TW200827469A - Improved plasma-enhanced chemical vapor deposition coating process - Google Patents

Improved plasma-enhanced chemical vapor deposition coating process Download PDF

Info

Publication number
TW200827469A
TW200827469A TW96137530A TW96137530A TW200827469A TW 200827469 A TW200827469 A TW 200827469A TW 96137530 A TW96137530 A TW 96137530A TW 96137530 A TW96137530 A TW 96137530A TW 200827469 A TW200827469 A TW 200827469A
Authority
TW
Taiwan
Prior art keywords
gas
volume
gas mixture
coating
substrate
Prior art date
Application number
TW96137530A
Other languages
Chinese (zh)
Inventor
Christina A Rhoton
Original Assignee
Dow Global Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Global Technologies Inc filed Critical Dow Global Technologies Inc
Publication of TW200827469A publication Critical patent/TW200827469A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/407Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/503Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using dc or ac discharges

Abstract

A process for coating or modifying a substrate using plasma-enhanced chemical vapor deposition (PECVD) is described in which a plasma is generated in a gaseous mixture containing at least 35 volume-percent nitrogen gas, at least 50 ppm of least one gaseous silicon-containing compound, and up a 1.5:1 volume ratio of at least rare gas relative to nitrogen gas, the rare gas comprising at least 1 volume-percent helium gas, at least 1 volume-percent neon gas, or at least 3 volume-percent argon gas, each volume-percent based on the total volume of the gaseous mixture at 20 DEG C and 101 kPa pressure. This process is capable of producing coatings which are monolithic and substantially uniform at high deposition rates and/or low power density. The process is useful for making a surface modified coating such as an adhesion promoter or an antifog coating; an optical coating such as a reflective or antireflective coating, a light spectrum management coating. or UV protection coating; a chemical resistant coating; an abrasion-resistant coating; or a gas barrier coating. Examples of potential end use applications include online coating of extruded plastic film, sheet, laminates and molded articles useful in architectural glazing, glazing panels, solar collectors, appliances, optical consumer products and devices, packaging, signage, and transportation.

Description

200827469 九、發明說明: 【發明所屬之技術領域1 本發明請求2006年10月6曰之美國臨時申請案第 60/S50,225 號。 5 發明背景 本發明係關於用電漿強化化學蒸氣沈積(PECVD)塗覆 或改質一基材。 【先前技術3。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 BACKGROUND OF THE INVENTION This invention relates to the coating or upgrading of a substrate by plasma enhanced chemical vapor deposition (PECVD). [Prior Art 3

已知可用PECVD塗覆基材。US-A-5,718.967、WO 10 03/066932及US-A-6,815,014描述一種以PECVD塗覆有機石夕 之應用。WO 2005/049228描述一種以PECVD塗覆二氧化石夕 之應用。W〇2〇〇5/113856描述一種以PECVD塗覆非石夕金屬 氧化物之應用。基材可以是塑膠材料。 在此技藝中,目前已針對如何獲得在大氣壓力下用 PECVD塗覆在各種基材上的商業上可接受之有财或石夕土 這個問題’提出各種解決方案。 但是,此技藝目前尚未發現適合獲得—種適合在高冷 覆沈積速率下具有高度讀性及光學透之低成本^ 20 的解決方案 料。特別是,此㈣目前尚未發現如何降财祕電量及 稀有工業廢氣(例如氦)同時獲得高品_cvd塗料之問題 以下所述的本發明可料《料他_Mpecvd 沈積含矽材料的問題。 【發明内容】 5 200827469 發明概要 本發明提供一種用於塗覆或改質一基材之方法,其包 含: (a)提供一種基材,其具有至少一表面; 5 (b)提供一氣體混合物,其鄰近(a)之基材的至少一表 面; (c) 在(b)中之氣體混合物產生一電漿,及 (d) 讓(c)中之電漿在該基材的至少一表面形成一固體 沈積, 10 其中該氣體混合物包含: 20°C及101 kPa壓力下至少35體積%之氮氣(以該氣 體混合物之總體積計); 至少50 ppm之至少一氣體前驅物用於形成該固體 沈積;及體積比率最多為1.5 : 1之至少一稀有氣體與氮 15 氣,該稀有氣體包含至少1體積%氦氣、至少1體積%氖 氣,或至少3體積%氬氣, 各體積%係以該氣體混合物在20°C及101 kPa壓力 下之總體積計。 本發明亦可藉由上述方法提供一種經塗覆或改質的基 20 材。 圖式簡單說明 第1圖係一掃描式電子顯微鏡(SEM)圖的重現,其顯示 如以下所述之比較實施例2塗覆之聚碳酸酯基材的表面形 態0 6 200827469 第2圖係重現一SEM圖,其顯示如以下所述之比較實施 例1塗覆之聚碳酸酯基材的表面形態。 第3圖係重現一 SEM圖,其顯示如以下所述之實施例5 塗覆之聚碳酸酯基材的表面形態。 C實施方式】 較佳實施例之詳細說明It is known to coat substrates with PECVD. US-A-5, 718.967, WO 10 03/066932 and US-A-6,815,014 describe the use of PECVD for the coating of organic stone. WO 2005/049228 describes an application for coating a corrosive stone with PECVD. W〇2〇〇5/113856 describes an application for coating non-shixi metal oxides by PECVD. The substrate can be a plastic material. In this art, various solutions have been proposed for how to obtain a commercially acceptable wealth or shisha soil coated with PECVD on various substrates under atmospheric pressure. However, this technique has not yet been found to be suitable for obtaining a solution that is suitable for high readability and optical penetration at high deposition rates. In particular, this (4) has not yet found a problem of how to reduce the amount of money and rare industrial waste gas (e.g., helium) while obtaining high-quality _cvd paint. The invention described below can be expected to solve the problem of depositing ruthenium-containing materials with _Mpecvd. SUMMARY OF THE INVENTION 5 200827469 SUMMARY OF THE INVENTION The present invention provides a method for coating or modifying a substrate comprising: (a) providing a substrate having at least one surface; 5 (b) providing a gas mixture , at least one surface adjacent to the substrate of (a); (c) producing a plasma in the gas mixture in (b), and (d) allowing the plasma in (c) to be on at least one surface of the substrate Forming a solid deposit, 10 wherein the gas mixture comprises: at least 35 vol% nitrogen at 20 ° C and 101 kPa pressure (based on the total volume of the gas mixture); at least 50 ppm of at least one gas precursor is used to form the Solid deposition; and at least one rare gas and nitrogen 15 gas having a volume ratio of at most 1.5:1, the rare gas comprising at least 1% by volume of helium, at least 1% by volume of helium, or at least 3% by volume of argon, each volume% The total volume of the gas mixture at 20 ° C and 101 kPa pressure is used. The present invention also provides a coated or modified base 20 by the above method. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a reproduction of a scanning electron microscope (SEM) image showing the surface morphology of a polycarbonate substrate coated in Comparative Example 2 as described below. 0 6 200827469 Fig. 2 An SEM image was reproduced which shows the surface morphology of the polycarbonate substrate coated in Comparative Example 1 as described below. Fig. 3 is a reproduction SEM image showing the surface morphology of the polycarbonate substrate coated in Example 5 as described below. C embodiment] Detailed description of the preferred embodiment

因美國專利實務之故,本文所提及之任何專利内容、 專利申請案或公開案藉由引述之方式將其全部(或其美國 版本之相物藉由引述之方式併入)併入本文之中,特別是本 10技藝中關於合成技術之揭示内容、原料及常識。除非特別 說明或是按照上下文之涵義或是根據此技藝中之習用方 式,否則所有的“份”及“%”係以重量計。 本文中之“包含,,及其衍生用語不欲排除任何其他組 伤、步驟或手續之存在,無論相同者是否揭示於本文之中。 15為了避免任何疑問,除非特別說明,否則所有本文請求之 組成物透過使用用語“包含,,可包括任何額外之添加物、佐 劑或化合物。相反地,本文中若出現用語“大致由···所組 成”,則排除後續描述之任何其他組份、步驟或手續之範 圍,除了那些對可操作性不是必要者。如果使用用語“由··· 2〇所組成,,排除任何未特別說明或列出之組份、步驟或手續。 除非特別說明, 等之任何組合。 否則用語“或,,是表示列出之各別成員或其 如本文用W氮氣”可以是氮氣本身或空氣之組份。 如本文用Μ ’氧化氣體’,係指至少-可氧化至少-前 200827469 一 5 驅物之氣體。 本文所用之用語“氣體前驅物”係指至少一氣態的反應 性物質,其可於PECVD的狀況下在一基材形成一固體沈積。 如本文用意,“鈍氣”係指不與氣體混合物之其他組份 反應之氣體且該氣體混合物係在電漿狀態與其他組份形成 共價件化合物。一 “鈍氣”不包括氧化性氣體或氣體前驅 物。實例包括氮氣、氬氣、二氧化碳氣體、氖氣及氦氣。 除非另有說明,則該用語“公升”及“立方公分”(cc)係指 在周圍溫度及大氣體壓力下一特定的氣體或氣體混合物體 10 積。 除非本文另有說明,該用語“slpm”表示“標準公升/分 鐘”及係指該將體流速轉變成在標準溫度及壓力之公升/分 鐘。 除非本文另有說明,該用語“seem”表示“標準立方公分 15 /分鐘”及係指該氣體流速轉變成在標準溫度及壓力下成立 • 方公分/分鐘。 除非本文另有說明,該用語“體積% ”係指相對於氣體混 合物總體積之氣體或氣體混合物的量。如本文用意,體積 %值及範圍對應於該氣體混合物總壓力之各別氣體之分 ~ 20 壓,以%表示。 如本文用意,周圍溫度係指一約21°C之溫度。 如本文用意,標準溫度係指一〇°C之溫度。 如本文用意,大氣體壓力係指一地平線的大氣壓力, 一般是約海平面101 kPa。 8 200827469For the purposes of US patent practice, any patent content, patent application, or publication referred to herein is hereby incorporated by reference in its entirety, or in its entirety in the U.S. Among them, in particular, the disclosure, raw materials and common sense of the synthesis technology in the technique of the present invention. All "parts" and "%" are by weight unless otherwise stated or in the context of the context or in accordance with the teachings of the art. The words "including," and their derivatives are used in this document to exclude the existence of any other group injury, step, or procedure, whether or not the same is disclosed herein. 15 In order to avoid any doubt, unless otherwise stated, all The composition may include any additional additives, adjuvants or compounds by the use of the term "include. Conversely, where the term "substantially consists of" is used herein, the scope of any other components, steps, or procedures described in the following is excluded, except those that are not necessary for operability. If the term "consisting of" is used, exclude any components, steps or procedures not specifically stated or listed. Unless otherwise stated, any combination is used. Otherwise, the term "or, is a list of Each member or its nitrogen as used herein may be a component of nitrogen or itself. As used herein, "oxidizing gas" means a gas that at least - oxidizes at least - the former 200827469-5 drive. The term "gas precursor" means at least one gaseous reactive species that forms a solid deposit on a substrate under conditions of PECVD. As used herein, "blunt gas" refers to other components that are not mixed with a gas. The gas of reaction and the gas mixture forms a covalent compound with other components in the plasma state. An "blunt gas" does not include an oxidizing gas or a gas precursor. Examples include nitrogen, argon, carbon dioxide gas, helium gas and Helium. Unless otherwise stated, the terms "liter" and "cubic centimeter" (cc) refer to a specific gas or gas mixture body 10 at ambient temperature and large gas pressure. Unless otherwise stated herein, the term "slpm" means "standard liters per minute" and means that the body flow rate is converted to liters per minute at standard temperature and pressure. Unless otherwise stated herein, the term "seem" Represents “standard cubic centimeter 15 / min” and means that the gas flow rate is converted to ± centimeters per minute at standard temperature and pressure. Unless otherwise stated herein, the term “volume %” refers to the total volume of the gas mixture. The amount of gas or gas mixture. As used herein, the volume % values and ranges correspond to the respective gases of the total pressure of the gas mixture. The pressure is expressed as %. As used herein, the ambient temperature means about 21°. Temperature of C. As used herein, standard temperature refers to a temperature of 〇 ° C. As used herein, large gas pressure refers to the atmospheric pressure of a horizon, typically about 101 kPa of sea level.

頻率”係指每秒幾個施加的電壓或電 然後再次回到最小值的循環,其以 如本文之定義,“頻 流從最小值到最大值然 10 HerzOIz)(亦即,每秒的循環次數)。 助電極之電壓。 如本文之定義,“施加的電壓,,係指一施加至電極或辅 一些金屬氧的鍵 用語“金屬氧化物,,係指化合物含至少 結,包括含少於化學劑量之氧的聚合金屬氧化物。 15 制語“有機金屬化合物,,係指含金屬及-或多個直接 與金屬鍵結或透過-或多個氧原子與金屬鍵鍵結脂族"惡 脂族(oxoaliphatic)或鹵素族兩者之化合物。 該用語“氧化矽”係指化合物含至少一些矽氧鍵結包括 聚合氧化矽,其含有少於一化學計量之氧。 20 該用語“有機矽化合物,,係指含矽及直接與矽鍵結戈透 過一或多個氧或氮原子與矽鍵結之一或多脂族、環脂族戋 芳族兩者之化合物。 應了解熟習此項技藝者,本文中所製備之金屬氧化 物、有機金屬化合物、氧化矽及有機矽化合物的化學式是 9 200827469 實驗式不是分子式。 本文所用之用語“整體,,係指一固體層實質上沒有裂 缝破裂及坑洞。高度期望該固體沒有大於10%之從表面 起算的固體層厚度之變形延伸。 5 用浯“實質上均勻,,係指一固體層具有一平均厚度大於 或等於8〇%之最大厚度及沒有大於25%之從表 面起算的固 體層厚度之變形延伸。 用m回黏著性’或“黏著性層,,係指一沈積在有機聚合 基材上之有機石夕薄膜,可與一金屬氧化物表面層組合,該 夕層、、且成物在以與滾水表面相距丨Q e m之距離曝露於滾水歷 時至少3分鐘(以10分鐘為較佳)時,未喪失防凝結性質、脫 層錢該基材表面脫落。高度希望該有機聚合基材包含一 聚碳酸醋、-聚烯烴或—聚说基)丙烯酸酯聚合物。 本文所用之用$‘薄膜”係指任何所欲長度或寬度及具 15有一最多〇·⑻1(但不包括0.1cm)厚度之基材。 本文所用之雜“片狀物,,意指—基材Gf任何所欲長度 或寬度及具有一厚度自0.1至10 cm。 氣體混合物 該氣體混合物可以是以上界定之任何氣體混合物其 2〇受到PECVD處理時可在-基材上形成一沈積。該沈積以包 含至少一巨分子為較佳及以至少一聚合物為更佳。該氣體 混合物包含氮氣、至少-氣體前驅物、纟少—稀有氣體, 及任擇包括至少一氧化氣體。 該氣體混合物包含至少35體積%之氮氣,以至少衫體 200827469 • 積%為較佳,以至少55體積%為更佳,以至少65體積%為甚 佳及以至少75體積%為尤佳(以該氣體混合物在20°C及1〇1 kPa壓力下之總體積計)。 該稀有氣體與氮氣之體積比率不大於1·5 ·· 1,以不大 • 5 於1 : 1為較佳,以不大於1 : 2為更佳,以不大於1 ·· 4為甚 - 佳及以不大於1 ·· 5為尤佳(以該氣體混合物在20°C及101 kPa 壓力下之總體積計)。 最大量之各稀有氣體以不大於37體積%為較佳,以不 • 大於20體積%為更佳及以不大於10體積%為甚佳(以該氣體 10 混合物在20°C及101 kPa壓力下之總體積計)。 氦氣量以至少1體積%為較佳,以至少2為更佳及以至 少3體積%為甚佳(以該氣體混合物在2(rc&1〇lkPa壓力下 之總體積計)。 另擇地,氖氣量以至少1體積%為較佳,以至少2體積% 15為更佳及以至少3體積%為甚佳(以該氣體混合物在如充及 101 kPa壓力下之總體積計)。 3擇地,氮氣量以至少3體積%為較佳,以至少1〇體積 %為更佳及難少15_%為甚佳(以該氣體混合物在2〇^ 及101 kPa壓力下之總體積計)。 20 上述量範圍個別適用於氦、氖及氩的每-者(亦即,告 氣體混合物中之氦、氖或氬的僅僅一者之量落於盆各別^ 量範圍時,就符合該量範圍)。在一較佳具體實施例,氣存 在於該氣體混合物之量落在一或多個上述用於氛之較佳旦 11 200827469 任擇的適合氧化氣體之實例包括氧、一氧化二氮 (N20)、臭氧(03)、一氡化氮(N〇)及四氧化二氮,以 及其等之組合。可加入氧本身或作為氣體的一組份加入。 當所要的是一巨分子或聚合物沈積,以該氧化氣體在 5該氣體混合物中之量係至少1體積%為較佳,以至少5體積% 為更佳,以至少10體積%為更佳及以至少15體積%為甚佳 (以該氣體混合物在20°c及101 kPa壓力下之總體積計)。以 前驅物與氧化氣體之比率係至少2.5 X 1〇·4為較佳及以至少 1.25 X 10為更佳,以〇·〇5為最佳及以不超過〇 〇3為最佳。 10 該氣體混合物中可以沒有氧化氣體或是低濃度之氧化 氣體,例如少於1體積%,以少於01體積%為更佳,以少於 0·01體積%為甚佳(以該氣體混合物在2〇它及1〇1 kPa壓力下 之總體積计)’最希望的是實質上沒有氧化氣體,以獲得一 具有上述具黏著性塗層之基材,例如w〇 2〇〇6/〇36461及 15 WO 2006/049794 中所述者。 如本發明之方法可用以製造一具有多層塗層之基材, 該多層塗層包含至少一巨分子或聚合層及至少一黏著性 層,如WO 2006/036461中所述者。 如本發明之方法可用以製造一具有一塗層之基材,該 20塗層包含至少一金屬氧化物層,如WO 2005/113856實施例 中所述者。 以氧化氣體與鈍性氣體之速率比在自0至3 : 1〇之範圍 為較佳。較佳速率比之次範圍包括最小值為〗:別及〗:1〇 及最大比是1 : 10及1: 50。該較佳範圍及次範圍包括前述 12 200827469 咼低邊界值之所有可能組合。 該氣體前驅物在周圍溫度及大氣體壓力下可以是或不 是氣體。當該氣體前驅物在周圍溫度及大氣體壓力下不是 氣體時,可應用熱、攪動、充電、微波能量及/或真空使該 5前驅物蒸發,以使該前驅物與該鈍氣體及任何氧化氣體組 • 合。一個已熟知的裝置,其可用以蒸發一或多種非氣體前 驅物形成氣體前驅物並使其與其他氣體組合,係一個控制 蒸發混合器。 在一較佳具體實施例中,在將該前驅物加入該氣體混 1〇合物之其他組份前,使至少一前驅物與氦氣混合。在一具 體實施例中,藉由使氦氣拂過該前驅物以加入該前驅物, 同時使該前驅物受到攪動或加熱。 以該前驅物受到PECVD處理時可形成至少一巨分子及 /或至少一聚合物為較佳。當該氣體前驅物係一含矽化合 15物,以該前驅物在PECVD之情況下可形成一有機矽或氧化 馨 石夕/尤積為較佳。當該氣體前驅物係至少一含金屬化合物, 則以該前驅物在PECVD之情況下可形成一金屬氧化物沈積 為較佳。 適合用於製造有機矽或氧化矽沈積之前驅物實例包括 2〇含矽化合物例如矽烷、矽氧烷及矽氮烷。較佳含矽化合物 可以化學式(I)為代表: • R3Si[X-Si(R’)2]rR” ⑴ 其中R、R,及R”每次出現時各自代表屮、_〇H、一Gw烴基 基群’或一Ci-io院氧基基群;X代表,其中R,,,, 13 200827469 ▲ 每次出現時各自代表蝴一 Cii〇烴基基群及r代表〇或一範 圍在自1至ίο之數值。該烴基及烧氧基基群可以是飽和的或已 不飽和的、經取代或未經取代及分枝或非分枝。以該含石夕 化合物係有機矽化合物為較佳及以包含至少一個(以至少 5三個為較佳)Cl_1G烴基基群為較佳及/或至少一個(以至少三 個為較佳心⑽氧基基群。以肌_1()烴基基群◦技氧 基基之每一者包含最多三個碳原子為較佳。 料實施例包括二甲氧二甲基魏、甲基三甲_ •烷、四甲氧矽烷、甲基三乙氧矽烷、二乙氧二甲基矽烷、 10甲基二乙氧石浅、三乙氧基乙烯魏、四乙氡傾(亦稱為 四正石夕酸乙醋或TEOS)、二甲氧甲苯基石夕烧、苯基三甲氧 石夕炫、3·甲基三乙醯三甲氧基石夕⑨、3_甲基丙稀酿丙基三; 氧基石夕烧、二乙氧甲基笨錢、三(2_曱氧乙氧基)乙婦石夕 院、笨基三乙氧石夕烧及二甲氧二苯基石夕燒。 15 矽氧烷實施例包括四甲基二矽氧烷(TMDSO)、己甲基 矽氧烷(HMDSO)及辛甲基三石夕氧烧. 矽氮烷實施例包括己甲基矽氮烷及四曱基矽氮烷。 這些前驅物可用以製造包含下列者之沈積或塗料··聚 合有機矽、聚合矽氧烷及/或氧化矽,視起始材料及存在之 20氧化氣體量而定。可利用低或0濃度氧化氣體的存在製造聚 合有機矽沈積或塗料,特別是當該前驅物包含矽烷或矽氮 烷。增加氧化氣體濃度可提升聚矽氧烷或氧化矽沈積或塗 料的製造。 用於製造金屬氧化物沈積之適合前驅物實施例包括含 14 200827469 、 金屬化合物,例如基、氧i基或_化辞、錫、崔§及欽。 較佳含金屬化合物可以化學式(Π)代表: MRaXb (II) 其中Μ代表Zn、Sn、A1及Ti之金屬;R ’分別各自存在時, — 5 代表-H、-OH、烴基基群或一Ci,烧氧基基群;X代 • 表一鹵素,包括C1或Br ;及“a”及“b”各自代表R及X部分之 整數,如先前所述’係在自0至該1^價數之範圍内。設若a+b 之總數等於金屬Μ之價數;或其揮發鹽。 適合金屬氧化物如驅實施例包括二乙基辞、二甲基 10 鋅、醋酸鋅、四氯化鈦、二甲基雙乙酸錫、乙醯丙酮鋅、 六氟乙醯丙酮锆、氨基甲酸鋅、三甲基銦、三乙基銦、 (2,2,6,6-四甲基-3,5-庚二酮酸)鈽(IV)及其等之混合物。 金屬氧化物實施例包括鋅、鍚、鈦、銦鈽與錯之氧化 物及其等之混合物。 15 吾人希望前驅物在氣體混合物中之存在量維持在自至 _ 少5〇ppm之範圍,以至少200 ppm為較佳及以至少5〇〇 ppm 至不大於10000 ppm為更佳,以不大於8000 ppm為較佳及以 不大於7000 ppm為更佳。 該氣體混合物之較佳具體實施例係一前驅物與空氣之 20混合物,其中以前驅物化合物之濃度係在一或多個上述前 驅物濃度範圍為較佳。 以調整流速及濃度以獲得一基材上之塗層的平均厚度 不大於5μηι為較佳,以不大於2μιη為更佳,以不大於為 甚佳及以不大於〇·1μηι為更佳及以至少lnm為較佳。以至少 15 200827469 10nm為更佳及以至少3〇11111為更佳及相對於平均厚度之厚 度變化不大於Ιμηι,以不大Κ〇·5μηι為更佳及以不大於 Ο.ΐμτη為更佳。以相對於平均厚度之厚度變化不大於刈%為 較佳,以不大於20%為更佳及以不大於1〇%為更佳。 5 以藉由氣體混合物體積產生一安定電漿以使聚合產物 沈積均勻為較佳。以同過該基材之上的氣體混合物體積係 至少約0·05 m/s為所欲。以至少約〇j m/s為更佳及以至少約 0.2m/s為較佳;及以不大於約1〇〇〇m/s為較佳。以不大於約 500 m/s為更佳,及以不大於約2〇〇m/s為最佳。以暴露於一 10電漿-產生此ΐ之表面區域之氣體混合物體積流係每平方 公分自10至1,500 CC/分鐘為較佳。 以步驟(b)中加入之氣體混合物的壓力係約丨〇丨kpa +八 20kPa為較佳,例如在約大氣體壓力及一約2(rc+/_3〇它之 溫度,例如周圍溫度。 15 以在步驟(b)加入之氣體混合物之壓力比大氣體壓力高 咼自IPa至80Ό kPa之範圍範圍為較佳。以加入氣體混八物 之一壓力比大氣體壓力大到足以獲得所欲通過電極氣體漭 係為較佳。 基材 對於用於本發明之基材並無限制。基材之實施例包括 玻璃、金屬、陶瓷、紙材、纖維及塑膠,例如聚烯烴,勹 括聚乙烯及聚丙烯、聚苯乙烯、聚碳酸酯、及聚顆,勺扭 聚乙烯對苯二甲酸酯及聚丁烯對苯二甲酸_。 在一較佳具體實施例,用於本發明之基材包括饪何眾 16 200827469 - 式之有機聚合物。基材實施例包括熱塑性塑膠之薄膜、片 狀物、纖維及織物或不織布纖維,例如聚埽烴,包括聚乙 烯、聚丙浠及乙烯、丙烯及/或Cqa-稀烴、聚苯乙婦之共聚 混合物、聚破酸醋、聚醋包括聚乙稀對笨二甲酸醋、聚乳 - 5 酸醋及聚丁稀對苯二甲酸醋、聚丙摊酸S旨、聚曱丙烯酸酯 , 及用於前述聚合物之任何該單體的間聚物。 本發明有機聚合基材可包含一或多層及具有一第一及 一第二表面。本發明方法中之該有機聚合基材的第一及/或 ^ 第二表面可被塗覆。在本文中經塗覆之基材係指一種複合 10 合物。較佳基材係聚碳酸酯。 應了解前述結構可包含一或多層相同或相異有機聚合 物之層狀物’且亦包括任何其他適合之材料,例如木材、 紙材、金屬、布料或一或多個金屬之氧化物或類金屬,例 如陶土、滑石、矽土、礬土、氮化矽或石材,作為一多層 15結構之一或多層或作為一或多層之一組份,設若該基材之 ^ 暴露表面包含一或多個有機聚合物。可用任何此技藝之習 之方法製造層狀物,例如,但不限於,共擠製、熱合層、 用一黏著劑及相似者層化。一較佳層狀物包含一聚碳酸酯 片狀物及一聚碳酸酯薄膜,其中該聚碳酸酯包含含一UV* ,20收物之薄膜。一其他較佳層狀物係一具有一第一及一第二 表面之聚碳酸醋片狀物,其中一包含UV吸收物之聚碳酸酯 薄膜係層合至該聚碳酸酯片狀物之第一及第二表面;該聚 碳酸酯薄膜可具有相同或相異組成物。另擇地,以該包含 該UV吸收物之薄膜係一聚(甲基)丙烯酸酯為較佳。在一具 17 200827469 ^ 體實施例中,該uv吸收物係以接枝、共聚或其他方式結合 至該有機聚合物。 電漿產生 任何可用以在步驟(c)產生一電漿之適合裝置實施例包"Frequency" means a cycle of several applied voltages or charges per second and then back to the minimum again, as defined herein, "frequency flow from minimum to maximum 10 HerzOIz" (ie, cycles per second) frequency). The voltage of the helper electrode. As used herein, "applied voltage," means a metal oxide applied to an electrode or a metal oxide, "metal oxide," which means that the compound contains at least a knot, including a polymeric metal containing less than a stoichiometric amount of oxygen. Things. 15 The term "organometallic compound" means a metal-containing and/or a plurality of bonds or permeations directly with a metal or a plurality of oxygen atoms bonded to a metal bond by an aliphatic "oxoaliphatic or halogen family The term "cerium oxide" means that the compound contains at least some of the oxygen bonds including polymeric cerium oxide, which contains less than one stoichiometric amount of oxygen. 20 The term "organic cerium compound, means cerium and direct A compound that binds to one or more aliphatic or cycloaliphatic steroids through one or more oxygen or nitrogen atoms through a bond with a hydrazone bond. It should be understood that the chemical formula of the metal oxides, organometallic compounds, cerium oxides and organic cerium compounds prepared herein is 9 200827469. The experimental formula is not a molecular formula. As used herein, the term "integral" means that a solid layer is substantially free of cracks and potholes. It is highly desirable that the solid does not have a deformation extension of greater than 10% of the thickness of the solid layer from the surface. By means of a solid layer having a maximum thickness of greater than or equal to 8% by weight and a deformation extension of no more than 25% of the thickness of the solid layer from the surface. Using m back adhesive or 'adhesive layer, refers to an organic stone film deposited on an organic polymeric substrate, which can be combined with a metal oxide surface layer, and the layer is formed with When the distance between the surface of the rolling water is 曝Q em exposed to the boiling water for at least 3 minutes (preferably 10 minutes), the anti-condensation property is not lost, and the surface of the substrate is detached. It is highly desirable that the organic polymeric substrate comprises a polymer. Carbonate, polyolefin or polyacrylate polymer. As used herein, the term 'film' means any desired length or width and has a thickness of 15 (1) but not including 0.1 cm. Substrate. As used herein, a "sheet" means that the substrate Gf has any desired length or width and has a thickness of from 0.1 to 10 cm. The gas mixture may be any gas mixture as defined above and is subjected to PECVD. A deposit may be formed on the substrate during processing. Preferably, the deposit comprises at least one macromolecule and more preferably at least one polymer. The gas mixture comprises nitrogen, at least a gas precursor, a rare gas - a rare gas And optionally comprising at least one oxidizing gas. The gas mixture comprises at least 35% by volume of nitrogen, preferably at least a shirt body of 200827469%, preferably at least 555% by volume, preferably at least 65% by volume. And preferably at least 75% by volume (based on the total volume of the gas mixture at a pressure of 20 ° C and 1 〇 1 kPa). The volume ratio of the rare gas to nitrogen is not more than 1 · 5. · 1, Large • 5 is preferably 1:1, more preferably no more than 1: 2, no more than 1 · · 4 is better - and no more than 1 · · 5 is especially good (with the gas mixture at 20 Total volume at °C and 101 kPa pressure). A large amount of each rare gas is preferably not more than 37% by volume, more preferably not more than 20% by volume and preferably not more than 10% by volume (by the gas 10 mixture at 20 ° C and 101 kPa pressure) The total volume is: at least 1% by volume, preferably at least 2 and more preferably at least 3% by volume (to the total volume of the gas mixture at 2 (rc & 1 kPa pressure) Alternatively, the amount of helium is preferably at least 1% by volume, more preferably at least 2% by volume 15 and preferably at least 3% by volume (by the gas mixture at a pressure of, for example, 101 kPa) Total volume) 3, the amount of nitrogen is preferably at least 3 vol%, preferably at least 1 vol% and more preferably 15 _% (with the gas mixture at 2 〇 ^ and 101 kPa pressure) The total volume is below.) 20 The above range is applicable to each of 氦, 氖 and argon (that is, the only one of 氦, 氖 or argon in the gas mixture falls in the basin) In the range, the amount range is met. In a preferred embodiment, the amount of gas present in the gas mixture Examples of suitable oxidizing gases in one or more of the above-mentioned preferred embodiments for use in the atmosphere include oxygen, nitrous oxide (N20), ozone (03), nitrogen monoxide (N〇), and tetra-oxidation. Dinitrogen, and combinations thereof, may be added by itself or as a component of a gas. When a macromolecule or polymer is desired, the amount of the oxidizing gas in the gas mixture is at least 1 volume. % is more preferably at least 5% by volume, more preferably at least 10% by volume and even more preferably at least 15% by volume (based on the total volume of the gas mixture at a pressure of 20 ° C and 101 kPa) . Preferably, the ratio of the precursor to the oxidizing gas is at least 2.5 X 1 〇·4 and more preferably at least 1.25 X 10 , and most preferably 〇·〇5 and not more than 〇 〇3. 10 The gas mixture may be free of oxidizing gas or a low concentration of oxidizing gas, for example less than 1% by volume, more preferably less than 01% by volume, and preferably less than 0.001% by volume (by the gas mixture) At a total volume of 2 Torr and a pressure of 1 〇 1 kPa, it is most desirable to have substantially no oxidizing gas to obtain a substrate having the above adhesive coating, such as w〇2〇〇6/〇 36461 and 15 WO 2006/049794. The method of the present invention can be used to produce a substrate having a multilayer coating comprising at least one macromolecule or polymeric layer and at least one adhesive layer as described in WO 2006/036461. The method of the present invention can be used to produce a substrate having a coating comprising at least one metal oxide layer as described in the embodiment of WO 2005/113856. The ratio of the ratio of the oxidizing gas to the passive gas is preferably in the range from 0 to 3:1 Torr. The preferred rate ratio includes the minimum value of 〖: 别: 〇 and the maximum ratio is 1: 10 and 1: 50. The preferred range and sub-range include all possible combinations of the aforementioned 12 200827469 咼 low boundary values. The gas precursor may or may not be a gas at ambient temperature and high gas pressure. When the gas precursor is not a gas at ambient temperature and large gas pressure, the 5 precursor may be evaporated by heat, agitation, charging, microwave energy and/or vacuum to cause the precursor and the blunt gas and any oxidation. Gas group • Combined. A well-known device that can be used to vaporize one or more non-gas precursors to form a gas precursor and combine it with other gases is a controlled evaporative mixer. In a preferred embodiment, at least one precursor is mixed with helium before the precursor is added to the other components of the gas mixture. In a specific embodiment, the precursor is added by a helium gas through the precursor while the precursor is agitated or heated. Preferably, at least one macromolecule and/or at least one polymer is formed when the precursor is subjected to PECVD treatment. When the gas precursor is a ruthenium compound, it is preferred that the precursor form an organic ruthenium or oxidized smectite in the case of PECVD. When the gas precursor is at least one metal-containing compound, it is preferred that the precursor be formed into a metal oxide in the case of PECVD. Examples of precursors suitable for use in the manufacture of organic cerium or cerium oxide deposits include cerium-containing compounds such as decane, decane and decazane. Preferably, the ruthenium containing compound can be represented by the formula (I): • R3Si[X-Si(R')2]rR" (1) wherein each of R, R, and R" represents 屮, 〇H, and Gw. a hydrocarbyl group' or a Ci-io-based oxy group; X represents, where R,,,, 13 200827469 ▲ each occurrence of each represents a Cii 〇 hydrocarbon group and r represents 〇 or a range of To the value of ίο. The hydrocarbyl and alkoxy groups may be saturated or unsaturated, substituted or unsubstituted, and branched or unbranched. Preferably, the cerium compound-containing organic cerium compound is preferred and at least one (preferably at least 5, preferably) Cl_1G hydrocarbon group is preferred and/or at least one (at least three is preferred) Alkoxy groups. It is preferred to include up to three carbon atoms in each of the muscle-1() hydrocarbyl groups. Examples of the materials include dimethoxydimethyl Wei, methyl trimethyl. Alkane, tetramethoxy decane, methyl triethoxy decane, diethoxy dimethyl decane, 10 methyl diethoxy sulphate, triethoxy ethene, tetraethylene oxime (also known as Sizheng Shixi) Ethyl acetate or TEOS), dimethoxytolyl-based sulphur, phenyltrimethicone, 3, methyltriethylphosphonium trimethoxy sulphate 9, 3-methyl propylene propyl propyl; Burning, diethoxymethyl stupid, tris(2_曱oxyethoxy) ethoxylate Shixi, stupid triethoxylate and dimethoxydiphenyl sulphide. 15 oxirane example Including tetramethyldioxane (TMDSO), hexylmethyloxane (HMDSO), and octyl-trioxane. Examples of decazane include hexylmethyl decazane and tetradecyl quinone. These precursors It can be used to make deposits or coatings containing: polymeric cerium, polymeric siloxanes and/or cerium oxide, depending on the starting material and the amount of oxidizing gas present. The presence of low or zero oxidizing gases can be utilized. Production of polymeric organic germanium deposits or coatings, particularly when the precursor comprises decane or decane. Increasing the concentration of oxidizing gas enhances the manufacture of polyoxane or cerium oxide deposits or coatings. Suitable precursors for the manufacture of metal oxide deposits Examples include 14 200827469, metal compounds such as yl, oxyi or yttrium, tin, Cui § and chin. Preferred metal-containing compounds can be represented by the formula (Π): MRaXb (II) wherein Μ represents Zn, a metal of Sn, A1 and Ti; when R' is respectively present, - 5 represents -H, -OH, a hydrocarbyl group or a Ci, an alkoxy group; X generation; Table 1 halogen, including C1 or Br; "a" and "b" each represent an integer of the R and X moieties, as previously described 'in the range from 0 to the 1 valence. Let the total number of a+b be equal to the valence of the metal ruthenium; or Volatile salt. Suitable for metal oxides such as flooding examples include Ethyl, dimethyl 10 zinc, zinc acetate, titanium tetrachloride, tin dimethyl diacetate, zinc acetylacetonate, zirconium hexafluoroacetate, zinc carbamate, trimethyl indium, triethyl indium , (2,2,6,6-tetramethyl-3,5-heptanedionate) ruthenium (IV) and mixtures thereof, etc. Metal oxide examples include zinc, bismuth, titanium, indium bismuth and a mixture of oxides and the like. 15 It is desirable for the precursor to be present in the gas mixture in the range of 5 〇 ppm, preferably at least 200 ppm and at least 5 〇〇 ppm to not more than 10,000. The ppm is more preferably not more than 8,000 ppm and more preferably not more than 7000 ppm. A preferred embodiment of the gas mixture is a mixture of a precursor and air 20, wherein the concentration of the precursor compound is preferably in the range of one or more of the foregoing precursor concentrations. It is preferred to adjust the flow rate and concentration to obtain an average thickness of the coating on a substrate of not more than 5 μηι, more preferably not more than 2 μηη, more preferably not more than 为·1 μηι and more preferably At least 1 nm is preferred. Preferably, at least 15 200827469 10 nm is more preferred and at least 3 〇 11111 is preferred and the thickness relative to the average thickness is not more than Ιμηι, preferably not more than 5 ηηι and not more than Ο.ΐμτη. It is preferable that the thickness is not more than 刈% with respect to the thickness of the average thickness, more preferably not more than 20%, and still more preferably not more than 1%. 5 It is preferred to produce a stable plasma by the volume of the gas mixture to uniformly deposit the polymerization product. Preferably, the volume of the gas mixture above the substrate is at least about 0. 05 m/s. It is preferably at least about 〇j m/s and preferably at least about 0.2 m/s; and preferably not more than about 1 〇〇〇 m/s. It is preferably not more than about 500 m/s, and preferably not more than about 2 〇〇 m/s. Preferably, the volumetric flow of the gas mixture exposed to a plasma of 10 to the surface area of the crucible is from 10 to 1,500 CC/min per square centimeter. Preferably, the pressure of the gas mixture added in step (b) is about 丨〇丨kpa + eight 20 kPa, for example at about a large gas pressure and a temperature of about 2 (rc+/_3 〇 it, such as ambient temperature. 15 The pressure of the gas mixture added in the step (b) is preferably higher than the pressure of the large gas from the range of IPa to 80 kPa. The pressure at which one of the gas mixture is added is greater than the pressure of the large gas to obtain the desired electrode. Gas lanthanum is preferred. The substrate is not limited to the substrate used in the present invention. Examples of the substrate include glass, metal, ceramic, paper, fiber, and plastic, such as polyolefin, including polyethylene and poly. Propylene, polystyrene, polycarbonate, and agglomerates, spooned polyethylene terephthalate and polybutylene terephthalate. In a preferred embodiment, the substrate for use in the present invention includes Cooking Hezhong 16 200827469 - Organic polymer of the formula. The substrate examples include films, sheets, fibers and woven or non-woven fibers of thermoplastic plastics, such as polyalkylene hydrocarbons, including polyethylene, polypropylene and ethylene, propylene and/or Or Cqa-dilute hydrocarbons, polystyrene The copolymerization mixture, the polyacetic acid vinegar, the polyester vinegar, including the polyethylene diacetate benzoic acid vinegar, the polylactic acid-5 vinegar and the polybutylene terephthalate vinegar, the polyacrylic acid S, the polyfluorene acrylate, and the use thereof An interpolymer of any of the foregoing polymers. The organic polymeric substrate of the present invention may comprise one or more layers and have a first and a second surface. The first of the organic polymeric substrates of the method of the invention / or ^ The second surface can be coated. The coated substrate herein refers to a composite 10. The preferred substrate is a polycarbonate. It should be understood that the foregoing structure may comprise one or more layers of the same or different a layer of organic polymer 'and any other suitable material, such as wood, paper, metal, cloth or one or more metal oxides or metalloids, such as terracotta, talc, alumina, alumina, Tantalum nitride or stone, as one or more layers of a multilayer 15 structure or as a component of one or more layers, if the exposed surface of the substrate comprises one or more organic polymers. Any of the techniques may be used. Method of making a layer, such as, but not limited to Coextruded, heat sealed, layered with an adhesive and the like. A preferred layer comprises a polycarbonate sheet and a polycarbonate film, wherein the polycarbonate comprises a UV* a film of 20 received. A further preferred layer is a polycarbonate sheet having a first surface and a second surface, wherein a polycarbonate film comprising a UV absorber is laminated to the film. a first and a second surface of the carbonate sheet; the polycarbonate film may have the same or different composition. Alternatively, the film comprising the UV absorber is a poly(meth)acrylate. Preferably, in a method of 17 200827469, the uv absorber is grafted, copolymerized or otherwise bonded to the organic polymer. The plasma produces any useful material for producing a plasma in step (c). Suitable device embodiment package

- 5 括US 5,433,786、WO 2003/066932、WO 2003/066933、WO - 2005/049228、Ward 等人,Langmuir,2003 19,2110-21 14 及其他所述之裝置。所有前述裝置中,前驅物係以蒸氣形 式供於電極附近的流動氣流(載體氣體),以藉由穿過或通過 ® 該電極表面之上為較佳,其中一電漿係製於該電極及一輔 10助電極之間。可利用加熱增加其蒸氣體壓力或藉由霧化器 增加前驅物量’例如,一超音波霧化器。用於達到足夠該 前驅物蒸氣體壓力之後者方法係較佳,因為避免溫度上升 接近自動點火該氣體混合物之溫度。雖然該方法係在大氣 體壓力下操作,但應了解壓力為高於或低於大氣壓力(20 15 kpa)下操作也可以。以操作壓力係大氣壓力或比大氣體壓 Φ 力大到足以獲得如所需之通過電極的所欲氣體流為較佳。 上述適合裝置實之施例包括用於產生一電漿經由電漿 放電的裝置,如一介電屏蔽放電装置。這類裝置包含一或 多個電極及-或多個輔助電極及具有施加一電壓於該電極 ,20及該輔助電極之間。電漿係藉由在該電極及該輔助電極之 間放電而製造。- 5 includes US 5,433,786, WO 2003/066932, WO 2003/066933, WO-2005/049228, Ward et al, Langmuir, 2003 19, 2110-21 14 and other devices described. In all of the foregoing devices, the precursor is supplied to the flowing gas stream (carrier gas) in the vicinity of the electrode in the form of a vapor, preferably by passing or passing through the surface of the electrode, wherein a plasma is applied to the electrode and One auxiliary 10 between the electrodes. Heating may be used to increase its vapor body pressure or to increase the amount of precursor by means of an atomizer', e.g., an ultrasonic atomizer. The method for achieving sufficient pressure of the precursor vapor body is preferred because the temperature rise is prevented from approaching the temperature of the auto-ignition gas mixture. Although the method is operated at atmospheric pressure, it should be understood that the pressure is higher or lower than atmospheric pressure (20 15 kpa). Preferably, the operating pressure is atmospheric pressure or greater than the large gas pressure Φ force is sufficient to obtain the desired gas flow through the electrode as desired. Embodiments of the above-described suitable apparatus include means for generating a plasma discharge via plasma, such as a dielectric shield discharge device. Such devices include one or more electrodes and/or a plurality of auxiliary electrodes and have a voltage applied between the electrodes 20 and the auxiliary electrodes. The plasma is produced by discharging between the electrode and the auxiliary electrode.

介電屏敝放電亦稱為“無聲放電”及“大氣—壓力_輝光放 ^ 。忒介電屏蔽放電用於經由如US-A-5,718,967、WO 03/066932及US-A-6,815,014中所描述的PECVD製造一有機 18 200827469 矽塗層。介電屏蔽放電用於經由描述於w〇 2〇〇5/〇49228的 PECVD製造二氧化石夕塗層。介電屏蔽放電用於經由描述於 WO 2005/113856的PECVD製造金屬氧化物塗層。 本發明方法是將足夠電力濃度及頻率施加於一電極及 5 /或輔助電極以製造及維持位於該電極及輔助電極間隔中 之氣體混合物的輝光放電。該電力濃度(根據暴露於該電聚 之電極表面區域)係以至少〇5 w/cm2為較佳,以至少1 w/·2為更佳及以至少9 w/cm2為最佳,及以不大於 370WW為較佳,以不大於14〇w/cm2為更佳及以不大於4〇 10 W/cm2為最佳。施加於該電極之電流可依自1〇至1〇,_瓦 而定,以自100至1〇00瓦之電壓為1〇至5〇〇⑻伏特為較 it以為lUGG至2G’GGG伏特。該頻率係以至少2 為 較佳,以至少5 kHz為更佳及以至少1〇胞為最佳;及以為 最佳不大於100 kHz為最佳,以不大於6〇馳為更佳及以不 15 大於40 kHz為最佳。 為了獲得有效的電力至電漿的轉換,以選擇與該電極 輔助電極構型之共振頻率相同的頻率為較佳。該共振頻率 係等於2ττνΛ(ί . C)之反轉換,其中L係電感,幾乎完全由 變電器高電壓端提供;AC係電容量,幾乎完全藉由塗層站 =接舰置的電極提供。以主要藉由變電器高端電壓提供 電感為較佳及以主要藉由一輔助電極接地配置提供電容量 為較佳。 較佳具體實施例係將電力施加於電極;及該輔助電 極係接地的(亦即經由導電體接於地面)。在該具體實施例 19 200827469 、 中,施加於該電極之電壓係介於一最小電壓值及一最大電 壓值之循環以固定頻率施加為較佳。相對於該最大電壓係 於-正值及-負值間輪替之循環,以該最大電壓值在各自 循環係正值或一負值為較佳。 • 5 以電極及輔助電極間的間隔足以達到及維持一可見電 - 漿(輝光放電)為較佳,以至少〇·1 mm為較佳,以至少lmm 為更佳及以不大於5〇mm為較佳,以不大於2〇111111為更佳及 φ M不大於10麵為最佳。如有需要,該電極、輔助電極或 料極與該獅電極兩者可㈣有—介電套f。在一具體 1〇實施例中,該電極及輔助電極對係裝在一耐高溫的界電質 (如陶瓷)中。 ' 欲進行塗覆之基材可用輔助_電極支承或運輸或支承 在電漿附近以與至少一部分藉纟電極及輔助-電極產生之 私永接觸或文其冲擊。氣體混合物流以及該電極附近產生 之包漿造成電浆聚合物產物沈積在附著於該輔助電極或置 # 於包極對附近之基材表面。適合之間隙係設於該基材與該 電極或用於排出載體氣體、副產物及未附著之產物的電極 - ^ °調整該間隙寬度以防納人過量之污染氣體。以該電極 及該辅助電極位於基材表面的4 mm内為較佳,以1 mm内為 20更佳。 ” 任何適合之電極幾何形狀及反應器設計皆可用於本發 月方法。對於厚基材,例如片狀材料,吾人希望該電極及 該辅助電極皆位於欲進行塗覆之基材的同側 。通過電極附 ^後電槳產生反應產物沖擊基材表面。反應器排除孔位 20 200827469 於基材表面附近,且在離開反應器前就空間而言自該電極 移除以允許電漿或至少形成於其間之反應物與該基材表面 接觸。如有需要,所得電暈放電之形狀可用一此技藝之習 去磁場改質。對於較薄基材,該辅助電極可以是一傳導性 表面,其上承載有目標物或基材。該基材或該整個含該基 材之輔助電極可移動,特別是在一連續處理方法中。 以電漿形成在該基材為較佳,因為該基材與該電漿_產 生衣置隨時間相對於另一者而移位。在一具體實施例之步 驟(c)中,該基材隨時間相對於被電漿_產生裝置而移位。以 10基材相對於該電漿-產生裝置之移位係至少20 cm/min為較 佳’以至少50 cm/min為更佳,及以8cm/min為最佳,以最 多3cm/min為更佳。 本發明方法可以高沈積速率沈積塗層。在本發明一較 佳具體實施例中,一塗層係以至少〇〇〇8 cin2 .min之速率沈 15積’以至少0·〇6 cm2 · min為更佳及甚至以至少〇.2mg /cm2 · min為更佳。 相較於用空氣或稀有氣體做為載體氣體或平衡氣體, 本發明方法可以改良後的電力使用效益使塗層沈積。 藉由本發明方法進行的電漿聚合作用在基材上形成一 20光學透明塗層沈積為較佳。本文用語"光學透明”係本文中 用於描述一塗層具有一至少70%之光學透明性,以至少9〇% 為更佳及以至少98%為最佳,混濁度以不大於1〇%為較佳, 以不大於2 %為更佳及以不大於1 %為最佳。光學透明性係透 射-非散射光相對於透射-散射與透射-散射光總和(<2 5。)之 21 200827469 、 比值。混濁度係透射-散射光(>2.5。)相對於總透射光之比 值。這些值係根據ASTMD 1003-97測得。 本發明方法可以相較於先前方法為高沈積速率及/或 低電力濃度製造整體的及實質上均勻的塗料。 * 5 實施例 • 藉由下列實施例進一步本發明,但不該用以限定本發 明。除非特別說明或為本技藝中所習用者,否則所有份數 及百分比皆以重量論。 ⑩ 試驗程序 10 一聚碳酸酯基材具有一 10cm之寬度及一0.25吋(0.635 cm)之厚度,將其放置於一輸送帶,使其以2公尺/分鐘之速 率通過一配備有Gerneration 2·4電極之APC 2000大氣電漿 塗佈 |§ (兩者皆得自 SigmaTechnologies of Tucson, Arizona,LL3.A·)。該電極之尺寸係設為當基材通過電漿塗 15佈器時,可施加能量至涵蓋該基材全寬的54 cm2區域。 _ 用於各自實施例之氣體混合物包含250每分鐘標準毫 升(seem)之氦掃過TMDSO。藉由在比較實施例1及本發明實 施例1至4中引入氣體作為氣體混合物組份,以提供氮氣及 氧氣(作為氧化氣體)。在比較實施例1及實施例1至4中氣體 20 混合物之平均線性氣體體積係300ft./min.(91.4 m/min.)。比 較實施例2之氣體混合物的平均線性氣體體積係80 ft./min.(24.4 m/min·)。 用已鑽洞的氣體傳送管在基材上方導入引進之各氣體 混合物。當該氣體混合物通過透過電極及充滿該電極與該 22 200827469 基材之間的空間時,將2kw電力施加於該電極歷時一段一 分鐘的時間,同時該基材穿過電漿塗佈機,藉此,各實施 例之2公尺基材在37W/cm2之電力濃度下接受電漿-強化化 學療氣體沈積。 用美國加州聖地牙哥Filmetrics公司的Filmetrics F20薄 膜厚度測量裝置以及FILM Measure™軟體,測量薄膜厚 度0 試驗數據及結果總結如下。The dielectric screen discharge is also referred to as "silent discharge" and "atmosphere-pressure_glow discharge." The dielectric barrier discharge is used as described in US-A-5,718,967, WO 03/066932, and US-A-6,815,014. PECVD Fabrication of an Organic 18 200827469 矽 Coating. Dielectric Shielding Discharge is used to fabricate a dioxide dioxide coating via PECVD as described in w〇2〇〇5/〇 49928. Dielectric shielding discharge is used as described in WO 2005 A metal oxide coating is produced by PECVD of /113856. The method of the present invention applies a sufficient power concentration and frequency to an electrode and/or an auxiliary electrode to create and maintain a glow discharge of a gas mixture located in the electrode and auxiliary electrode spacing. The power concentration (according to the surface area of the electrode exposed to the electropolymerization) is preferably at least w5 w/cm 2 , more preferably at least 1 w/·2, and most preferably at least 9 w/cm 2 , and It is preferably not more than 370 WW, more preferably not more than 14 〇 w/cm 2 and most preferably not more than 4 〇 10 W/cm 2 . The current applied to the electrode may be from 1 〇 to 1 〇, _ 瓦Set, from 100 to 1 〇 00 volts for 1 〇 to 5 〇〇 (8) volts for it to think lUGG 2G'GGG volts. The frequency is preferably at least 2, more preferably at least 5 kHz and at least 1 cell is preferred; and preferably no more than 100 kHz is optimal, and no more than 6 〇 It is preferred to be better than 15 and greater than 40 kHz. In order to obtain an effective power-to-plasma conversion, it is preferred to select the same frequency as the resonant frequency of the electrode auxiliary electrode configuration. The resonant frequency is equal to 2ττνΛ The reverse conversion of (ί. C), in which the L-type inductor is almost completely provided by the high-voltage terminal of the transformer; the AC-based capacitance is almost exclusively provided by the coating station = the electrode of the ship. Mainly by the transformer It is preferred that the high side voltage provides an inductance and that the capacitance is provided primarily by an auxiliary electrode ground configuration. Preferably, the embodiment applies power to the electrode; and the auxiliary electrode is grounded (ie, via the electrical conductor) In the specific embodiment 19 200827469, the voltage applied to the electrode is preferably applied at a fixed frequency with a minimum voltage value and a maximum voltage value. Relative to the maximum voltage is - Positive value And - the cycle between negative values, with the maximum voltage value being positive or negative in each cycle. • 5 The spacing between the electrode and the auxiliary electrode is sufficient to achieve and maintain a visible electro-plasma (glow) Preferably, the discharge is preferably at least 〇1 mm, more preferably at least 1 mm, and preferably not more than 5 〇 mm, more preferably not more than 2 〇 111111, and φ M is not more than 10 faces. Preferably, if necessary, the electrode, the auxiliary electrode or the material and the lion electrode may (4) have a dielectric sleeve f. In a specific embodiment, the electrode and auxiliary electrode pairs are attached to a high temperature resistant dielectric (e.g., ceramic). The substrate to be coated may be supported or transported or supported adjacent to the plasma to be intimately contacted or impacted by at least a portion of the substrate and the auxiliary electrode. The flow of the gas mixture and the encapsulation generated in the vicinity of the electrode cause the plasma polymer product to deposit on the surface of the substrate attached to the auxiliary electrode or to the vicinity of the pair of the package. A suitable gap is provided between the substrate and the electrode or the electrode for discharging the carrier gas, by-products, and unattached product - ^ ° to adjust the gap width to prevent excessive amounts of contaminated gas. Preferably, the electrode and the auxiliary electrode are located within 4 mm of the surface of the substrate, and more preferably 20 within 1 mm. Any suitable electrode geometry and reactor design can be used in this month's method. For thick substrates, such as sheet materials, it is desirable for the electrode and the auxiliary electrode to be on the same side of the substrate to be coated. The reaction product is impacted on the surface of the substrate by means of an electrode attached post-electrode. The reactor excludes the pores 20 200827469 from the surface of the substrate and is removed from the electrode in terms of space before leaving the reactor to allow plasma or at least to form The reactants in between are in contact with the surface of the substrate. If desired, the shape of the resulting corona discharge can be modified by a magnetic field. For a thinner substrate, the auxiliary electrode can be a conductive surface on which it is carried. There is a target or substrate. The substrate or the entire auxiliary electrode containing the substrate can be moved, especially in a continuous processing method. It is preferred to form a plasma on the substrate because the substrate and the substrate The plasma-generating garment is displaced relative to the other over time. In a step (c) of a particular embodiment, the substrate is displaced relative to the plasma-generating device over time. relatively Preferably, the displacement of the plasma-generating device is at least 20 cm/min, preferably at least 50 cm/min, and most preferably at 8 cm/min, more preferably at most 3 cm/min. The coating may be deposited at a high deposition rate. In a preferred embodiment of the invention, a coating is preferably at least 0 〇 6 cm 2 · min at a rate of at least 〇〇〇 8 cin 2 .min. And even more preferably at least 22 mg / cm 2 · min. Compared to the use of air or a rare gas as a carrier gas or a balance gas, the method of the present invention can improve the power use efficiency to deposit a coating. Performing plasma polymerization to form a 20 optically clear coating on the substrate is preferred. The term "optically transparent" is used herein to describe a coating having an optical transparency of at least 70% to at least 9〇% is more preferred and at least 98% is preferred, turbidity is preferably not more than 1%, and more preferably not more than 2% and not more than 1%. The optical transparency is the ratio of the transmitted-non-scattered light to the sum of the transmission-scattering and the transmitted-scattered light (<25.) 21 200827469. The turbidity is the ratio of transmitted-scattered light (>2.5) to the total transmitted light. These values are measured according to ASTM D 1003-97. The process of the present invention can produce a unitary and substantially uniform coating at a high deposition rate and/or low power concentration compared to prior methods. *5 Embodiments The present invention is further illustrated by the following examples, which are not intended to limit the invention. All parts and percentages are by weight unless otherwise stated or used in the art. 10 Test Procedure 10 A polycarbonate substrate having a width of 10 cm and a thickness of 0.25 吋 (0.635 cm) was placed on a conveyor belt to pass a Gerneration 2 at a rate of 2 meters per minute. • 4 electrode APC 2000 atmospheric plasma coating | § (both from Sigma Technologies of Tucson, Arizona, LL 3.A.). The dimensions of the electrode are such that when the substrate is passed through a plasma paste, energy can be applied to a 54 cm2 region covering the full width of the substrate. The gas mixture used in the respective examples contained 250 standard milliliters per minute of sweeping TMDSO. Gas was introduced as a gas mixture component in Comparative Example 1 and Inventive Examples 1 to 4 to provide nitrogen gas and oxygen gas (as an oxidizing gas). The average linear gas volume of the gas 20 mixture in Comparative Example 1 and Examples 1 to 4 was 300 ft. / min. (91.4 m / min.). The average linear gas volume of the gas mixture of Comparative Example 2 was 80 ft./min. (24.4 m/min·). The introduced gas mixture is introduced over the substrate by a gas transfer tube having a drilled hole. When the gas mixture passes through the electrode and fills the space between the electrode and the substrate of the 200827469469, 2kw of electricity is applied to the electrode for a period of one minute while the substrate passes through the plasma coater. Thus, the 2 meter substrate of each example was subjected to plasma-enhanced chemotherapeutic gas deposition at a power concentration of 37 W/cm2. The film thickness measurement was measured using the Filmetrics F20 film thickness measuring device and the FILM MeasureTM software from Filmetrics, San Diego, Calif., and the results are summarized below.

試驗數據及結果 用上述試驗程序所獲得之數據顯示於表卜 表1 試驗結果 實施例 設計 AIR (SLPM) 氦 (SLPM) he/n2 體積比率 VOL% HE 厚度 (微 比較實施例1 84 0.25 0.004 0.3 __\ W人 /_ 0.2 比較實施例2 0 15.25 NA 100 NM(1) 1 84 2.25 0.03 2.3 0.43 2 84 5.25 0.08 5.9 ^ 042 3 84 10.2 50.16 10.9 0.43 4 84 15.25 0.23 15.4 0.41 粗糙及過於粉狀所以未測量沈積厚度,因此無法如第 15 如表1數據所示,加入濃度範圍自2.3至15.4體積%的氧 造成一厚度至少為比較實施例1(未用氦進行)兩倍之塗層。 比較實施例2用氦進行,但沒有空氣,其提供_個無法 令人滿意的粉狀塗層,如第1圖SEM圖像所示。 第2圖SEM圖像顯示比較實施例1提供相較於比較實施 20 例2為平滑之塗層。但是,將第2圖SEM圖像與第3圖SEM圖 23 200827469 像比較,顯示如本發明實施例4獲得之塗層顯示如實施例4 ’之方法所製造之塗層相較於比較實施例1所製造之塗層更 為平滑。Test data and results The data obtained by the above test procedure are shown in Table 1. Test results Example design AIR (SLPM) 氦 (SLPM) he/n2 Volume ratio VOL% HE Thickness (micro comparison example 1 84 0.25 0.004 0.3 __\ W person / _ 0.2 Comparative Example 2 0 15.25 NA 100 NM(1) 1 84 2.25 0.03 2.3 0.43 2 84 5.25 0.08 5.9 ^ 042 3 84 10.2 50.16 10.9 0.43 4 84 15.25 0.23 15.4 0.41 Rough and too powdery so The deposition thickness was not measured, so that it was not possible to add oxygen having a concentration ranging from 2.3 to 15.4 vol% as shown in the data of Table 15 as shown in Table 1, resulting in a coating having a thickness at least twice that of Comparative Example 1 (not carried out with ruthenium). Example 2 was carried out with hydrazine but without air, which provided an unsatisfactory powder coating as shown in the SEM image of Figure 1. The SEM image of Figure 2 shows that Comparative Example 1 provides Comparative Example 20 Example 2 is a smooth coating. However, comparing the SEM image of FIG. 2 with the image of SEM image 23 200827469 of FIG. 3, the coating obtained in Example 4 of the present invention is shown as the method of Example 4'. The coating produced was compared to Comparative Example 1 Making coatings it more smooth.

本發明方法係用於製造一表面改質塗層,例如一黏著 5 促進劑或一防霧塗層;一光學塗層,如一反射性或抗反射 性塗層;一光譜管理塗層塗層,或UV保護塗層;耐化學品 塗層:一耐磨塗層:或一氣體屏蔽塗層。可能的終端使用 實施例包括用於建築鑲玻璃、鑲玻璃板、太陽能收集器、 電器、光學消耗品及裝置、包裝、標幟及運輸之模製品之 10 擠壓成形塑膠薄膜、片狀物、層狀物的線上塗覆。 【圖式簡單說明3 第1圖係一掃描式電子顯微鏡(SEM)圖的重現,其顯示 如以下所述之比較實施例2塗覆之聚碳酸酯基材的表面形 態。 15 第2圖係重現一 SEM圖,其顯示如以下所述之比較實施 例1塗覆之聚碳酸酯基材的表面形態。 第3圖係重現一 SEM圖,其顯示如以下所述之實施例5 塗覆之聚碳酸酯基材的表面形態。 【主要元件符號說明】 (無) 24The method of the invention is used to manufacture a surface modification coating, such as an adhesive 5 accelerator or an anti-fog coating; an optical coating such as a reflective or anti-reflective coating; a spectral management coating coating, Or UV protective coating; chemical resistant coating: a wear resistant coating: or a gas barrier coating. Possible end use examples include 10 extruded plastic films, sheets for architectural glazing, glazing panels, solar collectors, appliances, optical consumables and devices, packaging, labeling and shipping moldings. The layer is coated on the line. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a reproduction of a scanning electron microscope (SEM) image showing the surface morphology of a polycarbonate substrate coated in Comparative Example 2 as described below. 15 Fig. 2 is a reproduction SEM image showing the surface morphology of the polycarbonate substrate coated in Comparative Example 1 as described below. Fig. 3 is a reproduction SEM image showing the surface morphology of the polycarbonate substrate coated in Example 5 as described below. [Main component symbol description] (none) 24

Claims (1)

200827469 十、申請專利範圍: 1. 一種用於塗覆或改質一基材之方法,其包含: (a) 提供一種基材,其具有至少一表面; (b) 提供一氣體混合物,其鄰近(a)之基材的至少一 表面; (c) 在(b)中之氣體混合物產生一電漿,及 (d) 使(c)中之電漿在該基材的至少一表面形成一 固體沈積,200827469 X. Patent Application Range: 1. A method for coating or modifying a substrate comprising: (a) providing a substrate having at least one surface; (b) providing a gas mixture adjacent thereto (a) at least one surface of the substrate; (c) the gas mixture in (b) produces a plasma, and (d) the plasma in (c) forms a solid on at least one surface of the substrate Deposition, 其中該氣體混合物包含: 至少35體積%之氮氣: 至少50 ppm之至少一氣體前驅物; 可任擇包含一用於該氣體前驅物之氧化氣體:及 體積比率最多為1.5 : 1之至少一稀有氣體與氮氣, 該稀有氣體包含至少1體積%之氦氣、至少1體積% 之氖氣或至少3體積%之氬氣,或及其等之混合物, 各體積%係以該氣體混合物在20°C及101 kPa壓力下 之總體積計。 2. 如申請專利範圍第1項之方法,其中(b)項之氣體混合物 中稀有氣體與氮氣在20°C及101 kPa壓力下之體積比係 1 : 1或更低。 3. 如申請專利範圍第1項之方法,其中(h)項之氣體混合物 中稀有氣體與氮氣在2 0 °C及101 k P a壓力下之體積比係 1 : 2或更低。 4·如申請專利範圍第1至3項中任一項之方法,其中(b)項之 25 200827469 氣體混合物包含之氦量範圍係自1至37體積%(以該氣體 混合物在20°C及101 kPa壓力下之總體積計)。 5. 如申請專利範圍第1至4項中任一項之方法,其中(b)項之 氣體混合物包含之氦量範圍係自2至10體積%(以該氣體 混合物在20°C及101 kPa壓力下之總體積計)。 6. 如申請專利範圍第3至5項中任一項之方法,其中(b)項之 氣體混合物包含至少45體積%氮氣(以該氣體混合物在 20°C及101 kPa壓力下之總體積計)。 7. 如申請專利範圍第1至7項中任一項之方法,其中(b)項之 氣體混合物任擇地含有氧化氣體量係至少5體積%(以該 氣體混合物在20°C及101 kPa壓力下之總體積計)。 8. 如申請專利範圍第7項之方法,其中該氧化氣體包含 氧、一氧化二氮、臭氧、一氧化氮及四氧化二氮,以及 其等之組合。 9. 如申請專利範圍第7或8項之方法,其中(b)項之氣體混合 物包含至少10體積%之氧氣(以該氣體混合物在20°C及 lOlkPa壓力下之總體積計)。 10. 如申請專利範圍第1至9項中任一項之方法,其中該氣體 前驅物包含至少一以下列化學式(I)為代表之含矽化合 物: R3Si[X-Si(R,)2]rR” (I) 其中R、R’及R”每次出現時各自代表-Η、-OH、一 C^o 烴基基群,或一Cmo烷氧基基群;X代表-Ο-或-N(R’’’’)_, 其中R’m每次出現時各自代表-Η或一 C^o烴基基群及r 26 200827469 代表0或一範圍在自1至10之數值。 11. 如申請專利範圍第10項之方法’其中該氣體前驅物包含 一矽烷或矽氧烷化合物。 12. 如申請專利範圍第1至9項中任一項之方法,其中該氣體 前驅物包含至少一以下列化學式⑴為代表之含金屬化 合物: MRaXb (II) 其中Μ代表Zn、Sn、A1及Ti之金屬;R,分別各自存在時, 代表-H、-OH、一Cl_1G烴基基群或一Cl lQ烷氧基基群; X代表一鹵素,包括C1或Br;及“a”及“b”各自代表11及:^ 部分之整數,如先前所述,係在自〇至該M價數之範圍 内。設若a+b之總數等於金屬Μ之價數;或其揮發鹽。 13·如申請專利範圍第12項之方法,其中該至少一含金屬化 合物包含二乙基鋅、二甲基鋅、醋酸鋅、四氯化鈦、二 甲基雙乙酸錫、乙醯丙酮鋅、六氟乙醯丙酮鍅、氨基甲 酸鋅、三甲基銦、三乙基銦、(2,2,6,6-四甲基_3,5_庚二 酮酸)鈽(IV)及其等之混合物。 14·如申請專利範圍第1至13項中任一項之方法,其中該氣 體混合物壓力係101.3 kPa+八20 kPa。 15.如申請專利範圍第1至14項中任一項之方法,其中該電 漿係藉由一介電屏蔽放電裝置在a)至少2kHz及不大於 100 kHz之頻率及b)—範圍自1 w/cni2至140 W/cm2之電 力濃度下運作產生。 16·如申請專利範圍第15項之方法,其中該電力濃度範圍係 27 200827469 在自 9 W/cm2 至 40 W/cm2。 17. 如申請專利範圍第16項之方法,其中該固體沈積係以至 少0.008 mg / (cm2 · min)之速率沈積於該基材。 18. 如申請專利範圍第16項之方法,其中該固體沈積係以至 少0.06 mg / (cm2 · min)之速率沈積於該基材。 19. 如申請專利範圍第1至18項中任一項之方法,其中該基 材包含至少一聚合物係選自於由下列者所組成之群:聚 碳酸酯、聚胺基甲酸酯、聚(甲基)丙烯酸酯、聚丙烯、 聚乙烯、乙烯/α-浠烴共聚物、苯乙浠-丙浠腈共聚物、 聚乙烯對苯二甲酸酯及聚丁烯對苯二甲酸酯。 20. —種經塗覆之基材,其係可藉由如申請專利範圍第1至 19項中任一項之方法獲得。Wherein the gas mixture comprises: at least 35% by volume of nitrogen: at least 50 ppm of at least one gas precursor; optionally comprising an oxidizing gas for the gas precursor: and at least one rare volume ratio of at most 1.5:1 a gas and nitrogen gas, the rare gas comprising at least 1% by volume of helium, at least 1% by volume of helium or at least 3% by volume of argon, or a mixture thereof, each volume being at 20° of the gas mixture Total volume under C and 101 kPa pressure. 2. For the method of claim 1, the volume ratio of the rare gas to the nitrogen gas in the gas mixture of (b) at 20 ° C and 101 kPa is 1:1 or lower. 3. For the method of claim 1, the volume ratio of the rare gas to the nitrogen in the gas mixture of (h) at 20 ° C and 101 k P a is 1: 2 or lower. 4. The method of any one of claims 1 to 3, wherein the gas mixture of (b) 25 200827469 gas mixture comprises from 1 to 37 vol% (by the gas mixture at 20 ° C and Total volume under pressure of 101 kPa). 5. The method of any one of claims 1 to 4, wherein the gas mixture of item (b) comprises a range of from 2 to 10% by volume (at 20 ° C and 101 kPa of the gas mixture) Total volume under pressure). 6. The method of any one of claims 3 to 5, wherein the gas mixture of (b) comprises at least 45% by volume of nitrogen (based on the total volume of the gas mixture at 20 ° C and 101 kPa pressure) ). 7. The method of any one of clauses 1 to 7 wherein the gas mixture of item (b) optionally contains at least 5% by volume of the oxidizing gas (at 20 ° C and 101 kPa of the gas mixture) Total volume under pressure). 8. The method of claim 7, wherein the oxidizing gas comprises oxygen, nitrous oxide, ozone, nitrogen monoxide, and nitrous oxide, and combinations thereof. 9. The method of claim 7 or 8, wherein the gas mixture of (b) comprises at least 10% by volume of oxygen (based on the total volume of the gas mixture at 20 ° C and a pressure of 10 kPa). 10. The method of any one of claims 1 to 9, wherein the gas precursor comprises at least one cerium-containing compound represented by the following chemical formula (I): R3Si[X-Si(R,)2] rR" (I) wherein R, R' and R" each represent -Η, -OH, a C^o hydrocarbyl group, or a Cmo alkoxy group; X represents -Ο- or -N (R'''')_, where each occurrence of R'm represents -Η or a C^o hydrocarbyl group and r 26 200827469 represents 0 or a range from 1 to 10. 11. The method of claim 10, wherein the gas precursor comprises a decane or a decane compound. 12. The method of any one of claims 1 to 9, wherein the gas precursor comprises at least one metal-containing compound represented by the following chemical formula (1): MRaXb (II) wherein Μ represents Zn, Sn, A1 and a metal of Ti; R, each of which represents -H, -OH, a Cl_1G hydrocarbyl group or a Cl lQ alkoxy group; X represents a halogen, including C1 or Br; and "a" and "b The integers representing the 11 and :^ parts, respectively, are within the range of the valence of the M as previously described. Let the total number of a+b be equal to the valence of the metal ruthenium; or its volatile salt. 13. The method of claim 12, wherein the at least one metal-containing compound comprises diethyl zinc, dimethyl zinc, zinc acetate, titanium tetrachloride, tin dimethyl diacetate, zinc acetylacetonate, Hexafluoroacetamidine oxime, zinc carbamate, trimethylindium, triethylindium, (2,2,6,6-tetramethyl-3,5-heptanedionate) ruthenium (IV) and the like a mixture. The method of any one of claims 1 to 13, wherein the gas mixture pressure is 101.3 kPa + eight 20 kPa. The method of any one of claims 1 to 14, wherein the plasma is at a frequency of at least 2 kHz and not more than 100 kHz and b) by a dielectric shielding discharge device. Operation occurs at power concentrations from w/cni2 to 140 W/cm2. 16. The method of claim 15, wherein the power concentration range is from 27 W 2008/2008 to from 40 W/cm 2 to 40 W/cm 2 . 17. The method of claim 16, wherein the solid deposit is deposited on the substrate at a rate of at least 0.008 mg / (cm 2 · min). 18. The method of claim 16, wherein the solid deposit is deposited on the substrate at a rate of at least 0.06 mg / (cm 2 · min). The method of any one of claims 1 to 18, wherein the substrate comprises at least one polymer selected from the group consisting of polycarbonates, polyurethanes, Poly(meth)acrylate, polypropylene, polyethylene, ethylene/α-anthracene copolymer, styrene-acrylonitrile copolymer, polyethylene terephthalate and polybutylene terephthalate ester. 20. A coated substrate obtainable by the method of any one of claims 1 to 19. 28 200827469 , 七、指定代表圖: (一) 本案指定代表圖為:第(3 )圖。 (二) 本代表圖之元件符號簡單說明: (無) 八、本案若有化學式時,請揭示最能顯示發明特徵的化學式:28 200827469 , VII. Designation of representative representatives: (1) The representative representative of the case is: (3). (2) A brief description of the symbol of the representative figure: (none) 8. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention:
TW96137530A 2006-10-06 2007-10-05 Improved plasma-enhanced chemical vapor deposition coating process TW200827469A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US85022506P 2006-10-06 2006-10-06

Publications (1)

Publication Number Publication Date
TW200827469A true TW200827469A (en) 2008-07-01

Family

ID=38920725

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96137530A TW200827469A (en) 2006-10-06 2007-10-05 Improved plasma-enhanced chemical vapor deposition coating process

Country Status (2)

Country Link
TW (1) TW200827469A (en)
WO (1) WO2008045226A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2335638B1 (en) * 2008-08-01 2011-02-09 Cosentino, S.A. ARTICLE IN THE FORM OF A TABLE OR Slab MANUFACTURED OF PETREO AGLOMERATE COATED WITH TRANSPARENT THIN SHEETS OF TIO2 OR ZNO THROUGH DRY DEPOSITION TECHNIQUES WITH HIGH RESISTANCE AGAINST SOLAR DEGRADATION.
DE102009030303A1 (en) 2009-06-24 2010-12-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for the production of a coating having antireflexion layer on a movable substrate by a plasma-enhanced chemical vapor deposition, comprises providing a gas mixture having process-, carrier- and/or balance gas through a slit
WO2013079798A1 (en) * 2011-12-01 2013-06-06 Beneq Oy Surface treatment apparatus and method
US20170350006A1 (en) * 2014-12-19 2017-12-07 Fujifilm Manufacturing Europe B.V. Method for Preparing Transparent Sheet Materials
US10703915B2 (en) * 2016-09-19 2020-07-07 Versum Materials Us, Llc Compositions and methods for the deposition of silicon oxide films
KR20210061453A (en) * 2018-10-16 2021-05-27 램 리써치 코포레이션 Plasma-enhanced wafer soaking for thin film deposition
CN114829670A (en) * 2019-12-19 2022-07-29 旭硝子欧洲玻璃公司 Silicon oxide coated polymer film and low pressure PECVD method for producing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1403902A1 (en) * 2002-09-30 2004-03-31 Fuji Photo Film B.V. Method and arrangement for generating an atmospheric pressure glow discharge plasma (APG)
EP1849593A4 (en) * 2005-02-17 2011-01-05 Konica Minolta Holdings Inc Gas-barrier film, process for producing gas-barrier film, resin base with the gas-barrier film for organic electroluminescent element, and organic electroluminescent element
WO2007133378A1 (en) * 2006-05-11 2007-11-22 Dow Global Technologies Inc. Multi-wall plastic sheet having an internal plasma-enhanced chemical vapor deposition coating and process for manufacturing the same

Also Published As

Publication number Publication date
WO2008045226A1 (en) 2008-04-17

Similar Documents

Publication Publication Date Title
JP5803937B2 (en) GAS BARRIER FILM, METHOD FOR PRODUCING GAS BARRIER FILM, AND ELECTRONIC DEVICE
JP6056854B2 (en) GAS BARRIER FILM, METHOD FOR PRODUCING GAS BARRIER FILM, AND ELECTRONIC DEVICE
KR101430892B1 (en) Gas-barrier film and electronic device
JP5929775B2 (en) Gas barrier film, method for producing the same, and electronic device including the gas barrier film
JP5192565B2 (en) Method for producing multilayer articles by arc plasma deposition
TW200827469A (en) Improved plasma-enhanced chemical vapor deposition coating process
CN104746050B (en) Plasma coating system for non-planar substrates
JP4433680B2 (en) Thin film formation method
EP2761054B1 (en) Deposition of silicon oxide by atmospheric pressure chemical vapor deposition
WO2005031403A1 (en) Optical element for display
JPWO2014123201A1 (en) Gas barrier film and method for producing the same
US20070212486A1 (en) Plasma Enhanced Chemical Vapor Deposition of Metal Oxide
WO2016027861A1 (en) Chemically stable alkyl aluminum solution, alkyl aluminum hydrolysate composition solution, composition for aluminum oxide film coating formation, article having aluminum oxide film, method for producing same, method for producing aluminum oxide thin-film, method for producing passivation film, passivation film, and solar cell element using same
KR20070012718A (en) Plasma enhanced chemical vapor deposition of metal oxide
JP2008023927A (en) Pressure-sensitive adhesive film
US20040121167A1 (en) Process for depositing finely dispersed organic-inorganic films and articles made therefrom
JP2005272957A (en) Surface treatment method and base material surface-treated by the surface treatment method
WO2014119754A1 (en) Gas barrier film, method for producing same, and electronic device using same
JP2006299373A (en) Method for producing film with gas barrier property, method for producing resin substrate for organic electroluminescence, and method for manufacturing organic electroluminescent element
JP4140289B2 (en) Atmospheric pressure plasma discharge processing apparatus, atmospheric pressure plasma discharge processing method, and optical element
JP2013022799A (en) Gas barrier film, and method of manufacturing the gas barrier film
JP6737279B2 (en) Electronic device and method for sealing electronic device
JP4349052B2 (en) Manufacturing method of fresnel lens for display
JP2004198590A (en) Article with thin film, its manufacturing method, low-reflection body, and transparent conductive body
JP2006305752A (en) Gas barrier film, resin base material for organic electroluminescence and organic electroluminescence element