WO2005116293A1 - Thin film forming equipment and thin film forming method - Google Patents

Thin film forming equipment and thin film forming method Download PDF

Info

Publication number
WO2005116293A1
WO2005116293A1 PCT/JP2005/008413 JP2005008413W WO2005116293A1 WO 2005116293 A1 WO2005116293 A1 WO 2005116293A1 JP 2005008413 W JP2005008413 W JP 2005008413W WO 2005116293 A1 WO2005116293 A1 WO 2005116293A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
electrode
film forming
impedance
gas
Prior art date
Application number
PCT/JP2005/008413
Other languages
French (fr)
Japanese (ja)
Inventor
Kiyoshi Oishi
Kazuhiro Fukuda
Original Assignee
Konica Minolta Holdings, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Holdings, Inc. filed Critical Konica Minolta Holdings, Inc.
Priority to JP2006513834A priority Critical patent/JP4899863B2/en
Publication of WO2005116293A1 publication Critical patent/WO2005116293A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32018Glow discharge
    • H01J37/32045Circuits specially adapted for controlling the glow discharge

Definitions

  • the present invention relates to an apparatus and a method for forming a thin film using an atmospheric pressure plasma discharge process.
  • Atmospheric pressure plasma CVD Chemical Vapor Deposition
  • Atmospheric pressure plasma CVD is being considered for practical use in forming deposited films in photoconductors for semiconductor devices, electrophotographic elements, various electronic elements, and optical elements.
  • an atmospheric pressure plasma processing apparatus for performing an atmospheric pressure plasma discharge process includes an atmospheric pressure plasma processing apparatus 1 using one high frequency power supply, and FIG. FIG.
  • the atmospheric pressure plasma processing apparatus 1 is connected to a power supply D which is a high-frequency power supply via a matching unit 11 for adjusting impedance, and is connected to a high-frequency electrode 12 composed of a metal base material 122 and a dielectric 121 so as to be grounded.
  • a metal base material 132 and an electrode 13 made of a dielectric material 131 on which a base material 14 is disposed are opposed to each other.
  • a gas mixture near the atmospheric pressure composed of a discharge gas and a thin film-forming gas is supplied between the high-frequency electrode 12 and the electrode 13 by a gas supply device (not shown).
  • a high-frequency voltage from D By applying a high-frequency voltage from D, a thin film is formed on the substrate 14.
  • the atmospheric pressure plasma processing apparatus includes an atmospheric pressure plasma processing apparatus la which is a high frequency power supply and has two power supplies having different frequencies.
  • the difference between the atmospheric pressure plasma processing apparatus la and the atmospheric pressure plasma processing apparatus 1 here is that the atmospheric pressure plasma processing apparatus la is connected to an electrode 13 on which a base material 14 is disposed by means of an LF matching unit 15 that boosts the voltage to an electrode 13. 1 This is the point where the power supply LF is connected.
  • the atmospheric pressure plasma processing apparatus la has a higher plasma density in the vicinity of the base material 14 and can form a better quality thin film.
  • the output of the power of the atmospheric pressure plasma processing apparatus is partially returned to the power as a reflected wave if the impedance of the power and the impedance of the plasma viewed from the electrodes are not the same, Can not be sent to In a plasma processing apparatus, it is necessary to maintain a constant power consumption in a plasma and maintain a stable plasma state in order to form a high-quality thin film having a uniform thickness at the time of film formation.
  • the atmospheric pressure plasma apparatus is provided with a matching box (matching box) for making the impedance the same, and is adjusted so that the impedance becomes the same in advance by a preliminary experiment or the like.
  • the matching device is equipped with a mechanism that automatically adjusts according to the impedance on the plasma side, which fluctuates depending on the power supply voltage, gas temperature, pressure, supply amount, and the like.
  • the matching device 11 in the atmospheric pressure plasma processing apparatus 1 and la adjusts the absolute value adjusting variable capacitor 21 for adjusting the absolute value of the impedance, and adjusts the phase of the impedance.
  • the phase adjustment variable capacitor 22, coil 23, and the absolute value adjustment variable capacitor 21 and coil 23 are automatically adjusted from the voltage value and current value between the power supply and the electrode to adjust the impedance of the power supply and the impedance of the plasma viewed from the electrode.
  • a control box 24 for making the same is attached, and an output from a power supply is sent to a maximum as a plasma output (for example, see Patent Document 1).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-268557
  • Patent Document 2 JP-A-8-96992
  • the above technique is an effective method for forming a thin film by plasma processing between a plurality of sets of electrodes.
  • the formation of high-quality thin films is still insufficient, and realizing a more stable plasma state has been a major issue. Therefore, the present invention has been made in such an industrial demand, and it is possible to generate high-density plasma while maintaining a stable discharge state, and to form a thin film capable of forming a good-quality thin film. It is to provide a device.
  • an output impedance of the AC power supply and the plurality of electrodes are provided.
  • a plurality of impedance matching devices for matching each input impedance of the pair are interposed, and based on the AC power supply or the voltage between the electrode pairs and the AC power supply or the current flowing between the electrode pairs,
  • the automatic adjustment means may use one of the plurality of impedance matching devices for any one of the impedance matching devices.
  • variable capacitor for absolute value adjustment is fixed, and the impedance is automatically adjusted using only the variable capacitor for phase adjustment.
  • said one of the impedance matching device, configured thin film forming apparatus so as to automatically adjust impedance by the absolute value adjusting variable capacitor and a phase adjusting variable capacitor scratch.
  • the impedance matching device has a variable capacitance capacitor for adjusting an absolute value of impedance, and the automatic adjusting means forms a thin film for adjusting the capacitance of the variable capacitance capacitor. apparatus.
  • the plurality of pairs of electrodes are a planar electrode in which one electrode is provided integrally in a planar shape, and the other electrode Is a thin film forming apparatus comprising a plurality of individual electrodes provided separately and separately opposed to said one electrode.
  • the plurality of pairs of electrodes are One electrode is a roll-type electrode provided so as to be rotatable in the circumferential direction, and the other electrode is a plurality of individual electrodes provided separately and opposed to the outer peripheral surface of the one electrode. Puru thin film forming equipment.
  • FIG. L (a) is a longitudinal sectional view of a thin film forming apparatus using an atmospheric pressure plasma process with one power source, and (b) is a thin film forming apparatus using an atmospheric pressure plasma process with two power sources.
  • FIG. 2 (a) is a longitudinal sectional view of a thin film forming apparatus for performing atmospheric pressure plasma processing on a substrate on a flat plate in the present invention, and (b) is an atmospheric pressure plasma on a substrate on a film in the present invention. It is a longitudinal section of a thin film formation device by processing.
  • FIG. 3 is a diagram showing an internal configuration of a matching device 11.
  • the plasma discharge treatment is performed at or near atmospheric pressure, and the pressure at or near atmospheric pressure is about 20 kPa to: about L10 kPa, which is a good value according to the present invention.
  • the pressure at or near atmospheric pressure is about 20 kPa to: about L10 kPa, which is a good value according to the present invention.
  • 93 kPa to 104 kPa is preferable.
  • the gas supplied between the opposed electrodes is at least a discharge gas excited by an electric field, and a plasma state or an excited state by receiving the energy to form a thin film. Contains a thin film forming gas to be formed.
  • the discharge condition in the present invention is that the first high-frequency electric field and the second high-frequency electric field are superimposed on the discharge space, and the frequency f of the second high-frequency electric field is higher than the frequency f of the first high-frequency electric field.
  • the frequency f of the second high-frequency electric field is 0.8 MHz or more and 200 MHz or less and the second high frequency
  • the electric field strength V of the wave electric field is 0.5 kVZmm or more, and
  • the frequency ⁇ of the first high-frequency electric field is 1 kHz or more and 500 kHz or less, and the electric field strength V force of the first high-frequency electric field is 4 kVZmm or more.
  • the frequency f of the first high-frequency electric field is 50 kHz or more and 100 kHz or less, the electric field strength of the first high-frequency electric field V force lOkVZmm or more, and the frequency f of the second high-frequency electric field f force ⁇ MHz or more 50 MHz
  • the electric field strength V of the second high-frequency electric field is 1.
  • High frequency refers to a high frequency of 0.5 kHz or more.
  • the intensity of the electric field at the start of discharge refers to the intensity of discharge occurring in a discharge space (such as the configuration of electrodes) and reaction conditions (such as gas conditions) used in an actual thin film forming apparatus. Refers to the lowest possible electric field strength.
  • the discharge starting electric field intensity varies depending on the kind of gas supplied to the discharge space, the dielectric material of the electrode, the distance between the electrodes, and the like. In the same discharge space, the discharge starting electric field intensity is dominated by the discharge starting electric field intensity of the discharge gas.
  • the force described for the superposition of the continuous wave such as the sine wave is not limited to this. If both the first high-frequency electric field V and the second high-frequency electric field V are pulse waves,
  • the high frequency electric field may be a pulse wave. Further, it may have a third electric field.
  • a first high-frequency electric field having a frequency f and an electric field strength V is applied to a first electrode constituting a counter electrode. Connect the first power supply to be applied, and connect the second electrode to the second electrode with frequency f and electric field strength V
  • the above-mentioned atmospheric pressure plasma discharge treatment apparatus includes a gas supply means for supplying a discharge gas and a thin film forming gas between opposed electrodes. Further, it is preferable to have an electrode temperature control means.
  • the first power supply of the atmospheric pressure plasma discharge treatment apparatus according to the present invention is higher than the second power supply.
  • V preferably having the ability to apply high frequency electric field strength.
  • the output density of the first high-frequency electric field V can be improved while maintaining the uniformity of the discharge.
  • Uniform high-density plasma can be generated, and further improvement in film forming speed and film quality can be achieved.
  • FIGS. 2 (a) and 2 (b) are longitudinal sectional views showing an example of an atmospheric pressure plasma discharge treatment apparatus of a type for treating a substrate between a plurality of counter electrodes useful in the present invention.
  • the number is preferably 10 or less, more preferably 2 to 5.
  • the atmospheric pressure plasma processing apparatus 2a includes a plurality of second power supplies HF1 to HF3 as second power supplies, dielectrics 121a to 121c, and a metal base material 122a.
  • a matching device 11a- Lie connected between the second power supply and the electrode for matching impedance with the electrodes arranged in close proximity to each other, and a first power supply as the first power supply.
  • LF matching device 15 connected between first power supply and electrode 13 to boost the voltage, film-like base material 14 placed on top of roll-type electrode and subjected to plasma treatment, and discharge space
  • a gas supply device 16 for supplying a mixed gas of a rare gas and a thin film to the gas.
  • the matching devices l la to l lc were connected to the variable capacitor 21 for absolute value adjustment and the variable capacitor 22 for phase adjustment to maximize the power output from the power supply through preliminary experiments. Is set in advance so as to be sent. Then, during operation of the apparatus, the absolute value adjusting variable capacitor 21 and the phase adjusting variable capacitor 22 are automatically adjusted by the control box 24 in any one of the matching devices l la to l lc. In other matching devices, only the absolute value adjusting variable capacitor 21 is fixed, and the phase adjusting variable capacitor 22 is automatically adjusted by the control box 24.
  • a single matching device automatically adjusts the absolute value of the impedance, which makes it possible to cope with fluctuations in the plasma state due to fluctuations in the gas inflow, etc., and stabilizes the formation of multiple thin films simultaneously. You can do it.
  • a plasma treatment can be continuously performed on a film-shaped substrate.
  • the atmospheric pressure plasma processing apparatus 2 shown in FIG. 2 (a) is configured by connecting a plate electrode 13 to a first power supply LF which is a first power supply of the atmospheric pressure plasma processing apparatus 2a, This is a device that performs plasma processing on 14.
  • the first power supply (high-frequency power supply) installed in the atmospheric pressure / atmospheric pressure plasma discharge treatment apparatus of the present invention includes:
  • A7 Pearl Industry 400kHz CF-2000-400k and other commercially available products can be used, and any of them can be used. [0038]
  • the second power supply high-frequency power supply
  • the asterisk (*) is the high-frequency power supply from Hyden Laboratory, Inc. (100 kHz in continuous mode). Others are high-frequency power supplies that can apply only continuous sine waves.
  • an electrode capable of maintaining a uniform and stable discharge state by applying such an electric field to an atmospheric pressure plasma discharge treatment apparatus.
  • the first electrode (first high-frequency electric field) supplies an electric power (output density) of 1 WZcm 2 or more to excite the discharge gas. Energy to the thin film forming gas to form a thin film.
  • the upper limit value of the power supplied to the first electrode is preferably 50 WZcm 2 , more preferably 20 WZcm 2 .
  • the lower limit is preferably 1.2 W / cm 2 .
  • the discharge area (cm 2 ) refers to an area in a range where discharge occurs in the electrode.
  • the output density can be further improved.
  • the power of the second high-frequency electric field is preferably 5 WZcm 2 or more.
  • the upper limit is 50 WZcm 2 .
  • the waveform of the high-frequency electric field is not particularly limited.
  • a continuous sine wave continuous oscillation mode called continuous mode
  • an intermittent oscillation mode called pulse mode in which ONZOFF is performed intermittently.Either of these may be adopted, but at least the second electrode side (the second high frequency For the electric field, a continuous sine wave is preferable because a denser and higher quality film can be obtained.
  • the electrodes used in such a thin film formation method using atmospheric pressure plasma have a high performance even in terms of structure. It must be able to withstand severe conditions.
  • Such an electrode is preferably a metal base material coated with a dielectric.
  • the dielectric coated electrode used in the present invention One of the characteristics that preferably has characteristics between various metallic base materials and dielectrics is one of the characteristics.
  • the difference in the linear thermal expansion coefficient between the metallic base material and the dielectric is 10 ⁇ 10 — Combination of less than 6 Z ° C.
  • the linear thermal expansion coefficient is a physical property value of a known material.
  • the combination of a conductive metallic base material and a dielectric material having a difference in linear thermal expansion coefficient within this range is as follows: 1: The metallic base material is pure titanium or a titanium alloy, and the dielectric material is a ceramic. Sprayed coating 2: Metallic base material is pure titanium or titanium alloy, dielectric is glass lining 3: Metallic base material is stainless steel, dielectric is ceramic sprayed coating 4: Metallic base material is stainless steel, Dielectric material is glass lining 5: Metallic base material is ceramic and iron composite material, dielectric material is ceramic sprayed coating 6: Metallic base material is ceramic and iron composite material, dielectric material is glass lining 7: Metallic The base material is a composite material of ceramics and aluminum, and the dielectric is a ceramic sprayed coating. 8: The metal base material is a composite material of ceramics and aluminum, and the dielectric is glass lining. . From the viewpoint of the difference in linear thermal expansion coefficient, the above 1 or 2 and 5 to 8 are particularly preferable, and 1 is particularly preferable.
  • titanium or a titanium alloy is particularly useful as the metallic base material from the above characteristics.
  • titanium or titanium alloy as the metallic base material and using the dielectric material as described above, it is possible to use the electrode for a long time under severe conditions where deterioration of the electrode during use, especially cracks, peeling, and falling off, etc. will not occur. Can withstand.
  • the metallic base material of the electrode useful in the present invention is titanium alloy or titanium metal containing 70% by mass or more of titanium.
  • the content of titanium in the titanium alloy or the titanium metal is 70% by mass or more, it can be used without any problem. /, Prefer things.
  • titanium alloys or titanium metals useful in the present invention those generally used as industrial pure titanium, corrosion-resistant titanium, high-strength titanium and the like can be used.
  • industrial pure titanium include TIA, TIB, TIC, and TID, all of which have very few iron, carbon, nitrogen, oxygen, and hydrogen atoms.
  • the titanium content is 99% by mass or more.
  • T15PB can be preferably used as the corrosion resistance titanium alloy, which contains lead in addition to the above-mentioned contained atoms, and has a titanium content of 98% by mass or more.
  • the titanium alloy in addition to the above-mentioned atoms except for lead, T64, ⁇ 325, ⁇ 525, ⁇ 3 and the like containing aluminum and also containing vanadium and tin can be preferably used. The content is 85% by mass or more.
  • These titanium alloys or titanium metals are made of a stainless steel, for example, having a coefficient of thermal expansion smaller than that of AISI316 by about 1/2, as a metallic base material, and a later-described dielectric applied on the titanium alloy or titanium metal. The combination can withstand high temperature and long time use.
  • an inorganic compound having a relative dielectric constant of 6 to 45 is preferably used.
  • glass lining materials such as silicate glass and borate glass. Among them, those formed by spraying ceramics described later and those provided by glass lining are preferred. In particular, a dielectric provided by spraying alumina is preferable.
  • the porosity of the dielectric is 10% by volume or less, preferably 8% by volume or less, and more preferably more than 0% by volume. Less than 5% by volume.
  • the porosity of the dielectric can be measured by a BET adsorption method or a mercury porosimeter. In the examples described later, the porosity is measured using a dielectric fragment coated on a metallic base material by a mercury porosimeter manufactured by Shimadzu Corporation. High durability is achieved by the dielectric having a low porosity.
  • a dielectric material having such voids but having a low porosity there can be mentioned a ceramic sprayed film having a high density and a high adhesion by an atmospheric plasma spraying method described later.
  • a sealing treatment it is preferable to perform a sealing treatment.
  • the above-mentioned atmospheric plasma spraying method is a technique in which fine powders such as ceramics, wires and the like are charged into a plasma heat source and sprayed as molten or semi-molten fine particles onto a metal base material to be coated to form a film.
  • the plasma heat source is a high-temperature plasma gas in which a molecular gas is heated to a high temperature, dissociated into atoms, and further applied with energy to emit electrons.
  • the spray speed of this plasma gas is higher than that of conventional arc spraying or flame spraying. Since the material collides with the metal base material at a high speed, a high-density coating film having high adhesion strength can be obtained.
  • the thickness of the dielectric is 0.5 to 2 mm. This variation in film thickness is desirably 5% or less, preferably 3% or less, and more preferably 1% or less.
  • a sprayed film of ceramics or the like is used as described above.
  • an inorganic compound it is preferable to perform a sealing treatment with an inorganic compound.
  • inorganic compounds metal oxides are preferred, and those containing silicon oxide (SiO 2) as a main component are particularly preferable.
  • the inorganic compound for the pore-sealing treatment is preferably formed by curing by a sol-gel reaction.
  • a metal alkoxide or the like is applied as a sealing liquid on the ceramic sprayed film and cured by a sol-gel reaction.
  • the inorganic compound is mainly composed of silica, it is preferable to use alkoxysilane as the sealing liquid.
  • the energy treatment include thermal curing (preferably at 200 ° C. or lower) and ultraviolet irradiation.
  • thermal curing preferably at 200 ° C. or lower
  • ultraviolet irradiation ultraviolet irradiation
  • the cured metal oxide is used.
  • the content of the substance is preferably 60 mol% or more.
  • the content of SiO (X is 2 or less) after curing is preferably 60 mol% or more.
  • the SiO content after curing is measured by analyzing the tomography of the dielectric layer by XPS (X-ray photoelectron spectroscopy).
  • the maximum height (R) of the surface roughness defined by JIS B 0601 on at least the side of the electrode which is in contact with the substrate is set to be 10 m or less. Adjustment is preferable from the viewpoint of obtaining the effects described in the present invention, but more preferably, the maximum value of the surface roughness is 8 m or less, particularly preferably 7 m or less. In this way, the thickness of the dielectric and the gap between the electrodes can be kept constant, the discharge state can be stabilized, and the heat shrinkage can be achieved by polishing the dielectric surface of the dielectric coated electrode. Distortion and cracks due to differences and residual stress can be eliminated, and high accuracy and durability can be greatly improved.
  • Polishing of the dielectric surface is preferably performed on at least the dielectric in contact with the substrate.
  • the center line average surface roughness (Ra) specified in JIS B 0601 is preferably 0.5 ⁇ m or less, more preferably 0.1 m or less.
  • the heat-resistant temperature is 100 ° C or higher. It is more preferably at least 120 ° C, particularly preferably at least 150 ° C. The upper limit is 500 ° C.
  • the heat-resistant temperature refers to the highest temperature that can withstand a state in which dielectric breakdown does not occur and a normal discharge can be performed with respect to a voltage used in atmospheric pressure plasma processing.
  • Such a heat-resistant temperature is determined by applying the above-described ceramic spraying or a dielectric provided with a layered glass lining having a different amount of bubbles mixed therein, or a range of a difference in linear thermal expansion coefficient between the metallic base material and the dielectric. It can be achieved by appropriately combining the means for appropriately selecting the materials within.
  • the supplied gas contains at least a discharge gas and a thin film forming gas.
  • the discharge gas and the thin film forming gas may be supplied as a mixture, or may be supplied separately.
  • the discharge gas is a gas that can generate plasma capable of forming a thin film.
  • the discharge gas include nitrogen, a rare gas, air, hydrogen gas, and oxygen, and these may be used alone as a discharge gas or may be used as a mixture.
  • nitrogen is preferable as the discharge gas.
  • 50 to 50% of discharge gas It is preferable that LOO volume% is nitrogen gas.
  • the discharge gas other than nitrogen preferably contains a rare gas in an amount of less than 50% by volume.
  • the amount of the discharge gas is preferably 90 to 99.9% by volume based on the total amount of gas supplied to the discharge space.
  • the thin film forming gas itself is activated by dissociation or excitation and becomes chemically active on the substrate. It is a raw material that is deposited on to form a thin film.
  • a gas supplied to a discharge space for forming a thin film used in the present invention will be described.
  • a discharge gas and a thin film forming gas Further, an additive gas may be added.
  • the discharge gas preferably contains 90 to 99.9% by volume of the total gas supplied to the discharge space.
  • the thin film forming gas used in the present invention includes an organometallic compound and a halogen metal compound.
  • Organometallic compounds useful in the present invention are preferably those represented by the following general formula (I).
  • M is a metal
  • R is an alkyl group
  • R is an alkoxy group
  • R is a j8-diketone complex group
  • the alkyl group for R include a methyl group, an ethyl group, a propyl group, and a
  • alkoxy group for R for example, methoxy group, ethoxy
  • a group selected from a diketone complex group, a ⁇ -ketocarboxylic ester complex group, a ⁇ -ketocarboxylic acid complex group and a ketoxoxy group ketoxoxy complex group
  • a ⁇ -diketone complex group such as 2,4 pentanedione Cetylacetone or acetacetone), 1,1,1,5,5,5hexamethyl- 2,4 pentanedione, 2,2,6,6-tetramethylenole 3,5 heptanedione, 1,1,1-
  • j8-ketocarboxylic acid ester complex groups include, for example, methyl acetate acetate, ethyl acetate acetate, propyl acetate acetate, propyl acetate acetate, ethyl trifluoroacetate, and trifluoroacetate.
  • methyl 13-ketocarboxylic acids include acetoacetic acid and trimethylacetovinegar.
  • Ketokishi for example, Asetokishi group (or Asetokishi group), propionic - Ruokishi group, Buchiriro alkoxy group, Atari Roy Ruo alkoxy group and a methacryloyloxy Ruo alkoxy group.
  • the number of carbon atoms of the above group is preferably 18 or less, including the organometallic compounds described in the above examples.
  • it may be a straight-chain or branched one or a hydrogen atom substituted with a fluorine atom.
  • organometallic compounds having at least one or more oxygen atoms in the molecule which are preferred for safe organometallic compounds, are preferred.
  • Such compounds include organometallic compounds containing at least one alkoxy group of R,
  • a metal compound having at least one group selected from a ketone complex group, a ⁇ -ketocarboxylic ester complex group, a ⁇ -ketocarboxylic acid complex group, and a ketoxoxy group (ketoxoxy complex group) is preferable.
  • the gas supplied to the discharge space may be mixed with an additive gas that promotes a reaction of forming a thin film, in addition to a discharge gas and a thin film-forming gas.
  • the additive gas include oxygen, ozone, hydrogen peroxide, carbon dioxide, carbon monoxide, hydrogen, and ammonia. Among them, components selected from oxygen, carbon monoxide and hydrogen are preferred. Mixing is preferred. The content is preferably 0.01 to 5% by volume with respect to the total amount of the gas, whereby the reaction is promoted, and a dense and high-quality thin film can be formed.
  • the thickness of the formed oxide or composite compound thin film is preferably in the range of 0.1 to: LOOO nm.
  • the metal of the organometallic compound, the metal halide, and the metal hydride used in the thin film forming gas Li, Be, B, Na, Mg, Al, Si, K, Ca, Sc, Ti , V, Cr, Mn, Fe ⁇ Co, Ni ⁇ Cu, Zn, Ga ⁇ Ge ⁇ Rb ⁇ Sr ⁇ Y, Zr ⁇ Nb ⁇ Mo, Cd, In, Ir, Sn, Sb, Cs, Ba, La, Examples include Hf, Ta, W, Tl, Pb, Bi ⁇ Ce, Pr, Nd, Pm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and the like.
  • the thin film forming apparatus of the present invention can obtain various highly functional thin films by using a metal compound such as an organometallic compound, a halogen metal compound, or a metal hydride compound together with a discharge gas. .
  • a metal compound such as an organometallic compound, a halogen metal compound, or a metal hydride compound together with a discharge gas.
  • Examples of the thin film of the present invention are shown below, but the present invention is not limited thereto.
  • Magnetic recording film Fe—Ni, Fe—Si—Al, y—FeO, Co, FeO, Cr, SiO, AIO
  • the nitriding degree of the nitride, the oxidation degree of the oxide, the sulfide degree of the sulfide, and the carbonization degree of the carbide are merely examples, and the composition ratio with the metal may be changed as appropriate.
  • the thin film may contain impurities such as a carbon compound, a nitrogen compound, and a hydrogen compound in addition to the metal compound.
  • metals of the metal compound are Si (silicon), Ti (titanium), Sn (tin), Zn (zinc), In (indium) and A1 (aluminum).
  • Si silicon
  • Ti titanium
  • Sn titanium
  • Zn zinc
  • In indium
  • A1 aluminum
  • the antireflection layer of the antireflection film among the high-performance films according to the present invention is formed by laminating a thin film of a medium refractive index layer, a high refractive index layer, and a low refractive index layer.
  • an antireflection film having an antireflection layer is obtained by laminating each refractive index layer directly or via another layer on a substrate.
  • three units can be arranged in series and processed continuously. It is suitable for forming the thin film of the present invention.
  • winding may be performed after each layer processing, and the layers may be sequentially processed and laminated.
  • an antifouling layer is provided on the antireflection layer
  • another one of the above-mentioned atmospheric pressure plasma discharge treatment apparatuses may be continuously installed, and four antifouling layers may be arranged and the antifouling layer is finally laminated.
  • a hard coat layer or an anti-glare layer may be provided in advance by coating on the base material, or a knock coat layer may be provided in advance by coating on the back side.
  • the gas for forming an antireflection layer thin film of the antireflection film according to the present invention can be used without limitation as long as it is a compound capable of obtaining an appropriate refractive index. Titanium conjugate as a reactive gas, and a mixture of a tin compound or a titanium compound and a silicon compound (or a layer formed of a titanium compound for forming a high refractive index and a low refractive index layer as a medium refractive index layer thin film forming gas).
  • the low refractive index layer thin film forming gas may preferably be a silicon compound, a fluorine compound, or a mixture of a silicon compound and a fluorine compound. . In order to adjust the refractive index, two or more of these compounds may be used as a thin film forming gas for forming any of the layers.
  • the tin compound used in the gas for forming a medium refractive index layer thin film useful in the present invention is an organic tin compound, a tin hydride compound, a halogenated tin, and the like.
  • two or more of these thin film forming gases may be mixed and used at the same time.
  • Sani ⁇ layer formed in order to be able to lower the surface specific resistance value 10 u Q Zcm 2 or less, are also useful as anti-static layer.
  • Examples of the titanium conjugate used in the high refractive index layer thin film forming gas useful in the present invention include an organic titanium conjugate, a titanium hydrogen compound, a halogen titanium, and the like.
  • organic titanium conjugate e.g., triethoxytitanium, trimethoxytitanium, triisopropoxytitanium, tributoxytitanium, tetraethoxytitanium, tetraisopropoxytitanium, methyldimethoxytitanium, ethyltriethoxytitanium, methyltriisopropoxytitanium, triethyltitanium, triisopropyltitanium , Tributyl titanium, tetraethyl titanium, tetraisopropyl titanium, tetrabutyl titanium, tetradimethylamino titanium, dimethyl titanium di (2,4-pentanedionate), ethyl titanium tri (2,
  • Examples of the silicon compound used in the low-refractive index layer thin film forming gas useful in the present invention include an organic silicon compound, a silicon hydride compound, a halogenated silicon compound, and the like.
  • silicon hydrogen compounds such as tetrabutoxy silane, dimethinoresimethoxy silane, ethynole ethoxy silane, ethynole silane di (2,4-pentanedionate), methyl trimethoxy silane, methyl triethoxy silane, and ethyl triethoxy silane
  • the halogenated silicon compound such as tetrahydrosilane, hexahydrogendisilane and the like include tetrachlor
  • the above-mentioned fluorine compounds can be used. Two or more of these thin film forming gases can be mixed and used at the same time. For fine adjustment of the refractive index, two or more of these tin compounds, titanium compounds and silicon compounds may be appropriately mixed and used at the same time.
  • the above-mentioned organotin compound, organotitanium compound or organosilicon compound is preferably a metal hydrogen compound or an alkoxy metal from the viewpoint of handling. Alkoxy metals are preferably used because they are small.
  • both may be in a gas, liquid or solid state at normal temperature and normal pressure. I do not care. In the case of gas, it can be directly introduced into the discharge space, but in the case of liquid or solid, it is used after being vaporized by heating, decompression, ultrasonic irradiation or the like.
  • a metal alkoxide such as tetraethoxy metal or tetraisopropoxy metal which is liquid at ordinary temperature and has a boiling point of 200 ° C or less is used. It is suitably used for forming an anti-reflection film.
  • the alkoxy metal may be used after being diluted with a solvent. In this case, the alkoxy metal may be vaporized into a rare gas by a vaporizer or the like and used as a mixed gas.
  • organic solvents such as methanol, ethanol, isopropanol, butanol, n-xane and the like and a mixed solvent thereof can be used.
  • the content in the total gas is preferably 0.0110% by volume. , the more preferred are 0.01 1 volume 0/0.
  • the medium refractive index layer can be obtained by appropriately mixing the silicon compound, the titanium compound or the tin compound according to the target refractive index. Can be.
  • the preferable refractive index and film thickness of each refractive index layer are, for example, 1.6 to 1.8 as a refractive index and about 50 to 70 nm as a film thickness for a tin oxide layer as a medium refractive index layer.
  • the high refractive index titanium oxide layer has a refractive index of 1.9 to 2.4
  • the film thickness is about 80 to 150 nm
  • the low refractive index silicon oxide layer has a refractive index of 1.3 to 1.5.
  • the thickness is about 80 to 120 nm.
  • the metal component of the organometallic compound used for forming the anti-reflection layer described above slightly differs in that it forms a thin film having transparency and conductivity such as indium. Almost the same components are used.
  • the metal of the organometallic compound for forming the transparent conductive film is at least one metal selected from indium (In), zinc (Zn) and tin (Sn) forces.
  • preferred examples of the preferred organometallic compound include indium tris (2,4 pentanedionate), indium tris (hexafluoropentanedionate), indium triacetate acetate, and triacetate.
  • the transparent conductive film is formed in order to further enhance the conductivity of the transparent conductive film formed from the organometallic compound.
  • the organic metal compound as a thin film-forming gas, which is preferable to dope a film, and an organic metal compound gas for doping be mixed and used at the same time.
  • the gas for forming a thin film of an organometallic compound or a fluorine compound used for doping include triisopropoxyaluminum and tris (2,4 pentanedionate).
  • the ratio of the organometallic compound necessary for forming the transparent conductive film to the gas for forming a thin film for doping varies depending on the type of the transparent conductive film to be formed.
  • tin is used for indium oxide.
  • the amount of the thin film-forming gas so that the atomic ratio of the ratio of In to Sn is in the range of 100: 0.1 to: LOO: 15. You. It is preferable to adjust the ratio to 100: 0.5 to: L00: 10.
  • a transparent conductive film obtained by doping fluorine to tin oxide
  • the atomic ratio of the ratio of Sn to F in the obtained FTO film is 100: 0.01 to: L00: 50. It is preferable to adjust the quantity ratio of the thin film-forming gas so as to fall within the range.
  • O ZnO-based amorphous transparent conductive film In O ZnO-based amorphous transparent conductive film
  • the amount ratio of the thin film forming gas so that the atomic ratio of the ratio of In to Zn is in the range of 100: 50 to L00: 5.
  • Sn ratio, 311: ratio and 111: 211 ratio In: Sn ratio, 311: ratio and 111: 211 ratio
  • the transparent conductive thin film forming gas is used in an amount of 0.01 to 10 volumes with respect to the mixed gas.
  • the obtained transparent conductive film is, for example, an oxide of SnO, InO, ZnO.
  • O) Complex oxides doped with dopants such as O) can be mentioned, and an amorphous film mainly containing at least one of these forces is preferable.
  • non-oxide films such as chalcogenide, LaB, TiN, and TiC
  • metal films such as Pt, Au, Ag, Cu, and CdO
  • a transparent conductive film can be given.
  • the thickness of the formed oxide or composite oxide transparent conductive film is preferably in the range of 0.1 to: LOOO nm.
  • the substrate used in the present invention may have a plate-like, sheet-like, or film-like planar shape.
  • a thin film such as a three-dimensional one such as a lens or a molded article such as a lens can be formed on its surface.
  • the form or material of the substrate there is no limitation on the form or material of the substrate as long as the substrate is exposed to the mixed gas in a plasma state in a stationary state or a transported state and a uniform thin film is formed.
  • a planar shape or a three-dimensional shape may be a glass plate, a resin film, or the like.
  • Various materials such as glass, resin, pottery, metal, and nonmetal can be used.
  • glass includes a glass plate and a lens
  • resin includes a resin lens, a resin film, a resin sheet, and a resin plate.
  • the resin film can be continuously transferred between the electrodes or in the vicinity of the electrodes of the atmospheric pressure plasma discharge treatment apparatus according to the present invention to form a transparent conductive film
  • the resin film can be used in a vacuum system such as sputtering. It is suitable for mass production, which is not a batch type, and is suitable as a production system with continuous high productivity.
  • the material of the molded product such as a resin film, a resin sheet, a resin lens, and a resin molded product is, for example, cellulose paste acetonate, cellulose paste diacetate, cellulose acetate butyl acetate, or cellulose acetate butyrate.
  • cellulose esters such as polyethylene terephthalate and polyethylene naphthalate, polyolefins such as polyethylene and polypropylene, polyvinylidene chloride, polyvinyl chloride, polyvinyl alcohol, ethylene vinyl alcohol copolymer, and syndiotactic polystyrene.
  • Polycarbonate, norbornene resin, polymethylpentene, polyetherketone, polyimide, polyethersulfone, polysulfone, polyetherimide, polyamide, fluorine resin, polymethyl Ruatalylate, atarilate copolymer and the like can be mentioned.
  • a cellulose ester film that is nearly optically isotropic is preferably used for the optical element of the present invention.
  • cellulose ester film as described above, cellulose triacetate film and cellulose acetate propionate are one of those preferably used.
  • commercially available Co-Katak KC4 UX and the like are useful.
  • the surface of these resins coated with gelatin, polybutyl alcohol, acrylic resin, polyester resin, cellulose ester resin or the like can also be used.
  • An antiglare layer, a clear hard coat layer, a barrier layer, an antifouling layer and the like may be provided on the thin film side of these resin films.
  • an adhesive layer, an alkali barrier coat layer, a gas barrier layer, a solvent-resistant layer, and the like may be provided as necessary.
  • the substrate used in the present invention is not limited to the above description.
  • the film thickness of the film is preferably 10 to: LOOO ⁇ m, more preferably 40 to 200 ⁇ m.
  • the present example is an experiment of plasma treatment of a film by a roll rotating electrode and a plurality of electrodes placed opposite to the roll rotating electrode (see FIG. 2 (b)).
  • stainless steel SUS316 was used as the electrode base material, and the dielectric material was sprayed with a single layer of alumina ceramic on the discharge surface of the electrode facing the electrode, and then the alkoxysilane monomer was applied. A coating solution dissolved in an organic solvent was applied to the ceramic coating, dried, and then heated at 150 ° C.
  • a film substrate was placed on the electrode system thus prepared, and a SiO film was formed.
  • the mixed gas for forming the SiO film is as follows: Discharge gas: Nitrogen gas
  • Reaction gas oxygen gas (0.1 to 21% based on the volume of nitrogen gas)
  • the impedance absolute value and the phase adjustment of only one matching device are automatically variable, and the other matching devices have the fixed impedance absolute value and only the phase is adjusted (this application).
  • An experiment in which the absolute value of the impedance and the phase adjustment were automatically varied for all matching devices (Comparative 1), and an experiment in which the absolute value of the impedance was fixed for all the matching devices and only the phase adjustment was automatically varied. (Comparison 2) was performed, and the results shown in Table 1 were obtained.
  • the setting outputs of HF1 to HF3 were set at 300, 1000, and 2000W.
  • the reflection power was measured from the current and voltage between the power supply and the electrodes. The measured value and the maximum measured value are described.
  • the reflected power was The value of was small and the fluctuation was small.
  • a uniform, high-quality thin film could be formed on the base material.
  • Comparative 2 has the same fluctuation range as Comparative 1, and the discharge state does not fluctuate frequently, but once matching cannot be achieved, it cannot be dealt with, and the state of mismatch continues. For this reason, although the thin film on the substrate is somewhat uniform, it has been difficult to form a film having a desired thickness.
  • At least one matching device 11 is provided between the plurality of second power sources HF and the high-frequency electrodes 12 and matches the impedance during operation of the device. Automatically adjusts the absolute value of the impedance and the phase value, and the other matching device 11 fixes the absolute value of the impedance and automatically adjusts only the phase value.
  • a plasma treatment can be performed on a film-shaped substrate, and by rotating the roll-type electrode, Can be subjected to continuous plasma processing.

Abstract

Thin film forming equipment is provided for generating high density plasma maintaining stable discharge conditions and for manufacturing an excellent quality thin film. A matching box is provided between a plurality of second power supplies (HF) and high frequency electrodes for matching impedance. An impedance absolute value and a phase value are automatically adjusted by at least one matching box during operation of the equipment, the impedance absolute value is fixed by other matching box and only the phase value is automatically adjusted.

Description

明 細 書  Specification
薄膜形成装置及び薄膜形成方法  Thin film forming apparatus and thin film forming method
技術分野  Technical field
[0001] 本発明は、大気圧プラズマ放電処理を用いた薄膜形成装置及び方法に関する。  The present invention relates to an apparatus and a method for forming a thin film using an atmospheric pressure plasma discharge process.
背景技術  Background art
[0002] 従来から、大気圧プラズマ放電処理を用いることによって、放電ガスと薄膜形成性 ガスの混合ガスを使用して高品位の薄膜を得る大気圧プラズマ CVD (Chemical Vapor Deposition)が知られている。そして上記大気圧プラズマ CVDは、半導体デ バイス電子写真用感光体、各種エレクトロニクス素子、光学素子における堆積膜形成 にお 、て実用化が検討されて 、る。  [0002] Atmospheric pressure plasma CVD (Chemical Vapor Deposition) for obtaining a high-quality thin film using a mixed gas of a discharge gas and a thin film forming gas by using an atmospheric pressure plasma discharge process has been known. . Atmospheric pressure plasma CVD is being considered for practical use in forming deposited films in photoconductors for semiconductor devices, electrophotographic elements, various electronic elements, and optical elements.
[0003] 例えば、大気圧プラズマ放電処理を行う大気圧プラズマ処理装置には、 1つの高周 波電源による大気圧プラズマ処理装置 1があり、図 1 (a)に当該大気圧プラズマ処理 装置 1の縦断面図を示す。大気圧プラズマ処理装置 1は、高周波電源である電源 D にインピーダンスを調整する整合器 11を介して接続され、金属質母材 122及び誘電 体 121からなる高周波電極 12と、接地するように接続され、金属質母材 132及び上 部に基材 14を配置する誘電体 131からなる電極 13とが、対向して配置される構成で ある。  For example, an atmospheric pressure plasma processing apparatus for performing an atmospheric pressure plasma discharge process includes an atmospheric pressure plasma processing apparatus 1 using one high frequency power supply, and FIG. FIG. The atmospheric pressure plasma processing apparatus 1 is connected to a power supply D which is a high-frequency power supply via a matching unit 11 for adjusting impedance, and is connected to a high-frequency electrode 12 composed of a metal base material 122 and a dielectric 121 so as to be grounded. In this configuration, a metal base material 132 and an electrode 13 made of a dielectric material 131 on which a base material 14 is disposed are opposed to each other.
[0004] 大気圧プラズマ処理装置 1は、特に図示しないガス供給装置により放電ガスと薄膜 形成性ガスカゝらなる大気圧近傍の混合ガスが上記高周波電極 12と電極 13との間に 供給され、電源 Dから高周波電圧を印加することで、基材 14上に薄膜を形成する。  [0004] In the atmospheric pressure plasma processing apparatus 1, a gas mixture near the atmospheric pressure composed of a discharge gas and a thin film-forming gas is supplied between the high-frequency electrode 12 and the electrode 13 by a gas supply device (not shown). By applying a high-frequency voltage from D, a thin film is formed on the substrate 14.
[0005] また、大気圧プラズマ処理装置には、図 1 (b)に示すように、高周波電源であり、互 いに周波数の異なる 2つの電源力もなる大気圧プラズマ処理装置 laがある。ここにお ける大気圧プラズマ処理装置 laにお 、て、大気圧プラズマ処理装置 1と相違する点 は、上部に基材 14を配置する電極 13に昇圧変換する LF用整合器 15を介して第 1 電源 LFを接続した点である。そして、上記構成をとることにより、大気圧プラズマ処理 装置 laは、基材 14近傍におけるプラズマ密度が高くなり、より良質な薄膜を形成す ることがでさる。 [0006] そして、上記大気圧プラズマ処理装置における電源力 の出力は、電源のインピー ダンスと電極からみたプラズマのインピーダンスが同一でな 、と、一部が反射波として 電源に戻ってしまい、最大限に送ることができない。また、プラズマ処理装置では、プ ラズマでの電力消費を一定に保ち、安定したプラズマ状態とすることが、製膜時の厚 さにむらのない高品位な薄膜の形成に必要となる。 [0005] Further, as shown in FIG. 1 (b), the atmospheric pressure plasma processing apparatus includes an atmospheric pressure plasma processing apparatus la which is a high frequency power supply and has two power supplies having different frequencies. The difference between the atmospheric pressure plasma processing apparatus la and the atmospheric pressure plasma processing apparatus 1 here is that the atmospheric pressure plasma processing apparatus la is connected to an electrode 13 on which a base material 14 is disposed by means of an LF matching unit 15 that boosts the voltage to an electrode 13. 1 This is the point where the power supply LF is connected. With the above configuration, the atmospheric pressure plasma processing apparatus la has a higher plasma density in the vicinity of the base material 14 and can form a better quality thin film. [0006] The output of the power of the atmospheric pressure plasma processing apparatus is partially returned to the power as a reflected wave if the impedance of the power and the impedance of the plasma viewed from the electrodes are not the same, Can not be sent to In a plasma processing apparatus, it is necessary to maintain a constant power consumption in a plasma and maintain a stable plasma state in order to form a high-quality thin film having a uniform thickness at the time of film formation.
[0007] よって、大気圧プラズマ装置は、インピーダンスを同一にするための整合器 (マッチ ングボックス)を備え、予備実験などにより、予めインピーダンスが同一になるよう調整 される。また、整合器は、電源電圧、ガスの温度 ·圧力 ·供給量などによって変動する プラズマ側のインピーダンスに応じて自動調節する機構を備える。  [0007] Therefore, the atmospheric pressure plasma apparatus is provided with a matching box (matching box) for making the impedance the same, and is adjusted so that the impedance becomes the same in advance by a preliminary experiment or the like. The matching device is equipped with a mechanism that automatically adjusts according to the impedance on the plasma side, which fluctuates depending on the power supply voltage, gas temperature, pressure, supply amount, and the like.
[0008] そのため、大気圧プラズマ処理装置 1、 laにおける整合器 11は、図 3に示すように 、インピーダンスの絶対値を調整するための絶対値調整用可変コンデンサ 21、イン ピーダンスの位相を調整するための位相調整用可変コンデンサ 22、コイル 23、及び 電源と電極間における電圧値と電流値から絶対値調整用可変コンデンサ 21とコイル 23を自動調節して電源のインピーダンスと電極からみたプラズマのインピーダンスを 同一にするコントロールボックス 24を付随しており、電源からの出力を最大限にプラ ズマ出力として送る(例えば特許文献 1参照)。  [0008] Therefore, as shown in FIG. 3, the matching device 11 in the atmospheric pressure plasma processing apparatus 1 and la adjusts the absolute value adjusting variable capacitor 21 for adjusting the absolute value of the impedance, and adjusts the phase of the impedance. The phase adjustment variable capacitor 22, coil 23, and the absolute value adjustment variable capacitor 21 and coil 23 are automatically adjusted from the voltage value and current value between the power supply and the electrode to adjust the impedance of the power supply and the impedance of the plasma viewed from the electrode. A control box 24 for making the same is attached, and an output from a power supply is sent to a maximum as a plasma output (for example, see Patent Document 1).
[0009] また、上記一組の対向する電極間における大気圧プラズマ処理装置の他に、複数 組の電極間によるものがある。この場合におけるインピーダンス調整は、反射波の中 に隣接する他の電極からの透過波も混じっており、その透過波と反射波を分離して 計測できな ヽため、自動調整を行うことで相互干渉を弓 Iき起こす。  [0009] In addition to the atmospheric pressure plasma processing apparatus between the pair of opposing electrodes, there is an apparatus using a plurality of pairs of electrodes. In the impedance adjustment in this case, the transmitted wave from the adjacent electrode is mixed in the reflected wave, and the transmitted wave and the reflected wave cannot be measured separately. Up the bow I.
[0010] これにより、運転状態が不安定なものとなる問題がある力 その解決方法としては、 真空圧プラズマ処理におけるステップの初期、或いは異常に反射の大きくなつた場 合にのみインピーダンス整合を行う方法などが公知である(特許文献 2を参照)。 特許文献 1:特開 2003 - 268557号公報  [0010] As a result, there is a problem that the operating state becomes unstable. As a solution, impedance matching is performed only at the beginning of the step in the vacuum plasma processing or when the reflection becomes abnormally large. Methods and the like are known (see Patent Document 2). Patent Document 1: Japanese Patent Application Laid-Open No. 2003-268557
特許文献 2:特開平 8 - 96992号公報  Patent Document 2: JP-A-8-96992
[0011] たしかに、上記技術は、複数組の電極間におけるプラズマ処理での薄膜形成を行 うためにはそれなりに有効な方法である。し力しながら、良質な薄膜の形成には、まだ 不十分であり、より安定したプラズマ状態の実現が大きな課題であった。 [0012] そこで本発明は、このような産業上の要請力 なされたものであり、安定した放電状 態を維持した高密度プラズマを発生させることができ、良質な薄膜を製膜可能な薄膜 形成装置を提供することである。 [0011] Certainly, the above technique is an effective method for forming a thin film by plasma processing between a plurality of sets of electrodes. However, the formation of high-quality thin films is still insufficient, and realizing a more stable plasma state has been a major issue. Therefore, the present invention has been made in such an industrial demand, and it is possible to generate high-density plasma while maintaining a stable discharge state, and to form a thin film capable of forming a good-quality thin film. It is to provide a device.
発明の開示  Disclosure of the invention
[0013] 上記課題を解決するために、以下の構成によって達成される。  [0013] In order to solve the above problem, the following configuration is achieved.
(1)大気圧若しくはその近傍圧力下においてプラズマを発生させるための複数の電 極対と当該電極対に交流電力を供給する交流電源との間に、当該交流電源の出力 インピーダンスと前記複数の電極対の各入力インピーダンスとの整合を行う複数のィ ンピーダンス整合器が介挿され、前記交流電源若しくは前記電極対間の電圧及び 前記交流電源若しくは前記電極対間に流れる電流に基づ!、て前記複数のインピー ダンス整合器を自動調整する自動調整手段が設けられた薄膜形成装置にぉ 、て、 前記自動調整手段は、前記複数のインピーダンス整合器の内の 、ずれか一つのィ ンピーダンス整合器を除く他のインピーダンス整合器は、絶対値調整用可変コンデ ンサーを固定し、位相調整用可変コンデンサーのみによりインピーダンスを自動調整 し、また前記一つのインピーダンス整合器は、絶対値調整用可変コンデンサー及び 位相調整用可変コンデンサ一によりインピーダンスを自動調整するように構成した薄 膜形成装置。  (1) Between the plurality of electrode pairs for generating plasma at or near atmospheric pressure and an AC power supply for supplying AC power to the electrode pair, an output impedance of the AC power supply and the plurality of electrodes are provided. A plurality of impedance matching devices for matching each input impedance of the pair are interposed, and based on the AC power supply or the voltage between the electrode pairs and the AC power supply or the current flowing between the electrode pairs, In a thin film forming apparatus provided with automatic adjustment means for automatically adjusting a plurality of impedance matching devices, the automatic adjustment means may use one of the plurality of impedance matching devices for any one of the impedance matching devices. For other impedance matching devices, the variable capacitor for absolute value adjustment is fixed, and the impedance is automatically adjusted using only the variable capacitor for phase adjustment. And said one of the impedance matching device, configured thin film forming apparatus so as to automatically adjust impedance by the absolute value adjusting variable capacitor and a phase adjusting variable capacitor scratch.
(2)前記(1)に記載の発明において、前記インピーダンス整合器はインピーダンス の絶対値を調整するための可変容量コンデンサを有し、前記自動調整手段は前記 可変容量コンデンサの容量を調整する薄膜形成装置。  (2) In the invention described in the above (1), the impedance matching device has a variable capacitance capacitor for adjusting an absolute value of impedance, and the automatic adjusting means forms a thin film for adjusting the capacitance of the variable capacitance capacitor. apparatus.
(3)前記(1)又は(2)に記載の発明において、前記電極対の一方の電極に高周波 数の交流電力が供給され、他方の電極に前記一方の電極に供給される交流電力に 対して相対的に低い周波数の交流電力が供給される薄膜形成装置。  (3) In the invention described in the above (1) or (2), high-frequency AC power is supplied to one electrode of the electrode pair, and AC power supplied to the one electrode is supplied to the other electrode. Thin film forming apparatus to which AC power of a relatively low frequency is supplied.
(4)前記(1)〜(3)のいずれか一項に記載の発明において、前記複数対の電極は、 一方の電極が平面状に一体に設けられた平面型電極であり、他方の電極が前記一 方の電極に対向して個別に分離して設けられた複数の個別電極で構成されている 薄膜形成装置。  (4) In the invention according to any one of the above (1) to (3), the plurality of pairs of electrodes are a planar electrode in which one electrode is provided integrally in a planar shape, and the other electrode Is a thin film forming apparatus comprising a plurality of individual electrodes provided separately and separately opposed to said one electrode.
(5)前記(1)〜 (4)のいずれか一項に記載の発明において、前記複数対の電極は、 一方の電極が周方向に回転可能なように設けられたロール型電極であり、他方の電 極が前記一方の電極の外周面に対向して個別に分離して設けられた複数の個別電 極で構成されて!ゝる薄膜形成装置。 (5) In the invention according to any one of (1) to (4), the plurality of pairs of electrodes are One electrode is a roll-type electrode provided so as to be rotatable in the circumferential direction, and the other electrode is a plurality of individual electrodes provided separately and opposed to the outer peripheral surface of the one electrode. Puru thin film forming equipment.
(6)前記(1)記載の発明に示した薄膜形成を実現させるための方法を提供する。 図面の簡単な説明  (6) A method for realizing the thin film formation according to the invention described in the above (1) is provided. Brief Description of Drawings
[0014] [図 l] (a)は、 1つの電源力 なる大気圧プラズマ処理による薄膜形成装置の縦断面 図であり、(b)は、二つの電源力 なる大気圧プラズマ処理による薄膜形成装置の縦 断面図である。  [0014] [Fig. L] (a) is a longitudinal sectional view of a thin film forming apparatus using an atmospheric pressure plasma process with one power source, and (b) is a thin film forming apparatus using an atmospheric pressure plasma process with two power sources. FIG.
[図 2] (a)は、本発明における平板上の基材に対する大気圧プラズマ処理による薄膜 形成装置の縦断面図であり、(b)は、本発明におけるフィルム上の基材に対する大 気圧プラズマ処理による薄膜形成装置の縦断面図である。  [FIG. 2] (a) is a longitudinal sectional view of a thin film forming apparatus for performing atmospheric pressure plasma processing on a substrate on a flat plate in the present invention, and (b) is an atmospheric pressure plasma on a substrate on a film in the present invention. It is a longitudinal section of a thin film formation device by processing.
[図 3]整合器 11の内部構成を示す図である。  FIG. 3 is a diagram showing an internal configuration of a matching device 11.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] まず、本発明の実施形態の概要を説明する。 First, an outline of an embodiment of the present invention will be described.
[0016] 本発明において、プラズマ放電処理は、大気圧もしくはその近傍の圧力下で行わ れるが、大気圧もしくはその近傍の圧力とは 20kPa〜: L lOkPa程度であり、本発明に 記載の良好な効果を得るためには、 93kPa〜104kPaが好ましい。  In the present invention, the plasma discharge treatment is performed at or near atmospheric pressure, and the pressure at or near atmospheric pressure is about 20 kPa to: about L10 kPa, which is a good value according to the present invention. In order to obtain the effect, 93 kPa to 104 kPa is preferable.
[0017] 本発明の薄膜形成装置において、対向電極間 (放電空間)に供給するガスは、少 なくとも、電界により励起する放電ガスと、そのエネルギーを受け取ってプラズマ状態 あるいは励起状態になり薄膜を形成する薄膜形成ガスを含んで ヽる。  In the thin film forming apparatus of the present invention, the gas supplied between the opposed electrodes (discharge space) is at least a discharge gas excited by an electric field, and a plasma state or an excited state by receiving the energy to form a thin film. Contains a thin film forming gas to be formed.
[0018] 本発明における放電条件は、放電空間に、第 1の高周波電界と第 2の高周波電界 とを重畳し、第 1の高周波電界の周波数 f より第 2の高周波電界の周波数 f が高ぐ  [0018] The discharge condition in the present invention is that the first high-frequency electric field and the second high-frequency electric field are superimposed on the discharge space, and the frequency f of the second high-frequency electric field is higher than the frequency f of the first high-frequency electric field.
1 2 且つ、第 1の高周波電界の電界強度 V、第 2の高周波電界の電界強度 V及び放電  1 2 and the electric field strength V of the first high-frequency electric field, the electric field strength V of the second high-frequency electric field, and the discharge
1 2 開始電界の電界強度 IVとの関係が、  1 2 The relationship between the starting electric field and the electric field strength IV is
V≥IV>V  V≥IV> V
1 2  1 2
又は V >IV≥V を満たす。  Or, satisfy V> IV≥V.
1 2  1 2
[0019] 前記第 2の高周波電界の周波数 f は 0. 8MHz以上 200MHz以下かつ第 2の高周  [0019] The frequency f of the second high-frequency electric field is 0.8 MHz or more and 200 MHz or less and the second high frequency
2  2
波電界の電界強度 Vが 0. 5kVZmm以上であり、かつ、 前記第 1の高周波電界の周波数 ^は 1kHz以上 500kHz以下かつ第 1の高周波電 界の電界強度 V力 S4kVZmm以上であり The electric field strength V of the wave electric field is 0.5 kVZmm or more, and The frequency ^ of the first high-frequency electric field is 1 kHz or more and 500 kHz or less, and the electric field strength V force of the first high-frequency electric field is 4 kVZmm or more.
更に好ましくは、上記範囲内おいて、第 1の高周波電界の周波数 f が 50kHz以上 100kHz以下、第 1の高周波電界の電界強度 V力 lOkVZmm以上、第 2の高周波 電界の周波数 f 力^ MHz以上 50MHz以下、第 2の高周波電界の電界強度 Vが 1.  More preferably, within the above range, the frequency f of the first high-frequency electric field is 50 kHz or more and 100 kHz or less, the electric field strength of the first high-frequency electric field V force lOkVZmm or more, and the frequency f of the second high-frequency electric field f force ^ MHz or more 50 MHz Hereinafter, the electric field strength V of the second high-frequency electric field is 1.
2 2 twenty two
8kVZmm以上の!/、ずれか一つ以上を含む範囲内である。 8kVZmm or more!
[0020] 高周波とは、周波数が 0. 5kHz以上のものを言う。 [0020] High frequency refers to a high frequency of 0.5 kHz or more.
[0021] 重畳する高周波電界が、ともにサイン波である場合、第 1の高周波電界の周波数 f と該周波数 f より高い第 2の高周波電界の周波数 f とを重ね合わせた成分となり、そ  When the superimposed high-frequency electric fields are both sine waves, a component is obtained by superimposing the frequency f of the first high-frequency electric field and the frequency f of the second high-frequency electric field higher than the frequency f.
1 2  1 2
の波形は周波数 f  Has a frequency f
1のサイン波上に、それより高い周波数 f  A higher frequency f on a sine wave of 1
2のサイン波が重なった波 形となる。  The sine wave of 2 overlaps.
[0022] 本発明において、放電開始電界の強さとは、実際の薄膜形成装置に使用される放 電空間 (電極の構成など)及び反応条件 (ガス条件など)にお ヽて放電を起こすこと のできる最低電界強度のことを指す。放電開始電界強度は、放電空間に供給される ガス種や電極の誘電体種又は電極間距離などによって多少変動する力 同じ放電 空間においては、放電ガスの放電開始電界強度に支配される。  In the present invention, the intensity of the electric field at the start of discharge refers to the intensity of discharge occurring in a discharge space (such as the configuration of electrodes) and reaction conditions (such as gas conditions) used in an actual thin film forming apparatus. Refers to the lowest possible electric field strength. The discharge starting electric field intensity varies depending on the kind of gas supplied to the discharge space, the dielectric material of the electrode, the distance between the electrodes, and the like. In the same discharge space, the discharge starting electric field intensity is dominated by the discharge starting electric field intensity of the discharge gas.
[0023] 上記で述べたような高周波電界が対向する電極に印加され、すなわち、同じ放電 空間に印加されることによって、薄膜形成可能な放電を起こし、高品位で一様な膜厚 の薄膜形成に必要な高密度プラズマを発生する。  [0023] When the high-frequency electric field as described above is applied to the opposing electrodes, that is, applied to the same discharge space, a discharge capable of forming a thin film is generated, and a thin film of high quality and uniform thickness is formed. Generates high-density plasma required for
[0024] 上記サイン波等の連続波の重畳について説明した力 これに限られるものではなく 、第 1の高周波電界 V及び第 2の高周波電界 V共にパルス波の場合、もしくは、第 1  [0024] The force described for the superposition of the continuous wave such as the sine wave is not limited to this. If both the first high-frequency electric field V and the second high-frequency electric field V are pulse waves,
1 2  1 2
の高周波電界 V又は第 2の高周波電界 Vのいずれか一方が連続波であり、他方の  Either the high-frequency electric field V or the second high-frequency electric field V is a continuous wave and the other
1 2  1 2
高周波電界がパルス波であってもよい。また、更に第 3の電界を有していてもよい。  The high frequency electric field may be a pulse wave. Further, it may have a third electric field.
[0025] 上記本発明の高周波電界を、同一放電空間に印加する具体的な装置としては、対 向電極を構成する第 1電極に周波数 f であって電界強度 Vである第 1の高周波電界 を印加する第 1電源を接続し、第 2電極に周波数 f であって電界強度 Vである第 2の As a specific apparatus for applying the high-frequency electric field of the present invention to the same discharge space, a first high-frequency electric field having a frequency f and an electric field strength V is applied to a first electrode constituting a counter electrode. Connect the first power supply to be applied, and connect the second electrode to the second electrode with frequency f and electric field strength V
2 2  twenty two
高周波電界を印加する第 2電源を接続した大気圧プラズマ放電処理装置を用いるこ とである(図 1 (b)参照)。 [0026] 上記の大気圧プラズマ放電処理装置には、対向電極間に、放電ガスと薄膜形成ガ スとを供給するガス供給手段を備える。更に、電極温度制御手段を有することが好ま しい。 The use of an atmospheric pressure plasma discharge treatment device connected to a second power supply for applying a high-frequency electric field (see Fig. 1 (b)). [0026] The above-mentioned atmospheric pressure plasma discharge treatment apparatus includes a gas supply means for supplying a discharge gas and a thin film forming gas between opposed electrodes. Further, it is preferable to have an electrode temperature control means.
[0027] 更に、本発明における大気圧プラズマ放電処理装置の第 1電源は、第 2電源より高 Further, the first power supply of the atmospheric pressure plasma discharge treatment apparatus according to the present invention is higher than the second power supply.
V、高周波電界強度を印加できる能力を有して 、ることが好ま 、。 V, preferably having the ability to apply high frequency electric field strength.
[0028] このような 2つの電源から高周波電界 V、 Vを印加することは、第 1の高周波電界 V Applying the high-frequency electric fields V and V from such two power supplies is equivalent to the first high-frequency electric field V
1 2  1 2
によって高!、放電開始電界強度を有する放電ガスの放電を開始するのに必要であ り、また第 2の高周波電界 Vの高い周波数及び高い出力密度によりプラズマ密度を  Is required to start the discharge of a discharge gas having a discharge starting electric field strength, and the plasma density is increased by the high frequency and high power density of the second high-frequency electric field V.
2  2
高くして緻密で良質な薄膜を形成するのに必要である。  Necessary for forming a dense, high-quality thin film.
[0029] また、第 1の高周波電界 Vの出力密度を高くすることで、放電の均一性を維持した まま、第 2の高周波電界 Vの出力密度を向上させることができる。これにより、更なる Further, by increasing the output density of the first high-frequency electric field V, the output density of the second high-frequency electric field V can be improved while maintaining the uniformity of the discharge. With this,
2  2
均一高密度プラズマが生成でき、更なる製膜速度の向上と、膜質の向上が両立でき る。  Uniform high-density plasma can be generated, and further improvement in film forming speed and film quality can be achieved.
[0030] 図 2 (a)、(b)に、本発明に有用な複数の対向電極間で基材を処理する方式の大 気圧プラズマ放電処理装置の一例を縦断面図で示す。なお、複数の対向電極間で 基材を処理する方式の大気圧プラズマ放電処理装置において、複数とは 10以下が 好ましぐより好ましくは 2〜5である。  FIGS. 2 (a) and 2 (b) are longitudinal sectional views showing an example of an atmospheric pressure plasma discharge treatment apparatus of a type for treating a substrate between a plurality of counter electrodes useful in the present invention. In the atmospheric pressure plasma discharge treatment apparatus in which the substrate is treated between a plurality of counter electrodes, the number is preferably 10 or less, more preferably 2 to 5.
[0031] 図 2 (b)に示すように本発明に係る大気圧プラズマ処理装置 2aは、第 2電源である 複数の第 2電源 HF1〜HF3と、誘電体 121a〜c、金属質母材 122a〜cからなり、互 いに近接して配置された電極と、インピーダンスを整合するため第 2電源と前記電極 との間に接続された整合器 11a〜: L ieと、第 1電源である第 1電源 LFと、放電空間を 形成するよう前記電極と対向して配置され、回転することでフィルム状の基材を搬送 可能なロール型電極を構成する誘電体 131、金属質母材 132と、電圧を昇圧するた め第 1電源と電極 13との間に接続された LF用整合器 15と、ロール型電極の上部に 配置されてプラズマ処理されるフィルム状の基材 14と、上記放電空間に希ガスと薄 膜形成性の混合ガスを供給するガス供給装置 16とからなる。  As shown in FIG. 2 (b), the atmospheric pressure plasma processing apparatus 2a according to the present invention includes a plurality of second power supplies HF1 to HF3 as second power supplies, dielectrics 121a to 121c, and a metal base material 122a. , And a matching device 11a-: Lie connected between the second power supply and the electrode for matching impedance with the electrodes arranged in close proximity to each other, and a first power supply as the first power supply. (1) a power source LF, a dielectric material 131, a metal base material 132, which are arranged opposite to the electrodes so as to form a discharge space, and constitute a roll-type electrode capable of transporting a film-shaped substrate by rotating. LF matching device 15 connected between first power supply and electrode 13 to boost the voltage, film-like base material 14 placed on top of roll-type electrode and subjected to plasma treatment, and discharge space A gas supply device 16 for supplying a mixed gas of a rare gas and a thin film to the gas.
[0032] そして、整合器 l la〜l lc (図 3参照)は、予備実験により絶対値調整用可変コンデ ンサ 21、位相調整用可変コンデンサ 22を電源からの出力を最大限にプラズマ出力 として送るように予め設定する。そして、装置稼動時においては、整合器 l la〜l lc のうちのいずれか一つにおいて、絶対値調整用可変コンデンサ 21及び位相調整用 可変コンデンサ 22をコントロールボックス 24により自動調節する。また他の整合器は 、絶対値調整用可変コンデンサ 21のみ固定し、位相調整用可変コンデンサ 22をコ ントロールボックス 24により自動調節する。 [0032] The matching devices l la to l lc (see Fig. 3) were connected to the variable capacitor 21 for absolute value adjustment and the variable capacitor 22 for phase adjustment to maximize the power output from the power supply through preliminary experiments. Is set in advance so as to be sent. Then, during operation of the apparatus, the absolute value adjusting variable capacitor 21 and the phase adjusting variable capacitor 22 are automatically adjusted by the control box 24 in any one of the matching devices l la to l lc. In other matching devices, only the absolute value adjusting variable capacitor 21 is fixed, and the phase adjusting variable capacitor 22 is automatically adjusted by the control box 24.
[0033] これにより、互いに近接して配置された電極の影響により、自動調節による整合がと れず、不安定な状態が継続することがない。また、一つの整合器において、インピー ダンス絶対値の調整が自動で行われることにより、ガスの流入量の変動などによるプ ラズマ状態の変動に対応することができ、複数の薄膜形成を同時に安定して行うこと ができる。 [0033] Thereby, due to the influence of the electrodes arranged close to each other, the automatic adjustment cannot be performed, and the unstable state does not continue. In addition, a single matching device automatically adjusts the absolute value of the impedance, which makes it possible to cope with fluctuations in the plasma state due to fluctuations in the gas inflow, etc., and stabilizes the formation of multiple thin films simultaneously. You can do it.
[0034] また、ロール型電極を用いることでフィルム状の基材に対してプラズマ処理を連続 的に行うことができる。  [0034] In addition, by using a roll-type electrode, a plasma treatment can be continuously performed on a film-shaped substrate.
[0035] また、図 2 (a)に示す大気圧プラズマ処理装置 2は、大気圧プラズマ処理装置 2aの 第 1電源である第 1電源 LFに平板の電極 13を接続し、平板状の基材 14に対してプ ラズマ処理を行う装置である。  Further, the atmospheric pressure plasma processing apparatus 2 shown in FIG. 2 (a) is configured by connecting a plate electrode 13 to a first power supply LF which is a first power supply of the atmospheric pressure plasma processing apparatus 2a, This is a device that performs plasma processing on 14.
[0036] これにより、堅い基材に対しても、プラズマ処理により複数の薄膜形成を同時に安 定して行うことができる。  [0036] Thereby, a plurality of thin films can be simultaneously and stably formed on a hard base material by plasma treatment.
[0037] 本発明の大気圧大気圧プラズマ放電処理装置に設置する第 1電源 (高周波電源) としては、 The first power supply (high-frequency power supply) installed in the atmospheric pressure / atmospheric pressure plasma discharge treatment apparatus of the present invention includes:
印加電源記号 メーカー 周波数 製品名  Applied power supply symbol Manufacturer Frequency Product name
A1 神鋼電機 3kHz SPG3 -4500  A1 Shinko Electric 3kHz SPG3 -4500
A2 神鋼電機 5kHz SPG5 -4500  A2 Shinko Electric 5kHz SPG5 -4500
A3 春日電機 15kHz AGI-023  A3 Kasuga Electric 15kHz AGI-023
A4 神鋼電機 50kHz SPG50-4500  A4 Shinko Electric 50kHz SPG50-4500
A5 ハイデン研究所 100kHz * PHF— 6k  A5 Heiden Laboratory 100kHz * PHF— 6k
A6 パール工業 200kHz CF- 2000 - 200k  A6 Pearl Industry 200kHz CF-2000-200k
A7 パール工業 400kHz CF— 2000— 400k等の市販のものを挙 げることができ、何れも使用することができる。 [0038] また、第 2電源(高周波電源)としては、 A7 Pearl Industry 400kHz CF-2000-400k and other commercially available products can be used, and any of them can be used. [0038] As the second power supply (high-frequency power supply),
印加電源記号 メーカー 周波数 製品名  Applied power supply symbol Manufacturer Frequency Product name
B1 ノ ール工業 800kHz CF- 2000 -800k  B1 Knoll Industrial 800kHz CF-2000 -800k
B2 パール工業 2MHz CF- 2000- 2M  B2 Pearl Industrial 2MHz CF-2000-2M
B3 ノ ール工業 13. 56MHz CF— 5000— 13M  B3 Knole 13.56MHz CF—5000—13M
B4 ノ ール工業 27MHz CF- 2000- 27M  B4 Knoll Industrial 27MHz CF-2000- 27M
B5 パール工業 150MHz CF—2000—150M等の市販のものを 挙げることができ、何れも好ましく使用できる。なお、上記電源のうち、 *印はハイデ ン研究所インノ ルス高周波電源 (連続モードで 100kHz)である。それ以外は連続サ イン波のみ印加可能な高周波電源である。  Commercially available products such as B5 Pearl Industry 150MHz CF-2000-150M can be mentioned, and any of them can be preferably used. Note that, among the above power supplies, the asterisk (*) is the high-frequency power supply from Hyden Laboratory, Inc. (100 kHz in continuous mode). Others are high-frequency power supplies that can apply only continuous sine waves.
[0039] 本発明にお 、ては、このような電界を印加して、均一で安定な放電状態を保つこと ができる電極を大気圧プラズマ放電処理装置に採用することが好ましい。 [0039] In the present invention, it is preferable to employ an electrode capable of maintaining a uniform and stable discharge state by applying such an electric field to an atmospheric pressure plasma discharge treatment apparatus.
[0040] 本発明において、対向する電極間に印加する電力のうち、第 1電極 (第 1の高周波 電界)〖こは、 lWZcm2以上の電力(出力密度)を供給し、放電ガスを励起してェネル ギーを薄膜形成ガスに与え、薄膜を形成する。 In the present invention, of the electric power applied between the opposing electrodes, the first electrode (first high-frequency electric field) supplies an electric power (output density) of 1 WZcm 2 or more to excite the discharge gas. Energy to the thin film forming gas to form a thin film.
[0041] 第 1電極に供給する電力の上限値としては、好ましくは 50WZcm2、より好ましくは 20WZcm2である。下限値としては、好ましくは 1.2W/cm2である。なお、放電面積 (cm2)は、電極において放電が起こる範囲の面積のことを指す。 [0041] The upper limit value of the power supplied to the first electrode is preferably 50 WZcm 2 , more preferably 20 WZcm 2 . The lower limit is preferably 1.2 W / cm 2 . Note that the discharge area (cm 2 ) refers to an area in a range where discharge occurs in the electrode.
[0042] さらに、第 2電極 (第 2の高周波電界)にも、 lWZcm2以上の電力(出力密度)を供 給することにより、さらに出力密度を向上させることができる。これにより均一で高密度 なプラズマを生成でき、更なる製膜速度の向上と膜質の向上が両立できる。第 2の高 周波電界の電力は、 5WZcm2以上が好ましい。また上限値としては 50WZcm2であ る。 Further, by supplying power (output density) of 1 WZcm 2 or more also to the second electrode (second high-frequency electric field), the output density can be further improved. As a result, uniform and high-density plasma can be generated, and further improvement in film forming speed and improvement in film quality can be achieved. The power of the second high-frequency electric field is preferably 5 WZcm 2 or more. The upper limit is 50 WZcm 2 .
[0043] ここで高周波電界の波形としては、特に限定されない。連続モードと呼ばれる連続 サイン波状の連続発振モードと、パルスモードと呼ばれる ONZOFFを断続的に行う 断続発振モード等があり、そのどちらを採用してもよいが、少なくとも第 2電極側 (第 2 の高周波電界)は連続サイン波の方がより緻密で良質な膜が得られるので好まし 、。  Here, the waveform of the high-frequency electric field is not particularly limited. There are a continuous sine wave continuous oscillation mode called continuous mode, and an intermittent oscillation mode called pulse mode in which ONZOFF is performed intermittently.Either of these may be adopted, but at least the second electrode side (the second high frequency For the electric field, a continuous sine wave is preferable because a denser and higher quality film can be obtained.
[0044] このような大気圧プラズマによる薄膜形成法に使用する電極は、構造的にも、性能 的にも過酷な条件に耐えられるものでなければならない。このような電極としては、金 属質母材上に誘電体を被覆したものであることが好ましい。 [0044] The electrodes used in such a thin film formation method using atmospheric pressure plasma have a high performance even in terms of structure. It must be able to withstand severe conditions. Such an electrode is preferably a metal base material coated with a dielectric.
[0045] 本発明に使用する誘電体被覆電極にお!ヽては、様々な金属質母材と誘電体との 間に特性が合うものが好ましぐその一つの特性として、金属質母材と誘電体との線 熱膨張係数の差が 10 X 10—6Z°C以下となる組み合わせのものである。好ましくは 8 X 10— 6Z°C以下、更に好ましくは 5 X 10— 6Z°C以下、更に好ましくは 2 X 10— 6Z°C以 下である。なお、線熱膨張係数とは、周知の材料特有の物性値である。 [0045] The dielectric coated electrode used in the present invention! One of the characteristics that preferably has characteristics between various metallic base materials and dielectrics is one of the characteristics. The difference in the linear thermal expansion coefficient between the metallic base material and the dielectric is 10 × 10 — Combination of less than 6 Z ° C. Preferably below 8 X 10- 6 Z ° C, even more preferably not more than 5 X 10- 6 Z ° C, more preferably 2 X 10- 6 Z ° C hereinafter. The linear thermal expansion coefficient is a physical property value of a known material.
[0046] 線熱膨張係数の差が、この範囲にある導電性の金属質母材と誘電体との組み合わ せとしては、 1 :金属質母材が純チタン又はチタン合金で、誘電体がセラミックス溶射 被膜 2:金属質母材が純チタン又はチタン合金で、誘電体がガラスライニング 3:金属 質母材がステンレススティールで、誘電体がセラミックス溶射被膜 4:金属質母材がス テンレススティールで、誘電体がガラスライニング 5:金属質母材がセラミックス及び鉄 の複合材料で、誘電体がセラミックス溶射被膜 6:金属質母材がセラミックス及び鉄の 複合材料で、誘電体がガラスライニング 7:金属質母材がセラミックス及びアルミの複 合材料で、誘電体がセラミックス溶射皮膜 8:金属質母材がセラミックス及びアルミの 複合材料で、誘電体がガラスライニング等がある。線熱膨張係数の差という観点では 、上記 1又は 2及び 5〜8が好ましぐ特に 1が好ましい。  [0046] The combination of a conductive metallic base material and a dielectric material having a difference in linear thermal expansion coefficient within this range is as follows: 1: The metallic base material is pure titanium or a titanium alloy, and the dielectric material is a ceramic. Sprayed coating 2: Metallic base material is pure titanium or titanium alloy, dielectric is glass lining 3: Metallic base material is stainless steel, dielectric is ceramic sprayed coating 4: Metallic base material is stainless steel, Dielectric material is glass lining 5: Metallic base material is ceramic and iron composite material, dielectric material is ceramic sprayed coating 6: Metallic base material is ceramic and iron composite material, dielectric material is glass lining 7: Metallic The base material is a composite material of ceramics and aluminum, and the dielectric is a ceramic sprayed coating. 8: The metal base material is a composite material of ceramics and aluminum, and the dielectric is glass lining. . From the viewpoint of the difference in linear thermal expansion coefficient, the above 1 or 2 and 5 to 8 are particularly preferable, and 1 is particularly preferable.
[0047] 本発明において、金属質母材は、上記の特性からはチタン又はチタン合金が特に 有用である。金属質母材をチタン又はチタン合金とすることにより、誘電体を上記とす ることにより、使用中の電極の劣化、特にひび割れ、剥がれ、脱落等がなぐ過酷な 条件での長時間の使用に耐えることができる。  [0047] In the present invention, titanium or a titanium alloy is particularly useful as the metallic base material from the above characteristics. By using titanium or titanium alloy as the metallic base material and using the dielectric material as described above, it is possible to use the electrode for a long time under severe conditions where deterioration of the electrode during use, especially cracks, peeling, and falling off, etc. will not occur. Can withstand.
[0048] 本発明に有用な電極の金属質母材は、チタンを 70質量%以上含有するチタン合 金又はチタン金属である。本発明において、チタン合金又はチタン金属中のチタン の含有量は、 70質量%以上であれば、問題なく使用できるが、好ましくは 80質量% 以上のチタンを含有して!/、るものが好ま 、。本発明に有用なチタン合金又はチタン 金属は、工業用純チタン、耐食性チタン、高力チタン等として一般に使用されている ものを用いることができる。工業用純チタンとしては、 TIA、 TIB、 TIC、 TID等を挙げ ることができ、何れも鉄原子、炭素原子、窒素原子、酸素原子、水素原子等を極僅か 含有しているもので、チタンの含有量としては、 99質量%以上を有している。耐食性 チタン合金としては、 T15PBを好ましく用いることができ、上記含有原子の他に鉛を 含有しており、チタン含有量としては、 98質量%以上である。また、チタン合金として は、鉛を除く上記の原子の他に、アルミニウムを含有し、その他バナジウムや錫を含 有している T64、 Τ325、 Τ525、 ΤΑ3等を好ましく用いることができ、これらのチタン 含有量としては、 85質量%以上を含有しているものである。これらのチタン合金又は チタン金属はステンレススティール、例えば AISI316に比べて、熱膨張係数が 1/2 程度小さぐ金属質母材としてチタン合金又はチタン金属の上に施された後述の誘 電体との組み合わせがよぐ高温、長時間での使用に耐えることができる。 [0048] The metallic base material of the electrode useful in the present invention is titanium alloy or titanium metal containing 70% by mass or more of titanium. In the present invention, if the content of titanium in the titanium alloy or the titanium metal is 70% by mass or more, it can be used without any problem. /, Prefer things. As titanium alloys or titanium metals useful in the present invention, those generally used as industrial pure titanium, corrosion-resistant titanium, high-strength titanium and the like can be used. Examples of industrial pure titanium include TIA, TIB, TIC, and TID, all of which have very few iron, carbon, nitrogen, oxygen, and hydrogen atoms. The titanium content is 99% by mass or more. T15PB can be preferably used as the corrosion resistance titanium alloy, which contains lead in addition to the above-mentioned contained atoms, and has a titanium content of 98% by mass or more. As the titanium alloy, in addition to the above-mentioned atoms except for lead, T64, Τ325, Τ525, ΤΑ3 and the like containing aluminum and also containing vanadium and tin can be preferably used. The content is 85% by mass or more. These titanium alloys or titanium metals are made of a stainless steel, for example, having a coefficient of thermal expansion smaller than that of AISI316 by about 1/2, as a metallic base material, and a later-described dielectric applied on the titanium alloy or titanium metal. The combination can withstand high temperature and long time use.
[0049] 一方、誘電体の求められる特性としては、具体的には、比誘電率が 6〜45の無機 化合物であることが好ましぐまた、このような誘電体としては、アルミナ、窒化珪素等 のセラミックス、あるいは、ケィ酸塩系ガラス、ホウ酸塩系ガラス等のガラスライニング 材等がある。この中では、後述のセラミックスを溶射したものやガラスライニングにより 設けたものが好ま 、。特にアルミナを溶射して設けた誘電体が好まし 、。  [0049] On the other hand, as the properties required of the dielectric, specifically, an inorganic compound having a relative dielectric constant of 6 to 45 is preferably used. And glass lining materials such as silicate glass and borate glass. Among them, those formed by spraying ceramics described later and those provided by glass lining are preferred. In particular, a dielectric provided by spraying alumina is preferable.
[0050] 又は、上述のような大電力に耐える仕様の一つとして、誘電体の空隙率が 10体積 %以下、好ましくは 8体積%以下であることで、更に好ましくは 0体積%を越えて 5体 積%以下である。なお、誘電体の空隙率は、 BET吸着法や水銀ポロシメーターによ り測定することができる。後述の実施例においては、島津製作所製の水銀ポロシメー ターにより金属質母材に被覆された誘電体の破片を用い、空隙率を測定する。誘電 体が、低い空隙率を有することにより、高耐久性が達成される。このような空隙を有し つつも空隙率が低い誘電体としては、後述の大気プラズマ溶射法等による高密度、 高密着のセラミックス溶射被膜等を挙げることができる。更に空隙率を下げるために は、封孔処理を行うことが好ましい。  [0050] Alternatively, as one of specifications capable of withstanding high power as described above, the porosity of the dielectric is 10% by volume or less, preferably 8% by volume or less, and more preferably more than 0% by volume. Less than 5% by volume. The porosity of the dielectric can be measured by a BET adsorption method or a mercury porosimeter. In the examples described later, the porosity is measured using a dielectric fragment coated on a metallic base material by a mercury porosimeter manufactured by Shimadzu Corporation. High durability is achieved by the dielectric having a low porosity. As a dielectric material having such voids but having a low porosity, there can be mentioned a ceramic sprayed film having a high density and a high adhesion by an atmospheric plasma spraying method described later. In order to further reduce the porosity, it is preferable to perform a sealing treatment.
[0051] 上記、大気プラズマ溶射法は、セラミックス等の微粉末、ワイヤ等をプラズマ熱源中 に投入し、溶融又は半溶融状態の微粒子として被覆対象の金属質母材に吹き付け、 皮膜を形成させる技術である。プラズマ熱源とは、分子ガスを高温にし、原子に解離 させ、更にエネルギーを与えて電子を放出させた高温のプラズマガスである。このプ ラズマガスの噴射速度は大きぐ従来のアーク溶射やフレーム溶射に比べて、溶射 材料が高速で金属質母材に衝突するため、密着強度が高ぐ高密度な被膜を得るこ とができる。詳しくは、特開 2000— 301655に記載の高温被曝部材に熱遮蔽皮膜を 形成する溶射方法を参照することができる。この方法により、上記のような被覆する誘 電体 (セラミック溶射膜)の空隙率にすることができる。 The above-mentioned atmospheric plasma spraying method is a technique in which fine powders such as ceramics, wires and the like are charged into a plasma heat source and sprayed as molten or semi-molten fine particles onto a metal base material to be coated to form a film. It is. The plasma heat source is a high-temperature plasma gas in which a molecular gas is heated to a high temperature, dissociated into atoms, and further applied with energy to emit electrons. The spray speed of this plasma gas is higher than that of conventional arc spraying or flame spraying. Since the material collides with the metal base material at a high speed, a high-density coating film having high adhesion strength can be obtained. For details, reference can be made to the thermal spraying method for forming a heat shielding film on a high-temperature exposed member described in JP-A-2000-301655. According to this method, the porosity of the dielectric body (ceramic sprayed film) to be coated as described above can be obtained.
[0052] また、大電力に耐える別の好ましい仕様としては、誘電体の厚みが 0. 5〜2mmで あることである。この膜厚変動は、 5%以下であることが望ましぐ好ましくは 3%以下、 更に好ましくは 1%以下である。 [0052] Another preferable specification that can withstand high power is that the thickness of the dielectric is 0.5 to 2 mm. This variation in film thickness is desirably 5% or less, preferably 3% or less, and more preferably 1% or less.
[0053] 誘電体の空隙率をより低減させるためには、上記のようにセラミックス等の溶射膜に[0053] In order to further reduce the porosity of the dielectric, a sprayed film of ceramics or the like is used as described above.
、更に、無機化合物で封孔処理を行うことが好ましい。前記無機化合物としては、金 属酸化物が好ましぐこの中では特に酸ィ匕ケィ素(SiO )を主成分として含有するもの が好ましい。 Further, it is preferable to perform a sealing treatment with an inorganic compound. Among the inorganic compounds, metal oxides are preferred, and those containing silicon oxide (SiO 2) as a main component are particularly preferable.
[0054] 封孔処理の無機化合物は、ゾルゲル反応により硬化して形成したものであることが 好まし 、。封孔処理の無機化合物が金属酸ィ匕物を主成分とするものである場合には 、金属アルコキシド等を封孔液として前記セラミック溶射膜上に塗布し、ゾルゲル反 応により硬化する。無機化合物がシリカを主成分とするものの場合には、アルコキシ シランを封孔液として用いることが好ま 、。  [0054] The inorganic compound for the pore-sealing treatment is preferably formed by curing by a sol-gel reaction. In the case where the inorganic compound for the sealing treatment contains a metal oxide as a main component, a metal alkoxide or the like is applied as a sealing liquid on the ceramic sprayed film and cured by a sol-gel reaction. When the inorganic compound is mainly composed of silica, it is preferable to use alkoxysilane as the sealing liquid.
[0055] ここでゾルゲル反応の促進には、エネルギー処理を用いることが好まし 、。ェネル ギー処理としては、熱硬化 (好ましくは 200°C以下)や、紫外線照射などがある。更に 封孔処理の仕方として、封孔液を希釈し、コーティングと硬化を逐次で数回繰り返す と、よりいつそう無機質ィ匕が向上し、劣化の無い緻密な電極ができる。  Here, to promote the sol-gel reaction, it is preferable to use energy treatment. Examples of the energy treatment include thermal curing (preferably at 200 ° C. or lower) and ultraviolet irradiation. Further, as a sealing treatment method, when the sealing liquid is diluted, and coating and curing are repeated several times sequentially, the inorganic material can be further improved, and a dense electrode without deterioration can be obtained.
[0056] 本発明に係る誘電体被覆電極の金属アルコキシド等を封孔液として、セラミックス 溶射膜にコーティングした後、ゾルゲル反応で硬化する封孔処理を行う場合、硬化し た後の金属酸ィ匕物の含有量は 60モル%以上であることが好ま 、。封孔液の金属 アルコキシドとしてアルコキシシランを用いた場合には、硬化後の SiO (Xは 2以下) 含有量が 60モル%以上であることが好ましい。硬化後の SiO含有量は、 XPS (X線 光電子分光法)により誘電体層の断層を分析することにより測定する。  [0056] When a ceramic sprayed film is coated with a metal alkoxide or the like of the dielectric-coated electrode according to the present invention as a sealing liquid and then subjected to a sealing treatment in which it is cured by a sol-gel reaction, the cured metal oxide is used. The content of the substance is preferably 60 mol% or more. When alkoxysilane is used as the metal alkoxide of the sealing solution, the content of SiO (X is 2 or less) after curing is preferably 60 mol% or more. The SiO content after curing is measured by analyzing the tomography of the dielectric layer by XPS (X-ray photoelectron spectroscopy).
[0057] 本発明の薄膜形成装置に係る電極においては、電極の少なくとも基材と接する側 の JIS B 0601で規定される表面粗さの最大高さ(R )が 10 m以下になるように 調整することが、本発明に記載の効果を得る観点力も好ましいが、更に好ましくは、 表面粗さの最大値が 8 m以下であり、特に好ましくは、 7 m以下に調整することで ある。このように誘電体被覆電極の誘電体表面を研磨仕上げする等の方法により、誘 電体の厚み及び電極間のギャップを一定に保つことができ、放電状態を安定化でき ること、更に熱収縮差や残留応力による歪やひび割れを無くし、且つ、高精度で、耐 久性を大きく向上させることができる。誘電体表面の研磨仕上げは、少なくとも基材と 接する側の誘電体において行われることが好ましい。更に JIS B 0601で規定され る中心線平均表面粗さ(Ra)は 0. 5 μ m以下が好ましぐ更に好ましくは 0. 1 m以 下である。 In the electrode according to the thin film forming apparatus of the present invention, the maximum height (R) of the surface roughness defined by JIS B 0601 on at least the side of the electrode which is in contact with the substrate is set to be 10 m or less. Adjustment is preferable from the viewpoint of obtaining the effects described in the present invention, but more preferably, the maximum value of the surface roughness is 8 m or less, particularly preferably 7 m or less. In this way, the thickness of the dielectric and the gap between the electrodes can be kept constant, the discharge state can be stabilized, and the heat shrinkage can be achieved by polishing the dielectric surface of the dielectric coated electrode. Distortion and cracks due to differences and residual stress can be eliminated, and high accuracy and durability can be greatly improved. Polishing of the dielectric surface is preferably performed on at least the dielectric in contact with the substrate. Further, the center line average surface roughness (Ra) specified in JIS B 0601 is preferably 0.5 μm or less, more preferably 0.1 m or less.
[0058] 本発明に使用する誘電体被覆電極にお!ヽて、大電力に耐える他の好ま ヽ仕様と しては、耐熱温度が 100°C以上であることである。更に好ましくは 120°C以上、特に 好ましくは 150°C以上である。また上限は 500°Cである。なお、耐熱温度とは、大気 圧プラズマ処理で用いられる電圧にぉ 、て絶縁破壊が発生せず、正常に放電できる 状態において耐えられる最も高い温度のことを指す。このような耐熱温度は、上記の セラミックス溶射や、泡混入量の異なる層状のガラスライニングで設けた誘電体を適 用したり、上記金属質母材と誘電体の線熱膨張係数の差の範囲内の材料を適宜選 択する手段を適宜組み合わせることによって達成可能である。  [0058] Another preferable specification of the dielectric-coated electrode used in the present invention that withstands large power is that the heat-resistant temperature is 100 ° C or higher. It is more preferably at least 120 ° C, particularly preferably at least 150 ° C. The upper limit is 500 ° C. Note that the heat-resistant temperature refers to the highest temperature that can withstand a state in which dielectric breakdown does not occur and a normal discharge can be performed with respect to a voltage used in atmospheric pressure plasma processing. Such a heat-resistant temperature is determined by applying the above-described ceramic spraying or a dielectric provided with a layered glass lining having a different amount of bubbles mixed therein, or a range of a difference in linear thermal expansion coefficient between the metallic base material and the dielectric. It can be achieved by appropriately combining the means for appropriately selecting the materials within.
[0059] 次に、放電空間に供給するガスについて説明する。  Next, the gas supplied to the discharge space will be described.
[0060] 供給するガスは、少なくとも放電ガス及び薄膜形成ガスを含有する。放電ガスと薄 膜形成ガスは混合して供給してもよいし、別々に供給してもカゝまわない。  The supplied gas contains at least a discharge gas and a thin film forming gas. The discharge gas and the thin film forming gas may be supplied as a mixture, or may be supplied separately.
[0061] 放電ガスとは、薄膜形成可能なプラズマを発生させることのできるガスである。放電 ガスとしては、窒素、希ガス、空気、水素ガス、酸素などがあり、これらを単独で放電 ガスとして用いても、混合して用いてもかまわない。本発明において、放電ガスとして 好ましいのは窒素である。放電ガスの 50〜: LOO体積%が窒素ガスであることが好まし い。このとき、放電ガスとして窒素以外の放電ガスとしては、希ガスを 50体積%未満 含有することが好ましい。また、放電ガスの量は、放電空間に供給する全ガス量に対 し、 90-99. 9体積%含有することが好ましい。  [0061] The discharge gas is a gas that can generate plasma capable of forming a thin film. Examples of the discharge gas include nitrogen, a rare gas, air, hydrogen gas, and oxygen, and these may be used alone as a discharge gas or may be used as a mixture. In the present invention, nitrogen is preferable as the discharge gas. 50 to 50% of discharge gas: It is preferable that LOO volume% is nitrogen gas. At this time, the discharge gas other than nitrogen preferably contains a rare gas in an amount of less than 50% by volume. The amount of the discharge gas is preferably 90 to 99.9% by volume based on the total amount of gas supplied to the discharge space.
[0062] 薄膜形成ガスとは、それ自身が解離もしくは励起して活性となり、基材上に化学的 に堆積して薄膜を形成する原料のことである。 [0062] The thin film forming gas itself is activated by dissociation or excitation and becomes chemically active on the substrate. It is a raw material that is deposited on to form a thin film.
[0063] 次に、本発明に使用する薄膜を形成するために放電空間に供給するガスについて 説明する。基本的に放電ガスと薄膜形成ガスである力 更に、添加ガスを加えることも ある。放電空間に供給する全ガス量中、放電ガスを 90〜99. 9体積%含有すること が好ましい。  Next, a gas supplied to a discharge space for forming a thin film used in the present invention will be described. Basically, a discharge gas and a thin film forming gas. Further, an additive gas may be added. The discharge gas preferably contains 90 to 99.9% by volume of the total gas supplied to the discharge space.
[0064] 本発明に使用する薄膜形成ガスとしては、有機金属化合物、ハロゲン金属化合物 [0064] The thin film forming gas used in the present invention includes an organometallic compound and a halogen metal compound.
、金属水素化合物等を挙げることができる。 And a metal hydride compound.
[0065] 本発明に有用な有機金属化合物は下記の一般式 (I)で示すものが好ま 、。 [0065] Organometallic compounds useful in the present invention are preferably those represented by the following general formula (I).
[0066] R MR R 般式(I) [0066] R MR R General formula (I)
lx 2y 3z  lx 2y 3z
式中、 Mは金属、 Rはアルキル基、 Rはアルコキシ基、 Rは j8—ジケトン錯体基、  In the formula, M is a metal, R is an alkyl group, R is an alkoxy group, R is a j8-diketone complex group,
1 2 3  one two Three
βーケトカルボン酸エステル錯体基、 βーケトカルボン酸錯体基及びケトォキシ基( ケトォキシ錯体基)から選ばれる基であり、金属 Μの価数を mとした場合、 x+y+z = mであり、 x=0〜m、又は x=0〜m— 1であり、 y=0〜m、 z = 0〜mで、何れも 0又 は正の整数である。 Rのアルキル基としては、メチル基、ェチル基、プロピル基、ブチ  a group selected from a β-ketocarboxylic acid ester complex group, a β-ketocarboxylic acid complex group, and a ketoxoxy group (ketoxoxy complex group), where x + y + z = m, where 0 to m, or x = 0 to m-1, y = 0 to m, z = 0 to m, each of which is 0 or a positive integer. Examples of the alkyl group for R include a methyl group, an ethyl group, a propyl group, and a
1  1
ル基等を挙げることができる。 Rのアルコキシ基としては、例えばメトキシ基、エトキシ  And the like. As the alkoxy group for R, for example, methoxy group, ethoxy
2  2
基、プロポキシ基、ブトキシ基、 3, 3, 3—トリフルォロプロポキシ基等を挙げることが できる。またアルキル基の水素原子をフッ素原子に置換したものでもよい。 Rの β—  Group, propoxy group, butoxy group, 3,3,3-trifluoropropoxy group and the like. Further, a hydrogen atom of an alkyl group may be substituted with a fluorine atom. R of β—
3 ジケトン錯体基、 βーケトカルボン酸エステル錯体基、 βーケトカルボン酸錯体基及 びケトォキシ基 (ケトォキシ錯体基)から選ばれる基としては、 β—ジケトン錯体基とし て、例えば、 2, 4 ペンタンジオン(ァセチルアセトンあるいはァセトアセトンともいう) 、 1, 1, 1, 5, 5, 5 へキサメチル— 2, 4 ペンタンジオン、 2, 2, 6, 6—テトラメチ ノレ 3, 5 ヘプタンジオン、 1, 1, 1—トリフノレオ口一 2, 4 ペンタンジオン等を挙げ ることができ、 j8—ケトカルボン酸エステル錯体基として、例えば、ァセト酢酸メチルェ ステル、ァセト酢酸ェチルエステル、ァセト酢酸プロピルエステル、トリメチルァセト酢 酸ェチル、トリフルォロアセト酢酸メチル等を挙げることができ、 13—ケトカルボン酸と して、例えば、ァセト酢酸、トリメチルァセト酢酸等を挙げることができ、またケトォキシ として、例えば、ァセトォキシ基 (又はァセトキシ基)、プロピオ-ルォキシ基、ブチリロ キシ基、アタリロイルォキシ基、メタクリロイルォキシ基等を挙げることができる。これら の基の炭素原子数は、上記例有機金属示化合物を含んで、 18以下が好ましい。ま た例示にもあるように直鎖又は分岐のもの、また水素原子をフッ素原子に置換したも のでもよい。 3 As a group selected from a diketone complex group, a β-ketocarboxylic ester complex group, a β-ketocarboxylic acid complex group and a ketoxoxy group (ketoxoxy complex group), a β-diketone complex group such as 2,4 pentanedione Cetylacetone or acetacetone), 1,1,1,5,5,5hexamethyl- 2,4 pentanedione, 2,2,6,6-tetramethylenole 3,5 heptanedione, 1,1,1- Examples of j8-ketocarboxylic acid ester complex groups include, for example, methyl acetate acetate, ethyl acetate acetate, propyl acetate acetate, propyl acetate acetate, ethyl trifluoroacetate, and trifluoroacetate. Examples of methyl 13-ketocarboxylic acids include acetoacetic acid and trimethylacetovinegar. As can be exemplified, and also Ketokishi, for example, Asetokishi group (or Asetokishi group), propionic - Ruokishi group, Buchiriro alkoxy group, Atari Roy Ruo alkoxy group and a methacryloyloxy Ruo alkoxy group. these The number of carbon atoms of the above group is preferably 18 or less, including the organometallic compounds described in the above examples. In addition, as shown in the examples, it may be a straight-chain or branched one or a hydrogen atom substituted with a fluorine atom.
[0067] 本発明において取り扱いの問題から、安全な有機金属化合物が好ましぐ分子内 に少なくとも一つ以上の酸素を有する有機金属化合物が好ましい。このようなものとし て Rのアルコキシ基を少なくとも一つを含有する有機金属化合物、また Rの 13—ジ  [0067] From the viewpoint of handling in the present invention, organometallic compounds having at least one or more oxygen atoms in the molecule, which are preferred for safe organometallic compounds, are preferred. Such compounds include organometallic compounds containing at least one alkoxy group of R,
2 3 ケトン錯体基、 βーケトカルボン酸エステル錯体基、 βーケトカルボン酸錯体基及び ケトォキシ基 (ケトォキシ錯体基)から選ばれる基を少なくとも一つ有する金属化合物 が好ましい。  23 A metal compound having at least one group selected from a ketone complex group, a β-ketocarboxylic ester complex group, a β-ketocarboxylic acid complex group, and a ketoxoxy group (ketoxoxy complex group) is preferable.
[0068] なお、具体的な有機金属化合物については後述する。  [0068] Specific organometallic compounds will be described later.
[0069] 本発明にお ヽて、放電空間に供給するガスには、放電ガス、薄膜形成性ガスの他 に、薄膜形成の反応を促進する添加ガスを混合してもよい。添加ガスとしては、酸素 、オゾン、過酸化水素、二酸化炭素、一酸化炭素、水素、アンモニア等を挙げること ができるが、酸素、一酸素化炭素及び水素が好ましぐこれらから選択される成分を 混合させるのが好ましい。その含有量はガス全量に対して 0. 01〜5体積%含有させ ることが好ましぐそれによつて反応促進され、且つ、緻密で良質な薄膜を形成するこ とがでさる。  [0069] In the present invention, the gas supplied to the discharge space may be mixed with an additive gas that promotes a reaction of forming a thin film, in addition to a discharge gas and a thin film-forming gas. Examples of the additive gas include oxygen, ozone, hydrogen peroxide, carbon dioxide, carbon monoxide, hydrogen, and ammonia. Among them, components selected from oxygen, carbon monoxide and hydrogen are preferred. Mixing is preferred. The content is preferably 0.01 to 5% by volume with respect to the total amount of the gas, whereby the reaction is promoted, and a dense and high-quality thin film can be formed.
[0070] 上記形成された酸化物又は複合化合物の薄膜の膜厚は、 0. 1〜: LOOOnmの範囲 が好ましい。  [0070] The thickness of the formed oxide or composite compound thin film is preferably in the range of 0.1 to: LOOO nm.
[0071] 本発明において、薄膜形成性ガスに使用する有機金属化合物、ハロゲン化金属、 金属水素化合物の金属として、 Li、 Be、 B、 Na、 Mg、 Al、 Si、 K、 Ca、 Sc、 Ti、 V、 C r、 Mn、 Feゝ Co、 Niゝ Cu、 Zn、 Gaゝ Geゝ Rbゝ Srゝ Y、 Zrゝ Nbゝ Mo、 Cd、 In, Ir、 Sn 、 Sb、 Cs、 Ba、 La、 Hf、 Ta、 W、 Tl、 Pb、 Biゝ Ce、 Pr、 Nd、 Pm、 Eu、 Gd、 Tb、 Dy 、 Ho、 Er、 Tm、 Yb、 Lu等を挙げることができる。  In the present invention, as the metal of the organometallic compound, the metal halide, and the metal hydride used in the thin film forming gas, Li, Be, B, Na, Mg, Al, Si, K, Ca, Sc, Ti , V, Cr, Mn, Fe ゝ Co, Ni ゝ Cu, Zn, Ga ゝ Ge ゝ Rb ゝ Sr ゝ Y, Zr ゝ Nb ゝ Mo, Cd, In, Ir, Sn, Sb, Cs, Ba, La, Examples include Hf, Ta, W, Tl, Pb, Bi 、 Ce, Pr, Nd, Pm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and the like.
[0072] 本発明の薄膜形成装置は、上記のような有機金属化合物、ハロゲン金属化合物、 金属水素化合物等の金属化合物を放電ガスと共に使用することにより様々な高機能 性の薄膜を得ることができる。本発明の薄膜の例を以下に示すが、本発明はこれに 限られるものではない。 [0073] 電極膜 Au、 Al、 Ag、Ti、Ti、 Pt、 Mo、 Mo— Si The thin film forming apparatus of the present invention can obtain various highly functional thin films by using a metal compound such as an organometallic compound, a halogen metal compound, or a metal hydride compound together with a discharge gas. . Examples of the thin film of the present invention are shown below, but the present invention is not limited thereto. [0073] Electrode film Au, Al, Ag, Ti, Ti, Pt, Mo, Mo—Si
誘電体保護膜 SiO、 SiO、 Si N、 Al O、 Al O、 Y O  Dielectric protective film SiO, SiO, Si N, Al O, Al O, Y O
2 3 4 2 3 2 3 2 3  2 3 4 2 3 2 3 2 3
透明導電膜 In O、 SnO  Transparent conductive film In O, SnO
2 3 2  2 3 2
エレクト口クロミック膜 WO、 IrO、 MoO、 V O  Elect mouth chromic film WO, IrO, MoO, V O
3 2 3 2 5  3 2 3 2 5
蛍光膜 ZnS, ZnS +ZnSe, ZnS + CdS  Phosphor film ZnS, ZnS + ZnSe, ZnS + CdS
磁気記録膜 Fe— Ni、 Fe— Si— Al、 y— Fe O、 Co、 Fe O、 Cr、 SiO、 AIO  Magnetic recording film Fe—Ni, Fe—Si—Al, y—FeO, Co, FeO, Cr, SiO, AIO
2 3 3 4 2 3 超導電膜 Nb、Nb— Ge、NbN  2 3 3 4 2 3 Superconductive film Nb, Nb—Ge, NbN
太陽電池膜 a— Si、 Si  Solar cell membrane a—Si, Si
反射膜 Ag、Al、Au、Cu  Reflective film Ag, Al, Au, Cu
選択性吸収膜 ZrC— Zr  Selective absorption membrane ZrC— Zr
選択性透過膜 In O、 SnO  Selective permeable membrane In O, SnO
2 3 2  2 3 2
反射防止膜 SiO、TiO、 SnO  Anti-reflective coating SiO, TiO, SnO
2 2 2  2 2 2
シャドーマスク Cr  Shadow Mask Cr
而摩耗性膜 Crゝ Taゝ Ptゝ TiCゝ TiN  Abrasive film Cr ゝ Ta ゝ Pt ゝ TiC ゝ TiN
而食性膜 Al、 Zn、 Cdゝ Taゝ Ti、 Cr  Alkaline film Al, Zn, Cd ゝ Ta ゝ Ti, Cr
耐熱膜 W、Ta、Ti  Heat resistant film W, Ta, Ti
潤滑膜 MoS  Lubrication film MoS
2  2
装飾膜 Cr、 Al、 Ag、 Au、 TiC、 Cu  Decorative film Cr, Al, Ag, Au, TiC, Cu
尚、上記窒化物の窒化度、酸化物の酸化度、硫化物の硫化度、炭化物の炭化度 は一例であり、金属との組成比は適宜変化してよい。また、薄膜には、上記金属化合 物以外に、炭素化合物、窒素化合物、水素化合物等の不純物が含有されてもよい。  The nitriding degree of the nitride, the oxidation degree of the oxide, the sulfide degree of the sulfide, and the carbonization degree of the carbide are merely examples, and the composition ratio with the metal may be changed as appropriate. In addition, the thin film may contain impurities such as a carbon compound, a nitrogen compound, and a hydrogen compound in addition to the metal compound.
[0074] 本発明において、特に好ましい金属化合物の金属は、上記のうち Si (珪素)、 Ti (チ タン)、 Sn (錫)、 Zn (亜鉛)、 In (インジウム)及び A1 (アルミニウム)であり、これらの金 属と結合する金属化合物のうち、上記一般式 (I)で示した有機金属化合物が好まし い。 [0074] In the present invention, particularly preferred metals of the metal compound are Si (silicon), Ti (titanium), Sn (tin), Zn (zinc), In (indium) and A1 (aluminum). Of these metal compounds that bind to metals, the organometallic compounds represented by the above general formula (I) are preferable.
[0075] 有機金属化合物の例示につ!、ては後述する。  [0075] Examples of the organometallic compound will be described later.
[0076] ここで、上記の高機能膜のうち反射防止膜 (層)及び反射防止膜を積層した反射防 止フィルム及び透明導電フィルムについて詳細に説明する。 [0077] 本発明に係る高機能膜のうちの反射防止フィルムの反射防止層は中屈折率層、高 屈折率層、低屈折率層それぞれの薄膜が積層されたものである。 Here, the antireflection film (layer) and the antireflection film in which the antireflection film is laminated, and the transparent conductive film among the high-performance films will be described in detail. [0077] The antireflection layer of the antireflection film among the high-performance films according to the present invention is formed by laminating a thin film of a medium refractive index layer, a high refractive index layer, and a low refractive index layer.
[0078] 本発明に係る反射防止層薄膜形成性用のガス材料において、高屈折率層を形成 するチタン化合物、中屈折率層を形成する錫化合物、低屈折率層を形成する珪素 化合物について述べる。反射防止層を有する反射防止フィルムは、各屈折率層を基 材上に直接又は他の層を介して積層して得られるものであるが、積層は、例えば、図 2のような大気圧プラズマ放電処理装置を、中屈折率層、高屈折率層、低屈折率層 の順に 3層を積層するために、直列に 3基並べて連続的に処理することができ、この 連続的積層処理は品質の安定や生産性の向上等力 本発明の薄膜の形成に適し ている。また積層せずに、 1層処理ごと、処理後巻き取り、逐次処理して積層してもよ い。本発明において、反射防止層の上に防汚層を設ける場合には、上記の大気圧 プラズマ放電処理装置を更にもう 1基続けて設置し、 4基並べて最後に防汚層を積層 してもよい。また、反射防止層を設ける前に、基材の上に予めハードコート層や防眩 層を塗布によって設けてもよぐまた、その裏側に予めノックコート層を塗布によって 設けてもよい。  In the gas material for forming an anti-reflection layer thin film according to the present invention, a titanium compound forming a high refractive index layer, a tin compound forming a middle refractive index layer, and a silicon compound forming a low refractive index layer will be described. . An antireflection film having an antireflection layer is obtained by laminating each refractive index layer directly or via another layer on a substrate. In order to stack the three layers of the discharge treatment device in the order of medium refractive index layer, high refractive index layer, and low refractive index layer, three units can be arranged in series and processed continuously. It is suitable for forming the thin film of the present invention. Instead of laminating, winding may be performed after each layer processing, and the layers may be sequentially processed and laminated. In the present invention, in the case where an antifouling layer is provided on the antireflection layer, another one of the above-mentioned atmospheric pressure plasma discharge treatment apparatuses may be continuously installed, and four antifouling layers may be arranged and the antifouling layer is finally laminated. Good. Before providing the anti-reflection layer, a hard coat layer or an anti-glare layer may be provided in advance by coating on the base material, or a knock coat layer may be provided in advance by coating on the back side.
[0079] 本発明に係る反射防止フィルムの反射防止層薄膜形成性ガスには、適切な屈折率 を得ることのできる化合物であれば制限なく使用できるが、本発明において、高屈折 率層薄膜形成性ガスとしてはチタンィ匕合物を、中屈折率層薄膜形成性ガスとしては 錫化合物又はチタン化合物と珪素化合物の混合物 (又は高屈折率形成用のチタン 化合物で形成した層と低屈折率層を形成する珪素化合物で形成した層を積層しても よい)を、また低屈折率層薄膜形成性ガスとしては珪素化合物、フッ素化合物、ある いは珪素化合物とフッ素化合物の混合物を好ましく用いることができる。これらの化 合物を屈折率を調節するために、何れかの層の形成用薄膜形成性ガスとして 2種以 上混合して使用してもよい。  The gas for forming an antireflection layer thin film of the antireflection film according to the present invention can be used without limitation as long as it is a compound capable of obtaining an appropriate refractive index. Titanium conjugate as a reactive gas, and a mixture of a tin compound or a titanium compound and a silicon compound (or a layer formed of a titanium compound for forming a high refractive index and a low refractive index layer as a medium refractive index layer thin film forming gas). The low refractive index layer thin film forming gas may preferably be a silicon compound, a fluorine compound, or a mixture of a silicon compound and a fluorine compound. . In order to adjust the refractive index, two or more of these compounds may be used as a thin film forming gas for forming any of the layers.
[0080] 本発明に有用な中屈折率層薄膜形成性ガスに用いる錫化合物としては、有機錫 化合物、錫水素化合物、ハロゲンィ匕錫等であり、有機錫化合物としては、例えば、ジ ブチルジェトキシ錫、ブチル錫トリス(2, 4—ペンタンジオナート)、テトラエトキシ錫、 メチルトリエトキシ錫、ジェチルジェトキシ錫、トリイソプロピルエトキシ錫、ェチルエト キシ錫、メチノレメトキシ錫、イソプロピノレイソプロポキシ錫、テトラブトキシ錫、ジェトキ シ錫、ジメトキシ錫、ジイソプロポキシ錫、ジブトキシ錫、ジブチリロキシ錫、ジェチル 錫、テトラブチル錫、錫ビス(2, 4—ペンタンジオナート)、ェチル錫ァセトァセトナート 、エトキシ錫(2, 4—ペンタンジオナート)、ジメチル錫ジ(2, 4—ペンタンジオナート) 、ジァセトメチノレアセタート錫、ジァセトキシ錫、ジブトキシジァセトキシ錫、ジァセト才 キシ錫ジァセトァセトナート等、ハロゲンィ匕錫としては、二塩化錫、四塩化錫等を挙げ ることができ、何れも本発明において、好ましく用いることができる。また、これらの薄 膜形成性ガスを 2種以上同時に混合して使用してもよい。なお、このようにして、形成 された酸ィ匕錫層は表面比抵抗値を 10u Q Zcm2以下に下げることができるため、帯 電防止層としても有用である。 [0080] The tin compound used in the gas for forming a medium refractive index layer thin film useful in the present invention is an organic tin compound, a tin hydride compound, a halogenated tin, and the like. Tin, butyltin tris (2,4-pentanedionate), tetraethoxytin, methyltriethoxytin, getyl ethoxytin, triisopropylethoxytin, ethylethyl Xin tin, methinolemethoxy tin, isopropinole isopropoxy tin, tetrabutoxy tin, jetoxy tin, dimethoxy tin, diisopropoxy tin, dibutoxy tin, dibutylyloxy tin, getyl tin, tetrabutyl tin, tin bis (2,4-pentanedionate ), Ethyl ethyl acetate acetate, ethoxy tin (2,4-pentanedionate), dimethyltin di (2,4-pentanedionate), diacetomethinorea acetate tin, diacetoxy tin, dibutoxy dia Examples of halogenated tins such as cetoxytin and diacetoxytin diacetoacetonate include tin dichloride and tin tetrachloride, all of which can be preferably used in the present invention. Further, two or more of these thin film forming gases may be mixed and used at the same time. In this way, Sani匕錫layer formed in order to be able to lower the surface specific resistance value 10 u Q Zcm 2 or less, are also useful as anti-static layer.
[0081] 本発明に有用な高屈折率層薄膜形成性ガスに使用するチタンィ匕合物としては、有 機チタンィ匕合物、チタン水素化合物、ハロゲンィ匕チタン等があり、有機チタン化合物 としては、例えば、トリエトキシチタン、トリメトキシチタン、トリイソプロポキシチタン、トリ ブトキシチタン、テトラエトキシチタン、テトライソプロポキシチタン、メチルジメトキシチ タン、ェチルトリエトキシチタン、メチルトリイソプロポキシチタン、トリェチルチタン、トリ イソプロピルチタン、トリブチルチタン、テトラエチルチタン、テトライソプロピルチタン、 テトラブチルチタン、テトラジメチルァミノチタン、ジメチルチタンジ(2, 4—ペンタンジ オナート)、ェチルチタントリ(2, 4—ペンタンジオナート)、チタントリス(2, 4—ペンタ ンジオナート)、チタントリス(ァセトメチルァセタート)、トリァセトキシチタン、ジプロボ キシプロピオニルォキシチタン等、ジブチリロキシチタン、チタン水素化合物としては モノチタン水素化合物、ジチタン水素化合物等、ハロゲンィ匕チタンとしては、トリクロ口 チタン、テトラクロ口チタン等を挙げることができ、何れも本発明において好ましく用い ることができる。またこれらの薄膜形成性ガスを 2種以上を同時に混合して使用するこ とがでさる。 [0081] Examples of the titanium conjugate used in the high refractive index layer thin film forming gas useful in the present invention include an organic titanium conjugate, a titanium hydrogen compound, a halogen titanium, and the like. For example, triethoxytitanium, trimethoxytitanium, triisopropoxytitanium, tributoxytitanium, tetraethoxytitanium, tetraisopropoxytitanium, methyldimethoxytitanium, ethyltriethoxytitanium, methyltriisopropoxytitanium, triethyltitanium, triisopropyltitanium , Tributyl titanium, tetraethyl titanium, tetraisopropyl titanium, tetrabutyl titanium, tetradimethylamino titanium, dimethyl titanium di (2,4-pentanedionate), ethyl titanium tri (2,4-pentanedionate), titanium tris (2,4 -pen Dionylonate), titanium tris (acetomethyl acetate), triacetoxytitanium, dipropoxypropionyloxytitanium, etc., dibutylyloxytitanium, titanium hydrogen compounds such as monotitanium hydrogen compounds, dititanium hydrogen compounds, etc. Examples thereof include titanium trichloride and titanium titanium tetrachloride, all of which can be preferably used in the present invention. In addition, two or more of these thin-film forming gases can be mixed and used at the same time.
[0082] 本発明に有用な低屈折率層薄膜形成性ガスに使用する珪素化合物としては、有 機珪素化合物、珪素水素化合物、ハロゲンィ匕珪素化合物等を挙げることができ、有 機珪素化合物としては、例えば、テトラエチルシラン、テトラメチルシラン、テトライソプ 口ビルシラン、テトラブチルシラン、テトラエトキシシラン、テトライソプロポキシシラン、 テトラブトキシシラン、ジメチノレジメトキシシラン、ジェチノレジェトキシシラン、ジェチノレ シランジ(2, 4—ペンタンジオナート)、メチルトリメトキシシラン、メチルトリエトキシシラ ン、ェチルトリエトキシシラン等、珪素水素化合物としては、テトラ水素化シラン、へキ サ水素化ジシラン等、ハロゲンィ匕珪素化合物としては、テトラクロロシラン、メチルトリク ロロシラン、ジェチルジクロロシラン等を挙げることができ、何れも本発明において好 ましく用いることができる。また、前記フッ素化合物を使用することができる。これらの 薄膜形成性ガスを 2種以上を同時に混合して使用することができる。また、屈折率の 微調整にこれら錫化合物、チタン化合物、珪素化合物を適宜 2種以上同時に混合し て使用してもよい。 Examples of the silicon compound used in the low-refractive index layer thin film forming gas useful in the present invention include an organic silicon compound, a silicon hydride compound, a halogenated silicon compound, and the like. For example, tetraethylsilane, tetramethylsilane, tetraisobutyl silane, tetrabutylsilane, tetraethoxysilane, tetraisopropoxysilane, Examples of silicon hydrogen compounds such as tetrabutoxy silane, dimethinoresimethoxy silane, ethynole ethoxy silane, ethynole silane di (2,4-pentanedionate), methyl trimethoxy silane, methyl triethoxy silane, and ethyl triethoxy silane Examples of the halogenated silicon compound such as tetrahydrosilane, hexahydrogendisilane and the like include tetrachlorosilane, methyltrichlorosilane and getyldichlorosilane, all of which can be preferably used in the present invention. . Further, the above-mentioned fluorine compounds can be used. Two or more of these thin film forming gases can be mixed and used at the same time. For fine adjustment of the refractive index, two or more of these tin compounds, titanium compounds and silicon compounds may be appropriately mixed and used at the same time.
[0083] 上記の有機錫化合物、有機チタンィ匕合物又は有機珪素化合物は、取り扱い上の 観点から金属水素化合物、アルコキシ金属が好ましく、腐食性、有害ガスの発生がな ぐ工程上の汚れなども少ないことから、アルコキシ金属が好ましく用いられる。また、 上記の有機錫化合物、有機チタンィ匕合物又は有機珪素化合物を放電空間である電 極間に導入するには、両者は常温常圧で、気体、液体、固体何れの状態であっても 構わない。気体の場合は、そのまま放電空間に導入できるが、液体、固体の場合は、 加熱、減圧、超音波照射等の手段により気化させて使用される。有機錫化合物、有 機チタンィ匕合物又は有機珪素化合物を加熱により気化して用いる場合、テトラエトキ シ金属、テトライソプロポキシ金属などの常温で液体で、沸点が 200°C以下である金 属アルコキシドが反射防止膜の形成に好適に用いられる。上記アルコキシ金属は、 溶媒によって希釈して使用されても良ぐこの場合、希ガス中へ気化器等により気化 して混合ガスに使用すればよい。溶媒としては、メタノール、エタノール、イソプロパノ ール、ブタノール、 n キサンなどの有機溶媒及びこれらの混合溶媒が使用できる  [0083] The above-mentioned organotin compound, organotitanium compound or organosilicon compound is preferably a metal hydrogen compound or an alkoxy metal from the viewpoint of handling. Alkoxy metals are preferably used because they are small. In order to introduce the above-mentioned organotin compound, organotitanium compound or organosilicon compound between electrodes which are discharge spaces, both may be in a gas, liquid or solid state at normal temperature and normal pressure. I do not care. In the case of gas, it can be directly introduced into the discharge space, but in the case of liquid or solid, it is used after being vaporized by heating, decompression, ultrasonic irradiation or the like. When an organotin compound, an organic titanium compound, or an organosilicon compound is used after being vaporized by heating, a metal alkoxide such as tetraethoxy metal or tetraisopropoxy metal which is liquid at ordinary temperature and has a boiling point of 200 ° C or less is used. It is suitably used for forming an anti-reflection film. The alkoxy metal may be used after being diluted with a solvent. In this case, the alkoxy metal may be vaporized into a rare gas by a vaporizer or the like and used as a mixed gas. As the solvent, organic solvents such as methanol, ethanol, isopropanol, butanol, n-xane and the like and a mixed solvent thereof can be used.
[0084] 薄膜形成性ガスにっ ヽて、放電プラズマ処理により基材上に均一な薄膜を形成す る観点から、全ガス中の含有率は、 0. 01 10体積%で有することが好ましいが、更 に好ましくは、 0. 01 1体積0 /0である。 [0084] From the viewpoint of forming a uniform thin film on the base material by the discharge plasma treatment using the thin film forming gas, the content in the total gas is preferably 0.0110% by volume. , the more preferred are 0.01 1 volume 0/0.
[0085] なお、中屈折率層につ!/、ては、上記珪素化合物、上記チタン化合物又は上記錫化 合物を、 目標とする屈折率に合わせて適宜混合することによつても得ることができる。 [0086] なお、各屈折率層の好ましい屈折率と膜厚は、例えば、中屈折率層の酸化錫層で は屈折率として 1. 6〜1. 8、また膜厚として 50〜70nm程度、高屈折率層の酸化チ タン層では屈折率として 1. 9〜2. 4、また膜厚として 80〜150nm程度、低屈折率層 の酸化珪素層では屈折率として 1. 3〜1. 5、また膜厚として 80〜120nm程度であ る。 The medium refractive index layer can be obtained by appropriately mixing the silicon compound, the titanium compound or the tin compound according to the target refractive index. Can be. [0086] The preferable refractive index and film thickness of each refractive index layer are, for example, 1.6 to 1.8 as a refractive index and about 50 to 70 nm as a film thickness for a tin oxide layer as a medium refractive index layer. The high refractive index titanium oxide layer has a refractive index of 1.9 to 2.4, the film thickness is about 80 to 150 nm, and the low refractive index silicon oxide layer has a refractive index of 1.3 to 1.5. The thickness is about 80 to 120 nm.
[0087] 次に本発明に係る高機能膜の他の例として透明導電膜を有する薄膜の形成につ いて説明する。  Next, the formation of a thin film having a transparent conductive film as another example of the high-performance film according to the present invention will be described.
[0088] 前述の反射防止層を形成する際に使用する有機金属化合物の金属成分がインジ ゥム等の透明性と導電性を有する薄膜を形成すると言う点が若干異なるが、有機基 につ ヽてはほぼ同じような成分が用いられる。  [0088] The metal component of the organometallic compound used for forming the anti-reflection layer described above slightly differs in that it forms a thin film having transparency and conductivity such as indium. Almost the same components are used.
[0089] 透明導電膜を形成する好ま 、有機金属化合物の金属は、インジウム (In)、亜鉛 ( Zn)及び錫(Sn)力 選ばれる少なくとも 1種の金属である。  [0089] Preferably, the metal of the organometallic compound for forming the transparent conductive film is at least one metal selected from indium (In), zinc (Zn) and tin (Sn) forces.
[0090] 本発明において、好ましい有機金属化合物の好ましい例は、インジウムトリス(2, 4 ペンタンジオナート)、インジウムトリス(へキサフルォロペンタンジオナート)、インジ ゥムトリァセトァセタート、トリァセトキシインジウム、ジェトキシァセトキシインジウム、トリ イソポロポキシインジウム、ジエトキシインジウム(1, 1, 1—トリフルォロペンタンジォ ナート)、トリス(2, 2, 6, 6—テトラメチルー 3, 5 ヘプタンジオナート)インジウム、ェ トキシインジウムビス(ァセトメチルァセタート)、ジ(n)ブチル錫ビス (2, 4 ペンタン ジオナート)、ジ (n)ブチルジァセトキシ錫、ジ (t)ブチノレジァセトキシ錫、テトライソプ 口ポキシ錫、テトラ (i)ブトキシ錫、ビス(2, 4 ペンタンジォナート)亜鉛等を挙げるこ とができる。これらの有機金属化合物は一般に市販 (例えば、東京化成工業 (株)等 から)されている。  [0090] In the present invention, preferred examples of the preferred organometallic compound include indium tris (2,4 pentanedionate), indium tris (hexafluoropentanedionate), indium triacetate acetate, and triacetate. Xindium, jetethoxyacetoxyindium, triisopolopoxyindium, diethoxyindium (1,1,1-trifluoropentanedionate), tris (2,2,6,6-tetramethyl-3,5 heptane Dionate) indium, ethoxyindium bis (acetomethyl acetate), di (n) butyltin bis (2,4 pentane dionate), di (n) butyldiacetoxytin, di (t) butino Examples include resiacetoxytin, tetraisopropoxytin, tetra (i) butoxytin, and bis (2,4 pentanedionate) zinc. These organometallic compounds are generally commercially available (for example, from Tokyo Chemical Industry Co., Ltd.).
[0091] 本発明においては、上記分子内に少なくとも 1つの酸素原子を有する有機金属化 合物の他に、該有機金属化合物から形成された透明導電膜の導電性を更に高める ために該透明導電膜をドーピングすることが好ましぐ薄膜形成性ガスとしての該有 機金属化合物とドーピング用有機金属化合物ガスを同時に混合して用いることが好 ま 、。ドーピングに用いられる有機金属化合物又はフッ素化合物の薄膜形成性ガ スとしては、例えば、トリイソプロポキシアルミニウム、トリス(2, 4 ペンタンジオナート )ニッケル、ビス(2, 4 ペンタンジオナート)マンガン、イソプロポキシボロン、トリ(n) ブトキシアンチモン、トリ(n)ブチルアンチモン、ジ(n)ブチルビス(2, 4 ペンタンジ オナート)錫、ジ (n)ブチルジァセトキシ錫、ジ(t)ブチノレジァセトキシ錫、テトライソプ 口ポキシ錫、テトラブトキシ錫、テトラブチル錫、亜 ジ(2, 4 ペンタンジオナート)、 六フッ化プロピレン、八フッ化シクロブタン、四フッ化メタン等を挙げることができる。 [0091] In the present invention, in addition to the above-mentioned organometallic compound having at least one oxygen atom in the molecule, the transparent conductive film is formed in order to further enhance the conductivity of the transparent conductive film formed from the organometallic compound. It is preferable that the organic metal compound as a thin film-forming gas, which is preferable to dope a film, and an organic metal compound gas for doping be mixed and used at the same time. Examples of the gas for forming a thin film of an organometallic compound or a fluorine compound used for doping include triisopropoxyaluminum and tris (2,4 pentanedionate). ) Nickel, bis (2,4 pentanedionate) manganese, isopropoxyboron, tri (n) butoxyantimony, tri (n) butylantimony, di (n) butylbis (2,4 pentanedionate) tin, di (n) Butyldiacetoxytin, di (t) butinoresiacetoxytin, tetraisopropoxytin, tetrabutoxytin, tetrabutyltin, di (2,4 pentanedionate), propylene hexafluoride, octafluoride Examples thereof include cyclobutane and methane tetrafluoride.
[0092] 前記透明導電膜を形成するに必要な有機金属化合物と上記ドーピング用の薄膜 形成性ガスの比は、製膜する透明導電膜の種類により異なるが、例えば、酸化インジ ゥムに錫をドーピングして得られる ITO膜においては、 Inと Snの比の原子数比が 10 0 : 0. 1〜: LOO : 15の範囲になるように薄膜形成性ガス量を調整することが必要であ る。好ましくは、 100 : 0. 5〜: L00 : 10になるよう調整することが好ましい。酸化錫にフ ッ素をドーピングして得られる透明導電膜 (FTO膜という)においては、得られた FTO 膜の Snと Fの比の原子数比が 100 : 0. 01〜: L00 : 50の範囲になるよう薄膜形成性ガ スの量比を調整することが好ましい。 In O ZnO系アモルファス透明導電膜におい [0092] The ratio of the organometallic compound necessary for forming the transparent conductive film to the gas for forming a thin film for doping varies depending on the type of the transparent conductive film to be formed. For example, tin is used for indium oxide. In the ITO film obtained by doping, it is necessary to adjust the amount of the thin film-forming gas so that the atomic ratio of the ratio of In to Sn is in the range of 100: 0.1 to: LOO: 15. You. It is preferable to adjust the ratio to 100: 0.5 to: L00: 10. In a transparent conductive film (called an FTO film) obtained by doping fluorine to tin oxide, the atomic ratio of the ratio of Sn to F in the obtained FTO film is 100: 0.01 to: L00: 50. It is preferable to adjust the quantity ratio of the thin film-forming gas so as to fall within the range. In O ZnO-based amorphous transparent conductive film
2 3  twenty three
ては、 Inと Znの比の原子数比が 100 : 50〜: L00 : 5の範囲になるよう薄膜形成性ガス の量比を調整することが好ましい。 In: Sn比、 311 : 比及び111 : 211比の各原子数比は Therefore, it is preferable to adjust the amount ratio of the thin film forming gas so that the atomic ratio of the ratio of In to Zn is in the range of 100: 50 to L00: 5. In: Sn ratio, 311: ratio and 111: 211 ratio
XPS測定によって求めることができる。 It can be determined by XPS measurement.
[0093] 本発明にお ヽて、透明導電薄膜形成性ガスは、混合ガスに対し、 0. 01〜10体積[0093] In the present invention, the transparent conductive thin film forming gas is used in an amount of 0.01 to 10 volumes with respect to the mixed gas.
%含有させることが好まし 、。 % Is preferable.
[0094] 本発明にお 、て、得られる透明導電膜は、例えば、 SnO、 In O、 ZnOの酸化物 [0094] In the present invention, the obtained transparent conductive film is, for example, an oxide of SnO, InO, ZnO.
2 2 3  2 2 3
膜、又は Sbドープ SnO、 Fドープ SnO (FTO)、 A1ドープ ZnO、 Snドープ In O (IT  Film or Sb-doped SnO, F-doped SnO (FTO), A1-doped ZnO, Sn-doped In O (IT
2 2 2 3 2 2 2 3
O)等ドーパントによるドーピングした複合酸ィ匕物を挙げることができ、これら力も選ば れる少なくとも一つを主成分とするアモルファス膜が好ましい。またその他にカルコゲ ナイド、 LaB、 TiN、 TiC等の非酸化物膜、 Pt、 Au、 Ag、 Cu等の金属膜、 CdO等の O) Complex oxides doped with dopants such as O) can be mentioned, and an amorphous film mainly containing at least one of these forces is preferable. In addition, non-oxide films such as chalcogenide, LaB, TiN, and TiC, metal films such as Pt, Au, Ag, Cu, and CdO
6  6
透明導電膜を挙げることができる。  A transparent conductive film can be given.
[0095] 上記形成された酸化物又は複合酸化物の透明導電膜の膜厚は、 0. 1〜: LOOOnm の範囲が好ましい。  The thickness of the formed oxide or composite oxide transparent conductive film is preferably in the range of 0.1 to: LOOO nm.
[0096] 本発明に用いられる基材につ 、て説明する。 [0096] The substrate used in the present invention will be described.
[0097] 本発明に用いられる基材としては、板状、シート状又はフィルム状の平面形状のも の、あるいはレンズその他成形物等の立体形状のもの等の薄膜をその表面に形成で きるものであれば特に限定はな 、。基材が静置状態でも移送状態でもプラズマ状態 の混合ガスに晒され、均一の薄膜が形成されるものであれば基材の形態又は材質に は制限ない。形態的には平面形状、立体形状でもよぐ平面形状のものとしては、ガ ラス板、榭脂フィルム等を挙げることができる。材質的には、ガラス、榭脂、陶器、金属 、非金属等様々のものを使用できる。具体的には、ガラスとしては、ガラス板やレンズ 等、榭脂としては、榭脂レンズ、榭脂フィルム、榭脂シート、榭脂板等を挙げることが できる。 [0097] The substrate used in the present invention may have a plate-like, sheet-like, or film-like planar shape. There is no particular limitation as long as a thin film such as a three-dimensional one such as a lens or a molded article such as a lens can be formed on its surface. There is no limitation on the form or material of the substrate as long as the substrate is exposed to the mixed gas in a plasma state in a stationary state or a transported state and a uniform thin film is formed. As the morphology, a planar shape or a three-dimensional shape may be a glass plate, a resin film, or the like. Various materials such as glass, resin, pottery, metal, and nonmetal can be used. Specifically, glass includes a glass plate and a lens, and resin includes a resin lens, a resin film, a resin sheet, and a resin plate.
[0098] 榭脂フィルムは本発明に係る大気圧プラズマ放電処理装置の電極間又は電極の 近傍を連続的に移送させて透明導電膜を形成することができるので、スパッタリング のような真空系のようなバッチ式でない、大量生産に向き、連続的な生産性の高い生 産方式として好適である。  [0098] Since the resin film can be continuously transferred between the electrodes or in the vicinity of the electrodes of the atmospheric pressure plasma discharge treatment apparatus according to the present invention to form a transparent conductive film, the resin film can be used in a vacuum system such as sputtering. It is suitable for mass production, which is not a batch type, and is suitable as a production system with continuous high productivity.
[0099] 榭脂フィルム、榭脂シート、榭脂レンズ、榭脂成形物等成形物の材質としては、セ ノレローストリアセテート、セノレロースジアセテート、セノレロースアセテートプロピ才ネー ト又はセルロースアセテートブチレートのようなセルロースエステル、ポリエチレンテレ フタレートやポリエチレンナフタレートのようなポリエステル、ポリエチレンやポリプロピ レンのようなポリオレフイン、ポリ塩化ビ-リデン、ポリ塩化ビュル、ポリビュルアルコー ル、エチレンビニルアルコールコポリマー、シンジォタクティックポリスチレン、ポリカー ボネート、ノルボルネン榭脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリ エーテルスルフォン、ポリスルフォン、ポリエーテルイミド、ポリアミド、フッ素榭脂、ポリ メチルアタリレート、アタリレートコポリマー等を挙げることができる。  [0099] The material of the molded product such as a resin film, a resin sheet, a resin lens, and a resin molded product is, for example, cellulose paste acetonate, cellulose paste diacetate, cellulose acetate butyl acetate, or cellulose acetate butyrate. Such as cellulose esters, polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyolefins such as polyethylene and polypropylene, polyvinylidene chloride, polyvinyl chloride, polyvinyl alcohol, ethylene vinyl alcohol copolymer, and syndiotactic polystyrene. , Polycarbonate, norbornene resin, polymethylpentene, polyetherketone, polyimide, polyethersulfone, polysulfone, polyetherimide, polyamide, fluorine resin, polymethyl Ruatalylate, atarilate copolymer and the like can be mentioned.
[0100] これらの素材は単独であるいは適宜混合されて使用することもできる。中でもゼォ ネックスゃゼォノア(日本ゼオン (株)製)、非晶質シクロポリオレフイン榭脂フィルムの[0100] These materials can be used alone or in an appropriate mixture. Among them, ZEONEX ZENOA (manufactured by ZEON Corporation) and amorphous cyclopolyolefin resin film
ARTON (ジヱイエスアール (株)製)、ポリカーボネートフィルムのピュアエース(帝人 (株)製)、セルローストリアセテートフィルムのコ-カタック KC4UX、 KC8UX (コ-力 (株)製)などの市販品を好ましく使用することができる。更に、ポリカーボネート、ポリ ァリレート、ポリスルフォン及びポリエーテルスルフォンなどの固有複屈折率の大きい 素材であっても、溶液流延製膜、溶融押し出し製膜等の条件、更には縦、横方向に 延伸条件等を適宜設定することにより使用することができるものを得ることができる。 It is preferable to use commercially available products such as ARTON (manufactured by JSR Corporation), Pure Ace of polycarbonate film (manufactured by Teijin Limited), and Co-Katak KC4UX and KC8UX of cellulose triacetate film (manufactured by Ko-Riki Co., Ltd.). Can be. Furthermore, even for materials having a large intrinsic birefringence such as polycarbonate, polyacrylate, polysulfone, and polyethersulfone, conditions such as solution casting film formation and melt extrusion film formation, as well as in the vertical and horizontal directions. What can be used can be obtained by appropriately setting the stretching conditions and the like.
[0101] これらのうち光学的に等方性に近いセルロースエステルフィルムが本発明の光学素 子に好ましく用いられる。セルロースエステルフィルムとしては、上記のようにセルロー ストリアセテートフィルム、セルロースアセテートプロピオネートが好ましく用いられるも のの一つである。セルローストリアセテートフィルムとしては市販品のコ-カタック KC4 UX等が有用である。  [0101] Among these, a cellulose ester film that is nearly optically isotropic is preferably used for the optical element of the present invention. As the cellulose ester film, as described above, cellulose triacetate film and cellulose acetate propionate are one of those preferably used. As the cellulose triacetate film, commercially available Co-Katak KC4 UX and the like are useful.
[0102] これらの榭脂の表面にゼラチン、ポリビュルアルコール、アクリル榭脂、ポリエステル 榭脂、セルロースエステル榭脂等を塗設したものも使用できる。またこれら榭脂フィル ムの薄膜側に防眩層、クリアハードコート層、バリア層、防汚層等を設けてもよい。ま た、必要に応じて接着層、アルカリバリアコート層、ガスバリア層ゃ耐溶剤性層等を設 けてもよい。  [0102] The surface of these resins coated with gelatin, polybutyl alcohol, acrylic resin, polyester resin, cellulose ester resin or the like can also be used. An antiglare layer, a clear hard coat layer, a barrier layer, an antifouling layer and the like may be provided on the thin film side of these resin films. Further, an adhesive layer, an alkali barrier coat layer, a gas barrier layer, a solvent-resistant layer, and the like may be provided as necessary.
[0103] また、本発明に用いられる基材は、上記の記載に限定されな!、。フィルム形状のも のの膜厚としては 10〜: LOOO μ mが好ましぐより好ましくは 40〜200 μ mである。 実施例  [0103] The substrate used in the present invention is not limited to the above description. The film thickness of the film is preferably 10 to: LOOO μm, more preferably 40 to 200 μm. Example
[0104] 本発明を実施例により詳述するが、これらに限定されない。  [0104] The present invention will be described in more detail with reference to Examples, but it should not be construed that the invention is limited thereto.
[0105] 本実施例は、ロール回転電極とそれに対向して設置された複数の電極によるフィル ムへのプラズマ処理の実験である(図 2 (b)参照)。  [0105] The present example is an experiment of plasma treatment of a film by a roll rotating electrode and a plurality of electrodes placed opposite to the roll rotating electrode (see FIG. 2 (b)).
[0106] なお、図 2 (a)に示す構成により、平板状の基材に対しても同じ実験を行い同様な 結果を得た力 ここでは、フィルム状の基材を用いることで長時間にわたり連続した検 証実験を行うことができた本実施例を示す。 [0106] With the configuration shown in Fig. 2 (a), the same experiment was performed on a flat base material, and similar results were obtained. This example shows that a continuous verification experiment could be performed.
[0107] 本実施例では、電極母材として、ステンレス SUS316を用い、誘電体は対向する電 極の放電面に対し、各々アルミナセラミック溶射被覆を片肉で lmm行った後、アルコ キシシランモノマーを有機溶媒に溶解させた塗布液を、そのセラミックス被膜に対し 塗布乾燥後、 150°Cにて加熱処理することで設けた。 [0107] In this example, stainless steel SUS316 was used as the electrode base material, and the dielectric material was sprayed with a single layer of alumina ceramic on the discharge surface of the electrode facing the electrode, and then the alkoxysilane monomer was applied. A coating solution dissolved in an organic solvent was applied to the ceramic coating, dried, and then heated at 150 ° C.
[0108] このようにして作成した該電極システムにフィルム基材を設置し、 SiO膜の製膜を [0108] A film substrate was placed on the electrode system thus prepared, and a SiO film was formed.
2  2
行った。なお、構成する金属母材は、電極の温度を保温水を循環することで制御す ることがでさるちのとした。  went. In addition, it was assumed that the temperature of the electrode of the metal base material to be formed could be controlled by circulating warm water.
[0109] 上記 SiO膜を製膜するための混成ガスは、 放電ガス:窒素ガス [0109] The mixed gas for forming the SiO film is as follows: Discharge gas: Nitrogen gas
反応ガス:酸素ガス(窒素ガスの体積に対し 0. 1〜21%)  Reaction gas: oxygen gas (0.1 to 21% based on the volume of nitrogen gas)
製膜ガス:テトラエトキシシラン蒸気  Film forming gas: tetraethoxysilane vapor
を用いた。  Was used.
[0110] 以上の同一構成による装置において、一つの整合器のみインピーダンス絶対値と 位相調整を自動可変で行 ヽ、その他の整合器はインピーダンス絶対値を固定し位相 のみを調整する実験 (本願)、全ての整合器にぉ 、てインピーダンス絶対値と位相調 整を自動可変で行う実験 (比較 1)、及び全ての整合器にぉ 、てインピーダンス絶対 値を固定し、位相調整のみ自動可変で行う実験 (比較 2)を行い、表 1に示す結果を 得た。  [0110] In the apparatus having the same configuration as described above, the impedance absolute value and the phase adjustment of only one matching device are automatically variable, and the other matching devices have the fixed impedance absolute value and only the phase is adjusted (this application). An experiment in which the absolute value of the impedance and the phase adjustment were automatically varied for all matching devices (Comparative 1), and an experiment in which the absolute value of the impedance was fixed for all the matching devices and only the phase adjustment was automatically varied. (Comparison 2) was performed, and the results shown in Table 1 were obtained.
[0111] なお、 HF1〜3の設定出力は 300、 1000、 2000Wの場合でおこない、反射パヮ 一は、電源と電極間の電流及び電圧から計測し、表には実験開始から終了までの最 小計測値と最大計測値を記載した。  [0111] The setting outputs of HF1 to HF3 were set at 300, 1000, and 2000W. The reflection power was measured from the current and voltage between the power supply and the electrodes. The measured value and the maximum measured value are described.
[0112] [表 1] [0112] [Table 1]
Figure imgf000026_0001
Figure imgf000026_0001
[0113] 表 1に示すとおり、本発明による実験では、どの設定出力においても、反射パワー の値が小さぐまた変動が少な力 た。そして、全ての電極で均等で安定した放電が 行われたため、基材に対し、均一で精度の良い良質な薄膜を形成することができた。 As shown in Table 1, in the experiment according to the present invention, the reflected power was The value of was small and the fluctuation was small. In addition, since uniform and stable discharge was performed in all the electrodes, a uniform, high-quality thin film could be formed on the base material.
[0114] 比較 1では、高出力設定になるにつれ、変動の幅が大きくなつた。また、放電状況 は、常に変動しており、瞬間的に整合がとれる状態がある力 例えば全ての電極につ いて整合がとれる状態などは極めてまれであった。このため、基材に対する薄膜は、 不均一なものであった。  [0114] In Comparison 1, the range of fluctuation increased as the output became higher. In addition, the discharge situation is constantly changing, and there is very little force that can instantaneously match, for example, the state where all electrodes can be matched. For this reason, the thin film on the substrate was non-uniform.
[0115] 比較 2は、比較 1と同様の変動幅であり、放電状況は、頻繁に変動することはないが 、一度整合がとれなくなると対応できず、不整合な状態が継続した。このため、基材 に対する薄膜は、ある程度均一ではあるが、望む厚さの膜の形成が困難であった。  [0115] Comparative 2 has the same fluctuation range as Comparative 1, and the discharge state does not fluctuate frequently, but once matching cannot be achieved, it cannot be dealt with, and the state of mismatch continues. For this reason, although the thin film on the substrate is somewhat uniform, it has been difficult to form a film having a desired thickness.
[0116] 以上説明したように、本実施例では、複数ある第 2電源 HFと高周波電極 12の間に あり、インピーダンスを整合する整合器 11において、装置の稼働中に少なくとも 1つ の整合器 11でインピーダンス絶対値と位相値を自動調整し、その他の整合器 11で インピーダンス絶対値を固定して位相値のみ自動調節する。  As described above, in the present embodiment, at least one matching device 11 is provided between the plurality of second power sources HF and the high-frequency electrodes 12 and matches the impedance during operation of the device. Automatically adjusts the absolute value of the impedance and the phase value, and the other matching device 11 fixes the absolute value of the impedance and automatically adjusts only the phase value.
[0117] したがって、近接する各電極間の相互作用によるインピーダンスの不整合に対応し 、かつ、プラズマ状態の変動にも対応するインピーダンス整合を行い、より安定したプ ラズマ処理による薄膜形成を行うことができる。 産業上の利用可能性  [0117] Therefore, it is possible to perform impedance matching that copes with impedance mismatch due to the interaction between adjacent electrodes and also to cope with fluctuations in the plasma state, and to form a thin film by more stable plasma processing. it can. Industrial applicability
[0118] 前記構成(1)、 (2)、 (3)、及び (6)に記載の発明によれば、大気圧プラズマによる 薄膜形成装置において、整合が大きくはずれることがなぐ均一で精度の高い良質な 薄膜形成を行うことができる。また、高出力時においても、整合が大きくはずれること がないため、迅速な薄膜形成が可能となり、生産性を向上させることができる。また、 複数の電極により異なった膜の精密な形成を一度に行うことができ、生産工程を少な くすることがでさる。 According to the inventions described in the above configurations (1), (2), (3), and (6), in a thin film forming apparatus using atmospheric pressure plasma, uniformity and high accuracy do not cause a large deviation in matching. A good quality thin film can be formed. Further, even at the time of high output, the alignment does not largely deviate, so that a thin film can be formed quickly, and productivity can be improved. In addition, different electrodes can be precisely formed by a plurality of electrodes at once, and the number of production steps can be reduced.
[0119] 前記 (4)に記載の発明によれば、平面状に装置を配置することで、平面状の堅 、 基材に対してもプラズマ処理を行うことができる。  [0119] According to the invention described in the above (4), by arranging the apparatus in a plane, the plasma treatment can be performed even on a plane rigid base material.
[0120] 前記(5)に記載の発明によれば、ロール型電極を用いることで、フィルム状の基材 に対しプラズマ処理を施すことができ、上記ロール型電極を回転させることで、基材 に対し連続したプラズマ処理を行うことができる。 [0120] According to the invention as set forth in the above (5), by using a roll-type electrode, a plasma treatment can be performed on a film-shaped substrate, and by rotating the roll-type electrode, Can be subjected to continuous plasma processing.

Claims

請求の範囲 The scope of the claims
[1] 大気圧若しくはその近傍圧力下においてプラズマを発生させるための複数の電極 対と当該電極対に交流電力を供給する交流電源との間に、当該交流電源の出カイ ンピーダンスと前記複数の電極対の各入力インピーダンスとの整合を行う複数のイン ピーダンス整合器が介挿され、前記交流電源若しくは前記電極対間の電圧及び前 記交流電源若しくは前記電極対間に流れる電流に基づ!/、て前記複数のインピーダ ンス整合器を自動調整する自動調整手段が設けられた薄膜形成装置にぉ 、て、前 記自動調整手段は、前記複数のインピーダンス整合器の内のいずれか一つのインピ 一ダンス整合器を除く他のインピーダンス整合器は、絶対値調整用可変コンデンサ 一を固定し、位相調整用可変コンデンサーのみによりインピーダンスを自動調整し、 また前記一つのインピーダンス整合器は、絶対値調整用可変コンデンサー及び位相 調整用可変コンデンサ一によりインピーダンスを自動調整するように構成した薄膜形 成装置。  [1] Between a plurality of electrode pairs for generating plasma at or near atmospheric pressure and an AC power supply for supplying AC power to the electrode pair, the output impedance of the AC power supply and the plurality of electrodes A plurality of impedance matching devices for matching with each input impedance of the pair are interposed, and based on the voltage between the AC power supply or the electrode pair and the current flowing between the AC power supply or the electrode pair, In the thin film forming apparatus provided with automatic adjustment means for automatically adjusting the plurality of impedance matching devices, the automatic adjustment means may include any one of the plurality of impedance matching devices. Other impedance matching devices except the matching device fix the variable capacitor for absolute value adjustment and automatically adjust the impedance only with the variable capacitor for phase adjustment. And said one of the impedance matching device, configured thin film-shaped formation device to automatically adjust the impedance by the absolute value adjusting variable capacitor and a phase adjusting variable capacitor scratch.
[2] 請求の範囲第 1項に記載の薄膜形成装置において、前記インピーダンス整合器は インピーダンスの絶対値を調整するための可変容量コンデンサを有し、前記自動調 整手段は前記可変容量コンデンサの容量を調整する薄膜形成装置。  [2] The thin film forming apparatus according to claim 1, wherein the impedance matching device has a variable capacitance capacitor for adjusting an absolute value of impedance, and the automatic adjusting means has a capacitance of the variable capacitance capacitor. To adjust the thin film forming equipment.
[3] 請求の範囲第 1項に記載の薄膜形成装置において、前記電極対の一方の電極に 高周波数の交流電力が供給され、他方の電極に前記一方の電極に供給される交流 電力に対して相対的に低い周波数の交流電力が供給される薄膜形成装置。  [3] The thin film forming apparatus according to claim 1, wherein high-frequency AC power is supplied to one electrode of the electrode pair, and AC power supplied to the one electrode is supplied to the other electrode. Thin film forming apparatus to which AC power of a relatively low frequency is supplied.
[4] 請求の範囲第 1項に記載の薄膜形成装置において、前記複数対の電極は、一方 の電極が平面状に一体に設けられた平面型電極であり、他方の電極が前記一方の 電極に対向して個別に分離して設けられた複数の個別電極で構成されている薄膜 形成装置。  4. The thin film forming apparatus according to claim 1, wherein the plurality of pairs of electrodes are planar electrodes in which one electrode is integrally provided in a planar shape, and the other electrode is the one electrode. A thin film forming apparatus comprising a plurality of individual electrodes provided separately and opposed to each other.
[5] 請求の範囲第 1項に記載の薄膜形成装置において、前記複数対の電極は、一方 の電極が周方向に回転可能に設けられたロール型電極であり、他方の電極が前記 一方の電極の外周面に対向して個別に分離して設けられた複数の個別電極で構成 されている薄膜形成装置。  [5] In the thin film forming apparatus according to claim 1, the plurality of pairs of electrodes are roll-type electrodes in which one electrode is provided rotatably in a circumferential direction, and the other electrode is the one electrode. A thin film forming apparatus comprising a plurality of individual electrodes provided separately and separately from each other so as to face an outer peripheral surface of an electrode.
[6] 請求の範囲第 1項に記載の薄膜を形成する方法において、前記複数のインピーダ ンス整合器の内のいずれか一つのインピーダンス整合器を除く他のインピーダンス 整合器は、絶対値調整用可変コンデンサーを固定し、位相調整用可変コンデンサー のみによりインピーダンスを自動調整し、また前記一つのインピーダンス整合器は、 絶対値調整用可変コンデンサー及び位相調整用可変コンデンサ一によりインピーダ ンスを自動調整する薄膜形成方法。 [6] The method for forming a thin film according to claim 1, wherein the plurality of impedances are Other impedance matching devices except for one of the impedance matching devices have a variable capacitor for absolute value adjustment fixed, the impedance is automatically adjusted only by the variable capacitor for phase adjustment, and the one impedance matching device is used. The matching device is a thin film forming method that automatically adjusts the impedance using a variable capacitor for absolute value adjustment and a variable capacitor for phase adjustment.
PCT/JP2005/008413 2004-05-28 2005-05-09 Thin film forming equipment and thin film forming method WO2005116293A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006513834A JP4899863B2 (en) 2004-05-28 2005-05-09 Thin film forming apparatus and thin film forming method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004159491 2004-05-28
JP2004-159491 2004-05-28

Publications (1)

Publication Number Publication Date
WO2005116293A1 true WO2005116293A1 (en) 2005-12-08

Family

ID=35450914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008413 WO2005116293A1 (en) 2004-05-28 2005-05-09 Thin film forming equipment and thin film forming method

Country Status (2)

Country Link
JP (1) JP4899863B2 (en)
WO (1) WO2005116293A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007077871A1 (en) * 2006-01-06 2007-07-12 Konica Minolta Holdings, Inc. Moistureproof cellulose ester film, polarizer-protective film, and polarizer
CN103370805A (en) * 2011-03-30 2013-10-23 海洋王照明科技股份有限公司 Flexible organic electroluminescent device and manufacturing method thereof
JP2018504864A (en) * 2015-01-06 2018-02-15 北京北方華創微電子装備有限公司Beijing Naura Microelectronics Equipment Co., Ltd. Impedance matching method and apparatus for pulse high frequency power supply
CN109881198A (en) * 2019-04-10 2019-06-14 浙江大学 The preparation method of stannic oxide/vanadic anhydride core-shell structure multi-color electrochromic film
WO2021157051A1 (en) * 2020-02-07 2021-08-12 株式会社日立ハイテク Plasma processing device and plasma processing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0896992A (en) * 1994-09-22 1996-04-12 Nissin Electric Co Ltd Method for operating plasma treatment device
WO1998032154A1 (en) * 1997-01-17 1998-07-23 Balzers Aktiengesellschaft Capacitively coupled rf-plasma reactor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2775656B2 (en) * 1991-09-30 1998-07-16 株式会社島津製作所 Film forming equipment
JP2003268557A (en) * 2001-12-20 2003-09-25 Canon Inc Plasma processing method and plasma processing apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0896992A (en) * 1994-09-22 1996-04-12 Nissin Electric Co Ltd Method for operating plasma treatment device
WO1998032154A1 (en) * 1997-01-17 1998-07-23 Balzers Aktiengesellschaft Capacitively coupled rf-plasma reactor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007077871A1 (en) * 2006-01-06 2007-07-12 Konica Minolta Holdings, Inc. Moistureproof cellulose ester film, polarizer-protective film, and polarizer
US8236427B2 (en) 2006-01-06 2012-08-07 Konica Minolta Holdings, Inc. Moistureproof cellulose ester film, polarizer-protective film, and polarizer
JP5029366B2 (en) * 2006-01-06 2012-09-19 コニカミノルタホールディングス株式会社 Moisture-proof cellulose ester film, polarizing plate protective film, and polarizing plate
CN103370805A (en) * 2011-03-30 2013-10-23 海洋王照明科技股份有限公司 Flexible organic electroluminescent device and manufacturing method thereof
JP2018504864A (en) * 2015-01-06 2018-02-15 北京北方華創微電子装備有限公司Beijing Naura Microelectronics Equipment Co., Ltd. Impedance matching method and apparatus for pulse high frequency power supply
US10643822B2 (en) 2015-01-06 2020-05-05 Beijing Naura Microelectronics Equipment Co., Ltd. Impedance matching method and device for pulsed radio frequency power supply
CN109881198A (en) * 2019-04-10 2019-06-14 浙江大学 The preparation method of stannic oxide/vanadic anhydride core-shell structure multi-color electrochromic film
CN109881198B (en) * 2019-04-10 2020-04-17 浙江大学 Preparation method of multi-color electrochromic film with tin dioxide/vanadium pentoxide core-shell structure
WO2021157051A1 (en) * 2020-02-07 2021-08-12 株式会社日立ハイテク Plasma processing device and plasma processing method
JPWO2021157051A1 (en) * 2020-02-07 2021-08-12
JP7085031B2 (en) 2020-02-07 2022-06-15 株式会社日立ハイテク Plasma processing equipment and plasma processing method

Also Published As

Publication number Publication date
JP4899863B2 (en) 2012-03-21
JPWO2005116293A1 (en) 2008-04-03

Similar Documents

Publication Publication Date Title
JP5115522B2 (en) Thin film formation method
JP4433680B2 (en) Thin film formation method
JP5082242B2 (en) Thin film formation method
JP4876918B2 (en) Transparent conductive film
WO2006067952A1 (en) Gas-barrier thin film laminate, gas-barrier resin base and organic el device
JP4899863B2 (en) Thin film forming apparatus and thin film forming method
JPWO2005059202A1 (en) Thin film forming method and substrate on which a thin film is formed by the method
JP2007038445A (en) Gas barrier thin film laminate, gas barrier resin base material and organic electroluminescence device
JP2005272957A (en) Surface treatment method and base material surface-treated by the surface treatment method
JP4140289B2 (en) Atmospheric pressure plasma discharge processing apparatus, atmospheric pressure plasma discharge processing method, and optical element
JP2004198590A (en) Article with thin film, its manufacturing method, low-reflection body, and transparent conductive body
JP4534081B2 (en) Thin film forming equipment
JP2004022441A (en) Transparent conductive substrate and its manufacturing method
JP4254190B2 (en) Thin film formation method
JP4349052B2 (en) Manufacturing method of fresnel lens for display
JP4797318B2 (en) Transparent conductive film laminate and method for forming the same
JP2005071837A (en) Manufacturing method of transparent conductive film laminate, transparent conductive film laminate, and article using it
JP2006321127A (en) Barrier film and organic electroluminescent device
JP2005060770A (en) Thin film deposition apparatus
JP2006175633A (en) Gas barrier thin film laminate, gas barrier resin base material and organic el device
JP2005200737A (en) Method of forming transparent electroconductive film
JP2006267347A (en) Thin film, reflection preventing base material, semiconductor device, particulate manufacturing method and thin film manufacturing method
JP4821324B2 (en) Transparent and highly gas-barrier substrate and method for producing the same
JP4432429B2 (en) Manufacturing method of lenticular lens for display
JP2004246241A (en) Optical element and its manufacture method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006513834

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase