TW200832750A - Light-emitting diode and method for manufacturing the same - Google Patents

Light-emitting diode and method for manufacturing the same Download PDF

Info

Publication number
TW200832750A
TW200832750A TW096103410A TW96103410A TW200832750A TW 200832750 A TW200832750 A TW 200832750A TW 096103410 A TW096103410 A TW 096103410A TW 96103410 A TW96103410 A TW 96103410A TW 200832750 A TW200832750 A TW 200832750A
Authority
TW
Taiwan
Prior art keywords
light
emitting diode
oxide
transparent conductive
doped
Prior art date
Application number
TW096103410A
Other languages
Chinese (zh)
Other versions
TWI336143B (en
Inventor
Jinn-Kong Sheu
Original Assignee
Chi Mei Optoelectronics Corp
Ncku Res & Dev Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chi Mei Optoelectronics Corp, Ncku Res & Dev Foundation filed Critical Chi Mei Optoelectronics Corp
Priority to TW96103410A priority Critical patent/TWI336143B/en
Publication of TW200832750A publication Critical patent/TW200832750A/en
Application granted granted Critical
Publication of TWI336143B publication Critical patent/TWI336143B/en

Links

Landscapes

  • Led Devices (AREA)

Abstract

A light-emitting diode (LED) and a method for manufacturing the same are described. The light-emitting diode comprises an illuminant epitaxial structure, a transparent conductive layer, a first conductivity type electrode and a second conductivity type electrode, wherein the first conductivity type is different from the second conductivity type. The illuminant epitaxial structure comprises a first conductivity type semiconductor layer deposed on a substrate, an active layer stacked on a portion of the first conductivity type semiconductor layer to expose another portion of the first conductivity type semiconductor layer, and a second conductivity type semiconductor layer stacked on the active layer. The transparent conductive layer comprises a first transparent conductive film and a second transparent conductive film stacked in sequence, wherein a grain size of the first transparent conductive film is greater than a grain size of the second transparent conductive film. The first conductivity type electrode is deposed on the exposed portion of the first conductivity type semiconductor layer. The second conductivity type electrode is deposed on the transparent conductive layer.

Description

200832750 :九t發朗說明200832750: Description of the nine t-lang

【發明所屬之技術領域】 本發明是有關於一種發光元件,且特別是有關於一種發 光二極體(LED)及其製造方法。 【先前技術】 在傳統之氮化鎵系列發光二極體中,大都以厚度很薄之 金屬薄膜,例如鎳/金(Ni/Au),來做為發光磊晶結構與電極 之間的透明筹電層,以促進電流散佈,進而提升發光二極體 元件之發光效率。然而,金屬薄膜之厚度雖然夠薄而可讓光 透過,但是對於可見光而言,穿透率仍在70%以下,而造 成發光元件之發光亮度降低。 此外,鎳/金薄膜形成後必須在含氧環境下進行回火處 理,才能獲得高透明度且低接觸電阻之鎳/金導電薄膜。然 而,鎳/金薄膜於含氧環境下進行回火處理後,會發生氧化 現象,而氧化過之鎳/金薄膜容易遭受水氧侵蝕而劣化,進 而使得元件特性明顯變差。為解決水氧侵蝕的問題,通常在 鎳/金薄膜上額外覆蓋二氧化矽保護層,以阻隔外界溼氣而 防止水氧侵入鎳/金薄膜,進而達到提高元件可靠度與延長 元件壽命的目的。 然而,二氧化矽保護層之導熱效果差,因此待發光二極 體元件完成封裝後,保護層會成為熱傳導的阻隔結構,不利 於主動層所產生之熱的傳導排除,進而導致發光二極體元件 之散熱效能下降。 另一方面,為解決利用金屬薄膜做為透明導電層所造成 5 200832750 之低光穿透率’目前發展出以氧化銦錫薄膜取代金屬薄膜來 做為發光二極體之透明導電層1而,氧化銦錫薄膜之電阻 率明顯較金屬薄膜高’目此可能會產生電流壅塞(c職加 Crowding)現象’進而造成電極之局部區域快速退化,導致 發光二極體元件之可靠度下降且壽命縮短。 【發明内容】 因此,本發明之目的就是在提供一種發光二極體,其透 明導電層至少包括二透明導電膜,其中上方之透明導電膜的 晶粒尺寸小於下方之透明逡雷胳 Θ等電膜,故透明導電層具有相當優 ,之抗水氣侵#能力,而可提高發光二極體元件之操作可靠 度,3延长發元二極體元件之壽命。 本發明之另' 目的是右:^ ^ 幻疋在扼供一種發光二極體,其透明導 電層具有緻密的上層結構’如此—來無需額外設置二氧化石夕 保護層。因此,可降低製程複雜度而可提高良率,並可縮減 製作成本,更可提升發光二極體元件之散熱效能。 、、本發明之又一目的是在提供一種發光二極體之製造方 -係先利用非電f:方式成長_低電阻率透明導電膜,再 於低電阻率透明導電膜上成長結構緻密之另—透明導電 蹲士此來,不僅可提升透明導電層與下方蠢晶結構的歐 :接觸品質,更可有效隔絕溼氣’進而可提高發光二極體元 件之#作性能’並可大幅增加發光二極體元件之壽命。 根據本發明之上述目的’提出一種發光二極體,至少包 ~ ^發^晶結構設於—基板上,其中發光蠢晶結構至少 ^ 第電性半導體層位於基板上;一主動層堆疊在第 200832750 導體T 一部分上,並暴露出第一電性半導體層 二電性半導體層,堆疊在主動層上, 電性半導體層與第二電性半導體層具㈣電性;一 透月¥電層’至少包括依序堆疊在發光蟲晶結構上BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a light-emitting element, and more particularly to a light-emitting diode (LED) and a method of fabricating the same. [Prior Art] In the conventional gallium nitride series light-emitting diodes, a thin metal film such as nickel/gold (Ni/Au) is used as a transparent solution between the light-emitting epitaxial structure and the electrodes. The electric layer promotes current spreading, thereby improving the luminous efficiency of the light emitting diode element. However, although the thickness of the metal thin film is thin enough to allow light to pass through, the transmittance is still less than 70% for visible light, and the luminance of the light-emitting element is lowered. In addition, after the nickel/gold film is formed, it must be tempered in an oxygen-containing atmosphere to obtain a nickel/gold conductive film having high transparency and low contact resistance. However, when the nickel/gold film is tempered in an oxygen-containing atmosphere, oxidation occurs, and the oxidized nickel/gold film is easily deteriorated by water-oxygen attack, which deteriorates the element characteristics. In order to solve the problem of water and oxygen erosion, the nickel/gold film is usually covered with a protective layer of ruthenium dioxide to block external moisture and prevent water and oxygen from invading the nickel/gold film, thereby improving component reliability and extending component life. . However, the thermal conductivity of the ceria protective layer is poor, so that after the package of the LED component is completed, the protective layer becomes a barrier structure for heat conduction, which is disadvantageous for the conduction of heat generated by the active layer, thereby causing the light-emitting diode. The heat dissipation performance of the components is degraded. On the other hand, in order to solve the low light transmittance of 5,200832750 caused by the use of a metal thin film as a transparent conductive layer, a transparent conductive layer 1 having a thin film of indium tin oxide as a light-emitting diode has been developed. The resistivity of the indium tin oxide film is significantly higher than that of the metal film, which may cause current clogging (cc plus Crowding) phenomenon, which causes rapid degradation of the local region of the electrode, resulting in reduced reliability and shortened lifetime of the LED component. . SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a light emitting diode having a transparent conductive layer comprising at least two transparent conductive films, wherein the upper transparent conductive film has a grain size smaller than that of the transparent ray The film, so the transparent conductive layer has a relatively good, anti-water gas intrusion # ability, and can improve the operational reliability of the light-emitting diode component, 3 extend the life of the elemental diode component. Another object of the present invention is to the right: ^ ^ 疋 疋 扼 一种 一种 一种 一种 一种 一种 一种 一种 一种 一种 一种 一种 一种 一种 一种 一种 一种 一种 一种 一种 扼 扼 扼 扼 扼 扼 扼 扼 扼 扼 扼 扼 扼 扼 扼 扼 扼 扼 扼Therefore, the process complexity can be reduced, the yield can be improved, the manufacturing cost can be reduced, and the heat dissipation performance of the LED component can be improved. Another object of the present invention is to provide a method for manufacturing a light-emitting diode by first growing a low-resistivity transparent conductive film by using a non-electric f: method, and then growing the structure on a low-resistivity transparent conductive film. In addition, the transparent conductive gentleman can not only improve the contact quality of the transparent conductive layer and the underlying stray structure, but also effectively isolate the moisture, which can improve the performance of the LED component and can be greatly increased. The lifetime of the light-emitting diode component. According to the above object of the present invention, a light-emitting diode is provided, wherein at least a semiconductor structure is disposed on a substrate, wherein the light-emitting amorphous structure is at least a second semiconductor layer on the substrate; an active layer is stacked on the substrate 200832750 a part of the conductor T, and exposing the first electrical semiconductor layer two electrical semiconductor layer, stacked on the active layer, the electrical semiconductor layer and the second electrical semiconductor layer (four) electrical; a month through the electricity layer At least including sequentially stacking on the luminescent crystal structure

==及第二透明導電膜,其中第一透明導電膜之晶: 尺寸大於弟二透料電膜之晶粒尺寸;H 電性半導體層之第二部分上;以及一第二電極設於透二 層上。== and a second transparent conductive film, wherein the crystal of the first transparent conductive film: the size is larger than the grain size of the second dielectric film; the second portion of the H electrical semiconductor layer; and a second electrode is provided On the second floor.

依照本發明一較佳實施例,上述第 與第二透明導電膜之材料相同。 一透明導電膜之材料 照本發明之另一較佳實施例,上述第一導電膜係電子 束瘵鍍膜,且第二導電膜係濺鍍膜。 根據本發明之目的,提出一種發光二極體之製造方法, 至少包括:形成-發光遙晶結構於_基板上,其中發光蠢晶 結構至t包括依序堆疊在基板上之第一電性半導體層、主動 層以及第—電性半導體層,其中第―電性半導體層與第二電According to a preferred embodiment of the present invention, the materials of the first and second transparent conductive films are the same. A material of a transparent conductive film According to another preferred embodiment of the present invention, the first conductive film is an electron beam germanium plating film, and the second conductive film is a sputtering film. According to an object of the present invention, a method for fabricating a light emitting diode is provided, comprising at least: forming a light emitting crystal structure on a substrate, wherein the light emitting crystal structure to t comprises a first electrical semiconductor stacked on the substrate in sequence a layer, an active layer, and a first electrical semiconductor layer, wherein the first electrical semiconductor layer and the second electrical

性半導體層具不同電性;移除部分之第二電性半導體層與主 動層,直至暴露出部分之第一電性半導體層;形成一透明導 電層’其中透明I電層至少包括依序堆疊在發光蠢晶結構上 之第一透明導電膜以及第二透明導電膜,且第一透明導電膜 之晶粒尺寸大於第二透明導電膜之晶粒尺寸;形成一第一電 極於第一電性半導體層之暴露部分上;以及形成一第二電極 於透明導電層上。 依“、、本么月較佳貫施例’上述形成第一透明導電膜之 V驟係利用電子束蒸鍍法,且形成第二透明導電膜之步驟係 200832750 利用濺鍍法。 【貫施方式】 本發明揭露-種發光二極體及其製造方法,其係利用至 少二段製程來製作透明導雪展 ' 漆…玄 電層’因此透明導電層具有低電阻 率、冋牙透率,而可提供良好的電性接觸特性,並可有效防 堵外界水氧人侵,進-步達到延長發光二極體元件之使用壽 命,以及提高發光二極體元件之#The semiconductor layer has different electrical properties; removing part of the second electrical semiconductor layer and the active layer until a portion of the first electrical semiconductor layer is exposed; forming a transparent conductive layer 'where the transparent I electrical layer comprises at least sequentially stacked a first transparent conductive film and a second transparent conductive film on the light-emitting structure, and a grain size of the first transparent conductive film is larger than a grain size of the second transparent conductive film; forming a first electrode at the first electrical property An exposed portion of the semiconductor layer; and a second electrode formed on the transparent conductive layer. According to the ", the month, the preferred embodiment", the V-form which forms the first transparent conductive film is subjected to electron beam evaporation, and the step of forming the second transparent conductive film is 200832750 by sputtering. MODES OF THE INVENTION The present invention discloses a light-emitting diode and a method for fabricating the same, which utilizes at least two-stage process to produce a transparent snow-guided lacquer...a transparent conductive layer having a low electrical resistivity and a high tooth permeability. It can provide good electrical contact characteristics, and can effectively prevent external water and oxygen intrusion, further extend the service life of the light-emitting diode components, and improve the light-emitting diode components.

、J罪度之目的。為了使本發 明之敘述更加詳盡與完備,可參照下列描述並配合第!圖至 第4B圖之圖式。 目前,為了改善金屬薄臈所構成之透明導電層之穿透率 不佳的問題,大都以氧化銦錫層來當做透明導電層。然而, =發現以氧化铟錫層做為透明導電層時,發光二極體元件之 =命與可靠度並未獲得有效改善。除了 —般所認為之電流奎 塞效應外,中請人亦發現利用電子束蒸鑛技術所製備之氧化 銦錫層的結構緻密度低,因此外界水氧容易入侵,而導致發 光二極體元件的退化速度增快。為避免溼氣入侵,在氡化銦 錫層上額外覆蓋二氧化矽保護層,亦可提升發光二極體元件 之可靠度,並可有效延長元件之使用壽命。 然而,在氧化銦錫層上覆蓋二氧化矽保護層,同樣有會 阻隔而影響主動層所產生之熱的傳導,而不利於發光二極^ 凡件之散熱效能。此外,在這樣的發光二極體架構中,需要 咼品質之二氧化矽層來做為保護層,而此高品質的二氧化矽 ^ 般以電水增發化學氣相沉積(Plasma Enhanced CVD ; PECVD)製私來加以製作。因此,氧化銦錫層與二氧化矽層 200832750 之製作需分別在不同之儀器設備中進行,如此—來,不僅會 導致製程成本增加,更會造成良率下降。 有鑑於此,本發明提出一種發光二極體及其製造方法, 係以至少二種不同製程來製作至少二層透明導電氧化層來 做為透明導電層’藉以提高透明導電層與蠢晶結構之歐姆接 觸特性,並提高透明導電層之上層結構的緻密度,因而可有 效防止外界水氧入侵,達到提升發光二極體元件之操作可靠 度以及延長件之使用壽命的功效,更無需額外設置保護層。 凊參照第1圖至第3圖,其繪示依照本發明一較佳實施 例的種發光一極體之製程剖面圖。本發明之發光二極體可 為虱化鎵系列(GaN-based)發光二極體或鱗化鋁鎵銦 (ΑΚ^ηΡ)發光二極體。在—示範實施例中,首先提傲基板 100 ’其中基板100之材料可例如選用藍寶石、碳化矽、氮 化鎵或氮化鋁等。接下來,可依實際製程需求,選擇性地先 於基板100之表面上沉積成核層102。在本發明之另一實施 例中,亦可無需先成長成核層,而直接進行後續磊晶材料層 之製作。接著,利用例如有機金屬化學氣相沉積(M0CVD) 方式磊晶成長發光磊晶結構i i 0於基板1〇〇上方之成核層 102上。發光磊晶結構110至少包括第一電性半導體層1〇二 主動層106以及第二電性半導體層108,其中第一電性半導 體層104位於基板1〇〇上方之成核層1〇2上,主動層'Μ 則疊設在第一電性半導體層104上,而第二電性半^體層 108則疊設在主動層1〇6上。第一電性半導體層ι〇4與第: 電性半導體層108具有不同電性。舉例而言,當第一電性為 N型時,第二電性為P型;而當第一電性為p型時,第i 9 200832750 電性為Ν型。在本示範實施例中,第_電性為_ _ 二電性為1>型。此外,第一電性半導體層i〇4之材 弟 如為石夕摻雜之氮化鎵系列材料切摻雜之磷化銘録:: 料;而第二電性半導體層108之材料可例如為鎂摻雜之= 鎵系列:料或鎂摻雜之磷化鋁鎵銦材料。主動層i〇6較佳可 =量子井(Multiquantum Well,MQW)結構,例如氮㈣ 鎵/氪化鎵(InuGaojN/GaN)多重量子井結構。 待發光磊晶結構110完成後,利用例如微影與蝕刻方 來進行發光蟲晶結構m之圖案定義,而移除部分之第二; 性半導體層108與部分之主動層1G6,直至暴露出第_電性 半導體層U)4的一部分112’以利後續形成之電極能盘第_ 電性半導鍾層1G4形成接觸。在發光备晶結構⑽之圖案定 義過程中,為了確保第一電性半導體層104在圖案定義後有 暴露出,通常採取過餘刻(0ver_etching)之手段。如此一來, 於此一圖案定義步驟中,亦移除了部分之第一電性半 104,如第1圖所示。 曰 Φ 接著,可直接於發光磊晶結構丨1〇之第二電性半導體層 108,上形成透明導電層12〇 ;或者可選擇性地先於第二電性 半導體層108上形成接觸層114,再於接觸層114上形成透 明導電層120,當然亦可於第二電性半導體们〇8上形成接 觸層114後再進行微影與蝕刻方式來定義發光磊晶結構之 圖案。在本示範實施例中,先利用例如有機金屬化學氣相沉 積方式’於第二電性半導體層1〇8上形成接觸層114。其中, 接觸層114較佳可為摻雜之超晶格應力層結構The purpose of J's sin. In order to make the description of the present invention more detailed and complete, the following description can be referred to and cooperated with! Figure to Figure 4B. At present, in order to improve the problem of poor transmittance of the transparent conductive layer composed of the metal thin ruthenium, the indium tin oxide layer is mostly used as the transparent conductive layer. However, when it was found that the indium tin oxide layer was used as the transparent conductive layer, the life and reliability of the light-emitting diode element were not effectively improved. In addition to the current effect of the Quaysei effect, Zhongshui also found that the indium tin oxide layer prepared by electron beam evaporation technology has a low structure density, so that the external water oxygen is easily invaded, resulting in a light-emitting diode element. The rate of degradation increases. In order to avoid moisture intrusion, an additional layer of ruthenium dioxide protective layer on the indium antimonide tin layer can also improve the reliability of the light-emitting diode element and effectively extend the service life of the element. However, covering the indium tin oxide layer with the ceria protective layer also has the effect of blocking the heat conduction generated by the active layer, which is unfavorable for the heat dissipation performance of the light-emitting diode. In addition, in such a light-emitting diode structure, a germanium-doped cerium oxide layer is required as a protective layer, and this high-quality cerium oxide is generally subjected to electro-chemical vapor deposition (Plasma Enhanced CVD; PECVD). ) Making it private. Therefore, the indium tin oxide layer and the ceria layer 200832750 need to be produced separately in different instruments and equipment, so that not only will the process cost increase, but also the yield drop. In view of the above, the present invention provides a light-emitting diode and a method for fabricating the same, which are used to fabricate at least two transparent conductive oxide layers in at least two different processes as a transparent conductive layer to enhance the transparent conductive layer and the amorphous structure. The ohmic contact characteristic improves the density of the layer structure on the transparent conductive layer, thereby effectively preventing the external water and oxygen from invading, thereby improving the operational reliability of the LED component and the service life of the extension member, and eliminating the need for additional protection. Floor. Referring to Figures 1 through 3, there is shown a process cross-sectional view of a light-emitting diode in accordance with a preferred embodiment of the present invention. The light-emitting diode of the present invention may be a GaN-based light-emitting diode or a scalar aluminum gallium indium (LED) light-emitting diode. In the exemplary embodiment, the substrate 100' is first acclaimed. The material of the substrate 100 may be, for example, sapphire, tantalum carbide, gallium nitride or aluminum nitride. Next, the nucleation layer 102 can be selectively deposited on the surface of the substrate 100 in accordance with actual process requirements. In another embodiment of the present invention, the subsequent epitaxial material layer can be directly fabricated without first growing into a core layer. Next, the luminescent epitaxial structure i i 0 is epitaxially grown on the nucleation layer 102 above the substrate 1 by, for example, organometallic chemical vapor deposition (M0CVD). The light emitting epitaxial structure 110 includes at least a first electrical semiconductor layer 1 and a second active layer 106, wherein the first electrical semiconductor layer 104 is located on the nucleation layer 1〇2 above the substrate 1〇〇. The active layer 'Μ is stacked on the first electrical semiconductor layer 104, and the second electrical half layer 108 is stacked on the active layer 1〇6. The first electrical semiconductor layer ι 4 and the second: electrical semiconductor layer 108 have different electrical properties. For example, when the first electrical property is N-type, the second electrical property is P-type; and when the first electrical property is p-type, the electrical property of the i 9 200832750 is Ν-type. In the exemplary embodiment, the _th electrical property is _ _ two electrical property is 1> type. In addition, the material of the first electrical semiconductor layer i〇4 is, for example, a phosphating inscription of a lanthanum-doped gallium nitride-based material, and the material of the second electrical semiconductor layer 108 can be, for example, Magnesium doped = Gallium series: material or magnesium doped phosphide aluminum gallium indium material. The active layer i〇6 is preferably a Multiquantum Well (MQW) structure, such as a nitrogen (tetra) gallium/gallium gallium (InuGaojN/GaN) multiple quantum well structure. After the illuminating epitaxial structure 110 is completed, the pattern definition of the luminescent crystal structure m is performed by using, for example, lithography and etching, and the second portion of the semiconductor layer 108 and the active layer 1G6 are removed until the exposed portion is exposed. A portion 112' of the electric semiconductor layer U) 4 is brought into contact with the electrode-disk semi-conductive bell layer 1G4 which is subsequently formed. In the pattern definition process of the illuminating crystal structure (10), in order to ensure that the first electric semiconductor layer 104 is exposed after the pattern definition, a means of averaging (0ver_etching) is usually employed. As a result, in the pattern defining step, a portion of the first electrical half 104 is also removed, as shown in FIG.曰Φ Next, the transparent conductive layer 12A may be formed directly on the second electrical semiconductor layer 108 of the luminescent epitaxial structure 〇1; or the contact layer 114 may be selectively formed on the second electrical semiconductor layer 108. Then, the transparent conductive layer 120 is formed on the contact layer 114. Of course, the contact layer 114 may be formed on the second electrical semiconductor 〇8, and then the lithography and etching methods are used to define the pattern of the luminescent epitaxial structure. In the present exemplary embodiment, the contact layer 114 is first formed on the second electrical semiconductor layer 1 8 by, for example, an organometallic chemical vapor deposition method. The contact layer 114 is preferably a doped superlattice stress layer structure.

Layei: Supetlattiees ; SLS)。由於超晶格應力層結構與後續 10 200832750 形成之透明導電層120之間具有較佳的接觸特性’因此可提 高導電率。 接下來以微影與蝕刻方式來定義發光磊晶結構之圖案 後,於接觸層114上形成透明導電層120。製作透明導電層 120時,可利用至少二種製程方式來形成至少二透明導電膜 來做為透明導電層120。首先,利用非電漿沉積技術於接觸Layei: Supetlattiees ; SLS). The conductivity can be improved because of the superior contact characteristics between the superlattice stress layer structure and the transparent conductive layer 120 formed in the subsequent 10 200832750. Next, a pattern of the light-emitting epitaxial structure is defined by lithography and etching, and a transparent conductive layer 120 is formed on the contact layer 114. When the transparent conductive layer 120 is formed, at least two transparent conductive films can be formed by using at least two processes to form the transparent conductive layer 120. First, using non-plasma deposition techniques for contact

層114上形成透明導電薄膜116,以避免電漿損害接觸層114 之表面,而影響透明導電層120與接觸層114之電性接觸品 質。其中,透明導電膜116具有透明導電層120之預定厚度 的一部分。透明導電膜116之材料可例如為氧化銦錫 (Indium Tin Oxide ; ITO)、氧化鎘錫(Cadmium Tin Oxide ; CTO)、氧化鋅錫(IZO)、摻雜鋁之氧化辞(Zn〇:Ai)、摻雜鎵 之氧化鋅(ZnO:Ga)、摻雜銦之氧化鋅(ZnO:In)、掺雜硼之氧 化辞(ZnO:B)、氧化辞鎵(ZnGa2〇4)、摻雜銻之氧化錫 (Sn〇2:Sb)、摻雜錫之氧化鎵(Ga2〇3:Sn)、摻雜錫之氧化銀銦 (AgInOySn)、摻雜鋅之氧化銦(In2〇3:Zn)、氧化銅鋁 (CuA1〇2)、鑭銅氧硫化物(1^11〇3)、氧化鎳(犯0)、氧化銅 鎵(CuGa02)或氧化鳃銅(SrCu2〇2)。 接著,於透明導電膜116上接續形成另一透明導電膜 118,其中透明導電膜118具有透明導電層12〇之另一部分 的厚度’且透明導電膜116與透明導電膜118組合之總厚度 即為透明導電们20之預定厚度,如第2圖所示。由於已先 形成透明導電.膜116,因此在透明導電m 116的結構緩衝 ’曾設置透明導電膜118時可選擇之製程技術較為廣泛。透 明導電膜118之材料可例如為氧化銦锡、氧化録錫、氧化辞 11 200832750 錫、摻雜紹之氧化鋅、氧 ^ ^ , ^ JA 虱化辞銥、摻雜銻之氧化錫、摻雜锚A transparent conductive film 116 is formed on the layer 114 to prevent the plasma from damaging the surface of the contact layer 114, thereby affecting the electrical contact quality of the transparent conductive layer 120 and the contact layer 114. The transparent conductive film 116 has a portion of a predetermined thickness of the transparent conductive layer 120. The material of the transparent conductive film 116 can be, for example, Indium Tin Oxide (ITO), Cadmium Tin Oxide (CTO), Zinc Oxide (IZO), and Al-doped Oxide (Zn〇: Ai). Gallium-doped zinc oxide (ZnO:Ga), indium-doped zinc oxide (ZnO:In), boron-doped oxidation (ZnO:B), oxidized gallium (ZnGa2〇4), doped yttrium Tin oxide (Sn〇2:Sb), tin-doped gallium oxide (Ga2〇3:Sn), tin-doped silver indium oxide (AgInOySn), zinc-doped indium oxide (In2〇3:Zn), oxidation Copper aluminum (CuA1〇2), beryllium oxysulfide (1^11〇3), nickel oxide (0), copper gallium oxide (CuGaO) or yttrium copper oxide (SrCu2〇2). Next, another transparent conductive film 118 is formed on the transparent conductive film 116, wherein the transparent conductive film 118 has a thickness of another portion of the transparent conductive layer 12 and the total thickness of the transparent conductive film 116 combined with the transparent conductive film 118 is The predetermined thickness of the transparent conductive members 20 is as shown in FIG. Since the transparent conductive film 116 has been formed first, the process technology that can be selected when the transparent conductive film 118 is provided with the transparent conductive film 116 is widely used. The material of the transparent conductive film 118 can be, for example, indium tin oxide, oxidized recording tin, oxidized word 11 200832750 tin, doped zinc oxide, oxygen ^ ^ , ^ JA 铱 铱 铱 , , , , , anchor

之乳化鎵、摻雜絲夕与u ^ m M ^ 之虱化銀銦 '摻雜鋅之氧化銦、氧化鈉鈕 鑭銅氧硫化物、4各爲卜 乳化銅链、 乳化鎳、氧化銅鎵或氧化鳃鋼。 由於利用電子φ $ #别 束瘵鍍製程來製備透明導電薄膜,π &女 生電漿,而可防+雪將居士 电/寻膜不會產 ,^ ^ 電漿傷害預備沉積之結構層表面,且所# *、制 更具有低電阻率的特性。但是,利用電+ 束瘵鍍製程所製備之透明導 』用电子 導電薄膜之晶粒尺寸較大。另一士二 又奴低亦即透明 明導電薄膜JL右^ ’濺鍍製程所製備之透 UI有愚緻密度的m即 尺寸較小,甚至可A非曰备“ 守电潯膜之晶粒 在王4馬非日曰糸結構,因此可 入。因此,在一較佳告浐如& ,水軋侵 拯一…“'例中,可利用電子束蒸鍍製程先於 接嘴I 上製作透明導雷 ^ Μ 无於 導電膜制^ 丹刊用濺鍍製程於透明 上製作透明導電膜118。亦即,透 二 係一電子束蒸鍍膜,而透明導 、 处Θ V尾膜11 8係一濺鍍膜。 請同時參照第4A圖與第4B圖,其中 ' 太爷痛制扯, Τ弟4A圖係以錢餹 方式所製備出之透明導電膜的播緵 u f 胰的拎描式電子顯微鏡(SEM)昭 片’而弟4B圖則係以電子炭菽 )… 暄沾卢以二式所製備出之透明導雷 膜的知描式電子顯料籍8/7 μ ., 等电 飞电于,4微鏡妝片。利用掃描 50000倍的放大件率下推"%、t 士 电丁,肩微鏡以 " 進仃硯測時’濺鍍方式所製備出之、类 明導電膜的表面相當平整,且夺 透Emulsified gallium, doped silk and u ^ m M ^ in silver indium' doped zinc indium oxide, sodium oxide knob copper oxysulfide, 4 each emulsified copper chain, emulsified nickel, copper oxide gallium Or bismuth oxide steel. Due to the use of electron φ $ #别别瘵 plating process to prepare transparent conductive film, π & girls plasma, and can prevent + snow will be the layman / film will not produce, ^ ^ plasma damage prepared for deposition of the structural surface And the #*, the system has a low resistivity characteristic. However, the electronic conductive film for the transparent conductive film prepared by the electric + beam 瘵 plating process has a large grain size. The other two are slaves, that is, the transparent conductive film JL is right. 'The sputtering process is made by the UI. The size of the U is small, and even the A is not prepared. In the Wang 4 Ma non-Japanese structure, it can be entered. Therefore, in a better warning such as &, water rolling intrusion ... "", the electron beam evaporation process can be used before the nozzle I Making transparent guide lightning ^ Μ No conductive film system ^ Dan published a transparent conductive film 118 on the transparent process using a sputtering process. That is, a two-layer one electron beam evaporation film is formed, and the transparent conductive layer and the V tail film are a sputter film. Please refer to the 4A and 4B drawings at the same time, in which 'Taiwan’s painful tears, the 4D picture of the younger brothers, the transparent conductive film prepared by the Qiang method, the scanning electron microscope (SEM) of the pancreas 'And the 4B plan is based on electronic anthrax.... 知 暄 卢 以 以 以 以 以 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明 透明Make-up tablets. Using the scanning magnification of 50,000 times, the surface of the conductive film is quite flat, and the surface of the conductive film is quite flat and is measured by the "spraying method". through

Boundary)。另一方面,制 J月*4的曰曰界如仙 λα ^ ^ 田$電子硕微鏡以30000户 的放大倍率下進行觀測時,便已經 倍 製備出之透明導電膜具有明顯的晶界二=鍵方式所 方式所製備出之透明導電膜的結構緻密度確實遠比 子束蒸鍍方式所製備出之透明導電膜高。 用電 12 200832750 在本示範實施例中,透 可採用相同材料,亦可採用又膜116與透明導電膜川 #,I h 同材料,較佳係採用相同材 科,以減少光經過不同鉍 J w Π7 枓層界面所產生之菲涅爾損失 (resnel Loss),進而提高光 、 之厚m〇 先取出率。此外’透明導電膜ι16 之知度I父佳係小於透明導恭 11/: r 導包膜U8之厚度,但是透明導電膜 11 ό之厚度亦可等於或者 、 飞者大於透明導電膜118之厚度,本發 明並不在此限。 十Η ,由於,在製備透明導電層120時’係先以例如電子束蒸 鍍=非電聚方式製作低電阻率但晶粒較大而結構緻密度低 :透:導電们16’再以例如濺鍍方式製作非晶系或晶粒較 ^而結構緻密度高之透明導電膜118。因此,透過特性 个同之透明導電膜ii6及透明導電膜ii8,所構成之透明導 ,層120不僅可提供與接觸f 114之間良好之電性接觸品 貝,更可有效防止外界水氧入侵,且透明導電層12〇本身可 具$優異之電性品質。再者,由於透明導電膜118結構之高 緻密度,已可有效防堵外界水氧入#,因在匕可無需於透明^ 電層120上額外设置保護層,如此一來,可降低整體製程之 後雜度’大幅提高製程良率,更可避免保護層之設置而影響 主動層106運轉時所產生之熱的傳導與散逸。 完成透明導電層120之製作後,利用例如蒸鍍等技術形 成電極122於部分之透明導電層120上。同時,並利用例如 洛链等技術形成電極124於第一電性半導體層1〇4之暴露部 分112的一部分上,而完成發光二極體126之製作,如第3 圖所示。 由上述本發明較佳實施例可知,本發明之一優點就是因 13 200832750 為本發明之發光二極體的透明導電層包括至少二透明 膜’其中上方之透明導電膜的緻密度高於下方之透明導雷 膜’因此透明導電層具有相當優異之抗水氣侵蝕能力,可提 高發:二極體元件之操作可靠度,並可延長發光二極體元件Boundary). On the other hand, the transparent conductive film which has been prepared by the J-month*4, such as the λλα ^ ^ 田$ electron micro-mirror, is observed at a magnification of 30,000 households. The structure density of the transparent conductive film prepared by the method of the key mode is indeed much higher than that of the transparent conductive film prepared by the beam evaporation method. Electricity 12 200832750 In the exemplary embodiment, the same material can be used, and the film 116 and the transparent conductive film can be used, and the same material is used, so that the light passes through different 铋J. w Π7 Fresnel loss generated by the 枓 layer interface, thereby increasing the light and thickness m 〇 first take-out rate. In addition, the transparency of the transparent conductive film ι16 is smaller than that of the transparent guide 11/: r, but the thickness of the transparent conductive film 11 亦可 can also be equal to or greater than the thickness of the transparent conductive film 118. The invention is not limited thereto. Because, in the preparation of the transparent conductive layer 120, the low resistivity is first formed by, for example, electron beam evaporation = non-electropolymerization, but the crystal grains are large and the structure density is low: transparent: conductive 16' A transparent conductive film 118 having an amorphous or grain structure and a high density of structure is formed by sputtering. Therefore, the transparent conductive layer ii6 and the transparent conductive film ii8 have the same transparent contact, and the layer 120 not only provides a good electrical contact with the contact f 114 , but also effectively prevents external water and oxygen from invading. And the transparent conductive layer 12 itself can have an excellent electrical quality. Moreover, due to the high density of the structure of the transparent conductive film 118, the external water and oxygen can be effectively prevented from entering, because the protective layer can be additionally disposed on the transparent layer 120, thereby reducing the overall process. After that, the 'durability' greatly increases the process yield, and the protection layer can be prevented from affecting the conduction and dissipation of heat generated when the active layer 106 operates. After the fabrication of the transparent conductive layer 120 is completed, the electrode 122 is formed on a portion of the transparent conductive layer 120 by a technique such as vapor deposition. At the same time, the electrode 124 is formed on a portion of the exposed portion 112 of the first electrical semiconductor layer 1 4 by a technique such as a zipper, and the fabrication of the illuminating diode 126 is completed, as shown in Fig. 3. According to the preferred embodiment of the present invention, one of the advantages of the present invention is that the transparent conductive layer of the light-emitting diode of the present invention includes at least two transparent films, wherein the density of the transparent conductive film above is higher than that of the lower layer. Transparent guide film 'Therefore, the transparent conductive layer has excellent resistance to water and gas erosion, which can improve the operational reliability of the diode component and extend the LED component.

之哥命。 T 由上述本發明較佳實施例可知,本發明之另—優點就是 因為本發明之發光二極體的透明導電層具有緻密的上層結 構’故無需額外設置二氧化鹤護層。因此,可降低製程複 雜度而可提高良率’並可縮減製作成本,更可提升發光 體元件之散熱效能。 由上述本發明較佳實施例可知,本發明之又—優點就是 因為本發明之發光二極體之製造方法係先利周非電漿方式 成長一低電阻率透明導電膜,再於低電阻率透明導電膜上成 長結構緻密之另一透明導電膜。因此,不僅透明導電層本身 具有良好之電性品質,並可提升透明導電層與下方^結構 的歐姆接觸品質,且更可有效隔絕溼氣入侵,進而可提高發 光,極體元件之操作性能與可靠度,並可大幅增加發光二極 體元件之壽命。 雖然本發明已以一較佳實施例揭露如上,然其並非用以 限定本發明,任何在此技術領域中具有通常知識者,在不脫 離本發明之精神和範圍内,當可作各種之更動與潤飾,因此 本發明之保護範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 第1圖至第3圖係繪示依照本發明一較佳實施例的 14 200832750 發光二極體之製程剖面圖。 備出之透明導電膜的掃 式所製備出之透明導電 第4A圖係繪示以濺鍍方式所製 描式電子顯微鏡照片。 弟4B圖係繪不以電子束蒸鐘方 膜的掃描式電子顯微鏡照片。 【主要元件符號說明】 100 基板 104 第一奄性丰導體 108 第二電性半導體 112 部分 116 透明導電膜 120 透明導電層 124 電極 102 : 成核層 層 106 : 主動層 層 110 : 發光蠢晶結構 114: 接觸層 118 : 透明導電膜 122 : 電極 126 : 發光二極體 15The life of the brother. T From the above preferred embodiment of the present invention, another advantage of the present invention is that since the transparent conductive layer of the light-emitting diode of the present invention has a dense upper layer structure, there is no need to additionally provide a dioxide protective layer. Therefore, the process complexity can be reduced and the yield can be improved, and the manufacturing cost can be reduced, and the heat dissipation performance of the illuminating element can be improved. According to the preferred embodiment of the present invention, the advantage of the present invention is that the manufacturing method of the light-emitting diode of the present invention is to grow a low-resistivity transparent conductive film by a non-plasma method, and then to have a low resistivity. Another transparent conductive film having a dense structure grown on the transparent conductive film. Therefore, not only the transparent conductive layer itself has good electrical quality, but also improves the ohmic contact quality of the transparent conductive layer and the underlying structure, and can effectively insulate moisture intrusion, thereby improving illuminance, operation performance of the polar body component and Reliability and greatly increase the life of the LED components. Although the present invention has been described above in terms of a preferred embodiment, it is not intended to limit the invention, and it is intended that various modifications may be made without departing from the spirit and scope of the invention. And the scope of the present invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 to FIG. 3 are cross-sectional views showing a process of a light-emitting diode of 200832750 according to a preferred embodiment of the present invention. The transparent conductive material prepared by the scanning method of the prepared transparent conductive film is shown in Fig. 4A as a photomicrograph prepared by sputtering. The 4B picture shows a scanning electron microscope photograph of the electron beam vapor film. [Description of main component symbols] 100 substrate 104 first conductive conductor 108 second electrical semiconductor 112 portion 116 transparent conductive film 120 transparent conductive layer 124 electrode 102: nucleation layer 106: active layer 110: light emitting crystal structure 114: contact layer 118: transparent conductive film 122: electrode 126: light emitting diode 15

Claims (1)

200832750 :十:、,申讀專範圍200832750: Ten:,, the scope of application 1. 一種發光二極體,至少包括: 一發光磊晶結構設於一基板上,其中該發光磊晶結構至 少包括: " 一第一電性半導體層,位於該基板上; _ 一主動層,堆疊在該第一電性半導體層之一第一部 分上,並暴露出該第一電性半導體層之一第二部分;以 • 及 一第二電性半導體層,堆疊在該主動層上,其中該 第一電性半導體層與該第二電性半導體層具不同電性; d Λ-. I ^ \ K 田 ,一 % rn p t «xL· % 一逍明导%層’主7 g彷依斤躍®隹孩赞元荔晶紹稱上 之一第一透明導電膜以及一第二透明導電膜,其中該第一透 明導電膜之晶粒尺寸大於該第二透明導電膜之晶粒尺寸; 一第一電極,設於該第一電性半導體層之該第二部分 上;以及 φ ——第二電極,設於該透明導電層上。 2. 如申請專利範圍第1項所述之發光二極體,其中該 發光二極體係一氮化鎵系列發光二極體。 3·如申請專利範圍第1項所述之發光二極體,其中該 發光二極體係一磷化鋁鎵銦發光二極體。 4·如申請專利範圍第1項所述之發光二極體,其中該 16 200832750 基板之材料係選自於由藍寶石 所組成之一族群。 碳化矽、氮化鎵以及氮化鋁 5·如申請專利範圍第1項所述之發光二極體,更至少 包括-成核層,狀該基板之表面與該第—電性半導體層之 間0 〆6·如中請專利範圍帛!項所述之發光二極體,其中該 ®第-電性半導體層為㈣,且該第二電性半導體層為p型。 —7.如申請專利範圍第1項所述之發光二極體,其中該 第一電性半導體層之材料為矽摻雜之氮化銶系列材料或矽 摻雜之磷化|g鎵銦材料。 8·如申請專利範圍第1項所述之發光二極體,其中該 第二電性半導體層之材料為鎂掺雜之氮化鎵系列材料或錢 摻雜之磷化鋁鎵銦材料。 9·如申請專利範圍第1項所述之發光二極體,其中該 主動層係一多重量子井結構。 10 ·如申睛專利範圍第9項所述之發光'一極體,盆中該 主動層係一氮化銦鎵/氮化鎵(In❹jGauN/GaN)多重量子井 結構。 17 200832750 η·如申請專利範圍第i項所 一一 包括一接觸層介於該第二電性、之發光一極體,更至少 暄夕鬥 +導體層與該第一、泰。口 $ 膜之間。 透明導電 極 其中 12·如申請專利範圍第u 汾拉雜昆於 巧所返之發光 該接觸層係一超晶格應力層結構。A light-emitting diode comprising at least: a light-emitting epitaxial structure disposed on a substrate, wherein the light-emitting epitaxial structure comprises at least: a first electrical semiconductor layer on the substrate; _ an active layer And stacking on a first portion of the first electrical semiconductor layer and exposing a second portion of the first electrical semiconductor layer; and a second electrical semiconductor layer stacked on the active layer Wherein the first electrical semiconductor layer and the second electrical semiconductor layer have different electrical properties; d Λ-. I ^ \ K field, a % rn pt «xL· % 一逍明导% layer 'main 7 g imitation The first transparent conductive film and the second transparent conductive film are referred to as a first transparent conductive film, wherein a grain size of the first transparent conductive film is larger than a grain size of the second transparent conductive film a first electrode disposed on the second portion of the first electrical semiconductor layer; and φ - a second electrode disposed on the transparent conductive layer. 2. The light-emitting diode according to claim 1, wherein the light-emitting diode system is a gallium nitride-based light-emitting diode. 3. The light-emitting diode according to claim 1, wherein the light-emitting diode system is an aluminum gallium indium phosphate light-emitting diode. 4. The light-emitting diode of claim 1, wherein the material of the 16 200832750 substrate is selected from the group consisting of sapphire. The ruthenium carbide, the gallium nitride, and the aluminum nitride 5, the light-emitting diode according to claim 1, further comprising at least a nucleation layer between the surface of the substrate and the first electrical semiconductor layer 0 〆6·If you please patent scope 帛! The light-emitting diode according to the item, wherein the ®-electroconductive semiconductor layer is (4), and the second electrical semiconductor layer is p-type. The light-emitting diode according to claim 1, wherein the material of the first electrical semiconductor layer is an antimony-doped tantalum nitride series material or a germanium-doped phosphating | g gallium indium material. . 8. The light-emitting diode according to claim 1, wherein the material of the second electrical semiconductor layer is a magnesium-doped gallium nitride series material or a carbon-doped aluminum gallium indium phosphate material. 9. The light-emitting diode of claim 1, wherein the active layer is a multiple quantum well structure. 10. The illuminating 'one pole body according to claim 9 of the patent application scope, wherein the active layer is an indium gallium nitride/gallium nitride (In❹jGauN/GaN) multiple quantum well structure. 17 200832750 η· as claimed in the scope of the i-th item, including a contact layer between the second electrical, the light-emitting one, at least the 暄 斗 + conductor layer and the first, Thai. Mouth between the membranes. Transparent Conductive Electrode 12······························································ 1 第 13·如申請專利範圍第 第一透明導電膜之材料與該 項所述之發光二極體,並中古亥 二透明導電膜之材料相、同二1 13th, as claimed in the patent application, the material of the first transparent conductive film and the light-emitting diode described in the item, and the material of the middle transparent conductive film of the same 14·如申請專利範圍第J 透明導電膜之材料與該第 項所述之發光二極體 二透明導電膜之材料 ’其中該 不同。 15·如申請專利範圍第1 第一導電膜係一電子束 蒸鍍膜 項所述之發光二極體,其中 該 該 第 一一 17.如申請專利範圍第】項所述之發光二極體,其中該 透月電膜之材料係選自於由氧化銦錫(Ιτ〇)、氧化 錫(CTO)、氧化鋅錫(IZ〇)、摻雜鋁之氧化鋅⑹〇:Αΐ)、摻雜 狀氧化鋅(Zn〇:Ga)、摻雜銦之氧化鋅(Ζη〇:ΐη)、摻雜硕之 氧化辞(ΖηΟ.Β)、氧化辞鎵(ZnGa2〇4)、摻雜録之氧化錫 (Sn02.Sb)、摻雜錫之氧化鎵(Ga2〇3:Sn)、摻雜錫之氧化銀銦 18 200832750 (AgIn〇2:Sn)、摻雜鋅之氧化銦(In2〇3:Zn)、氧化銅紹 (CuAl〇2)、鑭銅氧硫化物(LaCu〇s)、氧化鎳(Ni〇)、氧化銅 鎵(CuGa〇2)以及氧化锶銅(SrCU2〇2)所組成之一族群。 18.如申請專利範圍第i項所述之發光二極體,其中該 ^ 第二透明導電膜之材料係選自於由氧化銦錫、氧化鎘錫、氧 • 化鋅錫、摻雜鋁之氧化辞、摻雜鎵之氧化鋅、摻雜銦之氧化 辞1摻雜硼之氧化鋅、氧化鋅鎵、掺雜銻之氧化錫、摻雜锡 _ 之氧化鎵、摻雜錫之氧化銀銦、摻雜鋅之氧化銦、氧化銅鋁、 鑭銅氧硫化物、氧化鎳、氧化銅鎵以及氧化錄銅所 族群。 種發光二極體之製造方法,至少包括 形成-發光蠢晶結構P基板上,其中該發光蠢晶結構 至少包括依序堆疊在該基板上之—第-電性半導體層、—主 =以及一第i電性半導體層,其中該第-電性半導體層與 該弟一電性半導體層具不同電性; 移除部分之該第二電性丰導體層盥 出部分之該第一電性半導體層;一冑層,直至暴露 ^形成-透明導電層,其中該透明導電層至少包括依序堆 先蟲晶結構上之一第一透明導電膜以及一第二透 導電膜之晶粒尺寸; 丁该弟一透明 形成一弟一電極於該第一雷純、上、普 ,., 弟電性+導體層之該暴露部分 工,Μ及 19 200832750 形成一弟一電極於該透明導電層上。 2G·如f請專利範圍第19項所述之發光二極體之製造 方法,其中該發光二極體係一氮化鎵系列發光二極體。 21·如申明專利範圍第19項所述之發光二極體之製造 方法,其中該發光二極體係一磷化鋁鎵銦發光二極體。 馨 22.如申請專利範圍第19項所述之發光二極體之製造 =法,其中該基板之材料係選自於由藍寶石、碳化矽、氮化 鎵以及氮化鋁所組成之一族群。 23·如申請專利範圍第19項所述之發光二極體之製造 方去於开> 成该發光磊晶結構之步驟前,更至少包括成長一 成核層於該基板之一表面。 ® 24·如申请專利範圍第1 $項所述之發光二極體之製造 、、少 ',其中該第一電性半導體層為N型,且該第二電性半 導體層為P型。 25·如申請專利範圍第19頊所述之發光二極體之製造 其中該第一電性半導體層之材料為矽摻雜之氮化鎵系 】材料或矽摻雜之磷化鋁鎵銦材料。 26·如申請專利範圍第19項所述之發光二極體之製造 20 200832750 方法’其中該第二電性半導體層之材料為鎂摻雜之氮化鎵系 列材料或鎂掺雜之磷化鋁鎵銦材料。 27·如申請專利範圍第μ頊所述之發光二極體之製造 方法,其中該主動層係一多重量子井結構。 28·如申請專利範圍第28項所述之發光二極體之製造 ^法,其中該主動層係一氮化銦鎵/氮化鎵(Ino.3Gao.7N/GaN) 夕重量子井結構。 29·如申請專利範圍第19項所述之發光二極體之製造 /zc又主 巴括形成一接觸層於該弟二電性半導體層上。 30·如申請專利範圍第29項所述之發光二極體之製造 方法,其中該接鱗層係一超晶格應力層結構。 3 I如申請專利範圍第19項所述之發光二極體之製造 方法’其中該第一透明導電膜之材料與該第二透明導電膜之 材料相同。 32·如申請專利範圍第19項所述之發光二極體之製造 方法,其中該第一透明導電膜之材料與該第二透 材料不同。 33·如申請專利範圍第19項所述之發光二極體之製造 21 200832750 蒸 方法’其中形成該第—透明導電膜之步驟係利用一電 锻法0 申明專利範圍第丨9項所述之發光二極體之製造 方去’其中形成該第二透明導電膜之步驟係利用一濺鍍法。 申明專利範圍第丨9項所述之發光二極體之製造 f法’其中該¥ —透明導電膜之材料係選自於由氧化銦錫、 :化編錫:氧化鋅錫、摻雜無之氧化辞、摻雜鎵之氧化辞、 換雜銦之氧化鋅、旅餘 辞摻雜硼之氧化鋅、氧化鋅鎵、摻雜銻之氧 化錫、摻雜錫之氧介锆换仙μ 虱化叙、摻雜錫之氧化銀銦'摻雜鋅之氧化 錄銅所組成之一族群 銦、氧化銅銘、綱銅氧硫化物、氧化鎳、氧化銅鎵以及氧化 方法36二:ΐ專利範圍第19項所述之發光二極體之製造 氣化μ Τ弟—透明導電膜之材料係選自於由氧化銦錫、 :編錫、氧化鋅錫、摻雜鋁之氧化鋅、摻雜鎵之氧化鋅、 二之氧化辞、擦雜,之氧化辞、氧化辞嫁、推雜録之氧 、摻雜錫之氧化鎵、摻雜錫之氧化銀銦、摻雜鋅之氧化 :、氧化銅銘、鑭鋼氧硫化物、氧化銻、氧化銅鎵以及氧化 銷銅所組成之一族群。 2214. The material of the Jth transparent conductive film of the patent application is different from the material of the light-emitting diode and the transparent conductive film of the above-mentioned item. The light-emitting diode according to the first aspect of the invention, wherein the first one of the first conductive film is an electron beam evaporation film, wherein the light-emitting diode according to the first aspect of the invention is The material of the vapor-permeable membrane is selected from the group consisting of indium tin oxide (Ιτ〇), tin oxide (CTO), zinc tin oxide (IZ〇), aluminum-doped zinc oxide (6) 〇: Αΐ), doped Zinc oxide (Zn〇:Ga), indium-doped zinc oxide (Ζη〇:ΐη), doped oxidized (ΖηΟ.Β), oxidized gallium (ZnGa2〇4), doped tin oxide ( Sn02.Sb), tin-doped gallium oxide (Ga2〇3:Sn), tin-doped silver indium oxide 18 200832750 (AgIn〇2:Sn), zinc-doped indium oxide (In2〇3:Zn), A group consisting of copper oxide (CuAl〇2), beryllium oxysulfide (LaCu〇s), nickel oxide (Ni〇), copper gallium oxide (CuGa〇2), and beryllium copper (SrCU2〇2). 18. The light-emitting diode according to claim i, wherein the material of the second transparent conductive film is selected from the group consisting of indium tin oxide, cadmium tin oxide, oxygen zinc, tin, and doped aluminum. Oxidation, gallium-doped zinc oxide, doped indium oxide, boron-doped zinc oxide, zinc gallium oxide, antimony-doped tin oxide, tin-doped gallium oxide, tin-doped silver oxide indium The group of zinc-doped indium oxide, copper aluminum oxide, beryllium copper oxysulfide, nickel oxide, copper oxide gallium, and copper oxide. The method for manufacturing a light-emitting diode includes at least a substrate for forming a light-emitting amorphous structure, wherein the light-emitting amorphous structure includes at least a first-electro-semiconductor layer, a main = and a layer sequentially stacked on the substrate An ith electrical semiconductor layer, wherein the first electrical semiconductor layer and the electrical semiconductor layer have different electrical properties; and the first electrical semiconductor of the second electrical conductive conductor layer is removed a layer of a transparent conductive layer, wherein the transparent conductive layer comprises at least one of a first transparent conductive film and a second transparent conductive film; The younger brother forms a pair of electrodes and electrodes on the exposed portion of the first Lei-Ping, Shang, Pu, ., Dielectric + conductor layers, and 19 200832750 forms a dipole-electrode on the transparent conductive layer. 2G. The method for manufacturing a light-emitting diode according to claim 19, wherein the light-emitting diode system is a gallium nitride-based light-emitting diode. The method of manufacturing a light-emitting diode according to claim 19, wherein the light-emitting diode system is an aluminum gallium indium phosphide light-emitting diode. The method of manufacturing a light-emitting diode according to claim 19, wherein the material of the substrate is selected from the group consisting of sapphire, tantalum carbide, gallium nitride, and aluminum nitride. 23. The method of manufacturing the light-emitting diode according to claim 19, further comprising growing a nucleation layer on a surface of the substrate before the step of forming the light-emitting epitaxial structure. The invention relates to the manufacture of a light-emitting diode according to claim 1 of the invention, wherein the first electrical semiconductor layer is N-type and the second electrical semiconductor layer is P-type. 25. The manufacture of a light-emitting diode according to claim 19, wherein the material of the first electrical semiconductor layer is an antimony-doped gallium nitride-based material or a germanium-doped aluminum gallium indium phosphate material. . 26. The manufacture of a light-emitting diode according to claim 19, wherein the material of the second electrical semiconductor layer is a magnesium-doped gallium nitride series material or a magnesium-doped aluminum phosphide alloy. Gallium indium material. 27. The method of fabricating a light-emitting diode according to the scope of the patent application, wherein the active layer is a multiple quantum well structure. 28. The method of fabricating a light-emitting diode according to claim 28, wherein the active layer is an indium gallium nitride/gallium nitride (Ino.3Gao.7N/GaN) Xia weight sub-well structure. 29. The manufacture of a light-emitting diode according to claim 19 of the patent application is further characterized in that a contact layer is formed on the second electrical semiconductor layer. The method of manufacturing a light-emitting diode according to claim 29, wherein the scale layer is a superlattice stress layer structure. The method of manufacturing the light-emitting diode according to claim 19, wherein the material of the first transparent conductive film is the same as the material of the second transparent conductive film. The method of manufacturing a light-emitting diode according to claim 19, wherein the material of the first transparent conductive film is different from the second transparent material. 33. The manufacture of the light-emitting diode according to claim 19 of the patent application scope. The process of forming the first-transparent conductive film is performed by an electric forging method, which is described in item 9 of the patent scope. The step of manufacturing the light-emitting diode to the step of forming the second transparent conductive film utilizes a sputtering method. The invention discloses a method for manufacturing a light-emitting diode according to item 9 of the patent scope, wherein the material of the transparent conductive film is selected from indium tin oxide, tin-plated tin: zinc tin oxide, and doped Oxidation, oxidation of gallium-doped, zinc oxide with indium, zinc oxide with boron, zinc gallium oxide, tin oxide doped with antimony, oxygen-doped zirconium with tin doping A group of indium, copper oxide, copper oxysulfide, nickel oxide, copper oxide gallium and oxidation method consisting of tin-doped silver-tin oxide-doped zinc-doped copper oxide 36 2: ΐ patent scope The manufacture of the light-emitting diode described in item 19 is vaporized. The material of the transparent conductive film is selected from the group consisting of indium tin oxide, tin-plated, zinc-zinc oxide, zinc-doped zinc oxide, and gallium-doped. Zinc Oxide, Oxidation of Dioxide, Rubbing, Oxidation, Oxidation, Oxygen, Tin-doped Gallium Oxide, Tin-Doped Silver Indium Oxide, Zinc-Doped Oxidation: Copper Oxide , a group of strontium oxysulfide, antimony oxide, copper oxide gallium and oxidation copper. twenty two
TW96103410A 2007-01-30 2007-01-30 Light-emitting diode and method for manufacturing the same TWI336143B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96103410A TWI336143B (en) 2007-01-30 2007-01-30 Light-emitting diode and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96103410A TWI336143B (en) 2007-01-30 2007-01-30 Light-emitting diode and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TW200832750A true TW200832750A (en) 2008-08-01
TWI336143B TWI336143B (en) 2011-01-11

Family

ID=44818969

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96103410A TWI336143B (en) 2007-01-30 2007-01-30 Light-emitting diode and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI336143B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2830105A1 (en) * 2013-07-26 2015-01-28 Lextar Electronics Corp. Light emitting diode and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2830105A1 (en) * 2013-07-26 2015-01-28 Lextar Electronics Corp. Light emitting diode and manufacturing method thereof

Also Published As

Publication number Publication date
TWI336143B (en) 2011-01-11

Similar Documents

Publication Publication Date Title
JP5244614B2 (en) Group III nitride light emitting device
JP5220984B2 (en) Top-emitting nitride-based light emitting device and method for manufacturing the same
EP1523047B1 (en) Nitride-based semiconductor light emitting device and method of manufacturing the same
CN102265416B (en) Semiconductor light-emitting element
US10199541B2 (en) Light-emitting device
US20050199895A1 (en) Nitride-based light-emitting device and method of manufacturing the same
US20080258174A1 (en) Optical Device and Method of Fabricating the Same
TWI580074B (en) Semiconductor light emitting element
TW200917528A (en) Method for producing light-emitting diode
US11335830B2 (en) Photo-emission semiconductor device and method of manufacturing same
KR20080035215A (en) A multilayer electrode and a compound semiconductor light emitting device having the same
KR20070046224A (en) High-brightness nitride-based light emitting devices with large area and capability using refractory supporting substrate layers
CN101960603A (en) High-performance heterostructure light emitting devices and methods
US6946372B2 (en) Method of manufacturing gallium nitride based semiconductor light emitting device
KR20050097472A (en) High-brightness nitride-based light emitting devices with large area and capability
JP2010238802A (en) Semiconductor light-emitting element, electrode structure, method for manufacturing semiconductor light-emitting element, and method for manufacturing electrode structure
TW200832750A (en) Light-emitting diode and method for manufacturing the same
CN107785467A (en) Light emitting element
KR20060007948A (en) Top emitting light emitting device and method of manufacturing thereof
KR100767398B1 (en) Structure for light emitting device and manufacturing method of light emitting device using same
KR20070089764A (en) High-brightness nitride-based light emitting devices with large area and capability using supporting substrate layer
TW201234647A (en) Illumination device, forming method of transparent conductive film, manufacturing method of the illumination device and electrical machine
TWI297222B (en)
TWI455355B (en) Light emitting diode structure
JP2010141262A (en) Semiconductor light-emitting element, electrode structure, method for manufacturing semiconductor light-emitting element, and method for manufacturing electrode structure

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees