作用之陰離子可舉出 選自由4氟化硼酸離子(BF4-) 、6氟化磷酸離子(PF〆 )、過氯酸離子(cl0〆)、6氟化砷(AsF6-) 、6氟化銻 (S b F6 ·)、全氟甲磺醯基(〇?3802-)、全氟化甲磺酸基 200836385 (CF3S〇r)所構成的群中之至少一種。 又,作爲陽離子,可選自由對稱、不對稱之四級銨離 子、乙基甲基咪唑鹽、螺-(1,Γ )雙吡啶鹽等之咪唑鹽衍 生物離子、鋰離子所構成的群中。其中尤以含有鋰離子者 爲佳。 又,作爲非水溶劑,可從由四氫呋喃(THF )、甲基 四氫呋喃(MeTHF )、甲醛、醋酸乙酯、碳酸二乙酯、二 甲醚(DME )、碳酸丙烯酯(PC) 、r- 丁內酯 (GBL)、碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、 碳酸乙烯酯(EC)、碳酸乙基甲基酯(EMC )等之碳酸酯 類、乙腈(AN )、環丁礪(SL )、或分子之一部份含有 氟之此等非水溶劑所構成的群中選擇至少1種。 本發明之蓄電裝置含有前述正極、負極、電解液及分 隔物(separator ),具體而言可舉出:電化學電容器、混 成(hybrid )電容器、氧化還原電容器、電雙層電容器、 鋰電池等。正極與負極可在正極材料、負極材料中分別加 入碳黑、乙炔黑、ketjen black等之導電材與氟樹脂、水 溶性橡膠系樹脂等之黏結劑,適當地成形或塗佈而得到。 分隔物可用多孔性聚乙薄膜聚丙烯薄膜等。 [實施例] 以下揭示本發明之實施例,惟本發明並非限定於此 -10- 200836385 (實施例1 ) (正極之製造) 將由X光繞射求出之d(G()2)爲0.33 7 1 nm的石墨 (1 )、與乙炔黑和聚四氟乙烯樹脂混合成之粉末(商品 名· TAB 、 The Bulgarian Central Laboratory of Electrochemical Power Source 公司製),以重量比 3:1 混合,用瑪瑙硏缽進行混練,成形爲直徑1 〇 mm的圓形得 到顆粒物。顆粒物之重量爲1 〇mg。對此顆粒物以作爲集 電體之裁切成直徑10 mm之鋁製的篩網疊合,以9MPa進 行壓合得到正極(1 )。 (負極之製造) 將比表面積爲314 m2/g之銳鈦礦型二氧化鈦、乙炔 黑、四氟乙烯樹脂以重量比5 : 4 : 1混合,用瑪瑙硏缽進 行混練,成形爲直徑1 〇 mm的圓形得到顆粒物。顆粒物之 重量爲15mg。對此顆粒物以作爲集電體之裁切成直徑10 m Hi之銅泊暨合’得到負極(1 )。 (蓄電裝置之製造) 使上述正極(1 )、負極(1 )於200°c進行真空乾燥 4小時後,於露點-70 °C以下之球形箱(globe box)中組裝 於可密閉之硬幣型試驗用單元(cell )中。試驗用單元係 用材質爲不鏽鋼製(SUS316)外徑20 mm、高3 ·2 mm 者。正極(1)係使集電體位於下方置於評價用單元之下 -11 -A negative electrode material of an oxide of at least one of the metal elements of Sb, Bi, W, and Ta, and a storage device for the electrolytic solution. (Effect of the Invention) Since the power storage device of the present invention uses a negative electrode material containing a specific metal oxide, the capacitance increases. The cathode material containing graphite can be charged and discharged at a high voltage to achieve high energy density. In particular, in the present invention, high output is achieved by using graphite as a positive electrode and a specific metal oxide as a negative electrode. [Embodiment] The power storage device of the present invention is characterized by comprising a cathode material containing graphite and containing a material selected from the group consisting of Ti, Zr, V, Cr, Mo, Mn, Fe, Co, Ni, Cu, Zn, Sn, Sb, and Bi. a negative electrode material of an oxide of at least one metal element in W and Ta, and an electrolyte solution. In the present invention, as the negative electrode material, at least one metal selected from the group consisting of butyl sulfonium, 2, yttrium, lanthanum, Mn, Fe, Co, Ni, Cu, Zn, Sn, Sb, Bi, W, and Ta is used. The oxide of the element. When the metal oxide containing at least titanium is used as the oxide of the metal element, the capacitance can be increased, which is preferable. Further, in the case of using an electrolyte containing a lithium salt, if the oxidation-reduction potential of lithium is 0 V, the potential of the redox-6 - 200836385 containing the metal oxide of titanium is 1 to 2 V, due to lithium. It is said to be very high, and it can suppress the precipitation of metallic lithium to the negative electrode, so that the safety is also high, and more preferably titanium oxide and a composite oxide of titanium and an alkali metal or alkaline earth metal element. The composite oxide may, for example, be lithium titanate/calcium titanate, barium titanate or strontium carbonate, or a layered titanate alkali metal represented by M2Ti307 (M represents an alkali metal). The shape of the particles is not particularly limited as long as it is an isotropic shape such as a polyhedral shape, an anisotropic shape such as a rod shape, a fiber shape, or a sheet shape. Further, insofar as the effect of the present invention is not impaired, the surface of the oxide of the undoped other impurity metal or the surface of the oxide may be an inorganic substance such as cerium oxide or aluminum oxide, a surfactant, and a coupling agent. The organic matter is subjected to surface treatment. Among the above metal oxides, titanium oxide is particularly preferred because of its crystal lattice stability. Further, the titanium oxide in the present invention contains a compound of titanium and oxygen, a hydrogen-containing compound, an aqueous compound, or a hydrate, and examples thereof include titanium oxide (titanium dioxide, titanium oxynitride, titanium oxide, etc.), and titanium. Oxygen compound (dihydrogenitride (metadanic acid), tetrahydrogenitride (orthotitanic acid), with H2Ti3〇7 to χ4χ/3Τί(2·χ)/3〇4 (Χ = 〇.50 ~1.0) (such as a layered titanium oxide compound or the like), titanium hydroxide (such as titanium tetrahydrogen oxide), or the like. The particle size of the titanium oxide is not particularly limited, and a high output input consideration is required. Preferably, the specific surface area is in the range of 0.1 to 500 m 2 /g. In the present invention, as the titanium oxide, a crystallized or amorphous type such as a rutile type, a brookite type, an anatase type, a bronze type, or a ramsdellite type may be used. One is only anatase and/or rutile titanium oxide, the reason is that 200836385 has better capacitance than other titanium oxides. Particularly preferably, the anatase type has a specific surface area of 5 to 500 m 2 /g, and particularly preferably in the range of 5 to 350 m 2 /g. Further, more preferably, the rutile type has a specific surface area of 50 to 500 m 2 /g, and particularly preferably in the range of 50 to 3 500 m 2 /g. Alternatively, a titanium oxide obtained by heating a layered titanium oxide compound may be used. Specifically, the titanium oxide described in the specification of Japanese Patent Application No. 2007-22 1 3 1 1 and Japanese Patent Application No. 2007-223722 can be cited. That is, the titanium oxide described in Japanese Patent Application No. 2007-22 1 3 1 1 is a layer of titanium oxide compound represented by H2Ti307 at a temperature range of 200 to 350 ° C (above 260 °). C, the range of less than 3〇〇t: is good), and the heat-burning is carried out in the specification, and the compound oxide described in the specification of 2007-223 722 is H4x/3Ti(2-x)/ The layered titanium oxide compound represented by 3〇4 (x = 〇.50 to 1.0) is heated and fired in a temperature range of 250 to 45 °C. Titanium oxide can be used by assembling primary particles into secondary particles. The secondary particles in the present invention are in a state in which the primary particles are strongly bonded to each other, and are not aggregated or mechanically compacted by intergranular phase interaction such as van der Waals force, and are usually mixed, disintegrated, and filtered. Industrial washing under water washing, transportation, weighing, bagging, stacking, etc. does not easily disintegrate, and almost all exist in the state of secondary particles. The amount of voids of the secondary particles is preferably in the range of 0.005 to 1.0 cm 3 /g in terms of battery characteristics, and more preferably in the range of 〜·〇 5 to 1.0 cm 3 /g. The average particle diameter of the secondary particles (the particle diameter of 50% by the laser scattering method) is preferably in the range of 〇·5 to 1 μm in terms of electrode fabrication. -8- 200836385 In addition, if the average particle size of the primary particles (the 50% of the median diameter obtained by electron microscopy) is in the range of 1 to 500 nm, it is easy to obtain the desired amount of voids, 1 to 1 0 0 nm. The range is better. The specific surface area is not particularly limited, and is preferably in the range of 0.1 to 200 m 2 /g, and particularly preferably in the range of 3 to 200 m 2 /g. Further, the shape of the particles is not limited, and various shapes such as an isotropic shape and an anisotropic shape may be used. Further, in the present invention, a titanium oxide having a particle shape of a sheet may be used, and the flaky particles usually include a plate, a sheet, or a flake. The size of the flaky particles is preferably in the range of 1 to 1 〇〇 nm in thickness, and in the range of 0.1 to 500 //m in length and length. Alternatively, a fine flaky particle called a nanosheet may be used, and the thickness is in the range of 0.5 to 100 nm, and the width and length are in the range of 0·1 to 3 0 // m, respectively, to a thickness of 〇. The range of 5 to 10 nm, and the range of width and length of 1 to 10/zm are more preferable. Further, the graphite used for the positive electrode material in the present invention is not particularly limited. In the present invention, "graphite" means a range in which d (QQ2) obtained from the peak position of the X-ray diffraction 〇〇 2 surface is in the range of 0.33 5 to 0.344 nm. Among them, graphite having a specific surface area of 0.5 to 300 m2/g is preferred, and a range of .5 to 100 m2/g is more preferable. As the electrolytic solution for immersing the above positive electrode and negative electrode, for example, a solute can be dissolved in a nonaqueous solvent. The anion acting in the electrolytic solution may be selected from the group consisting of 4 fluorinated boronic acid ions (BF4-), 6-fluorinated phosphate ions (PF〆), perchloric acid ions (cl0〆), and 6 arsenic fluoride (AsF6-). At least one of a group consisting of 6 cesium fluoride (S b F6 ·), perfluoromethanesulfonyl (〇?3802-), and perfluorinated methanesulfonate 200836385 (CF3S〇r). Further, as the cation, a group consisting of a symmetrical four-stage ammonium ion, an ethylmethylimidazolium salt, a spiro-(1, fluorene) bispyridinium salt, or the like, and a lithium ion may be selected. . Among them, those containing lithium ions are preferred. Further, as a nonaqueous solvent, it may be derived from tetrahydrofuran (THF), methyltetrahydrofuran (MeTHF), formaldehyde, ethyl acetate, diethyl carbonate, dimethyl ether (DME), propylene carbonate (PC), r-butyl Carbene such as lactone (GBL), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethylene carbonate (EC), ethyl methyl carbonate (EMC), acetonitrile (AN), ring At least one selected from the group consisting of butyl sulfonium (SL) or a non-aqueous solvent containing fluorine as one of the molecules. The power storage device of the present invention contains the positive electrode, the negative electrode, the electrolytic solution, and a separator, and specific examples thereof include an electrochemical capacitor, a hybrid capacitor, a redox capacitor, an electric double layer capacitor, and a lithium battery. In the positive electrode and the negative electrode, a conductive material such as carbon black, acetylene black or ketjen black, and a binder such as a fluororesin or a water-soluble rubber resin are added to the positive electrode material and the negative electrode material, and are appropriately formed or coated. The separator may be a porous polyethylene film polypropylene film or the like. [Examples] Hereinafter, the examples of the present invention are disclosed, but the present invention is not limited thereto. -10-200836385 (Example 1) (Production of positive electrode) d(G()2) obtained by X-ray diffraction is 0.33 7 1 nm graphite (1 ), powder mixed with acetylene black and polytetrafluoroethylene resin (trade name · TAB, The Bulgarian Central Laboratory of Electrochemical Power Source), mixed at a weight ratio of 3:1, with agate The crucible was kneaded and formed into a circular shape having a diameter of 1 mm to obtain a particulate matter. The weight of the particles is 1 〇mg. The pellet was superposed on a screen made of aluminum as a current collector cut into a diameter of 10 mm, and pressed at 9 MPa to obtain a positive electrode (1). (Production of Negative Electrode) Anatase-type titanium dioxide, acetylene black, and tetrafluoroethylene resin having a specific surface area of 314 m2/g were mixed at a weight ratio of 5:4:1, and kneaded by agate, and formed into a diameter of 1 mm. The round shape gives the particles. The weight of the granules was 15 mg. The pellet was cut into a copper bouge of 10 m Hi as a current collector to obtain a negative electrode (1). (Manufacturing of Power Storage Device) The positive electrode (1) and the negative electrode (1) were vacuum dried at 200 ° C for 4 hours, and then assembled into a sealable coin type in a globe box having a dew point of -70 ° C or lower. In the test unit (cell). The test unit is made of stainless steel (SUS316) with an outer diameter of 20 mm and a height of 3 · 2 mm. The positive electrode (1) is such that the current collector is placed below the evaluation unit. -11 -

200836385 部罐中,在其上放置作爲分隔物(separator)之赛 膜,自其上方滴下作爲非水電解液之以1莫耳/L獲 LiPF6之碳酸乙烯酯與碳酸乙基甲基酯之混合溶密 積比3 : 7混合)。將使集電體作爲上方負極(i ) 調整用之0.5 mm厚間隔物(spacer )與彈簧(皆 製)載置於其上,將附有丙烯製墊片之上部罐疊僵 將邊緣部緊密地密封,得到本發明之蓄電裝置 A ) 〇 (實施例2〜6 ) 除了將實施例1中比表面積爲314m2/g之銳· 氧化鈦改爲表1所示之各種鈦氧化物之外,係以| 1同樣的做法得到本發明之蓄電裝置(試樣B〜F ) (實施例7 ) 將市售之金紅石型高純度二氧化鈦(PT-301 : 業製)20.0g與碳酸鈉8.85g混合後,用電爐於空 800 °C之溫度進行加熱燒成20小時後,再度於同禱 下進行加熱燒成,得到組成爲Na2Ti307之層狀銳 對得到之層狀鈦酸鈉添加1莫耳濃度之鹽酸水溶密 10 g/L濃度,使其反應4日。對反應生成物進行另 果爲幾乎不含鈉,故鈉幾乎都被氫取代,確認得贫 成爲H2Ti307之層狀鈦氧化合物。又,於反應中, 曰皆更換鹽酸水溶液。將得到之層狀鈦氧化合物適 丙烯薄 度溶解 (以體 及厚度 SUS316 其上, (試樣 礦型二 實施例 石原產 氣中在 的條件 酸鈉。 作成爲 析之結 得到組 每隔1 濾、洗 -12- 200836385 淨、固液分離,於60 °C之溫度進行空氣中乾燥12小時 後,用電爐於空氣中28 0°C之溫度進行加熱20小時,得到 鈦氧化物(試樣g)。又,用微差熱天秤對試樣g於300 〜6 0 0 C之溫度軺圍測定,得到1 · 0重量%之加熱減量。此 加熱減量,若推測爲來自鈦氧化物中所含有的結晶水,則 可認爲是Η 2 T i 2 2 Ο 4 5組成之鈦氧化物。又,作爲射線源用 Cu-K α線測定試樣g之X光繞射圖案之結果,顯示出類 似於JCPDS卡3 5 -08 8等所示之青銅型二氧化鈦的圖案。 然而,青銅型於繞射角(2 0 )爲1 5 °附近可觀測到 (〇〇1)面與(200)面之2個波峰,而於試樣h,此2波 峰之間隔爲〇或非常地接近。試樣g之X光繞射圖案示於 圖1。除了於實施例1中作爲鈦氧化物改用試樣g之外, 係以與實施例1同樣的做法得到本發明之蓄電裝置(試料 G ) 〇 (實施例8) 用碳酸鉀、碳酸鋰、及作爲鈦氧化物之使四氯化鈦中 和水解得到之金紅石型二氧化鈦,將此等以K/Li/Ti之莫 耳比作成爲3 /1 / 6 · 5的比例混合,充分加以磨碎。將磨碎 物移置到白金坩鍋,用電爐於空氣中在8 0 0 °C之溫度進行 燒成5小時,得到組成爲Ko.sUmTiKuCU之層狀鈦酸鋰 鉀。對得到之層狀鈦酸鋰鉀1 g以1當量濃度之鹽酸1 〇 〇 cm3 ’於室溫下邊攪拌邊使其反應1日。對反應生成物進 行分析之結果,得到幾乎不含鋰、鉀,故鋰、鉀幾乎都被 -13- 200836385 氫取代,確認爲組成爲之層狀鈦氧化合物。 然後進行過濾、水洗、乾燥後,於空氣中400 °C溫度加熱 20小時,得到鈦氧化物(試樣h )。測定試樣h之3 00〜 6 00 °C之加熱減量的結果得0.12重量%,若與實施例8同 樣地推測,試樣爲H2Ti 1 8 903 79之組成,可認爲幾乎就是 二氧化鈦(Ti02 )。又,作爲射線源用 Cu-K α線測定試 樣h之X光繞射圖案之結果,顯示出類似於JCPDS卡35- φ 088等所示之青銅型二氧化鈦的圖案。然而,青銅型於繞 射角(2 0 )爲44°附近可觀測到(003 )面與(-601 )面 之2個波峰,而於試樣h,此2波峰之間隔爲0或非常地 接近。試樣h之X光繞射圖案示於圖2。除了於實施例1 中作爲鈦氧化物改用此二氧化鈦之外,係以與實施例1同 樣的做法得到本發明之蓄電裝置(試料Η )。 (實施例9 ) • 對換算爲Ti〇2相當於0.4g的量之實施例8中得到之 組成爲Hi.cwTh.uCU之層狀鈦氧化合物,添加溶解有相對 於此層狀鈦氧化合物中的H +量爲1中和當量之氫氧化四 丁基錢的水溶液10 0 cm3,以振動器進行150次往復/分鐘 的程度之振動1 〇日,藉此使層狀鈦酸剝離,得到銳鈦礦 型薄片狀二氧化鈦。對其以掃描型探針顯微鏡測定之結 果,袼到覓及長爲約 0 · 2〜1.0 // m,最大厚度爲約1.5 nm。除了用此薄片狀二氧化鈦作爲鈦氧化物之外,係以與 實施例1同樣的做法得到本發明之蓄電裝置(試樣I )。 -14- 200836385 (實施例1 〇) 將實施例1中得到之比表面積爲314m2/g的銳鈦礦型 二氧化鈦用果汁機分散於純水中使其漿液化,添加相對於 前述含水氫氧化鈦之Ti02換算量的5重量%之聚乙烯醇 (侯帕爾PVA-204C :庫拉雷(Kuraray )製)水溶液後, 再添加純水,調整爲換算成Ti02爲10重量%之濃度。將 此前述之漿液用四流體噴嘴式噴霧乾燥機(MDL-050B 型:藤崎電機製),以入口溫度200°C、出口溫度80°C、 空氣吐出量80L/分鐘之條件進行噴霧乾燥,得到二次粒 子。將得到之二次粒子於空氣中5 00 °C的溫度下進行加熱 燒成3小時,然後,將加熱燒成物以純水再漿液化,過 濾、洗淨、固液分離、分級、乾燥,得到銳鈦礦型二氧化 鈦之二次粒子。其平均一次粒徑(以電子顯微鏡法得到之 體積基準之50%徑)爲7 nm,平均二次粒徑(以雷射散射 法得到之體積基準之5 0 %徑)之平均二次粒徑爲9 · 2 nm, 空隙量爲〇 . 5 5 2 c m3 / g。除了用此二次粒子作爲欽氧化物 之外,係以與實施例1同樣的做法得到本發明之蓄電裝置 (試樣J )。 (實施例1 1 ) 除了用比表面積爲3 1 4m2/g之銳鈦礦型二氧化鈦代替 實施例7中得到之組成爲H2Ti307的層狀鈦氧化合物作爲 負極活物質之外,其他係以與實施例1同樣的做法得到本 200836385 發明之蓄電裝置(試樣κ)。 (實施例1 2 ) 除了用實施例7中得到之組成爲Na2Ti3〇7的層狀鈦 酸鈉作爲含有鈦與鹼金屬之複合氧化物代替比表面積爲 3 14 m2/g之銳鈦礦型二氧化鈦,並且顆粒物之重量爲 6〇mg,除此之外,係以與實施例〗同樣的做法得到本發明 之蓄電裝置(試樣L)。 (實施例13〜20) 除了用由X光繞射求出之d(〇〇2)爲0.3368之石墨 (2)或d(G()2)爲0.3 3 63之石墨(3)代替實施例3、1〇 中所用之石墨(1 )之外,係以與實施例1同樣的做法得 到本發明之蓄電裝置(試樣Μ〜T )。 (比較例1 ) 除了於實施例1中用市售的活性碳代替二氧化欽作爲 負極材料之外,係以與實施例1同樣的做法得到比較對象 之蓄電裝置(試樣U)。 (比較例2) 除了於實施例1中用比較例1中所用之市售的活性碳 代替石墨(1 )作爲正極材料之外,係以與實施例丨同樣 的做法得到比較對象之蓄電裝置(試樣V)。 200836385In the cans of 200836385, a film as a separator was placed thereon, and a mixture of ethylene carbonate and ethyl methyl carbonate obtained as a nonaqueous electrolyte at a concentration of 1 mol/L of LiPF6 was dropped therefrom. The viscous product ratio is 3:7 mixed). The current collector is placed on the upper negative electrode (i) with 0.5 mm thick spacers and springs (all manufactured) placed on it, and the upper part of the cans with the acrylic gasket is tight. The electricity storage device of the present invention was obtained by the above-mentioned method (Examples 2 to 6). In addition to changing the titanium oxide having a specific surface area of 314 m 2 /g in Example 1 to various titanium oxides shown in Table 1, The power storage device of the present invention (samples B to F) was obtained in the same manner as in the above (Example 7). Commercially available rutile-type high-purity titanium dioxide (PT-301: manufactured) 20.0 g and sodium carbonate 8.85 g. After mixing, the mixture was heated and fired in an electric furnace at a temperature of 800 ° C for 20 hours, and then heated and fired again under the same prayer to obtain a layered composition of Na 2 Ti 307, which was added to the layered sodium titanate obtained by adding 1 mol. The concentration of hydrochloric acid water was dissolved in a concentration of 10 g/L, and the reaction was allowed to proceed for 4 days. The reaction product was almost free of sodium, so that sodium was almost replaced by hydrogen, and it was confirmed to be a layered titanium oxide compound of H2Ti307. Further, in the reaction, the hydrazine was replaced with an aqueous hydrochloric acid solution. The obtained layered titanium oxide compound is dissolved in a thin layer of acryl (the body and the thickness of SUS316 are used thereon, (the sample is in the form of the second embodiment of the original gas in the gas production of sodium). Filtration, washing-12-200836385 Clean, solid-liquid separation, drying in air at 60 °C for 12 hours, heating in an electric furnace at 28 °C for 20 hours in the air to obtain titanium oxide (sample g). Further, using a differential thermal balance scale, the sample g is measured at a temperature of 300 to 600 ° C to obtain a heating loss of 1.0% by weight. This heating reduction is presumed to be from titanium oxide. The crystal water to be contained is considered to be a titanium oxide having a composition of Η 2 T i 2 2 Ο 4 5 , and the result of measuring the X-ray diffraction pattern of the sample g by the Cu-K α line as a radiation source is displayed. A pattern similar to the bronze type titanium dioxide shown in JCPDS card 3 5 -08 8 etc. However, the bronze type can observe (〇〇1) face and (200) at a diffraction angle (20) of 15 °. The two peaks of the surface, and the sample h, the interval between the two peaks is 〇 or very close. The X-ray diffraction pattern of the sample g shows In the same manner as in Example 1, except that the titanium oxide was changed to the sample g in the first embodiment, the power storage device (sample G) of the present invention (Example 8) was used. Lithium carbonate, and rutile-type titanium dioxide obtained by neutralizing and hydrolyzing titanium tetrachloride as titanium oxide, and mixing the ratio of K/Li/Ti to 3/1 / 6 · 5 The ground material was thoroughly ground. The ground material was transferred to a white gold crucible, and fired in an air oven at 800 ° C for 5 hours to obtain a layered lithium potassium titanate having a composition of Ko.sUmTiKuCU. 