TW200835923A - System and method for detecting non-cathode arcing in a plasma generation apparatus - Google Patents

System and method for detecting non-cathode arcing in a plasma generation apparatus Download PDF

Info

Publication number
TW200835923A
TW200835923A TW96134548A TW96134548A TW200835923A TW 200835923 A TW200835923 A TW 200835923A TW 96134548 A TW96134548 A TW 96134548A TW 96134548 A TW96134548 A TW 96134548A TW 200835923 A TW200835923 A TW 200835923A
Authority
TW
Taiwan
Prior art keywords
arcing
voltage
arc
cathode
signal
Prior art date
Application number
TW96134548A
Other languages
Chinese (zh)
Inventor
Alan F Krauss
Original Assignee
Schneider Automation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schneider Automation filed Critical Schneider Automation
Publication of TW200835923A publication Critical patent/TW200835923A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/0203Protection arrangements
    • H01J2237/0206Extinguishing, preventing or controlling unwanted discharges

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

A system and method for detecting the potential of non-cathode arcing in a plasma generation apparatus, such as a physical vapor deposition chamber. The system and method involve computing a statistical parameter of cathode-arcing event data in the chamber and performing a pattern recognition technique to a moving average of the statistical parameter.

Description

200835923 九、發明說明 【發明所屬之技術領域】 本發明係相關於偵測電漿產生設備中之非陰極發弧的 風險之系統與方法,尤其是,相關於對已感測到的陰極發 弧資料執行多變量統計分析以決定物理氣相沈積室中之非 陰極發弧的風險之系統與方法。 【先前技術】 諸如物理氣相沈積(PVD)等濺鍍沈積是用以將薄且高 度均勻的各種材料層沈積到許多物體上之處理,例如,沈 積一金屬層到基板上,諸如形成積體電路(1C)時所使用的 晶圓等。在直流電(DC)濺鍍處理中,欲沈積的材料(目標) 和將接受被沈積的材料(晶圓)之基板被置放在專用真空室 中。將真空室排空,接著以低壓塡滿諸如氬等鈍氣。 將晶圓電連接到高電壓電力供應的陽極(或其附近), 陽極通常在大地電位或接近大地電位。濺鍍室的牆壁亦處 於此電位。將典型上由金屬形成的目標置放於真空室並且 電連接到高電壓電力供應的陰極。目標亦可由絕緣材料形 成。以電力供應在目標(陰極)和陽極之間產生電場。當陽 極和陰極之間的電位到達200-400伏特時,在眾所皆知的 Pas chen(帕申)曲線之超導電區的鈍氣中建立輝光放電。 當在Paschen(帕申)曲線的超導電區中操作輝光放電 時,從氣體分裂出價電子且流向陽極(接地),而最後的正 電荷離子化氣體原子(即、電槳)被加速越過電場的電位且 -4- 200835923 以足夠的能量衝擊陰極(目標),藉以使目標材料的分子能 夠與目標實際分離’或”濺鍍”。被噴出原子實際上暢通無 阻地行進過低壓氣體和電漿,其中某一些降落在基板上且 在基板上形成目標材料的塗層。在理想條件下,結果是在 室中有一大群均勻的目標分子,留下均勻厚度的最後沈積 在室和其內容物(如、晶圓)上。此塗層通常是等向的,符 合室中的物體形狀。此作用的自然結果係目標材料隨著濺 0 鍍更多材料會變得更薄。 積體電路的處理有賴於由於輝光放電處理的塗層均勻 度而定。含放電和目標材料的真空室被小心地設計成試圖 維持統一的電場,及再次根據Paschen曲線,輝光放電原 則上可維持在電場力的一範圍上。然而,無法完全維持電 場的統一,並且一些因素會影響目標上的輝光放電之統一 和耗損,這些因素包括室中產生的熱電流和其他機械異 常’諸如目標校準失當等。爲了補償這些異常,商業用 • PVD濺鍍機器通常結合在'目標上以固定速度旋轉大磁鐵之 機構。此旋轉用於干擾室中的電磁場,將電漿撞打在目標 的區域集中於較小和移動區上。在以固定速率旋轉磁鐵的 同時維持室中的固定電力可提高目標的耗損之統一,增加 目標壽命,及通常將室中分子目標材料分佈維持的更均 勻。當磁鐵在目標上旋轉時,局部幾何、熱、及其他變化 使室的集總電阻抗產生變化。由於被組配成運送固定電力 到輝光放電的電力供應,室電壓和維持固定電力所需的電 流之間的關係根據阻抗變化而改變。若監視室電壓和電 -5- 200835923 流,則可觀察到清楚的室電壓和電流之週期變化,週期等 於磁鐵的旋轉週期。 甚至以旋轉磁鐵機構適當地試圖穩定輝光放電,特定 條件仍會導致電場的局部集中,使輝光放電能夠通過 Pas chen曲線的超導電區到發弧區。PVD期間的發弧導致 經由電漿中的電子或離子從陽極到目標之不想要的低阻抗 路徑,不想要的路徑通常包括接地,及由於諸多因素所導 致的發弧,諸如目標材料的污染(即、內含物)、目標的結 構(如、表面)內之內含物、不適當的目標校直(如、陰極 和陽極的校整不當)、真空漏洩、及/或來自諸如真空油脂 等其他來源的污染等因素。目標污染包括si〇2或ai2o3。 PVD期間的發弧是在半導體晶圓上形成積體電路時產 量降低缺陷的其中一原因。儘管一般金屬沈積典型上低於 1微米厚,但是發弧導致晶圓上的金屬局部較厚的沈積當 發弧出現時,室的電磁場之能量集中在比想要的小之目標 的區域(如、目標缺陷的附近),如此會移開目標的固體片 段。所移開的目標材料之固體片段比晶圓上預期的均勻塗 層厚度大,若大片段落在晶圓上,則可能導致欲在那位置 形成之積體電路的故障。隨後的照相平版印刷處理根據想 要的電路圖型蝕刻掉所沈積的金屬層之各種區域,留下金 屬導體路徑。因爲發弧導致具有比周遭金屬大的厚度之局 部缺陷(區域),所以在隨後處理中不可能完全飩刻缺陷 區,導致不想要的電路路徑(即、短路)在晶片上。半導體 晶片具有由絕緣體層所分開的多個金屬層,藉由如上述之 -6- 200835923 沈積、圖型化、及蝕刻金屬層形成各個金屬位準。一層中 的局部缺陷亦可能扭曲在隨後照相平版印刷步驟中成像到 晶圓上的覆蓋圖型,因此導致覆蓋層中的缺陷。 製造目前積體電路的晶圓包含上千個個別處理步驟, 隨著各個處理步驟的增加之晶圓的値和最後的各個個別積 體電路晶粒。被用於將晶圓處理成積體電路的PVD濺鍍 設備中之發弧可能使得晶圓的部分無法用於其想要的目 的’因此增加製造成本。使用沒有發弧產生的內含物之目 標材料是最小化積體電路製造缺陷的其中一方法,辦事目 標材料可能在其製造期間或之後遭到污染。在濺鍍操作之 前發現目標污染以防止發弧缺陷無論在時間和費用二者上 都所費不貲。而未以即時方法發現發弧缺陷就隨機產量損 失上也是同樣昂貴的,例如由製造商操作沈積室,直到產 生發弧的目標內含物被徹底濺鍍爲止。而且,當在發弧期 間移開目標的固體片段時,目標的表面會被進一步破壞, 及那附近的未來發弧可能性增加。 缺乏即時發弧偵測,改善行動係依據可得到的參數資 料。量測由於發弧所導致的缺陷層數量相當昂貴,例如透 過被設計成發現短路的電測試,或藉由在金屬沈積之後以 雷射掃描晶圓的表面。這些測試要花時間運作,延遲生 產,或由於時間延長而發生不想要的產量損失。因爲諸如 任何程度的短路等缺陷可能影響積體電路功能,所以想要 避免由於濺鍍沈積期間的發弧所導致之破壞。 因此,即時發弧偵測能夠較快識別生產損失的來源, 200835923 及偵測處理工具或目標本身內的最初故障,此 體電路製造應用更有效。 如上述,發弧可能將固體材料投進室內, 積體電路的晶圓上之固體材料的任何此種片段 少一積體電路的高度可能。因此,對積體電路 能破壞的一統計指示是處理步驟期間所發生的 假設因爲猛烈的發弧可能比相對”溫和”的發弧 固體材料到更廣的區域,所以由個別發弧對積 所導致的預期破壞是遞送到發弧的能量之單一 是合理的。因此,可以估算PVD濺鍍處理步 的發弧數目與即時的發弧之嚴重性二者之系統 PVD濺鍍步驟所導致的可能破壞上是有效的工 知道的是,當在輝光放電處理中發弧發生 總阻抗數値快速遞減。當此發生時,包含電力 機構之電力運送系統的驅動點阻抗中之串聯電 導致室之陽極和陰極間所觀察到的電壓數値快 察室電壓並且將它與固定臨界比較是偵測發弧 遍方法,可藉由將一般示波器裝附到陰極及將 的地線裝附到室來快速完成此。有了可藉由使 的示波器來觀察電壓而可用肉眼看得到之平均 的估算,可將示波器的觸發點設定在比預期電 (以此種方式所觀察到的電壓相對於示波器參 負的)。當示波器觸發時,由於發弧所導致的 形可被觀察到,並且亦可同時經由適當電流探 二者可使積 假設下降在 具有破壞至 的晶圓之可 發弧數目。 延展更多的 體電路晶圓 增加函數也 驟期間發生 在估算特別 具。 時,室的集 供應和互連 感的存在會 速下降。觀 的存在之普 示波器探針 用自由運轉 室處理電壓 壓大的電壓 考値而言是 最後電壓波 針來觀察到 -8- 200835923 電流。已硏發出模擬偵測發弧的此方法和計算在處理步驟 的進程中所如此獲得之發生數目的系統。此途徑的已知缺 點是隨著室電壓因爲如上述隨著磁鐵旋轉而週期性變化, 與由於熱和其他考量之PVD處理步驟之過程中的變化, 必須謹慎地設定固定觸發位準。因此,此種系統可能錯失 數値小但仍會導致破壞之發弧。能夠更加遵循真實、瞬間 預期到的室電壓之系統能夠使這些發弧更快速被偵測到, φ 提供更準確的破壞估算。 在用於生產積體電路的PVD處理中,一般觀察到持 續小於1微秒的發弧條件。這些短路持續期間發弧通常被 稱作微發弧。以電子控制的類比或交換電力供應無法在微 發弧期間對室阻抗中的此快速變化做出反應。由於串聯電 感的自然結果,在微發弧期間電力供應運送幾近固定的電 流到室。假設在發弧條件期間,由電力供應所運送的所有 能量集中在發弧上,則運送到個別發弧的能量可由電力供 φ 應電壓乘上(被假設固定)發弧的間距期間之電流的乘積之 整數來估算。此外,存在有能夠捕獲發弧條件期間之室電 壓和電流波形的數位示波器。存在有能夠使數位式儲存的 波形被上在到電腦之諸如Tektronix “Wavestar”等電腦軟 體,其中隨後能夠逐點加倍被捕獲的電壓和電流波形以計 算發弧持續期間所結合的瞬間電力和那電力波形,藉以決 定發弧所運送的整個能量。 儘管對增加PVD應用時的發弧環境之暸解有用,但 是使用示波器和後處理電腦來計算發弧和發弧能量的此方 -9- 200835923 法對生產應用上只有一點價値。即使現代手提式示波器也 是相當龐大的器具,及積體電路清潔室之不動產也是極爲 昂貴的。獨立性後處理電腦亦佔用昂貴的樓面空間,及可 能必須位在清潔室外而以網路連接到示波器,增加示波器 和電腦之間的資料移轉之潛在因素。而且,沒有將個別發 弧說個明白或發弧出現的頻率的方法,留下如何準確設定 示波器的控制之問題。示波器亦只具有有限的波形儲存能 力,因此當在處理期間有許多發弧活動時,示波器在最需 要它時傾向會遺失資訊。如此組配的系統將使實際控制和 決定變得不可能。 本發明的各種觀點提出上述缺點,亦提供對其他應用 也有用的發弧偵測方法和配置。 除了所討論的問題之外,當計算發弧只當作電壓臨界 違犯時,若電力供應以降低的運送電力來反應發弧,則可 能會遺失一些資訊或模糊不清。降低電力的結果試驗壓和 電流二者的下降。 儘管在物理氣相沈積室中決定陰極陽極或目標發弧的 嚴重性是主要考量,但是室中之非陰極發弧(NCA)的發生 亦是一大問題。當NCA發生時,監視有關陰極發弧的能 量典型上維持零。相信此種NCA係由於電絕緣室組件 (即、沈積環或覆蓋環)的充電,及電荷突然散逸到晶圓或 接近晶圓的室組件。此存在著如何指出此種NCA的發生 可能和發生之問題。 本發明係用於解決上述的問題和其他問題,並且用於 -10 - 200835923 提供習知此類型系統未提供的優點和觀點。參考附圖加以 進行之下面詳細說明闡釋本發明的特徵和優點之完整討 論。 【發明內容】 根據本發明的觀點,本發明旨在用以偵測電漿產生期 間的發弧之設備與方法,其提出上述挑戰和提供控制膜沈 φ 積處理之反饋方法。以一些實施和應用例示本發明,將其 中一些摘要如下。 根據本發明的一例示實施例,電漿產生設備包括被通 訊式耦合到電力供應電路之陰極偵測配置。電力供應電路 具有被圍在室中的陰極,且被設計成產生電力相關參數。 發弧偵測配置被設計成藉由比較電力相關參數與至少一臨 界來存取室中的發弧嚴重性。 根據本發明的其他觀點,發弧偵測配置被設計成估算 # 發弧強度、發弧持續期間及/或發弧能量。 根據本發明的另一例示實施例,使用可程式化邏輯控 制器(PLC)來實施發弧偵測配置。 根據本發明的另一例示實施例,PLC與發弧偵測配置 協同操作來計算自適應發弧臨界値以反應PVD室的阻抗 之一般變化,該即時自適應發弧臨界値由PLC以幾近即 時地通訊到發弧偵測設備。 根據本發明的另一例示實施例,反應於PVD室的阻 &amp; 0 -般變化的自適應發弧臨界値係由發弧偵測配置本身 -11 - 200835923 利用幾近即時地通訊到PLC之有關發弧活動的統計資料 和自適應發弧臨界函數來所計算的。 實際微發弧(例如、如示波器上所捕獲者)顯示出電壓 數値的快速減少(之後回復到正常値)和同時地電流數値的 快速增加(之後亦回復到正常値)。因此,觀看峰値的電流 位準,及觀看同步減少的電壓位準大幅增加”正確”發弧偵 測的成功率或信心程度。本發明提供用以偵測此種發弧事 φ 件和用以偵測與分類其他發弧事件的方法和設備之實施 例。 根據本發明的另一觀點,將電流轉換器的輸出饋入發 弧偵測單元的可程式化臨界比較器。在此實施例中,由發 弧偵測單元就電流駐足在臨界値上方多少次和就電流在臨 界値上方所消逝的時間來量測發弧事件。有關發弧的嚴重 性之其他資訊係可藉由放置一個以上的臨界値(各個都在 不同的位準)在標稱操作點上方並且爲不同的臨界位準比 φ 較發弧事件計數和消逝的時間來獲得的。 根據本發明的另一觀點,設備包括依據來自電力供應 介面的電壓和電流通道二者之組合資料來分類發弧事件的 邏輯。另外,設備爲出現在發弧事件的特別等級中之事件 計算掃描能量和發弧能量。 根據本發明的例示實施例,提供用以偵測和分類物理 汽相沈積處理中的發弧之方法。方法包含監視電漿產生設 備的電力供應電壓和電流。依據此監視,方法包括當電壓 下降到預定第一電壓臨界之下時偵測各個實例,電壓下降 -12- 200835923 到預定第一電壓臨界之下時定序各個實例的持續期間,電 流上達峰値到預定第一電流臨界之上時偵測各個實例,及 電流上達峰値到預定第一電流臨界之上時定序各個實例的 持續期間。可以時脈循環來量測電壓下降的持續期間和電 流上達峰値的持續期間。然後,方法包含分類電壓下降到 預定第一電壓臨界之下時的各個實例及電流上達尖峰到預 定第一電流臨界之上時的各個實例當作發弧事件。因此, 0 發弧事件可從所偵測到的電壓下降及/或電流峰値發生。 方法另外包括決定電力供應電壓是否爲穩定模式、上 升過渡模式、或下降過渡模式的其中之一。可計算發弧事 件或爲各個這些種類分開分析。例如,方法可包括維持當 電壓是在穩定模式時出現之發弧事件和對應的持續期間的 計數,維持當電壓是在上升過渡模式時出現之發弧事件和 對應的持續期間的計數,和電壓是在下降過渡模式時出現 之發弧事件和對應的持續期間的計數。 φ 可依據從監視電漿產生設備的電力供應電壓和電流所 獲得之資料將發弧事件分類成不同類別。根據一例子,在 諸如PLC或其他計算裝置或邏輯配置或電路系統之掃描 循環等定時間週期期間,方法包括將電壓下降和電流峰値 符合之發弧事件實例分配到第一類別。此外,方法另外包 括將沒有具有低於預定時間的累計持續期間之對應的符合 電流峰値之一或多個電壓下降的發弧事件實例分配到第二 類別’及將沒有具有大於預定時間的累計持續期間之對應 的符合電流峰値之一或多個電壓下降的發弧事件實例分配 -13- 200835923 到第三類別。有關感測到的電流發弧事件’方法同樣地包 括將沒有具有低於預定時間的累計持續期間之對應的符合 電壓下降之一或多個電流峰値的發弧事件實例分配到第四 類別,及將沒有具有大於預定時間的累計持續期間之對應 的符合電壓下降之一或多個電流峰値的發弧事件實例分配 到第五類別。就各種類別的每一個而言,方法可包括爲所 指定的發弧事件計算掃描能量。 偵測發弧事件通常導致電力供應下降(即、進入到下 降過渡模式)。爲了避免在此下降過渡模式的同時包括或 計算瞬變結果當作在穩定模式中,方法另外包括無法爲電 壓下降在預定的第一臨界之下的各個偵測之後的過渡保留 週期偵測預定的第一臨界之下的電壓下降,及無法爲電流 峰値在預定的第一臨界之上的各個偵測之後的過渡保留週 期偵測預定的第一臨界之上的電流峰値。若爲過渡模式進 行進一步分析則仍可保留資訊。 方法又考慮到對出現在穩定模式中的濺鍍沈積處理期 間之供應電壓的緩慢變化(即、相對於發弧事件)。就此點 而言,方法另外包括調整掃描循環期間之預定的第一電壓 臨界以追蹤供應電壓中的緩慢變化。 根據一例子,可建立方法以提供有關發弧嚴重性的額 外資訊。就此點而言,方法可包括偵測電壓下降到預定的 第二電壓臨界之下的各個發弧事件實例,及偵測電流峰値 到達預定的第二電流臨界之上的各個發弧事件實例。同樣 地也可利用其他臨界値提供甚至更加精確的資訊。 -14- 200835923 根據本發明的另一例子,決定電漿產生設備中的發弧 事件之方法包含監視電力供應電流、獲得指示被監視電流 的電流信號、及決定電流信號是否在指示發弧事件的預定 電流臨界値之外的步驟。同樣地,方法可另外包含監視電 力供應的電壓、獲得指示被監視電壓的電壓信號、及決定 電壓信號是否在指示發弧事件的預定電壓臨界値之外。另 外’方法可包括定序當電流在預定電流臨界値之外和當電 Φ 壓在預定電壓臨界値之外時所出現的各個發弧事件之持續 期間。再者,可分類各個發弧事件,及可計算掃描能量和 發弧能量。 根據本發明的另一例子,用以偵測電漿產生設備中的 發弧之方法包含提供電力供應到電漿產生設備以在目標和 晶圓之間建立離子化氣體、提供用以偵測供應電壓和供應 電流之介面、在設定的頻率中比較電壓與電壓臨界値、及 在設定的頻率中比較電流與電流臨界値。此外,方法包含 Φ 決定從比較電壓與電壓臨界値和從比較電流與電流臨界値 是否發生發弧事件。 方法另外包括將比較電壓與電壓臨界値和電流與電流 臨界値延遲達發弧事件的各個偵測之後的過渡延遲週期之 久。 另外,方法可包括觀看其他參數(除了電壓或電流臨 界交叉點之外)以提供任何發弧的進一步資訊。此可包括 有關發弧事件嚴重性的進一步資訊。根據一例子,方法可 另外包括產生電力相關參數、比較電力相關參數與至少一 -15- 200835923 臨界以決定電漿產生設備中的發弧嚴重 比較電力相關參數與至少一臨界的發弧; 根據本發明的另一觀點,設置一用 中的發弧事件之設備。設備包含電力供 配成偵測施加到電漿產生室的電力供應 弧偵測單元,被通訊式耦合到電力供應 測單元包括臨界比較器電路,此臨界比 比較電壓與第一電壓臨界値以決定發弧 較電流與第一電流臨界値以決定發弧事 偵測單元包括具有類比對數位轉換器; (DSP)較佳。 此外,設備的發弧偵測單元包括或 系統,此邏輯電路系統被配置成依據臨 出來決定發弧事件。邏輯電路系統可以 制器(PLC)或其他類似的計算裝置。斤 中,DSP可包括執行本文所揭示之一些 輯。 臨界比較器電路可被程式化以讓使 電壓臨界値和最初電流臨界値較佳。此 使用分開的組件。臨界比較器電路是類 位準產生於DSP,及以DSP中的類比 弧信號轉換成數位。DSP包含參數是由 電路系統或配置所控制的軟體之韌體。 設備的邏輯電路系統被用於一些功 性、及量測反應於 時續期間之步驟。 以偵測電漿產生室 應介面模組,被組 電壓和電流;及發 介面模組,發弧偵 較器電路被配置成 事件是否發生和比 件是否發生。發弧 匕數位信號處理器 被耦合至邏輯電路 界比較器電路的輸 是可程式化邏輯控 ί且,在一些實例 或全部的功能之邏 用者能夠設定最初 外,電壓和電流可 比電路較佳。臨界 對數位轉換器將發 丨PLC或其他邏輯 能。例如,邏輯電 -16- 200835923 路系統被配置成決定電壓是否爲穩定模式、上升過渡模 式、及下降過渡模式的其中之一。此外,邏輯電路系統被 配置成維持當電壓是在穩定模式中時所發生之發弧事件的 計數、維持當電壓是在上升過渡模式中時所發生之發弧事 件的計數、及維持當電壓是在下降過渡模式中時所發生之 發弧事件的計數。邏輯電路系統亦被配置成依據下降到第 一電壓臨界値之下的電壓來決定發弧事件的持續期間,依 Φ 據峰値上達第一電流臨界値之上的電流來決定發弧事件的 持續期間。持續期間典型上以可被轉換成時間單位之依據 頻率的時脈循環來量測。 邏輯電路系統另外被配置成依據臨界比較器電路的輸 出和各個發弧事件的持續期間來分類發弧事件。分類係爲 了預定時間循環,諸如PLC掃描循環等。邏輯電路系統 可被組配成例如將電壓下降和電流峰値相符之發弧事件實 例分配到第一類別,將沒有具有低於第一預定時間週期之 φ 對應的符合電流峰値之一或多個電壓下降的發弧事件實例 分配到第二類別,將沒有具有大於第一預定時間週期之對 應的符合電流峰値之一或多個電壓下降的發弧事件實例分 配到第三類別,將沒有具有低於第二預定時間週期的累計 持續期間之對應的符合電壓下降之一或多個電流峰値的發 弧事件實例分配到第四類別,及將沒有具有大於第二預定 時間週期的累計持續期間之對應的符合電壓下降之一或多 個電流峰値的發弧事件實例分配到第五類別。 邏輯電路系統亦可計算發弧的各種參數。此可包括掃 17- 200835923 描能量和發弧能量。 根據本發明的另一觀點,用以偵測電漿產生設備中的 發弧之設備包含被通訊式耦合至電力供應的電流之發弧偵 測單元。發弧偵測單元包括臨界比較器電路,其被組配成 比較電流與第一電流臨界値;及邏輯電路系統,被配置成 依據臨界比較器電路中之電流與電流臨界値的比較來偵測 發弧事件。 Φ 發弧偵測單元亦可被通訊式耦合至電力供應的電壓。 在此實例中,臨界比較器電路被另外組配成比較電壓與第 一電壓臨界値,而邏輯電路系統被另外配置成依據臨界比 較器電路中之電壓與電壓臨界値的比較來偵測發弧事件。 發弧偵測單元另外包含時序電路,其被配置成依據電 流與電流臨界値的比較來計算被偵測的發弧事件之持續期 間。時序電路亦被配置成依據電壓與電壓臨界値的比較來 計算被偵測的發弧事件之持續期間。 φ 臨界比較器電路可被組配成比較電流與不同於第一電 流臨界値的第二電流臨界値(或複數其他的臨界位準)。臨 界比較器電路同樣可被組配成比較電壓與一或多個其他的 臨界値。可爲各個臨界直計算電流或電壓在特定臨界値之 外的持續期間。 根據本發明的另一觀點,用以偵測電漿產生設備中的 發弧事件之設備包含電力供應介面模組,其被通訊式耦合 至電漿產生設備用之電力供應的電壓和電流;發弧偵測單 元’具有用以接收指.示電壓的信號之第一通道,及用以接 -18- 200835923 收指示電流的信號之第二通道;及臨界比較器電路,位在 發弧偵測單元中,被配置成比較電壓信號與電壓臨界値和 比較電流信號與電流臨界値。 設備可另外包含邏輯電路系統,用以依據臨界比較器 電路的輸出來決定發弧事件是否發生。邏輯電路系統亦可 被配置成計算供應到電漿產生設備之電力的相關參數。邏 輯電路系統亦可比較電力相關參數與至少一臨界以決定電 Φ 漿產生設備中的發弧嚴重性。 本發明增加即時決定何時發生發弧以採取改善行動之 能力。此可提局晶圓產量和降低缺陷。 在某些實例中,主要觀看電壓和電流之設備將計算發 弧和最後的電壓下降(即、發源自反應到發弧的降低電力 供應)二者,如此將產生不準確的計數。本發明另外提供 更準確計算和分類發弧之方法和設備。也就是說,藉由計 算發弧當作電流臨界違犯,甚至在電力降低事件存在時, φ 將以發弧計數和時間統計更準確呈現發弧。 根據實施例的另一觀點,揭示用以偵測物理氣相沈積 室中之非陰極發弧的風險之方法。室被用於沈積金屬在諸 如矽晶圓或玻璃面板等基板上。方法包含以下步驟:監視 到物理氣相沈積室之供應電壓和供應電流;爲物理氣相沈 積室中所處理之各個複數基板產生一組陰極發弧事件資 料;及依據用於各基板的該組陰極發弧事件資料來計算用 於各個複數基板之參數。方法另外包含依據參數來決定非 陰極發弧的可能風險。 19 - 200835923 在決定非陰極發弧的可能風險之後,方法可包括具有 非陰極發弧的風險或沒有非陰極發弧的風險之指示。此可 例如藉由發送訊息到電腦顯示器,或藉由打開適當光線 (如、LED)來實施。 爲物理氣相沈積室中所處理之各個複數基板產生一組 陰極發弧事件資料步驟包含獲得用於複數陰極發弧可變類 型之値。這些可包括例如”發弧計數穩定”、”發弧計數上 φ 升(或下降)過渡”、及各個的時間等。然後,產生步驟可 包括爲用於各個複數基板的各組陰極發弧事件資料之各個 可變類型計算可變類型平均數,及爲用於各個複數基板的 各組陰極發弧事件資料之各個可變類型計算可變類型標準 偏差數。可變類型平均數及可變類型標準偏差數可被用於 爲用於各個複數基板的各組陰極發弧事件資料產生一組正 常化資料。依據組陰極發弧事件資料來計算用於各個複數 基板的參數步驟包含依據一組正常化資料來計算用於各個 φ 基板的參數。而且,此可另外包含加權此組正常化資料的 可變類型。 方法可另外包含計算參數的移動平均之步驟。在此實 例中,依據參數步驟決定非陰極發弧之可能風險的步驟包 含在參數的移動平均上執行圖型識別技術。此另外可包括 在移動平均的基線値中監視用於增加的移動平均。 根據本發明的另一實施例,提供用以決定物理沈積室 中之非陰極發弧的可能風險之方法。方法包含以下步驟: 將陰極發弧偵測單元耦合到物理氣相沈積室;爲室中所處 -20 - 200835923 理之各個複數基板產生一組陰極發弧事件資料;及依據產 生的陰極發弧事件資料來決定室中之非陰極發弧的可能風 險。 爲室中所處理之各個複數基板產生一組陰極發弧事件 資料步驟可包含利用用於陰極發弧事件資料的陰極發弧偵 測單元監視主要(即、主要)供應電壓和主要供應電流,及 次要(即、從屬)供應電壓和次要供應電流。 Φ 方法可另外包含依據決定步驟,提供具有非陰極發弧 之風險和沒有非陰極發弧之風險的其中之一的指示。此 外,方法可另外包含以下步驟:從產生的陰極發弧事件資 料產生統計參數;計算統計參數的移動平均;及在移動平 均上執行圖型識別技術。 根據本發明的另一實施例,提供有一偵測非陰極發弧 的風險之系統,此非陰極發弧係在用以處理基板的物理氣 相沈積室中。系統包含一陰極發弧偵測單元,被通訊式耦 φ 合’藉以監視物理氣相沈積室的主要供應電壓;一處理 器’被耦合至陰極發弧偵測單元(作爲單元的一部分或與 單元通訊),其被組配成產生用於室中所處理的各個晶圓 之陰極發弧資料。處理器被另外組配成依據所產生的陰極 發弧資料來決定室中之非陰極發弧的風險。陰極發弧偵測 單元被另外通訊式耦合以監視物理氣相沈積室的主要供應 電流、次要供應電壓及次要供應電流。 系統可另外包含一第一感測器,用以監視主要供應電 壓;一第二感測器,用以監視主要供應電流;一第三感測 -21 - 200835923 器,用以監視次要供應電壓;及一第四感測器,用以監視 次要供應電流。處理器被組配成從自各個各別的感測器所 接收到之信號產生用於一組複數可變類型的各個感測値。 處理器亦可被組配成計算用於各個可變類型之平均値,用 於各個可變類型的標準偏差値,及利用平均値和標準偏差 値的一組正常化資料。 處理器亦可被組配成從用於各個基板的一組正常化資 Φ 料計算參數,及計算參數的移動平均。系統亦可包括處理 器所控制的可見指示器。關於此點,處理器提供非陰極發 弧的可能風險之指示給可見指示器。 從連同下面圖式的下面說明將可更加明白本發明的其 他特徵和優點。 【實施方式】 雖然本發明可有許多不同形式的實施例,但是圖式中 圖示有並且此處將詳細說明本發明的較佳實施例,應瞭解 本揭示應被視作本發明的原則之例示而非將本發明的廣義 侷限於所圖解說明的實施例。 本發明相信可被應用到不同電槳產生設備類型,並且 發現特別適用於膜沈積應用,後者從反應於電漿環境的產 生期間所偵測到的發弧之技術得到益處。本文所說明的例 示實施例包含PVD濺鍍技術;但是,本發明可連同各種 系統一起實施,包括那些使用諸如電漿飩刻或電漿增強化 學氣相沈積系統(PECVD)等電漿產生技術者。 -22- 200835923 儘管從來無法完全避免發弧事件,但是獲得有關濺鍍 處理期間所發生之發弧嚴重性的某些詳細資料提供有用的 資訊以決定補償處理。例如,經由小數値的單一發弧之即 時偵測,可懷疑在受到影響的積體電路晶粒上由於發弧而 產生最小缺陷的存在。相反地,從大量發弧的即時偵測, 或高嚴重性的發弧,可懷疑許多缺陷的存在,或許甚至達 成整個處理步驟有缺陷之結論。根據本發明的即時發弧偵 Φ 測即時或幾乎即時允許製造決定能夠發生。例如,由於偵 測到發弧嚴重性或明顯數量的發弧而將處理步驟視作有缺 陷,可在進一步破壞發生之前終止PVD處理步驟。在 PVD處理步驟的結束時,在開始進一步處理步驟之前,可 根據補救或丟棄晶圓之決定來決定終止或正常完成。若經 由明顯發弧的即時偵測發現最初處理步驟有缺陷,則製造 晶圓的本階段之處理成本是低的,丟棄晶圓是具有成本效 益的。若在後面處理步驟期間發生發弧,則化學飩刻或物 φ 理拋光晶圓以去除缺陷的沈積層和重新處理晶圓是具有成 本效益的。此外,根據觀察沒有或最小先前發弧活動的個 別PVD系統之晶圓對晶圓來偵測發弧活動可以是起初設 備錯誤條件的發展之指示,可在有規劃的設備不活動期間 藉由規劃適當的設備維修來校正。重點是及時識別由於發 弧所增加的缺陷可能性。 就特別PVD系統而言,驅動處理的電力供應試圖調 整輸送到室的電力。包括陽極、陰極、及陽極和陰極之間 的室環境之室元件的阻抗與電漿產生電力供應電路的阻抗 -23- 200835923 串聯。在電漿中維持固定電力之電壓和電流間的關係係視 室元件的阻抗而定,包括經過由於濺鍍處理的變化之特定 目標材料本身的傳導性。 當發弧在濺鍍室中發展時,室的阻抗數値快速下降, 因此改變電漿產生電力供應電路的阻抗。電力供應和分佈 電路包含明顯的串聯電感,限制電流在電路中可變化之比 率。因此,由於此感應組件,室阻抗的快速下降導致室電 Φ 壓的阻抗快速減少。在可能產生對室、電力供應、或目標 的嚴重破壞之前,室電壓數値的此崩塌通常足以使發弧條 件消失並且重新建立輝光放電。典型上,發弧事件比能夠 反應調節電力供應的電子更快發生(或消失),因此,即使 由電子開始改善行動,仍可能對晶圓有一些破壞。如上 述,由於各個發弧事件,會增加被塗佈的項目將遭受諸如 晶圓上的不均勻塗佈等一些缺陷形式之可能性。因爲室電 壓在發弧事件發生時快速下降,所以可使用預定或自適應 φ 電壓臨界之下的不預期電壓下降來定義發弧條件的發生。 根據一例示實施,描述發弧事件的存在之電壓臨界係 依據改變室電壓之標稱上所應用(即、非發弧)、或者時 間。應用至生產輝光放電之非發弧室電壓係依據許多因 素,包括目標的條件和組成(影響電路阻抗)。所有其他電 路阻抗維持固定,使用相對較低傳導的目標材料來產生輝 光放電需要較高的室電壓,而相反地,使用相對較高傳導 的目標材料來產生輝光放電需要較低的室電壓。例如,在 一濺鍍室實施中,均勻沈積鋁所需的室電壓幾乎是沈積銅 -24- 200835923 所需的室電壓兩倍。均勻沈積銘所需的室電壓亦可能從室 到室而變化,係依據包括電力供應和其他室元件的電路阻 抗之平衡而定。而且,當目標老化及濺鍍更多材料時,維 持均勻沈積率所需的電力必須被修改(β卩、增加)。當所需 的應用電壓變化時,接著亦應改變決定發弧條件之相關臨 界電壓。 根據本發明的一般例示實施例,電漿產生設備包括被 φ 通訊式耦合至電力供應電路之發弧偵測配置。電力供應電 路具有被圍在室中的陰極,及電力供應電路被設計成產生 電力相關參數(如、電壓信號)。發弧偵測配置被設計成藉 由比較電力相關參數與至少一臨界來評估室中的發弧嚴重 性。決定發弧嚴重性的參數是處理上相依的,包括發弧 量、發弧率、發弧強度、發弧持續期間、及/或發弧能 量,但並不侷限於此。 根據一實施,每當室電壓數値下降至預設發弧電壓臨 φ 界値以下時,用於濺鍍處理之發弧偵測配置監視濺鍍室電 壓和偵測發弧條件。 根據一觀點,電力相關參數(如、電壓)臨界値在電力 相關參數値範圍上是多變的。任何臨界可被程式化,及可 由邏輯配置來控制,例如,由遠端邏輯配置電子式控制。 在一例示實施例中,計算有關發弧發生的電壓臨界値以反 應標稱室電壓數値的估算,標稱室電壓數値是非發弧條件 期間產生輝光放電(即、產生電漿)所需之室電壓。在一例 示實施例中,任何臨界可以是遲滯的,或可被程式化成是 -25- 200835923 具有不同於”超過”値的”重設”値之遲滯。 根據本發明的一觀點,發弧偵測配置被另 少一臨界來計算發弧條件(事件)。可自此決定 發弧條件發生率。 根據另一觀點,發弧偵測配置被另外設計 力相關參數與至少一臨界來量測發弧持續期間 一實施中,發弧偵測配置包括時鐘和數位計算 Φ 提供具有固定週期的時脈信號,及數位計算配 以比較電力相關參數與至少一臨界來計算時脈 根據本發明的另一觀點,藉由比較電力相關參 臨界來估算發弧條件的持續期間。根據一例示 條件的持續期間在固定週期期間是累計的。根 實施,發弧條件的持續期間被累計直到到達持 爲止,或直到累計持續期間被重設爲止。 根據另一觀點,發弧偵測配置被另外設計 φ 力相關參數與至少一臨界來量測發弧強度。在 中,發弧偵測配置被設計成比較電力相關參數 排列的複數臨界,藉以確定發弧事件期間電力 變化(從標稱開始)之範圍或程度。在一例示實 應於最大所觀察到的電壓數値下降之臨界提供 量估計,而下一較大的電壓下降臨界(系統被 在)提供上邊界給能量估計。 根據本發明的另一例示實施例,發弧偵測 成以比較電力相關參數與至少一臨界來量測發 外設計成至 所偵測到的 成以比較電 。例如,在 配置。時鐘 置被設計成 信號週期。 數與至少一 實施,發弧 據另一*例不 續期間臨界 成以比較電 一例示實施 與以不同値 相關參數的 施例中,對 下邊界給能 觀察到不存 配置被設計 弧持續期間 -26- 200835923 和強度。在一實施中,發弧偵測配置被另外設計成以比較 電力相關參數與至少一臨界來量測發弧能量,發弧能量與 發弧持續期間和發弧強度的乘積成比例,及發弧嚴重性的 估算是發弧能量的函數(即、發弧強度和發弧持續期間的 乘積)。根據一特別實施,複數臨界被用於決定複數持續 期間,以估計由於發弧而使電壓下降期間之(即、近似或 積分)電力相關參數(即、室電壓)所界定的區域對上時間 φ 標繪。各個發弧事件之與所界定的區域成比例之發弧能量 被用於估算發弧嚴重性。根據另一實施,發弧偵測配置被 另外設計成透過複數發弧事件來累計發弧能量,例如,藉 由加總發弧強度和發弧持續期間的乘積以估算發弧嚴重 性。 根據另一例示實施,發弧偵測配置包括電力相關參數 頻帶限制濾波器當作防止數位化電力相關參數之前的混 疊。一般瞭解的數位信號處理技術被應用到此數位化電力 • 相關參數以降低或突出電力相關參數的某些頻率反應特 性。然後,可將此數位式信號處理參數與至少一臨界的同 樣數位化版本直接比較。 根據另一例示實施,上述的數位式信號處理參數被用 於,以PVD處理的過程中之一或多個電力相關參數之某 些觀察到的特性來計算改變臨界値的至少一時間。 根據本發明的另一例示實施例,在估算上述發弧嚴重 性時,比較複數電力相關參數與複數臨界。例如,除了室 電壓之外,電力供應電流被監視並且被用於偵測發弧事 -27- 200835923 件,每當電流數値超過預設電流臨界値時決定發弧事件。 根據本發明的另一例示實施例,邏輯配置被通訊式耦 合至發弧偵測配置,並且被設計成處理發弧偵測配置所收 集的發弧資料。在一實施中,邏輯配置被設計成與發弧偵 測配置接合,邏輯配置具有資料網路和其他外部裝置,諸 如處理控制器、監視器、及邏輯配置等。在一特別應用 中,邏輯配置是可程式化邏輯控制器(PLC)。 根據本發明的另一例示實施例,藉由定序藉由比較電 力相關參數與至少一發弧強度臨界所衍生的發弧持續期 間、及將此發弧持續期間增加到累計的發弧持續期間來估 算電漿產生室中之發弧嚴重性。方法的另一例示實施包括 量測非發弧電漿產生期間之電力相關參數和以量測電力相 關參數來自動調整發弧強度臨界;計算發弧發生;及/或 估算發弧嚴重性當作發弧強度、發弧持續期間的函數、及 /或其乘積。 根據本發明的另一例示實施例,藉由決定藉由比較電 力相關參數與至少一發弧強度臨界所衍生之發弧強度、以 比較電力相關參數與至少一發弧強度臨界來定序發弧持續 期間、計算發弧能量當作發弧強度和發弧持續期間的函 數、然後將發弧能量增加到累計的發弧能量來估算電漿產 生室中之發弧嚴重性。方法的另一例示實施包括量測非發 弧電漿產生期間的電力相關參數及以量測電力相關參數來 自動調整至少一發弧強度臨界;以比較電力相關參數與至 少一發弧強度臨界來計算發弧發生;及/或利用遲滯發弧 -28- 200835923 強度臨界;及/或透過共享資料路徑以命令傳送表示發弧 的資訊到邏輯配置,資訊是選自包括發弧發生的量、累計 的發弧持續期間的其中之一。在一特定實施中,電力相關 參數是電漿產生室電壓的函數;在另一實施中,電力相關 參數被形成當作電漿產生室的操作特性之數位表示。 在描述下面本發明的特定例示實施時,將參考圖式的 圖1-27,其中相同號碼表示本發明的類似特徵。 φ 圖1圖解本發明的發弧偵測配置1 〇〇之例示實施例。 發弧偵測配置100被例如用在積體電路製造的壓力氣相沈 積(PVD)處理步驟中或想要均勻材料沈積之其他處理。 PVD濺鍍系統包括低壓之含有諸如氬等氣體15沈積(真空) 室10。由金屬所形成的目標20被置放在真空室10中, 並且透過獨立電力供應介面模組(PSIM)40被當作陰極電 耦合至電力供應30。根據一例示實施,使用同軸互連電 纜35來耦合電力供應30和室10。基板(晶圓)25經由通 Φ 地連接被當作陽極耦合至電力供應30。典型上,真空室 亦被稱合至大地電位。根據另一例示實施,陽極被直接親 合至電力供應3 0。包括操縱電漿的旋轉磁鐵27以維持均 勻的目標磨損。PSIM 40包括緩衝電壓衰減器44,其被設 計成感測室電壓,和透過電壓信號路徑42提供類比信號 到發弧偵測單元(ADU)50以反應於室電壓。PSIM亦包括 霍爾效應爲主的電流感測器46,其被設計成感測流到室 之電流,並且透過電流信號路徑48提供類比信號到ADU 以反應室電流。在另一例示實施中,目標係由絕緣材料所 -29- 200835923 形成。透過局部資料介面70將ADU 50通訊式耦合至邏 輯配置60,例如,可程式化邏輯控制器(pLC)或通訊頂 帽。可將邏輯配置6 〇耦合至資料網路8 〇,例如,諸如乙 太網路上的EG Modbus-Plus TCP-ΙΡ等高階處理控制網 路。 藉由電力供應使真空室中的氣體產生離子化而在目標 (陰極)和陽極之間產生電場。離子化的氣體原子(即、電 $ 漿)被加速橫跨電場的電位並且以高速衝擊目標,使目標 材料的分子能夠與目標實際上分離,或,,濺鍍,,。被噴出的 分子實際上暢通無阻地行進過低壓氣體和電漿,其中某一 些降落在基板上且在基板上形成目標材料的塗層。用以濺 鍍鋁的典型目標電壓是大約直流電450伏特(VDC)之穩態 數値。200835923 IX. INSTRUCTIONS OF THE INVENTION [Technical Fields of the Invention] The present invention relates to systems and methods for detecting the risk of non-cathode arcing in a plasma generating apparatus, and more particularly to correlating the sensed cathode arcing The data performs a multivariate statistical analysis to determine the system and method for the risk of non-cathode arcing in the physical vapor deposition chamber. [Prior Art] Sputter deposition such as physical vapor deposition (PVD) is a process for depositing a thin and highly uniform layer of various materials onto a plurality of objects, for example, depositing a metal layer onto a substrate, such as forming an integrated body. A wafer or the like used in the circuit (1C). In direct current (DC) sputtering, the material to be deposited (target) and the substrate that will receive the deposited material (wafer) are placed in a dedicated vacuum chamber. The vacuum chamber is evacuated and then purged with a low pressure such as argon at a low pressure. The wafer is electrically connected to the anode (or its vicinity) of the high voltage power supply, which is typically at or near ground potential. The wall of the sputtering chamber is also at this potential. A target, typically formed of metal, is placed in a vacuum chamber and electrically connected to a cathode of a high voltage power supply. The target can also be formed from an insulating material. An electric field is generated between the target (cathode) and the anode with a power supply. When the potential between the anode and the cathode reaches 200-400 volts, a glow discharge is established in the blunt gas of the superconducting region of the well-known Paschen curve. When the glow discharge is operated in the superconducting region of the Paschen curve, the bidding electrons are split from the gas and flow to the anode (ground), and the last positively charged ionized gas atoms (ie, the electric paddle) are accelerated across the electric field. Potential and -4- 200835923 impact the cathode (target) with sufficient energy to allow the molecules of the target material to be physically separated from the target 'or 'sputtered'. The ejected atoms actually travel unimpededly through the low pressure gas and plasma, some of which land on the substrate and form a coating of the target material on the substrate. Under ideal conditions, the result is a large group of uniform target molecules in the chamber, leaving a final thickness of uniform deposition on the chamber and its contents (eg, wafer). This coating is generally isotropic and conforms to the shape of the object in the chamber. The natural result of this action is that the target material becomes thinner as more material is sputtered with 0. The processing of the integrated circuit depends on the uniformity of the coating due to the glow discharge treatment. The vacuum chamber containing the discharge and target material is carefully designed to attempt to maintain a uniform electric field, and again according to the Paschen curve, the glow discharge can be maintained over a range of electric field forces. However, the uniformity of the electric field cannot be fully maintained, and some factors affect the uniformity and wear and tear of the glow discharge on the target, including the thermal current generated in the room and other mechanical anomalies such as misalignment of the target. To compensate for these anomalies, commercial PVD sputtering machines are often combined with a mechanism that rotates large magnets at a fixed speed on the 'target. This rotation is used to disturb the electromagnetic field in the chamber, and the area where the plasma is hit in the target is concentrated on the smaller and moving areas. Maintaining the fixed power in the chamber while rotating the magnet at a fixed rate increases the uniformity of target wear, increases target life, and generally maintains a more uniform distribution of molecular target materials in the chamber. Local geometry, heat, and other changes cause changes in the lumped electrical impedance of the chamber as the magnet rotates over the target. The relationship between the chamber voltage and the current required to maintain the fixed power changes depending on the impedance change due to the power supply that is assembled to carry the fixed power to the glow discharge. If the monitoring room voltage and the current -5-200835923 flow, a clear periodic change of the chamber voltage and current can be observed, and the period is equal to the rotation period of the magnet. Even with a rotating magnet mechanism properly attempting to stabilize the glow discharge, certain conditions still result in local concentration of the electric field, enabling the glow discharge to pass through the superconducting region of the Paschen curve to the arcing region. Arcing during PVD results in unwanted low impedance paths from the anode to the target via electrons or ions in the plasma. Unwanted paths typically include grounding, and arcing due to a number of factors, such as contamination of the target material ( That is, inclusions, inclusions in the structure of the target (eg, surface), improper target alignment (eg, improper alignment of the cathode and anode), vacuum leaks, and/or from such as vacuum grease Other sources of pollution and other factors. Target contamination includes si〇2 or ai2o3. Arcing during PVD is one of the reasons for reduced yield defects when forming integrated circuits on semiconductor wafers. Although general metal deposition is typically less than 1 micron thick, arcing results in locally thicker deposits of metal on the wafer. When arcing occurs, the energy of the chamber's electromagnetic field concentrates in areas that are smaller than the desired target (eg, , near the target defect, this will remove the solid fragment of the target. The solid segment of the removed target material is larger than the expected uniform coating thickness on the wafer, and if a large segment falls on the wafer, it may cause failure of the integrated circuit to be formed at that location. Subsequent photolithography processes etch away various areas of the deposited metal layer depending on the desired circuit pattern, leaving a metal conductor path. Since arcing results in local defects (regions) having a thickness greater than that of the surrounding metal, it is not possible to completely etch the defective regions in subsequent processing, resulting in unwanted circuit paths (i.e., short circuits) on the wafer. The semiconductor wafer has a plurality of metal layers separated by an insulator layer, and respective metal levels are formed by depositing, patterning, and etching metal layers as described above in -6-200835923. Local defects in one layer can also distort the overlay pattern imaged onto the wafer during subsequent photolithography steps, thus resulting in defects in the overlay. Wafers that make current integrated circuits contain thousands of individual processing steps, with the increasing number of individual wafers and the final individual integrated circuit dies. Arcing in PVD sputtering equipment used to process wafers into integrated circuits may render portions of the wafer unusable for its intended purpose&apos; thus increasing manufacturing costs. The use of target materials that do not produce arcing inclusions is one of the ways to minimize manufacturing circuit defects, and the target material may be contaminated during or after its manufacture. Target contamination is detected prior to the sputtering operation to prevent arcing defects, both in terms of time and expense. It is also expensive to find the arcing defect in an instant manner, which is equally expensive, for example, by the manufacturer operating the deposition chamber until the target content that produces the arc is completely sputtered. Moreover, when the solid segment of the target is removed during the arcing, the surface of the target is further destroyed, and the possibility of future arcing in the vicinity increases. Lack of instant arc detection and improved action based on available parameter data. Measuring the number of defective layers due to arcing is relatively expensive, such as by an electrical test designed to find a short circuit, or by scanning the surface of the wafer with a laser after metal deposition. These tests take time to operate, delay production, or cause unwanted yield losses due to prolonged time. Since defects such as any degree of short circuit may affect the function of the integrated circuit, it is desirable to avoid damage caused by arcing during sputtering deposition. Therefore, real-time arc detection can identify the source of production loss faster, and the circuit manufacturing application is more effective in 200835923 and in detecting the initial failure of the processing tool or the target itself. As noted above, arcing may deposit solid material into the chamber, and any such segment of the solid material on the wafer of the integrated circuit may be less than the height of the integrated circuit. Therefore, a statistical indication of the damage to the integrated circuit is the assumption that occurs during the processing step because the violent arcing may be to a wider area than the relatively "mild" arcing solid material, so The expected damage caused is that the single energy delivered to the arc is reasonable. Therefore, it can be estimated that the number of arcs in the PVD sputtering process step and the severity of the instantaneous arcing are both effective in the possible damage caused by the system PVD sputtering step, and it is known that when the glow discharge process is performed The total number of impedances in the arc is rapidly decreasing. When this occurs, the series electricity in the drive point impedance of the power delivery system containing the power mechanism causes the voltage observed between the anode and cathode of the chamber to 値 the chamber voltage and compares it to the fixed threshold to detect arcing. The pass method can be done quickly by attaching a general oscilloscope to the cathode and attaching the ground wire to the chamber. With an average estimate that can be seen with the naked eye by observing the voltage, the oscilloscope's trigger point can be set to be higher than expected (the voltage observed in this way is relative to the oscilloscope). When the oscilloscope is triggered, the shape due to arcing can be observed, and the product hypothesis can be lowered by the appropriate current sourcing to the number of arcs that can be destroyed to the wafer. Extending more of the bulk circuit wafers to increase the function also occurs during the estimation of special features. At the time, the existence of the collection and interconnection of the room will decrease rapidly. The existence of the view of the oscilloscope probe with a free operating room to handle the voltage of the voltage of the voltage is the last voltage wave pin to observe the current -8- 200835923. This method of simulating the detection of arcing has been issued and the number of systems thus obtained in the course of the processing step has been calculated. A known disadvantage of this approach is that the fixed trigger level must be carefully set as the chamber voltage periodically changes as the magnet rotates as described above, as well as during the PVD processing steps due to heat and other considerations. As a result, such systems may miss a small number of arcs that still cause damage. Systems that can more closely follow the true, instantaneously expected chamber voltage enable these arcs to be detected more quickly, and φ provides a more accurate estimate of damage. In the PVD process for producing integrated circuits, arcing conditions of less than 1 microsecond are generally observed. Arcing during the duration of these short circuits is often referred to as micro-arcing. An electronically controlled analog or switched power supply is unable to react to this rapid change in chamber impedance during micro-arcing. Due to the natural consequence of series inductance, the power supply delivers nearly constant current to the chamber during micro-arcing. It is assumed that during the arcing condition, all the energy transported by the power supply is concentrated on the arc, and the energy delivered to the individual arcs can be multiplied by the voltage supplied by the power supply (presumably fixed) during the arcing interval. Estimate by the integer of the product. In addition, there are digital oscilloscopes that are capable of capturing room voltage and current waveforms during arcing conditions. There are computer software such as Tektronix "Wavestar" that enable digitally stored waveforms to be uploaded to a computer, where the captured voltage and current waveforms can then be doubled point by point to calculate the instantaneous power combined during the arc duration and that The power waveform is used to determine the total energy delivered by the arc. Although useful for understanding the arcing environment when adding PVD applications, the use of oscilloscopes and post-processing computers to calculate the arcing and arcing energy is only a bit of a price for production applications. Even modern portable oscilloscopes are quite large appliances, and the real estate of integrated circuit cleaning rooms is extremely expensive. The stand-alone post-processing computer also takes up expensive floor space and may have to be connected to the oscilloscope via a network outside the clean room, increasing the potential for data transfer between the oscilloscope and the computer. Moreover, there is no way to tell the frequency of an individual arc to understand or arc, leaving a question of how to accurately set the control of the oscilloscope. Oscilloscopes also have limited waveform storage capabilities, so when there is a lot of arcing activity during processing, the oscilloscope tends to lose information when it is most needed. Such a system will make actual control and decision impossible. The various aspects of the present invention address the above disadvantages and also provide arc detection methods and configurations that are also useful for other applications. In addition to the issues discussed, when calculating arcing is only a voltage critical violation, if the power supply reacts to arcing with reduced transport power, some information may be lost or ambiguous. The result of lowering the power tests the drop in both pressure and current. Although the severity of the cathode anode or target arc is a major consideration in the physical vapor deposition chamber, the occurrence of non-cathode arcing (NCA) in the chamber is also a major problem. When NCA occurs, the energy associated with monitoring cathode arcing is typically maintained at zero. Such NCAs are believed to be due to the charging of electrically insulating chamber components (i.e., deposition rings or cover rings) and the sudden release of charge to the wafer or chamber components adjacent to the wafer. There is a question of how to identify the possible and occurrence of such an NCA. The present invention is directed to solving the above problems and other problems, and for the use of the advantages and viewpoints not provided by the conventional system of this type for use in -10 - 200835923. The detailed description of the features and advantages of the present invention is set forth in the <RTIgt; SUMMARY OF THE INVENTION In accordance with the present invention, the present invention is directed to an apparatus and method for detecting arcing during plasma generation, which presents the above challenges and provides a feedback method for controlling film deposition. The invention is illustrated by some implementations and applications, some of which are summarized below. In accordance with an exemplary embodiment of the present invention, a plasma generating apparatus includes a cathode sensing configuration that is communicatively coupled to a power supply circuit. The power supply circuit has a cathode enclosed in the chamber and is designed to generate power related parameters. The arc detection configuration is designed to access the arcing severity in the chamber by comparing the power related parameters with at least one boundary. According to other aspects of the invention, the arc detection configuration is designed to estimate #arc intensity, arc duration, and/or arc energy. In accordance with another exemplary embodiment of the present invention, an arc detection configuration is implemented using a programmable logic controller (PLC). According to another exemplary embodiment of the present invention, the PLC cooperates with the arc detection configuration to calculate an adaptive arcing threshold to reflect a general change in the impedance of the PVD chamber. The instantaneous adaptive arcing threshold is approximated by the PLC. Instantly communicate to the arc detection device. According to another exemplary embodiment of the present invention, the adaptive arcing critical system that reacts to the resistance of the PVD chamber is determined by the arc detection configuration itself -11 - 200835923 using near-instantaneous communication to the PLC Statistics about arcing activities and adaptive arcing critical functions are calculated. The actual micro-arc (e.g., as captured on an oscilloscope) shows a rapid decrease in the voltage 値 (after returning to normal 値) and a rapid increase in the current 値 (and then back to normal 値). Therefore, viewing the peak current level and the voltage level at which the viewing is reduced significantly increases the success rate or confidence level of the "correct" arc detection. The present invention provides an embodiment of a method and apparatus for detecting such arcing events and for detecting and classifying other arcing events. According to another aspect of the invention, the output of the current converter is fed to a programmable threshold comparator of the arc detection unit. In this embodiment, the arcing event is measured by the arc detecting unit as to how many times the current stays above the critical enthalpy and the time at which the current dies above the critical enthalpy. Additional information about the severity of arcing can be counted and eliminated by placing more than one critical threshold (each at a different level) above the nominal operating point and for different critical levels than φ. The time to get it. According to another aspect of the invention, the apparatus includes logic to classify arcing events based on a combination of voltage and current paths from the power supply interface. In addition, the device calculates scan energy and arc energy for events that occur in a particular level of arcing events. In accordance with an illustrative embodiment of the present invention, a method for detecting and classifying arcing in a physical vapor deposition process is provided. The method includes monitoring the power supply voltage and current of the plasma generating device. According to this monitoring, the method includes detecting each instance when the voltage drops below a predetermined first voltage threshold, and the voltage drops -12-200835923 to a predetermined first voltage threshold, and the duration of each instance is peaked. Each instance is detected when a predetermined first current threshold is reached, and the duration of each instance is sequenced when the current peaks above a predetermined first current threshold. The duration of the voltage drop and the duration of the peak on the current can be measured by the clock cycle. The method then includes each instance when the classification voltage drops below a predetermined first voltage threshold and each instance when the current peaks above a predetermined first current threshold as an arcing event. Therefore, a zero arc event can occur from the detected voltage drop and/or current peak. The method additionally includes determining whether the power supply voltage is one of a steady mode, a rising transition mode, or a falling transition mode. Arc events can be calculated or analyzed separately for each of these categories. For example, the method can include maintaining an arcing event and a corresponding duration count when the voltage is in the stable mode, maintaining an arcing event and a corresponding duration count when the voltage is in the rising transition mode, and voltage Is the count of arcing events and corresponding durations that occur when the transition mode is dropped. φ classifies arcing events into different categories based on information obtained from monitoring the power supply voltage and current of the plasma generating equipment. According to an example, during a fixed time period, such as a PLC or other computing device or a scan configuration of a logic configuration or circuitry, the method includes assigning an instance of arcing events in which the voltage drop and current peaks are matched to the first category. Moreover, the method additionally includes assigning an arc event instance having one or more voltage peaks corresponding to one or more voltage peaks having a corresponding duration of less than a predetermined time to the second category 'and will have no accumulation greater than the predetermined time The corresponding instance of the arc event corresponding to one or more voltage drops of the current peak is assigned -13-200835923 to the third category. The method for sensed current arcing event similarly includes assigning an arcing event instance that does not have a corresponding one or more current peaks corresponding to a voltage drop below a cumulative duration of a predetermined time to a fourth category, And assigning an arcing event instance that does not have one or more current peaks corresponding to the voltage drop corresponding to the cumulative duration of the predetermined time to the fifth category. For each of the various categories, the method can include calculating scan energy for the specified arcing event. Detecting arcing events usually results in a drop in power supply (ie, entering the transition mode). In order to avoid including or calculating the transient result as being in the stable mode while the transition mode is lowered, the method additionally includes a transition retention period detection that cannot be detected after each detection of the voltage drop below the predetermined first threshold. The voltage drop below the first threshold and the current peak of the predetermined first threshold cannot be detected for the transition retention period after each detection of the current peak above the predetermined first threshold. Information can still be retained if further analysis is performed for the transition mode. The method also takes into account the slow change in supply voltage (i.e., relative to the arcing event) during the sputtering deposition process that occurs in the stable mode. In this regard, the method additionally includes adjusting a predetermined first voltage threshold during the scan cycle to track a slow change in the supply voltage. According to an example, a method can be established to provide additional information about the severity of the arc. In this regard, the method can include detecting instances of arcing events that fall below a predetermined second voltage threshold, and detecting instances of arcing events where the current peaks reach above a predetermined second current threshold. Similarly, other thresholds can be used to provide even more accurate information. -14- 200835923 According to another example of the present invention, a method of determining an arcing event in a plasma generating apparatus includes monitoring a power supply current, obtaining a current signal indicative of the monitored current, and determining whether the current signal is indicative of an arcing event A step other than the predetermined current threshold. Likewise, the method can additionally include monitoring the voltage of the power supply, obtaining a voltage signal indicative of the monitored voltage, and determining whether the voltage signal is outside of a predetermined voltage threshold indicative of an arcing event. The other method may include sequencing the duration of each arcing event that occurs when the current is outside the predetermined current threshold and when the voltage is outside the predetermined voltage threshold. Furthermore, each arcing event can be classified, and the scanning energy and the arcing energy can be calculated. According to another example of the present invention, a method for detecting arcing in a plasma generating apparatus includes providing power supply to a plasma generating apparatus to establish an ionized gas between a target and a wafer, and providing for detecting supply The interface between voltage and supply current, compare voltage and voltage thresholds at a set frequency, and compare current and current thresholds at a set frequency. In addition, the method includes Φ to determine whether the arcing event occurs from comparing the voltage to the voltage threshold and from comparing the current to the current threshold. The method additionally includes delaying the comparison voltage and the voltage threshold and the current and current threshold by a transition delay period after each detection of the arcing event. Additionally, the method can include viewing other parameters (in addition to voltage or current critical crossing points) to provide further information on any arcing. This can include further information about the severity of the arcing event. According to an example, the method may additionally include generating a power related parameter, comparing the power related parameter with at least a threshold of -15-200835923 to determine an arcing severity comparison power related parameter in the plasma generating device and at least one critical arc; Another aspect of the invention is to provide an apparatus for an arcing event in use. The device includes power supply for detecting a power supply arc detecting unit applied to the plasma generating chamber, and is communicatively coupled to the power supply measuring unit including a critical comparator circuit, the critical ratio being compared with the first voltage threshold The arcing current is compared with the first current threshold to determine that the arc detecting unit includes an analog to digital converter; (DSP) is preferred. In addition, the arc detection unit of the device includes an or system that is configured to determine an arcing event based on the presence. A logic circuit system can be a PLC (PLC) or other similar computing device. In the case of a DSP, the DSP may include performing some of the disclosures disclosed herein. The threshold comparator circuit can be programmed to make the voltage threshold and the initial current threshold better. This uses separate components. The critical comparator circuit is class-level generated in the DSP and converted to digital by analogy in the DSP. The DSP contains parameters that are firmware of the software controlled by the circuitry or configuration. The logic circuitry of the device is used for some of the functions and steps of measuring the response during the duration. To detect the plasma generation chamber interface module, the voltage and current are grouped; and the interface module, the arc detector circuit is configured to determine whether an event occurs and the ratio occurs. The arc-connected digital signal processor is coupled to the logic circuit. The output of the comparator circuit is a programmable logic control, and the voltage and current comparable circuits are better when the logic of some or all of the functions can be set initially. . The critical log converter will send a PLC or other logic. For example, the logic system -16-200835923 is configured to determine whether the voltage is one of a steady mode, a rising transition mode, and a falling transition mode. Additionally, the logic circuitry is configured to maintain a count of arcing events that occur when the voltage is in the stable mode, maintain a count of arcing events that occur when the voltage is in the rising transition mode, and maintain the voltage when The count of arcing events that occur while in the transition mode. The logic circuit system is also configured to determine the duration of the arcing event according to the voltage falling below the threshold of the first voltage, and determine the duration of the arcing event according to the current above the peak of the first current threshold. period. The duration is typically measured in a clock cycle that can be converted to a frequency based on the time unit. The logic circuitry is additionally configured to classify arcing events based on the output of the threshold comparator circuit and the duration of each arcing event. The classification is a predetermined time cycle, such as a PLC scan cycle. The logic circuitry can be configured to assign, for example, an arcing event instance that matches the voltage drop to the current peak to the first category, and that there is no one or more of the coincident current peaks corresponding to φ that is lower than the first predetermined time period. The arcing event instances of the voltage drop are assigned to the second category, and no arcing event instances having one or more voltage peaks corresponding to the current peaks greater than the first predetermined time period are assigned to the third category, and there will be no An arcing event instance having one or more current peaks that correspond to a voltage drop below a cumulative duration of the second predetermined time period is assigned to the fourth category, and will have no cumulative duration greater than the second predetermined time period An instance of the arcing event corresponding to one or more current peaks corresponding to the voltage drop is assigned to the fifth category during the period. The logic circuit can also calculate various parameters of the arc. This can include sweeping energy and arcing energy from 17-200835923. According to another aspect of the invention, an apparatus for detecting arcing in a plasma generating apparatus includes an arc detecting unit communicatively coupled to a current of a power supply. The arc detection unit includes a threshold comparator circuit that is configured to compare the current with the first current threshold, and a logic circuit configured to detect the current and current thresholds in the threshold comparator circuit. Arcing event. The Φ arc detection unit can also be communicatively coupled to the voltage of the power supply. In this example, the threshold comparator circuit is additionally configured to compare the voltage with the first voltage threshold, and the logic circuit system is additionally configured to detect the arc according to the comparison of the voltage in the threshold comparator circuit with the voltage threshold 値event. The arc detection unit additionally includes a timing circuit configured to calculate a duration of the detected arc event based on a comparison of the current and the current threshold. The timing circuit is also configured to calculate the duration of the detected arcing event based on a comparison of the voltage to the voltage threshold. The φ critical comparator circuit can be configured to compare the current with a second current threshold (or a plurality of other critical levels) different from the first current threshold. The critical comparator circuit can also be combined to compare the voltage with one or more other thresholds. The duration of the current or voltage outside of a particular threshold can be calculated straight for each threshold. According to another aspect of the present invention, an apparatus for detecting an arcing event in a plasma generating apparatus includes a power supply interface module that is communicatively coupled to a voltage and current of a power supply for a plasma generating apparatus; The arc detection unit 'has been used to receive fingers. a first channel of the signal indicating the voltage, and a second channel for receiving the signal indicating the current of -18-200835923; and a threshold comparator circuit, located in the arc detecting unit, configured to compare the voltage signal and the voltage Critical 値 and comparison current signals with current critical 値. The device can additionally include logic circuitry to determine whether an arcing event occurs based on the output of the critical comparator circuit. The logic circuitry can also be configured to calculate relevant parameters of the power supplied to the plasma generating apparatus. The logic circuitry can also compare the power related parameters with at least one threshold to determine the severity of the arc in the plasma generating apparatus. The present invention increases the ability to instantly determine when an arc occurs to take an improvement action. This can improve wafer throughput and reduce defects. In some instances, the device that primarily views voltage and current will calculate both the arcing and the final voltage drop (i.e., the reduced power supply from the reaction to the arcing), which will result in an inaccurate count. The present invention additionally provides methods and apparatus for more accurately calculating and classifying arcing. That is to say, by calculating the arc as a current critical violation, even in the presence of a power reduction event, φ will more accurately present the arc in arc count and time statistics. According to another aspect of the embodiment, a method for detecting the risk of non-cathode arcing in a physical vapor deposition chamber is disclosed. The chamber is used to deposit metal on substrates such as germanium wafers or glass panels. The method comprises the steps of: monitoring supply voltage and supply current to a physical vapor deposition chamber; generating a set of cathode arcing event data for each of the plurality of substrates processed in the physical vapor deposition chamber; and according to the group for each substrate Cathodic arcing event data is used to calculate parameters for each of the plurality of substrates. The method additionally includes determining the possible risk of non-cathode arcing based on parameters. 19 - 200835923 After determining the possible risk of non-cathode arcing, the method may include an indication of the risk of non-cathode arcing or the risk of non-cathode arcing. This can be done, for example, by sending a message to a computer display or by turning on appropriate light (e.g., LED). The step of generating a set of cathode arcing event data for each of the plurality of substrates processed in the physical vapor deposition chamber includes obtaining a enthalpy for a plurality of cathode arcing variable types. These may include, for example, "stable arc count stabilization", "arc count up φ liter (or down) transition", and various times and the like. Then, the generating step may include calculating a variable type average for each variable type of each group of cathode arcing event data for each of the plurality of substrates, and for each group of cathode arcing event data for each of the plurality of substrates Variable type calculates the number of variable type standard deviations. The variable type mean and the variable type standard deviation number can be used to generate a set of normalized data for each set of cathodic arcing event data for each of the plurality of substrates. The step of calculating parameters for each of the plurality of substrates based on the group of cathode arc event data includes calculating parameters for each of the φ substrates based on a set of normalized data. Moreover, this may additionally include a variable type that weights the normalized data of the set. The method may additionally include the step of calculating a moving average of the parameters. In this example, the step of determining the possible risk of non-cathode arcing according to the parameter step includes performing a pattern recognition technique on the moving average of the parameters. This may additionally include monitoring the moving average for the increase in the baseline of the moving average. In accordance with another embodiment of the present invention, a method for determining a possible risk of non-cathode arcing in a physical deposition chamber is provided. The method comprises the steps of: coupling a cathode arc detecting unit to a physical vapor deposition chamber; generating a set of cathode arcing event data for each of the plurality of substrates in the chamber -20 - 200835923; and generating an arc according to the cathode Event data to determine the possible risk of non-cathode arcing in the chamber. Generating a set of cathode arcing event data for each of the plurality of substrates processed in the chamber may include monitoring a primary (ie, primary) supply voltage and a primary supply current using a cathode arc detection unit for cathode arcing event data, and Secondary (ie, slave) supply voltage and secondary supply current. The Φ method may additionally include an indication of one of the risks of non-cathode arcing and no risk of non-cathode arcing, depending on the decision step. In addition, the method may additionally include the steps of: generating statistical parameters from the generated cathode arcing event data; calculating a moving average of the statistical parameters; and performing pattern recognition techniques on the moving average. In accordance with another embodiment of the present invention, a system for detecting the risk of non-cathode arcing is provided in a physical vapor deposition chamber for processing a substrate. The system includes a cathode arc detecting unit that is communicatively coupled to monitor the main supply voltage of the physical vapor deposition chamber; a processor 'is coupled to the cathode arc detecting unit (as part of the unit or unit) Communication), which is configured to generate cathode arcing data for each wafer processed in the chamber. The processor is additionally configured to determine the risk of non-cathode arcing in the chamber based on the resulting cathode arcing data. The cathode arc detection unit is additionally communicatively coupled to monitor the main supply current, the secondary supply voltage, and the secondary supply current of the physical vapor deposition chamber. The system may additionally include a first sensor for monitoring the main supply voltage, a second sensor for monitoring the main supply current, and a third sensing-21 - 200835923 for monitoring the secondary supply voltage And a fourth sensor for monitoring the secondary supply current. The processor is configured to generate respective senses for a set of complex variable types from signals received from the respective sensors. The processor can also be configured to calculate an average 値 for each variable type, a standard deviation 各个 for each variable type, and a set of normalized data using the average 値 and standard deviation 値. The processor can also be configured to calculate parameters from a set of normalized materials for each substrate, and to calculate a moving average of the parameters. The system can also include a visible indicator controlled by the processor. In this regard, the processor provides an indication of the possible risk of non-cathode arcing to the visible indicator. Other features and advantages of the present invention will become more apparent from the description of the appended claims. The present invention has been described in detail with reference to the preferred embodiments of the invention The invention is not to be limited to the illustrated embodiments. The present invention is believed to be applicable to different types of electric paddle generating devices and has been found to be particularly useful for film deposition applications which benefit from the technique of arcing detected during the generation of the plasma environment. The illustrative embodiments described herein include PVD sputtering techniques; however, the invention can be implemented in conjunction with various systems, including those using plasma generation techniques such as plasma engraving or plasma enhanced chemical vapor deposition systems (PECVD). . -22- 200835923 Although it has never been possible to completely avoid arcing events, some details on the severity of the arcing that occurs during the sputtering process provide useful information to determine the compensation process. For example, via the instant detection of a single arc of decimals, it is suspected that the presence of minimal defects due to arcing on the affected integrated circuit die. Conversely, the detection of a large number of arcs, or the arcing of a high severity, can be suspected of the existence of many defects, perhaps even reaching a conclusion that the entire processing step is defective. Instantaneous arc detection according to the present invention allows instant or near real-time permission to make manufacturing decisions. For example, if the processing step is considered to be defective due to the detection of arcing severity or a significant amount of arcing, the PVD processing step can be terminated before further damage occurs. At the end of the PVD processing step, termination or normal completion may be determined based on the decision to remediate or discard the wafer before beginning further processing steps. If the initial processing steps are flawed by the apparent detection of the apparent arcing, the processing cost of manufacturing the wafer at this stage is low, and discarding the wafer is cost effective. If arcing occurs during subsequent processing steps, it is cost effective to chemically etch or wafer the wafer to remove the defective deposited layer and reprocess the wafer. In addition, the detection of arcing activity from wafer-to-wafers of individual PVD systems that observe no or minimal previous arcing activity can be an indication of the initial development of equipment error conditions that can be planned during planned equipment inactivity. Proper equipment repair to correct. The focus is on identifying the potential for defects due to arcing in a timely manner. In the case of a particular PVD system, the power supply that drives the process attempts to adjust the power delivered to the chamber. The impedance of the chamber element including the anode, the cathode, and the chamber environment between the anode and the cathode is in series with the impedance of the plasma generating power supply circuit -23-200835923. The relationship between the voltage and current that maintains a fixed power in the plasma is dependent on the impedance of the components of the chamber, including the conductivity of the particular target material itself as a function of the sputtering process. When the arc is developed in the sputtering chamber, the impedance 値 of the chamber drops rapidly, thus changing the impedance of the plasma generating power supply circuit. The power supply and distribution circuitry contains significant series inductance that limits the rate at which current can vary in the circuit. Therefore, due to this sensing component, the rapid drop in chamber impedance causes the impedance of the chamber Φ voltage to decrease rapidly. This collapse of the chamber voltage 値 is usually sufficient to cause the arcing condition to disappear and re-establish the glow discharge before severe damage to the chamber, power supply, or target may occur. Typically, an arcing event occurs (or disappears) faster than an electron that can react to regulate the power supply, so even if the electrons begin to improve the action, there may still be some damage to the wafer. As noted above, due to various arcing events, the likelihood that the coated item will suffer from some form of defect such as uneven coating on the wafer may increase. Since the room voltage drops rapidly as the arcing event occurs, the occurrence of arcing conditions can be defined using an unexpected voltage drop below the predetermined or adaptive φ voltage threshold. According to an exemplary implementation, the voltage threshold describing the presence of an arcing event is applied (i.e., non-arcing), or time, based on the nominal change in chamber voltage. The non-arc chamber voltage applied to the production of glow discharges is based on a number of factors, including the target's conditions and composition (affecting circuit impedance). All other circuit impedances remain fixed, and the use of a relatively low-conducting target material to produce a glow discharge requires a high chamber voltage, whereas conversely, the use of a relatively high-conductivity target material to produce a glow discharge requires a lower chamber voltage. For example, in a sputtering chamber implementation, the chamber voltage required to deposit aluminum uniformly is almost twice the chamber voltage required to deposit copper -24-200835923. The chamber voltage required for uniform deposition may also vary from chamber to chamber, depending on the balance of the circuit impedance including the power supply and other chamber components. Moreover, as the target ages and more material is sputtered, the power required to maintain a uniform deposition rate must be modified (β卩, increase). When the required application voltage changes, the associated threshold voltage that determines the arcing condition should then be changed. In accordance with a general exemplary embodiment of the present invention, a plasma generating apparatus includes an arc detecting configuration that is communicatively coupled to a power supply circuit by φ. The power supply circuit has a cathode enclosed in the chamber, and the power supply circuit is designed to generate power related parameters (e.g., voltage signals). The arc detection configuration is designed to evaluate the arcing severity in the chamber by comparing the power related parameters with at least one threshold. The parameters that determine the severity of the arc are processing dependent, including arcing, arcing rate, arcing intensity, arcing duration, and/or arcing energy, but are not limited thereto. According to one implementation, the arc detection configuration for the sputter treatment monitors the sputtering chamber voltage and detects arcing conditions whenever the chamber voltage 値 falls below the preset arcing voltage by φ 値. According to one point of view, the threshold of power-related parameters (eg, voltage) is variable over the range of power-related parameters. Any threshold can be programmed and can be controlled by a logical configuration, for example, electronically controlled by a remote logic configuration. In an exemplary embodiment, the voltage threshold for the occurrence of arcing is calculated to estimate the nominal chamber voltage 値, and the nominal chamber voltage 値 is required to produce a glow discharge (ie, generate plasma) during non-arcing conditions. Room voltage. In an exemplary embodiment, any threshold may be hysteresis or may be programmed to be -25-200835923 with a "reset" that is different from "over" 値. According to one aspect of the invention, the arc detection configuration is calculated by an additional threshold to calculate the arcing condition (event). The rate of arcing conditions can be determined from this. According to another aspect, the arc detection configuration is additionally designed with force-related parameters and at least one threshold to measure the arc duration. In an implementation, the arc detection configuration includes clock and digital calculations. Φ provides a clock signal with a fixed period. And digital calculations are performed by comparing power-related parameters with at least one threshold to calculate a clock. According to another aspect of the invention, the duration of the arcing condition is estimated by comparing the power-related reference thresholds. The duration of the condition is cumulative during the fixed period according to an example. The root implementation, the duration of the arcing condition is accumulated until it reaches the hold, or until the cumulative duration is reset. According to another aspect, the arc detection configuration is additionally designed with a force correlation parameter and at least one threshold to measure the arc strength. In this case, the arc detection configuration is designed to compare the complex threshold of the power-related parameter arrangement to determine the extent or extent of the power change (from the nominal) during the arcing event. In an example, the critical supply estimate for the maximum observed voltage 値 drop is shown, while the next larger voltage drop threshold (the system is being) provides the upper boundary for the energy estimate. In accordance with another exemplary embodiment of the present invention, the arcing detection is designed to compare the power-related parameters with at least one threshold to the detected ones to compare the electricity. For example, in configuration. The clock is designed to be a signal period. The number and the at least one implementation, the arc is calculated according to another example of the non-continuation period, and the lower boundary is configured to observe the non-arranged design arc duration. -26- 200835923 and strength. In one implementation, the arc detection configuration is additionally designed to measure the arc energy by comparing the power related parameter with at least one threshold, the arc energy is proportional to the product of the arc duration and the arc intensity, and the arc is generated. The estimate of severity is a function of the arc energy (ie, the product of the arcing intensity and the duration of the arc). According to a particular implementation, the complex threshold is used to determine the complex duration to estimate the region-to-upper time φ defined by the power-related parameter (ie, room voltage) during the voltage drop due to arcing (ie, approximating or integrating) Plotting. The arcing energy of each arc event proportional to the defined area is used to estimate the severity of the arc. According to another implementation, the arc detection configuration is additionally designed to accumulate arc energy through a plurality of arcing events, for example, by summing the product of the arcing intensity and the duration of the arc to estimate the arcing severity. According to another exemplary implementation, the arc detection configuration includes a power related parameter band limiting filter as an aliasing prior to preventing digitized power related parameters. A commonly known digital signal processing technique is applied to this digital power • related parameters to reduce or highlight certain frequency response characteristics of power related parameters. This digital signal processing parameter can then be directly compared to at least one critical, identically digitized version. According to another exemplary implementation, the digital signal processing parameters described above are used to calculate at least one time to change the threshold 以 by some of the observed characteristics of one or more of the power related parameters during the PVD process. In accordance with another exemplary embodiment of the present invention, the plurality of power related parameters and the complex threshold are compared when estimating the arcing severity. For example, in addition to the chamber voltage, the power supply current is monitored and used to detect arcing events, which determine the arcing event whenever the current 値 exceeds the preset current threshold. In accordance with another exemplary embodiment of the present invention, the logic configuration is communicatively coupled to the arc detection configuration and is designed to process the arcing data collected by the arc detection configuration. In one implementation, the logic configuration is designed to interface with an arc detection configuration having a data network and other external devices such as a processing controller, a monitor, and a logic configuration. In a particular application, the logical configuration is a programmable logic controller (PLC). According to another exemplary embodiment of the present invention, the arcing duration derived by comparing the power related parameter with the at least one arcing intensity threshold, and the arcing duration are increased to the cumulative arc duration by sequencing. To estimate the severity of arcing in the plasma generation chamber. Another exemplary implementation of the method includes measuring power-related parameters during non-arcing plasma generation and automatically adjusting arcing intensity thresholds by measuring power-related parameters; calculating arcing occurrences; and/or estimating arcing severity as Arcing intensity, a function of the duration of the arc, and/or its product. According to another exemplary embodiment of the present invention, the arc is determined by comparing the arcing intensity derived from the comparison of the power related parameter with the at least one arcing intensity threshold, comparing the power related parameter with the at least one arcing intensity threshold. During the duration, the arc energy is calculated as a function of the arcing intensity and the duration of the arc, and then the arcing energy is increased to the accumulated arc energy to estimate the severity of the arc in the plasma generating chamber. Another exemplary implementation of the method includes measuring power related parameters during non-arc plasma generation and automatically adjusting at least one arc intensity threshold by measuring power related parameters; comparing power related parameters with at least one arc intensity threshold Calculate the arcing occurrence; and/or use the hysteresis arc -28-200835923 intensity threshold; and/or transmit the information representing the arcing to the logical configuration through the shared data path, the information is selected from the amount including the arcing occurrence, the accumulation One of the durations of the arc. In a particular implementation, the power related parameter is a function of the plasma generating chamber voltage; in another implementation, the power related parameter is formed as a digital representation of the operational characteristics of the plasma generating chamber. In describing the following specific exemplary implementations of the invention, reference is made to Figures 1-27 of the drawings in which like numerals represent like features. φ Figure 1 illustrates an exemplary embodiment of the arc detection configuration 1 of the present invention. The arc detection configuration 100 is used, for example, in a pressure vapor deposition (PVD) process step of integrated circuit fabrication or other processing where uniform material deposition is desired. The PVD sputtering system includes a low pressure chamber 15 (vacuum) chamber 10 containing a gas such as argon. The target 20 formed of metal is placed in the vacuum chamber 10 and electrically coupled to the power supply 30 as a cathode through a separate power supply interface module (PSIM) 40. According to an exemplary implementation, coaxial power interconnect cable 35 is used to couple power supply 30 and chamber 10. The substrate (wafer) 25 is coupled as an anode to the power supply 30 via a Φ connection. Typically, the vacuum chamber is also referred to as ground potential. According to another exemplary implementation, the anode is directly in contact with the power supply 30. This includes rotating the magnet 27 to manipulate the plasma to maintain uniform target wear. The PSIM 40 includes a buffer voltage attenuator 44 that is designed to sense the chamber voltage and that provides an analog signal to the arc detection unit (ADU) 50 through the voltage signal path 42 to react to the chamber voltage. The PSIM also includes a Hall effect based current sensor 46 that is designed to sense the current flowing to the chamber and provide an analog signal to the ADU through the current signal path 48 to react to the chamber current. In another exemplary implementation, the target is formed by an insulating material -29-200835923. The ADU 50 is communicatively coupled to the logic configuration 60 via a local data interface 70, such as a programmable logic controller (pLC) or a communication header. The logic configuration can be coupled to the data network 8 〇, for example, a high-order processing control network such as EG Modbus-Plus TCP-ΙΡ on the Ethernet. An electric field is generated between the target (cathode) and the anode by ionizing the gas in the vacuum chamber by the power supply. The ionized gas atoms (i.e., the plasma) are accelerated across the potential of the electric field and impact the target at a high velocity, enabling the molecules of the target material to be physically separated from the target, or, by sputtering,. The ejected molecules actually travel unimpeded through the low pressure gas and plasma, some of which land on the substrate and form a coating of the target material on the substrate. A typical target voltage for sputtering aluminum is approximately 450 volts per second (VDC) steady state.

圖2圖解PSIM 40的一例示實施例。psiM 40衍生表 示室電壓和電流的信號。同軸電纜3 5電耦合電力供應到 φ 室。電纜35具有標稱在大地(地面)電位的外部導體210, 及相對外部導體負向偏壓之中央導體2 1 5。使用霍爾效應 轉換器2 2 0或其他電流轉換裝置量測電纜3 5中的電流。 轉換器220被配置成選擇性量測流動在中央導體215中 (表示流動到室的總電流)的電流。電纜3 5的中央導體2 1 5 通過霍爾效應轉換器220的孔隙225。爲了露出中央導體 215,外部導體210被中斷在轉換器220附近,及透過耦 合至外部導體210的電流分流器23 0將外部導體電流引導 向孔隙225四周。霍爾效應轉換器220的配置簡化PSIM -30- 200835923 的封裝,同時在電纜35與轉換器220的輸出信號之間提 供高度的電流隔離。本發明並不侷限於使用霍爾效應轉換 器。亦可考慮衍生反應於從室1 〇流動到電力供應3 0的電 流之信號的其他機構,包括含具有適當電壓隔離的電流分 流器之配置,及依據特定壓阻電流轉換器的機構,但並不 侷限於此。 轉換器220具有帶有信號I-的第一輸出終端222和帶 有信號1 +的第二輸出終端224。第一和第二轉換器輸出終 端被電耦合至Isense電路配置240,第一轉換器輸出終端 222被親合至Is e ns e電路第一輸入終端242,而第二轉換 器輸出終端224被耦合至Isense電路第二輸入終端244。 Isense電路配置240亦具有帶有信號IPSIM-的第一輸出 終端246和帶有信號IP SIM +的第二輸出終端248。Isense 電路接收電流信號1 +及1-,及在信號IPSIM +和IPSIM-之 間產生差動電壓以反應從室流到電流供應的電流。FIG. 2 illustrates an exemplary embodiment of a PSIM 40. The psiM 40 derivative represents the voltage and current signals of the chamber. Coaxial cable 3 5 is electrically coupled to the φ chamber. Cable 35 has an outer conductor 210 nominally at ground (ground) potential and a center conductor 2 15 that is negatively biased relative to the outer conductor. The current in the cable 35 is measured using a Hall effect converter 220 or other current conversion device. Converter 220 is configured to selectively measure the current flowing in central conductor 215 (representing the total current flowing to the chamber). The central conductor 2 15 of the cable 35 passes through the aperture 225 of the Hall effect converter 220. To expose the center conductor 215, the outer conductor 210 is interrupted near the converter 220, and the current conductor current 230 is coupled to the outer conductor 210 to direct the outer conductor current around the aperture 225. The configuration of the Hall effect converter 220 simplifies the packaging of PSIM -30-200835923 while providing a high degree of galvanic isolation between the cable 35 and the output signal of the converter 220. The invention is not limited to the use of a Hall effect converter. Other mechanisms for deriving a signal that reflects the current flowing from chamber 1 to power supply 30 may also be considered, including configurations with current shunts with appropriate voltage isolation, and mechanisms depending on the particular piezoresistive current converter, but Not limited to this. Converter 220 has a first output terminal 222 with signal I- and a second output terminal 224 with signal +1. The first and second converter output terminals are electrically coupled to the Isense circuit configuration 240, the first converter output terminal 222 is affinityd to the Ishens circuit first input terminal 242, and the second converter output terminal 224 is coupled To the second input terminal 244 of the Isense circuit. The Isense circuit configuration 240 also has a first output terminal 246 with a signal IPSIM- and a second output terminal 248 with a signal IP SIM+. The Isense circuit receives the current signals 1 + and 1 and generates a differential voltage between the signals IPSIM + and IPSIM - to reflect the current flowing from the chamber to the current supply.

Vsense電路250量測中央導體215與外部導體210 之間的電位差,及產生反應於電位差的微分。Vsense電 路包括耦合至內部導體215且帶有電壓信號V-之第一輸 入終端252。Vsense電路又包括耦合至外部導體210且帶 有電壓信號V +之第二輸入終端254。Vsense電路具有帶 有輸出電壓信號VPSIM-之第一輸出終端256和帶有輸出 電壓信號VPSIM +之第二輸出終端258。 在一例示實施中’以標準商業用UHF型連接器終止 連接電力供應30至真空室10之同軸電纜35。根據本發 •31 - 200835923 明的一觀點,PSIM 40的機械包裝被配置和組配成電纜35 可以在一端解除終止,插入經過PSIM 40的孔隙225,並 且重新終止以完成電力供應30和室10之間的電路。在另 一實施中,PSIM 40包括UHF型連接器,使得PSIM 40 可被插入在電力供應30和室10之間的電纜35之電路 中〇 圖3圖解提供差動輸出電壓信號以反應PVD系統的 陰極和陽極之間的瞬間電壓差異的Vsense電路25 0之一 例示實施。圖3所示之例示Vsense電路在存在於其輸入 終端的電壓信號和其輸出終端所提供的電壓信號之間提供 非常高的阻抗。 從外部導體210衍生正輸入電壓信號254(V + ),及從 電力供應電纜35的內部導體215衍生負電壓信號252(V- )° 根據所圖解的例不實施,有關梦考平面’ GNDANALOG,電阻器網路R3及R4提供500:1的衰減因 子給各個各自的輸入電壓信號。各個電阻器網路R3及R4 在網路感測終端(接腳1)和參考平面(接腳3)之間具有大約 20百萬歐姆的標稱電阻。可使用例如諸如〇hmcraft P/N CN-470等厚膜分壓器網路來實施電阻網路R3及R4。 252( + )和2 5 4(-)之間的1 000伏特應用電壓使25微安培的 電流能夠流入R4的接腳1和從R3的接腳1流出。各個 這些電壓衰減器的接腳3(即電阻網路)被耦合至參考平 面,GNDANALOG。因爲各個電壓衰減器提供500:1衰 -32- 200835923 減,所以以5 00:1衰減各個電阻網路的接腳2之間所量測 的差動電壓(即、R4的接腳2中之衰減信號VPSA +和R3 的接腳2中之衰減信號VPSA-之間),及此量測是獨立於 V +和GNDANALOG或V-和GNDANALOG之間的電壓差異 之外。 在一例示實施中,PVD濺鍍室1〇具有應用的射頻 (RF)能量以使電漿穩定。Vsense電路25 0的電容器C2, φ C3,及C5明顯使此高頻率”雜訊”衰減(即、過濾)。根據一 例示實施,C2及C3的組合在大約22 kHz中具有有效磁 極。 如上述,VPSA-和 VPSA+之間的差動電壓是出現在 V-與V +之間的信號之頻帶有限表示,具有標稱DC衰減 因子5 00: 1。VPSA-和VPSA +之間的等效DC Thevenin源 阻抗是高的(在80 kOhms的等級),因此並不適合在大距 離間傳輸或進入低阻抗負載。因此,例如LT 1 920儀器運 • 算放大器等差動儀器運算放大器U2被結合在Vsense電路 中以充作阻抗電壓隨耦器。運算放大器U2提供高阻抗輸 入(接腳2及3),其將不明顯地載入衰減器R3及R4的輸 出。電阻網路R3的接腳2被耦合至U2的反向輸入(接腳 2),及電阻網路R4的接腳2被耦合至U2的非反向輸入 (接腳3)。在一例示實施例中,電阻器RG2設定U2的電 壓增益並且被選擇產生1 V/V的增益。U2(接腳6)的最後 輸出是相對於GNDANALOG的單一結束低阻抗電壓源, 其緊密跟隨VPSA-和VPSA +之間所發展的電壓。 -33- 200835923 U2(接腳6)的輸出被耦合至BNC型連接器J2的中央 終端,並且帶有信號VPSIM+ 25 8。BNC型連接器J2的外 部連接器帶有信號VPSIM- 256,並且被耦合至參考平面 GNDANALOG。信號VPSIM +與VPSIM-之間的最後差動電 壓是有關差動輸入信號V +和V-所限制的頻帶,且具有2 mV/V的標稱DC反應。 在一實施例中,當耦合至位在信號244(1 + )及242(1-) 之間的適當負載阻抗時,霍爾效應型DC電流轉換器220 產生反應於流動在內部電力供應導體2 1 5中之電流的電 流。在一特定實施例中,使用由LEM製造的模型LA25_P 霍爾效應型DC電流轉換器,由DC電流轉換器220所發 展的電流信號約與通過孔隙220之總電流成1 000:1的比 例。因此,在DC電流轉換器設計的限制內,通過孔隙 220的1安培信號產生流過位在244(1 + )及242(1-)之間的 阻抗之1 mA的恆定電流。圖4圖解電流感測配置的一例 示實施。Isense電路240產生反應於由例示LA25-P霍爾 效應型DC電流轉換器所發展的電流之電壓。在此例中, 信號I-被耦合至PSIM40的參考平面GNDANALOG。包含 與包含電阻器R7和電容器C10的低通濾波器並聯之100 Ohm電阻器R6的阻抗被耦合在1 +與I-之間。忽略低通濾 波器的相對高阻抗,電流1 +流晶電組器R6並且經由I-回 到電流轉換器220。包含電流轉換器220和電阻器R6的 電路之淨結果是橫跨與流經孔隙222的電流成比例之R6 的電壓,及具有比例常數 100 mV/Ampere。包含電阻器 -34- 200835923 R7及CIO的低通濾波器具有23 kHz之標稱3 dB截止頻 率,其用以去除來自電流信號的任何雜散雜訊,包括上述 所包括的一些RF組件以使輝光放電穩定。低通濾波器輸 出(圖4中的VIL)是由電流轉換器220所發展橫跨R6之電 壓的頻帶有限表示。諸如LT 1 920等儀器型放大器U3充 作反應於藉由耦合VIL到U3的非反向輸入(接腳3)之信號 VIL之低阻抗電壓隨耦器,U3具有經由電阻器R5耦合至 φ GNDANALOG的U3(接腳2)之反向輸入。在本例中,電阻 器RG1用以設定將儀器型放大器U3的增益設定成1 V/V。U3的輸出終端(接腳6)帶有信號IPSIM +且被耦合至 BNC型連接器J3的中央導體。BNC型連接器J3的外部導 體被耦合至 GNDANALOG並且指定信號 IPSIM-。在 IP SIM+和IPS IM-之間發展的電壓因此是反應於在孔隙 220中流動的電流之信號,限制到約23 kHz的截止頻率 之頻帶及具有大約100 mV/Ampere的比例常數。 φ 圖5圖解PSIM電力供應電路500(未圖示在圖2)的一 例示實施並且需要偏壓儀器運算放大器U2及113。例如 Astrodyne模型FDC10-24D15的雙電力供應模組U1產生 用以偏壓PSIM放大器U2,U3和電流感測器CS1之標稱 + 1 5 VDC 及-1 5 VDC。 模組u 1經由連接器J1、接腳i及3從外部標稱24 VDC電源衍生其偏壓電力,接腳1比接腳3被偏壓至更 正向。連接器J1的接腳3被耦合至電力供應模組U1的-Vin終端。經由Schottky障壁二極體D2將連接器J1的接 -35- 200835923 腳3耦合至電力供應模組U1的+Vin終端以保護模組U1 免於由於供應到連接器J1的電力極性偶然被顛倒之破 壌。 電力供應模組 U1具有三輸出終端+Vo、-Vo及 Com。在終端+Vo提供+15 VDC信號及在終端-Vo提供-15 VDC信號。終端Com被耦合至參考平面GNDANALOG。 在一應用中視需要將連接器 J1的接腳 2亦耦合至 GNDANALOG當作公共電位。電阻器R1及R2及發光二 極體D1被串聯耦合在+15 VDC偏壓和-15 VDC偏壓之間 以提供操作著PSIM電力供應電路500的指示。 將發弧定義作與臨界電壓交叉之室電壓數値中的崩 塌。當發生發弧時,從穩態(即、非發弧)條件起,室(目 標)電壓數値快速減少(即、較接近大地電位),及由於串 聯電感,室電流增加的更慢。被程式化的臨界電壓是預定 的室電壓,在此預定室電壓中或之下決定發弧狀態,此預 定室電壓可以是固定値或標稱的時間變化函數,預期、可 能時間變化室電壓。當室電壓在臨界電壓之上時決定發生 非發弧狀態。根據另一例示實施,從包括非發弧狀態的週 期決定臨界電壓,及每當室電壓在電壓臨界之下時定義發 弧狀態發生。可使用多個臨界電壓決定發弧的數値(即、 電壓下降或”嚴重性”)。例如,與-200V臨界但不與-100V 臨界交叉之發弧的嚴重性可被視作比與兩臨界交叉的發弧 嚴重性小。 ADU 50包括數位信號處理器以處理從PSIM接收的 -36 - 200835923 信號,藉以分別提供室電壓和電流信號的數位式過濾表示 (如、數位信號)到邏輯配置。根據一例示實施’ ADU包括 類比對數位轉換器(A/D)。 ADU另外被設計成設定至少一可程式化發弧臨界電 壓。在另一實施中,ADU亦被設計成設定至少一遲滯臨 界電壓。根據一觀點,各別臨界可被設定在沿著連續頻譜 的任一點;此可被控制比較器電路配置的電位計設定所影 φ 響。根據另一例示實施,透過數位對類比轉換器或透過藉 由將特定電路組件交換成比較器電路配置所達成的複數分 離臨界位準來數位式設定各別臨界,例如藉由選擇電阻網 路的組配。爲了識別遲滯臨界,ADU提供可程式化遲滯 函數以偵測緩慢證實本身之發弧。可將發弧(電壓)臨界和 遲滯函數二者直接設定或程式化在ADU中,或可由被通 訊式耦合至ADU之遠端裝置選擇性控制臨界値,例如, 經由透過乙太網路的標準動量通訊頂帽,Modbus Plus, • Devicenet,或其他資料網路。在一例示實施中,將ADU 穩固地耦合至可程式化邏輯控制器(PLC),諸如透過高速 專屬串聯介面的動量M1-E等,及PLC可被程式化成根據 即時自適應演算法即時連續採用發弧電壓臨界和遲滯函 數。 圖6圖解依據數位信號處理器和控制器(DSpc)63〇之 發弧偵測單元(ADU)的一例示實施例,其包括數位信號處 理器(DSP)積體電路,諸如可從美國德州達拉斯的Texas Instruments Inc·購得之模型TMS320F2407,及用於發展 -37- 200835923 信號以控制和與外部裝置通訊之其他市面上可購得的積體 電路裝置等。此種裝置的例子是位址解碼器,其一般用於 將DSP的位址空間分割成數個範圍,及選擇複數外部積 體電路裝置的其中之一用於進出DSP的資料移轉。使用 積體電路之這些信號的發展係根據當存取外部裝置時之數 位信號處理器的時序需求,並且爲精於設計和實施微處理 器和微控制器爲主的系統之技藝的人士所知。 φ 所圖解的DSP包括可由整合性1 〇位元類比對數位轉 換器63 5來數位化和樣本化之16類比輸入通道。諸如信 號Ich 616及VCH 614等隨後將討論表示這些類比輸入通 道之信號可以使用者可程式化比率由DSP來數位化和樣 本化。在一例示實施中,該可程式化比率可增大至每通道 10kHz。在另一例示實施中可在DSP內執行的軟體程式提 供複數數位有限脈衝反應濾波器的其中之一的選擇和應用 給樣本化的資料信號。DSPC 630亦提供控制信號給可程 φ 式化臨界比較器函數620以設定可程式化臨界比較器的臨 界和遲滯値。此外,DSPC 63 0提供進出高速發弧偵測邏 輯單元(ADLU) 640之控制和資料路徑,其連同可程式化臨 界比較器620 —起運作以累計發弧統計,諸如發弧數量和 總發弧時間等。DSPC 63 0透過例如專屬ATII介面等局部 資料介面70與諸如網路式通訊頂帽或可程式化邏輯控制 器(PCL)等外部邏輯配置60通訊。可從ADU供應到外部 邏輯配置60之資訊的例子是已過濾的室電壓和電流、個 別發弧事件的數量、及指出發弧嚴重性的其他値,如發弧 -38- 200835923 偵測器單元64 〇所決定者。可由ADU從外部邏輯配置接 收之資料的例子是瞬時發弧臨界電壓和遲滯’及控制發弧 偵測邏輯單元的邏輯控制信號。 發弧偵測單元50的基本感測處理輸入是來自PSIM 40 的 Vsense 電路(VPSIM+及 VPSIM-)及 Isense 電路 (IPSIM +及IPSIM-)的微分輸出信號。再次參考圖6,這些 信號驅動類比信號調節器6 1 0。類比信號調節器6 1 0將個 別微分類比信號轉換成ADU的剩餘部分可使用之信號結 束信號。信號調節器6 1 0亦提供頻帶限制濾波器給各別輸 入類比信號,使得DSPC 63 0可應用數位信號抽樣和處理 演算法而無須通稱作”混疊”的環境。類比信號調節器6 1 0 包括三輸出終端:提供信號VCH,的輸出終端6 1 2 ’提供信 號VCH的輸出終端614,及提供信號ICH的輸出終端 616。信號VCH,是發源自PSIM且衍生自信號VPSIM +及信 號VPSIM_之信號的單一結束版本,且供給可程式化臨界比 較器620。信號VCH是由PSIM 40的Vsense電路250所 發展之微分信號VPSIM +及VPSIM_的頻帶限制、單一結 束版本。信號Ich是由PSIM 40的Isense電路240所發展 之微分信號IPSIM+及IPSIM-的頻帶限制、單一結束版 本。將信號Ich和VCH輸入到DSPC 63 0的類比對數位轉 換器63 5。隨後將更詳細討論由數位信號處理器和控制器 6 3 0在這些類比信號上所執行的處理。 圖7圖解使用諸如用於U27:A-D的類比模型AD824 等市面上可購得的四運算放大器積體電路之信號調節器 -39- 200835923 610的電壓瀘波器部位700之一例示實施。放大器U27A 和電阻器R108,R107,RU5,及R116形成微分放大器’ 其將VPSIM1 +及VPSIM_之間的微分電壓轉換成相對於放大 器U27A的輸出(接腳1)之參考平面GNDANALOG的單一 結束電壓。放大器U27 A的輸出是圖6中的信號612並且 標明爲VCH’。將VCH’耦合至包含形成具有約2500 Hz的 3 dB交叉之六磁極Butterworth(巴特威士)濾波器的放大 φ 器U27B、U27C、及U27D和剩下的無源電阻器之內部網 路。在圖6中被標明作614(VCH)之此濾波器的輸出是被提 供到DSPC 63 0的類比對數位轉換器63 5之信號。假設類 比對數位轉換器63 5的10 kHz樣本率,則圖7所示的6 磁極Butterworth(巴特威士)濾波器將優於-80 dB的5kHz 之N y q u i s t比率之上的信號衰減,因此最小化混疊信號對 樣本化電壓信號的作用。 從PSIM信號IPSIM +及IPSIM-產生信號ICH之信號 φ 調節器6 1 0的電流濾波器部位在拓樸上與電壓濾波器完全 相同,但是在例示實施例中並不使用等同 VCH’的電流信 號。電流濾波器的輸出(ICH)同樣地由具有約2500 Hz的3 dB交叉之完全相同的Butterworth(巴特威士)濾波器來頻 帶限制。 再次參考圖6,功能性可程式化臨界比較器620比較 信號VCH’與DSPC 630所設定和控制的可程式化電壓値以 反應來自PSIM的室電壓信號之間的差異數値。可程式化 臨界比較器620的輸出622是信號\ARC。每當感測的微 -40- 200835923 分室電壓數値超過程式化臨界値時可程式化臨界比較器 622確立\ARC爲邏輯”1”値’每當感測的微分室電壓數値 低於程式化臨界値時可程式化臨界比較器622確立\arc 爲邏輯”〇”値。可程式化遲滯以稍後將說明的方式應用到 程式化臨界値,藉以最小化應用到可程式化臨界比較器 620的雜訊VCH’信號。下面,信號\ARC(即、”非ARC”)是 在邏輯狀態的條件(室電壓在預定臨界之下)被稱作 ARCING條件,及\ARC信號是在邏輯”1”狀態的條件(室電 壓在預定臨界之上)被稱作NON — ARCING條件。 圖8圖解可程式化臨界比較器620的一例示實施。臨 界比較器620包括市面上可購得的類比比較器積體電路 U12:A,諸如 LM319M等。GNDANALOG是類比參考平 面;DGND是DSPC 630和其他裝置的邏輯信號所使用之 數位參考平面,及積體電路偏壓是在+5V。功能上,類比 比較器U12:A具有輸出終端(接腳12)、反向輸入終端 1IN-(接腳5)、非反向輸入終端1IN +(接腳4)。U12:A的 輸出終端(接腳12)產生圖6中的信號622並且標明作 \ARC。名義上,每當非反向輸入中的信號是在比反向輸 入終端的信號之電壓高的電壓中時,存在於輸出終端之邏 輯信號被表示作邏輯” 1”。相反地,每當非反向輸入中的 信號是在比反向輸入終端的信號之電壓低的電壓中時,存 在於輸出終端中的邏輯信號是邏輯,,〇,,。每當輸入終端中 的兩各自信號完全相同時之存在於輸出終端中的信號未被 定義。在本申請案的實施例中,裝置U12:A被配置成具 -41 - 200835923 有開放的集極輸出。電阻器R27是提升電阻器,被耦合至 用於供給08?、八01^、及其他電路系統電力之+3.3¥偏 壓供應。電阻器R25在標稱上是200 k-ohms及提供最小 遲滯位準到類比比較器U12:A以當U12:A遇到緩慢變化 的輸入信號時達到平順邏輯狀態過渡而無振盪。連同連接 至R26的精確性3.00伏特參考電壓源之電阻器R28、 R29、及R26提供形式的比例、瞬時室電壓信號VCH’的仿 射變換:The Vsense circuit 250 measures the potential difference between the center conductor 215 and the outer conductor 210 and produces a differential that is reflected in the potential difference. The Vsense circuit includes a first input terminal 252 coupled to the inner conductor 215 and having a voltage signal V-. The Vsense circuit in turn includes a second input terminal 254 coupled to the outer conductor 210 and having a voltage signal V+. The Vsense circuit has a first output terminal 256 with an output voltage signal VPSIM- and a second output terminal 258 with an output voltage signal VPSIM+. In an exemplary implementation, the coaxial cable 35 connecting the power supply 30 to the vacuum chamber 10 is terminated with a standard commercial UHF type connector. According to one aspect of the present invention, the mechanical package of the PSIM 40 is configured and assembled such that the cable 35 can be terminated at one end, inserted through the aperture 225 of the PSIM 40, and re-terminated to complete the power supply 30 and the chamber 10. Circuit between. In another implementation, the PSIM 40 includes a UHF type connector such that the PSIM 40 can be inserted into the circuit of the cable 35 between the power supply 30 and the chamber 10. Figure 3 illustrates providing a differential output voltage signal to reflect the cathode of the PVD system. One of the Vsense circuits 25 0 that differs from the instantaneous voltage between the anode and the anode is exemplified. The exemplary Vsense circuit shown in Figure 3 provides a very high impedance between the voltage signal present at its input terminal and the voltage signal provided at its output terminal. A positive input voltage signal 254(V+) is derived from the outer conductor 210, and a negative voltage signal 252(V-) is derived from the inner conductor 215 of the power supply cable 35. According to the illustrated example, the dream plane 'GNDANALOG, Resistor networks R3 and R4 provide a 500:1 attenuation factor for each respective input voltage signal. Each resistor network R3 and R4 has a nominal resistance of approximately 20 million ohms between the network sensing terminal (pin 1) and the reference plane (pin 3). Resistive networks R3 and R4 can be implemented using, for example, a thick film divider network such as 〇hmcraft P/N CN-470. The 1 000 volt application voltage between 252( + ) and 2 5 4(-) allows 25 microamps of current to flow into pin 1 of R4 and out of pin 1 of R3. Pin 3 of each of these voltage attenuators (ie, the resistor network) is coupled to the reference plane, GNDANALOG. Because each voltage attenuator provides 500:1 fading -32-200835923 minus, the differential voltage measured between pins 2 of each resistor network is attenuated by 5 00:1 (ie, in pin 2 of R4) The attenuation signal VPSA + and the attenuation signal VPSA- in pin 2 of R3), and this measurement is independent of the voltage difference between V + and GNDANALOG or V- and GNDANALOG. In an exemplary implementation, the PVD sputtering chamber 1 has applied radio frequency (RF) energy to stabilize the plasma. The capacitors C2, φ C3, and C5 of the Vsense circuit 25 0 significantly attenuate (ie, filter) this high frequency "noise". According to an exemplary implementation, the combination of C2 and C3 has an effective magnetic pole in approximately 22 kHz. As mentioned above, the differential voltage between VPSA- and VPSA+ is a limited representation of the frequency band of the signal appearing between V- and V+ with a nominal DC attenuation factor of 5 00:1. The equivalent DC Thevenin source impedance between VPSA- and VPSA+ is high (at 80 kOhms) and therefore not suitable for transmission between large distances or into low impedance loads. Therefore, a differential instrumentation operational amplifier U2 such as the LT 1 920 instrumentation amplifier is incorporated in the Vsense circuit to act as an impedance voltage follower. Operational amplifier U2 provides a high impedance input (pins 2 and 3) that will not be significantly loaded into the outputs of attenuators R3 and R4. Pin 2 of resistor network R3 is coupled to the inverting input of U2 (pin 2), and pin 2 of resistor network R4 is coupled to the non-inverting input of U2 (pin 3). In an exemplary embodiment, resistor RG2 sets the voltage gain of U2 and is selected to produce a gain of 1 V/V. The final output of U2 (pin 6) is a single end low impedance voltage source relative to GNDANALOG that closely follows the developed voltage between VPSA- and VPSA+. -33- 200835923 The output of U2 (pin 6) is coupled to the central terminal of BNC type connector J2 with signal VPSIM+ 258. The external connector of the BNC type connector J2 carries the signal VPSIM-256 and is coupled to the reference plane GNDANALOG. The final differential voltage between the signals VPSIM+ and VPSIM- is the frequency band limited by the differential input signals V+ and V- and has a nominal DC response of 2 mV/V. In one embodiment, the Hall effect type DC current converter 220 reacts to flow in the internal power supply conductor 2 when coupled to a suitable load impedance between the signals 244(1+) and 242(1-). The current of the current in 1 5 . In a particular embodiment, a model LA25_P Hall effect type DC current converter fabricated by LEM is used, the current signal developed by DC current converter 220 is approximately 1 000:1 ratio of the total current through aperture 220. Thus, within the limits of the DC current converter design, a constant current of 1 mA through the impedance between 244 (1 + ) and 242 (1-) is generated by the 1 amp signal of aperture 220. Figure 4 illustrates an exemplary implementation of a current sensing configuration. The Isense circuit 240 generates a voltage that is responsive to the current developed by the exemplary LA25-P Hall effect type DC current converter. In this example, signal I- is coupled to the reference plane GNDANALOG of PSIM40. An impedance comprising a 100 Ohm resistor R6 in parallel with a low pass filter comprising resistor R7 and capacitor C10 is coupled between 1 + and I-. Neglecting the relatively high impedance of the low pass filter, current 1 + is flowing through the crystal grouper R6 and back to the current converter 220 via I-. The net result of the circuit comprising current converter 220 and resistor R6 is a voltage across R6 that is proportional to the current flowing through aperture 222, and has a proportionality constant of 100 mV/Ampere. Include resistors -34- 200835923 The R7 and CIO low-pass filters have a nominal 3 dB cutoff frequency of 23 kHz to remove any spurious noise from the current signal, including some of the RF components included above. Glow discharge is stable. The low pass filter output (VIL in Figure 4) is a limited representation of the frequency band developed by current converter 220 across the voltage of R6. Instrumentation amplifier U3, such as LT 1 920, acts as a low impedance voltage follower coupled to the VIL of the non-inverting input (pin 3) of VIL to U3, which is coupled to φ GNDANALOG via resistor R5. The reverse input of U3 (pin 2). In this example, resistor RG1 is used to set the gain of instrumentation amplifier U3 to 1 V/V. The output terminal of U3 (pin 6) carries the signal IPSIM + and is coupled to the central conductor of the BNC type connector J3. The external conductor of the BNC type connector J3 is coupled to GNDANALOG and specifies the signal IPSIM-. The voltage developed between IP SIM+ and IPS IM- is therefore a signal that reflects the current flowing in aperture 220, is limited to a frequency band of a cutoff frequency of about 23 kHz and has a proportionality constant of about 100 mV/Ampere. φ Figure 5 illustrates an exemplary implementation of a PSIM power supply circuit 500 (not shown in Figure 2) and requires biasing of the operational amplifiers U2 and 113. For example, the dual power supply module U1 of the Astrodyne model FDC10-24D15 generates a nominal + 1 5 VDC and -1 5 VDC for biasing the PSIM amplifiers U2, U3 and the current sensor CS1. Module u 1 derives its bias power from an external nominal 24 VDC power supply via connector J1, pins i and 3, and pin 1 is biased to a more positive direction than pin 3. The pin 3 of the connector J1 is coupled to the -Vin terminal of the power supply module U1. Coupling the -35-200835923 pin 3 of the connector J1 to the +Vin terminal of the power supply module U1 via the Schottky barrier diode D2 to protect the module U1 from being accidentally reversed due to the polarity of the power supplied to the connector J1 Broken. The power supply module U1 has three output terminals +Vo, -Vo and Com. The +15 VDC signal is provided at the terminal +Vo and the -15 VDC signal is provided at the terminal-Vo. The terminal Com is coupled to the reference plane GNDANALOG. In an application, pin 2 of connector J1 is also coupled to GNDANALOG as a common potential as needed. Resistors R1 and R2 and light emitting diode D1 are coupled in series between a +15 VDC bias and a -15 VDC bias to provide an indication of operation of PSIM power supply circuit 500. The arc is defined as the collapse in the number of chamber voltages that intersect the threshold voltage. When arcing occurs, the chamber (target) voltage 値 decreases rapidly (i.e., closer to the ground potential) from steady state (i.e., non-arc) conditions, and the chamber current increases more slowly due to the series inductance. The programmed threshold voltage is a predetermined chamber voltage at which the arcing state is determined in or below the predetermined chamber voltage. The predetermined chamber voltage can be a fixed or nominal time varying function, and the expected, potentially time varying chamber voltage. A non-arcing state is determined when the chamber voltage is above the threshold voltage. According to another exemplary implementation, the threshold voltage is determined from a period including a non-arcing state, and an arcing state is defined whenever the chamber voltage is below a voltage threshold. Multiple threshold voltages can be used to determine the number of arcs (ie, voltage drop or "severity"). For example, the severity of an arc that is critical to -200V critical but not -100V critical can be considered to be less severe than the arcing of the two critical crossings. The ADU 50 includes a digital signal processor to process the -36 - 200835923 signals received from the PSIM to provide a digitally filtered representation of the room voltage and current signals (e.g., digital signals) to a logical configuration. According to an exemplary implementation, the ADU includes an analog-to-digital converter (A/D). The ADU is additionally designed to set at least one programmable arcing critical voltage. In another implementation, the ADU is also designed to set at least one hysteresis threshold voltage. According to one aspect, the individual thresholds can be set at any point along the continuous spectrum; this can be affected by the potentiometer setting controlled by the comparator circuit. According to another exemplary implementation, the individual thresholds are digitally set by digital-to-analog converters or by complex separation thresholds achieved by switching specific circuit components into comparator circuit configurations, such as by selecting a resistor network. Combination. To identify the hysteresis threshold, the ADU provides a programmable hysteresis function to detect the arcing of the slow proof itself. Both the arcing (voltage) threshold and the hysteresis function can be directly programmed or programmed into the ADU, or can be selectively controlled by a remote device communicatively coupled to the ADU, for example, via an Ethernet network. Standard Momentum Communication Top Cap, Modbus Plus, • Devicenet, or other data network. In an exemplary implementation, the ADU is firmly coupled to a programmable logic controller (PLC), such as momentum M1-E through a high-speed dedicated serial interface, and the PLC can be programmed to be continuously and continuously employed based on an instant adaptive algorithm. Arcing voltage critical and hysteresis function. 6 illustrates an exemplary embodiment of an arc detection unit (ADU) in accordance with a digital signal processor and controller (DSpc) 63, including a digital signal processor (DSP) integrated circuit, such as available from Dallas, Texas, USA The model TMS320F2407 purchased by Texas Instruments Inc., and other commercially available integrated circuit devices for developing and controlling the -37-200835923 signal to control and communicate with external devices. An example of such a device is an address decoder, which is generally used to divide the address space of the DSP into a plurality of ranges, and select one of the plurality of external integrated circuit devices for data transfer to and from the DSP. The development of these signals using integrated circuits is based on the timing requirements of digital signal processors when accessing external devices, and is known to those skilled in the art of designing and implementing microprocessor- and microcontroller-based systems. . The DSP illustrated by φ includes 16 analog input channels that can be digitized and sampled by the integrated 1 类 bit class analog digital converter 63 5 . Signals such as signals Ich 616 and VCH 614, which will be discussed later, will be digitized and sampled by the DSP at a user programmable rate. In an exemplary implementation, the programmable rate can be increased to 10 kHz per channel. In another exemplary implementation, the software program executable within the DSP provides for selection and application of one of the complex digital finite impulse response filters to the sampled data signal. The DSPC 630 also provides a control signal to the programmable φ-type critical comparator function 620 to set the threshold and hysteresis of the programmable threshold comparator. In addition, the DSPC 63 0 provides control and data paths to and from the High Speed Arc Detection Logic (ADLU) 640, which operates in conjunction with the programmable threshold comparator 620 to accumulate arc statistics, such as the number of arcs and the total arc. Time and so on. The DSPC 63 0 communicates with an external logic interface 60, such as a networked communication top hat or a programmable logic controller (PCL), via a local data interface 70, such as a proprietary ATII interface. Examples of information that can be supplied from the ADU to the external logic configuration 60 are the filtered chamber voltage and current, the number of individual arcing events, and other defects that indicate the severity of the arc, such as the arc-38-200835923 detector unit 64 〇 determined by the person. Examples of data that can be received by an ADU from an external logic configuration are the instantaneous arcing threshold voltage and hysteresis&apos; and the logic control signals that control the arc detection logic unit. The basic sensing processing inputs of the arc detecting unit 50 are differential output signals from the Vsense circuits (VPSIM+ and VPSIM-) of the PSIM 40 and the Isense circuits (IPSIM + and IPSIM-). Referring again to Figure 6, these signals drive analog signal conditioner 6 1 0. The analog signal conditioner 6 10 converts the individual micro-classification ratio signals into signal end signals that can be used by the remainder of the ADU. The signal conditioner 610 also provides a band limiting filter for each input analog signal, such that the DSPC 63 0 can apply digital signal sampling and processing algorithms without the need to be referred to as an "aliased" environment. The analog signal conditioner 6 1 0 includes a three-output terminal: an output terminal 614 that provides a signal VCH, an output terminal 614 that provides a signal VCH, and an output terminal 616 that provides a signal ICH. The signal VCH, which is a single end version of the signal originating from the PSIM and derived from the signal VPSIM + and the signal VPSIM_, is supplied to the programmable threshold comparator 620. The signal VCH is a band-limited, single-end version of the differential signals VPSIM+ and VPSIM_ developed by the Vsense circuit 250 of the PSIM 40. The signal Ich is a band-limited, single-end version of the differential signals IPSIM+ and IPSIM- developed by the Isense circuit 240 of the PSIM 40. The signals Ich and VCH are input to the analog-to-digital converter 63 5 of the DSPC 63 0 . The processing performed by the digital signal processor and controller 630 on these analog signals will be discussed in more detail later. Figure 7 illustrates an exemplary implementation of a voltage chopper portion 700 of a signal conditioner -39-200835923 610 using a commercially available four operational amplifier integrated circuit, such as the analog model AD824 for U27:A-D. Amplifier U27A and resistors R108, R107, RU5, and R116 form a differential amplifier' which converts the differential voltage between VPSIM1 + and VPSIM_ into a single end voltage relative to the reference plane GNDANALOG of the output of amplifier U27A (pin 1) . The output of amplifier U27 A is signal 612 in Figure 6 and is designated VCH'. The VCH' is coupled to an internal network comprising amplifying φ U27B, U27C, and U27D forming a six-pole Butterworth filter having a 3 dB crossover of about 2500 Hz and the remaining passive resistors. The output of this filter, designated 614 (VCH) in Figure 6, is the signal supplied to the analog-to-digital converter 63 5 of DSPC 63 0 . Assuming a 10 kHz sample rate of the analog-to-digital converter 63 5, the 6-pole Butterworth filter shown in Figure 7 will attenuate the signal above the N yquist ratio of 5 kHz above -80 dB, thus minimizing The effect of aliasing signals on the sampled voltage signal. The current filter portion of the signal φ regulator 6 10 from the PSIM signal IPSIM + and IPSIM-generating signal ICH is identical in topology to the voltage filter, but does not use the current signal equivalent to VCH' in the illustrated embodiment. . The output of the current filter (ICH) is likewise band limited by an identical Butterworth filter with a 3 dB crossing of approximately 2500 Hz. Referring again to Figure 6, functional programmable threshold comparator 620 compares the programmable voltages set and controlled by signal VCH' and DSPC 630 to reflect the difference 値 between the chamber voltage signals from the PSIM. The output 622 of the programmable threshold comparator 620 is the signal \ARC. Whenever the sensed micro-40-200835923 compartment voltage exceeds the stylization threshold 可 the programmable threshold comparator 622 establishes \ARC as logic "1" 値 'when the sensed differential chamber voltage is lower than the program The programmable threshold comparator 622 asserts \arc as a logical "〇". The programmable hysteresis is applied to the stylized threshold in a manner to be described later, thereby minimizing the noise VCH' signal applied to the programmable threshold comparator 620. In the following, the signal \ARC (ie, "non-ARC") is the condition in the logic state (the chamber voltage is below the predetermined threshold) is called the ARCING condition, and the \ARC signal is the condition in the logic "1" state (chamber voltage) Above the predetermined threshold) is called the NON - ARCING condition. FIG. 8 illustrates an exemplary implementation of a programmable threshold comparator 620. The critical comparator 620 includes a commercially available analog comparator integrated circuit U12:A, such as the LM319M. GNDANALOG is the analog reference plane; DGND is the digital reference plane used by the logic signals of the DSPC 630 and other devices, and the integrated circuit bias is at +5V. Functionally, the analog comparator U12:A has an output terminal (pin 12), a reverse input terminal 1IN- (pin 5), and a non-inverting input terminal 1IN + (pin 4). The output terminal (pin 12) of U12:A produces signal 622 in Figure 6 and is labeled as \ARC. Nominally, whenever the signal in the non-inverting input is in a voltage higher than the voltage of the signal of the reverse input terminal, the logic signal present at the output terminal is represented as a logical "1". Conversely, whenever the signal in the non-inverting input is in a voltage lower than the voltage of the signal of the inverting input terminal, the logic signal present in the output terminal is logic, 〇, . The signal present in the output terminal is undefined whenever the two respective signals in the input terminal are identical. In an embodiment of the present application, device U12:A is configured to have an open collector output of -41 - 200835923. Resistor R27 is a boost resistor that is coupled to a +3.3¥ bias supply for supplying 08?, 八01^, and other circuitry power. Resistor R25 is nominally 200 k-ohms and provides a minimum hysteresis level to analog comparator U12:A to achieve a smooth logic state transition without oscillation when U12:A encounters a slowly varying input signal. Resistor R28, R29, and R26, coupled to the accuracy of the 3.00 volt reference voltage source connected to R26, provide a proportional conversion of the form, instantaneous chamber voltage signal VCH':

Vcs = 〇.6Vch+1.〇 (等式 1) 其中VCS即爲出現在圖8中之類比比較器U12:A的接腳 4、非反向輸入的信號。因此,根據等式1,在乂0^’的 2.5V信號出現當作類比比較器U12:A的接腳4中之2.5V 信號。藉由類比比較器製造商保證在〇及- 1 25 0伏特之間 的室操作電壓的範圍中線性操作以將此仿射變換應用到維 持類比比較器U12:A的輸入在所需的範圍內。在一特定 實施例中,以市面上可購得的National Semiconductor(國 際半導體)所製造之調整器模型REF 193來提供用於內部類 比對數位轉換器的3.00伏特參考。 提供可程式化臨界電壓信號 VTH到類比比較器 U12:A(接腳 5)的反向輸入以設定 ADU 過渡在 NON — ARCING及ARCING狀態之間的室電壓。以後述的 方式所產生之可程式化遲滯値允許VTH的値可成爲模型。 -42- 200835923 使用者指定値可被程式化以設定系統從NON_ARCING過 渡到ARCING狀態之室電壓數値 V ΤΗΝA 5 及第二電壓數値 νΤΗΑΝ以設定系統從ARCING過渡到NON_ARCING狀態 之電壓。裝置 U13是雙14位元數位對類比轉換器 (DAC),例如,Analog Device,Inc(類比裝置公司)所製造 的模型AD 5322,其被用以設定VTH的兩値。其具有兩輸 出終端,被標明爲V〇_A及V0 B,由使用整合至DSP之標 φ 準串聯週邊介面(SPI)特徵的DSP來設定其電壓値。標稱 爲 SPIIMO、SPICLK、\DAC1 —SELECT 及\丄〇八0 的信號是 由DSPC 630所使用的信號以爲用於兩DAC通道的每一個 程式化範圍在〇及4095之間的數位値。上述的精確3.00 伏特被應用到U13,結果各個DAC輸出產生0-3.00伏特 範圍中的獨立、類比輸出,與程式化的數位値對最大値 4 095的比成比例。從U13的DAC B所產生之輸出終端 V〇_b(接腳6)被親合至運算放大器U14:A的非反向輸入, 春 及被標明爲V0B。如隨後所不一般,信號V〇B決定比較器 U12:A從NON_ARCING過渡到ARCING狀態之電壓臨界 VTHNA。由U13(接腳5)之DAC A的輸出所產生之信號 V 〇 a被耦合至類比開關U 1 5 : D的輸入終端,及如隨後所示 一般,連同信號 V0B —起用來設定比較器U12:A從 ARCING過渡到NON —ARCING狀態之電壓臨界VTHAN。 根據一例示實施,U15:D是四類比開關,例如,Intersil 所製造的DG201HS和其他。此類比開關的輸出出現在 U15:D的接腳15並且在圖8中被標明作Vsw。 -43- 200835923 載運算放大器U14:A的輸出接腳1中產生狀態過渡 臨界電壓VTH。採用理想運算放大器U14:A,很容易顯示 出輸出信號VTH與信號V0B和信號Vsw的關係: V th = 2V 〇_b~V sw (等式 2) 信號Vsw的瞬時値係依據U1 5 :D的開關控制輸入(接腳16) φ 之邏輯狀態。當類比開關U15:D的開關控制輸入(接腳16) 中之信號是在邏輯狀態時,VSW跟隨DAC U13所產生 且被連接到U15:D的輸入終端接腳14之信號V0A。當類 比開關U1 5 :D的開關控制輸入(接腳16)中之控制信號是 在邏輯”1”狀態時,類比開關U1 5 :D的電路系統驅動輸出 終端(接腳15)位在非常高的阻抗狀態,及由於電阻器R30 的低電阻値和運算放大器U 1 4的極小輸入偏動電流,所 以Vsw緊緊跟隨V0B。 φ 通訊到u 1 5 _.D的開關控制輸入之信號係由邏輯or閘 極U16:A所提供。到〇R閘極U16:A之輸入信號是來自 DSPC 63 0的遲滯賦能控制輸出(\HYSEN)及來自類比比較 器U12:A(接腳12)的輸出之信號。在DSP軟體控制之下 產生信號\HYSEN的邏輯狀態並且在正常操作下被維持在 邏輯”〇”狀態中。只有在某些製造系統校準和測試程序以 隔離遲至產生信號V〇a與Vsw期間,將信號\HYSEN設定 成邏輯”1”狀態。 如上述,由於類比開關U1 5 :D的狀態而模型化Vsw 44- 200835923 和因此VΤΗ的値,類比開關U 1 5 : D的狀態係依據類比比 較器U12:A(接腳12)的輸出終端中之數位信號\ARC的狀 態而定。現在將導出二者皆由DAC U 1 3所發展的信號 VOA及VOB與比較器臨界値VTHNA及VTHAN之間的關 係。首先假設U12:A的輸出信號最初是在邏輯高狀態。 藉由定義NON —ARCING狀態,此需要U12:A的接腳4上 之位準移位室電壓信號Vcs成爲比U12:A的接腳5上之目 φ 前臨界電壓VTH高的位準。在該方案中,類比開關U15:D 的輸出終端呈現高阻抗,及如上述,由於R3 0的低阻抗値 和運算放大器U14:A的低輸入偏動電流,Vsw被迫採用値 V0B。在此條件下,運算放大器U14:A的輸出終端中之信 號跟隨V0B,且從等式2,VTH亦採用値VOB。因此,根 據等式3將電壓信號 V0B直接設定比較器U12: A從 NON_ARCING過渡到 ARC IN G狀態的比例、位準移位電 壓:Vcs = 〇.6Vch+1.〇 (Equation 1) where VCS is the pin 4 of the analog comparator U12:A appearing in Figure 8, the non-inverting input signal. Therefore, according to Equation 1, the 2.5V signal at 乂0^' appears as a 2.5V signal in pin 4 of the analog comparator U12:A. Linear operation is guaranteed by the analog comparator manufacturer in the range of chamber operating voltages between 〇 and 1.25 volts to apply this affine transformation to maintain the analog comparator U12: A input within the desired range . In a particular embodiment, a 3.00 volt reference for an internal analog-to-digital converter is provided using a commercially available regulator model REF 193 manufactured by National Semiconductor (International Semiconductor). Provides a programmable threshold voltage signal VTH to the analog input U12:A (pin 5) inverting input to set the ADU transition between the NON - ARCING and ARCING state of the chamber voltage. The programmable hysteresis generated by the method described later allows the VTH to become a model. -42- 200835923 User specified parameters can be programmed to set the voltage of the system from NON_ARCING to ARCING state 値 V ΤΗΝA 5 and the second voltage 値 ν ΤΗΑΝ to set the system to transition from ARCING to NON_ARCING. The device U13 is a dual 14-bit digital-to-analog converter (DAC), for example, Analog Model, Inc., Model A 5322 manufactured by Analog Devices, Inc., which is used to set two VTHs. It has two output terminals, designated V〇_A and V0 B, which are set by a DSP using a standard φ quasi-series peripheral interface (SPI) feature integrated into the DSP. The signals nominally SPIIMO, SPICLK, \DAC1 - SELECT, and \丄〇8 are the signals used by the DSPC 630 to be used for each of the two DAC channels with a stylized range between 〇 and 4095. The above accurate 3.00 volts is applied to U13, and as a result each DAC output produces an independent, analog output in the range of 0-3.00 volts, which is proportional to the ratio of the programmed digits to a maximum 値 4 095. The output terminal V〇_b (pin 6) generated from the DAC B of U13 is affinityd to the non-inverting input of the operational amplifier U14:A, which is labeled V0B. As is not usual later, the signal V 〇 B determines the voltage critical VTHNA at which the comparator U12:A transitions from NON_ARCING to the ARCING state. The signal V 〇 a generated by the output of DAC A of U13 (pin 5) is coupled to the input terminal of analog switch U 1 5 : D, and as shown subsequently, together with signal V0B is used to set comparator U12 : A transition from ARCING to NON - ARCING state voltage critical VTHAN. According to an exemplary implementation, U15:D is a four analog switch, such as DG201HS manufactured by Intersil and others. The output of such a ratio switch appears at pin 15 of U15:D and is labeled Vsw in Figure 8. -43- 200835923 The state transition threshold voltage VTH is generated in the output pin 1 of the operational amplifier U14:A. With the ideal operational amplifier U14:A, it is easy to show the relationship between the output signal VTH and the signal V0B and the signal Vsw: V th = 2V 〇_b~V sw (Equation 2) The instantaneous tick of the signal Vsw is based on U1 5 :D The switch controls the logic state of the input (pin 16) φ. When the signal in the switch control input (pin 16) of the analog switch U15:D is in the logic state, VSW follows the signal V0A generated by the DAC U13 and connected to the input terminal pin 14 of U15:D. When the control signal in the switch control input (pin 16) of the analog switch U1 5 :D is in the logic "1" state, the circuit drive output terminal (pin 15) of the analog switch U1 5 :D is very high. The impedance state, and due to the low resistance of resistor R30 and the minimum input bias current of op amp U 1 4, Vsw closely follows V0B. The signal of the φ communication to the switch control input of u 1 5 _.D is provided by the logic or gate U16:A. The input signal to 〇R gate U16:A is the hysteresis enable control output (\HYSEN) from DSPC 63 0 and the output from analog comparator U12:A (pin 12). The logic state of the signal \HYSEN is generated under the control of the DSP software and is maintained in a logic "〇" state under normal operation. The signal \HYSEN is set to a logic "1" state only during certain manufacturing system calibration and test procedures to isolate the delayed generation of signals V〇a and Vsw. As described above, since the state of the analog switch U1 5 :D is modeled as Vsw 44-200835923 and thus VΤΗ, the state of the analog switch U 1 5 : D is based on the output terminal of the analog comparator U12:A (pin 12) The status of the digital signal \ARC in the middle. The relationship between the signals VOA and VOB developed by DAC U 1 3 and the comparator thresholds 値VTHNA and VTHAN will now be derived. First assume that the output signal of U12:A is initially in a logic high state. By defining the NON-ARCING state, the level shift chamber voltage signal Vcs on pin 4 of U12:A needs to be higher than the target φ front threshold voltage VTH on pin 5 of U12:A. In this scheme, the output terminal of analog switch U15:D exhibits high impedance, and as described above, Vsw is forced to use 値V0B due to the low impedance of R3 0 and the low input bias current of operational amplifier U14:A. Under this condition, the signal in the output terminal of operational amplifier U14:A follows V0B, and from Equation 2, VTH also uses 値VOB. Therefore, according to Equation 3, the voltage signal V0B is directly set to the ratio of the comparator U12: A transition from NON_ARCING to the ARC IN G state, the level shift voltage:

Vthna = V〇b (等式 3 ) 一旦比例、移位室電壓數値VCS下降到根據等式3所產 生的臨界電壓VTH之程式化NON_ARCING到ARCING狀 態過渡値VTHNA之下,則比較器U12:A的輸出中之信號 從邏輯”1”狀態(NON ARCING)過渡到邏輯,’0”(ARCING)狀 態。假設\HYSEN控制信號是在邏輯”0”狀態中,(使可程 式化遲滯函數生效),如上述,類比開關U15:D關上並且 -45- 200835923 類比開關U15:D的輸出Vsw跟隨由U13之DAC A所確立 的類比開關U15:D的輸入V〇A。從V〇b被設定成Vthna之 等式2,最後的臨界値VTH變成:Vthna = V〇b (Equation 3) Once the ratio, shift chamber voltage 値VCS falls below the stylized NON_ARCING to ARCING state transition 値VTHNA according to the threshold voltage VTH generated by Equation 3, the comparator U12: The signal in the output of A transitions from the logic "1" state (NON ARCING) to the logic, '0' (ARCING) state. Assume that the \HYSEN control signal is in the logic "0" state (to make the programmable hysteresis function take effect As above, the analog switch U15:D is turned off and the output Vsw of the analog switch U15:D is followed by the input V〇A of the analog switch U15:D established by the DAC A of U13. It is set from V〇b In Vthna's equation 2, the final critical 値VTH becomes:

Vth = 2VThna-V〇a (等式 4) 若遲滯的程式化値(按比例以反應PSIM的增益和位準移位 網路)是VhYSS,則根據等式5設定V〇A: V〇a = Vthna-Vhyss (等式 5) 及置換成等式4提供:Vth = 2VThna-V〇a (Equation 4) If the hysteresis stylized 値 (proportional to reflect the PSIM gain and level shifting network) is VhYSS, then V〇A is set according to Equation 5: V〇a = Vthna-Vhyss (Equation 5) and the substitution into Equation 4 provides:

Vthan = Vthna + Vhyss (等式 6) φ 根據等式5設定V0A使得當ADU是在ARCING狀態中時 能夠將固定遲滯電壓値 VHYSS增加至NON_ARCING到 ARCING 狀態過渡電壓 VTHNA以產生 ARCING 到 NON —ARCING過渡電壓値VTHAN。總之,在此實施例中, 根據等式1,DAC B輸出信號VOB被用於直接設定可程式 化比較器從NON_ARCING過渡到 ARCING狀態之室電 壓,而在等式5指出演算法以決定用於DAC A的値以增 加遲滯値到Vthna以產生從ARCING到NON-ARCING狀 態之相關但是可能較高的過渡電壓 V THAN 0 -46 - 200835923 根據一實施,可程式化比較器620從NON_ARCING 過渡到ARCING狀態之想要的室電壓室臨界電壓値及欲增 加至此室電壓臨界値的想要電壓以定義可程式化比較器從 ARCING過渡到NON —ARCING狀態之室電壓値可透過局 部資料介面70從邏輯配置60通訊到DSPC 630,及DSPC 630可計算正確的數位値以發送到DAC U13,藉以由於使 用被儲存整合至DSP記憶體之適當的按比例及偏移常數 φ 之仿射變換來產生適當的信號V0A及ν0Β。在一例示實施 例中’爲了提供局度準確的臨界値’爲個別模組g十算該按 比例和偏移常數値以說明由於校準常式的電子組件(如、 電阻器容限値)中所遇到之從標稱値的一般偏差。這些校 準常數値被儲存在整合至DSPC 630的串聯EEPROM。 根據一例示實施,DSP 630的類比對數位轉換器之抽 樣率是在每通道10 kHz等級上,或每〗〇〇uS之已過濾的 室電壓和電流信號VCH及ICH的一完整樣本。在此比率 • 中,luS或更小的持續期間之隨機發生的微發弧被DSP偵 測到的可能性小於1 %,及如上述,1 uS等級上的微發弧 都常見到並且可能在積體電路製造中產生破壞。爲了可靠 地偵測持續期間中之1 US或更小等級上的微發弧,ADU 50包括高速發弧偵測器邏輯單元(ADLU)640,其與可程式 化臨界比較器620共同運作並且可被DSPC 63 0控制和監 視以產生有關PVD處理期間的發弧之統計資料。參考圖 6,DSPC 630提供控制信號和系統時脈信號SYS CLK 650 到ADLU 640並且以隨後將討論的方式從ADLU 640讀取 -47- 200835923 資料和寫入資料至ADLU 640。ADLU 640包括第一高速 計數器,被設計成\ARC信號從NON —ARCING邏輯狀態過 渡到ARCING邏輯狀態之次數,如同可程式化臨界比較器 620的程式化電壓臨界値和室1 〇的陰極和陽極之間的電 壓所決定一般。如上述,與電壓下降和電流增加的數値一 樣,發弧的持續期間是其嚴重性的一指示。因此,ADLU 640亦包括計時器,其被設計成量測可程式化臨界比較器 自以隨後將討論的方式所設定之最後計時器重設起在 ARCING狀態中所花的持續期間。根據一例示實施,計時 器是將時脈信號循環表格化之計數器。根據一特別例示實 施,在30 MHz中操作固定的時脈。計數器累計室已在生 產循環期間的發弧條件中之與總時間(自最後的重設起)成 比例的(計數)値。維持在ARCING狀態已發生之系統時脈 循環的數目之操作計數提供關於在發弧條件中濺鍍處理已 花的總時間之一量測。 根據一特定例子,ADLU包括位址和資料匯流排的形 式之到DSPC 630的介面機構,且從DSPC 630接收控制 信號,使得DSPC 63 0可從裝置讀取和寫入資料。ADLU 包括暫存器,其允許DSPC 63 0控制某些ADLU功能,諸 如計數器的重設、賦能、及使失效等’並且亦包括額外的 暫存器和控制邏輯以使DSPC 63 0能夠從ADLU讀取狀態 資訊。 圖9圖解使用已利用眾所皆知之FPLA設計工具加以 程式化的萬用型現場可程式化邏輯陣列(FPLA)之本發明的 -48- 200835923 A DLU 640之一例示實施。圖9中被圖示成在ADLU 640 外部的信號表示存在於FPLA的實體接腳上之信號,信號 在製造F P L A期間被預先分配到F p L A的特定接腳’或使 用在製造時預先定義的整合性FPLA程式介面910由開動 的DSP下載到FPLA的FPLA”程式”來定義。ADLU 640包 含由內部資料匯流排結構950耦合至DSP介面邏輯配置 960 之計數器單元(CU)920、計數器控制暫存器 (CCR)93 0、及計數器狀態緩衝器(CSB)940。如上述,信 號\人尺0 622是由可程式化臨界比較器620所產生之到 ADLU的邏輯輸入。系統時脈信號 SYSCLK 650是 30 MHz。邏輯方波信號係由DSPC 630所提供並且提供時間 基礎給ADLU。 圖10圖解本發明的CU 920之一例示實施。CU 920 包含16位元異步二進計數器(ACC)IOIO、32位元異步二 進計數器(ATC) 1 020、三個16位元鎖定器(ACC鎖定器 1 03 0、ATC高鎖定器1 040、及ATC低鎖定器1 050) ’及 三個16位元三狀態緩衝器(ACC三狀態緩衝器1 060、ATC 高三狀態緩衝器1 070、及ATC低3狀態緩衝器1 080)。 從計數器控制暫存器930提供三數位信號:計數器設定 (CRST)、賦能(ENB)、及快照(SNP)以分別控制 ACC和 ATC計數器的操作。當由CCR 930確立時,CRST信號使 ACC及ATC計數器能夠重設到零,並且在確立的同時將 計數器保留在重設條件中。當CCR 930釋出CRST信號, 分別賦能計數器,及它們的各自時脈(CLK)信號之各個高 -49- 200835923 對低過渡上的增加輸入。藉由計數過其最大量容量和回到 零,各個計數器具有被確立(及被鎖定)之各別的溢流位元 (OVF)。OVF信號維持高的直到由CRST信號的確立來清 除。ACC計數器1010係由信號ACCLK所驅動,ACCLK 係衍生自D正反器1 090的輸出終端1 092。ATC計數器 1 020係由信號ATCLK所驅動,其源自 NAND(反及)閘 1 0 9 4的輸出終端。Vthan = Vthna + Vhyss (Equation 6) φ Set V0A according to Equation 5 to increase the fixed hysteresis voltage 値VHYSS to NON_ARCING to ARCING state transition voltage VTHNA when the ADU is in the ARCING state to generate ARCING to NON — ARCING transition Voltage 値 VTHAN. In summary, in this embodiment, according to Equation 1, the DAC B output signal VOB is used to directly set the room voltage of the programmable comparator from NON_ARCING to the ARCING state, and in Equation 5, the algorithm is determined to be used for decision. DAC of DAC A to increase hysteresis to Vthna to produce a transitional voltage from ARCING to NON-ARCING state but possibly higher V THAN 0 -46 - 200835923 According to one implementation, programmable comparator 620 transitions from NON_ARCING to ARCING The desired chamber voltage chamber threshold voltage of the state and the desired voltage to be added to the chamber voltage threshold to define the room voltage for the programmable comparator to transition from ARCING to NON-ARCING state. Configuration 60 communicates to DSPC 630, and DSPC 630 calculates the correct digits for transmission to DAC U13, thereby generating appropriate results by using an appropriate affine transformation of the proportional and offset constants φ that are stored and integrated into the DSP memory. Signals V0A and ν0Β. In an exemplary embodiment, 'in order to provide a critically accurate threshold 为' for the individual module g, the proportional and offset constants are calculated to account for the calibration of the electronic components (eg, resistor tolerance 値) The general deviation from the nominal enthalpy encountered. These calibration constants are stored in a serial EEPROM integrated into the DSPC 630. According to an exemplary implementation, the sampling rate of the analog-to-digital converter of the DSP 630 is a complete sample of the filtered room voltage and current signals VCH and ICH at a level of 10 kHz per channel, or every 〇〇uS. In this ratio, the probability of a randomly occurring micro-arc in the duration of luS or less being detected by the DSP is less than 1%, and as mentioned above, micro-arcs on the 1 uS level are common and may be Destruction occurs in the manufacture of integrated circuits. In order to reliably detect micro-arcs on a 1 US or less level during the duration, the ADU 50 includes a High Speed Arc Detector Logic Unit (ADLU) 640 that operates in conjunction with the programmable threshold comparator 620 and It is controlled and monitored by DSPC 63 0 to generate statistics on arcing during PVD processing. Referring to Figure 6, DSPC 630 provides control signals and system clock signals SYS CLK 650 to ADLU 640 and reads -47-200835923 data and writes data to ADLU 640 from ADLU 640 in a manner that will be discussed later. The ADLU 640 includes a first high speed counter designed to count the number of times the \ARC signal transitions from the NON_ARCING logic state to the ARCING logic state, as can be the programmed voltage threshold of the programmable threshold comparator 620 and the cathode and anode of the chamber 1 〇 The voltage between them is determined in general. As mentioned above, the duration of the arc is an indication of its severity, as is the case with voltage drops and current increases. Thus, the ADLU 640 also includes a timer that is designed to measure the duration of the programmable threshold comparator from the last timer set in the manner discussed later in the ARCING state. According to an exemplary implementation, the timer is a counter that cyclically formats the clock signal. According to a particular exemplary implementation, a fixed clock is operated at 30 MHz. The counter accumulation chamber has been proportional to the total time (from the last reset) in the arcing conditions during the production cycle (count). The operational count that maintains the number of system clock cycles that have occurred in the ARCING state provides a measure of the total time spent on the sputtering process in the arcing conditions. According to a particular example, the ADLU includes an address and data bus in the form of an interface to the DSPC 630 and receives control signals from the DSPC 630 such that the DSPC 63 0 can read and write data from the device. The ADLU includes a scratchpad that allows the DSPC 63 0 to control certain ADLU functions, such as reset, enable, and disable of the counter, and also includes additional registers and control logic to enable the DSPC 63 0 to pass from the ADLU. Read status information. Figure 9 illustrates an exemplary implementation of the present invention - 48-200835923 A DLU 640 using a universal field programmable logic array (FPLA) that has been programmed using the well-known FPLA design tool. The signal illustrated in Figure 9 outside of the ADLU 640 represents a signal present on the physical pin of the FPLA, the signal being pre-assigned to the particular pin of the F p LA during manufacture of the FPLA or used at the time of manufacture. The integrated FPLA program interface 910 is defined by the running DSP download to the FPLA "FPLA" program. The ADLU 640 includes a counter unit (CU) 920, a counter control register (CCR) 93 0, and a counter status buffer (CSB) 940 coupled to the DSP interface logic configuration 960 by an internal data bus structure 950. As noted above, the signal \person ruler 0 622 is the logical input to the ADLU generated by the programmable threshold comparator 620. The system clock signal SYSCLK 650 is 30 MHz. The logic square wave signal is provided by DSPC 630 and provides a time base to the ADLU. FIG. 10 illustrates an exemplary implementation of a CU 920 of the present invention. CU 920 includes 16-bit asynchronous binary counter (ACC) IOIO, 32-bit asynchronous binary counter (ATC) 1 020, three 16-bit latches (ACC locker 1300, ATC high locker 1 040, And ATC low locker 1 050) 'and three 16-bit three-state buffers (ACC three-state buffer 1 060, ATC high-three state buffer 1 070, and ATC low-state buffer 1 080). A three-digit signal is provided from the counter control register 930: counter setting (CRST), enable (ENB), and snapshot (SNP) to control the operation of the ACC and ATC counters, respectively. When asserted by CCR 930, the CRST signal enables the ACC and ATC counters to be reset to zero and the counter is retained in the reset condition while asserted. When the CCR 930 releases the CRST signal, the respective enable counters, and their respective clock (CLK) signals are each high -49-200835923 for increasing inputs on low transitions. By counting their maximum capacity and returning to zero, each counter has its own (and locked) individual overflow bit (OVF). The OVF signal remains high until cleared by the assertion of the CRST signal. The ACC counter 1010 is driven by the signal ACCLK, which is derived from the output terminal 1 092 of the D flip-flop 1 090. The ATC counter 1 020 is driven by the signal ATCLK, which is derived from the NAND (reverse) gate 1 0 9 4 output terminal.

圖11爲 ADLU 640的各種信號之間的關係之時序 圖。參考圖10及11,反相器1096否定DSPC系統時脈信 號 SYSCLK 650 而變成\S YSCLK U 2 0。信號 \ S Y S C LK 驅 動D正反器1090的時脈輸入終端1091。在來自DSP的 SYSCLK信號之各個高對低過渡上,出現在D輸入終端 1 0 93中的値被鎖定到D正反器,及在短的傳播延遲之後 出現在正反器1 090的Q輸出終端1 092。 存在於正反器1 090的D輸入終端1 093之信號係由 AND閘1 098所驅動。到AND 1098的輸入信號是從計數 器控制暫存器93 0所提供的信號ENB 1130,及來自反相 器1 097的信號\ARC 622(\\ARC 1150)的否定,信號\ARC 622係由可程式化比較器620提供。當信號ENB 1 130是 在邏輯低(FALSE)狀態或在\ARC信號是在高狀態(指出 NON_ARCING室條件的偵測)時,D輸入終端1 093中的信 號是在邏輯低狀態。相反地,當ENB信號是在邏輯高狀 態(藉以使計數生效),及\ARC信號是在邏輯低狀態(指出 ARCING室條件的偵測)時,D輸入終端1 093中的信號是 -50- 200835923 在邏輯高狀態。因此,假設計數被賦能(信號ENB 1 130是 在邏輯高狀態),則當在NON_ ARCING條件中偵測室時, 在SYSCLK的隨後高對低過渡上ACCLK信號1160將在 邏輯低狀態。當ARCING條件被偵測時,例如如圖u中 的1 1 80所指出一般(及假設計數仍然被賦能),\ARC信號 被確立是低的。在SYSCLK信號的下一高對低過渡上(如 圖1 1中的1 182所指出一般),ACCLK信號將從低過渡到 φ 高邏輯狀態,及經過隨後的SYSCLK循環仍維持在高邏輯 狀態,直到ARCING條件不再被偵測到(及\ARC信號回到 如圖1 1中的1 1 84所指出一般的邏輯高狀態)。 每當CRST信號被確立是低的時,ACC計數器1010 在其CLK輸入終端之信號的各個低對高過渡中增加。因 此,在ENB信號被確立是高的同時(使計數生效),ACC 計數器1010有效計數從NON_ARCING條件到ARCING條 件的室過渡數量。在一例示實施例中,ACC計數器1010 φ 可使用具有30 MHz等級上的頻率之SYSCLK信號,在短 如33 nS中分解由可程式化比較器620(產生\ ARC信號)所 偵測到的微發弧。較高的分解度係可藉由增加時脈率來達 成。Figure 11 is a timing diagram of the relationship between the various signals of the ADLU 640. Referring to Figures 10 and 11, inverter 1096 negates DSPC system clock signal SYSCLK 650 and becomes \S YSCLK U 2 0. The signal \ S Y S C LK drives the clock input terminal 1091 of the D flip-flop 1090. On each high-to-low transition of the SYSCLK signal from the DSP, the 出现 appearing in the D input terminal 1 0 93 is locked to the D flip-flop, and the Q output appearing in the flip flop 1 090 after a short propagation delay Terminal 1 092. The signal present at the D input terminal 1 093 of the flip flop 1 090 is driven by the AND gate 1 098. The input signal to AND 1098 is a negation from the signal ENB 1130 provided by the counter control register 93 0 and the signal \ARC 622 (\\ARC 1150) from the inverter 1 097. The signal \ARC 622 is available. Stylized comparator 620 provides. The signal in the D input terminal 1 093 is in a logic low state when the signal ENB 1 130 is in the logic low (FALSE) state or when the \ARC signal is in the high state (indicating the detection of the NON_ARCING room condition). Conversely, when the ENB signal is in a logic high state (by which the count is asserted), and the \ARC signal is in a logic low state (indicating the detection of ARCING room conditions), the signal in the D input terminal 1 093 is -50- 200835923 In a logic high state. Therefore, assuming that the count is enabled (signal ENB 1 130 is in a logic high state), the ACCLK signal 1160 will be in a logic low state on the subsequent high-to-low transition of SYSCLK when the chamber is detected in the NON_ ARCING condition. When the ARCING condition is detected, for example as indicated by 1 1 80 in Figure u (and the hypothetical count is still enabled), the \ARC signal is asserted low. On the next high-to-low transition of the SYSCLK signal (as indicated by 1 182 in Figure 11), the ACCLK signal will transition from low to high logic state and remain in a high logic state after the subsequent SYSCLK cycle. Until the ARCING condition is no longer detected (and the \ARC signal returns to the general logic high state as indicated by 1 1 84 in Figure 11.). The ACC counter 1010 is incremented during each low-to-high transition of the signal at its CLK input terminal whenever the CRST signal is asserted low. Therefore, while the ENB signal is asserted high (making the count active), the ACC counter 1010 effectively counts the number of chamber transitions from the NON_ARCING condition to the ARCING condition. In an exemplary embodiment, the ACC counter 1010 φ can decompose the micro-detection detected by the programmable comparator 620 (generating the \ ARC signal) in a short as 33 nS using a SYSCLK signal having a frequency on the 30 MHz level. Arcing. A higher degree of decomposition can be achieved by increasing the clock rate.

ATC計數器1 020被用於估計由可程式化比較器620 所決定的室在ARCING條件中之總時間。每當CRST信號 被確立是低的時,ATC計數器1 020在其CLK輸入終端的 信號之各個低對高過渡中增加。ATC計數器1 020的CLK 輸入終端係由具有ACCLK和SYSCLK信號輸入之AND 200835923 閘1 094所提供的信號ATCLK 1170所驅動。每當計數被 賦能(ENB信號1130是高的)並且室ARCING條件被偵測 到(\ARC信號1140是低的)時,信號ATCLK 1170開始追 蹤SYS CLK信號1 1 1〇,例如在圖1 1中的1 186。之後, ATC計數器1 020計數在可程式化臨界比較器是在 ARCING狀態的同時(指出PVD室中的發弧)所持留之 ATCLK信號1170的時脈循環。使用30 MHz系統時脈, φ 各個ARCING條件的持續期間可被分解到33 nS增加量 內。 ACC 1 03 0、ATC 高 1040、及 ATC 低 1 050 鎖定快照 暫存器允許ACC計數器1010値、ATC計數器1 020高階 字元,及ATC計數器1 020低階字元値能夠被分別即時立 即以命令捕獲。此使DSPC 630能夠在特定頃刻讀取計數 器的狀態,保留用於DSPC 63 0隨後檢索的那些値,同時 允許ACC及ATC計數器能夠持續根據上述它們各自的邏 φ 輯來操作。如將討論一般,在DSPC 63 0的控制之下,各 個這些三16位元暫存器被配置並且組配成捕獲由計數器 控制暫存器930所提供之SNP信號的低對高過渡之瞬時 對應計數器値。各個快照暫存器的輸出信號是由 ACC 1 060緩衝到內部資料匯流排950,ATC高1 070及ATC低 1 080三狀態緩衝器之三狀態。DSP介面邏輯960確立到 ACC三狀態緩衝器1 060之RACC 1 086上的賦能信號以提 供內部匯流排95 0上之ACC鎖定快照暫存器1 030的被捕 獲値;確立到ATC高三狀態緩衝器1 070的RATH 1087 -52- 200835923 上之賦能信號以提供內部匯流排950上之ATC高鎖定快 照暫存器1 040的被捕獲値;及確立到ATC低三狀態緩衝 器1 080的RATL 1 088上之賦能信號以提供內部匯流排 950上之ATC低鎖定快照暫存器1 050的被捕獲値。 再次參考圖 9,CCR鎖定暫存器 93 0產生 SNP、 CRST、及ENB信號。DSP介面邏輯960提供適當的位址 解碼和時序信號,確立內部資料匯流排95 0上之SNP、 CRST、及ENB信號的被命令値,及當由DSPC 63 0命令 如此作時,產生信號WCCR以鎖定這些値到CCR內。計 數器狀態緩衝器(CSB)940是被配置和組配成經由確認信 號RCSB,當由DSP介面邏輯960命令時,確立到內部資 料匯流排 950 上之 CRST、ENB、ACCLK、COVF、及 TOVF信號的目前値之三狀態緩衝器。DSP介面邏輯960 隨後確立由DSPC 630使用之到DSPC資料匯流排上的這 些信號。The ATC counter 1 020 is used to estimate the total time of the chamber determined by the programmable comparator 620 in the ARCING condition. The ATC counter 1 020 is incremented during each low-to-high transition of the signal at its CLK input terminal whenever the CRST signal is asserted low. The CLK input terminal of the ATC counter 1 020 is driven by the signal ATCLK 1170 provided by AND 200835923 Gate 1 094 with ACCLK and SYSCLK signal inputs. Whenever the count is enabled (ENB signal 1130 is high) and the chamber ARCING condition is detected (\ARC signal 1140 is low), signal ATCLK 1170 begins tracking SYS CLK signal 1 1 1〇, for example in Figure 1. 1 186 in 1. Thereafter, the ATC counter 1 020 counts the clock cycle of the ATCLK signal 1170 held while the programmable threshold comparator is in the ARCING state (indicating the arcing in the PVD chamber). With a 30 MHz system clock, the duration of each ARCING condition of φ can be decomposed into 33 nS increments. ACC 1 03 0, ATC high 1040, and ATC low 1 050 Lock Snapshot Scratch allows ACC counter 1010値, ATC counter 1 020 high-order characters, and ATC counter 1 020 low-order characters 値 can be immediately and immediately commanded capture. This enables the DSPC 630 to read the state of the counter at a particular instant, retaining those that are subsequently retrieved by the DSPC 63 0, while allowing the ACC and ATC counters to continue to operate according to their respective logic sets. As will be discussed in general, under the control of DSPC 63 0, each of these three 16-bit registers is configured and assembled to capture the instantaneous response of the low-to-high transition of the SNP signal provided by the counter control register 930. Counter 値. The output signals of each snapshot register are buffered by ACC 1 060 to internal data bus 950, ATC high 1 070 and ATC low 1 080 three state buffers. The DSP interface logic 960 asserts an enable signal on the RACC 1 086 of the ACC tristate buffer 1 060 to provide the captured ACC lock snapshot register 1 030 on the internal bus 95 0; asserted to the ATC high three state buffer The enable signal on RATH 1087-52-200835923 of device 1 070 to provide the captured AT of the ATC high-lock snapshot register 1 040 on the internal bus 950; and the RATL established to the ATC low-three state buffer 1 080 The enable signal on 1 088 is provided to capture the captured ATC low lock snapshot register 1 050 on the internal bus 950. Referring again to Figure 9, the CCR lock register 93 0 generates SNP, CRST, and ENB signals. The DSP interface logic 960 provides appropriate address decoding and timing signals, asserts the SNP, CRST, and ENB signals on the internal data bus 95, and generates a signal WCCR when the DSPC 63 0 command is used to do so. Lock these cockroaches into the CCR. The counter status buffer (CSB) 940 is configured and configured to assert CRST, ENB, ACCLK, COVF, and TOVF signals to the internal data bus 950 when commanded by the DSP interface logic 960 via the acknowledgment signal RCSB. Currently the three state buffers. The DSP interface logic 960 then asserts these signals used by the DSPC 630 onto the DSPC data bus.

再次參考圖9,根據由DSP 63 0所確立以幫助與諸如 ADLU 640等外部裝置的通訊之信號\STRB、W/R、及位址 線AD0-AD15的作用,以資料匯流排線DB0-SB15形式從 外部供應的信號提供進出DSPC 63 0之資料的雙向通訊。 這些資料線從內部直接被有效地結合到ADLU 640的內部 資料匯流排950。當試圖與諸如ADLU 640等任何外部週 邊裝置通訊時,DSPC 630確立\STRB信號是低的。當試 圖從裝置讀取時,DSPC 630亦確立信號W/R是低的,及 當試圖寫入到裝置時是高的。這些是由DSPC 630所確立 -53- 200835923Referring again to FIG. 9, according to the signals established by the DSP 63 0 to facilitate communication with external devices such as the ADLU 640, \STRB, W/R, and address lines AD0-AD15, data bus lines DB0-SB15 are used. Formally supplied signals provide bidirectional communication into and out of the DSPC 63 0 data. These data lines are effectively integrated internally from the internal data bus 950 of the ADLU 640. When attempting to communicate with any external peripheral device such as the ADLU 640, the DSPC 630 asserts that the \STRB signal is low. When attempting to read from the device, DSPC 630 also asserts that the signal W/R is low and is high when attempting to write to the device. These are established by DSPC 630 -53- 200835923

之萬用型信號以與任何裝置通訊。特別是在從ADLU 640 讀取資料或寫入資料到ADLU 640時,信號\ADLU_CS被 DSPC 630確立是低的。DSP介面邏輯 960被包括在 ADLU M0內以由DSPC 63 0——經命令就根據控制信號 \STRB、W/R的操作和位址信號AD0及AD1的解碼來產 生時序和控制信號 WCCR、RCSB、RACC、RATL、及 RATH。信號WCCR被用於鎖定到由DSPC 63 0所確立到 內部資料匯流排950上之ENB、CRST、及SNP之値到 CCR 930內。信號RCSB使CSB 940中的値能夠被確立到 隨後 DSPC 630將讀取之內部資料匯流排上。信號 RACC、RATL、及RATH如上述分別賦能ACC三狀態緩 衝器1060、ATC高三狀態緩衝器1080、及ATC低三狀態 緩衝器1 070以確立到隨後將由DSPC 630所讀取之內部 資料匯流排950上的鎖定器ACC LATCH 1030、ATC LOW LATCH 1050、及 ATC HIGH LATCH 1040 中之値。The universal signal communicates with any device. Especially when reading data from the ADLU 640 or writing data to the ADLU 640, the signal \ADLU_CS is asserted low by the DSPC 630. The DSP interface logic 960 is included in the ADLU M0 to generate timing and control signals WCCR, RCSB, according to the operation of the control signals \STRB, W/R and the decoding of the address signals AD0 and AD1 by the DSPC 63 0 - command, RACC, RATL, and RATH. The signal WCCR is used to lock into the CCR 930 between the ENB, CRST, and SNP established by the DSPC 63 0 to the internal data bus 950. The signal RCSB enables the 値 in the CSB 940 to be asserted to the internal data bus that the DSPC 630 will read. The signals RACC, RATL, and RATH are respectively enabled with the ACC tristate buffer 1060, the ATC high tristate buffer 1080, and the ATC low tristate buffer 1 070 as described above to establish an internal data bus that will be subsequently read by the DSPC 630. The locks on the 950 are among the ACC LATCH 1030, ATC LOW LATCH 1050, and ATC HIGH LATCH 1040.

圖 12圖解產生圖 9所示的信號 WCCR、RCSB、 RACC、RATL、及RATH之本發明的ADLU 640之DSP介 面邏輯960的一例示實施。到DSP介面邏輯96 0的內 部,控制邏輯單元(CLU)1210透過反相器1 220將由〇8? 63 0所確立的\8丁113信號反相以形成內部信號\\STRB。當 DSPC 63 0正試圖與任何外部裝置通訊時,信號WSTRB是 邏輯高的。當試圖寫入到外部裝置時,從DSPC 630確立 是高的之信號W/R及信號\\STRB ’在AND閘1230提供 WR信號。透過反相器1 240將W/R信號反相以形成信號 -54- 200835923 \W/R,當DSP介面邏輯960正試圖從任何外部裝置讀取 時,信號被確立是高的。當DSPC 63 0正從外部裝置 讀取時,從輸入信號WSTRB及\W/R而在AND閘1 250的 輸出中所提供之RD信號結果被確立是高的。 解碼以產生用於ADLU 640的控制信號之位址由位址 解碼器在功能上提供,例如,圖12所示的2至4二進位 址解碼器1 260。如上述,當從ADLU 640讀取或寫入到 ADLU 640 時,DSPC 63 0 確立 ADLU 640 的 \ADLU__C S 終 端上之邏輯是〇。當\ADLU_CS信號被設定到邏輯高狀態 時,在解碼器1 260的輸出終端中之所有四信號Q〇,...,Q3 被設定到邏輯低狀態。當\ADLU_CS信號由DSPC 630確 立在邏輯狀態中時,解碼器1 260將輸出終端中之信號的 其中之一準確地設定成邏輯高狀態,從DSPC 630所確立 的A0及A1位元之目前値所決定並且根據表1,特定輸出 被設定成邏輯高的,其中在表1中的”〇”是邏輯低,”1”是 邏輯高的,及”X”是無關係的狀態。 表1 輸入 輸入 輸入 輸出 \ADLU_CS A1 A0 輸出確立是尚的 1 X X Μ j\w 0 0 0 Q0 0 0 1 Q1 0 1 0 Q2 0 1 1 Q3 -55- 200835923 利用上述的解碼器邏輯’表2定義在圖12中的各個功能 選擇輸出中之信號的邏輯,與DSPC 630在ADLU上所執 行的操作。 表2 信號名稱 邏輯 DSPC 630 功能 WCCR Q 0 及 WR 寫入計數器控制 暫存器値 RCSB Q0 及 RD 讀取計數器狀態緩衝器 RACC Q1 及 RD 讀取ACC鎖定器値 RATL Q2 及 RD 讀取ATC低鎖定器値 RATH Q3 及 RD 讀取ATC高鎖定器値 現在將詳細討論由類比信號調節器6 1 0所產生之信號 Ich和VCH的處理。再次參考圖6,由類比信號調節器610 所產生之信號Ich和VCH反應於室電壓和電流,但是由類 比信號調節器6 1 0調節以最小化在比約1 〇 kHz大的抽樣 頻率中之混疊。整合至結合在 DSPC 630 中之 TMS3 20F2407 D S P是1 6通道、雙1 0位元類比對數位轉 換器模組,其將其輸入通道中的電壓轉換成範圍在0和 1 023之間的數目,與參考電壓成比例,及可以固定比率 樣本化直到16輸入電壓之軟體控制下的內部時序機構。 在一特定實施例中,用於內部類比對數位轉換器的參考電 壓係由市面上可購得之National Semiconductor(國際半導 -56- 200835923 體)製造的能帶隙調整器模型REF 193所提供。此調整器提 供穩定、準確的3.00伏特源至類比對數位轉換器。因 此,設置在DSPC 630的數位信號處理器中之整合性類比 對數位轉換器根據以下等式將時間變化信號〗CH(t)及 VCH(t)轉換成範圍在0和1 023之間的數目序列{nich}及 { N VC Η }:Figure 12 illustrates an exemplary implementation of DSP interface logic 960 of ADLU 640 of the present invention that produces the signals WCCR, RCSB, RACC, RATL, and RATH shown in Figure 9. Inside the DSP interface logic 96 0, the control logic unit (CLU) 1210 inverts the \8 Ding 113 signal asserted by 〇8? 63 0 through the inverter 1 220 to form the internal signal \\STRB. When DSPC 63 0 is attempting to communicate with any external device, signal WSTRB is logic high. When attempting to write to an external device, the asserted high signal W/R and signal \\STRB' from the DSPC 630 provides a WR signal at the AND gate 1230. The W/R signal is inverted by inverter 1 240 to form a signal -54-200835923 \W/R, which is asserted high when DSP interface logic 960 is attempting to read from any external device. When the DSPC 63 0 is being read from an external device, the RD signal result provided in the output of the AND gate 1 250 from the input signals WSTRB and \W/R is asserted to be high. The address decoded to generate the control signal for the ADLU 640 is functionally provided by the address decoder, for example, the 2 to 4 binary address decoder 1 260 shown in FIG. As noted above, when reading from or writing to the ADLU 640, the DSPC 63 0 asserts that the logic on the ADLU 640's \ADLU__C S terminal is 〇. When the \ADLU_CS signal is set to the logic high state, all four signals Q?, ..., Q3 in the output terminal of the decoder 1 260 are set to a logic low state. When the \ADLU_CS signal is asserted in the logic state by the DSPC 630, the decoder 1 260 accurately sets one of the signals in the output terminal to a logic high state, the current A0 and A1 bits established from the DSPC 630. As determined and according to Table 1, the specific output is set to logic high, where "〇" in Table 1 is logic low, "1" is logic high, and "X" is unrelated. Table 1 Input Input I/O\ADLU_CS A1 A0 Output is asserted 1 XX Μ j\w 0 0 0 Q0 0 0 1 Q1 0 1 0 Q2 0 1 1 Q3 -55- 200835923 Using the above decoder logic 'Table 2 The logic defining the signals in the various function selection outputs in Figure 12, and the operations performed by the DSPC 630 on the ADLU. Table 2 Signal Name Logic DSPC 630 Function WCCR Q 0 and WR Write Counter Control Register RCSB Q0 and RD Read Counter Status Buffer RACC Q1 and RD Read ACC Locker 値RATL Q2 and RD Read ATC Low Lock値RATH Q3 and RD Read ATC High Lock 値 The processing of signals Ich and VCH generated by analog signal conditioner 610 will now be discussed in detail. Referring again to Figure 6, the signals Ich and VCH generated by the analog signal conditioner 610 are reflected in the chamber voltage and current, but are adjusted by the analog signal conditioner 6 10 to minimize the sampling frequency greater than about 1 〇 kHz. Aliasing. The TMS3 20F2407 DSP integrated into the DSPC 630 is a 16-channel, dual 10-bit analog-to-digital converter module that converts the voltage in its input channel to a number between 0 and 1 023. It is proportional to the reference voltage and can be sampled at a fixed rate up to the internal timing mechanism under software control of the 16 input voltage. In a particular embodiment, the reference voltage for the internal analog-to-digital converter is provided by a commercially available bandgap regulator model REF 193 manufactured by National Semiconductor (International Semiconductor - 56-200835923). . This regulator provides a stable, accurate 3.00 volt source to analog-to-digital converter. Therefore, the integrated analog-to-digital converter provided in the digital signal processor of the DSPC 630 converts the time-varying signals 〖CH(t) and VCH(t) into a number ranging between 0 and 1 023 according to the following equation. Sequence {nich} and { N VC Η }:

NicH(n) = FIX(IcH(nT)/VREF)* 1 02 4) (等式 8) 及 NVCH(n) = FIX((VCH(nT)/VREF)* 1 024) (等式 9) 其中函數FlX(arg)將其自變數”arg”的値捨位變成最接近 的整數,η指出D S P C 6 3 0從參考時間所採用的第η樣 本,及Τ是樣本週期。在一特定實施例中,DSP被程式化 成以比率10 kHz轉換類比信號VCH及ICH,產生數目 {NVCH}及{NICH}的樣本化資料序列以反應於室電壓和電 流。在一特定實施例中,到DSP內部的軟體提供使用者 可選擇數位有限脈衝反應(FIR)濾波器應用到此序列,分 別產生已過濾序列{FVCH}及{FICH},但是可應用其他信號 處理技術到此序列而不會損及一般性。在一特定實施例 中,仿射變換被應用到此序列{FVCH}及{FICH},產生數目 {SFVCH}及{SFICH}的序列,其爲室電壓和電流之按比例的 整數估計序列。在一例子中,仿射變換是使得1 000伏特 之連續應用的室電壓產生一連串各個具有値1 000的整 -57- 200835923 數,及按比例縮小的其他電壓値。同樣地’在此例中’應 用到由樣本化和轉換ICH信號所導出之此序列的仿射變換 考慮到PSIM和類比信號調節電路的各種增益和偏移,產 生10.00安培的電流出現當作整數1 000,而其他値成比例 之變換。 在一例示實施中,序列的目前値透過高速通訊介面 7 0通訊到邏輯配置6 〇,其中邏輯配置6 0使用目前和過去 φ 的値計算可程式化臨界比較器620將使用的自適應發弧臨 界電壓値。接著透過高速通訊介面70從邏輯配置60將此 自適應發弧臨界電壓値和想要的遲滯位準通訊回到DSPC 63 0。DSPC 63 0然後根據可程式化臨界比較器620的操作 將想要的臨界値轉換成適當的DAC値。此途徑產生幾近 即時的自適應臨界。在另一例示實施例中,產生自適應臨 界的演算法駐在DSPC 630本身中,產生具有最小延遲的 自適應電壓臨界。 Φ 產生自適應發弧電壓臨界的一例示演算法係依據在 DSPC 63 0所計算的電壓序列之移動平均上的所計算臨 界,移動平均的長度被選定成比發弧的預期持續期間長, 但是比操縱磁鐵的旋轉週期短。以1 〇 kHz樣本比率,可 使用統一加權64點FIR濾波器來計算移動平均,濾波器 輸出中的序列呈現電壓量測的前一 6.4 rnS之平均。在一 實施中,藉由從移動平均減掉固定電壓來計算自適應發弧 臨界値。在另一例示實施中,自適應臨界被計算當作移動 平均的固定百分比。 -58-NicH(n) = FIX(IcH(nT)/VREF)* 1 02 4) (Equation 8) and NVCH(n) = FIX((VCH(nT)/VREF)* 1 024) (Equation 9) The function FlX(arg) turns the truncated bit of its argument "arg" into the nearest integer, η indicates the nth sample taken by the DSPC 6 3 0 from the reference time, and Τ is the sample period. In a particular embodiment, the DSP is programmed to convert the analog signals VCH and ICH at a ratio of 10 kHz to produce a sample sequence of data of {NVCH} and {NICH} to reflect the chamber voltage and current. In a particular embodiment, the software internal to the DSP provides a user selectable digital finite impulse response (FIR) filter applied to the sequence to produce filtered sequences {FVCH} and {FICH}, respectively, but other signal processing can be applied. Techniques go to this sequence without compromising generality. In a particular embodiment, an affine transform is applied to the sequences {FVCH} and {FICH}, producing a sequence of numbers {SFVCH} and {SFICH}, which is a scaled integer estimation sequence of chamber voltage and current. In one example, the affine transformation is such that a continuous application chamber voltage of 1 000 volts produces a series of integers each having 値1 000, and other voltages scaled down. Similarly, the affine transformation applied to the sequence derived from the sampled and converted ICH signal in this example takes into account the various gains and offsets of the PSIM and analog signal conditioning circuits, producing a current of 10.00 amps as an integer. 1 000, while other 値 is proportional to the transformation. In an exemplary implementation, the current sequence of sequences is communicated to the logical configuration 6 through the high speed communication interface 70, wherein the logic configuration 60 uses the current and past φ 値 calculations to program the adaptive comparator 620 to use the adaptive arcing The threshold voltage is 値. This adaptive arcing threshold voltage 値 and the desired hysteresis level are then communicated back to the DSPC 63 0 from the logic configuration 60 via the high speed communication interface 70. The DSPC 63 0 then converts the desired threshold 成 to the appropriate DAC 根据 based on the operation of the programmable threshold comparator 620. This approach produces near-instant adaptive thresholds. In another illustrative embodiment, the algorithm that generates the adaptive boundary resides in the DSPC 630 itself, producing an adaptive voltage threshold with minimal delay. Φ An example of the algorithm for generating an adaptive arcing voltage threshold is based on the calculated threshold of the moving average of the voltage sequence calculated by DSPC 63 0. The length of the moving average is selected to be longer than the expected duration of the arc, but It has a shorter rotation period than the steering magnet. At a 1 〇 kHz sample rate, a uniform weighted 64-point FIR filter can be used to calculate the moving average, and the sequence in the filter output presents the average of the previous 6.4 rnS of the voltage measurement. In one implementation, the adaptive arcing threshold is calculated by subtracting the fixed voltage from the moving average. In another exemplary implementation, the adaptive threshold is calculated as a fixed percentage of the moving average. -58-

200835923 這些已過濾、已變換的序列亦可被用於提供指 的整個健康狀況之資訊。在一例子中,以電壓序列 値乘上電流序列的瞬時値提供瞬時電力序列,其可 證明輸送到真空室的實際電力是由電力供應所輸送 種序列可被用於決定例如電纜損壞發生,在真空室 流電流。這些序列的使用之另一例子是它們可被使 獨立的機構以估計操縱磁鐵的旋轉速度。如上述, 到,當室阻抗由於幾何和其他考量而變化時,室電 流隨著操縱磁鐵週期而週期性改變。在一例子中, 例的電壓或電流序列通過數位高通濾波器以去除 分。然後由數位相位鎖定迴路追蹤最後的AC序歹!J 估計操縱磁鐵的旋轉頻率。在另一例示實施中,離 業變換被應用到電壓或電流序列,及從最後的頻譜 磁鐵旋轉頻率。若所估計的旋轉速度明顯不同於預 轉速度,則機械或電力問題可能是原因。此資訊可 偵測機械或電力系統中的最初缺陷。 根據本發明的另一例示實施例,複製上述的組 作來監視多個室或以依據應用到單一室電壓和電沆 額外臨界値來偵測ARCING。在特定例示實施例中 由單一 DSPC 63 0所控制之四個獨立的操作ADU ADU的四室版本可被組配成透過四PSIM來同時藍 獨立的室,或藉由將用於多個室的對應VPSIM+、 、IPSIM+、及IPSIM- ADU輸入信號並聯聯接電辐 PSIM可驅動多個ADU室輸入。在例示實施例中, 出處理 的瞬時 被用於 的。此 四周分 用當作 已觀察 壓和電 將按比 DC成 ,自此 散傅立 來決定 期的旋 被用於 件和操 信號的 ,提供 函數。 視四個 VPSIM- ,單一 當所有 -59-200835923 These filtered, transformed sequences can also be used to provide information on the overall health status of the finger. In an example, the instantaneous sequence of current sequences is multiplied by a voltage sequence 値 to provide an instantaneous power sequence that can demonstrate that the actual power delivered to the vacuum chamber is delivered by the power supply. The sequence of species can be used to determine, for example, that cable damage occurs. The vacuum chamber flows current. Another example of the use of these sequences is that they can be independently mechanismd to estimate the rotational speed of the steering magnet. As mentioned above, as the chamber impedance changes due to geometric and other considerations, the chamber current periodically changes as the magnet period is manipulated. In one example, the voltage or current sequence of the example is passed through a digital high pass filter to remove the points. Then track the final AC sequence by the digital phase lock loop! J Estimate the rotational frequency of the steering magnet. In another exemplary implementation, the off-the-shelf transformation is applied to a voltage or current sequence and from the last spectral magnet rotation frequency. If the estimated rotational speed is significantly different from the pre-rotation speed, mechanical or electrical problems may be the cause. This information can detect initial defects in a mechanical or electrical system. In accordance with another exemplary embodiment of the present invention, the above-described composition is replicated to monitor a plurality of chambers or to detect ARCING based on application to a single chamber voltage and an electrical threshold. The four-compartment version of the four independent operational ADU ADUs controlled by a single DSPC 63 0 in a particular exemplary embodiment can be configured to simultaneously blue-independent rooms through four PSIMs, or by corresponding to multiple chambers The VPSIM+, IPSIM+, and IPSIM-ADU input signals are connected in parallel to the electrical spoke PSIM to drive multiple ADU chamber inputs. In the illustrated embodiment, the instant of processing is used. This four-week division is used as the observed pressure and the electricity will be proportional to the DC. From then on, the rotation is used to determine the period and the signal is used to provide the function. Consider four VPSIM-, single when all -59-

200835923 四個ADU函數透過單一 PSIM正監視單一室並且以 式聯接電線時,可爲單一室程式化四個不同的臨界値 對應的可程式化比較器620和ADLU 640的組合來維 個程式化臨界値中之發弧數目和發弧持續期間的計數 一實施例中,DSPC 63 0具有到所有四 ADLU函數 取,及發弧條件可被分解成對應於四個獨立的程式 之四位準的其中之一。 例如,在利用裝附至單一 PSIM之四個獨立的 之系統中,及以1〇〇,200,300,及400伏特程式化 臨界數値,具有最小的電壓數値250伏特的單一發 現在具有以3 00及400伏特程式化的臨界之監視器 是未出現在以100及200伏特程式化的臨界之監視 而且,若系統以此方式正捕獲單一發弧,則室電壓 3 00伏特位準之下的週期將同時出現在對應於300 伏特位準之ADLU發弧時間計數器中,而室電壓崩場 3 00及400伏特之間的週期將只出現在對應於400 § 準之ADLU發弧時間計數器。然後可將發弧事件分痒 發弧時間一在2 0 0及3 0 0伏特之間所花的發弧時間’ 接從對應於300伏特臨界的ADLU之發弧時間計婁 取,加上在3 0 0及4 0 0伏特之間所花的發弧時間’, 分別採用對應於400伏特和3 00伏特的ADLU發弧_ 數器之間的差異來計算的。視需要,可爲不同強度序 發弧重複此演算法。 在一特定例示實施中’ DSPC 630以10 kHz比 此方 。由 持各 。在 的存 臨界 視器 電壓 將出 ,但 上。 塌在 400 是在 特位 成兩 其直 器讀 藉由 間計 其他 樣本 -60- 200835923 化四個ADLU暫存器設定,及透過高速通訊介面70爲所 有四通道將發弧計數和發弧時間計數通訊到邏輯配置 60。DSPC 630亦將標稱上、已過濾的室電流ICH,和已過 濾的室電壓VCH樣本化和移轉到邏輯配置60,其執行分 解發弧所需的算術操作且計算發弧能量的估計。可由上述 的延伸自適應地計算所有四發弧電壓臨界値。在另一例示 實施例中,DSPC 63 0在內部執行計算,將諸如各個臨界 Φ 値中的發弧時間等發弧相關參數的最後估計和所估計的發 弧能量傳輸到邏輯配置60。 根據一例示實施,邏輯配置60是外部邏輯配置,例 如,可程式化邏輯控制器(PLC)、頂帽、或類似計算裝 置。根據一更特定的實施例,邏輯配置60是Schenider Automation Ml-E PLC。根據本發明的一觀點,ADU被倂 入動量形式因子內,並且被設計成與動量頂帽和可程式化 邏輯控制器(PLCs)通訊。 % 在一實施中,記錄邏輯配置60所收集的資料。在邏 輯配置60上執行的軟體將資料、圖表資料記成日誌,且 可提供以網路爲主的警報以反應資料。系統控制器提供電 漿產生應用的即時控制。當發弧計數及/或發弧持續期間 超過每一沈積之選定的量時,邏輯配置60根據預定演算 法決定在材料沈積期間發弧正破壞基板,及與系統控制器 通訊以終止沈積。邏輯配置6〇亦可指出被處理的基板由 於發弧而產量減少。 除了爲各個沈積計數發弧和發弧的累計持續期間之 -61 - 200835923 外’在其他實施中’邏輯配置60被用於執行發弧資訊的 其他即時分析。例如,諸如記錄用於目標的總數目(及持 續期間)、記錄發弧強度(參考接近大地電位,指出直接短 路)’及偵測持續的發弧等分析,其指出目標中的可能缺 陷需要關掉全部的工具以維修。在另一實施中,系統控制 器依據發弧率’發弧持續期間,發弧率/持續期間的變化 率’或依據發弧,,品質”,與持續期間、量、及發弧強度 φ (即、數値)或嚴重性(例如由發弧持續期間和數値的乘積 所得到的量測)成比例的發弧品質來提供信號。 根據本發明的另一例示實施例,方法即時整合發弧偵 測器與需要告知使用者濺鍍源有問題且新處理的晶圓產量 降低之硬體。因此,本發明的各種實施例可被實現以在其 他電漿產生控制應用中提供發弧偵測,諸如箱體硬化鋼 等。通常,無論電漿產生室或其同等物是否被實施仍可應 用本發明的電路配置和方法。 φ 根據本發明的另一實施例,發弧偵測單元5 0 ’(如圖 27所示)被組配成亦藉由觀察應用到電漿產生設備1300 之電流中的峰値來偵測發弧事件。依據此資訊與從偵測電 壓下降的發弧事件資訊,發弧偵測單元50’將發弧事件分 類成各種類別。設備亦可計算用於特定發弧事件類別的掃 描能量和發弧能量。圖1所示的組件之基本配置和圖27 的ADU 50’被用於實施此實施例。 圖1 3圖解用於沈積各種材料的薄的、高度均勻層到 基板上之PVD處理的電漿產生設備1 3 00之典型基本室組 -62- 200835923 配。低壓氣體,典型上是Μ氣,被離子化以形成電@ 1 302並被加速從陽極表面1 304(室壁及基板)到源材料的 陰極偏壓目標1 3 06(陰極被圖示作1 3 08)。目標材料的最 後原子位準噴灑塗佈所有接近表面,包括製造的基板和帛 圓1310。典型陽極-陰極電壓落在300V-600V範圍(具有 直到1 500V的峰値),而電流的範圍從2A到100A。遞送 到室的最後電力可低如幾kW和高如80kW。 φ 此處理的一主要應用是在製造積體電路(ICs)時沈積 金屬層於矽晶圓上。如上述,此處理容易”發弧”。發弧從 目標射出巨量粒子污染。某些此污染材料會降落在晶圓 上,產生生產瑕疵和塗佈上的不均勻,負面影響製造者的 收益。發弧係可由(i)目標雜質或內含物,(ii)目標或附件 老化和物理容限改變,或(iii)晶圓校準而產生。 PVD處理期間的發弧係起因於從陽極到目標的非故意 低阻抗路徑。當發弧發生時,室阻抗的數値快速減少,通 φ 常對電力供應太快而無法反應。室的陽極和陰極之間的電 壓數値之快速下降可被觀察到。結果,比較室電壓與臨界 値可早期提供發弧的偵測。經由此種早期偵測,製造商可 解決發弧產生的根本原因而不必承受由於發弧產生的缺陷 所導致的高收益損失。 如圖4所示,通常觀察到持續1微秒等級上的有害發 弧條件1 402。這些短持續期間發弧1 402被通稱爲微發 弧。由於非常短的持續期間,所以偵測微發弧需要高速電 子。除了微發弧之外,具有毫秒或幾十毫秒等級上的持續 -63- 200835923 期間之巨量電力供應事件亦發生在PVD系統中。 圖14圖示標繪的典型PVD室電壓1 404對上時間。 電壓1404的數値亦被圖示,因爲陰極電壓相對接地是負 的。有發弧1 402之處,就有電壓朝接地突然且快速減 少。一旦短路事件結束,電壓再次回到標稱室電壓。在回 復期間可能的超越和瞭解未圖示在圖式中。在發弧事件期 間電流同樣地反應,雖然快速增加,然後減少,可瞭解一 φ 但是見結束,條件回到正常。 PSIM 40被用於將來自電力供應30的高電壓和高電 流讀數轉換成用於輸入到ADU 50’的0-10V範圍。0-10V 信號與室電壓和電流成線性比例。此提供指示電力供應 30電壓的電壓信號,和指示電力供應30電流的電流信 號。 參考圖27,ADU 50’被設計成監視用於高速瞬變(無 論是上還是下)的0-10V信號。在ADU 50’內,高速類比 φ 比較器620、621決定電壓信號是否已橫跨線。內部邏輯 單元640將類比比較器輸出622,623轉換成指出是否已 橫跨線之邏輯位準値。而且,其計數已橫跨線(發弧嚴重 性的指示)之邏輯單元時脈循環的數目(即、持續期間)。 在其許多功能中,可程式化邏輯控制器(PLC)或其他 邏輯配置或電路系統60從ADU讀取資料,將DSP時脈 循環轉換成微秒’重設發弧計數器,及使資料可利用在乙 太網路上。PLC亦發送命令參數到ADU—何時尋找發弧事 件,臨界値是多少,遊逸應在臨界上還是臨界下等。 -64 - 200835923 圖15描劃相對於臨界位準1 502之典型室電壓數値 1500對上時間。在電壓的例子中,當瞬時電壓讀數下降 到臨界値1 5 02之下時發弧條件1 402發生。需注意的室, 臨界15 02是自適應的,因爲其確實追蹤室電壓15 00中的 緩慢變化。ADU 50’計數次數和臨界1 502被通過的數 目,及電壓在臨界之下的3 0MHz之持續期間。爲了說明 雜訊或跳動的影響,發弧事件不會結束直到瞬間電壓上升 在臨界1 502之上加上遲滯値爲止。 圖16爲當ADU 50’進入發弧條件時和其存在相同條 件時之狀態過渡圖。依循路徑 A,電壓開始於標稱値 VNOM。一旦其落在臨界電壓VTH之下,依循路徑B, ADU邏輯位準過渡到TRUE。當電壓再次上升返回到標稱 條件時,依循路徑C。一旦電壓橫過臨界加上遲滯障壁 VTH + VHYS,依循路徑 D,ADU 邏輯位準過渡到 FALSE。當時間行進時,室是在標稱電壓和ADU等待引 導到過渡B之下一路徑A。較佳的是,遲滯是無法經由軟 體調整之小的固定硬體決定値。就上述實施例而言,遲滯 値約是1 0000 mV刻度上的6 mV。然而,就一些實施例而 言,遲滯値可被設定成零。 ADU 5 0’具有四過渡監視(發弧)通道,及四輔助通 道。(輔助通道可被用於記錄相關資料但是無法計數發 弧,輔助通道用在升級系統中的資料收集)。參考圖27, 第一發弧通道係由2700和2702之間的相對電壓差所形 成,及第二發弧通道係形成在2704與2706之間(剩下兩 -65- 200835923 通道可被用於監視另一電壓和電流)。如上述,ADU 5 0 ’比 較P SIM信號與臨界並且報告遊逸在之上還是之下。 就發弧通道2700/2702和2704/2706而言,信號傳播 和過濾係如圖1 7所示,在圖17中,由電力供應3 0遞送 到室並且由PSIM的轉換器來量測之電壓V和電流I被圖 示在進入系統1 700的圖式之左側。電壓和電流轉換器二 者都具有相關的類比頻寬,然而,兩者在PSIM 40的輸出 φ 中都是超過40 kHz濾波器之數値幾個等級,適當藉由設 計以減少來自DC電力供應的交換雜訊之影響。40 kHz截 止是任意的及可在工廠藉由改變輸出比例電阻器來調整。 此信號被直接饋送到類比可程式化臨界比較器1 704,其 決定是否有臨界違犯或不在ADU邏輯位準形式中。每33 ns或以30 MHz的比率,執行發弧計數邏輯的ADU之部 分從類比比較器讀取ADU邏輯位準。PSIM V及I信號亦 經由類比第六等級Butterworth(巴特威士)濾波器1 706傳 φ 播,此濾波器1 706的目的係當將信號饋入到ADU的數位 部分時防止信號被混疊。此濾波器的截止頻率是 2.5 kHz。然後,ADU運行V及I信號經過一組可選擇FIR濾 波器1 70 8。預設係數被設定成八個濾波器的每一個都是 具有變化的長度之移動平均。PLC讀取V及I當作頻帶限 制、過濾的信號,自此,以約3 0 Hz的比率計算臨界値。 這些計算的基礎是指數加權移動平均(EWMA)濾波器 1710。這些被以工廠預設設定是2.5 kHz (這相同控制器執 行FIR過濾)的可組配比率操作之 ADU比較器控制器 -66 - 200835923 1712往下饋送回。 較佳的是,此實施例中所使用之工廠標準PLC 60是 MomentumTM M1E 9603 0處理器。透過標準 18接腳 MomentumTM連接器以RG-178同軸電纜進行到ADU 50’ 的信號連接(來自PSIM BNC連接器)。PLC 60透過標準 MomentumTM ATII硬體介面接合到ADU 50,。ATII介面 將32暫存器支撐在各個方向。b32暫存器被分割成8暫 φ 存器的四個完全相同群組,每一通道用一群組。 PLC 60由掃描循環的原則來操作。在一掃描循環期 間,PLC 60執行各個指令一次並且更新其I/O暫存器(經 由此與ADU 50’通訊)一次。因此,、PLC 60藉由首先讀取 32狀態暫存器和寫入32命令暫存器來控制ADU 50’,然 後依據從狀態暫存器最新讀取的資料來執行其自己的控制 程式。PLC程式包含重複四次的邏輯,每ADU通道一次 (主要電壓、主要電流,從屬電壓,及從屬電流)。程式亦 Φ 包含在各對通道(主要和從屬)上執行的邏輯,因爲其每一 電力供應結合來自兩通道(電流和電壓)的資料。 當PLC 60從ADU 50’讀取狀態暫存器(每ADU通道8 暫存器)時,PLC程式依賴每一 ADU通道之資料的四個主 要片段。四個變數是狀態暫存器(尤其是,位元9,無論 ADU是在量測發弧的時刻與否),PSIM信號,發弧計數、 及發弧時間。需注意的是,PSIM信號1714(如圖17所示) 是由兩低通類比濾波器已頻帶限制之實際室電壓或電流的 64點移動平均(在2.5 kHz構成25.6 ms視窗),第一具有 -67- 200835923 截止頻率40 kHz及第二具有截止頻率2.5 kHz。 參考圖18的方塊圖,穩定頻帶監視器1 802比較最新 的PSIM信號1 804與穩定上頻帶(SUB)和穩定下頻帶(SLB) 値1 8 06。若PSIM信號1 804落在SUB之上,則系統將那 看成步階增加的指示及邏輯處理在上升過渡模式中。若 PSIM信號1 804低於SLB,則假設係爲電力供應被關掉或 減少電力,及程式操作在下降過渡模式中。若PSIM信號 φ 1804落在由SUB和SLB界定的範圍內,操作模式是穩定 的(除非等待過渡保留延遲屆期)。當系統進入兩過渡模式 的其中之一時,超過當PSIM信號1 804再次落在SUB和 SLB限制內時之時間的過渡保留延遲週期之過渡模式中。 只要PSIM信號1804落在SUB及SLB所界定的範圍外, 穩定旗標就從邏輯正確(値1)落到邏輯錯誤(値〇),無論系 統進入上升過渡還是下降過渡模式。穩定旗標維持在邏輯 錯誤直到PSIM信號1 804落在SUB-SLB範圍內並且維持 # 在那裡達整個過渡保留延遲之久。如下面將詳細討論一 般,依據由PLC所見一般(增加另一濾波器到電壓或電流 讀數)之PSIM信號的EWMA已過濾版本來計算SUB及 SLB。濾波器將追蹤PSIM信號中在穩定模式中的緩慢的 變化和在兩過渡模式任一個中的較快變化。與兩隨後的電 力步階(第二大於第一)相對地,穩定旗標的時間進化SUB 及SLB連同過渡保留延遲1902的記法一起圖示在圖19。 需注意的是,穩定頻帶監視器1802是分開不可避免的步 階的端頭之發弧計數和時間(在臨界是之下的電壓通道上) -68- 200835923 與真正發弧計數和時間。 發弧計數及時間類別邏輯部分1 8 0 8採用來自 50’之最新的發弧計數和發弧時間讀數1810,及若新 弧計數和發弧時間已出現,則將它們增加到三PLC 計數和時間種類的其中之一(只有若狀態暫存器的狀 元9必須讀取邏輯錯誤,則指出ADU 5 0 ’不在發弧的 和結束之間)。三種類是穩定、過渡上升、及過渡下 φ 若穩定旗標是邏輯正確,則新的發弧計數被增加到穩 弧計數總數及新的發弧時間被增加到穩定發弧時間總 若穩定旗標是邏輯錯誤,則PLC 60追蹤過渡是否是 還是下降。依據過渡正發生,發弧計數和發弧時間被 到適當的發弧計數過渡和發弧時間過渡總數,上升 降。 重要的是,注意穩定和過渡模式的原因係爲當電 應步階變化或關掉將發生時,本系統事先不知道。 φ ADU 50’正尋找電壓通道上的發弧當作電壓下降到臨 下的點,當其能夠降低臨界或使ADU 50無法計數 時,其將總是產生發弧計數和一些發弧時間,直到 PLC掃描循環爲止。在真正微秒發弧事件期間’來自 下降事件的發弧時間典型上大幅大於發弧時間。因此 有自明的方法或步階持續資訊之下’ PLC 60進入過 式和分開在過渡期間所發現的發弧時間與在穩定處理 所發現的發弧時間。過渡保留延遲1 902欲提供安頓 點火過渡期間的空白週期。過渡保留延遲1 902參數 ADU 的發 發弧 態位 開始 降。 定發 數。 上升 增加 或下 力供 因爲 界之 發弧 下一 電力 ,沒 渡模 期間 電漿 和過 -69- 200835923 渡模式是降低資料中的錯誤正數之方法。 單元變換部分1812僅由對應的校準常數和校準百分 比値乘上PSIM信號以將0- 1 0000 mV PSIM信號轉換成伏 特或安培的真實世界工程單位(如、上述的〇-1 〇V)。校準 常數參數是PSIM硬體的函數,應只若PSIM分壓器電阻 器變化或若電流轉換器和其增益變化時才改變。若校準百 分比參數想要匹配電壓和電流(或電力)讀術語來自不同源 φ 頭、來自P.VD設備本身、或其他組件的類似讀數,則調 整校準百分比參數將被調整。 EWMA濾波器1710提供方法追蹤PSIM信號。EWMA 濾波器的輸出1814被用於調整臨界SUB及SLB。在穩定 模式中,追蹤是慢的,使得四個被調整參數亦在PSIM信 號設定點中慢慢地適應性飄移或緩慢變化。在過渡模式 中,追蹤較快,因爲設定點已改變並且PSIM信號快速向 上或向下躍跳以達成新的設定位準。控制EWMA濾波器 A 的等式如下: y(k)=X/100*PSIM Signal(k)+(l-X/100)*y(k-l) 其中y是在濾波器的輸出之値,k是PLC掃描循環指數 (每次PLC開始新的掃描時,以1增加k),及λ是過濾係 數。若穩定旗標是邏輯正確時,則λ是穩定過濾係數。若 穩定旗標是邏輯錯誤時,則λ等於過渡過濾係數。需注意 的是,λ可採用0及1 00之間的値,表示百分比位準。λ越 -70- 200835923 接近100 ’最近的讀數越多,PSIM信號(k)影響過濾輸出 y(k),及濾波器更快速追蹤快速變化的電壓或電流位準。 λ越接近0,PSIM信號影響y(k)的最近樣本越少,PSIM 信號決定y(k)的先前樣本之指數型衰退平均越多,及濾波 器將非常緩慢地依循PSIM信號中的步階變化。需注意的 是’ PSIM信號被解釋成兩電壓和電流是正數量(即、在從 陰極到陽極量測時,室電壓是非負値的絕對値數量)。 YTH及YHYS計算部分1816採用濾波器1710的輸出 y,及在PLC掃描循環的下一讀/寫相位中計算臨界値以寫 入到ADU 5 0’。臨界位準等於以穩定旗標所決定的適當百 分比乘上y,穩定臨界百分比或過渡臨界百分比。 在穩定頻帶計算1818中,EWMA濾波器1710的輸出 y以穩定頻帶百分比乘上然後加到y以產生SUB及從y減 掉以產生SLB。若y和穩定頻帶百分比的乘積低於穩定頻 帶最小(SBM),則SBM被加到y並且從y減掉以分別產生 SUB 和 SLB。 ENB/CRST區塊1 820執行三功能:(1)告知ADU 50’ 是否尋找發弧,(2)將ADU 50’重設在晶圓1310的結束, 及(3)記錄總處理時間。爲了執行第一功能,當PSIM信號 大於賦能位準時,ENB/CRST區塊1 820設定ADU控制暫 存器賦能位元ENB(位元1)爲高的。只要PSIM信號低於 賦能位準,ENB位元就被設定成低的。第二功能係重設 ADU 5 0’,當ADU 5 0’未被賦能達到達重設延遲的一段時 間時進行此。在大多數PVD處理中,晶圓1 3 1 0之間的時 -71 - 200835923 間超過電力供應關掉的晶圓處理期間之方法步驟的時間。 因此,爲了適當重設ADU 50’在晶圓1310之間,重設延 遲應被設定到大於內部方法電力關掉時間及小於晶圓之間 的電力關掉時間之値(以秒)。第三功能是追蹤總處理時間 者,從第一電力打開到到最後電力關掉。在結束上述邏輯 部分之後(及其他邏輯部分也一樣,雖然它們不影響寫入 到ADU 5 0 ’的任何變數),在掃描循環的下一讀取/寫入相 位中,將臨界和控制暫存器寫入到ADU 5 0 ’。 在圖20及圖22中圖示由PLC 60所執行的其他邏 輯。其圖示系統從產自用於個別通道的單元轉換邏輯之電 壓和電流讀數來計算用於電力供應(主要或從屬)的電力。 此外,藉由量測電壓賦能和和電力上升到電力設定點的 9 0%之間的時間差異來計算點火時間。在圖2 1中,點火 時間如繪畫般呈現對上相對於電壓的時間和其賦能位準, 電流,電力、和其90%電力設定點位準。 圖22描畫邏輯的最後部分。此部分看著用於單一電 力供應(主要或從屬)的發弧統計和將發弧分類成五等級的 其中之一,如圖23的表格所示一般。 來自電壓通道2202和電流通道2204之發弧計數和時 間被饋入到發弧類別邏輯部分2206。自最後PLC掃描 起,兩電壓和電流通道2202,2204上的發弧計數顯示出 增加,不管它們對應的發弧時間如何(及發弧位元、狀態 暫存器,位元9不高),PLC 60以下面式子增加發弧等級 1計數和計算掃描能量: -72- 200835923200835923 Four ADU functions monitor a single room through a single PSIM and connect the wires in a way that can be programmed into a single room to program a combination of four different thresholds corresponding to the programmable comparator 620 and ADLU 640. The number of arcs in the cymbal and the count of the duration of the arcing. In one embodiment, the DSPC 63 0 has a function to all four ADLU functions, and the arcing condition can be decomposed into four levels corresponding to four independent programs. one of them. For example, in a four separate system attached to a single PSIM, and a programmed critical number of 〇〇, 200, 300, and 400 volts, a single discovery with a minimum voltage of 値250 volts has A critical monitor that is programmed with 300 and 400 volts is not critically monitored at 100 and 200 volts. If the system is capturing a single arc in this way, the chamber voltage is 300 volts. The next cycle will occur simultaneously in the ADLU arcing time counter corresponding to the 300 volt level, while the period between the chamber voltage collapse field of 300 and 400 volts will only appear in the ADLU arcing time counter corresponding to 400 § . Then, the arcing time of the arcing event can be taken from the arcing time of the ADLU corresponding to the criticality of 300 volts, and the arcing time taken between the 200 and 300 volts is added. The arcing time spent between 3 0 0 and 400 volts is calculated using the difference between the ADLU arcing detectors corresponding to 400 volts and 300 volts, respectively. This algorithm can be repeated for different intensity sequences as needed. In a particular exemplary implementation, the DSPC 630 is at 10 kHz. By each. The voltage at the critical threshold will be out, but above. The collapse of 400 is in the special position of the two instruments. By the other sample -60-200835923, four ADLU register settings, and through the high-speed communication interface 70 for all four channels will count the arc and arc time Count the communication to logic configuration 60. The DSPC 630 also samples and shifts the nominally filtered chamber current ICH, and the filtered chamber voltage VCH, to a logic configuration 60 that performs the arithmetic operations required to resolve the arcing and calculates an estimate of the arc energy. All four arc voltage thresholds can be adaptively calculated from the extension described above. In another exemplary embodiment, DSPC 63 0 performs calculations internally, transmitting final estimates of arcing related parameters, such as arcing times in respective critical Φ 和, and estimated arcing energy to logic configuration 60. According to an exemplary implementation, logic configuration 60 is an external logic configuration, such as a programmable logic controller (PLC), a top hat, or the like. According to a more specific embodiment, the logical configuration 60 is a Schenider Automation Ml-E PLC. According to one aspect of the invention, the ADU is incorporated into the momentum form factor and is designed to communicate with the momentum top hat and programmable logic controllers (PLCs). % In one implementation, the data collected by the logic configuration 60 is recorded. The software executed on the logical configuration 60 records the data, graph data, and provides network-based alerts to reflect the data. The system controller provides instant control of the plasma generation application. When the arc count and/or arc duration exceeds a selected amount of each deposit, the logic configuration 60 determines, according to a predetermined algorithm, that the arc is damaging the substrate during material deposition and communicates with the system controller to terminate the deposition. The logic configuration 6〇 also indicates that the substrate being processed is reduced in output due to arcing. In addition to the cumulative duration of arcing and arcing for individual deposition counts -61 - 200835923, the 'in other implementations' logic configuration 60 is used to perform other real-time analysis of arcing information. For example, such as recording the total number of targets (and duration), recording arcing intensity (refer to near ground potential, indicating direct short circuit) and detecting continuous arcing, which indicates that possible defects in the target need to be closed. Remove all tools for repair. In another implementation, the system controller determines the rate of change of the arc rate/duration during the arcing duration, or the arcing, quality, and duration, amount, and arcing intensity φ (in accordance with the arcing rate) That is, the number of sounds or the severity (for example, the measurement obtained by the product of the arc duration and the number of turns) is proportional to the arcing quality to provide a signal. According to another exemplary embodiment of the present invention, the method integrates immediately The arc detector is a hardware that needs to inform the user that the sputtering source is problematic and that the newly processed wafer yield is reduced. Accordingly, various embodiments of the present invention can be implemented to provide arc detection in other plasma generation control applications. Measured, such as box hardened steel, etc. Generally, the circuit configuration and method of the present invention can be applied regardless of whether the plasma generating chamber or its equivalent is implemented. φ According to another embodiment of the present invention, the arc detecting unit 5 0 ' (shown in Figure 27) is configured to detect arcing events by observing the peaks in the current applied to the plasma generating device 1300. Based on this information and the arcing event from the detected voltage drop Information The detecting unit 50' classifies the arcing events into various categories. The device can also calculate the scanning energy and the arcing energy for the specific arcing event category. The basic configuration of the components shown in Fig. 1 and the ADU 50' of Fig. 27 are For the implementation of this embodiment. Figure 13 illustrates a typical basic chamber set of a PVD-treated plasma generating apparatus for depositing a thin, highly uniform layer of various materials onto a substrate - 62 - 200835923 Typically, helium, ionized to form electricity @ 1 302 and accelerated from the anode surface 1 304 (chamber wall and substrate) to the cathode bias target of the source material 1 3 06 (the cathode is illustrated as 1 3 08 The final atomic level of the target material is spray coated onto all of the proximity surfaces, including the fabricated substrate and the dome 1310. Typical anode-cathode voltages fall within the range of 300V-600V (with peaks up to 1 500V), while current ranges From 2A to 100 A. The final power delivered to the chamber can be as low as a few kW and as high as 80 kW. φ One of the main applications of this process is to deposit a metal layer on the germanium wafer when manufacturing integrated circuits (ICs). This process is easy to "arc". The target emits a large amount of particle contamination. Some of this contaminated material will land on the wafer, resulting in uneven production defects and coatings, which will negatively affect the profit of the manufacturer. The arcing system can be (i) target impurities or inclusions. , (ii) target or accessory aging and physical tolerance changes, or (iii) wafer calibration. The arcing during PVD processing results from an unintentional low impedance path from the anode to the target. When arcing occurs, The number of chamber impedances is rapidly reduced, and the φ is often too fast for the power supply to react. The rapid decrease in the voltage 値 between the anode and cathode of the chamber can be observed. As a result, the comparison chamber voltage and critical threshold can be provided early. Detection of arcing. Through this early detection, the manufacturer can solve the root cause of arcing without having to withstand the high yield loss caused by the arcing defects. As shown in Figure 4, a detrimental arc condition 1 402 on the order of 1 microsecond is typically observed. These short duration arcs 1 402 are commonly referred to as micro-arcs. Because of the very short duration, detecting high frequency arcs requires high speed electrons. In addition to micro-arcing, a massive power supply event with a duration of -63-200835923 on the order of milliseconds or tens of milliseconds also occurs in the PVD system. Figure 14 illustrates a typical PVD cell voltage 1 404 versus time plotted. The number of voltages 1404 is also illustrated because the cathode voltage is negative relative to ground. Where there is an arc 1 402, there is a sudden and rapid decrease in voltage towards ground. Once the short circuit event is over, the voltage returns to the nominal room voltage again. Possible transcendence and understanding during the recovery are not shown in the drawings. During the arcing event, the current reacts equally, although it increases rapidly and then decreases, knowing a φ but seeing the end, the condition returns to normal. The PSIM 40 is used to convert high voltage and high current readings from the power supply 30 into a range of 0-10V for input to the ADU 50'. The 0-10V signal is linearly proportional to the room voltage and current. This provides a voltage signal indicative of the voltage of the power supply 30 and a current signal indicative of the current of the power supply 30. Referring to Figure 27, the ADU 50' is designed to monitor 0-10V signals for high speed transients (whether up or down). Within the ADU 50', the high speed analog φ comparators 620, 621 determine if the voltage signal has crossed the line. Internal logic unit 640 converts analog comparator output 622, 623 to a logical level indicating whether the line has been crossed. Moreover, it counts the number of logical unit clock cycles (i.e., duration) that have crossed the line (an indication of the severity of the arc). Among its many functions, a programmable logic controller (PLC) or other logic configuration or circuitry 60 reads data from the ADU, converts the DSP clock cycle into a microsecond 'reset arc counter, and makes the data available. On the Ethernet. The PLC also sends command parameters to the ADU—when to find the arc event, what is the critical threshold, and whether the swim should be critical or critical. -64 - 200835923 Figure 15 depicts the typical chamber voltage 値 1500 pairs of time relative to the critical level of 1 502. In the case of voltage, the arcing condition 1 402 occurs when the instantaneous voltage reading drops below the threshold 値1 5 02. The room to be noted, the critical 152 is adaptive because it does track the slow change in the chamber voltage of 15 00. The number of ADU 50' counts and the number of critical 1 502 passes, and the duration during which the voltage is below 30 MHz. To account for the effects of noise or jitter, the arcing event does not end until the transient voltage rises above the critical 1 502 plus hysteresis. Figure 16 is a state transition diagram when the ADU 50' enters an arcing condition and when the same condition exists. Following path A, the voltage begins at nominal 値 VNOM. Once it falls below the threshold voltage VTH, following the path B, the ADU logic level transitions to TRUE. Path C is followed when the voltage rises again to return to the nominal condition. Once the voltage crosses the critical plus the hysteresis barrier VTH + VHYS, following the path D, the ADU logic level transitions to FALSE. As time travels, the chamber is at path A after the nominal voltage and ADU are waiting to be routed to transition B. Preferably, the hysteresis is determined by a small fixed hardware that cannot be adjusted via software. For the above embodiment, the hysteresis is about 6 mV on a scale of 1 0000 mV. However, for some embodiments, the hysteresis can be set to zero. The ADU 5 0' has four transition monitoring (arc) channels and four auxiliary channels. (Auxiliary channels can be used to record relevant data but cannot count arcs, and auxiliary channels are used for data collection in upgraded systems). Referring to Figure 27, the first arcing channel is formed by a relative voltage difference between 2700 and 2702, and the second arcing channel is formed between 2704 and 2706 (the remaining two -65-200835923 channels can be used Monitor another voltage and current). As mentioned above, the ADU 5 0 ' is compared to the P SIM signal with a threshold and reports whether the run is above or below. For arcing channels 2700/2702 and 2704/2706, the signal propagation and filtering is shown in Figure 17, in Figure 17, the voltage delivered by the power supply 30 to the chamber and measured by the PSIM converter. V and current I are illustrated on the left side of the pattern entering system 1 700. Both voltage and current converters have associated analog bandwidths, however, both of them are in the output φ of PSIM 40 over several tens of kHz filters, suitably designed to reduce DC power supply. The impact of the exchange of noise. The 40 kHz cutoff is arbitrary and can be adjusted at the factory by changing the output proportional resistor. This signal is fed directly to the analog programmable threshold comparator 1 704 which determines if there is a critical violation or is not in the ADU logic level form. At a ratio of 33 ns or 30 MHz, the portion of the ADU that performs the arc count logic reads the ADU logic level from the analog comparator. The PSIM V and I signals are also transmitted via analogy to a sixth level Butterworth filter 1 706. The purpose of this filter 1 706 is to prevent signals from being aliased when the signal is fed into the digital portion of the ADU. The cutoff frequency of this filter is 2.5 kHz. The ADU then runs the V and I signals through a set of selectable FIR filters 1 70 8 . The preset coefficients are set such that each of the eight filters is a moving average having a varying length. The PLC reads V and I as band-limited, filtered signals, and since then, calculates the critical enthalpy at a ratio of approximately 30 Hz. The basis for these calculations is an exponentially weighted moving average (EWMA) filter 1710. These are fed back by the ADU comparator controller -66 - 200835923 1712, which is operated at a factory-settable ratio of 2.5 kHz (this same controller performs FIR filtering). Preferably, the factory standard PLC 60 used in this embodiment is a MomentumTM M1E 9603 0 processor. The signal connection to the ADU 50' (from the PSIM BNC connector) is made via a standard 18-pin MomentumTM connector with an RG-178 coaxial cable. The PLC 60 is bonded to the ADU 50 via a standard MomentumTM ATII hardware interface. ATII interface Supports the 32 registers in all directions. The b32 register is divided into four identical groups of 8 temporary φ registers, one for each channel. The PLC 60 is operated by the principle of a scan cycle. During a scan cycle, PLC 60 executes the individual instructions once and updates its I/O registers (via which it communicates with ADU 50') once. Therefore, the PLC 60 controls the ADU 50' by first reading the 32-state register and writing the 32-command register, and then executing its own control program based on the most recently read data from the status register. The PLC program contains logic that repeats four times, once per ADU channel (primary voltage, main current, slave voltage, and slave current). The program also includes logic that is executed on each pair of channels (primary and slave) because each power supply combines data from two channels (current and voltage). When the PLC 60 reads the status register from the ADU 50' (8 registers per ADU channel), the PLC program relies on the four main segments of the data for each ADU channel. The four variables are the state register (in particular, bit 9, whether the ADU is measuring the time of the arc or not), the PSIM signal, the arc count, and the arcing time. It should be noted that the PSIM signal 1714 (shown in Figure 17) is a 64-point moving average of the actual room voltage or current that is band-limited by the two low-pass analog filters (25.6 ms window at 2.5 kHz), the first has -67- 200835923 Cutoff frequency 40 kHz and second with cutoff frequency 2.5 kHz. Referring to the block diagram of Fig. 18, the stable band monitor 1 802 compares the latest PSIM signal 1 804 with the stable upper band (SUB) and the stable lower band (SLB) 値 1 8 06. If the PSIM signal 1 804 falls above the SUB, the system treats that as an indication of step increase and logic processing in the rising transition mode. If the PSIM signal 1 804 is lower than the SLB, it is assumed that the power supply is turned off or reduced, and the program is operating in the falling transition mode. If the PSIM signal φ 1804 falls within the range defined by SUB and SLB, the mode of operation is stable (unless waiting for the transition to hold the delay period). When the system enters one of the two transition modes, it exceeds the transition mode of the transition retention delay period when the PSIM signal 1 804 falls within the limits of SUB and SLB again. As long as the PSIM signal 1804 falls outside the range defined by SUB and SLB, the stability flag falls from logic correct (値1) to logic error (値〇), regardless of whether the system enters a rising transition or a falling transition mode. The stability flag is maintained at a logic error until the PSIM signal 1 804 falls within the SUB-SLB range and maintains # throughout the transition retention delay. As will be discussed in detail below, the SUB and SLB are calculated based on the filtered version of the EWMA of the PSIM signal as seen by the PLC (adding another filter to the voltage or current reading). The filter will track the slow changes in the stable mode in the PSIM signal and the faster changes in either of the two transition modes. In contrast to the two subsequent power steps (second greater than the first), the temporal evolution of the stability flags SUB and SLB are illustrated in Figure 19 along with the notation of the transition retention delay 1902. It should be noted that the stable band monitor 1802 is the arc count and time (the voltage channel below the threshold) separating the inevitable steps -68-200835923 with true arc count and time. The arc count and time category logic section 1 8 0 8 uses the latest arc count and arc time reading 1810 from 50', and if the new arc count and arc time have occurred, they are added to the three PLC counts and One of the types of time (only if the status register 9 of the status register must read a logic error, then ADU 5 0 'is not between the end of the arc and the end). The three types are stable, transitional, and transitional. If the stability flag is logically correct, the new arc count is increased to the total number of steady arc counts and the new arcing time is increased to the stable arcing time. The flag is a logic error, and the PLC 60 tracks whether the transition is or is falling. According to the transition is occurring, the arc count and arcing time are increased to the appropriate number of arcing count transitions and arcing time transitions. It is important to note that the reason for the stabilization and transition modes is that the system does not know in advance when the electrical step changes or turns off. φ ADU 50' is looking for arcing on the voltage channel as the voltage drops to the next point. When it can lower the criticality or make the ADU 50 unable to count, it will always generate the arc count and some arcing time until The PLC scans until the loop. The arcing time from a falling event during a true microsecond arcing event is typically significantly greater than the arcing time. Therefore, there is a self-explanatory method or step continuous information. PLC 60 enters and separates the arcing time found during the transition and the arcing time found during the stabilization process. Transition Hold Delay 1 902 is intended to provide a blank period during the ignition transition. The transition reserve delay 1 902 parameter ADU's firing arc bit begins to drop. The number of issued. Increase or decrease the power supply because of the arcing of the next power, no plasma during the mode and the -69-200835923 mode is a method to reduce the number of errors in the data. The unit conversion portion 1812 multiplies the PSIM signal by only the corresponding calibration constant and the calibration percentage 以 to convert the 0-1 0000 mV PSIM signal into a real world engineering unit of volts or amps (e.g., 〇-1 〇V as described above). Calibration Constant parameters are a function of the PSIM hardware and should only be changed if the PSIM divider resistor changes or if the current converter and its gain change. If the calibration percentage parameter is to match voltage and current (or power) reading terms from different sources φ heads, similar readings from the P.VD device itself, or other components, the Adjust Calibration Percent parameter will be adjusted. The EWMA filter 1710 provides a method to track the PSIM signal. The output 1814 of the EWMA filter is used to adjust the critical SUB and SLB. In steady mode, the tracking is slow, so that the four adjusted parameters are also slowly adaptively drifting or slowly changing in the PSIM signal set point. In transition mode, tracking is faster because the setpoint has changed and the PSIM signal jumps up or down quickly to reach a new set level. The equation for controlling EWMA filter A is as follows: y(k)=X/100*PSIM Signal(k)+(lX/100)*y(kl) where y is after the output of the filter and k is the PLC scan Cycle index (increasing k by 1 each time the PLC starts a new scan), and λ is the filter coefficient. If the stability flag is logically correct, then λ is the stable filter coefficient. If the stability flag is a logic error, then λ is equal to the transition filter coefficient. It should be noted that λ can use 値 between 0 and 100, indicating the percentage level. Λ-70-200835923 Close to 100 ′ The more recent readings, the PSIM signal (k) affects the filtered output y(k), and the filter tracks the rapidly changing voltage or current level more quickly. The closer λ is to 0, the fewer recent samples of the PSIM signal affecting y(k), the more the PSIM signal determines the exponential decay average of the previous samples of y(k), and the filter will follow the steps in the PSIM signal very slowly. Variety. It should be noted that the 'PSIM signal is interpreted as two voltages and the current is positive (ie, the absolute voltage of the chamber voltage is non-negative when measured from cathode to anode). The YTH and YHYS calculation section 1816 uses the output y of the filter 1710, and calculates a threshold 値 in the next read/write phase of the PLC scan cycle to write to the ADU 5 0'. The critical level is equal to the appropriate percentage determined by the stability flag multiplied by y, the stability threshold percentage or the transition critical percentage. In the stable band calculation 1818, the output y of the EWMA filter 1710 is multiplied by the stable band percentage and then applied to y to generate and subtract from y to produce SLB. If the product of y and the stable band percentage is lower than the stable band minimum (SBM), the SBM is added to y and subtracted from y to produce SUB and SLB, respectively. The ENB/CRST block 1 820 performs three functions: (1) telling the ADU 50' whether to look for arcing, (2) resetting the ADU 50' to the end of the wafer 1310, and (3) recording the total processing time. To perform the first function, the ENB/CRST block 1 820 sets the ADU control register enable bit ENB (bit 1) high when the PSIM signal is greater than the enable level. The ENB bit is set low as long as the PSIM signal is below the enable level. The second function resets the ADU 5 0', which is done when the ADU 5 0' is not energized for a period of time to reach the reset delay. In most PVD processes, the time between -71 - 200835923 between wafers 1 3 1 0 exceeds the time of the method steps during wafer processing during which the power supply is turned off. Therefore, in order to properly reset the ADU 50' between the wafers 1310, the reset delay should be set to be greater than the internal method power-off time and less than the power-off time between the wafers (in seconds). The third function is to track the total processing time, from the first power on until the last power is turned off. After terminating the above logic (and other logic parts, although they do not affect any variables written to ADU 5 0 '), the critical and control are temporarily stored in the next read/write phase of the scan cycle. Write to ADU 5 0 '. Other logic executed by the PLC 60 is illustrated in Figures 20 and 22. Its illustrated system calculates the power for the power supply (primary or slave) from the voltage and current readings produced by the unit switching logic for the individual channels. In addition, the ignition time is calculated by measuring the time difference between the voltage enable and the power rise to 90% of the power set point. In Figure 21, the ignition time is plotted as opposed to the voltage versus its energizing level, current, power, and its 90% power setpoint level. Figure 22 depicts the final part of the logic. This section looks at one of the arc statistics for a single power supply (primary or slave) and one of the five levels of arcing, as shown in the table in Figure 23. The arc count and time from voltage channel 2202 and current channel 2204 are fed to arcing class logic portion 2206. Since the last PLC scan, the arc counts on the two voltage and current channels 2202, 2204 show an increase, regardless of their corresponding arcing time (and the arcing bit, state register, bit 9 is not high), The PLC 60 increases the arc level 1 count and calculates the scan energy by the following equation: -72- 200835923

Scan Energy 其中k是PLC掃描循環指數,yV是用於電壓通道之 EWMA濾波器輸出,YVTH是用於電壓通道之臨界値,yi 是電流通道的EWMA濾波器輸出,YITH是用於電流通道 的臨界値,tarcV是用於電壓通道的發弧時間(用於非累計 的最新P L C掃描),及t ar c I是用於電流通道的發弧時間 0 (再次用於最新的PLC掃描)。掃描能量實際上是在它們從 它們的標稱(或EWMA已過濾)値脫離之電壓曲線下的面積 和在電流曲線下的面積之乘積。掃描能量計算中的時間因 子是在兩通道上可見的時間之平均。發弧能量是掃描能量 的累計總和。若從最後掃描起只有電壓發弧計數已改變, 則檢查有關在500 中的邊界之發弧時間。(此邊界是硬 碼在PLC中)若發弧時間低於邊界値,則發弧等級2計數 器被增加。若發弧時間大於或等於邊界値,則發弧等級3 φ 計數器被增加。若只有電流發弧計數暫存器從最後PLC 掃描起已改變,則發弧時間被檢查及發弧等級4或發弧等 級5計數器被增加,分別依據發弧時間是低於邊界或大於 或等於邊界値而定。在圖23給予五等級每一個的實體解 釋。在晶圓的結束重設發弧能量和所有五個發弧等級。 爲了總結PLC程式如何運作,圖24給予時序圖 , 就一完整晶圓(晶圓1)和下一晶圓的開始(晶圓2),圖示4 步階處理(相對於電力供應電壓)。第一步階具有緩和位準 的電壓,第二步階是高電壓步階,第三步階具有電力關 -73- 200835923 上,及第四步階具有三電力打開步階中的最低電壓。如感 測器所計數之總處理時間係從第一步階的開始到第四步階 的結束。需注意的是,在步階開始之前,晶圓1進入室 中,並且在步階結束4之後短時間存在室中。當電壓從一 位準過渡到下一位準時,PLC 60看見大的步階變化(超過 穩定頻帶),及使系統成爲過渡模式,從邏輯正確到錯誤 下降穩定旗標。穩定旗標維持錯誤,及系統在過渡模式 中,直到在新的穩定頻帶中電壓穩定之後時間等於過渡保 留延遲爲止。此延遲的目的係(1)避免計數點火過渡當作 穩定發弧,及(2)爲了加速處理電壓位準的追蹤(其影響臨 界位準多快追隨處理),使得一旦達成穩定,則臨界電壓 是在想要的位準。雖然未圖示在圖3, 4, 6,但是系統在上 升和下降過渡之間有差異。ADU 50’如ADU賦能位元所示 一般賦能,ADU賦能位元在電壓超過賦能位準的所有時 間都是高的。由電壓發弧計數,發弧能量圖示有限的一組 資料,發弧等級1和發弧等級2描繪在圖式的底部。在步 階1的中間,同時發生兩電壓和電流(未圖示)通道上的發 弧計數(在相同PLC掃描內),因此,電壓發弧計數被圖示 成增加,如發弧等級1 一般。對應的是,在每一(2)中的 計算中能量增加。在步階2的中間,另一發弧事件發生, 這個只在電壓通道上。由於發弧時間(未圖示)低於 500ps,所以事件暫存當作發弧等級2事件。需注意自晶 圓的開始起發弧計數如何成發弧計數的累計總和。當電力 供應關掉一段重設延遲持_期間之久,ADU重設變高且 -74- 200835923 所有發弧事件相關變數重設。圖24所示的重設之變數是 發弧計數、發弧能量、發弧等級1、及發弧等級2。當晶 圓2開始(如感測器所見到當作第一增加電壓過渡一般) 時,ADU重設回到邏輯錯誤和ADU賦能變成邏輯正確。 最後,圖25圖示相對於處理電壓之臨界的適應。在 圖式的開始,電壓是關掉的(讀數非常接近零),及是穩定 臨界百分*EWMA濾波器輸出之臨界亦非常接近零(由於 ADU未賦能,臨界當作ADU 50’之處不計數發弧也沒關 係)。SUB及SLB在電壓之上和之下,並且或許由穩定頻 帶最小而非由穩定頻帶百分比所支配。當用於第一時間的 電壓增加時,系統進入上升過渡模式,應用過渡過濾係數 和過渡臨界百分比。由於過渡過濾係數是較大的値,所以 EWMA濾波器加權在PSIM信號的最近樣本上,因此臨界 快速上升以反應電壓中的步階變化。一旦電壓穩定,臨界 亦穩定在過渡臨界百分比所規定的位準中。在處理電壓落 在SUB及SLB內一段等於過渡保留延遲的時間週期,系 統回復到穩定臨界百分比和穩定過濾係數應用之穩定模 式。從過渡模式交換到穩定模式係由臨界百分比從穩定交 換到過渡之臨界的跳躍所完成。在電壓的第二上升過渡中 見到類似前進。當電壓下降到關上狀態時,前進再次重複 在下降過渡中,唯一的不同是在此週期所產生之任何過渡 發弧計數和時間被寫成日誌當作下降過渡發弧事件統計的 一部分。 在系統沒有有關處理過渡何時發生的資訊之獨立性模 -75- 200835923 式中,見到電壓通道上之下降過渡發弧/計數和時間是正 常的。見到電流通道上之上升過渡發弧計數和時間亦是正 常的。在兩例子中,信號突然在ADU 50’尋找突然過渡之 方向中移動。直到PLC 60(以30 Hz)可趕上ADU 50’(30 MHz)並且給予改變臨界的命令爲止,ADU 50’將計數步階 變化當作發弧。因此,需要將資料分成穩定和過渡成分。 系統參數應被調整成發弧計數、發弧時間、發弧能 φ 量、發弧等級、處理過渡、點火時間、和處理時間資料 (即輸出資料的剩餘物’但是上述設定包含臨界資料點)都 被系統最佳化報告。目標係捕捉影響晶圓品質的”真正發 弧”之資料。 包含在系統中的各種變數和參數以圖式圖解在圖 26。兩罪重要的變數是臨界和穩定旗標。發弧計數、發弧 時間、發弧能量、及發弧等級變數都依據臨界。若臨界太 接近操作電壓或電流’則系統將報告錯誤警報發弧事件。 φ 若臨界離操作電壓或電流太遠,則系統可能錯過報告一些 較短的微發弧事件。穩定旗標以兩方式影響臨界,經由臨 界百分比的選擇(穩定或過渡)及藉由調整EWMA濾波器的 頻寬,其直接饋入到臨界計算的輸出。 圖26揭示邏輯的幾個路徑,電力和點火時間路徑, ADU賦能路徑,臨界路徑,處理時間路徑,及穩定旗標/ 發弧計數/發弧能量/發弧等級路徑。各個路徑的起點是從 ADU(讀自)暫存器所讀取之一或多個値。各個路徑的結束 點將是一或多個値以寫入到ADU(寫入)暫存器或系統變 -76- 200835923 量,統計式說明一或多個發弧事件。需注意的是在圖26 中,因爲電流通道邏輯跟隨相同結構和流動作電壓通道邏 輯一般,所以被圖示成縮寫。此類似部分係由矩形破折線 來界定。 在電力和點火時間路徑中,用於主要電力供應 PSIM(或從屬)的電壓和電流被組合以產生被計算的電力。 接著被用於計算點火時間。在圖26中以斜體字圖示在各 φ 個變量的計算中所使用之參數。電流和電壓二者都以校準 常數和校準百分比乘上PSIM信號所產生。點火時間適當 ADU賦能變高直到所計算的電力上升的電力設定點之 90%上之時間差的結果。校準常數和校準百分比被用於調 整電流和電壓。校準常數反映PSIM硬體,因此不應被改 變,除非PSIM硬體被改變。若電流和電壓需要微調以匹 配來自諸如工具控制器等製造時的另一來源之資料,則只 調整校準百分比。電力設定點應被調整成等於方法中的第 φ 一步驟之電力位準(以瓦特)。(可爲方法中的各個步驟計 算點火時間,然而,PLC程式將必須從此文件所說明的版 本加以修正)。 ADU賦能路徑決定ADU何時積極尋找發弧。由賦能 位準和賦能延遲參數控制之。當PSIM信號上升到賦能位 準之上時,PLC將命令ADU 50’開始藉由設定賦能位元在 控制暫存器中來尋找發弧。賦能位準應在關掉狀態讀數之 上並且在由PVD工具所操作之方法中的最低電壓或電流 位準之下(等量PSIM信號單元)。若想要在PSIM信號上 -77- 200835923 升到賦能位準上之後使ADU 50’保持不活動達一段時間 週期之久,則增加賦能延遲。實際上,賦能位準條件(與 穩定對上過渡模式組合)是足夠的,因此在PVD應用中, 賦能延遲將可能從不必要被調整。 在臨界路徑中,PSIM信號被饋入到由穩定過濾係數 或過渡過濾係數所支配之EWMA濾波器,如穩定旗標的 狀態所決定一般。過濾係數參數可從0變化到1 00。高値 φ 增加濾波器的頻寬,容許快速反應追蹤步階變化(不良的 雜訊射出)。當在穩態時,或在穩定模式期間,系統應被 設定成具有臨界(記得臨界=臨界百分比*濾波器輸出),其 中與DC電力供應信號中的雜訊耦合之臨界中的雜訊將不 產生錯誤發弧計數。 然後將濾波器的輸出饋入到以穩定頻帶百分比乘上濾 波器輸出之穩定上頻帶/穩定下頻帶(SUB/SLB)計算。若此 乘積低於穩定頻帶最小參數,則穩定頻帶最小被加到瀘波 φ 器輸出和從濾波器輸出減掉以分別產生SUB及SLB。不 然,將乘積加到濾波器輸出及從濾波器輸出減掉以指定 SUB及SLB。SUB及SLB然後被用在下一 PLC掃描的開 始以決定穩定旗標是正確還是錯誤的。穩定頻帶百分比應 足夠低到確保方法步驟之間的最小步階變化能夠使系統進 入過渡模式,應足夠高到可能存在的任何電力損耗事件不 使系統在應是單一方法步驟的中間進入過渡模式。穩定頻 帶百分比最初從已知方法電壓和電流槪況來設定,但是必 須藉由檢驗各個處理所操作之多個晶圓以憑經驗來變化。 -78- 200835923 穩定頻帶最小應被設定成當系統在電力關掉狀態時’穩定 旗標不在正確和錯誤之間來回改變。其可藉由觀察關掉狀 態雜訊和使所觀察的變化成三倍來簡單設定。 過濾器輸出亦被饋入到臨界計算。穩定旗標決定應用 哪一模式,穩定還是過渡。然後,臨界是以穩定臨界百分 比或過渡臨界百分比乘上濾波器輸出。臨界是資料中之兩 最重要的變量其中之一。 經由穩定臨界百分比之臨界應在各種處理方法和電力 設定點的穩態操作期間被上下調整以識別電力供應波紋, 記得波紋將隨著時間和室的改變而改變。穩定臨界百分比 必須被設定成臨界在電力供應波紋之下,但是仍足夠高到 捕捉短持續期間發弧。提醒PSIM包含60 kHz濾波器在 其電路系統中(藉由設計以減輕電力供應交換雜訊的影 響),其時間常數是2·6μ8。指定用於發弧的電壓過渡採用 來自處理設定點到零大大小於1 μ8的電壓,及假設發弧可 由方波函數來表示(相對方向和相等的數値的兩步階變 化),時間常數和穩定臨界百分比將決定可由系統偵測到 之最短的發弧。例如,在圖5.4中,3ps的發弧被圖示當 作電力供應電壓和頻帶限制PSIM信號,相對於臨界。即 使ADU接收的信號是頻帶限制的,發弧仍被計數當作在 臨界之上的遊逸。藉由比較,已被降至1μ8的發弧不被具 有60%穩定臨界百分比的ADU來計數。然而,若穩定臨 界百分比被設定成80%時,應被計數當作發弧事件。 因此,穩定臨界百分比應被設定在ADU計數雜訊當 79- 200835923 作發弧事件的位準之下’然而不是如此低到真正發弧事件 的大百分比不能使PSIM信號橫跨臨界。過渡臨界百分比 應同樣被設定,記得點火週期本質上是雜訊,因此其値將 可能低於穩定臨界百分比。過渡保留延遲可被用於延長或 縮短過渡臨界百分比應用的期間之週期。 在處理時間路徑中,唯一計算是處理時間本身。處理 時間是從當PSIM信號超過賦能位準到PSIM信號落在賦 能位準之下的時間,並且維持在之下達至少等於重設延遲 的時間之久(需注意的是,當超過使得處理時間反映用於 晶圓之第一 ADU賦能真正條件和最後ADU賦能真正條件 之間的差時從處理時間減掉重設延遲)。在PLC程式中可 以另一裝置指出晶圓處理已結束並且資料可被重設之信號 取代系統的重設邏輯,藉以使重設延遲不需要。 最後,穩定旗標/發弧計數/發弧能量/發弧等級路徑包 含最後的兩參數,過渡保留延遲和發弧等級邊界。穩定旗 標再次是兩罪重要系統變量的其中之一。若PSIM信號從 前一 PLC掃描落在SUB和SLB所定義的範圍內,則其是 正確的。不然,其是錯誤的並且維持錯誤直到PSIM信號 再次落在 SUB-SLB範圍內達過渡保留延遲時間週期之 久。穩定旗標影響EWMA過濾器,臨界,及發弧計數的 到穩定、上升過渡、及下降過渡種類之貯藏。爲了調整過 渡保留延遲,在穩定旗標是錯誤的期間和之後,調整其値 和比較發弧計數資料的所有三種類。若在處理或步驟的一 開始,緊接在穩定旗標變成正確之後規律地發生穩定發弧 -80- 200835923 計數,則應增加過渡保留延遲。 本發明的另一觀點包含電漿產生設備1300的非陰極 發弧之可能性的偵測。回頭參考圖1 3,圖示PVD室的主 要組件。基板或晶圓1310座落在夾盤或臺座1312的室之 最下部分,夾盤通常以靜電力將晶圓1310支托在適當位 置。在晶圓1 3 1 0之上的是將沈積在晶圓1 3 1 0上之由金屬 製成的目標1306dDC電源被連接在晶圓1310附近的陰 極1 3 08 (或目標1 306)與陽極1 304之間。當供給DC電源 能量時,陰極1308和陽極1304之間的氣體被離子化,形 成電漿1 3 02。在電場中將正電荷氣體離子朝目標1 306掃 去,其中運動式碰撞使金屬原子或分子能夠從目標1306 釋出。釋出的金屬然後塗層在室中的每一事物上,包括晶 圓1 3 1 0。亦稱作成套配件之犧牲性護罩1 3 1 4位在室中以 吸收沈積並且週期性被更換。在圖式中未圖示的是圍繞晶 圓以保護夾盤免於被沈積之一些室組件。這些組件可包括 沈積環和覆蓋環。 陰極,或目標,發弧導致晶圓1 3 1 0上之唾液或慧星 形缺陷的存在(材料組成與目標相同),以橫跨晶圓的表面 之隨機圖型。陰極發弧的特徵爲DC電力供應中的微秒電 壓和電流過渡,及可被上述的發弧能量量化。圖2 8圖示 典型陰極或目標發弧缺陷圖型2800,及圖29圖示晶圓 1310的表面上之慧星形缺陷2900的近照。 非陰極發弧源自於接近晶圓1 3 1 0的組件,可能是護 罩1314,沈積環、或覆蓋環。這些發弧在發弧的區域中 -81 - 200835923 嚴重破壞或污染晶圓,或遠離發弧本身的晶圓1310上隨 機排出,和如下雨一般污染。污染材料組成是發弧發生的 周圍室組件之組成。圖3 0圖示典型非陰極發弧缺陷圖型 3 000。圖31圖示由於非陰極發弧所導致的晶圓膜破壞 3100之近照或放大圖,及圖32圖示遠離晶圓1310的中 間之非陰極發弧的晶圓污染3200。圖33圖示接近發弧的 晶圓污染3 3 00。 φ 從衍生自上述發弧偵測單元50之資料的分析可決定 非陰極發弧的風險或可能性。可爲與單元50相關之四個 感測器通道的每一個提供資料。這些包括被監視的主要供 應電壓和電流,及從屬室電壓和電流。 圖34圖示爲發弧偵測單元50的通道所收集之一組樣 本資料3400。資料組的多變量統計分析被用於決定電漿 產生設備1 300中之任何非陰極發弧的可能性。 試想組織成列和行的資料組,每一晶圓具有一列, φ (當處理開始時由時間戳記專門爲各個所識別),及行包含 某些類型的資料(見行標頭的上方表格,即、發弧計數穩 定或X 1)。因此,資料組中之列的例子被指定上述表格的” 例示”行中。若資料組中的點被表示成d(i,j),則其中i是 列指數(或列數)及j是行指數(或行數) d(i,0) =晶圓(i)的時間戳記,i = l,2, 3,···,Ν 在Ν晶圓向資料組中,同樣地, d(i,l)=晶圓(i)的總發弧計數,i = l,2, 3,···,Ν -82- 200835923 就其本身而論,行平均dm(j)將採用此形式 dm(j) = [d(l,j)+ d(2,j) +…+d(N,j)]/N,j = l,2,3,.·.,Μ 其中Μ是資料中之非時間戳記行中的數目。例如,若在 列於上述表格中的子組資料上執行分析,由變量x i, χ2,···,χ9指定子組,則Μ將是36,因爲四個感測器通道 (主要電壓、主要電流、從屬電壓、從屬電流)的每一個重 複一次9變量。 同樣地,由下面式子指定標準偏差ds(j): ds(j) = V[Z(d(i,j)-dm(j))2/(N-l)],j = l,2,3,···,Μ 及其 中總和Σ係來自i == 1到Ν 現在,如下面式子所指出一般,使用資料組中的各點 (除了時間戳記之外),減掉行平均並且除以標準偏差以形 成標準化資料組dn(i,j): dn(i,j) = [d(i,j)-dm(j)]/ds(j),i=l,2, 3,···,N 及 j = l,2, 3,…,Μ 需注意的是,若ds(j) = 〇,貝ij dn(i,j)被設定=〇,因爲在資 料組中沒有偏差及特定資料點應無助於下面所定義的單一 統計參數。若ds(j) = 0,則對所有j而言,dn(i,j) = dm(j), 及減輕由〇除以0的問題。 下一步驟係藉由設定d n (i,j)的所有値低於零到零來 -83- 200835923 形成一側統計do(i,j) do(i,j) = dn(i,j) ifdn(i,j)&gt;〇 0 if dn(i9j)&lt;0 最後的資料組d〇(i,j)現在包含統計上正常化(及捨去小於 零之處)資料。此資料被用於計算反映多變量分析的結果 ^ 之單一統計參數。 最後,依據一組正常化資料do(i,j)來爲各晶圓計算單 一統計dp (i)。此晶圓統計被指定如下·· dp(i) = w(l)*do(i,l) + w(2)*do(i,2)+&quot;. + w(M)*do(i,M) 其中w⑴是用於形成dp(i)的和中之各個資料行的相對加 權。 可在統計參數的移動平均上執行圖型識別技術。此產 生說明錯誤等級的另一統計參數。爲了圖解此技術,試想 下面例子。資料組 d(u) d(l,2) …d(l,M) d(2,l) d(2,2) …d(2,M) d(N,l)d(N,2) … ·.· …d(N,M) 將包含資料 84- 200835923Scan Energy where k is the PLC scan cycle index, yV is the EWMA filter output for the voltage channel, YVTH is the threshold for the voltage channel, yi is the EWMA filter output for the current channel, and YITH is the threshold for the current channel値, tarcV is the arcing time for the voltage channel (for the most accumulative latest PLC scan), and t ar c I is the arcing time 0 for the current channel (again for the latest PLC scan). The scan energy is actually the product of the area under the voltage curve from which they are decoupled from their nominal (or EWMA filtered) and the area under the current curve. The time factor in the scan energy calculation is the average of the time visible on both channels. The arcing energy is the cumulative sum of the scanning energies. If only the voltage arc count has changed since the last scan, check the arcing time for the boundary at 500. (This boundary is hard code in the PLC.) If the arcing time is lower than the boundary 値, the arc level 2 counter is incremented. If the arcing time is greater than or equal to the boundary 値, the arcing level 3 φ counter is incremented. If only the current arc count register has changed since the last PLC scan, the arc time is checked and the arc level 4 or arc level 5 counter is incremented, depending on whether the arc time is below the boundary or greater than or equal to Depending on the border. In Figure 23, an entity interpretation of each of the five levels is given. The arc energy and all five arc levels are reset at the end of the wafer. To summarize how the PLC program works, Figure 24 gives a timing diagram for a complete wafer (wafer 1) and the beginning of the next wafer (wafer 2), showing 4 steps (relative to the power supply voltage). The first step has a voltage that moderates the level, the second step is the high voltage step, the third step has the power off -73-200835923, and the fourth step has the lowest voltage in the three power turn steps. The total processing time counted by the sensor is from the beginning of the first step to the end of the fourth step. It should be noted that wafer 1 enters the chamber before the start of the step and is present in the chamber for a short time after the end of step 4. When the voltage transitions from one level to the next, PLC 60 sees large step changes (beyond the stable frequency band) and makes the system transition mode, from logic correct to error drop stability flags. The stability flag is maintained incorrectly, and the system is in transition mode until the time is equal to the transition retention delay after the voltage is stable in the new stable frequency band. The purpose of this delay is (1) to avoid counting the ignition transition as a stable arc, and (2) to speed up the tracking of the processing voltage level (which affects how fast the critical level follows the processing) so that once stabilized, the threshold voltage is reached It is at the level you want. Although not shown in Figures 3, 4, 6, the system differs between the ascending and descending transitions. The ADU 50' is generally enabled as indicated by the ADU enable bit, and the ADU enable bit is high all the time when the voltage exceeds the enable level. The arcing energy is counted by a voltage, and the arc energy is shown as a limited set of data. The arc level 1 and the arc level 2 are depicted at the bottom of the graph. In the middle of step 1, the arcing count on the two voltage and current (not shown) channels occurs simultaneously (within the same PLC scan), so the voltage arc count is shown as increasing, such as the arc level 1 . Correspondingly, the energy increases in the calculation in each (2). In the middle of step 2, another arc event occurs, this only on the voltage channel. Since the arcing time (not shown) is less than 500 ps, the event is temporarily stored as an arc level 2 event. It is necessary to pay attention to how the arc count is the cumulative sum of the arc counts from the beginning of the crystal circle. When the power supply is turned off for a period of reset delay _ period, the ADU reset becomes high and the -74-200835923 all arc event related variables are reset. The reset variables shown in Fig. 24 are the arc count, the arc energy, the arc level 1, and the arc level 2. When the crystal 2 begins (as seen by the sensor as the first increased voltage transition), the ADU reset back to logic error and the ADU enable becomes logically correct. Finally, Figure 25 illustrates the adaptation to the criticality of the processing voltage. At the beginning of the diagram, the voltage is turned off (the reading is very close to zero), and the critical threshold is stable. The critical value of the EWMA filter output is also very close to zero (because ADU is not energized, the criticality is treated as ADU 50' It doesn't matter if you don't count the arc.) SUB and SLB are above and below the voltage and may be dominated by a stable frequency band rather than a stable frequency band percentage. When the voltage used for the first time increases, the system enters a rising transition mode, applying a transitional filter factor and a transition critical percentage. Since the transition filter coefficient is a large 値, the EWMA filter is weighted on the most recent sample of the PSIM signal, so the critical fast rises to reflect the step change in the voltage. Once the voltage is stable, the criticality is also stabilized at the level specified by the transition critical percentage. When the processing voltage falls within SUB and SLB for a period equal to the transition retention delay, the system returns to the stable critical percentage and the stable mode of the applied filter coefficient application. Switching from transition mode to stable mode is accomplished by a critical percentage transition from a critical transition to a transitional transition. A similar advance is seen in the second rising transition of the voltage. When the voltage drops to the off state, the forward repeats again. In the down transition, the only difference is that any transitional arc counts and times generated during this period are written as a log as part of the statistics of the falling transition arc event. In the absence of information on the system's handling of information on when the transition occurs, see the drop transition arc/count and time on the voltage channel is normal. It is also normal to see the rising transition arc count and time on the current path. In both examples, the signal suddenly moves in the direction in which the ADU 50' seeks a sudden transition. Until the PLC 60 (at 30 Hz) can catch up with the ADU 50' (30 MHz) and give a command to change the criticality, the ADU 50' will count the step change as an arc. Therefore, the data needs to be divided into stable and transitional components. The system parameters should be adjusted to the arc count, arcing time, arc energy φ amount, arc level, processing transition, ignition time, and processing time data (ie, the remainder of the output data 'but the above settings contain critical data points) Both are reported by the system for optimization. The target captures the “true arc” that affects wafer quality. The various variables and parameters contained in the system are illustrated graphically in Figure 26. The important variables of the two sins are the critical and stable flags. The arc count, arcing time, arc energy, and arc level variable are all based on the criticality. If the criticality is too close to the operating voltage or current' then the system will report an erroneous alarm arcing event. φ If the criticality is too far from the operating voltage or current, the system may miss reporting some short micro-arc events. The stability flag affects the criticality in two ways, via the selection of the critical percentage (stability or transition) and by adjusting the bandwidth of the EWMA filter, which is fed directly to the critically calculated output. Figure 26 reveals several paths of logic, power and ignition time paths, ADU energization paths, critical paths, processing time paths, and stability flags/arc count/arc energy/arc-level paths. The starting point for each path is one or more 读取 read from the ADU (read from) scratchpad. The end point of each path will be one or more 値 to write to the ADU (write) register or the system variable -76- 200835923, the statistical description of one or more arcing events. It should be noted that in Figure 26, the current channel logic is illustrated as an abbreviation because it follows the same structure and flow-action voltage channel logic. This similar part is defined by a rectangular dashed line. In the power and ignition time paths, the voltages and currents for the primary power supply PSIM (or slave) are combined to produce the calculated power. It is then used to calculate the ignition time. The parameters used in the calculation of each φ variable are shown in italics in Fig. 26. Both current and voltage are generated by multiplying the PSIM signal by the calibration constant and the calibration percentage. The ignition timing is appropriate as a result of the time difference between the ADU energization and the 90% of the power set point for the calculated power rise. Calibration constants and calibration percentages are used to adjust current and voltage. The calibration constants reflect the PSIM hardware and should not be changed unless the PSIM hardware is changed. If the current and voltage need to be fine-tuned to match data from another source, such as a tool controller, only the calibration percentage is adjusted. The power set point should be adjusted to be equal to the power level (in watts) of step φ of the method. (The ignition time can be calculated for each step in the method. However, the PLC program will have to be corrected from the version described in this document). The ADU enablement path determines when the ADU is actively looking for arcing. It is controlled by the enable level and the enable delay parameter. When the PSIM signal rises above the enable level, the PLC will command the ADU 50' to begin looking for an arc by setting the enable bit in the control register. The enable level should be above the off state reading and below the lowest voltage or current level in the method operated by the PVD tool (equal PSIM signal unit). If you want to keep the ADU 50' inactive for a period of time after the -77-200835923 rises to the enabling level on the PSIM signal, increase the enabling delay. In fact, the enabling level condition (combined with the stable up-and-down transition mode) is sufficient, so in PVD applications, the enabling delay will probably never be adjusted. In the critical path, the PSIM signal is fed into an EWMA filter dominated by a stable filter coefficient or a transition filter coefficient, as determined by the state of the stability flag. The filter coefficient parameter can vary from 0 to 100. The 値 φ increases the bandwidth of the filter, allowing fast response tracking step changes (bad noise emission). When in steady state, or during steady mode, the system should be set to have a critical (remember critical = critical percentage * filter output), where the noise in the criticality coupled with the noise in the DC power supply signal will not Generates an error arc count. The output of the filter is then fed to a stable upper band/stable lower band (SUB/SLB) calculated by multiplying the percentage of the stable band by the filter output. If the product is below the stable band minimum parameter, the stable band minimum is added to the chopper φ output and subtracted from the filter output to produce SUB and SLB, respectively. Otherwise, the product is added to the filter output and subtracted from the filter output to specify SUB and SLB. SUB and SLB are then used at the beginning of the next PLC scan to determine if the stability flag is correct or incorrect. The percentage of the stable band should be low enough to ensure that the minimum step change between method steps enables the system to enter transition mode and should be high enough that any power loss events that may exist do not allow the system to enter transition mode in the middle of a single method step. The stable band percentage is initially set from known method voltage and current conditions, but must be empirically varied by examining multiple wafers operated by each process. -78- 200835923 The stable band minimum should be set so that the stability flag does not change back and forth between correct and error when the system is in the power off state. It can be easily set by observing the off state noise and doubling the observed change. The filter output is also fed into the critical calculation. The stability flag determines which mode to apply, whether it is stable or a transition. Then, the threshold is multiplied by the filter output by a stable critical percentage or a transition critical percentage. The criticality is one of the two most important variables in the data. The threshold via the stability threshold percentage should be adjusted up and down during steady state operation of various processing methods and power set points to identify the power supply ripple, remembering that the ripple will change over time and chamber. The stability threshold percentage must be set to a critical value below the power supply ripple, but still high enough to capture a short duration arc. The PSIM is reminded to include a 60 kHz filter in its circuitry (by designing to mitigate the effects of power supply exchange noise) with a time constant of 2.6 μ8. The voltage transition specified for arcing uses a voltage from the processing setpoint to zero that is much less than 1 μ8, and the assumed arcing can be represented by a square wave function (relative direction and two-step variation of equal numbers), time constant And the stability threshold percentage will determine the shortest arc that can be detected by the system. For example, in Figure 5.4, an arc of 3 ps is illustrated as a power supply voltage and a band limited PSIM signal, relative to the critical. Even if the signal received by the ADU is band limited, the arc is still counted as a transition above the critical. By comparison, the arc that has been reduced to 1μ8 is not counted by the ADU having a 60% stable critical percentage. However, if the stable critical percentage is set to 80%, it should be counted as an arcing event. Therefore, the stability critical percentage should be set below the level of the ADU count noise when 79-200835923 is the arcing event. However, not so low to a large percentage of the true arcing event does not allow the PSIM signal to cross the critical. The transition critical percentage should be set as well, remembering that the ignition cycle is essentially a noise, so its enthalpy will probably be below the stability critical percentage. The transition retention delay can be used to extend or shorten the period of the transition critical percentage application. In the processing time path, the only calculation is the processing time itself. The processing time is from the time when the PSIM signal exceeds the enabling level until the PSIM signal falls below the enabling level, and is maintained at a time that is at least equal to the reset delay (note that when exceeded, the processing is performed The time reflects the reset delay from the processing time when the difference between the true condition of the first ADU for the wafer and the true condition of the last ADU is enabled. In the PLC program, another device can indicate that the wafer processing has ended and the data can be reset to replace the reset logic of the system, so that the reset delay is not required. Finally, the Stabilization Flag/Arc Count/Arc Energy/Arc Class path contains the last two parameters, the transition retention delay and the arc level boundary. The stability flag is again one of the important system variables of the two crimes. It is correct if the PSIM signal falls within the range defined by SUB and SLB from the previous PLC scan. Otherwise, it is erroneous and the error is maintained until the PSIM signal falls within the SUB-SLB range again for a transition retention delay time period. Stabilization flags affect the storage of EWMA filters, critical, and arc counts to stable, rising transitions, and descending transition types. In order to adjust the transition retention delay, all three categories of the 发 and compare arc count data are adjusted during and after the stability flag is wrong. If at the beginning of the process or step, the steady arcing -80-200835923 count occurs regularly after the stability flag becomes correct, the transition retention delay should be increased. Another aspect of the invention includes the detection of the likelihood of non-cathode arcing of the plasma generating apparatus 1300. Referring back to Figure 13, the main components of the PVD chamber are illustrated. The substrate or wafer 1310 is seated at the lowermost portion of the chamber of the chuck or pedestal 1312, which typically holds the wafer 1310 in place with electrostatic force. Above the wafer 1 3 1 0 is a target 1306dDC power supply made of metal deposited on the wafer 1 310, which is connected to the cathode 1 3 08 (or target 1 306) and anode near the wafer 1310. Between 1 and 304. When DC power is supplied, the gas between the cathode 1308 and the anode 1304 is ionized to form a plasma 103. The positively charged gas ions are swept away toward the target 1 306 in an electric field, wherein the moving collision enables the metal atoms or molecules to be released from the target 1306. The released metal is then coated on everything in the chamber, including the crystal 1 3 1 0. The sacrificial shield, also known as the kit, is located in the chamber to absorb deposits and is periodically replaced. Not shown in the drawings are some of the chamber components surrounding the wafer to protect the chuck from deposition. These components can include a deposition ring and a cover ring. The cathode, or target, arcing causes the presence of saliva or comet-shaped defects on the wafer 1 310 (the material composition is the same as the target) to span a random pattern of the surface of the wafer. Cathode arcing is characterized by microsecond voltage and current transitions in the DC power supply and can be quantified by the arcing energy described above. Figure 28 illustrates a typical cathode or target arcing defect pattern 2800, and Figure 29 illustrates a close-up of a star-shaped defect 2900 on the surface of wafer 1310. The non-cathode arcing originates from a component close to the wafer 1 310, which may be a shield 1314, a deposition ring, or a cover ring. These arcs are in the arcing area -81 - 200835923. The wafer is severely damaged or contaminated, or randomly discharged from the wafer 1310 away from the arc itself, and the following rain is generally contaminated. The composition of the contaminated material is the composition of the surrounding chamber components that occur in the arc. Figure 30 illustrates a typical non-cathode arcing pattern of 3 000. Figure 31 illustrates a close-up or enlarged view of wafer film damage 3100 due to non-cathode arcing, and Figure 32 illustrates wafer contamination 3200 of non-cathode arcing away from the middle of wafer 1310. Figure 33 illustrates wafer contamination 3 3 00 near arcing. The analysis of the data derived from the arc detecting unit 50 described above may determine the risk or likelihood of non-cathode arcing. Information can be provided for each of the four sensor channels associated with unit 50. These include the main supply voltage and current being monitored, as well as the slave room voltage and current. Figure 34 illustrates a sample set of samples 3400 collected for the channel of the arc detection unit 50. Multivariate statistical analysis of the data set is used to determine the likelihood of any non-cathode arcing in the plasma generating apparatus 1 300. Imagine organizing a data set into columns and rows, each wafer has a column, φ (identified by the timestamp for each process when processing begins), and the row contains certain types of data (see the table above the row header). That is, the arc count is stable or X 1). Therefore, the examples in the data group are specified in the "exemplary" line of the above table. If the points in the data set are represented as d(i,j), where i is the column index (or number of columns) and j is the row index (or number of rows) d(i,0) = wafer (i) Timestamp, i = l, 2, 3, ···, Ν In the wafer to the data set, likewise, d(i, l) = the total arc count of the wafer (i), i = l, 2, 3,···,Ν -82- 200835923 For its part, the row average dm(j) will use this form dm(j) = [d(l,j)+ d(2,j) +... +d(N,j)]/N,j = l,2,3,.·.,Μ where Μ is the number of non-timestamp rows in the data. For example, if the analysis is performed on the subgroup data listed in the above table, and the subgroup is specified by the variables xi, χ2, . . . , χ9, then Μ will be 36 because of the four sensor channels (main voltage, main Each of the current, the slave voltage, and the slave current is repeated 9 times. Similarly, the standard deviation ds(j) is specified by the following equation: ds(j) = V[Z(d(i,j)-dm(j))2/(Nl)],j = l,2,3 ,···,Μ and their total sums are from i == 1 to Ν Now, as indicated by the following equation, use the points in the data set (except for the timestamp), subtract the line average and divide by Standard deviation to form a standardized data set dn(i,j): dn(i,j) = [d(i,j)-dm(j)]/ds(j),i=l,2, 3,·· ·, N and j = l, 2, 3,..., 需 Note that if ds(j) = 〇, Bay ij dn(i,j) is set =〇 because there is no deviation and specificity in the data set The data points should not contribute to the single statistical parameters defined below. If ds(j) = 0, then for all j, dn(i,j) = dm(j), and mitigate the problem of dividing by 〇 by zero. The next step is to set the side statistics do(i,j) do(i,j) = dn(i,j) ifdn by setting all 値 of dn (i,j) below zero to zero -83- 200835923 (i,j)&gt;〇0 if dn(i9j)&lt;0 The last data set d〇(i,j) now contains statistically normalized (and rounded out less than zero) data. This data was used to calculate a single statistical parameter that reflects the results of the multivariate analysis ^. Finally, a single statistic dp (i) is calculated for each wafer based on a set of normalized data do(i,j). This wafer statistic is specified as follows: dp(i) = w(l)*do(i,l) + w(2)*do(i,2)+&quot;. + w(M)*do(i , M) where w(1) is the relative weighting of each of the data lines used to form the sum of dp(i). Pattern recognition techniques can be performed on the moving average of statistical parameters. This produces another statistical parameter that indicates the level of error. To illustrate this technique, consider the following example. Data set d(u) d(l,2) ...d(l,M) d(2,l) d(2,2) ...d(2,M) d(N,l)d(N,2) ... ··· ...d(N,M) will contain information 84- 200835923

MV MA SV SA xl... x9 xl x9 xl... x9 xl... x9 xl... x9 xl... x9 xlx9 xl... x9 •鲁· ··· ft· ♦*, xl... x9 xl x9 xl... x9 xl... x9 其中各個基板的資料跨越資料組中的一列和X 1, 重複四次,爲主要電壓(MV)、主要電流(MA)、 (SV)、及從屬電流(SA)每一個各一次。因此,窄 行。在一側統計的正常化和計算之後,單一每-每一*晶圓’統g十係由加權所形成^ j = 1,2,...,Μ。 就此例中的資料而言,特定加權如下: w(l) = w(10) = w(19) = w(28) = 1 w(2) = w(l 1) = w(20) = w(29) = 5 w(3) = w(12) = w(21) = w(30) = 1 w(4) = w(13) = w(22) = w(31) = 1 w(5) = w(14) = w(23) = w(32) = 5 w(6) = w(15) = w(24) = w(33) = 1 w(7) = w(16) = w(25) = w(34) = 1 w⑻=w(17) = w(26) = w(35) = 0 w(9) = w(18) = w(27) = w(36) = 0 這些加權可被不同地最佳化並且依據室條件採J 就此例中的室條件而言,這些加權產生提供絕4 型識別之結果(需注意的是利用設定加權的其c 之最後兩等式,資料組應只包含xl,...,x7,因 行取代3 6行)。 最後,當對照用於處理室之時間戳記來標 3 0點移動平均達涵蓋幾十個數千晶圓的時間^ 結果如圖35所示。統計dp(i)已被正常化,或: ...,x9變量 從屬電壓 ‘ 3 6資料 -基板,或MV S 9 9 MV MV MV MV MV MV MV .. x9 xl x9 xl... x9 xl... x9 The data of each substrate spans one column and X 1 in the data set and is repeated four times for the main voltage (MV), main current (MA), (SV) And the slave current (SA) each time. Therefore, narrow lines. After the normalization and calculation of one side of the statistics, a single per-each wafer is formed by weighting ^ j = 1, 2, ..., Μ. For the information in this example, the specific weighting is as follows: w(l) = w(10) = w(19) = w(28) = 1 w(2) = w(l 1) = w(20) = w (29) = 5 w(3) = w(12) = w(21) = w(30) = 1 w(4) = w(13) = w(22) = w(31) = 1 w(5 ) = w(14) = w(23) = w(32) = 5 w(6) = w(15) = w(24) = w(33) = 1 w(7) = w(16) = w (25) = w(34) = 1 w(8)=w(17) = w(26) = w(35) = 0 w(9) = w(18) = w(27) = w(36) = 0 These The weighting can be optimized differently and based on the chamber conditions. For the chamber conditions in this example, these weightings produce the result of the identification of the type 4 (note that the last two equations of c are used to set the weighting, The data set should only contain xl,...,x7, because the line replaces line 3 6). Finally, when compared with the time stamp used for the processing chamber, the moving average of 30 points covers the time covering dozens of thousands of wafers. The result is shown in Fig. 35. The statistics dp(i) have been normalized, or: ..., x9 variable slave voltage ‘ 3 6 data - substrate, or

3任意値。 兰的錯誤圖 f之八爲零 此只有28 繪d p (i)的 !期之久, 3最大値所 -85- 200835923 分割以形成dpn(i),使得標繪圖中的點範圍從〇到1: dpn(i) = dp(i)/max[dp(i)]其中 i=l,2,3,···,Ν 再者,移動平均中的點數目可改變。 資料中的間隙對應於處理室下來要維修並且沒有晶圓 經由工具運行之時間週期。已知在2/1 6上,剛好在下來 φ 時間之前,由於非陰極發弧所以要廢棄1 1晶圓。識別的 圖型是正常化NCA統計dpn(i)之基線(最小値)中的增加, 其表示由於指出充電之電室條件所引起的NCA之風險, 是經由NCA破壞或污染基板的放電之必要因素。當基線 中的此增加與dpn(i)的一或多個大値耦合在一起時,隨後 NC A的可能性甚至更大。此例中的基線統計是1 5 0點視 窗以上的最小値。再者,此視窗的長度可隨室的特性來改 變,及基線和移動平均之間的長度差異之5x因子在此例 φ 中運作並且可以是縮圖的好又實際的規則。基線統計被圖 示當作通常在正常化NCA統計的下端之黑線。 經由比較,在同一時間框中用於另一室的資料被圖示 在圖3 6中。沒有廢棄的晶圓之此室顯示出在基線統計中 沒有增加遠遠低於高(&gt;0.4)正常化移動平均非陰極發弧統 計。 若來自室A的一些額外資料被考慮到,則新等級的 錯誤出現。如圖3 7所示,來自1 /1至1 /1 7的資料已被加 到資料組。在此時間週期中,基線統計位準大幅高於他們 -86- 200835923 在具有NCA事件時。碰巧感測器被校準失當且沒有適當 運作。因此,在不同位準的基線統計特徵化不同的錯誤類 型。 若以長條形統計格式表示,由正常化基線統計所指出 的不同的錯誤可以更加清楚見到,如圖3 8所示。就室A 而言,長條形統計圖之基線統計的分佈中之最大的峰値出 現基線統計最接近零之處。此峰値表示正常無錯誤的處 ^ 理。下一峰値表示非陰極發弧的發生之風險。出現在0.06 以上的峰値表示一年的前兩星期中之校準問題。就室B而 言,在分佈中具有一峰値,位在預期正常操作之處。 儘管以圖解和說明特定實施例,但是只要不明顯違背 本發明的精神可有許多修正,及所要保護的範疇僅係由附 屬的申請專利範圍之範疇所限定。 【圖式簡單說明】 φ 現在將參考附圖及經由例子說明本發明以瞭解之: 圖1爲根據本發明的發弧偵測配置之一例示實施例的 方塊圖; 圖2爲根據本發明的發弧偵測配置之電力供應介面模 組(PSIM)部位的一例示實施之方塊圖; 圖3爲根據本發明的發弧偵測配置之PSIM電壓感測 電路部位的一例示實施的電路圖; 圖4爲根據本發明的發弧偵測配置之PSIM電流感測 電路部位的一例示實施的電路圖; -87- 200835923 圖5爲根據本發明的發弧偵測配置之PSIM電力供應 電路部位的一例示實施的電路圖; 圖6爲根據本發明的發弧偵測配置之發弧偵測器單元 (ADU)部位的一例示實施之方塊圖; 圖7爲根據本發明的發弧偵測配置之ADU電壓濾波 器部位的一例示實施例之電路圖; 圖8爲根據本發明的發弧偵測配置之ADU可程式化 φ 臨界比較器部位的一例示實施例之電路圖; 圖9爲根據本發明的發弧偵測配置之ADU發弧偵測 邏輯單元(ADLU)部位的一例示實施例之方塊圖; 圖1 〇爲根據本發明的發弧偵測配置之ADU計數器單 元部位的一例示實施例之方塊圖; 圖11爲根據本發明的時脈邏輯單元(CLU)時脈產生之 一例示實施的時序圖; 圖1 2爲根據本發明的發弧偵測配置之ADLU數位信 φ 號處理介面邏輯配置部位的一例示實施之邏輯圖; 圖13爲PVD室組配的橫剖面圖; 圖14爲具有發弧事件的典型PVD電壓信號對上時間 之標繪圖; 圖15爲本發明的發弧偵測單元中之pvd電壓信號的 標繪圖; 圖1 6爲當進及出發弧情況時的發弧偵測單元之邏輯 位準狀態過渡圖; 圖17爲發弧通道信號傳播之方塊圖; -88- 200835923 圖18爲PLC程式主控制的方塊圖; 圖19爲穩定帶監視器變量對上時間之標繪圖; 圖20爲電力和點火邏輯的方塊圖; 圖2 1爲點火時間的標繪圖; 圖22爲發弧類別的方塊圖; 圖23爲發弧類別的表格; 圖24爲晶圓處理發弧可變時序圖; % 圖25爲晶圓處理臨界時序圖; 圖2 6爲邏輯的執行之發弧偵測次序的方塊圖; 圖2 7爲根據本發明的發弧偵測配置之發弧偵測器單 元部位的另一例示實施之方塊圖; 圖28爲PVD室中所處理之晶圓的典型陰極或目標發 弧缺陷圖型; 圖29爲參考圖28中之晶圓上的慧星形缺陷之放大 圖; ® 圖30爲PVD室中所處理之晶圓上之非陰極發弧缺陷 圖型; 圖31爲接近參考圖30中之晶圓的非陰極發弧之晶圓 膜破壞的放大圖; 圖32爲遠離晶圓的中間之非陰極發弧的晶圓污染之 放大圖; 圖33爲遠離接近發弧之非陰極發弧的晶圓污染之放 大圖; 圖3 4爲根據本發明的晶圓之資料組的多變量統計分 -89-3 arbitrarily. Lan's error map f is zero. This is only 28 painted dp (i)! The longest period, 3 largest --85- 200835923 split to form dpn(i), so that the points in the plot range from 〇 to 1 : dpn(i) = dp(i)/max[dp(i)] where i=l, 2, 3, ···, Ν Furthermore, the number of points in the moving average can be changed. The gap in the data corresponds to the time period in which the process chamber is to be serviced and no wafers are run through the tool. It is known that on 2/1 6 , just before the φ time, the 1 1 wafer is discarded due to the non-cathode arcing. The identified pattern is an increase in the baseline (minimum 値) of the normalized NCA statistic dpn(i), which indicates the risk of NCA due to the indication of the charging chamber conditions, which is necessary to destroy or contaminate the substrate via NCA. factor. When this increase in the baseline is coupled to one or more large turns of dpn(i), the likelihood of subsequent NC A is even greater. The baseline statistic in this example is the minimum 以上 above the 150° window. Furthermore, the length of this window can vary with the characteristics of the chamber, and the 5x factor of the difference in length between the baseline and the moving average operates in this example φ and can be a good and practical rule for thumbnails. Baseline statistics are shown as black lines that are usually at the lower end of normalized NCA statistics. By comparison, the data for another chamber in the same time frame is illustrated in Figure 36. This chamber without discarded wafers showed no increase in baseline statistics far below the high (&gt;0.4) normalized moving average non-cathode arcing statistics. If some additional information from Room A is taken into account, a new level of error will occur. As shown in Figure 37, data from 1 /1 to 1 /1 7 has been added to the data set. During this time period, the baseline statistical level is significantly higher than they were -86-200835923 when there was an NCA event. It happened that the sensor was incorrectly calibrated and did not function properly. Therefore, baseline statistics at different levels characterize different types of errors. If expressed in a long strip chart format, the different errors indicated by the normalized baseline statistics can be seen more clearly, as shown in Figure 38. For Room A, the largest peak in the distribution of the baseline statistics for the long bar chart appears to be closest to zero in the baseline statistics. This peak indicates normal and error-free processing. The next peak indicates the risk of non-cathode arcing. Peaks that appear above 0.06 indicate calibration problems during the first two weeks of the year. In the case of chamber B, there is a peak in the distribution, which is expected to be in normal operation. While the invention has been shown and described with reference to the embodiments of the invention, the scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of an exemplary embodiment of an arc detection configuration in accordance with the present invention; FIG. 2 is a block diagram of an embodiment of an arc detection configuration in accordance with the present invention; FIG. 3 is a block diagram showing an exemplary implementation of a power supply interface module (PSIM) portion of an arc detection configuration; FIG. 3 is a circuit diagram showing an exemplary implementation of a PSIM voltage sensing circuit portion of an arc detection configuration according to the present invention; 4 is a circuit diagram showing an example of a PSIM current sensing circuit portion of an arc detection configuration according to the present invention; -87- 200835923 FIG. 5 is an example of a PSIM power supply circuit portion of an arc detection configuration according to the present invention. FIG. 6 is a block diagram showing an exemplary implementation of an arc detecting unit (ADU) portion of an arc detecting configuration according to the present invention; FIG. 7 is an ADU voltage of an arc detecting configuration according to the present invention; A circuit diagram of an exemplary embodiment of a filter portion; FIG. 8 is a circuit diagram showing an exemplary embodiment of an ADU programmable φ critical comparator portion of an arc detection configuration according to the present invention; An exemplary embodiment of an ADU arc detection logic unit (ADLU) portion of an arc detection configuration of the present invention; FIG. 1 is an exemplary implementation of an ADU counter unit portion of an arc detection configuration according to the present invention; FIG. 11 is a timing diagram showing an exemplary implementation of a clock logic unit (CLU) clock generation according to the present invention; FIG. 12 is an ADLU digital bit φ number processing for an arc detection configuration according to the present invention. FIG. 13 is a cross-sectional view of a PVD chamber assembly; FIG. 14 is a plot of a typical PVD voltage signal with an arcing event versus time; FIG. The plot of the pvd voltage signal in the arc detection unit; FIG. 16 is a logic level state transition diagram of the arc detection unit when the arc is in and out; FIG. 17 is a block diagram of the signal propagation of the arc channel; -88- 200835923 Figure 18 is a block diagram of the main control of the PLC program; Figure 19 is a plot of the time between the stable monitor monitor variables; Figure 20 is a block diagram of the power and ignition logic; Figure 2 is a plot of the ignition timing Figure 22 shows the arc type Figure 23 is a table of arcing categories; Figure 24 is a wafer processing arcing variable timing diagram; % Figure 25 is a wafer processing critical timing diagram; Figure 2 is a logical execution arc detection sequence FIG. 2 is a block diagram showing another exemplary implementation of an arc detecting unit portion of an arc detecting configuration according to the present invention; FIG. 28 is a typical cathode or target of a wafer processed in a PVD chamber. Arcing defect pattern; Figure 29 is an enlarged view of the star-shaped defect on the wafer in Figure 28; ® Figure 30 is a non-cathode arcing defect pattern on the wafer processed in the PVD chamber; Figure 31 An enlarged view of the wafer film damage of the non-cathode arcing of the wafer in reference to FIG. 30; FIG. 32 is an enlarged view of the wafer contamination of the non-cathode arc away from the middle of the wafer; An enlarged view of the wafer contamination of the non-cathode arc of the arc; FIG. 34 is a multivariate statistical score of the data set of the wafer according to the present invention -89-

200835923 析之圖表; 圖35爲用於具有NCA事件的pvD 正常化NCA統計圖; 圖36爲用於沒有NCA事件的PVD NCA統計圖; 圖37爲來自放大尺度上的圖35 圖;及 圖38爲圖35的PVD室及圖36的 計的長方條統計分佈圖。 儘管經由圖式中的例子圖示本發明g 細說明之,但是本發明仍可經得起各種ί 檢驗。然而,應注意的是,本發明並不1 定實施例。相反地,意在涵蓋落在附錄Ϊ 圍所定義之本發明的精神和範疇內的所ϊ 及選擇。 【主要元件符號說明】 10 :真空室 15 :氣體 20 ··目標 25 :基板 25 :晶圓 2 7 :旋轉磁鐵 3 0 :電力供應 室之基線統計和 室之基線統計和 PVD室的資料 PVD室之基線統 特定細節並且詳 正和其他形式的 限於所說明的特 後的申請專利範 修正、同等物、 90- 200835923 3 5 :同軸互連電纜 40:電力供應介面模組 42 :電壓信號路徑 44 :緩衝電壓衰減器 46 :霍爾效應爲主的電流感測器 48 :電流信號路徑 5 〇 :發弧偵測單元 5 〇 ’ :發弧偵測單元 60 :邏輯配置 70 :局部資料介面 8 0 :資料網路 1 〇 〇 :發弧偵測配置 2 1 0 :外部導體 215 :中央導體 220 :霍爾效應轉換器 222 :第一輸出終端 224 :第二輸出終端 225 :孔隙 2 3 0 :電流分流器 240: Isense電路配置 2 42: Isense電路第一輸入終端 244: Isense電路第二輸入終端 246 :第一輸出終端 248 :第二輸出終端 -91 - 200835923 250 : Vsense 電路 252 :第一輸入終端 254 :第二輸入終端 256 :第一輸出終端 25 8 :第二輸出終端 6 1 0 :類比信號調節器 6 1 2 :輸出終端 6 1 4 :輸出終端 6 1 6 :輸出終端 620 :可程式化臨界比較器函數 621 :類比比較器200835923 analysis chart; Figure 35 is a pvD normalized NCA chart for NCA events; Figure 36 is a PVD NCA chart for no NCA events; Figure 37 is a Figure 35 from an enlarged scale; and Figure 38 It is a statistical distribution map of the PVD chamber of Fig. 35 and the meter of Fig. 36. Although the invention has been illustrated by way of example in the drawings, the invention can still withstand various tests. However, it should be noted that the present invention is not intended to be an embodiment. On the contrary, it is intended to cover the invention and the scope of the invention in the spirit and scope of the invention as defined by the appended claims. [Main component symbol description] 10 : Vacuum chamber 15 : Gas 20 ·· Target 25 : Substrate 25 : Wafer 2 7 : Rotating magnet 3 0 : Baseline statistics of the power supply room and baseline statistics of the room and PVD room data PVD room Baseline specific details and details and other forms are limited to the described patent application variants, equivalents, 90-200835923 3 5: Coaxial Interconnect Cable 40: Power Supply Interface Module 42: Voltage Signal Path 44: Buffering Voltage attenuator 46: Hall effect-based current sensor 48: Current signal path 5 〇: Arc detection unit 5 〇': Arc detection unit 60: Logic configuration 70: Local data interface 8 0 : Data Network 1 〇〇: Arc Detection Configuration 2 1 0: External Conductor 215: Center Conductor 220: Hall Effect Converter 222: First Output Terminal 224: Second Output Terminal 225: Pore 2 3 0: Current Splitter 240: Isense circuit configuration 2 42: Isense circuit first input terminal 244: Isense circuit second input terminal 246: first output terminal 248: second output terminal -91 - 200835923 250: Vsense circuit 252: first input terminal 254: Second input terminal 256: first output terminal 25 8 : second output terminal 6 1 0 : analog signal conditioner 6 1 2 : output terminal 6 1 4 : output terminal 6 1 6 : output terminal 620 : programmable threshold comparison Function 621: analog comparator

622 :信號 \ARC 622 :類比比較器輸出 623 :類比比較器輸出 63 0 :數位信號處理器和控制器 63 5 :類比對數位轉換器 640 :高速發弧偵測邏輯單元 65 0 :數位信號處理器和控制器系統時脈信號 9 1 0 :整合性現場可程式化邏輯陣列程式介面 920 :計數器單元 93 0 :計數器控制暫存器 940 :計數器狀態緩衝器 950 :內部資料匯流排結構 9 60 :數位信號處理器介面邏輯配置 -92- 200835923622: Signal\ARC 622: Analog Comparator Output 623: Analog Comparator Output 63 0: Digital Signal Processor and Controller 63 5: Analog to Digital Converter 640: High Speed Arc Detection Logic Unit 65 0: Digital Signal Processing And controller system clock signal 9 1 0 : Integrated field programmable logic array program interface 920 : counter unit 93 0 : counter control register 940 : counter status buffer 950 : internal data bus structure 9 60 : Digital Signal Processor Interface Logic Configuration-92- 200835923

1 0 1 0 : 1 6位元異步二進計數器 1 020 : 32位元異步二進計數器 1 03 0: 1 6位元異步二進計數器鎖定器 1 04 0 : 32位元異步二進計數器高鎖定器 1 05 0 : 3 2位元異步二進計數器低鎖定器 1 060: 1 6位元異步二進計數器三狀態緩衝器 1070: 32位元異步二進計數器高三狀態緩衝器 1 0 8 0 : 3 2位元異步二進計數器低3狀態緩衝器 1 0 8 6 : RACC1 0 1 0 : 1 6-bit asynchronous binary counter 1 020 : 32-bit asynchronous binary counter 1 03 0: 1 6-bit asynchronous binary counter locker 1 04 0 : 32-bit asynchronous binary counter high lock 1 0 0 : 3 2-bit asynchronous binary counter low lock 1 060: 1 6-bit asynchronous binary counter three-state buffer 1070: 32-bit asynchronous binary counter high three state buffer 1 0 8 0 : 3 2-bit asynchronous binary counter low 3 state buffer 1 0 8 6 : RACC

1087 : RATH1087 : RATH

1088 : RATL 1 090 : D正反器 1091 :時脈輸入終端 1 092 :輸出終端 1093 :反及閘 1094 :及閘 1 096 :反相器 - 1 097 :反相器 1 0 9 8 :及閘 1110: S YSCLK 信號1088 : RATL 1 090 : D flip-flop 1091 : Clock input terminal 1 092 : Output terminal 1093 : Inverting gate 1094 : and gate 1 096 : Inverter - 1 097 : Inverter 1 0 9 8 : Gate 1110: S YSCLK signal

112 0 :信號 \ S Y S C L K112 0 : Signal \ S Y S C L K

1 130 :信號 ENB1 130 : Signal ENB

1150: WARC 1160: ACCLK 信號 -93- 2008359231150: WARC 1160: ACCLK signal -93- 200835923

1170:信號 ATCLK 1 2 1 0 :控制邏輯單元 1 220 :反相器 1230 :及閘 1 240 :反相器 1 2 5 0 :及閘 1 260 :解碼器 1 3 0 0 :電漿產生設備 1 3 0 2 :電漿 1 3 04 :陽極表面 1 306 :陰極偏壓目標 1 3 0 8 :陰極 1 3 1 0 :晶圓 1 3 1 2 :臺座 1 3 1 4 :犧牲性護罩 1 402 :短持續期間發弧 1404 :室電壓 1 500 :室電壓 1 5 02 :臨界値 1700 :系統 1 7 04 :類比可程式化臨界比較器 1 7 06 :類比第六等及巴特威士濾波器 1 708 :可選擇FIR濾波器 1710:指數加權移動平均(EWMA)濾波器 94 - 200835923 1 7 1 2 :發弧偵測器比較器控制器 1 7 1 4 :電力供應介面模組信號 1 802 :穩定頻帶監視器 1 8 0 4 :電力供應介面模組信號 1 806:穩定上頻帶(SUB)和穩定下頻帶(SLB)値 1 80 8 :發弧計數及時間類別邏輯部分 1 8 1 0 :發弧計數和發弧時間讀數 1 8 1 2 :單元變換部分 1814 :輸出 1816 : YTH及YHYS計算部分 1 8 1 8 :穩定頻帶計算 1 8 2 0 : ENB/CRST 區塊 1 902 :過渡保留延遲 2202 :電壓通道 2 2 0 4 :電流通道 2206 :發弧類別邏輯部分 2800 :目標發弧缺陷圖型 2900 :慧星形缺陷 3 000 :非陰極發弧缺陷圖型 3 100 :晶圓膜破壞 3200 :晶圓污染 3 3 00 :晶圓污染 3 40 0 :資料 R3 :電阻器網路 -95- 200835923 R4 :電阻器網路 R6 :電阻器 R7 :電阻器 R26 :電阻器 R28 :電阻器 R29 :電阻器 R30 :電阻器1170: Signal ATCLK 1 2 1 0 : Control logic unit 1 220 : Inverter 1230 : and gate 1 240 : Inverter 1 2 5 0 : and gate 1 260 : Decoder 1 3 0 0 : Plasma generating device 1 3 0 2 : plasma 1 3 04 : anode surface 1 306 : cathode bias target 1 3 0 8 : cathode 1 3 1 0 : wafer 1 3 1 2 : pedestal 1 3 1 4 : sacrificial shield 1 402 : Short duration arc 1404: Chamber voltage 1 500: Chamber voltage 1 5 02 : Critical 値 1700: System 1 7 04 : Analogizable programmable comparator 1 7 06 : Analog sixth and Bad Wies filter 1 708: Selectable FIR filter 1710: Exponentially weighted moving average (EWMA) filter 94 - 200835923 1 7 1 2 : Arc detector detector controller 1 7 1 4 : Power supply interface module signal 1 802 : Stable Band monitor 1 8 0 4 : Power supply interface module signal 1 806: stable upper band (SUB) and stable lower band (SLB) 値 1 80 8 : arc count and time category logic part 1 8 1 0 : arcing Counting and arcing time readings 1 8 1 2 : Unit conversion section 1814: Output 1816: YTH and YHYS calculation section 1 8 1 8 : Stable band calculation 1 8 2 0 : ENB/CRST Block 1 902 : Transition Hold Delay 2202: Voltage Channel 2 2 0 4 : Current Channel 2206: Arc Category Logic Part 2800: Target Arc Defect Pattern 2900: Hui Star Defect 3 000: Non-Cathode Arc Defect Pattern 3 100 : Wafer Membrane Destruction 3200: Wafer Contamination 3 3 00: Wafer Contamination 3 40 0 : Data R3: Resistor Network - 95- 200835923 R4: Resistor Network R6: Resistor R7: Resistor R26: Resistor R28: Resistor R29: Resistor R30: Resistor

R 1 0 8 :電阻器 R 1 0 7 :電阻器 R 1 1 5 :電阻器 R 1 1 6 :電阻器 U 1 :雙電力供應模組 U2 :運算放大器 U3 :儀器型放大器 U27A :放大器 U27B :放大器 U27C :放大器 U27D :放大器 RG2:電阻器 J2 : BNC型連接器 J3 : BNC型連接器 GNDANALOG :類比參考平面 DGND :數位參考平面 C 1 0 :電容器 -96- 200835923 D2 : Schottky障壁二極體 D 1 :發光二極體 1IN+ :非反向輸入終端 Π N -:反向輸入終端 U12:A :類比比較器 U14:A :運算放大器 U15:D :類比開關R 1 0 8 : resistor R 1 0 7 : resistor R 1 1 5 : resistor R 1 1 6 : resistor U 1 : dual power supply module U2 : operational amplifier U3 : instrumentation amplifier U27A : amplifier U27B : Amplifier U27C: Amplifier U27D: Amplifier RG2: Resistor J2: BNC type connector J3: BNC type connector GNDANALOG: Analog reference plane DGND: Digital reference plane C 1 0 : Capacitor-96- 200835923 D2 : Schottky barrier diode D 1: Light-emitting diode 1IN+: Non-inverting input terminal Π N -: Inverting input terminal U12: A: Analog comparator U14: A: Operational amplifier U15: D: Analog switch

U16:A :邏輯「或」閘極U16:A: logical "or" gate

-97-97

Claims (1)

200835923 十、申請專利範圍 1 · 一種偵測非陰極發弧的風險之方法,該非陰極發 弧係在將金屬沈積於一基板上所使用之物理氣相沈積室 中,該方法包含以下步驟: 監視到將金屬沈積在一基板上的物理氣相沈積室之供 應電壓和供應電流; 爲該物理氣相沈積室中所處理之各個複數基板產生一 φ 組陰極發弧事件資料; 依據用於各基板的該組陰極發弧事件資料來計算用於 各個該複數基板之參數;及 依據該參數來決定非陰極發弧的該可能風險。 2 ·根據申請專利範圍第1項之方法,另外包含以下 步驟: 依據該決定步驟的結果,提供沒有非陰極發弧的風險 之指示。 φ 3 ·根據申請專利範圍第1項之方法,另外包含以下 步驟: 依據該決定步驟的結果,提供具有非陰極發弧的風險 之指示。 4 ·根據申請專利範圍第1項之方法,其中該爲該物 理氣相沈積室中所處理之各個複數基板產生一組陰極發弧 事件資料步驟包含: 獲得用於複數陰極發弧可變類型之値; 爲用於各個該複數基板的各組陰極發弧事件資料之各 -98- 200835923 個可變類型計算可變類型平均數; 爲用於各個該複數基板的各組陰極發弧事件資料之各 個可變類型計算可變類型標準偏差數;及 利用該可變類型平均數和該可變類型標準偏差數,爲 用於各個該複數基板的各組陰極發弧事件資料產生一組正 常化資料。 5 ·根據申請專利範圍第4項之方法,其中該依據該 φ 組陰極發弧事件資料來計算用於各個該複數基板的參數步 驟包含: 依據該組正常化資料來計算用於各個基板的該參數。 6·根據申請專利範圍第5項之方法,其中該依據該 組正常化資料來計算用於各個基板的該參數步驟包含: 加權該組正常化資料的該可變類型。 7 ·根據申請專利範圍第1項之方法,另外包含以下 步驟: • 計算該參數的移動平均。 8 .根據申請專利範圍第7項之方法,其中該依據該 參數決定非陰極發弧的該可能風險步驟包含: 在該參數的該移動平均上執行圖型識別技術。 9·根據申請專利範圍第8項之方法,其中該在該參 數的該移動平均上執行圖型識別技術步驟包含: 在該移動平均的該基線値中監視用於增加的該移動平 均。 10·根據申請專利範圍第1項之方法,其中該基板是 -99- 200835923 矽晶圓。 11. 根據申請專利範圍第1項之方法,其中該基板是 玻璃面板。 12. —種決定物理沈積室中之可能非陰極發弧的可能 風險之方法,包含以下步驟: 將陰極發弧偵測單元耦合到物理氣相沈積室; 爲該室中所處理之各個複數基板產生一組陰極發弧事 % 件資料;及 依據該產生的陰極發弧事件資料來決定該室中之非陰 極發弧的該可能風險。 13·根據申請專利範圍第12項之方法,其中該爲該 室中所處理之各個複數基板產生一組陰極發弧事件資料步 驟包含: 利用用於該陰極發弧事件資料的該陰極發弧偵測單元 監視主要供應電壓和主要供應電流,及次要供應電壓和次 ® 要供應電流。 14.根據申請專利範圍第12項之方法,另外包含以 下步驟: 依據該決定步驟,提供具有非陰極發弧之風險和沒有 非陰極發弧之風險的其中之一的指示。 1 5 ·根據申請專利範圍第1 2項之方法,另外包含以 下步驟: 從該產生的陰極發弧事件資料產生統計參數; 計算該統計參數的移動平均;及 -100 - 200835923 在該移動平均上執行圖型識別技術。 16. —種偵測非陰極發弧的風險之系統,該非陰極發 弧係在用以處理基板的物理氣相沈積室中,該系統包含: 一陰極發弧偵測單元,被通訊式耦合,藉以監視物理 氣相沈積室的主要供應電壓; 一處理器,被耦合至該陰極發弧偵測單元,其被組配 成產生用於該室中所處理的各個基板之陰極發弧資料, 該處理器另外被組配成依據該產生的陰極發弧資料來 決定該室中之非陰極發弧的該風險。 1 7·根據申請專利範圍第1 6項之系統,其中該陰極 發弧偵測單元被另外通訊式耦合以監視該物理氣相沈積室 的主要供應電流、次要供應電壓、及次要供應電流。 1 8 ·根據申請專利範圍第1 7項之系統,另外包含一 第一感測器,用以監視該主要供應電壓;一第二感測器, 用以監視該主要供應電流;一第三感測器,用以監視該次 要供應電壓;及一第四感測器,用以監視該次要供應電 流。 1 9 ·根據申請專利範圍第丨8項之系統,其中該處理 器被組配成從自各個各別的感測器所接收到之信號產生用 於一組複數可變類型的各個感測値。 2 0 ·根據申請專利範圍第1 9項之系統,其中該處理 器被組配成計算用於各個該可變類型之平均値,用於各個 該可變類型的標準偏差値,及利用該平均値和標準偏差値 的一組正常化資料。 -101 - 200835923 21·根據申請專利範圍第20項之系統,其中該處理 器被組配成從用於各個基板的該組正常化資料計算参_, 及計算該參數的移動平均。 22·根據申請專利範圍第16項之系統,另外包含— 可見指示器,其中該處理器提供非陰極發弧的該可能風險 之指示給該可見指示器。 2 3.根據申請專利範圍第16項之系統,其中該基板 0 是砂晶圓。200835923 X. Patent Application No. 1 · A method for detecting the risk of non-cathode arcing in a physical vapor deposition chamber used for depositing metal on a substrate, the method comprising the steps of: monitoring a supply voltage and a supply current to a physical vapor deposition chamber for depositing metal on a substrate; generating a φ group cathode arc event data for each of the plurality of substrates processed in the physical vapor deposition chamber; The set of cathode arcing event data is used to calculate parameters for each of the plurality of substrates; and the possible risk of non-cathode arcing is determined based on the parameters. 2 • According to the method of claim 1 of the patent application, the following steps are additionally included: According to the result of the decision step, an indication that there is no risk of non-cathode arcing is provided. φ 3 · According to the method of claim 1 of the patent application, the following steps are additionally included: According to the result of the determining step, an indication of the risk of non-cathode arcing is provided. 4. The method according to claim 1, wherein the step of generating a set of cathode arcing event data for each of the plurality of substrates processed in the physical vapor deposition chamber comprises: obtaining a variable type for a plurality of cathode arcing可变; calculating a variable type average for each of the set of cathode arcing event data for each of the plurality of substrates, and for each set of cathode arcing event data for each of the plurality of substrates Calculating a variable type standard deviation number for each variable type; and using the variable type average number and the variable type standard deviation number to generate a set of normalized data for each group of cathode arcing event data for each of the plurality of substrates . The method of claim 4, wherein the calculating the parameters for each of the plurality of substrates according to the φ group cathode arc event data comprises: calculating the basis for each substrate according to the normalization data of the group parameter. 6. The method of claim 5, wherein the step of calculating the parameter for each substrate based on the set of normalization data comprises: weighting the variable type of the set of normalized data. 7 · According to the method of claim 1 of the patent scope, the following steps are additionally included: • Calculate the moving average of the parameter. 8. The method of claim 7, wherein the step of determining the possible risk of non-cathode arcing based on the parameter comprises: performing a pattern recognition technique on the moving average of the parameter. 9. The method of claim 8, wherein the performing the pattern recognition technique step on the moving average of the parameter comprises: monitoring the moving average for the increase in the baseline 该 of the moving average. 10. The method of claim 1, wherein the substrate is a -99-200835923 矽 wafer. 11. The method of claim 1, wherein the substrate is a glass panel. 12. A method of determining a possible risk of non-cathode arcing in a physical deposition chamber, comprising the steps of: coupling a cathode arc detecting unit to a physical vapor deposition chamber; each of the plurality of substrates processed in the chamber A set of cathode arcing data is generated; and the possible risk of non-cathode arcing in the chamber is determined based on the generated cathode arcing event data. 13. The method of claim 12, wherein the step of generating a set of cathode arcing event data for each of the plurality of substrates processed in the chamber comprises: utilizing the cathode arcing detection for the cathode arcing event data The measuring unit monitors the main supply voltage and the main supply current, and the secondary supply voltage and the secondary supply current. 14. The method of claim 12, further comprising the step of: providing an indication of one of the risks of non-cathode arcing and no risk of non-cathode arcing in accordance with the determining step. 1 5 · According to the method of claim 12, further comprising the steps of: generating statistical parameters from the generated cathode arc event data; calculating a moving average of the statistical parameter; and -100 - 200835923 on the moving average Perform pattern recognition technology. 16. A system for detecting the risk of non-cathode arcing, wherein the non-cathode arcing system is in a physical vapor deposition chamber for processing a substrate, the system comprising: a cathode arc detecting unit coupled by communication The main supply voltage of the physical vapor deposition chamber is monitored; a processor coupled to the cathode arc detection unit, which is configured to generate cathode arcing data for each substrate processed in the chamber, The processor is additionally configured to determine the risk of non-cathode arcing in the chamber based on the resulting cathode arcing data. The system according to claim 16 wherein the cathode arc detecting unit is additionally communicatively coupled to monitor a main supply current, a secondary supply voltage, and a secondary supply current of the physical vapor deposition chamber. . 1 8 · The system according to claim 17 of the patent application, further comprising a first sensor for monitoring the main supply voltage; a second sensor for monitoring the main supply current; a third sense a detector for monitoring the secondary supply voltage; and a fourth sensor for monitoring the secondary supply current. </ RTI> A system according to claim 8 wherein the processor is configured to generate a sense for each of a plurality of variable types of signals from signals received from the respective sensors. . A system according to claim 19, wherein the processor is configured to calculate an average 値 for each of the variable types, for each of the variable types of standard deviation 値, and to utilize the average A set of normalized data for 値 and standard deviation 値. The system of claim 20, wherein the processor is configured to calculate a parameter from the set of normalized data for each substrate, and calculate a moving average of the parameter. 22. The system of claim 16 further comprising - a visible indicator, wherein the processor provides an indication of the possible risk of non-cathode arcing to the visible indicator. 2 3. The system of claim 16 wherein the substrate 0 is a sand wafer. 102-102-
TW96134548A 2006-09-15 2007-09-14 System and method for detecting non-cathode arcing in a plasma generation apparatus TW200835923A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US84485206P 2006-09-15 2006-09-15

Publications (1)

Publication Number Publication Date
TW200835923A true TW200835923A (en) 2008-09-01

Family

ID=39092582

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96134548A TW200835923A (en) 2006-09-15 2007-09-14 System and method for detecting non-cathode arcing in a plasma generation apparatus

Country Status (2)

Country Link
TW (1) TW200835923A (en)
WO (1) WO2008034092A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8989888B2 (en) 2009-06-30 2015-03-24 Lam Research Corporation Automatic fault detection and classification in a plasma processing system and methods thereof
CN106802393A (en) * 2015-11-26 2017-06-06 致茂电子(苏州)有限公司 The detection means and its detection method of motor coil defect
TWI588498B (en) * 2015-11-18 2017-06-21 致茂電子股份有限公司 Electric motor winding defect detecter and detecting method thereof
TWI672512B (en) * 2018-09-12 2019-09-21 啟端光電股份有限公司 Light emitting diode sensing system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7988833B2 (en) 2002-04-12 2011-08-02 Schneider Electric USA, Inc. System and method for detecting non-cathode arcing in a plasma generation apparatus
US7981257B2 (en) 2002-04-12 2011-07-19 Schneider Electric USA, Inc. Current-based method and apparatus for detecting and classifying arcs
US20090308734A1 (en) * 2008-06-17 2009-12-17 Schneider Automation Inc. Apparatus and Method for Wafer Level Arc Detection
GB2546553B (en) 2016-01-25 2020-08-26 Ge Aviat Systems Ltd Circuit and method for detecting arc faults
WO2019226462A1 (en) * 2018-05-25 2019-11-28 Lam Research Corporation Heater fault determination during processing

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4441206C2 (en) * 1994-11-19 1996-09-26 Leybold Ag Device for the suppression of rollovers in cathode sputtering devices
US5993615A (en) * 1997-06-19 1999-11-30 International Business Machines Corporation Method and apparatus for detecting arcs
WO1999014394A1 (en) * 1997-09-17 1999-03-25 Tokyo Electron Limited Device and method for detecting and preventing arcing in rf plasma systems
KR100560886B1 (en) * 1997-09-17 2006-03-13 동경 엘렉트론 주식회사 System and method for monitoring and controlling gas plasma processes
US6736944B2 (en) * 2002-04-12 2004-05-18 Schneider Automation Inc. Apparatus and method for arc detection
KR20050012804A (en) * 2002-06-19 2005-02-02 토소우 에스엠디, 인크 Sputter target monitoring system
JP2006507662A (en) * 2002-06-28 2006-03-02 東京エレクトロン株式会社 Arc suppression method and system in plasma processing system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8989888B2 (en) 2009-06-30 2015-03-24 Lam Research Corporation Automatic fault detection and classification in a plasma processing system and methods thereof
TWI509376B (en) * 2009-06-30 2015-11-21 Lam Res Corp Automatic fault detection and classification in a plasma processing system and methods thereof
TWI588498B (en) * 2015-11-18 2017-06-21 致茂電子股份有限公司 Electric motor winding defect detecter and detecting method thereof
CN106802393A (en) * 2015-11-26 2017-06-06 致茂电子(苏州)有限公司 The detection means and its detection method of motor coil defect
TWI672512B (en) * 2018-09-12 2019-09-21 啟端光電股份有限公司 Light emitting diode sensing system

Also Published As

Publication number Publication date
WO2008034092A2 (en) 2008-03-20
WO2008034092A3 (en) 2008-05-08
WO2008034092A8 (en) 2008-08-14

Similar Documents

Publication Publication Date Title
JP5470377B2 (en) Apparatus and method for wafer level arc detection
CA2476320C (en) Apparatus and method for arc detection
TW200835923A (en) System and method for detecting non-cathode arcing in a plasma generation apparatus
US7988833B2 (en) System and method for detecting non-cathode arcing in a plasma generation apparatus
US20080021664A1 (en) Current-Based Method and Apparatus for Detecting and Classifying Arcs
US5993615A (en) Method and apparatus for detecting arcs
KR101496498B1 (en) Systems for detecting unconfined-plasma events
JP3773189B2 (en) Window probe, plasma monitoring apparatus, and plasma processing apparatus
EP3054472A1 (en) Arc treatment device and method therefor
US20050212450A1 (en) Method and system for detecting electrical arcing in a plasma process powered by an AC source
EP2074643A1 (en) Current-based method and apparatus for detecting and classifying arcs
EP2304070B1 (en) Sputtering system including an arc detection system and method for forming the sputtering system
JP2004522281A (en) Process chamber component with textured interior surface and method of manufacture
US8242789B2 (en) Plasma system and measurement method
TW201140725A (en) Electron radiation monitoring system to prevent gold spitting and resist cross-linking during evaporation
WO2005098091A2 (en) A method of plasma etch endpoint detection using a v-i probe diagnostics
JPH08330095A (en) Plasma processing device
JP2018083971A (en) Magnetron sputtering device, and method for forming a transparent electrically conductive oxide film
US5942672A (en) Automated particle monitor operation for a thin film process
US6338779B1 (en) Arc monitoring
KR20140098477A (en) method for anticipating plasma micro arcing and plasma process management method of the production equipment used the same
JP7402219B2 (en) Arc detector, plasma system and arc detection method for detecting arc
US20040087170A1 (en) Method for determining the end point for a cleaning etching process
JP3804561B2 (en) Plasma processing apparatus and plasma processing method
Parker et al. Monitoring and preventing arc-induced wafer damage in 300mm manufacturing