TW200834974A - The process reducing leakage currents and improving surface properties in photodiode - Google Patents

The process reducing leakage currents and improving surface properties in photodiode Download PDF

Info

Publication number
TW200834974A
TW200834974A TW96105618A TW96105618A TW200834974A TW 200834974 A TW200834974 A TW 200834974A TW 96105618 A TW96105618 A TW 96105618A TW 96105618 A TW96105618 A TW 96105618A TW 200834974 A TW200834974 A TW 200834974A
Authority
TW
Taiwan
Prior art keywords
semiconductor
group
layer
photodiode
surface properties
Prior art date
Application number
TW96105618A
Other languages
Chinese (zh)
Inventor
Jia-Ching Lin
Wen-How Lan
Kuo-Chin Huang
Wen-Jen Lin
Ta-Ching Li
Cheng Chuen Yang
Jen Bin Won
Original Assignee
Chung Shan Inst Of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chung Shan Inst Of Science filed Critical Chung Shan Inst Of Science
Priority to TW96105618A priority Critical patent/TW200834974A/en
Publication of TW200834974A publication Critical patent/TW200834974A/en

Links

Landscapes

  • Led Devices (AREA)

Abstract

The Process reducing leakage currents and improving surface properties in photodiode, during GaN-based photodiode processing, hot KOH/NaOH dip process was applied after ICPRIE/RIE dry etching to improve surface properties. Which include improving surface and edge morphology, eliminating whiskers and reducing leakage currents between P-type and N-type ohmic contact electrodes in photodiode.

Description

200834974 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種半導體元件的製程方法,特別是關於氮 化鎵系半導體元件之餘刻製程方法,其在以乾式钱刻氮化物系半 導體元件後,使用加熱KOH/NaOH浸泡以改良表面性質,以降低 元件的漏電流。 【先前技術】 氮化鎵系的轉體元件由於具備寬祕’近來受到相當的關 注,由於氮化物的化性穩定,具有相當強的離子性化學鍵結,在 製作半導體元㈣雜巾,無法㈣或科化料咖赋化學 溶液進行_…般肖树或是,雜錢化物的反 應性都很低,所以氮化物的触卜直是—個氮化物元件製作上的 難題;目前公認最有效的氮化錁_技術為乾式_,在先前技 蟄中’-般有以ICP-RIE(感應式麵合電漿離子反應_ )、趣(反 應性離子鋪、職電子迴旋共振(化學輔助離子侧) 等乾式_方絲進行氮化物的_,例如台料利i25822 :鎵系半導體發光元件」中’以四氯化矽進行氮化鎵反應性離; 。細由於乾式電漿_的過程中,高能量的帶電粒子 、、、貝才里擊被钱刻區域的表面’往往复总 、 六〜㈣ 易造成表祕f的劣化,例如 在〇冷、專利1241031「發光二極I# ;丛, 平_^件」中’提到蝕刻造成表面 千坦度的惡似及侧損傷造成不良及漏紐的提高。 5 200834974 為了改善乾式電漿餘刻所帶來的表面性質及缺陷、漏電流增200834974 IX. Description of the Invention: The present invention relates to a method of fabricating a semiconductor device, and more particularly to a process for a gallium nitride-based semiconductor device in which a nitride-based semiconductor device is dry-etched Thereafter, immersion with heated KOH/NaOH is used to improve surface properties to reduce leakage current of the device. [Prior Art] The gallium nitride-based rotating element has recently received considerable attention because of its closeness to nitride, and it has a relatively strong ionic chemical bond, and it is impossible to produce a semiconductor element (4). Or the chemical chemical solution is used to carry out the chemical solution. The reaction of the impurity is very low, so the contact of the nitride is a difficult problem in the fabrication of a nitride element; it is currently recognized as the most effective Tantalum nitride _ technology is dry _, in the prior art '- generally have ICP-RIE (inductive surface plasmon ion reaction _), interesting (reactive ion shop, occupational electron cyclotron resonance (chemical auxiliary ion side) ) such as dry _ square wire for nitride _, for example, the material i25822: gallium-based semiconductor light-emitting device" in the process of galvanic reaction with ruthenium tetrachloride; fine due to the process of dry plasma _ The high-energy charged particles, and the surface of the area where the money is engraved are often recombined, and the six ~ (four) are easy to cause deterioration of the table, such as in the cold, patent 1241031 "lighting diode I#; Flat _^"" mentioned in the etching caused by the surface thousand Toughness and side damage cause bad and leakage increases. 5 200834974 In order to improve the surface properties and defects caused by dry plasma remnants, leakage current increases

加的問題’卿研究⑽式_的方式進行氮化物半導體元件的 蝕刻,在 T. K〇zawa,T. Kachi,T. 〇hwaki,γ Taga,N K〇ide,and MThe problem of the addition of the method of the research (10) is to etch the nitride semiconductor device in T. K〇zawa, T. Kachi, T. 〇hwaki, γ Taga, N K〇ide, and M.

Koike;Oislocation Etch Pits in GaN Epitaxial Layers Grown on Sapphire Substrates , J. Electrochem. Soc(USA) voU43,L17(1996) 中提到可以用溶融狀恶# K〇H/Na〇H溶液對氮化嫁進行蚀刻, 然而KOH/NaOH的溶融溫度在25(rc〜35(rc之間,這樣高的溫度 下難以用光阻進行選擇性的_,限制了其在元件製程上的應 用而近來提出光輔助濕式姓刻」 的方式W用月b里大於被餘刻氮化鎵能隙的紫外線照射,產生大 量的電子電_進行氮錄的侧,其縣使用錢度的紫外光 加上白金電極進行,反應式如下: 2GaN + 6h+ + 60H- ^ 2Ga2〇3 + N2 +3H2〇 然而光辅助濕式侧目前麵刻速率上與乾式侧仍有明 距’、目前仍無法大量顧於工業生產;工業大量生產目前還 疋以乾式餘刻進行。 【發明内容】 的氮要Γ盖==驗性溶液浸泡其乾式侧後 袓^°乾式侧後的氮化元件表面及側邊 粗^度,以減低漏電流或改善表©性質及缺陷。 的方=2 Γ目I秘:^_吐熱_應浸泡 又件相比於光伽濕式蝴具有較高的綱速率,且 200834974 相比於純乾式_有較良好的表面形態及較低漏電流的钱刻製 程’同時具有乾式钱刻及光輔助化學颠刻的優點。 本發明之又-目的,在独乾賴壯上熱咖愚⑽浸泡 的方法製作氮化麟元件’以獲得她於只聰式糊製作之氣 ^鎵系元件有更穩定的光電流值在高偏壓區與更高之^見光與 紫外光拒斥比(Rejection Ratio)的光響應度。 ^ 本發明之又-目的,在於提供—種胁與現行卫業化大量生Koike; Oislocation Etch Pits in GaN Epitaxial Layers Grown on Sapphire Substrates, J. Electrochem. Soc (USA) voU43, L17 (1996) mentions that nitriding can be carried out with a solution of dissolved 恶# K〇H/Na〇H solution Etching, however, the melting temperature of KOH / NaOH is between 25 (rc ~ 35 (rc, such a high temperature is difficult to use photoresist to select _, limiting its application in the component process and recently proposed light-assisted wet The method of "type surname" is to use the ultraviolet light irradiated by the residual gallium nitride energy gap in the month b to generate a large amount of electronic electricity. The side of the nitrogen recording is used by the county with the ultraviolet light of the county plus the platinum electrode. The reaction formula is as follows: 2GaN + 6h + + 60H- ^ 2Ga2 〇 3 + N2 + 3H2 〇 However, the current side of the light-assisted wet side has a clear distance from the dry side, and it is still unable to take a large amount of industrial production; industrial mass production At present, the dry ruthenium is carried out. [Summary of the invention] The nitrogen nitrite cover == the test solution soaks the surface of the nitriding element and the side roughness of the dry side after the dry side, to reduce the leakage current. Or improve the nature and defects of the table. The square = 2 Γ I secret: ^_ 吐热_ should be soaked and has a higher rate than the optical gamma butterfly, and 200834974 compared to the pure dry _ has a better surface morphology and lower leakage current 'At the same time, it has the advantages of dry money engraving and photo-assisted chemical engraving. The purpose of the invention is to make a nitrile element in the method of soaking in the heat (10) soaking to obtain her in the production of only Cong paste. The gallium element has a more stable photocurrent value in the high bias region and a higher light responsivity than the Rejection Ratio. ^ Further, the object of the present invention is to provide - a kind of threat and the current large number of health

產氮化鎵系轉體元件其所使狀乾式_製程步驟整合,改盖 元件性質的方法。 口 σ 為達上述目的,本發明之實現技術如下: -種減低漏電献改善表面性質的轉體元件製程方法,其 包含: =晶成長用基板,係在該基板上依序成長多層之半導體 薄膜,用以形成半導體多層蠢晶結構; 將料導體多層蟲晶結構,用以乾式侧由表面姓刻至 所需之半導體薄膜;及 祕财之轉體Μ蟲晶結構上,姻以製作電極與純化層 (passivation); 其特徵在於將乾式_㈣半導❹層蟲晶結構浸泡至 驗性溶液愤,鄕作電極與鈍⑽,狀善 陷,以減低漏電流。 {叫王貝反釈 ^上述之減低漏H錢善表雜質的半導體元件製程方法,呈 中該半導體元件磊晶芦鉍社备阳 八 曰曰層材枓係為選自於m-V族之化合物、Π- 200834974 VI族之化合物、IV族之化合物、 組合之其中之一。 IV - IV族之化合物及上述之任意 如上述之減低漏電流及改善表面性質的半導體元件製程方法,其 中該半體元件蠢晶層材料係為氮與、錮、鎵三種合金中其中 至少一種合金所組成的化合物。 〃 如士述之減低漏電流及改善表面性質的半導體元件製程方法,其 中該半導體元件蟲晶層材料係為氮化鎵(GaN)、氮化銘錄 AlGaN) lUtJg(細)、氮化銦(ιηΝ)、氮化銘銦⑷ 銦鎵(InGaN)。 如上述之減低漏電流及改善表面性質的半導體元件製程方法,其 中該N型半導體層係為卩型氮化鎵系半導體。 ’、 如上述之減低漏電流及改善表面性質的轉體元件製程方法,其 中該p型半導體層料p聽化聽半導體。 如上述之減低漏電流及改善表面性質的轉體元件製程方法,豆 巾該半導體元件為選自於光電二極體、發光二極體、雷射二極 藝 體、光偵測器及上述之任意組合之其中之一。 如上述之減低漏電流及改善表面性質的钭體元件製程方法,其 ^該乾式伽1為選自於KP-腿(感應找合電_子反隸 刻)、RIE(反應性離子餘刻)、ECR(電子迴旋共振)、以化 輔助離子蝕刻)及上述之任意組合之其中之一。 如上述之減低漏電流及改善表面性f的轉體元件製程方法,立 ^該成長薄_方式為為選自於化學氣相沉積法 aP〇r.DeP〇sltlon,CVD)、有機金屬化學氣相沉積法⑽诎 rgamc heimcal Vapor Dep〇siti〇n,Μ〇_、分子束蠢晶 200834974 (Molecular Beam Epitaxy,MBE)、氫化物氣相磊晶(Hydride Vapor Phase Epitaxy,HVPE)、離子增強化學氣相沉積法(piasmaA method for producing a gallium nitride-based rotating component in which the dry-process step is integrated to change the properties of the component. The sigma σ is the above-mentioned object, and the implementation technology of the present invention is as follows: - a method for manufacturing a rotating component for reducing leakage and improving surface properties, comprising: a substrate for crystal growth, which sequentially grows a plurality of semiconductor films on the substrate For forming a semiconductor multi-layered stella structure; a multi-layered insect crystal structure of the material conductor, for the dry side from the surface of the surname to the desired semiconductor film; and the secret of the scorpion crystal structure, in order to make electrodes and Purification layer (passivation); characterized in that the dry _ (four) semi-conducting layer of insect crystal structure is soaked into the test solution anger, sputum electrode and blunt (10), shape trapped to reduce leakage current. {called Wang Bei 釈 釈 ^ The above-mentioned semiconductor device manufacturing method for reducing the leakage of H-good impurities, in the semiconductor element, the epitaxial reeds, the preparation of the yang scorpion layer is selected from the mV group of compounds, Π- 200834974 One of the compounds of Group VI, the compounds of Group IV, and combinations. a compound of the group IV-IV and any of the above-mentioned semiconductor device manufacturing methods for reducing leakage current and improving surface properties, wherein the semiconductor element material is at least one of three alloys of nitrogen, germanium and gallium. The compound composed. 〃 A semiconductor device manufacturing method that reduces leakage current and improves surface properties, wherein the semiconductor element is made of gallium nitride (GaN), nitrided AlGaN, lUtJg (fine), indium nitride ( ιηΝ), Nitride Indium (4) Indium Gallium (InGaN). The semiconductor device manufacturing method for reducing leakage current and improving surface properties as described above, wherein the N-type semiconductor layer is a germanium-type gallium nitride-based semiconductor. As described above, the method of manufacturing a rotating body for reducing leakage current and improving surface properties, wherein the p-type semiconductor layer p is audible to the semiconductor. The method for manufacturing a rotating component for reducing leakage current and improving surface properties, wherein the semiconductor component is selected from the group consisting of a photodiode, a light emitting diode, a laser diode, a photodetector, and the like. One of any combination. As described above, the method for manufacturing a body element for reducing leakage current and improving surface properties, wherein the dry gamma is selected from the group consisting of KP-legs (induction-inducing electricity-sub-inversion), RIE (reactive ion remnant) , ECR (electron cyclotron resonance), chemical assisted ion etching), and any combination of the above. The above-mentioned method for manufacturing a rotating element for reducing leakage current and improving surface property f is formed by chemical vapor deposition aP〇r. DeP〇sltlon (CVD), organometallic chemical gas. Phase deposition method (10) 诎rgamc heimcal Vapor Dep〇siti〇n, Μ〇 _, molecular beam epitaxy 200834974 (Molecular Beam Epitaxy, MBE), Hydride Vapor Phase Epitaxy (HVPE), ion-enhanced chemical gas Phase deposition method (piasma

Enhanced Chemical Vapor Deposition ’ PECVD)、濺鍵法(SpUtter) 之其中之一。 如上述之減低漏電流及改善表面性質的半導體元件製程方法,其 中該鹼性溶液為選自於咖、^·^2^3、·^。^/ ’、 如上述之減低漏電流及改善表面性f的轉體元 直Enhanced Chemical Vapor Deposition ‘PECVD), one of the SpUtters. The semiconductor device manufacturing method for reducing leakage current and improving surface properties as described above, wherein the alkaline solution is selected from the group consisting of coffee, ^^^2^3, . ^/ ', as described above, reducing the leakage current and improving the surface property f of the body of the body

中該鹼性溶液,其PH值在9至15之間。 、…、 如上述之減鶴電献改善表雜f的轉體 中該驗性溶液,其溫度在仙以至煮沸之間〇 μ / 如上逑之:¾鶴電流錢善表面性冑 中該驗性溶液,其浸泡時間在5G分鐘以内。件衣程方法,其 200834974 【實施方式】 如圖1所示’為習知乾式餘刻方法,以形成氮化物之半導體 層之開口及侧壁之俯視圖,由圖中可得知其習知蝕刻技術之可得 到一輪廓不佳的開口(16)及侧壁(17)。 如圖2中所示,本發明之一實施例,其為氮化鎵(GaN) 光電一極體(photodiode)钱刻製程的改良:首先在藍寶石 基板(10)上,以M0CVD依序磊晶成長氮化鎵(GaN)成核層 (11) 、2um的未摻雜氮化鎵(GaN)半導體疊層(12)、2un]的 n+-GaN半導體疊層(摻雜濃度2xi〇18cm-3)(i3)、3〇〇nm的未 摻雜Al〇.i3GaG.87N半導體疊層(14)、5〇nm的p+-GaN半導體 疊層(摻雜濃度5χ1017 αιτ3)(ΐ5),接著以標準的黃光微影 製程加上乾式蝕刻進行選擇性蝕刻至n+—GaN半導體疊層 (12) ,係以形成一開口(16)及侧壁(17),接著將乾式蝕刻 蝕刻後的試片浸泡至熱Κ0Η溶液中5分鐘之内,再以去離 子水沖洗後吹乾。接下來在p+-GaN半導體疊層(15)上製作 Ni/Au金屬電極,並進行熱處理形成歐姆接觸,接著沉積 Si〇2的鈍化層(passivati〇n),接著在被蝕刻裸露出的 η-GaN半導體疊層(13)上製作Ti/Al/Ti/Au電極接觸。 將依上述之本發明實施例中所製作之氮化鎵(GaN)光 電二極體,與相同元件結構,在乾式韻刻後未浸泡熱Koh 浴液的氮化嫁(GaN)光電二極體進行比較。不照光的情況 下,依本發明實施例製作之氮化鎵(GaN)光電二極體具有較 小的暗電流,且其暗電流較穩定,不像未浸泡熱K〇H溶液 之氮化鎵(GaN)光電二極體,其暗電流隨所施加負偏壓增加 而增加;在照射330nm、0· 7uW紫外光的情形下,未浸泡熱 200834974 Κ0Η溶液的氮化鎵(GaN)光電二極體,其電流亦隨所施加負 偏壓的增加而增加,而依本發明實施例所製作之氮化I家 (GaN)光電二極體,其電流大小穩定,不隨所施加負偏壓的 增加而改變,其比較如圖3中所示。而未浸泡熱Κ0Η溶液 的氮化鎵(GaN)光電二極體,其電流隨所施加負偏壓的增加 而增加的原因,很可能是因為表面性質及缺陷所造成之漏 電流,而其熱Κ0Η溶液浸泡可以減少表面性質及缺陷,並 以降低漏電流,在如圖4中為未浸泡熱Κ0Η溶液的氮化鎵 (GaN)光電二極體及浸泡熱K0H溶液的氮化鎵(GaN)光電二 極體其光響應比較結果如上述中所示。 雖然本發明已以一 以限定本發明, ’任何熟悉此技藝者,The alkaline solution has a pH between 9 and 15. ,..., as in the above-mentioned reduction crane, to improve the test solution in the swivel of the table, the temperature is between sensation and boiling between 〇μ / as above: 3⁄4 crane current, good surface, 该Solution, the soaking time is within 5G minutes. Method of clothing process, 200834974 [Embodiment] As shown in FIG. 1 'is a conventional dry-type engraving method, to form a top view of the opening and sidewall of the nitride semiconductor layer, the conventional etching can be known from the figure The technique provides a poorly contoured opening (16) and side walls (17). As shown in FIG. 2, an embodiment of the present invention is an improvement of a gallium nitride (GaN) photodiode process: firstly, epitaxial epitaxy is performed on a sapphire substrate (10) by M0CVD. Growth of gallium nitride (GaN) nucleation layer (11), 2 um undoped gallium nitride (GaN) semiconductor stack (12), 2un] n+-GaN semiconductor stack (doping concentration 2xi〇18cm-3 (i3), 3〇〇nm undoped Al〇.i3GaG.87N semiconductor stack (14), 5〇nm p+-GaN semiconductor stack (doping concentration 5χ1017 αιτ3) (ΐ5), followed by standard The yellow lithography process plus dry etching is selectively etched to the n+-GaN semiconductor stack (12) to form an opening (16) and sidewalls (17), and then the dry etched test piece is immersed in heat. Within 5 minutes of the Κ0Η solution, rinse with deionized water and blow dry. Next, a Ni/Au metal electrode is formed on the p+-GaN semiconductor stack (15), and heat treatment is performed to form an ohmic contact, followed by deposition of a passivation layer of Si〇2, followed by etch-exposed η- A Ti/Al/Ti/Au electrode contact is formed on the GaN semiconductor stack (13). According to the above-described gallium nitride (GaN) photodiode fabricated in the embodiment of the present invention, and the same element structure, the nitrided (GaN) photodiode which is not soaked in the hot Koh bath after the dry rhyme engraving Compare. In the case of no illumination, the gallium nitride (GaN) photodiode fabricated according to the embodiment of the present invention has a small dark current, and its dark current is relatively stable, unlike gallium nitride which is not soaked in a hot K〇H solution. (GaN) photodiode, its dark current increases with the increase of the applied negative bias; in the case of irradiating 330nm, 0. 7uW ultraviolet light, the gallium nitride (GaN) photodiode is not soaked in the heat of 200834974 Κ0Η solution The current of the body is also increased with the increase of the applied negative bias voltage, and the nitrided GaN photodiode fabricated according to the embodiment of the invention has a stable current and does not follow the negative bias applied. The increase is changed, and the comparison is as shown in FIG. The reason why the current of the gallium nitride (GaN) photodiode which is not soaked in the hot Κ0Η solution increases with the increase of the applied negative bias is probably due to the surface current and the leakage current caused by the defect, and the heat thereof Κ0Η solution immersion can reduce surface properties and defects, and reduce leakage current, as shown in Figure 4 is a gallium nitride (GaN) photodiode that is not soaked in hot Κ0Η solution and gallium nitride (GaN) immersed in hot K0H solution. The photoresponse comparison results of the photodiode are as shown above. Although the invention has been described in terms of the invention, any one skilled in the art,

圍當視後社申請專利範圍所界定者為準。 較佳實施例揭露如上,然其並非用 悉此技藝者,在不脫離本發明之精 因此本發明之保 200834974 【圖式簡單說明】 第1圖自知方法麵刻氮化鎵系多層蠢晶結構俯視圖。 弟2圖,本發明之 <万法蝕刻氮化鎵系多層磊晶結構剖視圖。 第3圖,氮化錄备夕 今示夕層磊晶結構浸泡熱ΚΟΗ/NaOH溶液後之漏 電流數據圖。 第4圖t化鎵系多層遙晶結構浸泡熱KOH/NaOH溶液後之光 響應數據圖。 【主要元件符號說明】 10…基板 η…氮化鎵成核層 12— 2um的未摻雜氮化鎵 半導體叠層 13— 2Um的‘㈣半導體 疊層 14 —300nm的未摻雜半導 體疊層 15 _~50nm 的 p+-GaN 半導體 疊層 16 —開口 17…侧壁 12It shall be subject to the definition of the patent application scope of the company. The preferred embodiment is as disclosed above, but it is not intended to be used by the skilled artisan, and the invention is not limited to the essence of the present invention. Therefore, the invention is in accordance with the invention. Top view of the structure. FIG. 2 is a cross-sectional view showing the multilayered epitaxial structure of the gallium nitride-based galvanic coating according to the present invention. Fig. 3 is a graph showing the leakage current data after immersing the hot enthalpy/NaOH solution in the current epitaxial layer epitaxial structure. Fig. 4 is a light response data diagram of a galvanized multi-layered remote crystal structure immersed in a hot KOH/NaOH solution. [Major component symbol description] 10...substrate η...gallium nitride nucleation layer 12-2 um undoped gallium nitride semiconductor laminate 13-2 Um's (four) semiconductor laminate 14 - 300 nm undoped semiconductor laminate 15 _~50nm p+-GaN semiconductor stack 16 - opening 17... sidewall 12

Claims (1)

200834974 十、申請專利範圍: 1. 一種減低漏電流及改善表面性質的半導體元件製程方法,其包含. 一磊晶成長用基板,係在該基板上依序成長多層之半導體 薄膜’用以形成半導體多層磊晶結構; 將該半導體多層蠢晶結構,用以乾式餘刻由表面餘刻至所需之 半導體薄膜;及 @ • 該侧後之半導體多層蟲晶結構上,係用以製作電極與純化層 (passivation); 其特徵在於將乾式蚀刻後的半導體多層蠢晶結構浸泡至 祕驗愤,再製作電極魏化層,以改善元料面性質及 缺陷,以減低漏電流。 、 2·如申請專利範圍第丨項之半導體多層蟲晶結構,其中該半導體元 件蠢晶層材料係為選自於m—v族之化合物、族之化合物、W _族之化合物、IV—w族之化合物及上述之任意組合之其中之一。 3如申請專利範圍第2項之半導體多層蟲晶結構,其中該半導體元件 蠢晶層材料係為氮與IS、銦、鎵三種合金中其中至少—種合金所組 成的化合物。 4·如申請專利範圍第2項之半導體多層蟲晶結構,其中該半導體元 件蟲晶層材料係為氮化錁_)、氮化鱗(A1GaN)、氮化紹(刷、 亂化銦(随)、氮她崎ΠηΝ)、氮化鱗(InGaN)、&amp;化铭銦鎵 (AlInGaN) 〇 13 200834974 ^如申請專利範圍第丨項所述之半導體多層蠢晶結構,其中該n型 半導體層係為N型氮化鎵系半導體。 6. 如申請專利_第丨項所述之半導體多縣晶結構,其中該p型 半導體層係為p型氮化鎵系半導體。 7. 如申請專利範圍第丨項之半導體多層磊晶結構,其中該半導體元 件為選自於光電二極體、發光二極體、雷射二極體、光侧器及上 述之任意組合之其中之一。 8·如巾請專利範圍第丨項之半導體多層蠢晶結構,其中該乾式茲刻 為選自於ICP-RIE(感應式耦合電漿離子反應蝕刻)、RIE(反應性離子 钱刻)、ECR(電子迴旋共振)、CAIBE(化學輔助離子钱刻)及上述之任 意組合之其中之一。 9·如申請專利範圍第1項之半導體多層磊晶結構,其中該成長薄膜 的方式為為選自於化學氣相沉積法(Chemicai Vapor Deposition, ^ CVD)、有機金屬化學氣相沉積法(Metal Organic Chemical Vapor Deposition ’ MOCVD)、分子束蠢晶(Molecular Beam Epitaxy,MBE)、 氫化物氣相蟲晶(Hydride Vapor Phase Epitaxy,HVPE)、離子增強 化學氣相沉積法(Plasma Enhanced Chemical Vapor Deposition, PECVD)、激鍍法(Sputter)之其中之一。 10·如申請專利範圍第1項之半導體多層磊晶結構,其中該鹼性溶液 為選自於 Κ0Η、NaOH、K2CO3、Na2C〇3。 11·如申請專利範圍第1項之半導體多層磊晶結構,其中該鹼性溶 200834974 液,其PH值在9至15之間。 12. 如申請專利範圍第1項之半導體多層磊晶結構,其中該鹼性溶 液,其溫度在40度C至煮沸之間。 13. 如申請專利範圍第1項之半導體多層磊晶結構,其中該鹼性溶 液,其浸泡時間在50分鐘以内。200834974 X. Patent application scope: 1. A semiconductor device manufacturing method for reducing leakage current and improving surface properties, comprising: an epitaxial growth substrate on which a plurality of semiconductor thin films are sequentially grown to form a semiconductor a multi-layer epitaxial structure; the semiconductor multilayered crystal structure is used for dry etching from the surface to the desired semiconductor film; and @• the semiconductor layer on the side is used to fabricate electrodes and purification Passivation; characterized by immersing the dry-processed semiconductor multilayer silicidal structure into a secret anger, and then fabricating an electrode wafer layer to improve the surface properties and defects of the material to reduce leakage current. 2. The semiconductor multilayered serpentine structure of claim </ RTI> wherein the semiconductor element stray layer material is selected from the group consisting of a compound of the m-v group, a compound of the group, a compound of the W-group, IV-w One of the compounds of the family and any combination of the above. 3. The semiconductor multilayered serpentine structure of claim 2, wherein the semiconductor element stray layer material is a compound of nitrogen and at least one of an alloy of IS, indium and gallium. 4. The semiconductor multilayered crystal structure of claim 2, wherein the semiconductor element is a tantalum nitride layer _), a nitrided scale (A1 GaN), a nitrided smear (brush, chaotic indium (according to , a nitrogen-based sulphide, an indium nitride (AlGaN), and a semiconductor multilayered amorphous structure, wherein the n-type semiconductor layer is described in the above-mentioned claim. It is an N-type gallium nitride-based semiconductor. 6. The semiconductor multi-cell crystal structure according to the above application, wherein the p-type semiconductor layer is a p-type gallium nitride-based semiconductor. 7. The semiconductor multilayer epitaxial structure of claim </ RTI> wherein the semiconductor component is selected from the group consisting of a photodiode, a light emitting diode, a laser diode, an optical side, and any combination thereof. one. 8. The semiconductor multilayer doped crystal structure of the patent scope of the invention, wherein the dry type is selected from the group consisting of ICP-RIE (inductively coupled plasma ion reactive etching), RIE (reactive ion etching), ECR (Electron cyclotron resonance), CAIBE (chemically assisted ion engraving) and one of any combination of the above. 9. The semiconductor multilayer epitaxial structure according to claim 1, wherein the method of growing the film is selected from the group consisting of chemical vapor deposition (Chemicai Vapor Deposition, ^ CVD), and organometallic chemical vapor deposition (Metal) Organic Chemical Vapor Deposition 'MOCVD), Molecular Beam Epitaxy (MBE), Hydride Vapor Phase Epitaxy (HVPE), Plasma Enhanced Chemical Vapor Deposition (PECVD) ), one of the sputtering methods (Sputter). 10. The semiconductor multilayer epitaxial structure of claim 1, wherein the alkaline solution is selected from the group consisting of Κ0Η, NaOH, K2CO3, and Na2C〇3. 11. The semiconductor multilayer epitaxial structure of claim 1, wherein the alkaline solution 200834974 has a pH between 9 and 15. 12. The semiconductor multilayer epitaxial structure of claim 1, wherein the alkaline solution has a temperature between 40 ° C and boiling. 13. The semiconductor multilayer epitaxial structure of claim 1, wherein the alkaline solution has a soaking time of less than 50 minutes. 1515
TW96105618A 2007-02-15 2007-02-15 The process reducing leakage currents and improving surface properties in photodiode TW200834974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96105618A TW200834974A (en) 2007-02-15 2007-02-15 The process reducing leakage currents and improving surface properties in photodiode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96105618A TW200834974A (en) 2007-02-15 2007-02-15 The process reducing leakage currents and improving surface properties in photodiode

Publications (1)

Publication Number Publication Date
TW200834974A true TW200834974A (en) 2008-08-16

Family

ID=44819589

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96105618A TW200834974A (en) 2007-02-15 2007-02-15 The process reducing leakage currents and improving surface properties in photodiode

Country Status (1)

Country Link
TW (1) TW200834974A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105870006A (en) * 2016-06-08 2016-08-17 江苏新广联半导体有限公司 Processing technology for sidewall of GaN-based material
CN112997326A (en) * 2018-11-06 2021-06-18 加利福尼亚大学董事会 Micro LED with ultra-low leakage current

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105870006A (en) * 2016-06-08 2016-08-17 江苏新广联半导体有限公司 Processing technology for sidewall of GaN-based material
CN112997326A (en) * 2018-11-06 2021-06-18 加利福尼亚大学董事会 Micro LED with ultra-low leakage current

Similar Documents

Publication Publication Date Title
US8957427B2 (en) Successive ionic layer adsorption and reaction process for depositing epitaxial ZnO on III-nitride-based light emitting diode and light emitting diode including epitaxial ZnO
US20060166390A1 (en) Optoelectronic substrate and methods of making same
JP6165602B2 (en) Method for forming n-type negative electrode and group III nitride semiconductor light emitting device
CN108389955B (en) Method for reducing voltage of 3D through hole superstructure LED chip by in-hole oxygen-free dry etching
TW201029059A (en) Tin/silver bonding structure and its method
WO2017041661A1 (en) Semiconductor element and preparation method therefor
CN110164962A (en) Schottky diode of high-breakdown-voltage and preparation method thereof
US20080277678A1 (en) Light emitting device and method for making the same
TWI622085B (en) Compound semiconductor substrate and epitaxial substrate
US20240322073A1 (en) Preclean and encapsulation of microled features
Chuang et al. Thin film GaN LEDs using a patterned oxide sacrificial layer by chemical lift-off process
TW392367B (en) GaN related compound semiconductor devices and manufacturing method therefor
CN102031484A (en) Method for improving activation efficiency of magnesium-doped nitrides under catalytic dehydrogenation of metals
CN113594234B (en) Preparation method of gallium oxide Schottky diode with low turn-on voltage
JP7162833B2 (en) Semiconductor device manufacturing method
CN108389952B (en) It is a kind of without electric leakage MESA Cutting Road 3D through-hole superstructure LED chip and preparation method thereof
TW200834974A (en) The process reducing leakage currents and improving surface properties in photodiode
TW200529477A (en) Gallium nitride-based compound semiconductor light-emitting device
JP4652530B2 (en) Method for manufacturing gallium nitride compound semiconductor light emitting device
Li et al. Research progress in the postprocessing and application of GaN crystal
TWI466318B (en) The process of vertical non - cutting metal substrate light - emitting diodes
JP2009221083A (en) Group iii nitride semiconductor and method for manufacturing the same
JP4749809B2 (en) Nitride semiconductor light emitting device
TW200400651A (en) Method for producing group III nitride compound semiconductor device
JP2010245109A (en) Group iii nitride based semiconductor element, and method of producing electrode