1 g of the layered lithium potassium titanate obtained was reacted for 1 day with stirring at room temperature with 1 liter of hydrochloric acid 1 〇〇 cm 3 '. As a result of analyzing the reaction product, almost no lithium or potassium was obtained. Therefore, lithium and potassium were almost replaced by hydrogen-13-200836385, and it was confirmed to be a layered titanium oxide compound. Then, it was filtered, washed with water, dried, and heated at 400 ° C for 20 hours in the air to obtain titanium oxide. (Sample h). The result of measuring the heating loss of the sample h of 3 00~6 00 °C is 0.1 2% by weight, as in the case of Example 8, it is estimated that the sample is a composition of H2Ti 18 903 79, and it is considered to be almost titanium dioxide (Ti02). Further, the sample h is measured by a Cu-K α line as a radiation source. As a result of the X-ray diffraction pattern, a pattern similar to the bronze type titanium dioxide shown by the JCPDS card 35-φ 088 or the like is shown. However, the bronze type is observed at a diffraction angle (20) of 44° (003). The surface has two peaks of the (-601) plane, and in the sample h, the interval between the two peaks is 0 or very close. The X-ray diffraction pattern of sample h is shown in Fig. 2. The electricity storage device (sample Η) of the present invention was obtained in the same manner as in Example 1 except that the titanium oxide was changed to titanium oxide in Example 1. (Example 9) • A layered titanium oxide compound having a composition of Hi.cwTh.uCU obtained in Example 8 in an amount equivalent to 0.4 g of Ti〇2 was added and dissolved in relation to the layered titanium oxide compound. The amount of H + in the solution was 10 0 cm 3 of an aqueous solution of 1 part by weight and equivalent of tetrabutylammonium hydroxide, and the vibrator was shaken to the extent of 150 reciprocations/min for 1 day, thereby peeling off the layered titanic acid. Anatase flaky titanium dioxide. As a result of the scanning probe microscopy, the enthalpy and length were about 0 · 2 to 1.0 // m, and the maximum thickness was about 1.5 nm. A power storage device (Sample I) of the present invention was obtained in the same manner as in Example 1 except that the flaky titanium oxide was used as the titanium oxide. -14-200836385 (Example 1 〇) Anatase-type titanium dioxide having a specific surface area of 314 m 2 /g obtained in Example 1 was dispersed in pure water by a juice machine to be liquefied, and added with respect to the above aqueous titanium hydroxide. After a 5% by weight of polyvinyl alcohol (Houpar PVA-204C: manufactured by Kuraray) was added in an amount of TiO2, pure water was added thereto, and the concentration was adjusted to a concentration of 10% by weight of Ti02. The above-mentioned slurry was spray-dried by a four-fluid nozzle type spray dryer (MDL-050B type: Fujisawa Electric Mechanism) at an inlet temperature of 200 ° C, an outlet temperature of 80 ° C, and an air discharge amount of 80 L/min. Secondary particles. The obtained secondary particles are heated and calcined in air at a temperature of 500 ° C for 3 hours, and then the heated calcined product is repulped with pure water, filtered, washed, solid-liquid separated, classified, and dried. Secondary particles of anatase type titanium dioxide are obtained. The average primary particle diameter (50% diameter of the volume basis obtained by electron microscopy) is 7 nm, and the average secondary particle diameter (average secondary particle diameter of the 50% diameter of the volume basis obtained by the laser scattering method) is 7 nm. The distance is 9 · 2 nm, and the amount of void is 〇 5 5 2 c m3 / g. The electricity storage device (sample J) of the present invention was obtained in the same manner as in Example 1 except that the secondary particles were used as the cerium oxide. (Example 1 1) Except that an anatase type titanium oxide having a specific surface area of 3 14 m 2 /g was used instead of the layered titanium oxide compound having the composition of H2Ti307 obtained in Example 7 as a negative electrode active material, In the same manner as in Example 1, the power storage device (sample κ) of the invention of 200836385 was obtained. (Example 1 2) The layered sodium titanate having the composition of Na2Ti3〇7 obtained in Example 7 was used as a composite oxide containing titanium and an alkali metal in place of anatase type titanium dioxide having a specific surface area of 3 14 m 2 /g. The power storage device (sample L) of the present invention was obtained in the same manner as in the example except that the weight of the particulate matter was 6 〇 mg. (Examples 13 to 20) In place of the graphite (3) in which d(〇〇2) of 0.3368 (d) or d(G()2) of 0.33 63 obtained by X-ray diffraction was used instead of the example In the same manner as in Example 1, except for the graphite (1) used in the first step, the power storage device (sample Μ to T) of the present invention was obtained. (Comparative Example 1) A power storage device (sample U) to be compared was obtained in the same manner as in Example 1 except that the commercially available activated carbon was used instead of the dioxins as the negative electrode material. (Comparative Example 2) A power storage device to be compared was obtained in the same manner as in Example 除了 except that the commercially available activated carbon used in Comparative Example 1 was used instead of graphite (1) as the positive electrode material in Example 1. Sample V). 200836385

評價1 :比表面積之測定 就實施例1〜20、比較例1、2中所用之正極材料及負 極材料的比表面積用比表面積測定裝置(Monosorb : Yuas a-Ionics製)依據BET法測定。結果示於表1。 -17- 200836385 『表i] 實施例 試樣 正極材料 負極材料 材料 比表面積 (m2/g) 材料 比表面積 (m2/g) 實施例1 A 石墨⑴ 20 銳鈦礦型 TiO2(ST-01 :石原產業製) 314 實施例2 B ” ” 銳鈦礦型 Ti〇2(ST-21 :石原產業製) 62 實施例3 C ” ” 銳鈦礦型 Ti02(ST-41 :石原產業製) 10 實施例4 D ” ” 金紅石型 Ti02(MPT-851 :石原產業製) 190 實施例5 E ” ” 含有金紅石型58%之銳鈦礦型 TiO2(PT-401M :石原產業製) 20 實施例6 F ” ” 銳鈦礦型 薄片狀Ti02(TF-4 :石原產業製) 12 實施例7 G ” ” 類似青銅型 H2T122O45 5 實施例8 Η ” ” 類似青銅型 Ti〇2 12 實施例9 I ” ” 銳鈦礦型 薄片狀Ti〇2 127 實施例10 J ” ” 銳鈦礦型(二次粒子) TiO2(ST-01 ··石原產業製) 95 實施例11 K ” ” 層狀鈦酸 H2Ti3〇7 5 實施例12 L ” ” 層狀鈦酸鈉 Ν^2Τΐ3〇7 3 實施例13 Μ 石墨(2) 3 銳鈦礦型 TiO2(ST-01 :石原產業製) 314 實施例14 N ” ” 銳鈦礦型 Ti02(ST-21 :石原產業製) 62 實施例15 0 ” ” 銳鈦礦型 Ti02(ST_41 :石原產業製) 10 實施例16 P ” ” 銳鈦礦型(二次粒子) TiO2(ST-01 :石原產業製) 95 實施例17 Q 石墨(3) 4 銳鈦礦型 TiO2(ST-01 :石原產業製) 314 實施例18 R ” 銳鈦礦型 Ti02(ST-21 :石原產業製) 62 實施例19 S ” ” 鐘礦型 Ti02(ST-41 :石原產業製) 10 實施例20 T ” ” 銳鈦礦型(二次粒子) TiO2(ST-01 :石原產業製) 95 比較例1 u 石墨⑴ 20 活性碳 1800 比較例2 V 活性碳 1800 銳鈦礦型 TiO2(ST-01 :石原產業製) 314 -18- 200836385 評價2:電容量之評價 就實施例1〜2 0及比較例1、2中得到之蓄電裝置 (試樣A〜V )之電容量進行評價。對各試樣,使充電器 之設定定爲0.3 mA之定電流,以迄至3.5V作爲充電電壓 進行2小時的充電後,以放電至〇. 3 ^A、1 V止時之放電 容量作爲試樣之電容量(mAh/g (正極活物質))示於表 2。又,試樣A〜:L、N、R之放電曲線示於圖3〜18。圖之 φ 放電曲線、電壓軸切片、電容量切片及原點所圍住部分的 面積係相當於蓄電裝置之能量,此面積愈大能量愈大。Evaluation 1: Measurement of specific surface area The specific surface area of the positive electrode material and the negative electrode material used in Examples 1 to 20 and Comparative Examples 1 and 2 was measured by a BET method using a specific surface area measuring apparatus (Monosorb: manufactured by Yuas a-Ionics). The results are shown in Table 1. -17- 200836385 『Table i】 Example sample Cathode material Anode material Material specific surface area (m2/g) Material specific surface area (m2/g) Example 1 A Graphite (1) 20 Anatase TiO2 (ST-01: Ishihara Industrial Co., Ltd. 314 Example 2 B ” Anatase type Ti〇2 (ST-21: manufactured by Ishihara Sangyo Co., Ltd.) 62 Example 3 C ′′ Anatase type Ti02 (ST-41: manufactured by Ishihara Sangyo Co., Ltd.) 10 Example 4 D ” rutile type Ti02 (MPT-851: manufactured by Ishihara Sangyo Co., Ltd.) 190 Example 5 E ” Anatase TiO2 containing rutile type 58% (PT-401M: manufactured by Ishihara Sangyo Co., Ltd.) 20 Example 6 F Anatase-type flaky TiO2 (TF-4: manufactured by Ishihara Sangyo) 12 Example 7 G ′′ Similar to bronze type H2T122O45 5 Example 8 ” ” Similar to bronze type Ti〇2 12 Example 9 I ” ” sharp Titanium-type flake-like Ti〇2 127 Example 10 J ” Anatase type (secondary particle) TiO2 (ST-01 ··Ishihara Industry Co., Ltd.) 95 Example 11 K ” Layered titanic acid H2Ti3〇7 5 Example 12 L " " Layered sodium titanate Ν 2 Τΐ 3 〇 7 3 Example 13 石墨 Graphite (2) 3 Anatase TiO 2 (ST-01: manufactured by Ishihara Sangyo Co., Ltd.) 3 14 Example 14 N ′′ Anatase type Ti02 (ST-21: manufactured by Ishihara Sangyo Co., Ltd.) 62 Example 15 0 ” Anatase type Ti02 (ST_41: manufactured by Ishihara Sangyo Co., Ltd.) 10 Example 16 P ” Anatase Type (secondary particle) TiO2 (ST-01: manufactured by Ishihara Sangyo Co., Ltd.) 95 Example 17 Q Graphite (3) 4 Anatase TiO 2 (ST-01: manufactured by Ishihara Sangyo Co., Ltd.) 314 Example 18 R ” Anatase type Ti02 (ST-21: manufactured by Ishihara Sangyo Co., Ltd.) 62 Example 19 S ′′ Zhongjing type Ti02 (ST-41: manufactured by Ishihara Sangyo Co., Ltd.) 10 Example 20 T ” Anatase type (secondary particle) TiO2 (ST- 01: Ishihara Industrial System) 95 Comparative Example 1 u Graphite (1) 20 Activated Carbon 1800 Comparative Example 2 V Activated Carbon 1800 Anatase TiO2 (ST-01: manufactured by Ishihara Sangyo) 314 -18- 200836385 Evaluation 2: Evaluation of Capacitance The electric capacities of the electricity storage devices (samples A to V) obtained in Examples 1 to 20 and Comparative Examples 1 and 2 were evaluated. For each sample, the setting of the charger was set to a constant current of 0.3 mA. After charging to 3.5V as the charging voltage for 2 hours, the discharge capacity at the time of discharge to ^. 3 ^A, 1 V was taken as the capacity of the sample (mAh/g (positive electrode) The living substance)) is shown in Table 2. Further, discharge curves of Samples A to L, N, and R are shown in Figs. 3 to 18. The φ discharge curve, the voltage axis slice, the capacitance slice and the area enclosed by the origin are equivalent to the energy of the power storage device, and the larger the area, the greater the energy.

-19- 200836385 表2]-19- 200836385 Table 2]

實施例 試樣 電容量(mAh/g) 實施例1 A 76.5 實施例2 B 72.8 實施例3 C 70.5 實施例4 D 46.2 實施例5 E 43.8 實施例6 F 65.7 實施例7 G 53.7 實施例8 Η 57.9 實施例9 I 53.5 實施例10 J 76.4 實施例11 κ 64.6 實施例12 L 42.6 實施例13 Μ 65.9 實施例14 N 62.6 實施例15 0 54.5 實施例16 P 62.9 實施例Π 0 67.4 實施例18 R 64.7 實施例19 S 56.2 實施例20 T 64.4 比較例1 U 46.1 比較例2 V 26.4 評價3 :重複使用(cycle )特性 就實施例1〜1 2中得到之蓄電裝置(試樣A〜L )進 行重複使用(cycle )特性評價。對各試樣,使充放電電流 設定爲 0.3 mA,以定電流以3.3V充電後,以同樣的做 法,進行放電至1.0V,反復進行3 0循環之此充放電循 環。測定第2循環與第3 0循環之充放電容量,以其作爲 -20- 200836385 各該電容量,以(第3 〇循環之電容量/第2循環之電容 量)X 1 00作爲重複使用特性。結果示於表3。又,實施例 1之容量維持率之變化示於圖1 9。EXAMPLES Sample Capacity (mAh/g) Example 1 A 76.5 Example 2 B 72.8 Example 3 C 70.5 Example 4 D 46.2 Example 5 E 43.8 Example 6 F 65.7 Example 7 G 53.7 Example 8 57.9 Example 9 I 53.5 Example 10 J 76.4 Example 11 κ 64.6 Example 12 L 42.6 Example 13 Μ 65.9 Example 14 N 62.6 Example 15 0 54.5 Example 16 P 62.9 Example Π 0 67.4 Example 18 R 64.7 Example 19 S 56.2 Example 20 T 64.4 Comparative Example 1 U 46.1 Comparative Example 2 V 26.4 Evaluation 3 : Cycle characteristics The power storage devices (samples A to L) obtained in Examples 1 to 2 were subjected to Repetitive feature evaluation. For each sample, the charge and discharge current was set to 0.3 mA, and after charging at a constant current of 3.3 V, the discharge was performed to 1.0 V in the same manner, and the charge and discharge cycle of 30 cycles was repeated. The charge/discharge capacity of the second cycle and the 30th cycle was measured, and it was used as the capacity of -20-200836385, and the capacity of (the capacity of the third cycle / the capacity of the second cycle) X 1 00 was used as the reusability characteristic. . The results are shown in Table 3. Further, the change in the capacity retention rate of Example 1 is shown in Fig. 19.

[表3] 實施例 試樣 電容量 (mAh/g) 重複使用特性 第2循環 第30循環 實施例1 A 46.9 45.0 95.9 實施例2 B 43.7 38.3 87.6 實施例3 C 43.3 43.5 100.5 實施例4 * D 39.7 40.5 102.0 實施例5 E 43.6 40.5 92.9 實施例6 F 43.6 42.0 96.3 實施例7 G 32.5 18.2 56.0 實施例8 Η 38.8 33.0 85.1 實施例9 I 40.9 45.0 110.0 實施例10 J 45.6 43.6 95.6 實施例11 K 54.0 54.3 100.6 實施例12 L 28.5 27.9 97.6 評價4 :功率(rate )特性之評價 就實施例1、2、4、7、9、10中得到之蓄電裝置(試 樣 A、B、D、G、I、J )進行功率特性之評價。對各試 樣,設定電壓範圍爲 1 . 〇〜3 .3 V間、充電電流爲 40 mA/g、放電電流爲40〜1600 mA/g之範圍進行充放電,測 定各該放電容量。容量維持率之計算,係以於4 0 mA/g之 放電容量的測定値爲X 1、以於8 0〜1 6 0 0 m A / g的範圍之 各測定値爲Xn,藉由(Xn/X! ) xlOO之算式求出。結果示 -21 - 200836385 於表4。可判定即使電流量增大,只要容量維持率高,則 可得到優異-的功率特性。 [表4][Table 3] Example Sample Capacity (mAh/g) Reuse Characteristics 2nd Cycle 30th Cycle Example 1 A 46.9 45.0 95.9 Example 2 B 43.7 38.3 87.6 Example 3 C 43.3 43.5 100.5 Example 4 * D 39.7 40.5 102.0 Example 5 E 43.6 40.5 92.9 Example 6 F 43.6 42.0 96.3 Example 7 G 32.5 18.2 56.0 Example 8 Η 38.8 33.0 85.1 Example 9 I 40.9 45.0 110.0 Example 10 J 45.6 43.6 95.6 Example 11 K 54.0 54.3 100.6 Example 12 L 28.5 27.9 97.6 Evaluation 4: Evaluation of power characteristics The power storage devices obtained in Examples 1, 2, 4, 7, 9, and 10 (samples A, B, D, G, I) , J) Evaluation of power characteristics. For each sample, charge and discharge were performed in a range of a voltage range of 1 to 33 to 3 V, a charging current of 40 mA/g, and a discharge current of 40 to 1600 mA/g, and the respective discharge capacities were measured. The capacity retention rate is calculated by measuring the discharge capacity of 40 mA/g 値 as X 1 and measuring 値 in the range of 80 to 1 600 m A / g as Xn by (Xn) /X! ) The formula of xlOO is found. The results are shown in Table 4. -21 - 200836385. It can be judged that even if the amount of current is increased, excellent power characteristics can be obtained as long as the capacity retention rate is high. [Table 4]

實施例 試樣 容量維持率(%) 80 mA/g 160 mA/g 320 mA/g 800 mA/g 1600 mA/g 實施例1 A 99.1 98.5 97.3 93.1 86.0 實施例2 B 97.1 94.2 92.4 91.7 61.6 實施例4 D 98.1 95.1 92.1 85.8 75.2 實施例7 G 95.2 90.0 83.2 68.9 52.8 實施例9 I 96.7 92.1 86.6 81.4 62.7 實施例10 J 101.7 102.7 101.0 95.8 89.3 (實施例2 1 ) 正極之製造 將實施例1中所用之石墨(1 ) 3 g、乙炔黑與四氟乙 烯混合之粉末(TAB ) 1 g,用瑪瑙硏缽進行混練,於銘基 板上壓合後衝孔成直徑1 2 m m之圓形,得到活物質量j 〇 mg、厚度約0.1mm之正極(2)。 負極之製造 將實施例中所用之比表面積爲314 m2/g之銳欽礦型二 氧化鈦3 g、T A B 1 g ’用瑪瑙硏缽進行混練,於銘基板上 壓合後衝孔成直徑mm之圓形,得到活物暂量10 mg、 厚度約0· 1 mm之負極(2 )。 蓄電裝置之製造 -22- 200836385 除了將實施例1中之正極(1 )、負極(1 )分別改爲 正極(2 )、負極(2 )之外,係以與實施例1同樣的做法 得到本發明之蓄電裝置(試樣A,)。 (實施例22〜29 ) 除了用表5所示之各種氧化鈦代替實施例21中之比 表面積爲3 14m2/g之銳鈦礦型二氧化鈦之外,係以與實施 • 例21同樣的做法得到本發明之蓄電裝置(試樣B,〜 評價5 ··比表面積之測定 就實施例2 1〜29中所用之鈦氧化物之比表面積以與 評價1同樣的做法測定。結果示於表5。EXAMPLES Sample Capacity Maintenance Rate (%) 80 mA/g 160 mA/g 320 mA/g 800 mA/g 1600 mA/g Example 1 A 99.1 98.5 97.3 93.1 86.0 Example 2 B 97.1 94.2 92.4 91.7 61.6 Example 4 D 98.1 95.1 92.1 85.8 75.2 Example 7 G 95.2 90.0 83.2 68.9 52.8 Example 9 I 96.7 92.1 86.6 81.4 62.7 Example 10 J 101.7 102.7 101.0 95.8 89.3 (Example 2 1 ) Production of positive electrode The same as used in Example 1 Graphite (1) 3 g, acetylene black and tetrafluoroethylene mixed powder (TAB) 1 g, mixed with agate enamel, pressed on the substrate, punched into a circle with a diameter of 12 mm to obtain a living substance. A positive electrode (2) having a quantity of j 〇 mg and a thickness of about 0.1 mm. Preparation of the negative electrode The sharp-mining type titanium dioxide 3 g and TAB 1 g ' used in the examples were 1983 m 2 /g, and were mixed with agate, and pressed on the substrate to be punched into a circle of diameter mm. In the shape, a negative electrode (2) having a temporary dose of 10 mg and a thickness of about 0.1 mm was obtained. Manufacture of Power Storage Device -22- 200836385 The same procedure as in Example 1 was carried out except that the positive electrode (1) and the negative electrode (1) in Example 1 were changed to the positive electrode (2) and the negative electrode (2), respectively. The power storage device (sample A,) of the invention. (Examples 22 to 29) The same procedure as in Example 21 was carried out, except that various titanium oxides shown in Table 5 were used instead of the anatase type titanium oxide having a specific surface area of 3 14 m 2 /g in Example 21. Power storage device of the present invention (sample B, evaluation 5) Measurement of specific surface area The specific surface area of the titanium oxide used in Examples 2 to 29 was measured in the same manner as in Evaluation 1. The results are shown in Table 5.

-23- 200836385 [表5] 實施例 試樣 正極材料 負極 材料 比表面積 (m2/g) 實施例21 A5 石·1) 銳鈦礦型 TiO2(ST-01 :石原產業製) 314 實施例22 B, ” 銳鈦礦型 Ti02(ST-21 :石原產業製) 62 實施例23 C, ” 銳鈦礦型 Ti02(ST-41 :石原產業製) 10 實施例24 D, ” 銳鈦礦型 ΉΟ2(ΡΤ-501Α :石原產業製) 17 實施例25 E, ” 金紅石型 Ti02(CR-EL :石原產業製) 7 實施例26 F, ” 金紅石型 Ή02(ΜΡΤ·851 :石原產業製) 190 實施例27 G, ” 金紅石型 Ti02(TT0-55N :石原產業製) 42 實施例28 H, ” 金紅石型 Ti02(TT0-55A :石原產業製) 40 實施例29 Γ ” 含有金紅石型58%之銳鈦礦型 TiO2(PT-401M ··石原產業製) 20 評價6:電容量之評價 就實施例21〜29中得到之蓄電裝置(試樣A’〜I’) 之電容量進行評價。對試樣A’〜Γ之蓄電裝置以1 mA之 定電流施加充電電流後,於達到3.5 V之時點切換成定電 壓進行合計2小時之充電後,放電至1 mA、0V止,以該 放電容量作爲試樣之電容量(mAh/g (正極活物質))示 於表6。 -24 - 200836385 [表6] 實施例 試樣 電容量 (mAh/g) 實施例21 A, 62 實施例22 B, 72 實施例23 C, 68 實施例24 D, 71 實施例25 E, 24 實施例26 F 50 實施例27 G5 35 實施例28 H, 33 實施例29 Γ 44 本發明之蓄電裝置之電容量大。又,如同於實施例 4、5、1 2與比較例1之對比可見到般,於本發明中,即使 電容量不太大者,由於放電電壓高,故能量大。因此可知 其可達成高能量密度化。而且,重複使用特性、功率特性 亦優異。 (產業上之可利用性) 本發明之蓄電裝置於電動車等之移動體用電源、電力 事案用之電力貞丁藏系統等甚有用。 【圖式簡單說明】 圖1爲實施例7中得到之鈦氧化物(試樣g)之X光 繞射圖。 圖2爲實施例 繞射圖。 中得到之鈦氧化物(試樣h) (X光 -25- 200836385 圖3爲實施例1中得到之蓄電裝置(試樣A)之放電 曲線圖。 圖4爲實施例2中得到之蓄電裝置(試樣B )之放電 曲線圖。 圖5爲實施例3中得到之蓄電裝置(試樣C)之放電 曲線圖。 圖6爲實施例4中得到之蓄電裝置(試樣D )之放電 曲線圖。 圖7爲實施例5中得到之蓄電裝置(試樣E)之放電 曲線圖。 圖8爲實施例6中得到之蓄電裝置(試樣F)之放電 曲線圖。 圖9爲實施例7中得到之蓄電裝置(試樣G )之放電 曲線圖。 圖1 〇爲實施例8中得到之蓄電裝置(試樣Η )之放 電曲線圖。 圖1 1爲實施例9中得到之蓄電裝置(試樣I )之放電 曲線圖。 圖12爲實施例10中得到之蓄電裝置(試樣J )之放 電曲線圖。 圖13爲實施例1 1中得到之蓄電裝置(試樣Κ )之放 電曲線圖。 圖1 4爲實施例12中得到之蓄電裝置(試樣L )之放 電曲線圖。 -26- 200836385 圖1 5爲實施例1 4中得到之蓄電裝置(試樣N )之放 電曲線圖。 圖1 6爲實施例1 8中得到之蓄電裝置(試樣R )之放 電曲線圖。 圖1 7爲比較例1中得到之蓄電裝置(試樣U )之放 電曲線圖。 圖1 8爲比較例2中得到之蓄電裝置(試樣V )之放 電曲線圖。 圖19爲實施例1中得到之蓄電裝置(試樣A )之重 複使用(cycle)特性之曲線圖。-23- 200836385 [Table 5] Example Sample Positive electrode material Anode material specific surface area (m2/g) Example 21 A5 Stone·1) Anatase type TiO2 (ST-01: manufactured by Ishihara Sangyo Co., Ltd.) 314 Example 22 B " Anatase type Ti02 (ST-21: manufactured by Ishihara Sangyo Co., Ltd.) 62 Example 23 C, " Anatase type Ti02 (ST-41: manufactured by Ishihara Sangyo Co., Ltd.) 10 Example 24 D, " Anatase type ΉΟ 2 ( ΡΤ-501Α: Ishihara Industrial Co., Ltd. 17 Example 25 E, "Rutile-type Ti02 (CR-EL: manufactured by Ishihara Sangyo) 7 Example 26 F," Rutile type Ή02 (ΜΡΤ·851: Ishihara Sangyo Co., Ltd.) 190 Implementation Example 27 G, rutile type Ti02 (TT0-55N: manufactured by Ishihara Sangyo Co., Ltd.) 42 Example 28 H, "Rutile type Ti02 (TT0-55A: manufactured by Ishihara Sangyo Co., Ltd.) 40 Example 29 ” " Contains rutile type 58% Anatase TiO2 (PT-401M, manufactured by Ishihara Sangyo Co., Ltd.) 20 Evaluation 6: Evaluation of capacitance The capacitances of the electricity storage devices (samples A' to I') obtained in Examples 21 to 29 were evaluated. After applying a charging current to a power storage device of sample A' to 以 at a constant current of 1 mA, the voltage is switched to a constant voltage at a point of 3.5 V for a total of 2 hours of charging, and then discharged to 1 mA and 0 V to discharge. The capacity is shown in Table 6 as the capacitance of the sample (mAh/g (positive active material)). -24 - 200836385 [Table 6] Example Sample Capacity (mAh/g) Example 21 A, 62 Example 22 B, 72 Example 23 C, 68 Example 24 D, 71 Example 25 E, 24 Implementation Example 26 F 50 Example 27 G5 35 Example 28 H, 33 Example 29 Γ 44 The electric storage device of the present invention has a large capacity. Further, as seen in the comparison of Examples 4, 5, and 12 with Comparative Example 1, in the present invention, even if the capacitance is not too large, the electric energy is large because the discharge voltage is high. Therefore, it can be known that high energy density can be achieved. Moreover, the reusability characteristics and power characteristics are also excellent. (Industrial Applicability) The power storage device of the present invention is useful for a power source for a mobile body such as an electric vehicle or a power system for powering a case. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is an X-ray diffraction pattern of a titanium oxide (sample g) obtained in Example 7. Figure 2 is an embodiment of a diffraction pattern. Titanium oxide obtained in the sample (sample h) (X-ray-25-200836385 FIG. 3 is a discharge graph of the electricity storage device (sample A) obtained in Example 1. FIG. 4 is a power storage device obtained in Example 2. Fig. 5 is a discharge graph of the electricity storage device (sample C) obtained in Example 3. Fig. 6 is a discharge curve of the electricity storage device (sample D) obtained in Example 4. Fig. 7 is a discharge graph of the electricity storage device (sample E) obtained in Example 5. Fig. 8 is a discharge graph of the electricity storage device (sample F) obtained in Example 6. Fig. 9 is a seventh embodiment. The discharge curve of the electricity storage device (sample G) obtained in Fig. 1 is a discharge curve of the electricity storage device (sample Η) obtained in Example 8. Fig. 1 is the electricity storage device obtained in Example 9 ( Fig. 12 is a discharge graph of the electricity storage device (sample J) obtained in Example 10. Fig. 13 is a discharge curve of the electricity storage device (sample Κ) obtained in Example 11. Fig. 14 is a discharge graph of the electricity storage device (sample L) obtained in Example 12. -26- 200836385 Fig. 1 5 is a discharge graph of the electricity storage device (sample N) obtained in Example 14. Fig. 16 is a discharge graph of the electricity storage device (sample R) obtained in Example 18. Fig. 17 is a comparative example Fig. 18 is a discharge graph of the electricity storage device (sample V) obtained in Comparative Example 2. Fig. 19 is a power storage device obtained in Example 1. A graph of the cycle characteristics of sample A).

-27--27-

Claims (1)

200836385 十、申請專利範圍 1· 一種蓄電裝置,其特徵爲包含··含有石墨之正極材 料、含有選自 Ti、Zr、V、Cr、Mo、Mn、Fe、Co、Ni、 Cu、Zn、Sn、Sb、Bi、W及Ta中之至少一種金屬元素的 氧化物之負極材料、及電解液。 2·如申請專利範圍第1項之蓄電裝置,其中金屬元素 之氧化物爲至少含有駄作爲金屬元素的金屬氧化物。 3 ·如申請專利範圍第2項之蓄電裝置,其中金屬氧化 物爲鈦氧化物。 4 ·如申請專利範圍第3項之蓄電裝置,其中鈦氧化物 的結晶形爲銳鈦礦型及/或金紅石型。 5·如申請專利範圍第3項之蓄電裝置,其中鈦氧化物 爲層狀鈦氧化合物經加熱者。 6·如申請專利範圍第3項之蓄電裝置,其中欽氧化物 爲一次粒子集合所成之二次粒子。 7 .如申g靑專利郭园弟3項之畜電裝置,其中欽氧化物 之比表面積爲0.1〜500m2/g的範圍。 8 ·如申請專利範圍第3項之蓄電裝置,其中欽氧化物 之粒子形狀爲薄片狀。 9 ·如申請專利範圍第2項之畜電裝置,其中金屬氧化 物爲鈦與鹼金屬或鹼土金屬元素之複合氧化物。 1 〇 ·如申請專利範圍第1項之畜電裝置,其中石墨之 比表面積爲0.5〜300 m2/g的範圍。 1 1 ·如申請專利範圍第1項之蓄電裝置,其使用含有 非水溶劑與鋰鹽的電解液。 -28-200836385 X. Patent Application No. 1. A power storage device characterized by comprising: a cathode material containing graphite, containing a material selected from the group consisting of Ti, Zr, V, Cr, Mo, Mn, Fe, Co, Ni, Cu, Zn, Sn And a negative electrode material of an oxide of at least one of the metal elements of Sb, Bi, W, and Ta, and an electrolyte. 2. The power storage device of claim 1, wherein the oxide of the metal element is a metal oxide containing at least ruthenium as a metal element. 3. The power storage device of claim 2, wherein the metal oxide is titanium oxide. 4. The power storage device of claim 3, wherein the titanium oxide has a crystalline form of anatase and/or rutile. 5. The power storage device of claim 3, wherein the titanium oxide is a layered titanium oxide compound heated. 6. The power storage device of claim 3, wherein the cerium oxide is a secondary particle formed by a primary particle collection. 7. A livestock electric device of claim 3, wherein the specific surface area of the niobium oxide is in the range of 0.1 to 500 m 2 /g. 8. The power storage device of claim 3, wherein the particle shape of the zirconia oxide is flake-shaped. 9. A livestock electrical device as claimed in claim 2, wherein the metal oxide is a composite oxide of titanium and an alkali metal or alkaline earth metal element. 1 〇 A petal apparatus according to item 1 of the patent application, wherein the specific surface area of graphite is in the range of 0.5 to 300 m 2 /g. 1 1 The power storage device of claim 1, wherein an electrolyte containing a nonaqueous solvent and a lithium salt is used. -28-
TW096139345A 2006-10-20 2007-10-19 Electric energy storage device TWI431833B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006285796 2006-10-20

Publications (2)

Publication Number Publication Date
TW200836385A true TW200836385A (en) 2008-09-01
TWI431833B TWI431833B (en) 2014-03-21

Family

ID=39314109

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096139345A TWI431833B (en) 2006-10-20 2007-10-19 Electric energy storage device

Country Status (7)

Country Link
US (1) US8724293B2 (en)
EP (1) EP2077598A4 (en)
JP (1) JP5422066B2 (en)
KR (1) KR101475958B1 (en)
CN (1) CN101529643A (en)
TW (1) TWI431833B (en)
WO (1) WO2008047898A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101565177B1 (en) * 2007-08-28 2015-11-04 이시하라 산교 가부시끼가이샤 Titanic acid compound, process for producing the titanic acid compound, electrode active material containing the titanic acid compound, and storage device using the electrode active material
JP2010200476A (en) * 2009-02-25 2010-09-09 Ishihara Sangyo Kaisha Ltd Method for using power-storage device
WO2012060349A1 (en) * 2010-11-02 2012-05-10 株式会社 村田製作所 All-solid-state battery
US9011713B2 (en) * 2011-07-05 2015-04-21 Samsung Sdi Co., Ltd. Composite, method of manufacturing the composite, anode active material including the composite, anode including the anode active material, and lithium secondary battery including the anode
JP6426723B2 (en) * 2013-10-16 2018-11-21 ▲蘇▼州▲漢▼瀚▲儲▼能科技有限公司 Tungsten-based materials, super batteries and super capacitors
US9640332B2 (en) * 2013-12-20 2017-05-02 Intel Corporation Hybrid electrochemical capacitor
JP6562043B2 (en) * 2017-07-26 2019-08-21 トヨタ自動車株式会社 Water-based dual ion secondary battery

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60249247A (en) 1984-05-24 1985-12-09 Matsushita Electric Ind Co Ltd Battery
JP3079344B2 (en) 1993-08-17 2000-08-21 セイコーインスツルメンツ株式会社 Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3502118B2 (en) 1993-03-17 2004-03-02 松下電器産業株式会社 Method for producing lithium secondary battery and negative electrode thereof
US6205016B1 (en) * 1997-06-04 2001-03-20 Hyperion Catalysis International, Inc. Fibril composite electrode for electrochemical capacitors
EP1207572A1 (en) * 2000-11-15 2002-05-22 Dr. Sugnaux Consulting Mesoporous electrodes for electrochemical cells and their production method
WO2004034491A1 (en) 2002-10-11 2004-04-22 Fdk Corporation Nonaqueous electrolyte secondary battery and process for producing positive electrode for use in nonaqueous electrolyte secondary battery
TW563266B (en) 2002-10-18 2003-11-21 Ind Tech Res Inst Modified lithium cobalt oxide for lithium ion battery as cathode, preparation thereof, and lithium ion battery
CN1708874A (en) * 2002-10-29 2005-12-14 索尼株式会社 Rechargeable electrochemical cell
US7754382B2 (en) * 2003-07-30 2010-07-13 Tdk Corporation Electrochemical capacitor having at least one electrode including composite particles
JP4345920B2 (en) * 2003-09-30 2009-10-14 日立マクセル株式会社 Electrode for electrochemical device, method for producing the same, and electrochemical device using the electrode
JP2005191507A (en) 2003-12-03 2005-07-14 Matsushita Electric Ind Co Ltd Coin-shaped storage element
JP4501529B2 (en) 2004-05-18 2010-07-14 パナソニック株式会社 Coin type storage cell
EP1691384B1 (en) 2003-12-03 2013-02-27 Panasonic Corporation Coin-shaped storage cell
JP4194044B2 (en) 2003-12-05 2008-12-10 真幸 芳尾 Electric double layer capacitor using graphite for positive and negative electrodes
EP1728765A4 (en) * 2004-03-26 2011-03-30 Toho Titanium Co Ltd Anatase-type titanium oxide powder and method for producing same
JP4346565B2 (en) * 2004-03-30 2009-10-21 株式会社東芝 Nonaqueous electrolyte secondary battery
JP3769291B2 (en) * 2004-03-31 2006-04-19 株式会社東芝 Non-aqueous electrolyte battery
WO2006033069A2 (en) 2004-09-20 2006-03-30 High Power Lithium Sa Energy storage device
JP4273422B2 (en) * 2005-03-09 2009-06-03 ソニー株式会社 Positive electrode material and battery
JP4977959B2 (en) * 2005-03-30 2012-07-18 Tdk株式会社 Electrochemical devices
JP4861052B2 (en) * 2005-05-18 2012-01-25 本田技研工業株式会社 Electric double layer capacitor and electrolytic solution for electric double layer capacitor
JP4213688B2 (en) 2005-07-07 2009-01-21 株式会社東芝 Nonaqueous electrolyte battery and battery pack
JP4687978B2 (en) 2006-02-15 2011-05-25 横河電機株式会社 Packet analysis system
JP2007223722A (en) 2006-02-23 2007-09-06 Canon Inc Recording device
JP4035150B2 (en) * 2006-05-08 2008-01-16 真幸 芳尾 Pseudo capacitance capacitor

Also Published As

Publication number Publication date
WO2008047898A1 (en) 2008-04-24
JP2013102199A (en) 2013-05-23
US8724293B2 (en) 2014-05-13
EP2077598A4 (en) 2014-08-06
KR101475958B1 (en) 2014-12-23
TWI431833B (en) 2014-03-21
JP5422066B2 (en) 2014-02-19
CN101529643A (en) 2009-09-09
KR20090080946A (en) 2009-07-27
EP2077598A1 (en) 2009-07-08
US20100046143A1 (en) 2010-02-25

Similar Documents

Publication Publication Date Title
JP5399623B2 (en) Power storage device
El-Deen et al. Anatase TiO 2 nanoparticles for lithium-ion batteries
Lee et al. Engineering titanium dioxide nanostructures for enhanced lithium-ion storage
Luo et al. LiMn2O4 nanorods, nanothorn microspheres, and hollow nanospheres as enhanced cathode materials of lithium ion battery
Binotto et al. Synthesis, characterization, and Li-electrochemical performance of highly porous Co3O4 powders
JP5612857B2 (en) TITANATE COMPOUND, PROCESS FOR PRODUCING THE SAME, ELECTRODE ACTIVE MATERIAL CONTAINING THE TITANATE COMPOUND, ELECTRIC STORAGE DEVICE USING THE ELECTRODE ACTIVE MATERIAL
Xiao et al. Engineering hybrid between MnO and N-doped carbon to achieve exceptionally high capacity for lithium-ion battery anode
JP5400607B2 (en) Electrode active material and lithium battery using the same
CN104319383B (en) Lithium titanate, the method for producing lithium titanate and the electrode active material and electrical storage device for respectively containing lithium titanate
Liang et al. Facile preparation of porous Mn2SnO4/Sn/C composite cubes as high performance anode material for lithium-ion batteries
Sharma et al. Studies on nano-CaO· SnO2 and nano-CaSnO3 as anodes for Li-ion batteries
Usui et al. Electrochemical lithiation and sodiation of Nb-doped rutile TiO2
JP5422066B2 (en) Power storage device
JP5468416B2 (en) Lithium-air secondary battery and method for producing air electrode thereof
Bauer et al. Nano-sized Mo-and Nb-doped TiO2 as anode materials for high energy and high power hybrid Li-ion capacitors
JPH07254411A (en) Primary or secondary electrochemical generator with nanoparticle electrode
Lewis et al. Correlating titania nanostructured morphologies with performance as anode materials for lithium-ion batteries
Tanaka et al. Mesoporous spherical aggregates consisted of Nb-doped anatase TiO2 nanoparticles for Li and Na storage materials
Iqbal et al. Facile sonochemical synthesis of strontium phosphate based materials for potential application in supercapattery devices
Jang et al. Self-reassembled MnO2 nanosheets for electrochemical capacitors in neutral aqueous solution
Milne et al. Crystallite size dependence of lithium intercalation in nanocrystalline rutile
Kang et al. A Comparison of High Capacity xLi2MnO3⋅(1− x) LiMO2 (M= Ni, Co, Mn) Cathodes in Lithium-Ion Cells with Li4Ti5O12-and Carbon-Encapsulated Anatase TiO2 Anodes
Jabeen et al. Unique hierarchical architecture of SnO2 hexagonal interconnected nanolayered arrays as negative electrode for high performance asymmetric supercapacitors
Liu et al. Realizing stable electrochemical performance using MnNi2O4 micro/nano mesospheres prepared by self-template route
Liu et al. Excellent electrochemical stability of Co3O4 array with carbon hybridization derived from metal-organic framework

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees