TW200824426A - 3D content generation system - Google Patents

3D content generation system Download PDF

Info

Publication number
TW200824426A
TW200824426A TW96140508A TW96140508A TW200824426A TW 200824426 A TW200824426 A TW 200824426A TW 96140508 A TW96140508 A TW 96140508A TW 96140508 A TW96140508 A TW 96140508A TW 200824426 A TW200824426 A TW 200824426A
Authority
TW
Taiwan
Prior art keywords
light
dimensional
content
image
holographic
Prior art date
Application number
TW96140508A
Other languages
Chinese (zh)
Other versions
TWI442763B (en
Inventor
Bo Kroll
Ralf Haubler
Armin Schwertner
Original Assignee
Seereal Technologies Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB0621360.7A external-priority patent/GB0621360D0/en
Priority claimed from GB0705399A external-priority patent/GB0705399D0/en
Application filed by Seereal Technologies Sa filed Critical Seereal Technologies Sa
Publication of TW200824426A publication Critical patent/TW200824426A/en
Application granted granted Critical
Publication of TWI442763B publication Critical patent/TWI442763B/en

Links

Landscapes

  • Holo Graphy (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Stereoscopic And Panoramic Photography (AREA)

Abstract

A 3D content generation system comprising a content generating party that generates 2D content and sends that content to a remote intermediary. The remote intermediary processes the content to facilitate subsequent holographic reconstruction and sends the processed content to a holographic display device which locally generates a 3D holographic reconstruction of the content. An advantage is that 2D content may be processed remotely to provide 3D holographic content.

Description

200824426 九、發明說明: 【發明所屬之技術領域】 —本案為—種三、軸容產生系統,尤指包含—内容產生方且内 今產生方會產生二維内容並且將該内容傳送至一遠 遠端中間系統會處理該二維内容,以幫助隨後在三維辭裝置上 的三維顯示之三維内容產生系統。 【先前技術】 電產生的影像全像圖(c〇m_r—generated holograms,CGHs)是由一個或更多的空間光調變器(咖⑷ light modulators,SLMs)所編譯而成;空間光調變器可包括電 子或光學可控制的元件。這些元件根據影像全侧轉全像圖值 進行編碼’藉此達卿變光的振幅及相位之目的。電腦產生的影 像王像圖疋可以被计异出來的’例如通過同調光線追蹤、通過模 擬又到場景反射的光以及參考波之間的干擾,或者通過傅立葉 (Fourier)或菲涅耳Q?resnel)轉換。一個理想的空間光調變器是 月b表現任意複數的數值,即分別控制進入光波的相位及振幅。然 而,典型的空間光調變器只能控制振幅或相位其中一種特性,並 且帶有影響其他特性的不良效應。調變光的振幅及相位具有幾種 不同的方式,例如利用電子式定址液晶空間光調變器、光學式定 址液晶空間光調變器、磁光空間光調變器、微鏡裝置或者聲光調 變器。光的調變可為空間上連續的或由個別可定址元件所構成, 200824426 可為一維或二維排列、— J —進制、多階層或連續。 在本發明中,專右 值來對全像圖編碼,使得二:意指提供空間光調變器控制 ”以仏空間光調變器編碼全像圖”是指全像圖在空間調變 為上進行編碼。 η欠 、 自動式立體顯示板,觀㈣透過影像全像圖可觀察 眼目▲及* PU 、‘重建。三維場景是在延伸於觀察員的 月。調㈣之間或者甚至空間光調魏之後的空間進行 △建i間光调交裔也能利用影像全像圖進行編碼,使得觀察員 能在空間光調魏之前觀察職建的三維場景物件,喊空間光 凋雙為上或其後方觀察到其他物件。 空間光調變器的元件是光傳輸性較佳的元件,其射線所產生 的干擾至少在-定義的位置,並且超過幾毫米的空間同調性長 度^•可提供全像重建至少在一個維度具有足夠的解析度。這類 -型的光將稱為’’充份同調光,,。 • 為了保證足夠的時間同調性,由光源發射的光譜必需限制於 -個適當狹窄的波絲圍内,也就是必需接近單色。高亮度發光 二極體(LEDs)的光譜頻寬是足触窄來確保全像重建的時間同調 性。在空間光霞器上的繞射肢與波長成關,意指只有一個 單色光源將導致目標點的重建強烈。寬闊的光譜則導致寬闊的目 標點以及模糊的目標重建。雷射源的光譜可以被當作為單色的。 7 200824426 發光二極體(LED)的光譜線寬是充份狹窄的,能幫助較佳的重建。 空間同調性與光源的橫向寬度有關。習用的光源,像是發光 -極體(LEDs)或者冷陰極發光燈(gGFLs),如果它們的發射光是 通過充份狹窄的_也可以滿足這㈣求。魏絲的光可視為 •從繞射限制的點光源所發射,根據模型的的純度、將產生目標的 .尖銳重建,即每一個目標點被重建為繞射限制的點。 攸工間非同调光源所產生的光是橫向延伸,並且會造成重建 目標模糊。模_情況是由重建麵定位置的目標喊闊大小所 決定。為了在全像圖重建上使用空間非同調光源,必須在亮度和 利用孔徑限制光源橫向寬度之職到—個折衷點。較小的光源, 會得到比較好的空間同調性。 如果從直角於縱向延展的觀點來觀察,直線光源可被視為點 光源。因此,光波就能在那個方向進行同調傳播,並且非同調於 其他方向。 -般而言’全像圖藉由波在水平和垂直方向的_超重疊來 全像地重建場景。上述的影像全像圖被稱做全視差全像圖。重建 的物件可被視為在水平和垂直方向的移動視差,如同真實物件。 然而,較大的可視角度需要在空間光調變器的水平和垂直方向具 8 200824426 有高的解析度。 通常’空間光調變器的需求會因為限制於僅具水平視差⑽) 的全像圖而減少。全像重建僅發生於水平方向,在垂直方向不會 ^全像重建。這料致重雜件具有水平機㈣。透視圖並不 “直移動上改文。僅具轉視差的全侧需要空間光調變器 在垂直方_靖度會少於全的全侧。雜鼓視差⑽) 的全像暇_可咖此的但較解見。全像錢只發生在垂直 方向θ產生具錢直轉視差的重建物件。而在水平方向不會 有移動視I纟於左眼和右目峨察到的透視财同,因此透視圖 必須分別地產生。 討論相關的技術 典型地’用於產生三維圖像的裝置較缺乏緊密,即需要複雜 -及龐大的光m使其無法制在可攜式裝置,或在手持式裝 _置’例如手機。以US4, 2G8, _為例,用於產生較大三維圖像的 叙置長度是以公尺為單位。以W0 2004/044659 (US2006/0055994) 為參考’用於重建影像三維圖像的裝置具有超過1()公分的厚度。 因此’上述的習用裝置對於手機或其他可攜式、手持式或較小的 顯示裝置具有過厚的厚度。 9 200824426 在WO 2004/044659⑽2006/0055994)之中提及藉由充份同調 光的繞射重建三維場景職置;裝置包括點絲或錄光源、用 於對焦光線的透鏡以及空間光調變器。相較於習用的全像顯示, 空間光調變ϋ於傳輸模式至少在—個”虛擬觀察窗"重建三 維場景(關於虛峨察Μ視窗的描述及相關的技術請參考附件j及 Π)。每一個虛擬觀察員視窗是設置於靠近觀察員的眼睛,並且大 ^上受到關,所以虛擬觀察員視窗是於單—的繞射階級,因此 每-個眼睛可以看見三維場景在圓錐狀重建郎的完整重建,圓 錐狀的重建空間是延展於空間光調變器表面及虛擬觀察員視窗之 間。為了讓全像重建沒有干擾,虛擬觀察員視窗的大小必需不超 過重建的-個繞射階級職性間隔。然而,這必需至少足夠大, 能讓觀察員經由視窗看見三維場景的完整重建。另—個眼睛能經 由相同的虛擬觀察員視窗’或是由第二個光源所產生的第二個虛 擬觀察員視絲進行觀察。此時,典型上較大的可見區域會限制 於局部設置的虛鐵察貞視f。制_決方法是在由f用高解 度空間光調變n表面所產生的微小化煙域進行重建,以減低至 虛擬觀察貞視窗的尺寸大小。這將產生由於幾何上原因而較小的 繞射角度’以及侧消費者層級輯算設備,即足夠實現高品質 即時全像重建的光調變器解析度。 然而’已知產生三_像的方法,呈現出由於較大的空間光 200824426 調變器表面區域,要-麵積大、容量A、重量重及昂貴 的透鏡來聚焦的缺點。因此,裝置將有大的厚度及重量。另一個 缺點,是當使料樣大透麟’由於邊緣的色差將嚴重地減低重 建的品質。在US 2GG6/25G671提及-個改進包括魏狀陣列的光 源改進方法,雖然它是應用於大範圍影像全像圖中,於此作為一 個參考,。 在US2004/0223049中提到了產生三維影像的手機。然而,所 提及的二維影像是利用自動立體顯示所產生。利用自動立體顯示 產生三維圖像的一個問題是在典型上觀看者察覺圖像是在顯示器 内部,而觀看者的眼睛傾向於集中在顯示器的表面上。在許多實 例中,觀看者眼睛的焦點及三維圖像的察覺位置之間的不同,將 可能造成使用者不舒服的現象。在利用全像技術產生三維圖像的 貝例中’這些問題將不會發生,或是大大地減少。 【發明内容】 在第一方面,提供了一個三維内容產生系統,包含產生二維 内谷並且傳送内容至⑨端中間系統的内容產生方,遠端中間系統 h處理内谷,以幫助隨後的全像重建,並將處理過後的内容傳送 至全像顯示裝置,全像顯示裝置會在其上產生内容的三維全像重 建。 11 200824426 三維内容產生系統可令二維内容為電視影像。三維内容產生 系統可令二維内容為軟片(電影),或是錄影内容。三維内容產生 系統可令二維内容為如照片或圖片的影像内容。 遠端中間系統可利用計算及加入深度圖的方式處理内容。 顯示裝置可包括同步裝置,以補償遠端中間系統所造成的延 遲0200824426 IX. Description of the invention: [Technical field to which the invention belongs] - This case is a type III, shaft capacity generation system, especially the inclusion-content generation party, and the inner generation party will generate two-dimensional content and transmit the content to a far distance. The remote intermediate system processes the two-dimensional content to aid in the three-dimensional display of the three-dimensional display on the three-dimensional speech device. [Prior Art] Electrically generated image holograms (CGHs) are compiled from one or more spatial light modulators (SLMs); spatial light modulation The device can include electronic or optically controllable elements. These components are coded according to the image's full-sided hologram value, which is used to achieve the amplitude and phase of the dimming. Computer-generated imagery of the image can be counted as 'for example, by coherent ray tracing, by analog to the reflected light from the scene, and between the reference waves, or by Fourier or Fresnel Q?resnel ) Conversion. An ideal spatial light modulator is a value that the monthly b represents an arbitrary complex number, that is, the phase and amplitude of the incoming light wave are separately controlled. However, a typical spatial light modulator can only control one of the amplitudes or phases, with adverse effects that affect other characteristics. The amplitude and phase of the modulated light can be varied in several ways, such as using an electronically addressed liquid crystal spatial light modulator, an optically addressed liquid crystal spatial light modulator, a magneto-optical spatial light modulator, a micromirror device, or an acousto-optic light. Modulator. The modulation of light can be spatially contiguous or composed of individual addressable elements. 200824426 can be arranged in one or two dimensions, J-ary, multi-level or continuous. In the present invention, the right-valued value is used to encode the hologram, so that the second: means providing the spatial light modulator control "to encode the hologram with the spatial light modulator" means that the hologram is modulated in space. Encoded on. η owe, automatic stereo display panel, view (4) through the image hologram can observe the eyes ▲ and * PU, ‘reconstruction. The 3D scene is in the month that extends to the observer. Between the (4) and even the spatial light after the Wei, the space can be coded by the image hologram, so that the observer can observe the three-dimensional scene objects of the occupation before the spatial light adjustment Wei, shouting Space light is doubled for other objects observed above or behind. The component of the spatial light modulator is a component with better optical transmission, the interference generated by the radiation is at least at a defined position, and the spatial coherence length exceeds a few millimeters. ^ Provides holographic reconstruction with at least one dimension Sufficient resolution. This type of light will be referred to as ''full dimming,'. • In order to ensure sufficient time homology, the spectrum emitted by the source must be limited to a suitably narrow perimeter, that is, it must be close to a single color. The spectral bandwidth of high-brightness light-emitting diodes (LEDs) is narrow-footed to ensure temporal homology of holographic reconstruction. The diffracting limb on the spatial gleam is wavelength-dependent, meaning that only one monochromatic source will result in a strong reconstruction of the target point. The wide spectrum results in wide target points and blurred target reconstruction. The spectrum of the laser source can be treated as a single color. 7 200824426 The spectral linewidth of a light-emitting diode (LED) is sufficiently narrow to aid in better reconstruction. Spatial coherence is related to the lateral width of the light source. Conventional light sources, such as light-emitting diodes (LEDs) or cold cathode light-emitting lamps (gGFLs), can also satisfy this (four) if their emitted light is through a sufficiently narrow _. Weiss's light can be viewed as • emitted from a diffraction-limited point source, depending on the purity of the model, which will produce a sharp reconstruction of the target, ie each target point is reconstructed as a point of diffraction limitation. The light produced by the non-coherent light source in the masonry is laterally extended and causes the reconstruction target to be blurred. The modulo_ situation is determined by the size of the target of the reconstructed face. In order to use spatially non-coherent light sources for hologram reconstruction, a compromise must be made between brightness and the use of apertures to limit the lateral width of the source. Smaller sources will give better spatial coherence. A linear light source can be considered as a point source if viewed from a right angle to a longitudinal extension. Therefore, the light wave can be transmitted in the same direction in the same direction, and it is not in the same direction. In general, the hologram reconstructs the scene in its entirety by the _ super-overlap of the waves in the horizontal and vertical directions. The above image hologram is referred to as a full parallax hologram. Reconstructed objects can be viewed as moving parallax in the horizontal and vertical directions, just like real objects. However, a larger viewing angle requires a high resolution in the horizontal and vertical directions of the spatial light modulator. In general, the demand for a 'space light modulator' is reduced by limiting the hologram to only horizontal parallax (10). The holographic reconstruction only occurs in the horizontal direction, and it is not reconstructed in the vertical direction. This material has a horizontal machine (4). The perspective view does not “straight and move the text. Only the full side of the parallax requires a spatial light modulator in the vertical direction _ Jing will be less than the full side. The full image of the drum parallax (10)) _ _ _ This is more obvious than the explanation. The full image money only occurs in the vertical direction θ to generate a reconstructed object with a straight-forward parallax. In the horizontal direction, there is no perspective view of the left eye and the right eye. The perspectives must therefore be produced separately. Discussion of related techniques typically 'there is a lack of tightness for the device used to generate three-dimensional images, ie complex-and bulky light m that cannot be made in portable devices, or in handheld For example, a mobile phone. For example, US4, 2G8, _, the length used to generate a larger three-dimensional image is in meters. It is referenced to W0 2004/044659 (US2006/0055994). The device for reconstructing a three-dimensional image of the image has a thickness of more than 1 (cm). Therefore, the above-mentioned conventional device has an excessive thickness for a mobile phone or other portable, handheld or smaller display device. 9 200824426 In WO 2004/ 044659(10)2006/0055994) mentioned by the same The diffracted light reconstructs the three-dimensional scene; the device includes a dotted or recorded light source, a lens for focusing light, and a spatial light modulator. Compared to the conventional holographic display, the spatial light modulation is at least in the transmission mode. A "virtual observation window" to reconstruct a three-dimensional scene (see Appendix j and Π for a description of the virtual window and related techniques). Each virtual observer window is placed close to the observer's eyes, and is closed on the big, so the virtual observer window is in the single-drilling class, so each eye can see the complete reconstruction of the three-dimensional scene in the cone-shaped reconstruction Lang The conical reconstruction space extends between the surface of the spatial light modulator and the virtual observer window. In order for the hologram reconstruction to be undisturbed, the size of the virtual observer window must not exceed the reconstructed--a diffraction-level job interval. However, this must be at least large enough to allow the observer to see a complete reconstruction of the 3D scene via the window. Another eye can be viewed by the same virtual observer window or by a second virtual observer's wire produced by the second source. At this point, the typically large visible area is limited to the localized virtual saccade f. The method is to reconstruct the minimization of the smoke generated by the high-resolution spatial light modulation n surface to reduce the size of the virtual observation window. This will result in a smaller diffraction angle for geometric reasons' and a side consumer leveling device, i.e., a light modulator resolution sufficient to achieve high quality instant holographic reconstruction. However, the method known to produce a three-image exhibits the disadvantage of focusing on the surface area of the transducer, the large area, the large capacity A, the heavy weight, and the expensive lens. Therefore, the device will have a large thickness and weight. Another disadvantage is that when the material is large, the color difference of the edge will seriously degrade the quality of the reconstruction. A modification of the light source improvement method including the Wei-shaped array is mentioned in US 2GG6/25G671, although it is applied to a wide-range image hologram as a reference. A mobile phone that produces a three-dimensional image is mentioned in US 2004/0223049. However, the two-dimensional images mentioned are produced using autostereoscopic display. One problem with autostereoscopic display to produce a three-dimensional image is that the viewer typically perceives that the image is inside the display, while the viewer's eyes tend to focus on the surface of the display. In many instances, the difference between the focus of the viewer's eye and the perceived position of the three-dimensional image may cause discomfort to the user. In the case of a three-dimensional image using holographic techniques, these problems will not occur or be greatly reduced. SUMMARY OF THE INVENTION In a first aspect, a three-dimensional content generation system is provided, comprising a content producer that generates a two-dimensional inner valley and transmits content to a 9-terminal intermediate system, and the remote intermediate system h processes the inner valley to help the subsequent full Like reconstruction, and transferring the processed content to the holographic display device, the holographic display device produces a three-dimensional holographic reconstruction of the content thereon. 11 200824426 The 3D content generation system enables 2D content to be TV images. The 3D content generation system allows the 2D content to be a film (movie) or a video content. The 3D content generation system allows 2D content to be image content such as photos or pictures. The remote intermediate system can process the content by calculating and adding depth maps. The display device can include a synchronization device to compensate for the delay caused by the remote intermediate system.

遠端中間系統可設計成包含定義關於内容的實體環产一維 的資料。實體環境可為一個運動場。 、 顯示裝置可包括停格功能,用以產生靜態的全像 … 裝置可包括放大魏’讓使用者關放大部份的全像重建。减不 三維内容產生系統可讓用戶以支付費用的_ 由遠端中間系統處理過的内容。 存取已經 三維内容產生系統可讓廣告客戶以 的廣告能触由遠端中難統處理,使复*、、方式,來令他 經由顯示裝置進行全像重建。 ,、插入至内容中,並且 200824426 三維内容產生緖可職生全魅建所料編碼是分佈在遠 端中間系統與顯示裝置中的計算單元之間。 遠端中間系統可設計成包含定義内容元素的三維實體圖的資 料,來幫助内容的處理。 全像顯示裝置可為一種能從全像重逮媪斗 豕職松式切換到習用二維顯 示模式的顯示裝置。 全像顯示裝置可為手持可攜式裝置。 全像顯示裝置可為個人數位助理(pDA)。 全像顯示裝置可為電玩裝置。 全像顯示裝置可為-機置,在其+絲式定址空間光調變 器編石馬全側’且當讀取光束_騎絲式定址㈣光調變 ^並且光學式定址郎細魏涵有機發光二極體陣列進行 適#當的控辦,全像重建將由裝置所產生。全像顯稀置可為一 /置在其中有機發光二極體陣列會寫入至一對光學式定址空 13 200824426 間光調變器上,有機發光二極體陣列及光學式定址空間光調變器 會形成相騎’成制光學式定址空間光調魏、編碼全像圖,且 ,頃取光束照射麟的光學式定址空間光調㈣,並且成對的光 干式疋址空間光機n經由有機發光二極断舰行適當的控制 日寸’全像重建將由裝置所產生。全像顯示裝置可為—種裂置,在 其中包括寫人至第-光學式定址空間光調變器上的第—有機發光 —極體陣列,以及寫人至第二光學式定址空間光調變器上的第二 有機發光二__,第—錢發光二極體_與第—光學式: 址空間光調變时形成靖H有機發光二極斷列 光學式奴空間光·財形成捕層m光學式定址 ,間光會編碼全像圖,當讀取光束陣列照射第—及第二光 ,式定址郎細妓,並且第—及第二絲式定址雜光輕 ㈣由第-及第二有機發光二極體陣列進行適當的控制時,裝置 ,會產生全像重建。全像顯示裝置可為—種裝置,在其中第一與 第二對有機發光二極體/光學式定址空間光·器的組合利用控 ,方式調變讀取光束_的振幅與相位。全軸示裝置可為一種 ,置’在其中—個有機發光二極體陣列與絲式定址空間光調變 器的成對觀讀取光束_的振幅與相位的第—組合,另一個有 :發光二極體陣列與光學式定址空間光調變器的成對調變讀取光 陣列的振幅與相位的第二不同的組合。全像顯示I置可為產生 供單-制者觀相全縣建的齡裝置,翔⑽包含寫入 14 200824426 至第光¥式定址空間光調變器上的第一有機發光二極體陣列, 形成相鄉層,以及寫入至第二光學式定址空間光調變器上的第 =有機發光二極體陣列,並形成相鄰層。全像顯示裝置可為一種 當使用者離顯示11是在職的距離時,可正確清淅地看到所產生 的全像重建的顯示裝置。 王像顯咕置可為-種顯示裝置,具有—齡献,可不需 要任何的投影透鏡,即可產生聚焦在螢幕上的二賴像,且無關 於f幕離裝置的輯。顯4包含寫人至第—光學式定址空間光 峨器上的第—有機發光二極體_,並形成相㈣,以及寫入 至第二光學歧址郎光調變器上的第二有機發光二極體陣列, 並形成相鄰層。 全像置可具有—赫赋,在其巾是為自動立體顯示 、’包含寫人至振幅調變的光學式定址空間光調變器上的有機 ==體_,並形成相㈣,縣置包括光束分紐,能夠 軸=的目W麵取絲陣韻縣料纽郎光調變器, 夫光予式疋址郎光婦n是經由有機發光二極體陣列進行適 虽的控制時’看纽體影像。 提七、了個二軸容產生祕’包含產生二軸容並且傳送 15 200824426 内容至遠财㈣統_容產生方,遠端中間纽會處理内容, 以幫助隨後的三維顯示’並將處理過後的内容傳送至三轉示裝 置’三維顯示裝置會在其上產生内容的三維顯示。遠端中間系統 I利用計算及加人深度_方式處_容。顯示裝置可包括同步 衣置以補彳貝遠端中齡統所造成的延遲。遠端中間系、統可設計 成包含定義關於内容的實體環境三維圖的資料。實體環境可為〆 個運動場。 在另一方面,提供了一個三維内容產生系統,包含產生二維 内容並且傳送内容至遠端中間系統的内容產生方,遠端中間系統 έ處理内谷,以幫助隨後的三維顯示,並將處理過後的内容傳送 至二維顯稍置,三_示裝置會在其上產生内容的三維顯示。 二維内容產生系統可令裝置包括光束分光鏡,能夠讓觀察員 的眼睛看見立體影像。 在另一方面,提供了一個三維内容產生方法,包括使用如文 中所述的三維内容產生系統的步驟。 在另一方面,提供了一個對於全像重建的内容處理方法,在 其中網路經營者提供三維内容產生系統,在其中會將二維内容從 16 200824426 内谷產生方傳1¾至退端中間系統,遠端巾間系統會處理内容,以 幫助隨後的全像重建,然而處理過後_容會傳送至全像顯示裝 置’全像顯稍置會_編碼全像圖_示器在其上產生内容= 三維全像线。對於全像重建_容處财法,可讓全像顯示器 包含至少-個寫人至至少—個光學式定址空間光調變器上的 發光二極體陣列,並形成相鄰層。 在另方面’提供了—個三維内容產生方法’在其中内容產 一維内容’二維内容會傳送至遠端中間系統,遠端中 二 =里=,以幫助隨後的全像重建,然而處理過後的内 == 錢,全像_置會在其上產生_三 加入深職湘計算及 二維内容的產生方法 内容的實體環境三維圖的 境為一個運動場。 可讓遠端巾H統設計成包含S義關於 貝料。三維内容的產生方法可讓實體環 包括停袼功能,用以產生 可讓顯示裝置包括放大功 重建 ㈣々的產生麵可讓顯示装置 ▲靜態=全像鍵。三維⑽的產生方法 ,讓使用者能夠放大部份的全像 17 200824426 三維内容的產生方法可讓用戶以支付費㈣方式,來存取已 經由遠端中間紐處理過的内容。三維内容的產生方法可讓廣告 客戶以支付費用的方式,來令它的廣告能夠經由遠端中間系統: •理,使其能插入至内容中,並且經由顯示裝置進行全像重建。 ^二維内容的產生方法可讓產生全像重建所需的編碼是分佈在 遠端中間系統與顯示裝置中的計算單元之間。 _三維魄的產生方法可讓遠端巾料統設計成包妓義内容 元素的三維實顧的資料,絲咖容的處理。 一在另-方面,提供了—個通信方法,包含使用如文中所述的 三維内容產生系統的步驟。 …利用”空間光調變器編碼全側”意指全像暇社間光調 變器上進行編碼。 【實施方式】 A.紅外線有機發光二極體_器與光學式定址空間光調變器的緊 18 200824426 這個a施例提供光學式定址空間光調變器與可在光學式定址 工間光5周、k益上寫入圖樣的紅外線發射顯示器的緊密結合,這樣 的結合能夠在適當的照明條件下產生三維圖像。 • 力學式定址空間光調變器包括感光器層與位於在傳導性電極 ,之間的液晶(LC)層。當電壓加至電極,入射在感光器層上的光圖 樣將轉換至用於觀讀取光束驗晶層。在制技術巾,入射光 圖樣是由電子式定址空間光調變器(EASLM)所調變的寫入光束所 提供。電子式定址空間光調變器是由光賴射並且成像到光學式 定址空間光調魏上。通常,寫从束是非_的,可避免斑點 圖樣現象,而讀取光束是同調性的,具有產生繞射圖案的能力’。 光學式纽郎光調魏她於電子式定址如光調變哭的 優點是光學式定址雜_魏、可具有連續、雜錢非嶋式 .的結構,而電子式定址郎光婦^職像素結構。像素在光的 .空間分配上產生銳邊:此銳邊相當於高空間頻率。 面空間頻率會導致在光學遠場裡廣角繞射的特性。因此’電子式 定址空間光調變ϋ會產生在光學遠射不希望出現喊學繞射: 工品,必須使用如空間聽等已知的技術來消除。在光學處理程 序中,進行空間渡波需要增加額外的步驟,這會讓裝置變的較严 而且會造成光的浪費。光學式定址空調變_型的裝置優: 19 200824426 是能夠在鱗式定址___中允許__樣產生。連姨 的圖樣可讓光強度,具有較少的陡養化在任何給定方向轉換: 一束專播的方向。因此,較少的陡山肖變化擁有能比電子式定址* :光簡ϋ裝置所產生的像素邊緣低的高空賴率的濃度。在: .含光學式奴空間光調變器的裝置中,較低濃的高空間頻率可促 使光學處理較為料,並且比包含電子式定址空間光調變器的裝 ,置更具效率。此外’相較於電子式定址空間光調變器,光學式定 址空間_變器裝置可為雙鶴裝置。因此,光學式定址空間光 調變器可比電子式定址空間光調魏裝置具有較㈣電源需求, 这可增加可攜式裝置解持式裝置的電池壽命。 ★在這個實施例介紹不需要成像光學的緊錄置。光學式定址 空間光調變器姻紅外線有機發光二極體顯示器寫人。有機發光 二鋪_11是直接連接絲式定址空調魏,形成不具成 像光學的緊密裝置。有機發光二極體可以是可舖置的型式,以組 成有機發光—極體陣列。光學式定址空間光調變器可由多個較小 的可舖置型光學式定址空間光調變器所組成。 入。有,《光-極體顯示n與光學式定址空間光調變器的緊密叙 …、疋透;g透明的有機發光二極體顯示器是目前已知的,例 後々有機發光二極體材料”章節中所描述的内容。在—個 20 200824426 =:是=光二極體顯示器與光學式定址空間光調變器的緊 …且。政對邊至三_像所形成的邊進行 機發光二極體與光學式定址空間光調變哭㈣—β經由有 料县右據狀丄 月又益向硯察員傳送。更好的 方法疋有機發光二極體顯示器發出紅外線來寫人至 間光調變器的紅外線感應感光器層。因為人類的 : 敏感,所以觀察者看不見任一種從紅外線寫入光束產生的光 _另一個例子’有機發光二極體顯示器與光學式紐空間光調 2的緊密組合可讓寫人光束與讀取光束在光學式定址空間光調 魏的對邊上為入射的。在另一個例子,有機發光二極體顯示器 與光學式定址空間光讀n的緊密組合可讓反射層是在光學式定 址空間光調變器的邊上,此為有機發光二極體顯示器的對邊,使 得三維圖像可從光學式定址空間光機郎相同邊祕到,也就 是有機發光二極體顯示器所在的邊,照射源也如同有機發光二極 體顯示器-樣’位於光學式定址空間光調變㈣_上:這是反 射顯示器的例子。 包括紅外線有機發光二極體的陣列的實施例中,紅外線發射 有機發光二極體允許對由光學式定址空間光調變器所傳送的可見 光的振幅、相位或振幅及相位的組合進行控制,促使全像圖在光 學式疋址空間光調變器中產生。光學式定址空間光調變器可包含 21 200824426 如同參考資料中 膜可塗至其中— -對透明隔板’在隔板上塗有兩種電力導電膜, 職即35所描述的内容。連續或不連續的感光 個導電膜上。 雙穩態鐵電式液晶或—些其它型式驗晶,可關 導電膜誠細之間。她賴可加至導韻。在光學 間光調f中,光學式寫人光束可细逐—像素的方式程式或: 動光子項料束的偏化。寫人光束可侧起動光學式定址* 間光調《的感統來程式辟式定址娜__。光: 址空間光機麵料的_,可㈣寫人光束的 讀光束的偏化。 得閲 ”圖-描述-種實施例。1〇是照明錢,用於提供平面區域的 知明’其帽暇具有充份的_性以便能夠產生三賴像。在 50671提及—彳關於大區域影像全像圖的照明裝置例 子,其中—個例子是在圖四中。如同1〇的裝置可為白光光源陣列 的形式,例如冷陰極螢光燈或發出的絲人射在聚㈣統上的白 光發光二_,其中聚㈣統可為緊密的,如透鏡狀陣列或微透 鏡陣列。或者’用於K)的光源可由紅、綠及藍雷射所組成,或是 發出充份_性光的紅、綠及藍發光二極體所組成。然而,具有 充份空間同調性的非雷射光源(例如:發光二極體,有機發光二極 體’冷陰極f光燈)是更㈣。騎絲的缺點,毅在全像重建 22 200824426 ^造成^射賴、树上較為昂貴以及财關於傷害全像顯示觀 β者或讀仃全細示裝置組紅作人貞的崎等可能的安全問 題。元件ΗΜ3的厚度全部可約為數公分,或是更低。元件η可 器陣列,使得彩色光_如紅色、綠色及藍色光)的像 '、疋射向70件12,齡如果使用彩色光源,色彩過齡是不需要 的疋件12是在透明基板上的紅外線有機發光二極體陣列。红外 Τ有機發光二極體陣列將使得每一個紅外線有機發光二極體在元 的方向《射的光’平行且符合從唯—對應的色彩像素發出的 。讀13為光學式紐空間光調變器。關於光學式纽光 =變器’紅外線有機發光二極體陣列提供寫入光束;元件η發射 =色先束為IW取光束。位於點Μ離包括緊密全像圖產生器15 =置-些距離的觀看者,可從15的方向觀看到三維圖像。元件 椹的」:及^3疋配置成實體連接(真實上連接),每—個形成結 、- r使得整體為單―、統—的物件。實體連接可為直接的。 間接的’如果有薄的中間層,覆蓋在相鄰層之間的膜。實體 =可關在雜正確_互組合排_小區财,或是可延伸 ::的區域’甚至層的整個表面。實體連接可由層與層 =圖產巧學傳娜黏劑的方式,以便形成緊密的 份)/ 3疋猎由其匕任何的方式(參考概要製造程序部 23 200824426 元件ίο可包含-個或兩個稜鏡光學膜來增加顯示器的亮度·· 這樣的膜是已知的,例如在US 5,056,892與us 5,919,551中所描 述的内容。元件10可包含偏光元件,或是偏光元件的集合。線^ 偏光薄片是其中-個例子。另外-個例子是反射式偏光片,可傳 送-個線性偏化狀態,並且反射正交線性偏化狀態-這樣的薄片 …是已知的,例如在US 5,828,·中所描述的内容。另一個例子是 …反射式就片,可傳送-侧形偏化狀態,並且反射正交圓形偏 化狀態-這樣的薄片是已知的,例如在US6,181,395中所描述的 内容。兀件10可包含聚焦系、统,此聚焦系統可為緊密白勺,例如透 鏡狀陣列或微透鏡陣列。元件10可包含其它在背光科技的領域中 已知的光學元件。 圖四是習用技術侧視圖,指出垂直聚焦系統1104的三個聚焦 元件1101、1102、1103,採用圓柱形透鏡水平排列於陣列中的形 式,參照於參考資料WO 2006/119920。並以水平線光源LS2幾近 準直的光束通過照明單位的聚焦元件·至觀察員平面〇p為 例。根據圖四,許多的線光源LS1,LS2, LS3是一個個上下排列。 每一個光源發射的光,在垂直方向是充份空間同調性的,在水平 方向是空__性的。這個光會通過光機器SLM的傳輸元 件。這個光因為全像圖編碼的光調變器SLM的元件,僅在垂直方 向的繞射。聚焦元件11〇2在觀察員平面〇p以數個繞射階級(只有 24 200824426 -個是有㈣)成像光源LS2。由光源LS2所發射的光束是作為只 通過聚焦系統1104的聚焦元件削2的例子。在圖四中,三個光 束顯示第一繞射階級聰、第零繞射階級1106及負-繞射階級 1107。與單-點光源相比,線光源允許非常高的光強度產生。使 用多個已增加效率與針對重建三維場景的每_個部分進行線光源 排列的全賴域可提升有效的趟度。另—個伽,不採用雷射, 多個分隔的(例如在可為遮光器一部份的槽闌之後)常見光源可產 生充份的同調光。 Β·兩對有機發光二極體與光學式定址空間光調變器的組合的緊密 組合。 在更進一步的實施例中,可使用兩對有機發光二極體與光學 式定址空間光調變器的組合的緊密組合,以連續及緊密的方式來 調變的振幅及相位。因此,由振幅與相位組成的複數可以逐一像 素的方式在傳送光中編譯。 這個實施例包含第一由紅外線有機發光二極體陣列及光學式 疋址空間光凋變裔配對的緊密組合及第二由紅外線有機發光二極 體陣列及光學式定址空間光調變器配對的緊密組合。 第一對調變傳送光的振幅,第二對調變傳送光的相位。也可 25 200824426 以第-對調贿送光的相位,第二對調變傳送㈣振幅。每一個 2外線有機發光二極體_與鮮式定址空間光調變器的緊密組 合可如同在A部份所描述的。峨紅外線有機發光二極體陣列與 光學式定址空間光調變器的緊密組合是由紅外線過濾、騎分離, 、、工外線過;慮杰會吸收紅外線而不處理可見光。 在第步驟中’第一紅外線有機發光二極體陣列寫入圖樣, 以提ί、在第光學式定址空間光調變器中的振幅調變。在第二步 驟中、第一紅外線有機發光二極體陣列寫入圖樣,以提供在第二 光學式定址空間光調變器中的相位調變。紅外線濾、光片阻止紅外 線⑽漏從第-緊密組合一對紅外線_有機發光二極體陣列盘光學 式定址郎光調變器到第二緊密組合—對紅外線·有機發光二極體 陣列與光學式定址空間轴魏.紅外_齡也獅從第二對红 外線有機發光二極斜_絲式定址郎光霞H的緊密組合 的紅外線H至第-對紅外線有機發光二極體_與光學式定址 工間光调夂㈣緊纽合。然而,紅外線過絲傳送從第一對红 外線有機發光二__與光學式定址郎光觀器的緊密組人 的可見光,_為第二對紅鱗有機發光二極斷顺光學紅 址空間光調變H的緊密組合中的讀取光束。㈣二 變轉送的光已在練與她進行調變,因財錢 看包含㈣緊额合對购射的光時 7 26 200824426 三維圖像。 基於習用相位與振幅的調變技術促進複數數值的表現,有機 發光二極體顯示器與光學式定址空間光調變器兩者都具有高解析 度。因此,這個實施例可應用於產生全像圖像,使得觀看者可看 到三維圖像。 在圖二中,顯示一個實施的例子。20是照明裝置,用於提供 平面區域的照明,並且照明具有充份的同調性,能夠產生三維圖 像。如在US 2006/250671中提供了關於大區域影像全像圖的實例 即為一個例子。這類型的裝置如同2〇可採用白色光源陣列的形 式’例如冷陰極螢光燈或發出的光線人射在雜系統上的白光發 光二極體,其中聚焦系統可為緊密的,如透鏡狀陣列或微透鏡陣 列。或者,用於20的光源可由紅、綠及藍雷射所組成,或是發出 充份同調性光的紅、綠及藍發光二極體所組成。然而,具有充份 空間同雛的非雷射光源(例如··發光二極體,有機發光二極體, 冷陰極螢級)是更佳的。雷射光_麵,敍在全像重建上造 成雷射斑點、姉上較為料以及所有_傷害全侧示觀看者 或疋進行全像顯讀置組裝jl作人員的崎等可能的安全問題。 元件20-23、26-28的厚度全部可約為數公分,或是更低。元 27 200824426 1 牛21可包含色__ _,使得彩色光_如紅色、綠色及龄 色光)的像素是射向元# 7 …色及^ 是不需要的1 果制彩色光源,色彩萄器 =夕是在透明基板上的紅外線有機發光二極體陣 極體在m 極鱗翁使縣—條輕有機發光二 -=Γ3-Γ發峨,恤謙唯—職的色彩像 _ 為光學式定址空間光調變器。關於光學式定 ^間先調變器,紅外線有機發光二極體陣列提供寫入光束元 傳、Strt色光束為讀取光束。元件26是紅外線過濾器,只 m t =紅外線光,使得元件22所發射的紅外線光不影 : 是光學式定址空間光調變器。元件28是在透 的紅外線有機發光二極體陣列。紅外線有機發光-極體 陣列將使得每一個 ㈣毛先-極體 人…、卜線有機發光二_在元件27的方向發射的 址空間光調對應的色彩像素發出的光。關於光學式定 :⑼7 ’紅外線有機發光二極體陣列28提供寫入光 •二,:::束為:取光束。關於傳送光’元件23 .調變相位。因為從透日二28。上=广7調變振幅’元件23 土板上、,工外線有機發光二極體陣列來的 ^件26的方向’元件26可吸收紅外線光,防止元件 %的光至光學式定址空間光調變器23。這樣的設定,兩個有機發 光一極體陣列22及28放出的光線,在實質上為相反的方向,確 保兩個光學式定址郎光調魏Μ及π可放置在接近的位置。 28 200824426 將光學式疋址郎細㈣、23及27靠近鮮械少光學耗損及因 光束纽_生的像料和題··當光學歧址空間光調變器^ 及27疋彳,可實現通過光學式定址娜細變器的彩色 先泉光束轉重㈣播的較佳近似值。圖二元件27及Μ的次序 ^相反,但是這不認為是理想對於實現通過光學式定址空間光 調變器23及27的彩色光線光束之間低串音及高傳輸目標的設定。 兀件20可包含—個或兩個稜鏡光學膜來增加齡器的亮度: 這樣的膜是已知的,例如在us娜跳與仍5,9ΐ9,55ΐ中所描 述的内η件20可包含偏光元件,或是偏光元件的集合。線性 偏光薄片疋其中—個例子。另外—個例子是反射式偏光片,可傳 送個線性偏化狀態,並且反射正交線性偏化狀態這樣的薄片 疋已去的例如在US 5,828,488中所描述的内容。另一個例子是 反射式偏光片’可傳送—個圓形偏化狀態,並且反射正交圓形偏 化狀悲1樣的薄片是已知的,例如在US6,18135中所描述的 内谷。το件2G可包含聚焦系統,此聚焦系統可為 緊密的,例如透 鏡狀陣列或微透鏡_。元件2G可包含其它在f光科技的領域中 已知的光學元件。 位於點24離包括緊密全像圖產生器25的裝置-些距離的觀 看者’可從25的方向觀看到三維圖像。元件20、21、22、23、26、 29 200824426 声,你配置成κ體連接(真實上連接),每—個形成結構的一 二:正體為ί—、統—的物件。實體連接可為直接的。或是 、如果有薄的巾間層,覆蓋在相_ =制在確保正確的相互排列的小區域中,或是可延^較大的 品知、甚至層的整個表面。實體連接可由層與層的黏接來實現, =藉由使用光學傳送職_方式,以便形絲㈣全像圖產 為15 ’或是藉由其它任何的方式(參考概要製造程序部份)。 、^圖二令’理想情況下有機發光二極體陣列22及28放出的 光線疋相w準直的。然而,實際有機發光二極體放出的光線可能 為不準直’例如朗伯(Lambertian)(完全擴散)分配的光。當有機發 光-極體的光輯並不是十分準糾,錢發光二鋪可以盡可 能的靠近對應的光學式定址空間光調㈣。在這制情況,入射 在光學式定址郎調變ϋ表面的強度將變化至近似人射角餘弦的 平方。在45°或60°的入射光將導致強度僅為垂直入射光的二分之 -或是四分之-。因此’假如有機發光二鋪是充份相間隔地隔 開’可見光像素充份細小,並且足_近絲式定址㈣光調變 為’成何效應將導致橫越光學式定址空間細魏空間上產生的 電位差發生重大變化’甚至是在有機發光二極體光放射分配為郎 伯(Lambertian)的限制情況下。入射的紅外線強度在有機發光二極 體的光垂直人射的光學式定址空間光調變H的點之間可能不會降 30 200824426 至零’這可能導致裝置可實現__低。但是如果能簡化裝置 結構,減少的對比是可接受的。 在圖二中’理想情況下有機發光二極體_ 22及28放出的 光線是相當準直的。細,實際有機發光二極體放出的光線可能 為不準直’例如朗伯(Lambertian)(完全擴散)分配的光。當有機發 光二極體的光放射是不準鱗,有機發光二極體的幾何光分配^ 利用布拉格(Bragg)過遽器全像光學元件來進行修正,例如在仍 奶3,67〇巾所描述_容。布拉格賴奸像光學元件可造成光 準直,或是比起沒有使用此树具有較佳的準直性。圖八顯示了 布拉格過㈣全像光學元件的_實例。在圖人中,⑼是有機發 光二極體_ ’ 81是全像光學元件布拉格贼器,包含布拉解 面’例如雜格平面84,82為光料定址郎光調變器。在有 機發光二極斷賴中的—解—錢發光二鋪%,發射的红 外線的分佈是如85所示意的分佈。由有機發光二極體陣列8〇所 發射的光_6 ’在全像絲元件81中經歷散射,接著近似正交 的入射在絲式纽雜光82上。錢射財,改進入 射在光學式纽蝴細變器82上敝外_準錄是可以實現 另一個實施例如圖五所示 ° 57是照明裝置,用於提供平面區 200824426 域的如明’並且照明具有充份_調性,能夠產生三維圖像。如 在US 2006/250671中提供了關於大區域影像全像圖的實例即為一 個例子。這_的裝置可制白色光轉列的形式,例如冷陰極 螢光《發出的崎人射在聚⑽統上的自光發光二極體,其中 聚焦系統可為緊密的’如透鏡狀陣列或微透鏡_ 5G。或者,、用 ;々光源可由紅、綠及髮雷射所組成,或是發出充份同調性光 的、、工、4及^光—極體所組成、然而,具有充份空間同調性的 非田射光源(例如.發光二極體,有機發光二極體,冷陰極營光产) 是更佳的、。雷射光源的缺點,像是在全像重建上造成雷射斑^ 相對上較為昂貴以及所有_傷#全像齡觀看者或是進行全像 顯示裝置組裝卫作人員的晴等可能的安全問題。 兀件57可包含-個或兩個稜鏡光學膜來增加顯示器的亮度: 這樣的膜是已知的,例如在仍5,〇56,89MUS 5,919,551中^描 述的内谷元件57可包含偏光元件,或是偏光元件的集合。線性 偏光薄片S其中-個例子。另外―個例子是反射式偏光片,可傳 送-個線性偏化狀態’並且反射正交線性偏化狀態這樣的薄片 是已知的’例如在US 5财,488中所描述的内容。另一個例子是 反射式偏光片,可傳送-個_偏化狀態,並且反射正交圓形偏 化狀態這樣的薄片是已知的,例如在脳,⑻,395中所描述的 内谷。元件57可包含其它在背光科技的領域中已知的光學元件。 32 200824426 讀57、50·54的厚度全部可約為數公分,或是更低。元件 Η可包含色彩财轉列,使得彩色光線(例如紅色、綠色及誌色 的像素是射向元件52,儘管如_彩色光源,色彩 不需要的。 ~ 疋件52是在透明基板上的紅外線有機發光二極體陣列。紅外 線有機發光二極體陣列將使得對於每—個色彩像素,—個包含二 種紅外線有機發光二極_唯—成對在元件义的方向發射的光, 會平行且符合從它們所_的色雜素發㈣光。第—種的红外 線有機發光二極體發射第一波長的紅外線。第二種的紅外線有機 發先二極體發射第二波長的紅外線,第二波長與第—波長是不相 同的1件53是光學式定址如光調魏。元件%是另一光學 式定址空間光調魏。_鱗式定址郎光霞器,紅外線= 機發光二__提供寫从束;元件51發射的彩色光束為讀取 先束。光學式定址空間光調變器53是由有機發光二極體陣列义 發射的兩個紅外線波長中的第-波長所㈣。光學式定址空間光 調變器53躲械發光二__ &amp;所魏_她外線波長 的第二波長不敏感,並且會將有機發光二鋪㈣52發射的兩個 紅外線波長的第二波長傳送。光學式定址空調魏Μ是由有 機發光二極體_ 52發射的兩個紅外線波長中的第二波長所控 33 200824426 制。光學式定址空間光調變器54對於有機發光二極體陣列52所 發射的兩個紅外線波長的第—波長是不敏感的,或者可利用光學 式定址空間光調變器53的吸收及/或來防止第一紅外線波長的光 到達光學式定址空間光調變器54,藉由它的吸收,在緊密的全像 圖產生器55中,並不—定f要對於第-紅外線波長不敏感的光學 式疋址空間光調變H 54。或者也可使用發射兩種不同波長的單一 種有機發光二極體,兩種不同波長的相對強度是由—個參數所決 定’像是橫越有機發光二極體的電壓。兩種不同波長的放射可利 用時間多工進行控制。 對於傳送光’树53調魏幅,猶54霞她。也可以 元件54 _振幅,元件53讀恤。這樣騎定,有機發光二 極體陣列52發射具有兩種獨波長的光,確保兩個光學式定址空 間光調變11 53及54可放置在非常接近齡置。將光學式定址空 間光調變H 53及54 #近能夠減少光學耗損及因光束分歧而產生 的像素串音_ 1光學式定址空間光調變ϋ 53及Μ是非常靠 2 ’可實賴過光學式定址空的彩色光線光束的非 重豐傳播的較佳近似值。 位於2 56離包括緊密全像圖產生器%触置一些距離的觀 可攸55的方向觀看到三維圖像。元件π、m、^^ 34 200824426 疋配置成κ體連接(真貫上連接),每—個形成結構的一層, 使得整體鱗―、統—的物件。實體連接可為直接的。或是間接 的’如果有薄的中間層,覆蓋在相鄰層之間的臈。實體連接可限 制在確保正確的相互排列的小區域中,或是可延伸至較大的區 域丄甚至層的整個表面。實體連接可由層與層的雜來實現,例 =藉由使用絲傳__的方式,賴形絲㈣全像圖產生 器55,或是藉由其它任何的方式(參考概要製造程序部份)。 在光學式定址空間光調變器執行振幅調變處,在典型的設定 中,入射的讀取光學光束將會#由將光束通過線性偏以來達到 線性偏化。振幅調變是由在施加電場中液晶的旋轉所控制,其中 電場是由感光層所產生,影響光的偏化狀態。在這樣的裝置中, 離開光學式定址空間光調變器的光會通過另一個線性偏光片,可 因光的偏化狀態改變而減少強度,如同它通過光學式定址空間光 調變器時一樣。 在光學式定址空間光調變器執行相位調變處,除非它們已處 於定義的線性偏化狀態,在典型的設定中,入射的讀取光學光束 將會藉由將光束通過線性偏光片來達到線性偏化。相位調變是由 施加電場的應用所控制,其中電場是由感光層所產生,影響光的 相位狀態。在相位調變的一個例子中,使用向列型相位液晶,光 35 200824426 軸方向是間隔固定的,但是猜射是施加賴的函數。在相位調 變的例子中’使用鐵電性液晶,雙折射是固定的,但是光轴的方 向是由施加電壓所控制。在相位調變實作中,使用其中任一種方 法’輸出光讀於由施加賴控制的輸人光束而言具有相位差。 可執行相位調變驗晶元件的其巾—侧子為細咖如元件 排列’在其中使用了具有正介電質異方向性的向卿液晶的反平 行排列區域,如同所描述的内容。 C ·緊後型光源與電子式定址空間光輕器的緊密組合。 這個實施例提供電子式定址空間光調變器與充份同調性緊密 型光源的緊密組合’這組合能夠在適當的照明情況下產生三賴 像。 在這個實_巾,描述了不需要成像光學的f子式定址空間 光調變器與緊密型光源㈣密組合。這個實施例提供了—個光源 或多個光源、聚財法、電子式定址空間光調魏(easlm)及非 必要的分光鏡元件的緊密組合,此組合能夠在適當的照明情況下 產生三維圖像。 ”在圖十-中為—個實施例。11〇是照明震置用於提供平面區域 的知明,其巾照暇具有充份的關性續㈣產生三維圖像。 36 200824426 在US 2_/2讓提及-細於A_彡像全侧咖明裝置例 =-個例子是在圖四中。如同n。的裝置可為白光光源陣 列的形式’例如冷陰_光贼翻的絲人射 白光發光二極體,其中聚㈣統可㈣密的,如透餘陣列或微 透鏡陣列。或者’胁11G的光源可由紅、綠城雷射所喊, 或是發出紐_性光的紅、綠及藍發光二極體所組成。紅色, 綠色及藍色發光二極體可成為有機發光二極體(〇leDs)。然而,具 有充份糾_性的非雷射光源(例‘發光二極體,有機發光二 極體,冷陰極螢光燈)是更佳的。光源的缺點,像是在全像重 建上造成雷射賴、相耻較為昂#以及所有關於傷害全像顯示 硯看者或是進行全像顯示裝置組裝工作人M的眼睛等可能的安全 問題。 元件110的厚度可約為數公分,或是更低。在較佳實施例中, 讀110 113 i 4厚度會低於三公分,以便提供充份同雛的緊密 光源元件111可為色彩過濾器陣列,使得彩色光線(例如紅色、 、彔色及i色光)的像錢射向元件m,儘管如果個彩色光源, 色彩過濾綠不需制。元件112是軒式定址空縣調變器。 元件113是非鮮的光束分光鏡元件。位於點離包括緊密全 像圖產生②115的裝置—些轉峨看者,可從115的方向觀看 到三維圖像。 37 200824426 7G件110可包含一個或兩個稜鏡光學膜來增加顯示器的亮 度:這樣的膜是已知的’例如在us 5,056,892與us 5,919,551中 所描述的内容。元件110可包含偏光元件,或是偏光元件的集合。 線性偏光薄片是其卜個例子。另外—個例子是反射式偏光片, 可傳送-個雜偏錄態,奴反射正辣性偏錄g _這樣的 糾是已知的,例如在us 5,828,中所描述的内容。另一個例 子是反射式偏光片,可傳送—侧形偏化狀態,並且反射正交圓 形偏化狀態·這樣的薄片是已知的,例如在US6,181,395中所描 迷的内容。元件11G可包含其它在f光科技的領域巾已知的光學 元件。 電子式紐空間光觀狀空間光調㈣的—種,在其中元 件陣列中的每—個元件可彻電子式進行定址。每個元件對入射 2進订—些作用’例如用來調變它所傳送的光的振幅,或者調 匕斤傳达的光的相位’或者調變它所傳送的光的振幅及相位的 組合。在US 5卿17中提供了一個電子式定址空間光調變哭的 ϋ子’此鮮為她調變電子找址«。液晶電子式 =止空間光調變ϋ為電子式定址空間_魏的一個例子。磁光 Γ式定址空間光調變器為電子式定址空間光調變器的另-個例 38 200824426 兀件no ’ in,m及li3是配置成實體連接(真實上連接), 每-個形成結構的-層,使得整體為單―、統—的物件。實體連 接可為直接的。或是間接的,如果有薄的中間層,覆蓋在相鄰声 之間的膜。實财接可關在麵正確的相互組合_的小_ 中’或是可延伸至較大的區域,甚至層的整個表面。實體連接可 由層與層的黏接來實現’例如藉由使用鱗傳送膠賴的方式, 以便形成緊㈣全像115,或是藉祕它任何的方式(參 考概要製造程序部份)。 圖四是習用技術侧視圖,指出垂直聚焦系統削4紅個聚焦 元件服、1102、,採關細彡透鏡水平制於陣列中的形 式。並以水平線絲LS2幾近準直的光束通過照明單位的聚隹元 件至觀察員平面0P為例。根據圖四,許多的線光源⑶⑽, LS3是-_上下排列。每—個光源發射的光,在垂直方向是充 伤工間同雛的’在水平方向是郎非_性的。這個光會通過 光調變器㈣的傳輸元件。這個朗為全侧編碼的光調變器 SLM的元件’僅在垂直方向的繞射。聚焦元件_在觀察員平面 OP以數個繞射階級(只有一個是有用的)成像光源⑶。由光源脱 所發射的光束是作為只通過聚焦系統蘭的聚焦元件腕的例 子。在圖四中,三個光束顯示第一繞射階級觸、第零階級應 39 200824426 不採用雷射’多個分隔的⑽如在可為遮光器 常見光源可產生充份的同調光。 及負-階級蘭。與單-點光源相比,線光源允許非常高的光強 度產生。使❹個已增加效率與針對重建三維場景的每一個部分 進行線光源制的全像區域可提升有效的光強度。另—個優點, 一部份的槽闌之後) 通常,全像顯示用來在虛擬觀察員視窗中重建波前。波前是 :個實際物齡纽的東西,如果它存在_。t觀察員的眼睛 是位於可能為多個虛擬觀察貞視窗㈤Ws)巾的—個虛擬觀察員 視窗時,他會看見重_物件。如圖六A所示,全像顯示由下列 構成要素所組成:光源’透鏡,空間光霞^及非必要光束分光 鏡0 為了幫助空間光調變器與可顯示全像圖像的緊密型光源的緊 .在組合產生,單一光源及圖六A的單一透鏡可由光源陣列及透鏡 *陣列或透鏡狀陣列分別取代,如圖六B所示。在圖六b中,光源 照射空間光調變器,並且透鏡成像光源至觀察員平面。空間光調 變器編碼全像圖像且調變進入的波前,使得波前可重建在虛擬觀。 察員視窗中。非必要光束分光鏡元件可使用來產生數個虛擬觀察 員視窗’例如一個用於左眼的虛擬觀察員視窗與一個用於右眼的 虛擬觀察員視窗。 200824426 假設使用光源陣列與透鏡陣列或是透鏡狀陣列,陣列中的光 源必須刀Pm,使得通過透鏡陣列或是透鏡狀陣列全部透鏡的光同 時至虛擬觀察員視窗。 圖六B的褒置適合採用可應用於緊密全像顯示的緊密設計。 這樣的全軸示可適驗摘義,例如在行動電話或個人數位 助理中。典型地’這樣的全像顯示將有-射錢封等級的螢 幕尺对。全像次顯示螢幕的尺啊小至—公分。適合的元件將在 下面作詳細描述。 1)光源/光源陣列 固定的單-光源可於簡單的情況下。如果觀察員移動, 觀察員可被追縱’顯示ϋ可進行調整以使得產生_像可讓在新 位置的觀察S看得見。此時’要不是沒虛擬觀察Μ視窗的追縱, 就是追縱是在郎光削之後使料束指向元絲進行。 可叹疋的光源陣列可藉由以背光照亮的液晶顯示器(LCD)來 實現。為了產生喊線光源轉列,只有適當的像素是切換到傳 适狀悲。⑨些絲的孔徑必須足夠小,贿證提供充份空間同調 1&quot;生予目&amp;全像重建。點光源的陣列可與包含二維排舰鏡的透鏡 41 200824426 圓拉形透 陣列-起使用。縣__是姉额包含平行排列 鏡的透鏡狀陣列一起使用。 較好的是將有機發光二極體顯示器作為光源陣列。身為自發 =裝置,比繼日顯概輸峨會由如色精器料 件吸收或是祕树充鱗雜gT的騎,能財更好 性及更好的彻I細,㈣佩雜發光二極^ 顯示器更財整贿格優勢,即使錢發光二極體顯和能比液 曰曰顯不盗以更有效率的方式提供光線。當以有機發光二極體顯示 讀為光源_時,只有切換至其上的像素需要麵睛位置產生 虛擬觀察員視窗。有機發光二極體顯示器可具有二維排列的像素 或是一維湖的線光源。每—個點絲的發統域或是每一個線 光源的寬度都需要足夠的小’來保證提供充份空間同調性於目標 的全像重建。同樣的’點光源的陣列較適合與包含二維排列透鏡 的透鏡陣列-起使用。線統的陣列是較適合與包含平行排列圓 桎形透鏡的透鏡狀陣列一起使用。 2)聚焦方法:單—透鏡,透鏡陣贼透鏡狀陣列 ^聚焦工具成像一個光源或多個光源至觀察員平面。當空間光 -周交益是非常靠近聚焦工具時,在空間光調變器中編碼的資訊的 傅立葉轉換是在觀察員平面中。聚焦卫具包含—個或數個聚焦元 42 200824426 件。空間光調變器與聚焦工具的位置是可以交換的。 對於電子式疋址空間光§周變g與充份同調性的緊密型光源的 緊密組合,薄的聚紅肢必要的:制具有凸面的折射透鏡是 過厚的。取喊之的是使賴射或全像透鏡。繞職全像透鏡可 •具有單-透鏡、透鏡_或透餘_的魏。這樣的材料是存 在的,如由 Physical 〇ptics Corporati〇n,T〇rrance, CA,USA 所提供 的表面起伏全像產品。或者是制透鏡陣列。賴陣列包含二維 排列的透鏡,每-個透鏡分配至光源陣列的—個光源。另一個選 擇疋使用透鏡轉列。透餘陣航含—維湖的圓柱形透鏡, 每一個透鏡有-個在光源_中的對應光源。如上所述,如果使 用光源陣列與透鏡陣列或是透鏡狀陣列,陣列中的光源必須分 隔,使传通過透鏡陣列或是透鏡狀陣列全部透鏡的光同時至虛擬 觀察員視窗。 通過透鏡陣列或是透鏡狀陣列的透鏡的光對於任何其它的透 鏡是非_的。目此,在空間光社編碼的全像圖是由次全 像圖所組成,每—個次全像®對應至-個透鏡。每-個透鏡的孔 仫必須足夠大,以保證重建物件的解析度足夠。可以使用孔徑與 全像圖編碼區域典型尺寸幾乎一樣大的透鏡,如在 US2006/GG55994巾所描述的例子。也就是說每―個透鏡的孔徑是 43 200824426 一或數毫米。 3)空間光調變器 全像圖是在郎__上_。通常,對於 是由複數的:鱗胸目此,账㈣ ^ 夠調變通過空__科—轉素的躺絲麵域及Γ 而不能 位。然而’―般的空間光調變H調變振幅或是相位, 獨立進行調變。 振幅調變空間光調變器可與執跡相位編碼組合使用,例如布 克哈特伽咖a_編碼。㈣缺點是需要扇錄來編碼一 數,並且重建的物件亮度較低。 相位調變郎光調㈣可產生較高亮度的重建。舉例而言, 可使用所謂的2相位編碼,利用兩個像素來編碼—個複數。° 儘管電子式定址空間光具有日_姐的雜,這將導 ==的較高繞射階級在它們的繞射_中,可藉由使用柔軟 1減Μ排除這些問題。錄孔徑衫衫 ,射錢謂助的。理由是高斯函數_立葉轉換為高 44 200824426 斯函數材的鮮結果。,她於·具有在本身傳送圖形 中尖銳截止的孔徑進行傳送,除了橫向比例參數之外,光束強度 波形函數的繞射是不改㈣。可·高斯傳送__片陣列。 當這些被提供與電子式定址空間光調變器孔徑排列在一起,與具 有在絲傳類料尖賴止的祕概,將制無較高繞射階 ,或大量減低雜高繞概_統。高斯顺器或錄孔徑過遽 :會,制繞射加工品為高空_率。高斯器過遽或柔軟孔徑過滤 器會最小化在對於左右眼的虛擬觀察員視窗之間的串音。 4)光束分光鏡元件 虛擬觀察員視窗會限制在空間光調變器編碼資訊的傅立葉轉 換的個週期性區間。使用現有最大解析度的空間光調變器,虛 擬觀察員視窗的大小為1Q毫米的層級。在—些情況下,對於應用 在/又有追縱的全像顯示中時,這可能會是太小的。空間多工的虛 •擬2察員視窗是這個問題的—個解決方法:產生多個虛擬觀察員 •視固。在空間多工的例子中,虛擬觀察員視窗會在空間光調變器 ^不同的位朗時產生。這可由光束分光鏡來實現。舉例而言, 么光周、|:σο上的一組像素編碼虛擬觀察員視窗1的資訊,另_ 組像素編碼虛擬觀察員視窗2的資訊。光束分光鏡會區分這二組 $光使件虛擬觀察員視窗i與虛織察員視窗2會並列在觀察 員平面。可由無接縫配置虛擬觀察員視窗丨與虛擬觀察員視窗2 45 200824426 來產生較大的虛擬觀察員視窗。多工也可以用來產生左右眼的虛 峨察員視窗。在這樣的情況下,並不需要無接縫並置,且在對 於左眼的一個或數個虛擬觀察員視窗與對於右眼的一個或數個虛 擬觀察員視窗之間可具有間隔。必需要小心虛擬觀制視窗的較 高繞射階級並不會與其它的虛擬觀察員視窗重疊。 分光鏡元件的一個簡單例子是包含黑色條紋的視差屏障,其 中黑色條紋之間具有透_域,如在US2_22中所描述的 内容。另一個例子是雙凸透鏡狀薄4,如在US2〇〇4/223〇49中所 描述的内容。分光鏡元件的另一個例子是透鏡陣列與稜鏡遮蔽 物。在緊密的全雜种’典型地可能會輕具有分光鏡元件, 然而典型ίο宅米大小的虛織察員視窗僅足夠提供一眼,這並不 符合一般觀看者具有兩個眼睛,並且相隔約為1〇公分。然而,可 以使用時間多功作為空間多工的另_個選擇。在缺少空間多工 的情況下’將不需要再個分光鏡元件。 ]夕工也可使用在彩色全像重建的產生。對於空間色彩多 ^像素會進行分群,每-群包含紅色,綠色及藍色色彩元素。 這些群是空間上分隔在空間光調變器,並且同時照射紅色,綠色 及藍色光。每—群會_針對目標對應的色彩元素計算的全像圖 編碼。每—群重建它的全像目標重建的色彩元素。 46 200824426 5)時間多工 在時間多工的情況下,虛織察員視窗會在空間光調變器上 相同的位·誠生。這可由㈣光源的位置翻時重編^間 光調變器來實現。光源的㈣位置必須使得觀察員平財的虛擬 觀察員視窗是無接縫並置的。如果時間多工是足夠快的,即完敕 週期大於25 Hz,眼睛將會看見連續擴展的虛擬觀察員視窗。 多工也可以用來產生左右眼的虛擬觀察員視窗。在這樣的情 況下,並不需要無接缝並置,且在對於左眼的一個或數個虛擬觀 祭員視窗與對於右眼的一個或數個虛擬觀察員視窗之間可具有間 隔。這樣的多工可為空間或時間多工。 空間與時間的多工也可以結合。舉一個例子,三個虛擬觀察 貝:窗是為空間多工,用以產生對於—個眼睛的擴大虛擬觀察員 視窗。這個擴大的虛擬觀察員視窗是時間多工,以產生對於左眼 的擴大虛擬觀察員視窗以及對於右眼的擴大虛擬觀察員視窗。 必需要小心虛擬觀察員視窗的較高繞射階級並不會與其它的 虛擬觀察員視窗重疊。 47 200824426 會在 ^擴大趣觀察員視s料工是較建議與空職調變器的 起使用’因為它提供了具對於觀察員移動,視差連續變 化的擴大虛擬觀察員視窗。簡單而言,沒有重網的多工, 擴大的虛擬觀察員視窗的不同部份,提供重覆的内容。 去〗'也可使用在形色全像重建的產生。對於三個色彩元 =日獨色彩多工,會依序在空間光調變器上編碼。這三個光源 光調變器上的重編瑪同時切換。如果完整週期的重覆是 足夠快的’即大於2服,_會看見連_色彩重建。 6)不想要的較高繞射階級的處理 如果較大的虛擬觀察員視窗是由較小的虛擬觀察員視窗拼凑 虛纖編_峨_,輸術虛擬觀 :貝視㈤中產生串音,除非有執行避免關題的步驟。舉— 次=德如果母個虛擬親察員視窗都是位於空間光調變器編碼 :、專立_換的第零繞射階級中,虛擬觀察員視窗的第—结 可能與騎的虛擬觀察員視窗重疊。這樣的«可能Γ 热時,這將可能會變的r像強度的約 償或抑制較高的繞射階級。在這樣的情況,會傾向於補 48 200824426 如果照射空間光調變器的角度是不變的話,可以使用固定的 角過濾、器。這要不是全像顯示不具追蹤功能就是光束分光鏡元件 (例如光束指向元件)是位於空間光調變器之後的狀況。固定的角過 濾器可為布拉格濾波器(Braggfllter)或是法布立-培若定規具(Fabry Perot Etalon) 〇 在空間光調變器產生具不想要的繞射階級的幾何光強度分配 上,可使用布拉格過濾器成像光學元件來對幾何光強度分配作修 正,例如在US 5,153,670中所描述的内容。布拉格過濾器全像光 學元件可造成與沒使用此元件時不同的光強度分配。圖七顯示了 布拉格過濾器全像光學元件的功能。在圖七中,7〇是空間光調變 器,71是全像光學元件布拉格過濾器,包含布拉格平面,例如布 拉格平面74。在空間光調變器70·上的單一元件73提供如圖中乃 的繞射光強度分配。由空間光調變器70繞射的光線76,在全像 光學元件71中經歷散射,接著在不同於70與71之間的原始傳播 的方向傳送。如果光線76傳送的方向在70與71之間為不邦要的 第-P皆級繞射光,可以容易看見布拉格過絲71成功改變這些光 至不同的方向,可使它不會造成不想要且可能妨礙觀看者的光學 加工品,典型的觀看者將會位於接近垂直於70的方向。 在專利申請號DE 1〇 2_ 〇3〇 5〇3中提及用於抑制繞射階級 49 200824426 的可调式’i:布立_培;^定規。所提到的是介於兩個塗上部分反射塗 層的^面玻璃薄片之間的液晶層。對於每—個塗層光束的反射, 光束是心反射及#分傳送。傳送光束的干擾以及它們之間的相 位差將决&amp;干擾是㈣建雛或者為破壞性,如在法布立_培若定 規具‘準中所&amp;相内容。給定—個波長,干擾及傳送會隨著光 束的入射角而改變。 、、,給定-個光傳齡向,干射#由改魏晶對於給定光的傳 ι方向的折射率來作碰。折射率是由施加於液晶層的電場來作 控制因此,在法布立-培若定規具的所有限制中,角傳送特性是 能夠被調整的’並且繞射階級可依需求選擇傳送或為反射。例如, 如果法布立_培若定規具是設定為第零階級最佳傳送及第-階級最 、、反射、τ月b還疋會有一些不想要的第二階級與較高階級的傳 、在法布立培;^規具的所有限制巾,這裝置可幫助對於特定 繞射階級進拥定或⑽獅’轉絲轉送或為反射。 空間咖可使用在繞射階級的選擇。空瞻器可 空間光調㈣與虛擬虛擬觀察員視窗之間,並且包含透明與不透 明區域。這些蝴縣11可叫傳送需要的繞麵級,並且阻礙 不想要的繞射階級。這些空間過絲可為固定的或是可設定的。 例如:設置在空間光調變器與虚擬觀察員視窗之間的電子式定址 二間光調變器可作為可設定式空間過據器。 50 200824426 7)眼部追蹤 在具有眼部追蹤的電子式定址空間光調變器與充份同雛的 緊密型光源的緊密組合中,眼部位置偵測器可偵測觀察員的眼部 位置。所以…個或數個虛擬觀察員視窗可自動地設置在眼部位 置’使得齡員可透過虛擬觀察員視窗看到重建的物件。 然而’因為額外裝置絲與影響效能的電力需求限制,追縱 並不是都能龍的’尤其可攜式裝置或是傾式裝置。_ 追縱,觀察員必須自行調整顯示器的位置。這是很料可^到 的’因為在較佳的實施例中’緊_示器是可能包含在個人數位 助理或行動電話巾的手持式。個人數㈣理或行動電話的 使用者’通常會垂直地觀看顯示H,對於調整虛擬觀察員視窗來 對應使用者眼部的位置,並不會有太大的幫助。大家都知道,手 持式裝置的使用者會傾向自己改變手上裝置的方向,以獲得最理 想的觀看狀態,如同在糊1/96941中所描述的内容。^此,在 w樣的裝置巾,並不需要使用麵部追蹤及複雜且不緊密如包含 掃描鏡的追縱光學。但是眼睛追縱可以應用在其它賊置中二 果對於裂置而言’額外需求的設備與電源不會造成過度的負擔。 調 在沒有追蹤的情況下,電子式定址空間光調變器與充份同 51 200824426 性緊密型光源的緊密組合,需要足敲的虛擬觀察貞視窗來簡化 顯示器的娜。較好的虛擬觀察貞視紅小應該是眼睛瞳孔大小 的數倍。這可由使則、間距^間光機㈣單—較大虛擬觀察員 視窗來完成,或是由使用大間距空間光調變器的數個較小虛擬觀 察貝視窗拼凑而成。 虛峨察員視窗的位置是由光源陣列中的光源位置來決定。 眼部位置偵測職測眼部的位置’並且設定光源的位置,以讓虛 擬觀察員視窗適合眼部的位置。在US2〇〇6/〇55994與 US2006/250671中描述了這種類型的追蹤。 另種方式,虽光源位於是固定的位置時,虛擬觀察員視窗 =被移動光源輕需要對於光賴光人射艘化相對不敏感的 二門光㉟Μ。如果光源是為了移動虛擬觀察貢視窗位置而移 動’由於在緊密組合何能有異常光傳播情況,這樣的設定將可 能很難實現^型光源與空間細變器的緊密組合,在這樣實例 中’在顯不器中具有固定的光路徑及作為顯示器中最後光學元件 的光束指向元件,將會有所幫助。 圖。。十及—十—中顯示了光束指向元件。這個光束指向元件 顯不益的輸出端變化光束的角度。它可具有對於X與y追縱可 52 200824426 控制稜鏡及對於Z-追蹤可控制透鏡的光學特性。例如,圖二十及 二十一的光束指向元件的任一個或兩個都可應用於單一裝置内。 光束指向元件是可控制繞射元件或是可控制折射元件。可控制折 射元件可包含填滿液晶的凹洞陣列,液晶是嵌入在具有等向性線 電偶極子電化率張量矩陣中。凹洞具有稜鏡或透鏡的形狀。電場 •控制液晶的有效折射率且因此幫助光束指向。電場可在元件間變 化,用以產生在元件間變化的光束指向特性。如圖二十所示,電 場是施加在透明的電極之間。液晶具有單軸折射特性,並且可被 選擇,以使得垂直它的光軸折射率等同於主體材料或,,矩陣”的折 射率。其餘的設定,可從習用技術中獲得。主體材料具有等向折 射率。如果液晶的光軸是沿著z方向排列,如圖二十所示的適當 電場應用,沿著Z方向傳_平面波,#它通過光束指向元件時 並不會有折射發生,因為它並沒有制任何垂直於它的波映廷向 量(Poyntingvector)的折射率變化。然而,如果施加電場在電極上, ,使得液晶的光軸是垂直於z方向,沿著z方向傳播被偏化平行於 .光軸的平面波,當它通過光束指向元件時,將遭遇最多的折射, •因為沿著它的(系統可提供的)偏化的方向,它經歷最多可能的折射 率變化。折射的程度將可在這兩個極端例子之間,藉由選擇施加 在主體材料的適當電場而進行調整。 如果凹洞是稜形,而不是透鏡形狀,那麼將可完成光束指向。 53 200824426 圖二十一顯輯於光束細合適的稜形。如果㈣的光軸是沿著z 方向排列,如圖—十―所示的適#電場應用,沿著Z方向傳播的 平面波’當它通過光束指向元件時並不會有折射發生,因為它並 沒有在它的偏化方向刻任何的折射率變化。細,如果電子領 域是顧橫越電極如此的液晶光軸是與z方向垂直的,平面波傳 播化著Z方向&amp;個是被偏化平行於光軸將經驗最多的折射因為它 通過光束細元件’ _它經驗最多可㈣折醉祕可提供變 化垂直的它的波映廷向量(poyntingvee㈣。 細’如総加電場錢極上,使·晶的光減《於z方向, 沿著Z方向傳偏解行於絲ϊ的平面波,#它通過光束指向 請時’將遭遇最多的折射,_它經歷最多垂直它的(系統可提 供的)波映廷向量㈣yntingveetor)的可能折射率變化。折射的程度 將可在化兩個極端例子之間,藉域擇施加在主體材料的適當電 場而進行調整。 8)範例 接著將描述-個f子私址如光觀^與充朗雛緊密 型光源的緊密組合的例子,此组合能齡適當的情況下產I 三維圖像,並且可設置於個人數位助理或行動電話中。電子式定 址空間光調變n與充份_性緊_絲的緊密齡包含作為光 源陣列的有機發光二極體顯的、電子式定址空間光調變器與透 54 200824426 鏡陣列,如圖十二所示。 取決於虛擬觀察員視窗(在圖十二中以〇w代表)的位置需 求,會啟動有機發光二極體顯示器中的特定像素。這些像素照射 電子式定址空間光調變器,並且藉由透鏡陣列成像在觀察員平 面。透鏡_的每個透鏡至少—個像素在有機發光二極體顯示器 中被啟動起來。在繪圖給定的尺寸大小,如果像素間距為2〇μιη, 可追縱到帶:# 400μηι橫向增量的虛擬觀察員視窗。這樣的追縱是 準連續的。 有機發光二極體像素是具有部分空間同雛的光源。部分的 同调性會產生目標闕模麵重建。在_給定的尺寸大小,如 果像素寬度為20微米,在距離顯示器、〗⑻毫米的目標點會產生帶 有100微米的橫向模_重建。這對於人類視覺祕的解析度是 足夠的。 通過透鏡卩車觸不同透鏡的光,並沒有·的制同調性。 同調性的需求是限制至透鏡陣列的每—個單_透鏡。因此,重建 目觀的崎度是由透鏡__距來蚊。·人類視覺系統 而口 〃31的透鏡間距料丨絲階級,轉證充份解析度。如 果有機&amp;光—極體間距是2G微米,這表錢鏡間距與有機發光二 55 200824426 極體間距的比值為5G:1。如果每-個透鏡僅有單—個有機發光二 極體被照亮’這表示每My,·有機發光二極體巾,僅有—個 有機發光二鋪將被照亮。· ’簡_將為低鱗顯示器。 在此所指的全像顯示與傳財機發光二極體顯示器之間的差:是 前者集中絲_者的崎,狀·發射歧&amp;球面度。傳^ 的有機發光二極_和實_〗,_ ed/mA2的發歧,(發明者 於實作中計算)’反之在實務上,照射财機發光二極體應能實現 1,000 cd/mA2發光度的數倍。 虛鐵察員視窗是限制在空間光調變器中編碼資訊的傅立葉 頻譜的-働射階級。如果空間_變器的像素間距是丨一,並 且需要兩瓣素來編碼-倾數,即如果在她觀電子式定址 空間光調變器上使用2相位編碼,在鄕唧的波長,虛擬觀察員 視窗會有1〇麵寬的寬度。虛擬觀察員視窗可利用空間或時間多 工’將數健織㈣視窗贿賴大的虛擬贿貞視窗。在空 間多工的情況下,需要額外的光學元件,如光束分光鏡。 一彩色全像錢可㈣間多卫來實現。彩色有機發光二極體顯 不器的紅色’綠色及藍色像素是彻具有對紅色,綠色及藍色光 學波長計算的全像圖的空間光調變器關步重編碼來相繼地啟 動0 56 200824426 顯示器可包含眼部位置侧器,用以偵測觀察員 置。眼部位置侧n連接控财機發光二極體 的控制單位 的眼睛位 顯示器的像素活動 。。在空間光鍾ϋ上編碼的全像_計算最好L卜部的編碼 單7G來執仃’因為它需要較高的計算能力。齡資料會接著送至 個人數位助理或行動魏,_示全像產生的三軸像。、 對於實務上的例子,可使用由Sany0 (RTM) Epson (RTM)The remote intermediate system can be designed to contain data that defines one dimension of the entity's content. The physical environment can be a playground. The display device may include a stop function for generating a static hologram. The device may include amplifying the omni-directional reconstruction of the enlarged portion. The 3D content generation system allows the user to pay for the content processed by the remote intermediate system. Accessing the already existing 3D content generation system allows the advertiser's advertisement to be touched by the remote end, so that it can be reconstructed by the display device. , inserted into the content, and 200824426 three-dimensional content generation of the full-featured code is distributed between the remote intermediate system and the computing unit in the display device. The remote intermediate system can be designed to contain information defining a three-dimensional solid map of content elements to aid in the processing of the content. The hologram display device can be a display device that can switch from the hologram to the conventional two-dimensional display mode. The holographic display device can be a handheld portable device. The holographic display device can be a personal digital assistant (pDA). The hologram display device can be a video game device. The holographic display device can be - set, in its + wire-type address space light modulator, the whole side of the stone is 'and when the reading beam _ riding wire address (four) light modulation ^ and optical positioning Lang Xi Wei The organic light-emitting diode array is controlled by the device, and the holographic reconstruction will be generated by the device. The omni-directional display can be one/set in which the organic light-emitting diode array is written to a pair of optically addressed empty 13 200824426 optical modulators, an organic light-emitting diode array and an optically-addressed spatial light tone The transformer will form a phase-integrated spatially-modulated Wei, coded hologram, and the optically-addressed spatial tones of the beam-illuminated lining (4), and the paired optical-drying space-spatial optomechanics n Appropriate control of the day-inch 'Full Image Reconstruction through the organic light-emitting diodes will be generated by the device. The holographic display device can be a type of splicing, including a first-organic illuminating-pole array on a human-to-optical-addressed spatial light modulator, and a write-to-second optical-addressed spatial light tone The second organic light-emitting __ on the transformer, the first-light-emitting diode _ and the first-optical type: the space-time light modulation changes to form the Jing H organic light-emitting two-pole broken optical slave space light and wealth formation The layer m is optically addressed, and the inter-optical light encodes a full-image image. When the read beam array illuminates the first and second lights, the first and second wire-type stray light is light (4) by the first and When the second organic light emitting diode array is properly controlled, the device will produce a holographic reconstruction. The holographic display device can be a device in which the amplitude and phase of the read beam _ are modulated by a combination of the first and second pairs of organic light-emitting diodes/optically-addressed spatial light. The full-axis display device may be a type in which a pair of organic light-emitting diode arrays and a silk-addressed spatial light modulator are paired to read the amplitude and phase of the beam _, and the other is: A pair of modulated pairs of light emitting diode arrays and optically addressed spatial light modulators read a second different combination of amplitude and phase of the light array. The holographic display I can be used to generate the aging device for the single-system view, and the phoenix (10) includes the first organic light-emitting diode array written on the 14 200824426 to the light-based address space light modulator. Forming a phase layer, and writing an array of <RTI ID=0.0># </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; The holographic display device can be a display device that can correctly and clearly see the resulting holographic reconstruction when the user is at a working distance from the display 11. The king image display device can be a display device, which has an age-receiving image, and can generate a secondary image focused on the screen without any projection lens, and is independent of the f-screen device. The display 4 includes a first organic light-emitting diode _ on the human-first optical spatial aperture device, and forms a phase (4), and a second organic body written on the second optical framing light modulator Light emitting diode arrays and forming adjacent layers. The full image can have a Hermite, in which the towel is an autostereoscopic display, and the organic == body_ on the optically-addressed spatial light modulator containing the write-to-amplitude modulation, and forms the phase (4), the county Including the beam splitting, the axis of the head can be taken from the W-faced line of the Yunxian County New Zealand Lang light modulator, and the Fuguang-styled version of the Lang Guangnian n is controlled by the organic light-emitting diode array. Look at the image of the body. Seventh, a two-axis capacity generation secret contains 'generating two-axis capacity and transmitting 15 200824426 content to far-off (four) system_容 producer, the remote middle button will process the content to help the subsequent three-dimensional display 'and will be processed after The content is transferred to the three-way display device where the three-dimensional display device produces a three-dimensional display of the content. The remote intermediate system I uses the calculation and the addition depth _ mode. The display device may include a delay in the synchronization of the garment to compensate for the distal middle of the mussel. The remote intermediate system can be designed to contain data defining a three-dimensional map of the physical environment of the content. The physical environment can be two sports fields. In another aspect, a three-dimensional content generation system is provided, comprising a content producer that generates two-dimensional content and delivers content to a remote intermediate system, the remote intermediate system processes the inner valley to aid subsequent three-dimensional display, and will process The subsequent content is transferred to the two-dimensional display, and the three-display device generates a three-dimensional display of the content thereon. The two-dimensional content generation system allows the device to include a beam splitter that allows the observer's eyes to see a stereoscopic image. In another aspect, a method of generating a three-dimensional content is provided, comprising the steps of using a three-dimensional content generation system as described herein. In another aspect, a content processing method for holographic reconstruction is provided, in which a network operator provides a three-dimensional content generation system in which two-dimensional content is generated from the 16200824426 inner valley to the back-end intermediate system. The remote towel system will process the content to assist in the subsequent holographic reconstruction. However, after processing, the 容 will be transmitted to the holographic display device, and the full image will be displayed. = 3D hologram line. For holographic reconstruction, the holographic display can include at least one array of light-emitting diodes on at least one optically-addressed spatial light modulator and form adjacent layers. In another aspect, 'provided a three-dimensional content generation method' in which content produces one-dimensional content 'two-dimensional content is transmitted to the remote intermediate system, and the second is in the middle = to = to help the subsequent holographic reconstruction, however, After the inner == money, the hologram _ will be generated on the _ three to join the deep-seated calculation and the two-dimensional content generation method content of the physical environment of the three-dimensional map of the environment as a sports field. The distal towel can be designed to contain the S-like material. The method of generating the three-dimensional content allows the physical ring to include a stop function for generating a display device including the amplification work. (4) The generation surface of the display device allows the display device to be ▲ static = holographic key. The three-dimensional (10) generation method allows the user to enlarge a partial hologram. 17 200824426 The three-dimensional content generation method allows the user to access the content that has been processed via the remote intermediate button in a payment fee (four) manner. The method of generating the three-dimensional content allows the advertiser to pay for the advertisement through the remote intermediate system by means of a fee: • enabling insertion into the content and holographic reconstruction via the display device. The method of generating two-dimensional content allows the code required to generate omni-image reconstruction to be distributed between the remote intermediate system and the computing unit in the display device. The method of generating three-dimensional flaws allows the remote tissue to be designed into a three-dimensional material of the content of the content, and the processing of the silk coffee. In another aspect, a communication method is provided, including the steps of using a three-dimensional content generation system as described herein. ...using "spatial light modulator coding full side" means encoding on a full image inter-communication optical modulator. [Embodiment] A. Infrared organic light-emitting diodes and optically-addressed spatial light modulators are tight 18 200824426 This a-example provides an optically-spaced spatial light modulator with 5 weeks of optical positioning The tight integration of the infra-red emission display into the pattern enables such a combination to produce a three-dimensional image under appropriate lighting conditions. • The mechanically-addressed spatial light modulator includes a photoreceptor layer and a liquid crystal (LC) layer between the conductive electrodes. When a voltage is applied to the electrodes, the light pattern incident on the photoreceptor layer will be converted to the read beam beam inspection layer. In the technical towel, the incident light pattern is provided by a write beam modulated by an electronically addressed spatial light modulator (EASLM). The electronically addressed spatial light modulator is illuminated by light and imaged onto the optically addressed spatial light. In general, writing from the beam is non--, avoiding the speckle pattern phenomenon, while the reading beam is coherent and has the ability to produce a diffraction pattern. The optical type of New Lang light adjustment Wei she is in the electronic address, such as light modulation, crying, the advantage is that the optical type of address miscellaneous _ Wei, can have continuous, miscellaneous money. The structure, while the electronic location of Langguang women's job structure. Pixels in the light. Sharp edges are produced on the space allocation: this sharp edge is equivalent to a high spatial frequency. The surface spatial frequency results in a wide-angle diffraction in the optical far field. Therefore, the electronically-addressed spatial light modulation will produce unwanted optical diffraction in optical long-range: artifacts must be eliminated using known techniques such as spatial listening. In an optical processing program, extra steps are required to perform a spatial wave, which can make the device more stringent and cause waste of light. Optically-addressed air conditioners change _ type of device excellent: 19 200824426 is able to allow __ sample generation in the scale address ___. The pattern of flail can allow light intensity to be converted with less sharpening in any given direction: the direction of a bundle of special broadcasts. Therefore, fewer steep mountain ridges have a higher concentration of higher-altitude latitude than the edge of the pixel produced by the electronic addressing device: the optical simplification device. In: . In devices with optical slave spatial light modulators, the lower concentration of high spatial frequencies facilitates optical processing and is more efficient than mountings containing electronically addressed spatial light modulators. Furthermore, the optical address space_variant device can be a double crane device as compared to an electronic addressed spatial light modulator. Therefore, the optically addressed spatial light modulator can have a higher (four) power requirement than the electronically addressed spatial light modulation device, which can increase the battery life of the portable device disengagement device. ★ In this embodiment, a compact recording that does not require imaging optics is described. Optical Addressing Space Light Modulator Infrared Organic Light Emitting Diode Display Writer. Organic Light Emitting _11 is a direct connection to the wire-type air conditioner, forming a compact device that does not have imaging optics. The organic light emitting diodes may be of a layable type to form an organic light emitting body array. The optically addressed spatial light modulator can be comprised of a plurality of smaller, deployable optically addressed spatial light modulators. In. Yes, "The light-pole display n and the optically-addressed spatial light modulator are closely described, and the transparent; the transparent organic light-emitting diode display is currently known, and the latter is an organic light-emitting diode material." The content described in the chapter. In a 20 200824426 =: yes = optical diode display and optical address space light modulator tight ... and. from the opposite side to the third _ like the edge formed by the machine light dipole Body and optical positioning space, light modulation, crying (4) - β is transmitted to the inspector via the material county, and the better way, the organic light emitting diode display emits infrared light to write the human to the light modulation The infrared-sensing photoreceptor layer of the device. Because of the human: sensitive, the observer can't see any kind of light generated from the infrared writing beam. Another example is the closeness of the organic light-emitting diode display and the optical neon space light 2 The combination allows the write beam and the read beam to be incident on opposite sides of the optically addressed spatial light. In another example, the close combination of the organic light emitting diode display and the optically addressed spatial light reading n allows reflection The layer is on the side of the optically-addressed spatial light modulator, which is the opposite side of the organic light-emitting diode display, so that the three-dimensional image can be secreted from the same side of the optically-addressed space light machine, that is, the organic light-emitting diode On the side where the polar body display is located, the illumination source is also like an organic light-emitting diode display--in the optically-addressed spatial light modulation (4)_: this is an example of a reflective display. Implementation of an array including infrared organic light-emitting diodes In an example, the infrared-emitting organic light-emitting diode allows control of the combination of the amplitude, phase, or amplitude and phase of the visible light transmitted by the optically-addressed spatial light modulator, thereby causing the hologram to be optically modulated in the optical address space. Produced in the transformer. Optically-addressed spatial light modulator can include 21 200824426 As the reference film can be applied to the film - the transparent separator is coated with two kinds of power conductive film on the separator, which is described by 35 Content. Continuous or discontinuous photosensitive conductive film. Bi-stable ferroelectric liquid crystal or some other type of crystal inspection, can close the conductive film between the fineness. She can add to the guide Rhyme. In the optical intermodulation f, the optical writing beam can be fine-by-pixel mode or: the polarization of the moving sub-item beam. The writing beam can be side-activated optically addressed* The system is located in the __. Light: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1〇 is the lighting money used to provide the knowledge of the flat area. Its cap has sufficient sufficiency to be able to produce a triple image. An example of a lighting device for a large area image hologram is mentioned at 50671, wherein an example is shown in FIG. A device such as a device may be in the form of a white light source array, such as a cold cathode fluorescent lamp or a white light emitting light emitted by a filament on a poly (tetra) system, wherein the poly (tetra) system may be compact, such as a lenticular array or Microlens array. Alternatively, the source for 'K' may consist of red, green, and blue lasers, or red, green, and blue light-emitting diodes that emit sufficient s-light. However, a non-laser light source (e.g., a light-emitting diode, an organic light-emitting diode 'cold cathode f-light) having sufficient spatial coherence is more (four). The shortcomings of riding a silk, Yi in the holographic reconstruction 22 200824426 ^ caused by ^ lasing, the tree is more expensive and the financial damage on the holographic image shows the view of the beta or read the 细 细 细 细 仃 仃 仃 等 等 等problem. The thickness of the component ΗΜ3 can all be about several centimeters or less. The element η can be arranged in an array such that the image of the colored light _ such as red, green and blue light is directed to 70 pieces 12, and if a color light source is used, the color is over-aged and the element 12 is on the transparent substrate. Infrared organic light emitting diode array. The infrared Τ organic light emitting diode array will cause each of the infrared organic light emitting diodes to be parallel in the direction of the element and conform to the color corresponding to the corresponding color pixel. Reading 13 is an optical neo-space light modulator. Regarding the optical neon = variator 'infrared organic light emitting diode array provides a write beam; element η emission = color first beam is IW to take the beam. The viewer is located at a point away from the viewer including the close hologram generator 15 = a certain distance, and a three-dimensional image can be viewed from the direction of 15. The components of the ":" and ^3疋 are configured as physical connections (real connection), each of which forms a knot, and -r makes the whole object a single-unit. Physical connections can be direct. Indirect 'If there is a thin intermediate layer, cover the film between adjacent layers. Entity = can be turned off in the correct _ mutual combination row _ community wealth, or can extend the area of :: even the entire surface of the layer. The physical connection can be made by layer and layer = figure to make a close part of the adhesive to form a tight part) / 3 疋 由 匕 any way (refer to the summary manufacturing program department 23 200824426 elements ίο can contain - or two An optical film is used to increase the brightness of the display. Such a film is known, for example, as described in US 5,056,892 and US 5,919,551. Element 10 may comprise a polarizing element or a collection of polarizing elements. Sheets are one of them. Another example is a reflective polarizer that can transmit a linearly polarized state and reflect an orthogonal linearly biased state - such a sheet ... is known, for example, in US 5,828, What is described in the context. Another example is... a reflective wafer, a transmissive-laterally biased state, and an orthogonal circularly polarized state - such a sheet is known, for example, in US 6,181,395. What is described. The component 10 can include a focusing system, which can be compact, such as a lenticular array or a microlens array. The component 10 can include other optical components known in the art of backlight technology. Figure 4 is a side view of a conventional technique showing the three focusing elements 1101, 1102, 1103 of the vertical focusing system 1104 in the form of a cylindrical lens arranged horizontally in the array, with reference to reference WO 2006/119920. The nearly collimated beam of the LS2 passes through the focusing element of the illumination unit to the observer plane 〇p. According to Figure 4, many of the line sources LS1, LS2, LS3 are arranged one above the other. The light emitted by each source is vertical. The direction is full of spatial coherence and is __ sexual in the horizontal direction. This light passes through the transmission element of the optical machine SLM. This light is only in the vertical direction because of the hologram-encoded component of the optical modulator SLM. The diffracting element 11 〇 2 is in the observer plane 〇p with several diffraction stages (only 24 200824426 - one has (four)) imaging light source LS2. The light beam emitted by the light source LS2 is as a focus only through the focusing system 1104 An example of component clipping 2. In Figure 4, the three beams show the first diffraction class Cong, the zeroth diffraction class 1106, and the negative-diffraction class 1107. Compared to the single-point source, the line source allows non- Constantly high light intensity is generated. The use of multiple efficiencies and the full range of line source arrangements for each _ part of the reconstructed 3D scene enhances the effective enthalpy. Another gamma, no laser, multiple Separate (for example, after a slot that can be part of the shutter) common light sources produce sufficient dimming. 紧密· Close combination of two pairs of organic light-emitting diodes and optically-spaced spatial light modulators In still further embodiments, a close combination of two pairs of organic light emitting diodes and an optically addressed spatial light modulator can be used to modulate the amplitude and phase in a continuous and compact manner. Therefore, a complex number consisting of amplitude and phase can be compiled in the transmitted light one by one. This embodiment includes a first intimate combination of an infrared organic light emitting diode array and an optical address space, and a second pair of an infrared organic light emitting diode array and an optically addressed spatial light modulator. Close combination. The first pair modulates the amplitude of the transmitted light, and the second pair modulates the phase of the transmitted light. It can also be 25 200824426 to the phase of the first pair of bribes, and the second pair of transmissive (four) amplitudes. The close combination of each of the 2 external organic light-emitting diodes _ with the fresh-placed spatial light modulator can be as described in Section A. The close combination of the 峨Infrared Organic Light Emitting Diode Array and the Optical Addressing Space Light Detector is filtered by infrared ray, separated by the rider, and the outside line is over; the Jiejie will absorb infrared rays without processing visible light. In the first step, the first infrared organic light emitting diode array is patterned to improve the amplitude modulation in the optically addressed spatial light modulator. In a second step, the first infrared organic light emitting diode array is patterned to provide phase modulation in the second optically addressed spatial light modulator. Infrared filter, light film prevents infrared (10) leakage from the first-tight combination of a pair of infrared _ organic light-emitting diode array disk optical positioning Langguang modulator to the second tight combination - for infrared · organic light-emitting diode array and optical Type space axis axis Wei. Infrared _ age also lion from the second pair of infrared organic light-emitting diodes _ silk-type positioning Lang Guangxia H's tight combination of infrared H to the first-to-infrared organic light-emitting diode _ and optical positioning of the workplace light tone (four) tight Hehe. However, the infrared filaments are transmitted from the first pair of infrared organic light-emitting __ and the optically-distributed light of the close group of visible light, _ is the second pair of red-scale organic light-emitting two-pole broken optical red space spatial light The read beam in a tight combination of H changes. (4) The light transferred by the second change has been tempered with her, because of the money, seeing the light that contains (4) the tight-fitting pair of shots. 7 26 200824426 Three-dimensional image. Both the organic light-emitting diode display and the optically-addressed spatial light modulator have high resolution based on conventional phase and amplitude modulation techniques that promote the performance of complex values. Thus, this embodiment can be applied to produce a holographic image so that the viewer can see the three-dimensional image. In Figure 2, an example of an implementation is shown. 20 is a lighting device for providing illumination in a planar area, and the illumination is sufficiently coherent to produce a three-dimensional image. An example of a large area image hologram is provided in US 2006/250671. This type of device can be in the form of a white light source array such as a cold cathode fluorescent lamp or a white light emitting diode that emits light onto a hybrid system, wherein the focusing system can be compact, such as a lenticular array. Or a microlens array. Alternatively, the light source for 20 may be comprised of red, green, and blue lasers, or red, green, and blue light emitting diodes that emit sufficient tonal light. However, a non-laser source having a sufficient space (e.g., a light-emitting diode, an organic light-emitting diode, a cold cathode fire level) is more preferable. The laser light _ surface, in the reconstruction of the hologram, the laser spot, the 姊 较为 以及 以及 以及 以及 以及 以及 以及 全 全 全 全 全 全 全 全 全 全 全 全 全 全 全 全 全 全 全 全 全 全 全 全 全 全 全 全 全 全 全 全 全The thickness of elements 20-23, 26-28 can all be on the order of a few centimeters or less.元27 200824426 1 Cattle 21 can contain color __ _, so that the pixels of colored light _ such as red, green and age light are the target # 7 ... color and ^ is not needed 1 fruit color light source, color filter = 夕 is the infrared organic light-emitting diode array on the transparent substrate in the m-pole scales to make the county - strip light organic light two -= Γ 3-Γ hairpin, shirt mode-like color image _ for optical Address space light modulator. Regarding the optical inter-modulation first-order modulator, the infrared organic light-emitting diode array provides a write beam element and a Strt color beam as a read beam. Element 26 is an infrared filter, only m t = infrared light, so that the infrared light emitted by element 22 does not appear: is an optically addressed spatial light modulator. Element 28 is an infra-red infrared organic light emitting diode array. The infrared organic light-emitting body array will cause each of the (four) hair-first polar bodies to emit light from the corresponding color space in the direction of the element 27. Regarding the optical formula: (9) 7 'Infrared organic light-emitting diode array 28 provides write light. ·2, :::: The beam is: take the light beam. Regarding the transmitted light 'element 23 '. Modulate the phase. Because from the day of the second 28. On the upper = wide 7 modulation amplitude 'component 23 on the earth plate, the direction of the component 26 of the external light-emitting diode array 26 element 26 can absorb infrared light, preventing the component% of the light to the optical address space light adjustment Transformer 23. With such a setting, the light emitted by the two organic light-emitting diode arrays 22 and 28 is in substantially opposite directions, ensuring that the two optically-positioned illuminators and π can be placed in close proximity. 28 200824426 The optical 疋 郎 细 ( 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 郎 郎 郎 郎 郎 郎 郎 郎 郎 郎 郎 郎 郎 郎 郎 郎 郎 郎 郎 郎 郎 郎 郎 郎 郎 郎 郎 郎 郎 郎 郎A preferred approximation of the weight of the first spring beam by the optically-addressed nano-transformer (4). The order of elements 27 and Μ in Fig. 2 is reversed, but this is not considered to be an ideal setting for achieving low crosstalk and high transmission targets between the colored light beams passing through the optically addressed spatial modulators 23 and 27. The element 20 may comprise one or two tantalum optical films to increase the brightness of the ageing device: such films are known, for example, the inner n-piece 20 described in the U.S. jump and still 5,9ΐ9,55ΐ Contains a polarizing element, or a collection of polarizing elements. Linear polarizing sheets are one example. Another example is a reflective polarizer that can transmit a linearly biased state and reflect the flakes of the orthogonal linearly biased state as described, for example, in US 5,828,488. Another example is that the reflective polarizer 'transmits a circularly polarized state, and a sheet that reflects an orthorhombic circularly polarized shape is known, such as the inner valley described in US 6,18,135. The τ 2 member 2G may comprise a focusing system which may be compact, such as a lenticular array or microlens _. Element 2G may comprise other optical elements known in the art of f-light technology. A viewer located at point 24 from the apparatus including the close hologram generator 25 may view a three-dimensional image from the direction of 25. Components 20, 21, 22, 23, 26, 29 200824426 Sound, you configure the κ body connection (real connection), each one to form a structure of two: the body is ί-, the system-like object. Physical connections can be direct. Or, if there is a thin layer of towels, covering the phase _ = in a small area that ensures correct mutual alignment, or can extend the larger knowledge, even the entire surface of the layer. The physical connection can be achieved by layer-to-layer bonding, by using the optical transmission mode, so that the shape (4) hologram is produced by 15 ′ or by any other means (refer to the outline manufacturing procedure section). ^ 图二令' Ideally, the light emitted by the organic light-emitting diode arrays 22 and 28 is collimated. However, the light emitted by the actual organic light-emitting diode may be light that is not collimated, such as Lambertian (completely diffused). When the organic light-polar body light series is not very accurate, the money light two shop can be as close as possible to the corresponding optical address space light (4). In this case, the intensity of the incident on the surface of the optically-arranged ϋ 将 will change to the square of the cosine of the human angle. Incident light at 45° or 60° will result in a intensity that is only two- or four-quarters of the normal incident light. Therefore, if the organic light-emitting two-station is separated by a sufficient interval, the visible light pixels are fine and the foot-to-silk address (four) light modulation becomes a 'effect' which will lead to the traverse of the optically-spaced space. The resulting potential difference undergoes significant changes, even in the case of the distribution of organic light-emitting diode light emissions to Lambertian. The intensity of the incident infrared ray may not fall between the points of the optically-addressed spatially-modulated spatial light-modulated H of the organic light-emitting diodes. 200824426 to zero' This may result in a device that can achieve __low. However, if the device structure can be simplified, the reduced contrast is acceptable. In Figure 2, the light emitted by the organic light-emitting diodes _ 22 and 28 is fairly collimated. Fine, the light emitted by the actual organic light-emitting diode may be light that is not collimated, such as Lambertian (complete diffusion). When the light emission of the organic light-emitting diode is not accurate, the geometric light distribution of the organic light-emitting diode is corrected by using Bragg's holographic optical element, for example, in the still milk 3,67 wipes. Description_容. Prague-like optics can cause light to collimate or have better collimation than without using the tree. Figure VIII shows an example of Prague's (four) holographic optics. In the figure, (9) is that the organic light-emitting diode _ '81 is a holographic optical element Bragg thief, and includes a Braille surface, such as a miscellaneous plane 84, 82, which is a light-spot Langer modulator. In the organic light-emitting diode-breaking------------------------------------------------ The light _6' emitted by the organic light-emitting diode array 8 is subjected to scattering in the hologram element 81, and then incident on the ray-type ray light 82 approximately orthogonally. The money is shot, and the improvement is incident on the optical button 82. The other recording can be implemented as shown in Fig. 5. The 57 is a lighting device for providing the flat area of the 200824426 field. The illumination is full-toned and capable of producing three-dimensional images. An example of a large area image hologram as provided in US 2006/250671 is an example. The device can be in the form of a white light, such as a cold cathode fluorescent "slave self-light emitting diode on a poly (10) system, where the focusing system can be a tight 'like lenticular array or Microlens _ 5G. Or, use; 々 light source can be composed of red, green and laser, or it can produce sufficient coherent light, work, 4 and ^ light-pole body, however, with sufficient spatial coherence Non-field source (for example. Light-emitting diodes, organic light-emitting diodes, cold cathode camp light production) are better. The shortcomings of laser light sources, such as the phenomenon of laser spots in holographic reconstruction, are relatively expensive, and all _injury #full-aged viewers or the holographic display device assembly guards may be safe. . The dam member 57 may comprise one or two 稜鏡 optical films to increase the brightness of the display: such films are known, for example, the inner valley element 57 described in still 5, 〇 56, 89 MUS 5, 919, 551 may comprise a polarizing element Or a collection of polarized components. Linear polarizing sheet S is an example of this. Further, an example is a reflective polarizer in which a linearly polarized state is transmitted and a sheet which reflects an orthogonal linearly biased state is known, for example, as described in U.S. Patent No. 5,488. Another example is a reflective polarizer that can transmit a _-biased state, and a sheet that reflects an orthogonal circularly polarized state is known, such as the inner valley described in 脳, (8), 395. Element 57 may comprise other optical elements known in the art of backlight technology. 32 200824426 The thickness of reading 57, 50·54 can be about several centimeters or less. The component Η may include a color folio column such that the colored ray (eg, red, green, and zeolious pixels are directed toward the element 52, although color is not required as in the _color source. ~ 疋 52 is infrared on the transparent substrate An array of organic light-emitting diodes. The array of infrared organic light-emitting diodes will be such that for each color pixel, a light containing two kinds of infrared organic light-emitting diodes-only pairs in the direction of the element will be parallel and The infrared organic light-emitting diode of the first type emits infrared rays of a first wavelength. The second infrared organic light-emitting diode emits infrared light of a second wavelength, and the second The wavelength is different from the first wavelength. The 53 is optically addressed, such as the optical modulation. The component % is another optically-addressed spatial light modulation. _ scale-based Lang Guangxia, infrared = machine illumination II__ provides writing The color beam emitted from the beam 51 is the read beam. The optically addressed spatial light modulator 53 is the first wavelength of the two infrared wavelengths emitted by the organic light emitting diode array (4). The space-addressed spatial light modulator 53 is escaping light __ &amp; _ _ her second wavelength of the outer wavelength is not sensitive, and will transmit the second wavelength of the two infrared wavelengths emitted by the organic light-emitting two (four) 52. The addressable air conditioner Wei Wei is controlled by a second wavelength of two infrared wavelengths emitted by the organic light emitting diode _ 52. The optically addressed spatial light modulator 54 is emitted by the organic light emitting diode array 52. The first wavelength of the two infrared wavelengths is insensitive, or the absorption of the optically addressed spatial light modulator 53 can be utilized and/or the light of the first infrared wavelength can be prevented from reaching the optically addressed spatial light modulator 54, By its absorption, in the compact hologram generator 55, it is not necessary to modulate the optical address space H 54 which is insensitive to the first-infrared wavelength. Alternatively, it is also possible to use two different transmissions. The wavelength of a single organic light-emitting diode, the relative intensity of two different wavelengths is determined by a parameter - like the voltage across the organic light-emitting diode. Two different wavelengths of radiation can be used for time multiplexing Line control. For transmitting light 'tree 53', it is also possible to use 54. _ amplitude, component 53 to read. In this way, the organic light-emitting diode array 52 emits light with two unique wavelengths. Ensure that the two optically addressed spatial light modulations 11 53 and 54 can be placed very close to the age. Adjusting the optically addressed spatial light H 53 and 54 # near can reduce optical wear and pixel crosstalk due to beam divergence _ 1 optically-addressed spatial light modulation Μ 53 and Μ are very good approximations of non-heavy propagation of 2 'color light beams that can rely on optically addressed nulls. The device % touches the distance of the view to see the three-dimensional image. The components π, m, ^^ 34 200824426 疋 are configured as κ body connections (true connection), each forming a layer of the structure, so that The overall scale - the system - the object. Physical connections can be direct. Or indirect 'if there is a thin intermediate layer, covering the 臈 between adjacent layers. Physical connections can be limited to small areas that ensure proper alignment, or can extend to larger areas, even the entire surface of the layer. The physical connection can be realized by the layer-to-layer impurity, for example, by using the wire-transmitting __, the ray-shaped wire (four) hologram generator 55, or by any other means (refer to the outline manufacturing program part) . Where the optically addressed spatial light modulator performs amplitude modulation, in a typical setting, the incident read optical beam will be linearly skewed by passing the beam through a linear offset. The amplitude modulation is controlled by the rotation of the liquid crystal in the applied electric field, wherein the electric field is generated by the photosensitive layer, affecting the polarization state of the light. In such a device, light exiting the optically addressed spatial light modulator passes through another linear polarizer, which reduces the intensity due to changes in the polarization state of the light, as it does when optically addressing the spatial light modulator. . In the optically-addressed spatial light modulators performing phase modulation, unless they are already in a defined linearly biased state, in a typical setting, the incident reading optical beam will be achieved by passing the beam through a linear polarizer. Linearly biased. Phase modulation is controlled by the application of an applied electric field, where the electric field is generated by the photosensitive layer, affecting the phase state of the light. In an example of phase modulation, a nematic phase liquid crystal is used, and the optical axis 35 200824426 is axially fixed, but the guess is a function of the applied lag. In the case of phase modulation, 'the ferroelectric liquid crystal is used, and the birefringence is fixed, but the direction of the optical axis is controlled by the applied voltage. In the phase modulation implementation, the phase difference is obtained using any of the methods' output light readings from the input beam controlled by the application. The face-to-side arrangement of the phase-modulating crystallographic element can be performed as a fine-grained component arrangement in which an anti-parallel arrangement region of a clear liquid crystal having a positive dielectric anisotropy is used, as described. C · Close combination of compact light source and electronic address space light lighter. This embodiment provides a close combination of an electronically addressed spatial light modulator and a fully coherent compact light source&apos; which combine to produce a triple image under appropriate illumination conditions. In this case, a f-subsequent address space optical modulator that does not require imaging optics is described in close combination with a compact light source (four). This embodiment provides a close combination of a light source or a plurality of light sources, a wealth management method, an electronically addressed spatial light modulation (easlm), and an unnecessary spectroscopic element that can produce a three-dimensional map under appropriate illumination conditions. image. In Figure 10, there is an embodiment. 11〇 is the illumination used to provide the knowledge of the planar area, and the towel has a sufficient degree of continuity. (4) Producing a three-dimensional image. 36 200824426 In US 2_/2 And - finer than A_ 全 全 全 = = = = = = = = = = = = = = = = = = = = = = = = = = = 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 A diode, in which a poly (four) system can be (four) dense, such as a permeable array or a microlens array. Or a 'those 11G light source can be shouted by a red or green city laser, or a red, green, and blue light emitting a new light. A light-emitting diode consists of red, green, and blue light-emitting diodes that can be organic light-emitting diodes (〇leDs). However, a non-laser light source with sufficient correction (eg, 'light-emitting diodes, Organic light-emitting diodes, cold cathode fluorescent lamps) are better. The shortcomings of light sources, such as the lasing of the holographic reconstruction, the sympathy of the singularity and all the damage to the hologram shows the spectators or Performing a possible safety problem such as assembling the eyes of the worker M by the hologram display device. It may be on the order of a few centimeters or less. In the preferred embodiment, the read 110 113 i 4 may be less than three centimeters thick to provide a compact, compact source element 111 that may be a color filter array such that colored light The image money (for example, red, ochre, and i-color) is directed toward element m, although color filtering is not required for a color source. Element 112 is a singular-positioned empty county modulator. Element 113 is a non-fresh beam. A beam splitter element. A device located at 2115 from the point of view including a close-up hologram. Some viewers can view a three-dimensional image from the direction of 115. 37 200824426 The 7G piece 110 can contain one or two 稜鏡 optical films. Increasing the brightness of the display: such a film is known, for example, as described in US 5, 056, 892 and us 5, 919, 551. Element 110 may comprise a polarizing element or a collection of polarizing elements. Linear polarizing sheets are examples thereof. An example is a reflective polarizer that can transmit a hetero-biased recording, a slave reflex positive polarity g_ such correction is known, for example as described in us 5, 828. Another example is The lenticular sheet can be conveyed - the laterally biased state, and the orthogonal circularly polarized state is reflected. Such a sheet is known, for example, as described in US 6,181,395. The element 11G may comprise other Optical elements known in the field of f-light technology. Electronic type of space-light space-like spatial tones (four), in which each element in the array of elements can be electronically addressed. Each element is incident 2 Ordering - some functions 'for example to modulate the amplitude of the light it transmits, or to adjust the phase of the light transmitted by it' or to modulate the combination of the amplitude and phase of the light it transmits. In the electronic address space, the light-changing crying scorpion is provided. LCD electronic type = stop space light modulation is an example of the electronic address space _ Wei. The magneto-optical-addressed spatial light modulator is another example of an electronic address-spaced optical modulator. 200824426 The components no 'in, m and li3 are configured as physical connections (real connection), each forming The structure-layer makes the whole object a single-unit. Entity connections can be direct. Or indirect, if there is a thin intermediate layer, cover the film between adjacent sounds. The real money can be connected to the correct mutual combination _ small _ middle ' or can extend to a larger area, even the entire surface of the layer. The physical connection can be achieved by layer-to-layer bonding, e.g., by using a scale transfer glue to form a tight (four) hologram 115, or by any means (refer to the outline manufacturing procedure section). Figure 4 is a side view of a conventional technique, pointing out that the vertical focusing system cuts 4 red focusing elements, 1102, and the fine-tuning lens is horizontally formed in the array. For example, the beam that is nearly collimated with the horizontal wire LS2 passes through the illumination unit of the illumination unit to the observer plane 0P. According to Figure 4, many of the line sources (3) (10), LS3 are -_ arranged up and down. The light emitted by each light source is in the vertical direction and is in the horizontal direction. This light passes through the transmission element of the light modulator (4). This is a full-side coded optical modulator SLM element's diffraction only in the vertical direction. Focusing element _ In the observer plane OP is an imaging source (3) with several diffraction stages (only one is useful). The light beam emitted by the light source is taken as an example of a focusing member wrist that passes only through the focusing system. In Figure 4, the three beams show the first diffractive class touch, the zeroth class should be 39 200824426 without the laser 'multiple separations (10) as in the common light source that can be used as a shutter to produce sufficient dimming. And negative-class blue. Line sources allow very high light intensity to be produced compared to single-point sources. Efficient light intensity can be enhanced by making a holographic area that has increased efficiency and a line source for each part of the reconstructed three-dimensional scene. Another advantage, after a portion of the slot) Typically, the hologram is used to reconstruct the wavefront in the virtual observer window. The wavefront is: something of actual age, if it exists _. The observer's eyes are located in a virtual observer window that may be a virtual viewing window (5) Ws), and he will see the heavy object. As shown in Figure 6A, the hologram display consists of the following components: the light source 'lens, the spatial light and the unnecessary beam splitter 0. To help the spatial light modulator and the compact light source that can display the holographic image. Tight . In combination, a single source and a single lens of Figure 6A can be replaced by a source array and a lens array or a lenticular array, respectively, as shown in Figure 6B. In Figure 6b, the light source illuminates the spatial light modulator and the lens images the light source to the observer plane. The spatial light modulator encodes a holographic image and modulates the incoming wavefront so that the wavefront can be reconstructed in a virtual view. Inspector window. The optional beam splitter element can be used to create a plurality of virtual observer windows&apos; such as a virtual observer window for the left eye and a virtual observer window for the right eye. 200824426 Assuming that a light source array and a lens array or a lenticular array are used, the light source in the array must have a knife Pm such that the light passing through the lens array or the lenticular array of all lenses simultaneously reaches the virtual observer window. The device of Figure 6B is suitable for a compact design that can be applied to a compact hologram display. Such a full-axis indication can be justified, for example in a mobile phone or a personal digital assistant. Typically such a holographic display will have a pair of screen scales. The full-scale display of the screen's ruler is as small as - centimeters. Suitable components will be described in detail below. 1) Light source/light source array Fixed single-light source can be used in simple cases. If the observer moves, the observer can be tracked. The display can be adjusted so that the _image can be seen in the new position. At this time, if there is no virtual observation of the window, it is to trace the beam to the element after the Lang Guang. The sighable array of light sources can be realized by a liquid crystal display (LCD) illuminated in a backlight. In order to generate a shunt line source, only the appropriate pixels are switched to the adaptive sorrow. 9 The pore size of the silk must be small enough, and the bribe provides sufficient space for homology 1&quot; The array of point sources can be used with a lens 41 200824426 round pull-through array containing a two-dimensional row of mirrors. The county __ is a lenticular array containing lenticular mirrors arranged in parallel. It is preferred to use an organic light emitting diode display as the light source array. As a spontaneous = device, it will be absorbed by the color of the fine material or the girth of the secret tree, which can be better and better. (4) Peiguang The two-pole ^ display is more profitable than the bribe, even if the money-emitting diode is more transparent than the liquid sputum to provide light in a more efficient way. When the organic light emitting diode display is read as the light source _, only the pixel switched to it needs the position of the face to create a virtual observer window. The organic light emitting diode display can have a two-dimensional array of pixels or a one-dimensional lake line source. The length of each filament or the width of each line source needs to be small enough to ensure that the full space is coherent to the target's holographic reconstruction. The same array of point sources is more suitable for use with lens arrays comprising two-dimensional array lenses. A line array is more suitable for use with a lenticular array comprising parallel arranged circular dome lenses. 2) Focusing method: single-lens, lens array thief lenticular array ^ Focusing tool images a light source or multiple light sources to the observer plane. When the spatial light-weekly benefit is very close to the focusing tool, the Fourier transform of the information encoded in the spatial light modulator is in the observer plane. The Focus Guard contains one or several focus elements 42 200824426 pieces. The position of the spatial light modulator and the focusing tool is interchangeable. For the close combination of electronic 疋 空间 光 § 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 薄 薄 紧密 紧密 紧密 紧密 紧密 紧密 紧密 紧密 紧密 紧密 紧密 紧密 紧密 紧密 紧密 紧密 紧密 紧密 紧密 紧密 紧密What is shouted is to make a lasing or holographic lens. The holographic lens can be used to have a single-lens, lens_ or __. Such materials are present, such as surface relief holographic products supplied by Physical 〇ptics Corporati〇n, T〇rrance, CA, USA. Or a lens array. The array consists of two-dimensionally arranged lenses, each of which is assigned to a source of light source arrays. Another option is to use a lens shift. The permeable jet contains a cylindrical lens of the Weihu Lake, and each lens has a corresponding light source in the light source_. As noted above, if a source array is used with a lens array or a lenticular array, the light sources in the array must be separated such that light passing through the lens array or the lenticular array of all lenses simultaneously reaches the virtual observer window. Light passing through the lens array or the lens of the lenticular array is non-transparent to any other lens. For this reason, the hologram image encoded by the Space Optics Co., Ltd. is composed of sub-holograms, and each of the sub-images corresponds to one lens. The aperture of each lens must be large enough to ensure that the resolution of the reconstructed object is sufficient. A lens having an aperture that is almost as large as the typical size of the full image coding region can be used, as in the example described in US 2006/GG55994. That is to say, the aperture of each lens is 43 200824426 one or several millimeters. 3) Spatial light modulator The full image map is on ___. Usually, for the plural: scaly chest, this account (four) ^ enough to modulate through the empty __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ However, the "universal spatial light modulation" changes the amplitude or phase and independently modulates. The amplitude-modulated spatial light modulator can be used in combination with the tracked phase code, such as the Bukhart Gaga a_ code. (4) The disadvantage is that fan recording is required to encode a number, and the reconstructed object is low in brightness. The phase modulation lang light tone (4) can produce a higher brightness reconstruction. For example, so-called 2-phase encoding can be used, using two pixels to encode a complex number. ° Although the electronically addressed spatial light has a Japanese-sister heterogeneity, this will lead to a higher diffractive class of == in their diffraction_, which can be eliminated by using softness 1 minus. Recording the aperture shirt, the money is help. The reason is that the Gaussian function is converted to a high 44 200824426. She transmits with an aperture that is sharply cut off in the transmission pattern itself. Except for the lateral scale parameter, the diffraction of the beam intensity waveform function is not changed (4). Can Gaussian transfer __ slice array. When these are provided together with the aperture of the electronically-addressed spatial light modulator, and with the secret of the wire-like material, it will not produce a higher diffraction order, or a large number of reductions. . Gaussian smoother or recording aperture is too 遽: Yes, the diffraction products are high-altitude. A Gaussian filter or a soft aperture filter minimizes crosstalk between the virtual observer windows for the left and right eyes. 4) Beam splitter element The virtual observer window limits the periodic interval of the Fourier transform of the spatial light modulator coded information. Using the existing maximum resolution spatial light modulator, the virtual observer window is 1Q mm in size. In some cases, this may be too small for a holographic display that is applied to/and has a trace. The space multiplexed virtual 2 inspector window is the solution to this problem: generating multiple virtual observers. In the case of spatial multiplexing, the virtual observer window is generated when the spatial light modulator is different. This can be achieved by a beam splitter. For example, a group of pixels on the light week, |: σο encodes the information of the virtual observer window 1, and another group of pixels encodes the information of the virtual observer window 2. The beam splitter will distinguish between the two sets of $ light-enabled virtual observer windows i and the virtual weaver window 2 that are juxtaposed on the observer plane. The virtual observer window and the virtual observer window 2 45 200824426 can be configured to create a larger virtual observer window. Multiplex can also be used to create a virtual observer window for the left and right eyes. In such cases, no seam juxtaposition is required and there may be a gap between one or more virtual observer windows for the left eye and one or more virtual observer windows for the right eye. Care must be taken that the higher diffracting levels of the virtual viewing window do not overlap with other virtual observer windows. A simple example of a beam splitter element is a parallax barrier comprising black stripes with a transparent field between the black stripes, as described in US 2-22. Another example is a lenticular sheet 4 as described in US 2 〇〇 4/223 〇 49. Another example of a beam splitter element is a lens array and a ruthenium shield. In tight all-hybrids, it is typically possible to have a beam splitter element, but a typical imaginary-sized virtual weaver window is only enough to provide a glance, which does not correspond to the average viewer having two eyes and is approximately equal 1 centimeter. However, time multiplication can be used as another option for spatial multiplexing. In the absence of space multiplexes, no additional beam splitter elements will be required. Xigong can also be used in the reconstruction of color holograms. For spatial colors, the pixels are grouped, and each group contains red, green, and blue color elements. These clusters are spatially separated by a spatial light modulator and simultaneously illuminate red, green and blue light. Each-group will be the hologram code calculated for the color element corresponding to the target. Each-group recreates the color elements of its holographic target reconstruction. 46 200824426 5) Time multiplex In the case of time multiplex, the virtual weaver window will be the same on the spatial light modulator. This can be achieved by re-programming the light modulator with the position of the (four) light source. The (four) position of the light source must be such that the virtual observer window of the observer's wealth is seamlessly juxtaposed. If the time multiplex is fast enough, that is, the end period is greater than 25 Hz, the eye will see a continuously expanding virtual observer window. Multiplex can also be used to create virtual observer windows for the left and right eyes. In such cases, no seam juxtaposition is required and there may be a gap between one or more virtual spectator windows for the left eye and one or more virtual observer windows for the right eye. Such multiplexing can be space or time multiplex. The multiplex of space and time can also be combined. As an example, three virtual observations: The window is spatially multiplexed to create an expanded virtual observer window for one eye. This expanded virtual observer window is time multiplexed to create an enlarged virtual observer window for the left eye and an expanded virtual observer window for the right eye. Care must be taken that the higher diffraction level of the virtual observer window does not overlap with other virtual observer windows. 47 200824426 In the case of ^Expanding Observers, it is more recommended to use the vacant modulators because it provides an expanded virtual observer window with continuous changes in parallax for observer movement. In simple terms, there is no multiplex of re-networking, and different parts of the expanded virtual observer window provide repetitive content. Go to 'can also be used to create a full-image reconstruction. For three color elements = day-to-day color multiplex, it will be encoded on the spatial light modulator in sequence. The reprogramming of the three light source modulators is switched at the same time. If the repetition of the full cycle is fast enough ‘that is greater than 2, _ will see the _ color reconstruction. 6) Undesirable processing of higher diffraction classes. If the larger virtual observer window is composed of smaller virtual observer windows, the virtual fiber _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Perform the steps to avoid the problem.举—次=德 If the parent virtual inspector window is located in the spatial light modulator code: the zeroth diffraction class of the special _ change, the first node of the virtual observer window may be with the virtual observer window of the ride overlapping. Such a «may be hot, this will likely change the intensity of the r image or suppress the higher diffraction class. In such cases, there will be a tendency to supplement 48 200824426 If the angle of the illuminated spatial light modulator is constant, a fixed angle filter can be used. This is not the case where the hologram display does not have a tracking function or the beam splitter element (e.g., beam pointing element) is located behind the spatial light modulator. The fixed angle filter can be a Bragg filter or a Fabry Perot Etalon, which produces an unwanted diffraction-level geometric light intensity distribution in the spatial light modulator. The Bragg filter imaging optics can be used to modify the geometric light intensity distribution, such as described in US 5,153,670. A Bragg filter holographic optical component can result in a different light intensity distribution than when the component is not used. Figure 7 shows the function of the Bragg filter holographic optics. In Figure 7, 7 is a spatial light modulator and 71 is a holographic optical element Bragg filter containing a Bragg plane, such as a Bragg plane 74. A single element 73 on the spatial light modulator 70 is provided with a diffracted light intensity distribution as shown. Light 76, which is diffracted by spatial light modulator 70, undergoes scattering in holographic optical element 71 and is then transmitted in a different direction than the original propagation between 70 and 71. If the direction in which the light rays 76 are transmitted is between the 70 and 71, the un-principal-P-level diffracted light, it can be easily seen that the Bragg filaments 71 successfully change the light to different directions, so that it does not cause unwanted An optically processed product that may interfere with the viewer, a typical viewer will be located approximately perpendicular to the direction of 70. In the patent application No. DE 1〇 2_ 〇 3〇 5〇3, an adjustable 'i: 立立_培定; for suppressing the diffractive class 49 200824426 is mentioned. Mention is made of a liquid crystal layer between two faceted glass sheets coated with a partially reflective coating. For each reflection of the coated beam, the beam is a heart reflection and a #分 transmission. The interference of the transmitted beam and the phase difference between them will determine whether the interference is (4) brooding or destructive, as in the Fabry _ _ _ _ _ Given a wavelength, the interference and transmission will change with the angle of incidence of the beam. ,,, given a light age, the dry shot # is changed by the refractive index of Wei Jing for the direction of the given light. The refractive index is controlled by the electric field applied to the liquid crystal layer. Therefore, in all the limitations of the Fabry-Perrender gauge, the angular transmission characteristic can be adjusted' and the diffraction level can be selectively transmitted or reflected as required. . For example, if the Fabri _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ In the Fabry Peper; ^ regulation of all the restrictions on the towel, this device can help for a specific diffraction class or (10) lion 'rotary wire transfer or for reflection. Space coffee can be used in the selection of the diffraction class. The apodizer is between the spatial light (4) and the virtual virtual observer window and contains transparent and opaque areas. These butterfly counties 11 can be called to convey the desired level of winding and block unwanted diffracting classes. These space filaments can be fixed or configurable. For example: electronic addressing between the spatial light modulator and the virtual observer window. Two optical modulators can be used as settable spatial filters. 50 200824426 7) Eye Tracking In the close combination of an electronically addressed spatial light modulator with eye tracking and a compact, compact source of light, the eye position detector detects the observer's eye position. Therefore, one or several virtual observer windows can be automatically set in the eye portion so that the aged member can see the reconstructed object through the virtual observer window. However, because of the extra device wire and the power demand limit that affects performance, it is not a portable device or a tilt device. _ Tracking, the observer must adjust the position of the display. This is quite desirable because in the preferred embodiment the 'tighter' is a hand-held device that may be included in a personal digital assistant or mobile phone headset. The number of individuals (four) or the user of the mobile phone's usually sees the display H vertically, which does not greatly help to adjust the virtual observer window to correspond to the position of the user's eyes. As we all know, the user of the handheld device tends to change the orientation of the device on hand to obtain the most desirable viewing state, as described in paste 1/96941. ^This, in w-like device wipes, does not require the use of face tracking and complex and not as tight as the tracking optics containing the scanning mirror. However, eye tracking can be applied to other thieves. For equipment, the additional requirements of the equipment and power supply will not cause excessive burden. In the absence of tracking, the electronically-positioned spatial light modulator and the close-knit compact light source require a virtual observation window to simplify the display. A better virtual observation of contempt for red should be several times the size of the pupil of the eye. This can be done by making the spacing, spacing, or larger virtual observer windows, or by patching several smaller virtual viewing bay windows using large-space spatial light modulators. The position of the virtual observer window is determined by the position of the light source in the array of light sources. The eye position detects the position of the eye and the position of the light source is set to fit the virtual observer window to the position of the eye. This type of tracking is described in US 2 〇〇 6/〇 55,994 and US 2006/250671. Alternatively, although the light source is in a fixed position, the virtual observer window = lightly moved by the light source is relatively insensitive to the light of the light. If the light source is moved to move the virtual observation window position, 'because of the abnormal light propagation in the tight combination, such a setting may make it difficult to achieve a close combination of the light source and the space finer, in such an example' It would be helpful to have a fixed light path in the display and a beam pointing element that is the last optical component in the display. Figure. . The beam pointing elements are shown in ten and ten. This beam is directed at the undesired output of the component to change the angle of the beam. It can have optical characteristics for X and y tracking 52 200824426 control and for Z-tracking controllable lenses. For example, either or both of the beam directing elements of Figures 20 and 21 can be used in a single device. The beam directing element is a controllable diffractive element or a controllable refractive element. The controllable refractive element may comprise an array of recesses filled with liquid crystal, the liquid crystal being embedded in an isotropic linear dipole susceptibility tensor matrix. The cavity has the shape of a crucible or a lens. Electric field • Controls the effective refractive index of the liquid crystal and thus helps the beam to be directed. The electric field can vary from element to element to produce a beam directing characteristic that varies between elements. As shown in Figure 20, the electric field is applied between the transparent electrodes. The liquid crystal has a uniaxial refractive property and can be selected such that its refractive index perpendicular to its optical axis is equivalent to the refractive index of the host material or matrix. The remaining settings can be obtained from conventional techniques. The host material has an isotropic orientation. Refractive index. If the optical axis of the liquid crystal is aligned along the z direction, the appropriate electric field application as shown in Fig. 20, the _ plane wave is transmitted along the Z direction, # it does not have refraction when the beam is directed to the element because it It does not produce any refractive index change perpendicular to its Poynting vector. However, if an electric field is applied to the electrode, so that the optical axis of the liquid crystal is perpendicular to the z direction, the propagation along the z direction is biased parallel. Yu . The plane wave of the optical axis will encounter the most refraction when it is directed through the beam, • it experiences the most possible change in refractive index along its direction (which the system can provide). The degree of refraction will be adjusted between these two extreme examples by selecting the appropriate electric field applied to the host material. If the cavity is prismatic rather than lens shaped, the beam will be pointed. 53 200824426 Figure 21 shows the appropriate prism shape in the beam. If the optical axis of (4) is arranged along the z direction, as shown in Fig. 10-, the application of the electric field along the Z direction, when it passes through the beam, the component does not have refraction because it No refractive index changes are engraved in its direction of polarization. Fine, if the electronic field is the cross-electrode, the liquid crystal axis is perpendicular to the z-direction, and the plane wave propagates in the Z-direction &amp; one is the most refraction that is biased parallel to the optical axis because it passes through the beam fine element. ' _ It can experience up to (4) Folding secrets can provide a vertical wave of its wave dynasty vector (poyntingvee (four). Fine 'such as 総 add electric field money on the pole, make the crystal light minus "in the z direction, along the Z direction The plane wave that solves the silkworm, # it passes through the beam when asked 'will encounter the most refraction, _ it experiences the most possible vertical refractive index change of its (system-provided) wave-forming vector (four) yntingveetor). The degree of refraction will be adjusted between the two extreme examples, by applying the appropriate electric field applied to the host material. 8) The example will next describe an example of a close combination of a sub-private address such as a light source and a compact light source, which can produce a three-dimensional image at an appropriate age and can be set in a personal digital assistant or In the mobile phone. Electronically-addressed spatial light modulation n and sufficient _ tightness _ wire tight age includes organic light-emitting diode as an array of light source, electronically-positioned spatial light modulator and transparent 54 200824426 mirror array, as shown in Figure 10 The second is shown. Depending on the location requirements of the virtual observer window (represented by 〇w in Figure 12), a particular pixel in the organic light-emitting diode display is activated. These pixels illuminate the electronically addressed spatial light modulator and are imaged by the lens array on the observer plane. At least one pixel of each lens of the lens_ is activated in the organic light emitting diode display. In drawing a given size, if the pixel pitch is 2〇μιη, you can trace the virtual observer window with the #400μηι lateral increment. This kind of memorial is quasi-continuous. An organic light-emitting diode pixel is a light source having a partial space. Part of the homology will result in a target 阙 model reconstruction. At a given size, if the pixel width is 20 microns, a transverse mode _ reconstruction with 100 microns is produced at a target point of distance (8) mm from the display. This is sufficient for the resolution of human visuals. The light that touches the different lenses through the lens is not the same. The need for coherence is limited to every single lens of the lens array. Therefore, the reconstruction of the apparent roughness is caused by the lens __ from the mosquito. · Human visual system. The lens spacing of the 〃31 is the same as that of the 丨 阶级. If the organic &amp;optical-pole spacing is 2G micrometers, the ratio of the distance between the mirror and the organic light emitter is 55G:1. If only one single organic light-emitting diode is illuminated per lens, this means that every My, organic light-emitting diode towel, only one organic light-emitting two will be illuminated. · 'Jane _ will be a low-scale display. The difference between the holographic display and the money-transmitting LED display here is: the former concentrating wire, the shape, the emission, and the sphericity. Passing the organic light-emitting diode _ and _ _, _ ed / mA2 of the difference, (inventor in the implementation of the calculation) 'Conversely, in practice, the financial machine light-emitting diode should be able to achieve 1,000 cd /mA2 luminosity several times. The virtual inspector window is a radiant class that limits the Fourier spectrum of information encoded in the spatial light modulator. If the pixel spacing of the space_variant is one, and two-valve is required to encode-pour the number, ie if 2-phase encoding is used on her view-localized spatial light modulator, at the wavelength of 鄕唧, the virtual observer window There will be a width of 1 inch width. Virtual observer windows can take advantage of space or time to work on the virtual bribe window. In the case of space multiplex, additional optical components, such as beam splitters, are required. A color full of money can be achieved by four (four). The red 'green and blue pixels' of the color organic light-emitting diode display is a spatial light modulator with a full-image image calculated for the red, green and blue optical wavelengths to be re-encoded to successively start 0 56 200824426 The display can include an eye position side to detect the observer. The eye position side is connected to the eye unit of the control unit of the control unit of the light-emitting diode. The pixel activity of the display. . The hologram coded on the spatial light clock _ calculates the code of the best L-segment 7G to perform 因为 because it requires higher computing power. The age data will then be sent to the personal digital assistant or action Wei, _ showing the three-axis image produced by the hologram. For practical examples, use by Sany0 (RTM) Epson (RTM)

Imaging Devices Corporation of Japan 所製造的 2 6 英吋螢幕尺吋 XGA液晶顯示器電子式定址空間光調變器。次像素的間距為 Πμιη。如果這是使用於紅綠藍全像顯示的建構,利用全像圖的振 幅調變編碼,在距離電子式定址空間光調變器〇4m的地方,觀察 •視窗根據計算為丨.3111111寬。對於單色的情況,觀察視窗根據計算 •為4mm寬。如果使用相同的設定,但是改用2相位編碼的相位調 麦,觀祭視固根據計异為6mm寬。如果使用相同的設定,但是改 用基諾形式(Kinoform)編碼的相位調變,觀察視窗根據計算為 12mm 寬。 此外,仍具有其它種高解析度的電子式定址空間光調變器。 57 2008244262 6 inch screen size 吋 XGA liquid crystal display electronic address space light modulator manufactured by Imaging Devices Corporation of Japan. The pitch of the sub-pixels is Πμιη. If this is used for the construction of the red, green and blue hologram display, the amplitude modulation code of the hologram is used. At a distance of 4 m from the electronic address space light modulator, the observation window is calculated to be 丨.3111111 wide. For the case of monochrome, the viewing window is calculated according to • 4 mm wide. If the same setting is used, but the phase modulation of the 2 phase encoding is used, the viewing angle is 6 mm wide depending on the difference. If the same setting is used, but the phase modulation of the Kinoform encoding is used, the viewing window is calculated to be 12 mm wide. In addition, there are other high resolution electronic address space optical modulators. 57 200824426

Seiko (RTM) Epson (RTM) Corporation of Japan 已發表單色電子式 定址空間光調變器,例如D4:L3D13U 1.3英吋螢幕尺寸且像素間 距為15μιη的面板。此公司也發表了同類型的面板 D5:L3D09U-61G00,具有〇·9英吋螢幕尺寸及10μιη的像素間距。 於西元2GG6年12月12日,此公司公告發表_型的面板 L3D07U-81G00 ’具有〇.7英吋螢幕尺寸及8 5μιη的像素間距。如 果D4:L3D13U 1.3射面板祕建構單色的全像顯示,並採用全 像的布克哈特(Burckhardt)振幅調變編碼,則距離電子式定址空間 光調變器0.4m的位置’虛擬觀察員視窗可計算出為5 6咖寬。 D.成對的電子式定址空間光調變器的緊密組合 在另-個實施例中,可以依序及緊密的方式,利用二個電子 式定址郎光調變H的組合來調變光的振幅及她。所以,包含 振幅及相位的複數’可以逐一像素的方式,編碼於傳送光中。 —這個實關包含二個電子式定址空間光調魏的緊密組合。 第-個電子式定址空間細變器機傳送光的振幅,第二個電子 式疋址工間光觀S調變傳送光的相位。也可以第—個電子式定 ,空間光調變賴變傳送光_位,第二個電子式定址空間光調 ,器調變傳送光的振幅。每―個電子式定址空間光調變器都可如c 部份所描述-樣。除了採用二個電子式定址郎光調變器之外, 58 200824426 整體的配置可如同c部份所描述的—樣。任何相#於是幫助振幅 及相位的獨立調變的其它種二個電子式紐空間光調變器調變特 性的任意組合都是可能的。 在第-步驟中’第一電子式定址空間光調變器利用圖樣編 石^以進行振_變。在第-步射,第二電子式定邮間光調 變器利棚樣編碼’以進行她觀。從第二電子式定址空間光 调變器所傳送的光已經於振幅及她±進行機,因此,當觀察 員士觀察裝置這二個電子式定址空間光霞器的裝置所發射触 時,可觀察到三維圖像。 基於習用相位與振幅的調變技術促進複數數值的表現,電子 式定址空間光觀n可射高崎度。目此,財_可用於產 生全像圖來使得三維圖像可由觀察員觀察到。 圖十三為一個實施例。13〇是照明裝置,用於提供平面區域的 照明’其巾朗是具有充份的同雛以便能生三_像。在 6/250671提及—個用於大區域影像全像圖的照明裝置例 子二中個例子疋在圖四中。如同13〇的裝置可為白光光源陣 列的形式’例如冷陰極螢光燈或發出的光線人射在雜系統上的 白光發光二極體,其巾健祕可騎密的,如透鏡狀陣列或微 59 200824426 透^陣列。或者’用於m的絲可由紅、綠及藍雷射所組成, 或是發出充朗雛光棘、綠及藍發光二輔所域。紅、綠 及藍發光二極體可為有機發光二極體(〇LEDs)。然而,具有充份空 間同雛的非雷射光源(例如:發光二極體,有機發光二極體,冷 陰極螢光燈)是紐的。諸絲的缺點,毅在全缝建上造= 田射斑點、姆上較為昂貴以及所有關於傷害全像顯示觀看者或 是進行全像顯示裝置組裝工作人員的眼睛等可能的安全問題。 元件130可包含一個或兩個稜鏡光學膜來增加顯示器的亮 度:這樣的膜是已知的,例如在us 5,嶋,892與仍5,9i9,55i中 所描述_容。元件13〇可包含絲元件,或是偏光元件的集合。 線性偏光薄片是其中-個例子。另外—個例子是反射式偏光片, 可傳送-個雜偏化狀態,並且反射正交雜偏化狀態·這樣的 薄片是已知的’例如在US 5,828,中所描述的内容。另一個例 子是反射式偏W ’可傳送-個_偏化狀態,並且反射正交圓 形偏化狀態-這樣的薄片是已知的^如在仍⑽^撕中所描 述的内容。元件130可包含聚;|、祕,此聚歸統可為緊密的, 例如透鏡狀陣列或微透鏡陣列。元件13〇可包含其它在背光科技 的領域中已知的光學元件。 元件130的職可約為數公分’或是更低。在較佳的實作中, 200824426 7G件130-134的厚度全部是小於3公分的,以提供充份同調性的緊 密光源。兀件131可為色彩過濾器陣列,使得彩色光線(例如紅色、 綠色及監色光)的像素是射向耕132,儘管如果使用彩色光源, 色彩過濾H是不需要的。元件132是電子式定址空間光調變器。 元件133是電子式定址空間光調變器。元件134是非必要的光束 分光鏡元件。對於傳送光,元件132調變振幅而树133調變相 位。或是,由元件133調變振幅而元件132調變相位。將電子式 疋址工間光调m2及133靠近能夠減少光學耗損及因光束分 ,而^生的像素串音問題:#電子式定址空間光調_ m及⑶ 疋非近的’可實現通過電子式定址雜細變器的彩色光線 光束=非重®傳播的較佳近似值。位於點出離包括緊密全像圖 產生為136的裝置_些距離的觀看者,可從—的方向觀看到三 一牛0 131、132、133及134是配置成實體連接(直實上連 接),每-個形成結構的一層,使得整體為單一、統_的物件。每 ==接:。或是f_,如果有薄的中間層心 ^的膜。,體連接可限制在確保正確的相互排列的小區域 由層伸至較大的區域’甚至層的整個表面。實體連接可 以雜來實現’例域域用絲傳娜_的方式, 以便形成緊_全像圖產生器136,或是藉由其它任何的方式(參 61 200824426 考概要製造程序部份)。 在毛子式疋址空間光調變器執行振幅調變處,在典型的設定 中’入射的讀取光學光束將會藉由將光束通過線性偏光片來達到 .線性偏化。振幅調變是由在施加電場中液晶的旋轉所㈣,施加 電場會影響光的偏化狀態。在這樣的裝置中,離開電子式定址空 間光調變制光會通過另—個線性偏光片,可因光的偏化狀態改 變而減少強度,如同它通過電子式定址空間光調變器時一樣。 在電子式定址m光機器執行她調魏,除非它們已處 於定義的雜偏化狀態,在典型的設定中,人射的讀取光學光束 將會藉由將光束通猶性偏光片來_線性偏化。相位調變是由 電場的應騎㈣’電場會影響光的她狀態。在她調變的一 個例子中,使用向列型相位液晶,光軸方向㈣關定的,但是 ,雙折射是施加賴的函數。在她調變的—_子巾,使用鐵電 .性液晶,雙折射是固定的,但是光軸的方向是由施加電壓所控制。 在相位調變實作t,使㈣中任—種方法,輸出光束與為施加電 堡函數的輸入光束會具有相位差。可執行相位調變的液晶元件的 其卜個例子為Freedericksz元件排列,在其中使用了具有正介電 質異方向性的向列型液晶的反平行排列區域,如同在仍5风爪 所描述的内容。 5 ’ 62 200824426 _用於緊密全像顯示㈣密組合,包含_則、分隔或最小分 隔方式結合的電子式定址空間光器。較佳的實施方式是兩個 空間光調魏具有相同數量的像素。因為兩個電子式定址空間光 機輯於觀察員來說並不是等距離的,兩個電子式定址空間光 =變器的像素間距可能需要稍稍的不同(但會仍舊大概相同),來補 償不同距離對於觀察員所造成的影響。已通過第—空間光調變器 的像素的光’會通過第二空間光調變器對應的像素。因此,光是 會經由兩健批調魏來調變,並且可社地實現複雜的振幅 與相位調變。舉—個例子’第—空間光調變器進行振幅調變,而 =二空間光調變器進行相位調變。同樣地,任何相#於是幫助振 中田及相位的獨立觀的其它種二個空間光輕賴變特性的任音 組合都是可能的。 必需注意,通過第-空間光調變器的像素的光,只能通過第 二空間光調變器對應的像素。如果從第―空間光調變器像素射出 的光’通過第4間光調變器非對應、鄰近的像素時,串音將合 ^生le些串音可能會導致圖像品低的_。在此提供四個 在像素間最小化串音問題的可能方法。由制的技術可顯而'易見 的,這些方法可同樣的應用於B部份實施例。 63 200824426 (1)弟一個敢間早的方法是直接將 辦哭、“丄 上 郷破像素後的兩個空間光調 又™連結或黏接在一起。在第一处 隹弟二間先调變器的像素,可能會有 =偏離賴的繞魏象。空間_«之_分隔必須^ ==’薄至第二空間先機轉近像素之_串音到達可接受 、主又。舉-個例子,具有10 μιη像素間距的兩個電子 :光調變糊隔,必須小於或等·卿m的等級。這在㈣ =的空間光調變財是辭不可能實現的,因為_蓋的厚度 卜1mm的等級。當然:,能使空間光調變器之間具有薄的分隔層 ,二明治”方式,是較推薦進行在—個程序當中。可應用概要製造 ♦序抑所从的製造方法’來製作包含兩_隔距雜小或最 小的電子式定址空間光調變器的裝置。 圖十四顯示由狹縫1〇卿寬的繞射計算而得的菲埋耳繞射數 據圖表,在二維模型中變化離狹縫的距離,縱轴為sik(z),橫轴為 sht(x)。均勻照_狹縫是位在χ轴上_細剌卿之間,並且z 為》米。光傳送媒介被用來獲得J.5的折射率,為用於緊密裝置 的典型媒介。選定的光為具有633 nm真空波長的紅光。綠色與藍 色波長比紅色光小’因此對於紅色光的計算,在三個顏色紅、綠 及藍當_,展現出最強的繞射影響。可以使用—C Technology (RTM) Corp., Needham, MA, USA.^^-, MathCad (RTM)軟财執行計算。針五顯_㈣強度冑在狹縫令心上 64 200824426 。丸範圍内’為離狹縫距離的函數。在距離狹缝2〇μηι的地方, 圖十”項不大於9〇%的強度仍然在狹縫的ΙΟμιη寬的範圍内。因 、奴個—她對,小於5%的像錢度會人射在每—瓣近 ^像素上這疋在像素間零邊界寬的限制情況下的計算結果。實 IV、在像素間的邊界寬是大於零的,因此串音問題在真實系統中會 低於這裡所#异的結果。在圖十四巾,菲科繞射圖接近狹縫, 例如離狹縫50μηχ,並且有點近似在狹縫的高帽型強度函數。因 /又有I的繞射特徵接近狹縫。寬的繞射特徵是高帽^函數的 〇射函數的特性’此為習用已知的脱d函數。寬的繞 射特徵可由圖十四中距離狹缝3〇〇μηι的例子觀察到。這指出了繞 射效應可糊將兩個電子式定址空間光調變器設置的足夠接近來 控制’而且將兩個電子式定址空間光觀II設置的非常接近的- 個優點是繞射數據圖表的函數型式,會由遠場特性改變至較有效 率匕3接近垂直於狹縫的軸的光的函數型式。這個優點是與習用 全像技術的想法相違背的,制的技術會傾向認為在光通過空間 光调變益的小孔徑時,會引起強的、大的及不可避免的繞射效應。 因此,習用的技術不會有將兩個空間光調變器靠近在一起的動 機,會麵這樣的方式會導致减發生且嚴重由繞射效應所引起 的像素串音問題。 圖十六顯補度分佈的等高線® ’強度分佈為離狹縫距離的 65 200824426 函數。等高線的鱗是在對數尺度上’而枝線性尺度。使用了 十條等南線’全部含括100強度因數範圍。對於1〇μιη的狹缝寬 度’強度分配大程度的邊界在距離狹縫大約50μιη的範圍内是清 楚的。 在進-步的貫施例中’可減少第—電子狀址空間光調變器 的像素孔位區域來減輕在第二電子式定址空間光調變器的串音問 題。 (2)第二個方法是在兩個空間光調變器之間使用透鏡陣列,如 圖十七所示。較好的方法是讓透鏡的數量和每一個空間光調變間 中的像素數量相等。兩個空間光調變器的間距以及透鏡陣列的間 距可以輕微的不同’來補償觀察員的距離差距。每一個透鏡成像 第一空間光調變器的像素至第二空間光調變器對應的像素上,如 .圖十七中大量光束171所示。也可能光會通過鄰近的透鏡造成串 •音問題,如大量光束172所示。如果它的強度是足夠的低,或是 它的方向是充份的不同,使其無法到達虛擬觀察員視窗時,將可 被忽視。 每個透鏡的數值孔徑(Numerical Aperture,ΝΑ)必須足夠的 大,以成像具充份解析度的像素。舉一個例子,對於5μιη的解析 66 200824426 度’需要約為G·2的數值雜(ΝΑ)。這也表示如果假定是幾合光 學,如果空間光調變器與透鏡陣列的間距為ΙΟμιη,透鏡陣列與每 -空間光機n之間的最大距離大約為25卿。 也可能指派每個空間光輕器的數轉素至透鏡陣列的-個 透鏡舉個例子,以第一空間光調變器的四個像素為一君夢,可 藉由透鏡陣列中的_個透鏡來成像到第二空間光調變器的一個由 四個像素所組成的群。這樣的透鏡陣列的透鏡數量會為每一個空 ’光。周夂⑨巾的像素數量的四分之—。如此可允許制較高數值 孔控的透鏡,目此可獲雜高解析度的絲像素。 (3)第三個方法是盡可能的減少第—電子式定址娜光調變器 的像素孔徑。從繞射的觀點來,第二空間光調變器由第-空間光 :交^的_像素所照射的區域,是由第—電子式定㈣間光調 欠-的像素孔控I度〇及繞射角所決定,如圖十八所示。在圖十 =中’ d _電子式定址空間_魏之_距離,而w是兩個 第P白、、及、、:^射最小值之間的距離,發生於第零階級最大值的任一 邊。^疋假定為夫朗和斐_unhGfe_射,或是夫朗和斐繞射的 合理近似。 減少孔彼寬度D -方面可減少騎區域巾心部分的直接投射 67 200824426 ΓΓ十八中的虛線所示。在另—方面,依照繞射角正比 斐繞射中的1/D’繞射角會被增加。這增加了在第二奸 工疋址工間光撕社照射區_寬度域射區域的全部寬度為 …在夫朗和文繞射方法中,給予分隔d,D可被決定,並利用方 知式^ D + 2ca/D來最小化w,此方程式是從夫朗和斐繞射中的 兩個第一階最小值之間的距離推得。 例如,如果λ是0.5 μιη,d是1〇〇,及w是2〇μιη,可得到D ^ ΙΟμηι的最小值。細在這_子巾,夫跡斐方法可能不會 是-個好的近似,這個例子說明了使用電子式定址空間光調變器 之間的距離來控制夫朗和魏射方式中的繞射過程的原則。 (4)第四個方法使用了光纖面板來成像第一空間光調變器的像 素至弟一工間光调變裔的像素上。光纖面板是由二維排列的平行 光纖所構成。光纖的長度與也因此面板的厚度典型為數公釐,面 板表面的對角線長度是長至數英吋。舉一個例子,光纖的間距可 為 6μπι。Edmund Optics Inc.of Barrington,New Jersey,USA 有銷售 具有如此光纖間距的光纖面板。每一條光纖從它的其中一瑞引導 光至另一端。因此,在面板一端的圖像會被傳送至另一端,具有 高解析度且不用聚焦元件。這樣的面板可作為兩個空間光調變器 之間的分隔層,如圖十九所示。多模光纖較佳於單模光纖,因為 68 200824426 夕模光纖的_合效率比置 曰曰 早核光纖好。當光纖核心的折射率與液 的折射率是相穩合時,合 化 ㈢件到攻佳的耦合效率,因為這可最小 非&gt;里耳背向反射損失。 在兩们工間光㉟心之間沒有額外喊璃蓋。偏光片、電極 -向層疋直接連接光纖面板。這些層每—個歧非常的薄,即 為1-10μιη的等級。因此 口此,液晶(LC)層LC1與LC2是在靠近面板 的地方。通過第一空間先 σ -周交為像素的光會被引導至第二空間光 調變器對應的像素。這可畀 、了取小化鄰近像素的串音。面板傳送第一 空間光調變器輸出端的夯公蚀=μ 〕九刀佈至弟二空間光調變器的輸入端。平 言,每個像素應至少—個光纖。如果每個像素少於-個光纖 —’平响言將喪失解析度,造成顯示於全像 .、、、頁不中的應用的圖像品質減低。 〜圖十九中帛空間光調變器調變振幅,第二空間光調變 周又相位。其它缺妓整複賴變的兩個電子式定址空間光 啁變器的調變特性組合都是可能的。 〇 圖十顯示了對於全像圖中編碼振幅與相位資訊的緊密排列的 104疋照明裝置用於提供平面區域的照明,其中照明是具有充 69 200824426 份的同雛以便能夠產生三維圖像。在us 2〇〇6趟7i提及—個 用於大區域影像全像圖的照日置例子。如同刚的裝置可為白 光光源陣列的形式’例如冷陰極螢光燈或發出的光線人射在聚隹 系統上的白光發光二極體,其中聚㈣統可為緊密的,如透餘 陣列或微透鏡陣列觸。或者,用於辦的光源可由紅、綠及藍雷 射所組成’或{充份同雛光的紅、、綠及藍發光二極體所电 成。然而’具有紐空_雛的非㈣光源(例如:發光二極體, «發光二極體,冷陰極$光燈)是更佳的。雷射光源的缺點,像 是在全像重建上造成f射賴、相對上較為昂貴以及所有關於傷 害全像顯稍看者或是進行全賴示健組裝卫作人貞的眼睛等 可能的安全問題。 元件崩可包含一個或兩個稜鏡光學膜來增加顯示器的亮 度:這樣的膜是已知的,例如在118 5,056,892與us 5,919551中 所描述的内容。元件刚可包含偏光元件,或是偏光元件的集合。 線性偏光薄片是其中一個例子。另外一個例子是反射式偏光片, 可傳送-鱗性偏錄態,並且反射正交雜偏錄g •這樣的 薄片是已知的’例如在US 5,828,中所描述的内容。另一個例 子是反射式偏光片,可傳送一個圓形偏化狀態’並且反射正交圓 形偏化狀態-這樣的薄片是已知的,例如在1186,181,395中所描 述的内容。元件104可包含其它在背光科技的領域中已知的光學 200824426 元件。 耕刚,HKM03的厚度全部可約為數公分,或是更低 1〇1可包含色彩過渡器陣列,使得彩色光線(例如紅色、綠色及, 色光)的像素是射向元件102,儘管如果使用彩色光源,色彩過; 器是不需要的。元件102是編碼相位資訊的電子式定址空間光調、 變器’例如F_icksz元件。元件1〇3是編石馬振幅資訊的電子式 定址空間細魏,例如在—般商業上的液晶顯示器裝置中。元 件ι〇2的每-個元件,在此以10?絲,會與元件1〇3中對應的 元件排列’以108表示。然而’儘管元件1〇2與1〇3中的元件具 有相同的橫向_朗距,元件中的元件大小會小 _ 元件103中的元件,因為離開元# 1〇7 @光在進入元件ι〇3的元 件刚之刚,典型地會經歷一些繞射。振幅與相位的編碼次序可 與圖十中所示的相反。 位於點106離包括緊密全像圖產生器1〇5的裝置一些距離的 觀看者,可從105的方向觀看到三維圖像。元件104、1〇〇、ΐ(Η、 102與103是如之前所描述的配置成實體連接,以便能形成緊密的 全像圖產生器105。 Ε·構成要素包含一對或二對有機發光二極體與光學式定址空間光 71 200824426 =變器組合或是—個或兩個電子式定址空間光調變器的緊密組 &amp;,且具有目標全像重建的大倍率三_像絲裝置 圖二十四顯示了—個構成要素包含_對或二 體與光學找址空·機驗合歧—倾 間光調變n的緊密組合,且具有目標全像重建的场率 ^間光調_與練剩性 的緊_光源的緊雜合(例如在A、B、c與D部 二這樣敝合㈣在適麵_情況,於虛__視田窗(在圖 =標不為QW)中產生看得見的三_像,這㈣置元件可例 二5在個人數位助理或行動電話中。如圖二十四所示, 調變器與充份_性的緊_光_緊密組合包含麵陣=* 間光調變器及透鏡陣列。在圖二十四中的郎光調變器,勺二 對或二對有機發光二極體與辟式定址空間光調變器組合7 一 個或兩個電子式奴空間光調變器的緊密組合,或是―二: 光二極體及絲式定址郎光婦糾岭朗及 二 址空間光調魏。 ㈣電子式疋 在一個簡單的例子中,光源陣列可由下列方式形成。單一光 源如單色的發光二極體,放置在緊鄰孔徑_的位置,使2照 射孔#。如果孔徑是—維_的狹縫,從狹縫傳送出去的:形 72 200824426 j隹車的麵、。如果孔徑是二維陣列的圓,圓的照射集合即 形成二維陣列的光源。典型的孔徑寬將約為20哗。這樣的光源陣 列適合用於對於一眼的觀察員視窗的產生。 : 在圖二十四中’光源陣狀設置在距離透鏡陣列u的距離位 置、光源陣列可為圖—元件1G的光源,並料選擇性的包含圖一 ^的70件11。確切的說’每-個在光源陣列中的光源是設置在距 離透鏡陣列中它所對應的透鏡u距離的地方。在較佳的實施例中, 光原陣似透鏡陣觸平面是呈平行狀的。空間光調變器可位在 透鏡陣列的任一邊。虛擬觀察員視窗與透鏡陣列的距離為U。透鏡 陣列中的透鏡是聚光鏡,聚焦長度f是由f=l/[l/u+l/v]所給定。 在車乂佳的貝施例中,v的值是在3〇〇咖到⑼〇麵的範圍内。更 好的K關t,V大約為400mm。在較佳的實施例巾,u的值是在 IGmm到編m的範_。更好的實施例中,u大約為施m。放 大因數Μ是由v/u所決定,是經由空間光調變器調變後的光源, 在虛峨察員視放大_素。在較佳的實_巾,M的值是 在10到60的範圍内。更好的實施例中,μ大約為如。為了實現 如此的放大因數,並且具有好的全像圖像品質,需要準確排列的 光源陣列與透鏡_。為了維持精確的排列,以及在光源陣列與 透鏡陣列之間維持_的距離,直到超過元件的使用壽命為止, 裝置元件需要具有強烈的機械穩定度。 73 200824426 虛擬觀察員視窗可以是可追縱的或不可追縱的。如果虛擬觀 察員視窗是可追縱的,則根據虛擬觀察員视窗所需的位置,光源 陣列中特定的光源會被啟動。啟_光源會照射空縣調變器, 並且藉由透鏡_成像至觀察員平面。在光_财,對於透鏡 陣财的每-個透鏡至少啟動—個光源。追蚁為準連續的。如 =U是20mm且V是400mm,假若像素間距為2〇_,可追縱到 帶有400_橫向增量的虛織察員視窗。這樣的追縱是準連續 的。如果u是20聰且v是400mm,f大概是19麵。 、 在光源陣财的統可驗具有部分的雜_性。部分的 同谢生會導致目標卿_重建。如果u是2Qmm且v是伽職, “光原X度為2Gpm ’距離顯不器⑽聰的目標點的重建會有 100,的橫向模糊。這對於人類視覺系統的解析度是足夠的。 在通過透鏡_中不同透鏡的光之間並不需要財任何明顯 的相互_性。同雛的絲是_在透鏡陣财的每—個單」 透鏡。因此,重建目標點的解析度是由透鏡陣列_距來決定。 典型的透鏡_將為lmm的輪,以保證對於人類視·統的充 200824426 虛擬觀察員視窗是限制在空間光調變器中編石馬資訊的傅立葉 綱的-個繞概級。如果空間光調變㈣像素間距是ι_,並 且需要兩瓣素來編碼—倾數,即如果在相麵變電子式定址 二間光孙㈣上使用2相位編碼,在5⑻咖的波長,虛織察員 視窗會有10mm寬的寬度。虛擬觀察員視窗可利用空間或時間多 工’將數個虛擬觀察員視窗拼湊成擴大的虛擬觀察員視窗。在* 間多工的情況下,需要額外的光學树,如光束分光鏡。在部份^ :述了-些多工的方法,這些多卫的方法也可能應用於本案實作 干哭= W功實現。彩_發光二極體顯 == 及:色像素是利用具有對紅色灿^ :皮長#的全像關㈣光機步魏碼來相繼 裝置元件形成的顯示器可包含眼部位 動=:置。眼部位__控制先源;::: 工間光調變1上編全像_轉 單元來執行,因為它需疋由外部的編石馬 α為^要%^的杯能力。顯 75 200824426 個人數位助理或行動電話,以顯示全像產生的三維圖像。 對於實務上的例子,可使用由Sany〇 (rtm) Ep_ Imaging Devices Corporation of Japan 2.6 腦液日日日顯示㈣子式定址空㈣調變ϋ。次像素的間距為 ΠμΓΠ。如果這是侧於紅、全像顯示的建構,糊全像圖的振 幅調變編碼,在距離電子式定址空間光調變狀4m的地方,觀臾 視窗根據計算為L3mm寬。騎單色的情況,觀察視細虞計: 為4麵寬。如果使用相同的設定,但是改用2相位編石馬的相位調 變,觀察視窗根據言十算為6咖χ。如果使用相同的設定,但是改 用基諾形邮丨耐_)編_池_,觀察視窗根據計算為 12mm 寬。 仍具有其它種高解析度的電子式定址空間光調變哭。 (匪)Epson (RTM) Colp〇rati〇n 〇f咖已發表單色電子式定址 空間光調變器,例如D4:L3D13U L3英忖螢幕尺寸且像傾距為 ¥的面板。此公司也發表了同類型的面板 肌謂u棚〇,具有α9射螢幕尺寸及1〇_的像素間距。 於西元2006年12月12日,此公司公告發表同類型的面板 13爾⑽㈣’具有〇.7英吁榮幕尺寸及8 _的像素間距。如 果D4..L3D13U 1.3英时面板用於建構單色的全像顯示,並採用全 76 200824426 象^ 1克°特(BUrCkhardt)振幅調變編碼,則距離電子式定址空間 光U.4m的位置’虛擬觀察員視窗可計算出為%贿寬。 ^包^ 一對或_有光二極雜光料定址抑光調變器組 合或是-個或兩個電子式定址空間細變器的緊密組合,且且有 目標全像重_三_像顯稀£ 八 或β 一们Γ對有機發光二極體與光學式定址空·調變器組合 Z h _電子找址空間光調變器的㈣組合,是較推薦 構ΓΓ,三軸稀置或是較大的三_示裝置中,因為這 星導緊密的。這樣的組合可整合至例如行動電話、衛 筆記型電腦响型個人數位助理陶、 心- Μ 包細螢幕或是薄型電視顯示器中。這 7的二摘不器是較針對於單_ 於裝蝴射㈣位置,並且是_可=^2位在垂直 離,例如约—距離。大家都二 會傾向自己改變手上裝置的方向,以 1持U置的使用者 同在彻軸i中所描述的内容。=在=看狀態’如 不需要使用者眼部追縱及複雜且不緊密如勺;^的裝置卜並 學。但是眼睛追縱可以應用在參 Y ‘鏡的追礙光 額外需麵輯料源料私妓置而言, 77 200824426 包^對或兩對有機發光二極體與光學式定址空間光調變器 、、且口或疋—個或_電子式定址空間光調變騎緊密組合,且具 有目標全像重建的衛星導航三維圖像顯示裝置具有如下的優i 碰者可朗路線資訊的三_像,例如訂―個路口要執行的 &amp;方,並且因為二維圖像資訊能更符合接近駕驶者駕敬時的 2 ’能比二維圖像資訊來的更佳。其它顯示器上的資訊,例如 選單,可駐維方式顯示。顯轉上部份或是全部的資訊皆可以 二維方式顯示。 包含-對或兩對有機發光二極體與絲式定址空間光調變器 組合或是-個或兩個電子式定址空間光簡器的緊密組合,且: 有目標全像重建的車用三維圖像顯示裝置具有如下的優點。 置可能可以直接輔示三維資訊,例如在鱗的龍,或是試圖 .通過比車輛猶寬或是稍窄的地方,顯示汽車保險桿(防護板)與鄰近 .物件(如㈣)靠近情況的三維圖像。在通道比車輛較狹窄的地方, 三維圖像顯示裝置可幫助駕驶者了解車輛通不過此通道。三維圖 像可利用裝6又在車輛上的感應器所提供的資訊來建立。其它的車 辆資訊可以三維方式顯示在顯示器上,例如速度、溢度、、每分鐘 弓丨擊轉速或是其它觸祕車輛巾的資訊。魅導締訊可三維 地顯示在顯示器上。顯示器上部份或是全部的資訊皆可以三維方 78 200824426 式顯示〇 輸出視窗的大小是由傅立葉平面帽棚樣的職性間隔所 限制。如果錢發光二極軸衫或是電子式定址如光調變器 中的像素間距是接近1〇μιη,那麼對於波長·啦的可見光,在 距離5〇Omm的地方,根據全像圖的空間光調變器所使用的編碼, 虛擬觀察員視窗(vow)的寬度約為10mm到25mm。這對於一個 眼目月而s疋足夠寬的。對於另外—眼的第二虛擬觀察員,可由對 空間光調變器_容進行空間或時間上❹卫方式來建立。在缺 夕追和的h況下,為了看見最佳的三維圖像,觀察員必須旋轉或 移動裝置及/或他自己本身的位置,讓他的眼睛能位在虛擬觀察員 視窗,並且位於離裝置最佳的距離。 數個虛擬觀祭貝視固拼凑而成的方式可讓調整顯示裝置位置 及方向的程序較為容易。兩個或三個虛擬觀察員視窗可在心及^ 方向並列,使得虛擬觀察員視窗可涵蓋較大的區域。拼湊的方式 可由空間或時間多工,或是空間及時間多工的組合來完成。 在時間多工中,光是時間上依序地投射至虛擬觀察員視窗中。如 果虛擬觀察員視窗具有不同的内容,空間光調變器必須重編碼。 在空間多工中,對於不同虛擬觀察員視窗的内容,是在相同的時 間於空間光調變器中進行編碼,但是是在空間光調變器的不同區 79 200824426 域。光束分光鏡可將空間光 欠°。不同區域的光分至不同的虛擬 减察貝心。可使用空間及時間多卫的組合。 整慕爾咖输___顯示裝置的 、Λί、疋在從—射到數英如範圍之 具有螢幕財小至—公細縣。 了 維圖像,例如藉由顯示相同 一維圖像顯示裝置可切換顯示二 的圖像至觀看者的每一個眼睛的方式 圖三顯示了包含—對或兩對有機發光二極體與光學式定址办 =變器組合或是-個或兩個電子式定址空間光調變器的緊; 、、且 _像顯示裝實施例。在圖三中的裝置是行動電話 =在螢幕區域31的時候,使用者可撥打電話。行動電 =广以進行行動通訊。在其它的實施方式中,天線可崎行 Ή0的主體中。打動電話3〇裳配兩働影機%及%,二 δ己錄使用者左目咖__。纟岐纟目剛私含立體^ 資料。行動電話30配備數字及,及符號的按鍵%,2 功能的按鍵36,例如在螢幕上的選單中移動,退^它 等。在按鍵上顯示的標示例如”〇N” ”〇Fp或是”2”文動關閉 ^避免顛甸 200824426 二U叫啦、_料_嫩$,财對方時類倒 〜有使用上’兩個觀看者的眼睛與兩麵影機%及%最 是共面的,並錢駿的臉是位在接麵錄錄_3ι的位 置1樣能確保兩個攝影機33及34在包含觀看者眼睛的平面中 祕視差。觀看麵_晴_抑理鎌纽 定的’使得兩個攝影機33及34能在這個位置獲得觀看者頭部最 理想的^像品質。對於三維圖像電話通話中的另—方也是同樣如 使仟又方可處在最理想圖像品質的雙向三維圖像電話通話 中。為了確保每—個觀看者精確地面向攝影機33及34,可能會較 希望確保對於每個眼睛的虛擬觀察員視窗不會比每個眼睛大太 多,因為這樣可雜她看麵眼界對於觀看者攝職方向在位 置及糾上的錯誤。藉由將裝置朝向拍照的目標,I罝可對目標 進订一抽照。或者,可藉由裝置螢幕上的小按鍵圖示來引導使 用者使用’藉此完餘置的最理想方向設置。裝置也可具備眼部 L縱力此纽所&amp;;4的裝置格式翻法可使躲可全像地、自 動立體顯示喊_其餘何枝產生三賴像的裝置。 在雙向的三維影像電話通話期間,攝影機%及%分別記錄 使用者的右眼及左眼圖像。從這些圖像獲得的資料,會鎌在三 維影像通对另-謂應的手縣置上,鱗立三維影像圖像。 如果三賴像是自動立_示地產生,從攝影機%及%的觀看 81 200824426 可直接地使用在自動立體顯示器中產生兩個眼睛的圖像。如果三 維圖像是全像地產生’包含從攝影機33及34觀看_料應該要 進行處理,例如藉由使用產生全像圖的電腦,例如在一個或兩個 二門光D周麦為之上允终全像資料的適當編碼。當三維圖像是全像 .也產生此—軸示◎、為—種全像顯示器。相較於自動立體顯示 器:全像顯示器提供全深度資訊,即調節(眼睛聚焦)與視差。全像 顯不器提供目標的全像重建,即在正確的深度產生全部目標點的 全像重建。 屈帝b所㈣的手料二維辭11的應帛包含縣雙向三維影 的通話。另-個應用是包括由通話中的另—方顯示目標或 :二維顯不’例如在購買之教觀看產品,或是檢查物品是 獲Γ個應用是包括個體身份的確認,可由三維顯示來 力,例4 ¥、#如可财對顿上_目像的健進行區別能 力例如雙胞胎或是偽裝的人。s 看個體,+㈣個應肢包括顧圖像來觀 可幫助決定。另—:二^ 方式,觀轉會纽三維__^= 扣麵城人内容的 有目;^2眼睛之間咖邮称在-個實施例中,具 有目“像重建的三維顯示裝置會有選單選項,能賊顯示器的 82 200824426 3==蝴爛貞__取_距離。在選 使用者按下裝置上的按鍵來增加或是減少_ 自之間的分隔。如果這是已設定好的,當觀看顯矛哭立 且式圖硯看三維圖像時,可選擇最佳的虛擬觀察員視窗的。八 隔距離’讓觀看者觀看可實現的最好三維圖像:刀 ^將痛使用者偏好儲存在裝置當中。這樣的選單選項可被· 能力各別地去追縱觀看者的眼睛位置‘ 因為在眼睛之間的距二為二產二了:可:快追縱的速度’ ==的精確位置決定會較低。能夠選擇兩個虛擬觀察員視窗之 立#顧^距離也提供了超越自動立體顯示系統的優點,在自動 ㈣^不紐巾,絲與右關像之_雜是傾向於使用裝置 硬體來固定。 人、3、?或兩對有機發光二極體與光學式定址空間光調變器組 :或疋個或兩個電子式定址空間光調變器的緊密組合的平面投 影機系統 從裝置發射的光也可投或是-些其它的表面 83 200824426 上,來取代如F部份·述的投射光絲個虛擬觀制視窗的方 式。因此’在行動電話或個人數位助理或是在其它裝置中的三維 顯示裝置也能如同以口袋型投影機的方式來使用。 可藉由制郎光調變n調變人射光的振幅及她來提升全 像投攝_品質。因此,複數值的全侧可在郎光調變器上編 碼’讓重建在螢核牆上的圖像具有較好品質。 在先則部份所描述的—對或兩對有機發光二極體與光學式定 址空間光調變驗合或-個或兩個電子式定址空間細變器的緊 搶組合,可作為賴_變敎投職巾。由於此組合的大 小為緊密的’投職也將妓緊密的。投影機甚至可同為如行動 個人數位助理或是—些其它的裝置:可藉由”三維顯示 ™兵投影機”模式來進行切換。 她於制的二維投影機’全像式二維投影機具有不需要投 ==及投射㈣像在林柄巾的全部麟較聚焦的優 —々王像式—維投影機’例如在W02G()5/()59881中所描述Seiko (RTM) Epson (RTM) Corporation of Japan has published a monochrome electronic address space optical modulator, such as D4: L3D13U 1. A panel of 3 inches in screen size with a pixel pitch of 15 μm. The company also published the same type of panel D5: L3D09U-61G00, with a 9-inch screen size and a pixel pitch of 10μιη. On December 12, 2GG6, the company announced that the panel _ type L3D07U-81G00 ’ has 〇. 7 inch screen size and 8 5μιη pixel pitch. If D4: L3D13U 1. The three-shot panel secret construction monochrome full-image display, and using the full image of Burckhardt amplitude modulation coding, then the distance electronically-spaced light modulator 0. The position of 4m 'virtual observer window can be calculated as 5 6 coffee width. D. Close Combination of Paired Electronic Address Space Light Modulators In another embodiment, the combination of two electronically located Langguang modulation Hs can be used to modulate the amplitude of the light in a sequential and compact manner. she was. Therefore, the complex number ' including amplitude and phase' can be encoded in the transmitted light one by one. - This reality consists of a close combination of two electronically addressed spatial tones. The first electronically-positioned space finer machine transmits the amplitude of the light, and the second electronically-sited station-side optical view S modulates the phase of the transmitted light. It can also be determined by the first electronic method. The spatial light modulation changes the transmitted light_bit, and the second electronically-addressed spatial light adjusts the amplitude of the transmitted light. Each of the electronically addressed spatial light modulators can be as described in section c. In addition to the use of two electronically located Langguang modulators, the overall configuration of 58 200824426 can be as described in section c. Any combination of any of the other two electronic-type spatial light modulator modulation characteristics that assist in the independent modulation of amplitude and phase is possible. In the first step, the first electronically addressed spatial light modulator utilizes a pattern weaving to perform the vibration-change. In the first step, the second electronic type of inter-optic light modulator is coded to make her view. The light transmitted from the second electronically-positioned spatial light modulator is already in the amplitude and the machine is operated. Therefore, when the observers observe the two electronically-positioned space devices of the optical device, they can observe To a three-dimensional image. The modulation technique based on the conventional phase and amplitude promotes the representation of complex values, and the electronically positioned spatial view n can be high-altitude. For this reason, the fiscal image can be used to generate a hologram to make the three-dimensional image observable by the observer. Figure 13 is an embodiment. 13〇 is a lighting device used to provide illumination in a flat area. The towel is fully accommodating so that it can produce a three-image. An example of an example of a lighting device for a large area image hologram in 6/250671 is shown in Figure 4. A 13-inch device can be in the form of a white light source array, such as a cold cathode fluorescent lamp or a white light emitting diode that emits light onto a hybrid system, such as a lenticular array or Micro 59 200824426 through the array. Or 'the filaments used for m can be composed of red, green and blue lasers, or the fields of the spurs of light, green and blue light. The red, green and blue light emitting diodes may be organic light emitting diodes (〇LEDs). However, non-laser sources with sufficient space (eg, light-emitting diodes, organic light-emitting diodes, cold cathode fluorescent lamps) are new. The shortcomings of Zhusi, Yi is built on the whole seam = field shots, expensive on the um, and all possible safety issues such as the hologram of the injury showing the viewer or the eyes of the omnidirectional display device assembly staff. Element 130 may comprise one or two tantalum optical films to increase the brightness of the display: such films are known, for example as described in us 5, 嶋, 892 and still 5, 9i9, 55i. Element 13A may comprise a wire element or a collection of polarizing elements. Linear polarizing sheets are one of them. Another example is a reflective polarizer that can transmit a hetero-biased state and reflect an orthogonal hetero-biased state. Such a sheet is known, for example, as described in US 5,828. Another example is that the reflective bias W' can transmit a - skewed state and reflect the orthogonal circularly biased state - such a sheet is known as described in still tearing. Element 130 can comprise a poly-[, a secret, which can be compact, such as a lenticular array or a microlens array. Element 13A can include other optical components known in the art of backlighting. The function of component 130 can be on the order of a few centimeters' or less. In a preferred implementation, the thickness of the 200824426 7G piece 130-134 is all less than 3 cm to provide a tightly tuned compact source. The element 131 can be a color filter array such that pixels of colored light (e.g., red, green, and color) are directed toward the tilling 132, although color filtering H is not required if a colored light source is used. Element 132 is an electronic addressed spatial light modulator. Element 133 is an electronic addressed spatial light modulator. Element 134 is an optional beam splitter element. For transmitting light, element 132 modulates the amplitude and tree 133 modulates the phase. Alternatively, component 133 modulates the amplitude and component 132 modulates the phase. The proximity of the electronic site m2 and 133 can reduce the optical loss and the pixel crosstalk caused by the beam splitting: #电子式空间空间光调_ m and (3) 疋 non-near can be achieved Colored light beam for electronically addressed heterozygous transducers = a preferred approximation for non-heavy® propagation. The viewer is located at a distance from the device that includes the close hologram to 136. The viewer can view from the direction of the three-one cow. The 131, 132, 133, and 134 are configured to be physically connected (directly connected). Each layer forms a structure, so that the whole is a single, unified object. Every == pick:. Or f_, if there is a thin intermediate layer of the ^ film. The body connection can be limited to ensure that the correct inter-arranged small areas extend from the layer to the larger area' or even the entire surface of the layer. The physical connection can be implemented in a way that the 'domain domain is used to form a _ hologram generator 136, or by any other means (see the section on the manufacturing process in the 200824426 exam). At the amplitude modulation of the hair styling spatial light modulator, in a typical setting the 'input reading optical beam will be achieved by passing the beam through a linear polarizer. Linearly biased. The amplitude modulation is caused by the rotation of the liquid crystal in the applied electric field (4), and the application of the electric field affects the polarization state of the light. In such a device, the optical modulation light exiting the electronically addressed space passes through another linear polarizer, which reduces the intensity due to the change in the polarization state of the light, as it does when it is electronically addressed to the spatial light modulator. . In the electronically addressed m-light machine, she performs the tuning, unless they are in the defined hetero-biased state. In a typical setting, the human-reading reading optical beam will be made by passing the beam through the polarizer. Partialization. The phase modulation is caused by the electric field that should ride (four) 'the electric field will affect her state of light. In one example of her modulation, a nematic phase liquid crystal is used, the optical axis direction (4) is delimited, but birefringence is a function of the application. In her mutated - _ scarf, use ferroelectric. Liquid crystal, birefringence is fixed, but the direction of the optical axis is controlled by the applied voltage. In phase modulation, t is the same as (4), and the output beam has a phase difference with the input beam that is a function of applying the electric castle. An example of a liquid crystal element that can perform phase modulation is a Freedericksz element arrangement in which an anti-parallel arrangement of nematic liquid crystals having positive dielectric anisotropy is used, as described in still 5 wind claws. content. 5 ′ 62 200824426 _ for compact holographic display (four) dense combination, including electronically addressed spatial light combiner with _, separate or minimum separation. A preferred embodiment is that the two spatial tones have the same number of pixels. Because the two electronically addressed spatial optomechanics are not equidistant from the observer, the pixel spacing of the two electronically addressed spatial light variators may need to be slightly different (but will still be about the same) to compensate for different distances. The impact on the observer. The light that has passed through the pixels of the first spatial light modulator will pass through the pixels corresponding to the second spatial light modulator. Therefore, the light will be modulated by the two health adjustments, and the complex amplitude and phase modulation can be realized. As an example, the first-space optical modulator performs amplitude modulation, while the = two-space optical modulator performs phase modulation. Similarly, any phase combination of the other two spatial light-light-dependent characteristics that help the vibrating field and the independent view of the phase is possible. It must be noted that the light passing through the pixels of the first-space optical modulator can only pass through the pixels corresponding to the second spatial light modulator. If the light emitted from the first spatial modulator pixel passes through the non-corresponding, adjacent pixels of the fourth optical modulator, the crosstalk will result in a crosstalk that may result in a low image. Four possible ways to minimize crosstalk between pixels are provided here. The techniques described are readily apparent and can be applied equally to Part B embodiments. 63 200824426 (1) One of the courageous methods of the younger brother is to cry directly, "The two spatial lights and the TMs after the smashing of the pixels are connected or glued together. In the first place, the two brothers first change. The pixel of the device may have a deviation from the Wei image. The space _« _ separation must be ^ == 'thin to the second space to move closer to the pixel _ crosstalk arrives acceptable, the master again. For example, two electrons with a pixel pitch of 10 μm: the light-adjusting paste gap must be less than or equal to the grade of the m. This is impossible to achieve in the space of (4) = space, because the thickness of the cover Bu 1mm grade. Of course: it can make a space between the light modulators with a thin separation layer, the second Meiji" way, is recommended in a program. It is possible to apply a schematic manufacturing method to manufacture a device comprising a two-gauge small or minimal electronic address space light modulator. Figure 14 shows the Philippine buried-ear diffraction data obtained by the diffraction of the slit 1〇, which varies the distance from the slit in the two-dimensional model, the vertical axis is sik(z), and the horizontal axis is sht (x). Uniform illumination _ slit is located on the χ axis _ 剌 剌 ,, and z is "米. Optical transmission medium is used to obtain J. The refractive index of 5 is a typical medium for compact devices. The selected light is red light with a vacuum wavelength of 633 nm. The green and blue wavelengths are smaller than the red light. Therefore, for the calculation of red light, the three colors red, green and blue are _, showing the strongest diffraction effect. Can be used - C Technology (RTM) Corp. , Needham, MA, USA. ^^-, MathCad (RTM) Soft Finance performs calculations. The needle five display _ (four) strength 胄 in the slit to the heart 64 200824426 . Within the pill range is a function of the distance from the slit. In the distance from the slit 2〇μηι, the intensity of the figure 10" is not more than 9〇% is still in the range of the width of the slit 。μιη. Because, slave - she is, less than 5% of the money will be shot The calculation result of the limitation of the zero boundary width between pixels on each pixel near the pixel. The real IV, the boundary width between pixels is greater than zero, so the crosstalk problem will be lower in the real system than here. In the figure of the fourteenth, the Fico diffraction pattern approaches the slit, for example 50μη离 from the slit, and is somewhat approximate to the high-hat strength function of the slit. Due to the diffraction characteristic of I The slit. The wide diffraction characteristic is the characteristic of the radiance function of the high-cap function. This is a known de-delta function. The wide diffraction characteristics can be observed from the example of the distance slit 3〇〇μηι in Figure 14. This points out that the diffraction effect can be used to control the close proximity of two electronically addressed spatial light modulators to control 'and very close to the two electronically addressed spatial light II settings. The functional form of the data chart will change from far-field characteristics to more effective匕3 is close to the function of the light perpendicular to the axis of the slit. This advantage is contrary to the idea of conventional holographic technology, which tends to be thought to cause a small aperture that becomes light when the light passes through the space. Strong, large, and inevitable diffraction effects. Therefore, the conventional technique does not have the motivation to bring the two spatial light modulators together. This way of causing the reduction occurs and the diffraction effect is severe. The resulting pixel crosstalk problem. Figure 16. Contour distribution of the contour line® 'Intensity distribution is 65 from the slit distance. 200824426 Function. The scale of the contour is on the logarithmic scale' and the linear scale of the branch. The line 'all includes a range of 100 intensity factors. For a slit width of 1 〇 μη, the intensity distribution of the boundary is clear in the range of about 50 μm from the slit. In the case of the further step, it can be reduced. The pixel hole area of the first-electronic address space optical modulator to mitigate the crosstalk problem in the second electronically-spaced optical modulator. (2) The second method is in two spatial light modulators. A lens array is used, as shown in Figure 17. A better method is to make the number of lenses equal to the number of pixels in each spatial light modulation. The spacing of the two spatial light modulators and the spacing of the lens arrays can be Slightly different 'to compensate for the observer's distance gap. Each lens images the pixels of the first spatial light modulator to the corresponding pixels of the second spatial light modulator, such as . A large number of light beams 171 are shown in FIG. It is also possible that light will cause stringing problems through adjacent lenses, as indicated by a large number of beams 172. If its intensity is low enough, or if its direction is sufficiently different to make it impossible to reach the virtual observer window, it can be ignored. The numerical aperture ( 每个) of each lens must be large enough to image a pixel with sufficient resolution. As an example, for the analysis of 5μιη 66 200824426 degrees, a numerical impurity (ΝΑ) of about G·2 is required. This also means that if it is assumed to be a few optical, if the distance between the spatial light modulator and the lens array is ΙΟμιη, the maximum distance between the lens array and the per-space optical machine n is about 25 qing. It is also possible to assign a number of pixels per spatial lighter to a lens of the lens array. For example, the four pixels of the first spatial light modulator are a dream, which can be made by _ in the lens array. The lens is imaged to a group of four pixels of the second spatial light modulator. The number of lenses of such a lens array will be each empty light. Zhou Wei 9 teeth, the number of pixels - four. This allows for higher value apertured lenses, which can be used to obtain high resolution wire pixels. (3) The third method is to reduce the pixel aperture of the first-electronic addressable nano-light modulator as much as possible. From the viewpoint of diffraction, the second spatial light modulator is illuminated by the first-space light: the area illuminated by the _ pixel, which is controlled by the first-electronic (4) light-adjusted pixel-controlled I degree〇 And the diffraction angle is determined, as shown in Figure 18. In Figure 10 = in the 'd _ electronic address space _ Wei _ distance, and w is the distance between the two P white, , and , : : ^ minimum, occurs in the zeroth class maximum One side. ^疋 is assumed to be a similar approximation of Fulang and Fiji_unhGfe_, or a diffraction of Fraun and Fiji. Reducing the width of the hole and the width D - can reduce the direct projection of the portion of the center of the ride. 67 200824426 The dotted line in Figure 18 shows. On the other hand, the diffraction angle of 1/D' in the diffraction of the Fibonacci in accordance with the diffraction angle is increased. This increases the total width of the area of the irradiance area in the area of the second rapist site. In the method of flu and text diffraction, the division d, D can be determined, and the knowledge is used. ^ D + 2ca/D to minimize w, which is derived from the distance between the two first-order minimums of the Fraun and Fiji diffractions. For example, if λ is 0. 5 μιη, d is 1〇〇, and w is 2〇μιη, and the minimum value of D ^ ΙΟμηι can be obtained. In this _ sub-smoke, the Fischer method may not be a good approximation. This example illustrates the use of the distance between the electronically-spaced optical modulators to control the diffraction in the Fraunhofer The principle of the process. (4) The fourth method uses a fiber optic panel to image the pixels of the first spatial light modulator to the pixels of the inter-worker light modulation. The fiber optic panel is made up of two-dimensionally aligned parallel fibers. The length of the fiber and therefore the thickness of the panel is typically a few centimeters, and the diagonal length of the panel surface is as long as several inches. As an example, the spacing of the fibers can be 6 μm. Edmund Optics Inc. The Barrington, New Jersey, USA has sold fiber optic panels with such fiber spacing. Each fiber directs light from one of its sources to the other. Therefore, the image at one end of the panel is transferred to the other end with high resolution and no focusing components. Such a panel acts as a separate layer between the two spatial light modulators, as shown in Figure 19. Multimode fiber is preferred over single mode fiber because 68 200824426 singular fiber is better than 早 early core fiber. When the refractive index of the core of the fiber is consistent with the refractive index of the liquid, the coupling efficiency of the (3) piece is better than that of the attack, because this can minimize the back-reflection loss of the inner ear. There is no extra glass cover between the 35 hearts of the two workers. Polarizer, electrode - Directly connect the fiber optic panel to the layer. These layers are very thin each, which is a grade of 1-10 μm. Therefore, the liquid crystal (LC) layers LC1 and LC2 are located close to the panel. Light that passes through the first space σ-circumference as a pixel is directed to the pixel corresponding to the second spatial light modulator. This makes it possible to minimize the crosstalk of adjacent pixels. The panel transmits the input of the first spatial light modulator to the input end of the second optical modulator. In other words, each pixel should be at least one fiber. If each pixel is less than - an optical fiber - the flat symphony will lose resolution, resulting in a full image. The image quality of the application with , , or page is reduced. ~ Figure 19: The spatial light modulator is modulated by the amplitude, and the second spatial light is modulated by the phase and phase. The combination of the modulation characteristics of the two electronically addressed spatial light dampers of other deficiencies is possible. 〇 Figure 10 shows the 104疋 illumination for the tight alignment of the encoded amplitude and phase information in the hologram to provide illumination for the planar area, where the illumination is the same as the one that was able to produce a three-dimensional image. In us 2〇〇6趟7i, an example of a photo-based image for a large-area image hologram is mentioned. The device may be in the form of a white light source array, such as a cold cathode fluorescent lamp or a white light emitting diode that emits light onto a polyfluorene system, wherein the poly (four) system may be compact, such as a ventilated array or Microlens array touch. Alternatively, the light source used for the operation may consist of red, green and blue lasers or 'sufficiently charged with the red, green and blue light-emitting diodes of the young light. However, non-four light sources (eg, light-emitting diodes, «light-emitting diodes, cold cathode $lights) with a blank are better. The shortcomings of laser light sources, such as the illusion of holographic reconstruction, relatively expensive and all possible damage to the hologram of the avatar or the eyes of the singer problem. The element collapse may comprise one or two xenon optical films to increase the brightness of the display: such films are known, for example, as described in 118 5,056,892 and us 5,919,551. The component can just comprise a polarizing element or a collection of polarizing elements. Linear polarizing sheets are an example of this. Another example is a reflective polarizer that can transmit a squamous biased state, and a reflective orthogonal misalignment g. such a lamella is known as described, for example, in US 5,828. Another example is a reflective polarizer that transmits a circularly polarized state &apos; and reflects an orthogonal circularly biased state - such a sheet is known, for example, as described in 1186, 181, 395. Element 104 can include other optical 200824426 components known in the art of backlight technology. The ploughing, HKM03 may all be about a few centimeters thick, or a lower 〇1 may include a color transitioner array such that pixels of colored light (eg, red, green, and shade) are directed toward element 102, although if color is used Light source, color over; the device is not needed. Element 102 is an electronic address spatial light modulator, such as an F_icksz element, that encodes phase information. The component 1〇3 is an electronic address space of the rocker amplitude information, for example, in a general commercial liquid crystal display device. Each element of the element ι〇2, here a 10? wire, will be represented by a corresponding element arrangement in the element 1〇3. However, although the elements in elements 1〇2 and 1〇3 have the same lateral_lang distance, the element size in the element will be smaller _ element in element 103, because leaving element #1〇7 @光 is entering element 〇 The components of 3 are just right, typically undergoing some diffraction. The order of encoding the amplitude and phase can be reversed as shown in Figure 10. A viewer located at a distance 106 from the device including the compact hologram generator 1 〇 5 can view the three-dimensional image from the direction of 105. The elements 104, 1 〇〇, ΐ (Η, 102 and 103 are configured to be physically connected as previously described so as to form a compact hologram generator 105. 构成·Components include one or two pairs of organic light-emitting diodes Polar body and optical address space light 71 200824426 = variable combination or a close group of one or two electronically addressed spatial light modulators, and a large magnification three-image device with target holographic reconstruction Twenty-four shows that a component consists of a close combination of _pair or two-body and optical search space-machine-comparison-dip-to-dip optical modulation n, and has a field rate of target holographic reconstruction. Tight and hybrid with the tight source of the remnant (for example, in the A, B, c and D parts of the second (4) in the facet _ situation, in the virtual __ view window (in the figure = the standard is not QW) In the visible three-image, the (four) component can be used in the personal digital assistant or mobile phone. As shown in Figure 24, the modulator is closely combined with the ____ Includes area array =* inter-optical modulator and lens array. In the twenty-fourth figure, the Langguang modulator, the spoon two pairs or two pairs of organic light-emitting diodes Type-addressed spatial light modulator combination 7 One or two electronic slave space light modulators are closely combined, or "two: light diodes and silk-type addressing Langguang women's correction Lang Lang and two-site spatial light adjustment Wei (D) Electronic 疋 In a simple example, the array of light sources can be formed in the following manner: A single light source, such as a single-color light-emitting diode, is placed in close proximity to the aperture _, so that 2 illuminates the hole #. If the aperture is - dimensional _ The slit, which is transmitted from the slit: shape 72 200824426 j. The face of the car, if the aperture is a two-dimensional array of circles, the circular illumination set forms a two-dimensional array of light sources. The typical aperture width will be about 20这样 Such an array of light sources is suitable for the generation of an observer window for one eye.: In Figure 24, the 'light source array is placed at a distance from the lens array u, the light source array can be the light source of the element 1G, and The material selectively comprises 70 pieces 11 of Fig. 1. Specifically, each of the light sources in the array of light sources is disposed at a distance u from the lens u corresponding to the lens array. In a preferred embodiment Light source array The mirror array planes are parallel. The spatial light modulator can be located on either side of the lens array. The distance between the virtual observer window and the lens array is U. The lens in the lens array is a condensing mirror, and the focal length f is determined by f= l/[l/u+l/v] is given. In the case of the car, the value of v is in the range from 3 〇〇 to (9). Better K is off, V Approximately 400 mm. In the preferred embodiment, the value of u is in the range of IGmm to m. In a preferred embodiment, u is approximately m. The amplification factor Μ is determined by v/u, The light source modulated by the spatial light modulator is magnified in the virtual observer. In the preferred real film, the value of M is in the range of 10 to 60. In a preferred embodiment, μ About as. In order to achieve such an amplification factor and have a good holographic image quality, an array of light sources and lenses _ that are accurately aligned are required. In order to maintain accurate alignment and maintain a distance of _ between the array of light sources and the lens array, the device components need to have strong mechanical stability until the lifetime of the component is exceeded. 73 200824426 Virtual observer windows can be traceable or untrackable. If the virtual observer window is traceable, the particular light source in the light source array will be activated depending on the desired position of the virtual observer window. The illuminator will illuminate the empty county modulator and image it to the observer plane by lens_. In the light, for each lens of the lens, at least one light source is activated. The ants are strictly continuous. If =U is 20mm and V is 400mm, if the pixel pitch is 2〇_, you can trace the virtual weaver window with 400_ lateral increment. This kind of memorial is quasi-continuous. If u is 20 and v is 400mm, f is about 19 faces. In the system of the light source, there is a part of the heterogeneity. Part of the same Xie Sheng will lead to the goal of _ reconstruction. If u is 2Qmm and v is a vacant job, the reconstruction of the target point of the light source X degree is 2Gpm 'distance display device (10) Sat will have a horizontal blur of 100. This is sufficient for the resolution of the human visual system. There is no need for any obvious mutual symmetry between the light passing through the different lenses in the lens _. The same silk is the _ single lens in the lens. Therefore, the resolution of the reconstruction target point is determined by the lens array_distance. A typical lens _ will be a 1mm wheel to ensure a charge for the human eye. 200824426 The virtual observer window is a Fourier-like outline that limits the information in the spatial light modulator. If the spatial light modulation (four) pixel pitch is ι_, and requires two-valve to encode - the number of tilt, that is, if the phase-changing electronically-addressed two light-sun (four) uses 2-phase encoding, at the wavelength of 5 (8) coffee, the virtual weaving The window will have a width of 10mm wide. The virtual observer window can utilize space or time multiplexes to piece together several virtual observer windows into an expanded virtual observer window. In the case of multiplexing between *, an additional optical tree, such as a beam splitter, is required. In the part ^: describes some multiplex methods, these multi-methods may also be applied to the implementation of this case dry cry = W work. Color _ illuminating diode display == and: color pixels are formed by using a holographic image with a red radiance: skin length # (four) optomechanical step code to form the device component can include eye parts movement =: set . Eye part __ control source;::: Work area light modulation 1 on the whole picture _ turn unit to perform, because it needs to be smashed by the outer stone maze α to ^% cup capacity. Display 75 200824426 Personal digital assistant or mobile phone to display a three-dimensional image produced by the full image. For practical examples, use by Sany〇 (rtm) Ep_ Imaging Devices Corporation of Japan 2. 6 cerebral fluid day and day display (four) sub-location empty (four) modulation ϋ. The pitch of the sub-pixels is ΠμΓΠ. If this is the construction of the red and holographic display, the amplitude modulation code of the hologram is 4m, and the viewing window is calculated to be L3mm wide at a distance of 4m from the electronically positioned space. In the case of riding a single color, observe the fine gauge: 4 sides wide. If the same setting is used, but the phase modulation of the 2-phase stone is used instead, the observation window is counted as 6 curries according to the tenth. If the same setting is used, but the Kino-shaped postal resistance is used instead of _), the observation window is calculated to be 12 mm wide. There are still other high-resolution electronic address space light tones. (匪) Epson (RTM) Colp〇rati〇n 〇fCa has published a monochrome electronic address space light modulator, such as the D4:L3D13U L3 inch screen size and the panel with a tilt of ¥. The company also published the same type of panel muscles called u sheds, with an alpha 9 screen size and a pixel spacing of 1 〇. On December 12, 2006, the company announced the same type of panel 13 (10) (four) 'has a flaw. 7 Ying Yu Rong screen size and 8 _ pixel pitch. If D4. . L3D13U 1. The 3 inch panel is used to construct a monochrome holographic display, and uses the full 76 200824426 like 1 1 gram (BUrCkhardt) amplitude modulation coding, then the distance from the electronically addressed space. 4m position 'virtual observer window can be calculated as % bribe. ^包^ A pair or _ light dipole stray light addressing anti-light modulator combination or a close combination of - or two electronic address space fine transformers, and the target full image weight _ three _ image display The combination of the organic light-emitting diode and the optically-addressed null-modulator combination of the Zh_electron-localized spatial light modulator is a preferred configuration, three-axis thinning or It is a larger three-in-one device because the star guide is tight. Such a combination can be integrated into, for example, a mobile phone, a personal computer, a personal digital assistant, a heart-and-small screen, or a thin television display. The second pick of this 7 is more specific to the single (four) position, and is _ can = ^ 2 in vertical, such as about - distance. Everyone will tend to change the direction of the device on hand, so that the user who holds the U is the same as that described in the axis i. = In the = see state ' If you do not need the user's eye to chase and complex and not close; ^ device and learn. However, the eye tracking can be applied to the spectroscopy of the Y 'mirror, the additional need for the surface material, the material, the private device, 77 200824426 package pair or two pairs of organic light-emitting diodes and optical address space light modulator And the satellite or three-dimensional image display device with the target omni-image reconstruction has the following three-images of the following information: For example, it is necessary to perform the &amp; square, and because the 2D image information can be more in line with the driver's respect, the 2' can be better than the 2D image information. Information on other displays, such as menus, can be displayed in a dimensional manner. Some or all of the information displayed in the display can be displayed in two dimensions. Intimate combination of two-pair or two pairs of organic light-emitting diodes and wire-addressed spatial light modulators or one or two electronically-addressed spatial lighters, and: vehicle three-dimensional reconstruction with target holographic reconstruction The image display device has the following advantages. It may be possible to directly map 3D information, such as dragons in scales, or try. The car bumper (guard) is adjacent to the vehicle by a wider or narrower distance than the vehicle. A three-dimensional image of the object (such as (4)) close to the situation. Where the passage is narrower than the vehicle, the 3D image display device helps the driver understand that the vehicle does not pass through the passage. The 3D image can be created using information provided by the sensor mounted on the vehicle 6 and on the vehicle. Other vehicle information can be displayed in three dimensions on the display, such as speed, overflow, per minute slamming speed or other information on the vehicle. The charm guide can be displayed in three dimensions on the display. Some or all of the information on the display can be three-dimensional. 78 200824426 Display 〇 The size of the output window is limited by the duty interval of the Fourier plane hat. If the pixel distance of the money-emitting diode shirt or the electronic address such as the light modulator is close to 1〇μιη, then for the visible light of the wavelength, at a distance of 5〇Omm, according to the spatial light of the hologram The code used by the modulator, the width of the virtual observer window (vow) is approximately 10mm to 25mm. This is wide enough for an eye of the eye. For the other-eye second virtual observer, it can be established by spatially or temporally defending the spatial light modulator. In the case of the ugly chase, in order to see the best three-dimensional image, the observer must rotate or move the device and / or his own position, so that his eyes can be in the virtual observer window, and located in the most Good distance. A number of virtual viewings can be made in a way that makes it easier to adjust the position and orientation of the display. Two or three virtual observer windows can be juxtaposed in the heart and in the direction of the ^ so that the virtual observer window can cover a larger area. The way to piece together can be done by space or time multiplexing, or a combination of space and time multiplexing. In time multiplex, light is projected onto the virtual observer window in time. If the virtual observer window has different content, the spatial light modulator must be re-encoded. In spatial multiplexing, the content of the different virtual observer windows is encoded in the spatial light modulator at the same time, but in the different areas of the spatial light modulator 79 200824426 domain. The beam splitter mirrors the space light. Light from different regions is divided into different virtual ones. A combination of space and time can be used. The whole Murga loses ___ display device, Λί, 疋 in the from - to the number of miles in the range of the screen to small - to the county. The dimensional image, for example, by displaying the same one-dimensional image display device, can switch the image of the two images to each eye of the viewer. FIG. 3 shows the inclusion of two or two pairs of organic light-emitting diodes and optical Addressing = transformer combination or - or two electronic address space optical modulators; , and _ image display installation examples. The device in Figure 3 is a mobile phone = in the screen area 31, the user can make a call. Mobile power = wide to conduct mobile communications. In other embodiments, the antenna can be in the body of the Ή0. The mobile phone 3 〇 配 配 配 配 配 配 配 配 配 配 配 配 配 配 配 配 配 配 配 配 配 配 配 配纟岐纟目 has a private stereoscopic ^ data. The mobile phone 30 is equipped with a numeric and/or symbolic key %, and a 2-function key 36, for example, moving in a menu on the screen, rewinding it, and the like. The indication displayed on the button is for example "〇N" 〇Fp or "2" physics is turned off ^Avoiding 颠甸200824426 二U叫啦,_料_嫩$,财方时类倒〜有用上'两The viewer's eyes are most co-planar with the two-sided machine % and %, and Qian Jun's face is in the position of the junction recording _3ι to ensure that the two cameras 33 and 34 are in the viewer's eyes. The secret parallax in the plane. The viewing surface _ _ _ 抑 镰 镰 定 的 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' The party is also in the same way as the two-way three-dimensional image telephone conversation with the best image quality. In order to ensure that each viewer is accurately facing the cameras 33 and 34, it may be more desirable to ensure for each eye. The virtual observer window will not be much larger than each eye, because it can misunderstand the position and correction of the viewer's direction of the camera. By pointing the device toward the target of the camera, I can enter the target. Order a photo. Or, by means of the device on the screen The small button icon guides the user to use 'the most ideal direction setting for the rest. The device can also have the eye L longitudinal force. This device format can be used to hide the image. The auto-stereo display shouts _ the rest of the device that produces the three-image. During the two-way three-dimensional video call, the camera % and % record the user's right and left eye images respectively. The information obtained from these images, In the 3D image, the 3D image will be placed on the other hand, and the 3D image will be displayed. If the image is automatically generated, it can be used directly from the camera % and % 81 200824426 An image of two eyes is produced in the autostereoscopic display. If the three-dimensional image is holographically generated 'contains viewing from cameras 33 and 34, it should be processed, for example by using a computer that produces a hologram, for example in a Or two two-door D-weeks are the appropriate encoding for the final image. When the three-dimensional image is a full image. This is also produced as a hologram display. Compared to autostereoscopic displays: Full-image displays provide full depth information, ie adjustment (eye focus) and parallax. The holographic display provides holographic reconstruction of the target, ie holographic reconstruction of all target points at the correct depth. The hand of the two-dimensional remark 11 of Qudi B (four) contains the two-way three-dimensional shadow of the county. Another application consists of displaying the target by the other party in the call or: displaying the product in two dimensions, for example, viewing the product in the purchase, or checking that the item is obtained, including confirmation of the individual identity, which can be displayed by three-dimensional display. Force, example 4 ¥, #如可财对上上 _ vision of the difference between the ability to such as twins or disguised people. s Look at the individual, + (four) of the appendages including the image to help determine. Another:: two ^ way, view transfer will be three-dimensional __^= button face city people's content; ^2 between the eyes of the coffee post in one embodiment, with the purpose of "like reconstruction of the three-dimensional display device will There is a menu option, can be a thief display 82 200824426 3 == 贞 贞 __ take _ distance. Select the user press the button on the device to increase or decrease the separation between _ self. If this is already set When viewing the spear and crying and looking at the 3D image, you can choose the best virtual observer window. Eight distances 'Let the viewer see the best three-dimensional image that can be achieved: the knife will use the pain The preferences are stored in the device. Such a menu option can be used to track the viewer's eye position separately because the distance between the eyes is two: two: speed: fast tracking The exact position of == will be lower. The ability to select two virtual observer windows will also provide the advantage of surpassing the autostereoscopic display system, in the automatic (four) ^ no towel, silk and right off image Is inclined to use the device hardware to fix. Human, 3, ? or two pairs of organic light Diode and optically addressed spatial light modulators: or a combination of one or two electronically addressed spatial light modulators. The planar projector system can also emit light from the device or some other Surface 83 200824426, in place of the virtual viewing window of the projection light as described in Part F. Therefore, 'a three-dimensional display device in a mobile phone or a personal digital assistant or in other devices can also be like a pocket type. The way the projector is used. It can be used to improve the holographic projection _ quality by adjusting the amplitude of the human light and changing it. Therefore, the full side of the complex value can be encoded on the Langguang modulator. Let the image reconstructed on the nuclear wall have better quality. The one described in the previous section - the pair or two pairs of organic light-emitting diodes and the optically-spaced spatial light modulation or - or two electrons The tightly-packed combination of the space-storing space variator can be used as a slap-up. Because the size of the combination is tight, the job will be tight. The projector can even be an individual digital assistant or Yes - some other devices: can be used by" Dimensional display TM GPU projector mode to switch. Her 2D projector's omni-directional 2D projector has the advantages of not needing to cast == and projecting (4) like the lining towel in the whole lining. 々王象式-dimensional projector' is described, for example, in W02G()5/()59881

Ht、,使用早—空間_變器,因此無法進行複雜的調變。在 :相全像式二維投影機,將麟進行複雜的觀,因此能 具有非常佳的圖像品質。 84 200824426 H.使用一個或兩個紅外線有機發光二極體顯示器與光學式定址* 間光調變㈣緊密組合的自動立體或全像顯示$ 二 紅外線有機發光二輔顯㈣與光學式定址郎 緊密組合(例如A部份所描__也能使用在自動立體= 剛中’制是在行峰域是個人触助对料持式自動立 體顯示器。細對於典型的觀看者而言,觀看自動立體顯示哭並 不像觀看全像顯示器-樣的舒適,雖然在—些情況下,自動立體 顯示器比起全㈣可能較為便宜歧較科去產生或去提供 圖像資料。自動立體顯科提供數她輕域,#由每個 域顯示三維場景的不同觀點。如果觀看者的眼睛是在不同的觀看 區域,他將看到立體的圖像。自動立體顯示器與全像技術的差異: 自動立體顯示H提供兩個平_像,而全像技術更提供三維場景 中每一個目標點的Z-資訊。 ' 通常,自動立體顯示n是以顯示器上觀看區域的空間多工為 基礎,並且使用光素分光鏡元件’例如雙凸透鏡(lenticulars)、障礙 遮敝物(barrier masks)或疋稜鏡遮蔽物〇jrism masks)。障礙遮蔽物也 可稱之為”視差障礙”。自動立體顯示器的缺點是每—個觀看區域 的解析度會典型地反比於觀輕域的數量。但是這個缺點可由如 85 200824426 上所描述的自動立體顯示器的優點來補償。 、’工外線有機發光二極醜示贿振幅調變光學式定址 調變器的緊密組合(例如在A部份所描述的内容)可使用來:且 “解析度的振幅調變顯示器。如果紅外線有機發光二極體齡 器與振幅調縣學式定址空間光調魏㈣密組合是與光束分^ :元件、、σ σ n則可建構&amp;具高解析度的自動立體顯示器 密組合的高解析度可補償因為空間多工而損失的解析度。’、 對於需要-個或多個額外的光學式定址空間光調變器的自動 立體顯示器’使用—個或多個有機發光二極體陣列與—個或多個 光學奴址空間光調魏的緊密組合(例如:在部份所描述 的内令)的優點是非®樣式的絲式定址空間光觀器。自動立體 顯示器包含光束分光鏡與有機發光^體陣列,可能會由於圖樣 式的有機發光二極體而具有加卫品,例如:在光束分光鏡期間邀 有機發光二極體_之_疊紋效應(M— effects)。相較之下,、 在緊在組。的光學式定址如轴魏上的資訊是連續的:僅有 光束分光鏡_,不會歧職性的加工品。 自動立體顯示器的光源可為—個或多個光源,例如發光二極 體’雷射’有機發光二極體或冷陰極螢光燈。光源不需為同調性 86 200824426 的。如果使用有機發光二極體且自動立體顯示器顯示色彩圖像, 則會在光源與光發射顯示器及振幅調變光學式定址空間光調變器 的緊岔組合之間需要色彩過濾器層,例如紅色,綠色及藍色過濾 器。 紅外線有機發光二極體顯示器與光學式定址空間光調變器的 緊密組合(例如在A部份所描述的内容)也可以使用在全像顯示, 特別是在行動電話或個人數位助理中的手持式顯示器。全像顯示 器是以顯示器上觀看區域的空間多工為基礎,並且使用光素分光 鏡疋件,例如雙凸透鏡(lenticulars)、障礙遮蔽物(banier爪邶⑻或 是稜鏡遮蔽物(prism masks)。障礙舰物也可稱之為”視差障礙 、、外線有機發光一極體顯示器與光學式定址空間光調變器的緊 =合(例如在A部份所描述的内容)可使用來成為具有高解析度 ^全$顯示器。如果紅外線有機發光二極體顯示器與振幅調變光 二式定址”光婦器、的緊密組合是與光束分光鏡元件結合的 可建構出具高解析度的全像顯示^。緊密組合的高解析度 可補償因為空間多工而損失的解析度。在另一個實施例中,兩對 人機么光—極體陣列與光學式定址空間光調變㈣緊密組合的組 Q7依序且緊密的方式使用來調變光的振幅與相位,如B部份 2述的内谷。因此’由振幅與相她成的複數,可糊逐-像 在傳送光中編碼。如果兩對紅外線有機發光二極體顯示 〜Ί周變光學式定址空間光調變器的緊密組合是與光束分光 87 200824426 鏡元件結合 則可建構出高解析度的全像 解析度可補償因為空間多μ損失的二緊密齡的高 件的全細示时提做倾看_ Ύ有縣分光鏡元 維場景的和觀點。如果麵者二母_相域顯示三 將看到立體的圖像。 、'^疋在不_觀看區域,他 I.三維傳輸中f要的f料處理系统。 二二=::=r+處蝴,二十 像的拍攝資料可利用 疋二轉針。用於建立圖 類似功能的裳置來進動電話裳置30或是一些具有 其中-方挪的灯中執;,° ^二維圖像顯示的資料咖 置,或是可在 、可為仃動電話3〇或是等效的裝 飞疋了在另—方221的褒置中執行 個行動電話之_脾 -疋取好疋此在位於兩 包含第-連心 _ 224巾執行。傳輸網路 個:可:令間系統224及第二連線—及功兩 、--η*為無線連線或非無線連線。中 算的電腦,使得三維圖像,例如電腦產生的入伽二行計 示圖能。生的全像圖或自動立體顯 λ古仃動電話之間的傳輸網路使用電腦來執 而代〇的’因為計算將不耗f行動電話的電池電力,但取 三維影像的電源。可使脉於傳輸網路的·來對大量的 電话通_圖像同時進行處理’這可允許更有效率地利 88 200824426 用計算· ’例如藉域少未使_計算處理能力的數量。如果 需要的計算能力減少,則行動電話或其它類崎置的重量將會降 低,它將需要較少㈣職路與記計算需求將會藉由 位在傳輸網路上的電腦來執行計算。最後,執行計算的軟體將僅 :要女裝在位於傳輸網路上㈣腦,不f要安裝在行純話或其 二^的裝置二這將減少行動電話的記憶體需求以及軟體盜版 、乾,亚且會增加程式碼中任何的企業機密的保護。雖然大多 ^三賴像顯示需要的計算可由中間系統224來執行,不過也可 此-些圖像計算是在請傳送前於使用者裝置_進行。例如,如 果兩個拍攝圖像料常相似的’若兩_像是傳送成第一圖像及 Γ圖像之間差異的差異圖像,則因為差異圖像非常易於進行可 f助麟傳送的資料壓縮技術,因此將可促進資料的傳送。同樣 維圖像顯示裝置可執行一些圖像計算,例如解除壓縮的圖 -對二的系統的—個例子中,第—圖像與第二圖像形成 j立體顯示圖像,並且由使用者細的裝置經由連線222傳送 間4置224。第二傳送圖像可為兩個立體顯示圖像之間的差異 圖像’因為差關像典型地將比完細像需要較少的資料。 :餘交談是在進行中,職—ώ像可為現翻像與前一個時 U圖像之間的差異。同樣的,第二圖像可為現在圖像與前— 89 200824426 们日守間點的圖像之間的差異。接著,根據從接收資料的對應深度 圖’中f跑224可利用習㈣於二維與三維(3_像之間轉換 的計算程縣對二維(2_像進行計算。對於彩色的圖像,需要 二維圖像在三触要聽中k個元素,並且連同它們的對應深 度圖。接著’關於二維圖像與深度圖的資料會經由連線223傳送 至使用者221的裝置。使用者221的裝置會在它的緊密型三維顯 不衣置中’根據接收到的二維圖像與深度圖編碼全像圖。為了有 效率的使用傳送頻寬’在這個系統中傳輸的㈣可進行習用的壓 縮程序,並且在接收裝置中執行對應的解壓縮動作。使用最有效 率的資料壓縮數量,相較於使用較少龍壓縮的頻寬需求花費, 會平衡行絲置的電池執行:#料獅與解壓縮的電力。 中間裝置224可存取包含已知三維形狀集合的函式庫,並在 其中試__合它計算的三__配對,或者它可存取包含 已知二維圖形集合的函式庫,並在其中試圖找到穩合進入的二維 副象資料的配對。如果在已知形狀中可找到好的轉,這可加快 計算程序的速度,因為二維或三維圖像之後可表示為對應已知的 形狀。三維形狀的函式庫可提供如—組運_星的面孔或身體形 狀,例如主要的網球運動貞或足球運動員,以及全部或部分主要 的運動場地,例如著名咖球場地或是著名的足球場地。例如, 人臉的三維圖像可表示為一個中間裝置224已存取過的資料,加 200824426 ^臉部表情變化,例如微笑_#,加上長度的變化,因 為在貧料儲存後頭髮可能留長或剪短。如果—組持續性的差異發 中間虞置224已存取過的記錄明顯比資料過時,例如在長時 間上’人的頭髮長度已經明顯的改變,則這個在中間裝置似已 存取過的資料可由中間裝置224進行更新。如果裝 =已麵概,綱概_二_三罐 呤,匕將增加新的形狀到記錄的集合當中。 J · %助二維圖像内容至三維圖像内容的系統 安全廣泛制的三_示技術巾的難是好内容是以 三=格式產生,並且現在大部份_容_續以二維格式產生的 事實。部分上是因為縣所的大錄圖像記騎置都持續記 錄广維圖像’並且沒有資料是可以使用在三維圖像中。此外,現 在很少有機會麟觀看者要求三維_容或是獲得從二維内容產 生的三維内容。 這非常明顯需要-個支援從二維内容產生三維内容的系統。 在=二十三中給定—⑽統。在圖二十三中,即使在觀看者測 的家中具有三維齡錢,電視傳播公司2雇持續概二維電視 圖像2304。在這⑽統中,具有中間系統讀,可將二維内容轉 換到三維内容擺。雜的雛料可峨看者㈣支援,或是 91 200824426Ht, using the early-space_variant, so complex modulation cannot be performed. In the omni-directional 2D projector, the lining is complicated and therefore has excellent image quality. 84 200824426 H. Use one or two infrared organic light-emitting diode displays with optical addressing * Inter-optic modulation (4) Closely combined auto-stereo or holographic display $ II Infrared organic light-emitting two auxiliary display (four) tight with optical positioning The combination (for example, the __ described in Part A can also be used in autostereo = just in the middle of the line is a personal touch-to-hold auto-stereoscopic display. Fine for typical viewers, watching auto-stereo Showing crying is not as comfortable as watching a full-image display, although in some cases, an autostereoscopic display may be cheaper than the full (four) to generate or provide image data. Autostereoscopic offers a number of her Light domain, # displays different views of the 3D scene from each field. If the viewer's eyes are in different viewing areas, he will see a stereoscopic image. The difference between autostereoscopic display and holographic technology: Autostereoscopic display H Two flat images are provided, and the holographic technology provides Z-information for each target point in the 3D scene. 'Normally, auto-stereoscopic display n is more space for viewing areas on the display. Basis, and using the light beam splitter element prime 'for example, a lenticular lens (lenticulars), shield, barrier (barrier masks) or piece goods Prism shelter 〇jrism masks). Obstacle masks can also be called "parallax obstacles." A disadvantage of autostereoscopic displays is that the resolution of each viewing area is typically inversely proportional to the number of viewing light domains. However, this disadvantage can be compensated for by the advantages of the autostereoscopic display as described on 85 200824426. The close combination of the 'external line organic light-emitting diode ugly smear amplitude modulation optical addressable modulator (for example, as described in Part A) can be used: and "resolution amplitude modulation display. If infrared The combination of the organic light-emitting diode and the amplitude-modulated spatially-spaced Wei (four) dense combination is the combination of the beam component: component, σ σ n and the high-resolution autostereoscopic display. Resolution can compensate for loss of resolution due to spatial multiplex. ', use one or more organic light-emitting diode arrays for autostereoscopic displays that require one or more additional optically addressed spatial light modulators The advantage of close combination with one or more optical slave space spatial tuners (eg, in the described internals) is the non-® style of wire-addressed spatial optometrists. Autostereoscopic displays contain beam splitters and The organic light-emitting body array may have a garnish due to the organic light-emitting diode of the pattern, for example, the organic light-emitting diode is invited to have a _ _ _ effect during the beam splitter. It The information on the optical addressing such as the axis is continuous: only the beam splitter _, which does not interfere with the processing. The light source of the autostereoscopic display can be one or more Light source, such as a light-emitting diode 'laser' organic light-emitting diode or cold cathode fluorescent lamp. The light source does not need to be homogenous 86 200824426. If an organic light-emitting diode is used and the auto-stereoscopic display displays a color image, then A color filter layer, such as a red, green, and blue filter, is required between the light source and the light-emitting display and the amplitude-modulated optically-addressed spatial light modulator. Infrared organic light-emitting diode display and optics A compact combination of spatially-spaced light modulators (such as those described in Section A) can also be used in holographic displays, especially in mobile phones or personal digital assistants. Full-image displays are displays. Based on the spatial multiplexing of the upper viewing area, and using photon spectroscopy elements, such as lenticulars, obstacle shields (banier claws (8) or 稜鏡 稜鏡Prism masks. Barriers can also be called "parallax barriers," external-line organic light-emitting diode displays and optical-addressed spatial light modulators (for example, as described in Part A) Can be used to achieve a high resolution ^ full display. If the infrared organic light-emitting diode display and the amplitude modulation light two-position "lighting device", the close combination of the beam splitter elements can be constructed to produce high resolution The holographic display ^. The high resolution of the tight combination compensates for the loss of resolution due to spatial multiplexing. In another embodiment, two pairs of human-machine-optical arrays and optically-spaced spatial light modulation (4) The closely combined group Q7 is used in a sequential and compact manner to modulate the amplitude and phase of the light, as in the inner valley of Part B. Therefore, 'the complex number formed by the amplitude and the phase can be pasted-like in the transmitted light. Medium code. If the two pairs of infrared organic light-emitting diodes display ~ Ί 变 光学 光学 光学 光学 光学 87 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 The multi-μ loss of the two tight-aged high-level parts of the full-scale presentation of the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ If the facet two mothers _ phase field display three will see a stereo image. , '^ 疋 in the _ viewing area, he I. Three-dimensional transmission f to the f material processing system. Twenty-two =::=r+ at the butterfly, and the photographs of the twenty images can be used. The skirt used to create a similar function to enter the phone to set the phone 30 or some of the lights with the - square shift;, ° ^ two-dimensional image display information, or can be, can be shaken The phone 3 〇 or the equivalent 装 疋 执行 执行 执行 执行 执行 221 221 221 221 221 221 执行 执行 执行 执行 执行 执行 执行 执行 执行 执行 执行 执行 执行 执行 执行 执行 执行 执行 执行 执行 位于 位于 位于 位于 位于 位于 位于 位于 位于Transmission network: Can be: Inter-system 224 and second connection - and work two, -- η * for wireless connection or non-wireless connection. The computer in the middle of the computer makes a three-dimensional image, such as a computer-generated gamma-line graph. The transmission network between the raw hologram or the auto-stereoscopic λ ancient mobile phone uses the computer to perform the ’ ' because the calculation will not consume the battery power of the mobile phone, but take the power of the three-dimensional image. It is possible to process a large number of telephony_images simultaneously on the transmission network'. This allows for more efficient use of the calculations, such as the number of calculations. If the required computing power is reduced, the weight of the mobile phone or other analogy will be reduced, and it will require less (four) job and computing needs to be performed by the computer on the transmission network. Finally, the software that performs the calculation will only be: the women's clothing is located on the transmission network (four) brain, not to install the device in pure language or its two devices. This will reduce the memory requirements of the mobile phone and software piracy, dry, Ya will increase the protection of any corporate secrets in the code. Although most of the calculations required by the display can be performed by the intermediate system 224, it is also possible that these image calculations are performed before the user device_. For example, if the two captured images are often similar, if the two images are transmitted as difference images between the first image and the image, the difference image is very easy to perform. Data compression technology will therefore facilitate the transfer of data. The same dimensional image display device can perform some image calculations, such as decompressing the image-to-two system, in which the first image and the second image form a j-dimensional display image, and are thin by the user. The device transmits the intervening device 224 via connection 222. The second transmitted image may be the difference between the two stereoscopic display images. ‘Because the differential image typically requires less material than the fine image. : The rest of the conversation is in progress, and the job-image can be the difference between the current image and the previous U image. Similarly, the second image can be the difference between the current image and the image of the previous day. Then, according to the corresponding depth map from the received data 'f run 224 can be used to learn (4) in two-dimensional and three-dimensional (3_ image conversion between the calculation of the county to two-dimensional (2_ image calculation. For color images) The two-dimensional image is required to be k elements in the three-touch image, and together with their corresponding depth maps. Then the information about the two-dimensional image and the depth map is transmitted to the device of the user 221 via the connection 223. The device of 221 will encode the hologram according to the received two-dimensional image and depth map in its compact three-dimensional display. In order to use the transmission bandwidth efficiently, the (four) can be transmitted in this system. A conventional compression procedure is performed and the corresponding decompression action is performed in the receiving device. Using the most efficient data compression amount, the battery execution of the wire is balanced compared to the bandwidth requirement using less dragon compression: #料狮与解压缩的功率。 The intermediate device 224 can access a library containing a collection of known three-dimensional shapes, and in the test __ combine it to calculate the three __ pairing, or it can access the known two Function of dimensional graph collection And attempting to find a pair of two-dimensional secondary image data that is steadily entering. If a good turn can be found in the known shape, this can speed up the calculation process because the 2D or 3D image can be represented as a corresponding Known shapes. The three-dimensional shape of the library can provide the face or body shape of the group, such as the main tennis player or football player, and all or part of the main sports venue, such as the famous coffee court or It is a famous football field. For example, a three-dimensional image of a human face can be represented as an information that has been accessed by an intermediate device 224, plus 200824426 ^ facial expression changes, such as smile _#, plus length changes, because in poverty After the material is stored, the hair may be long or short. If the group of persistent differences in the intermediate position 224 has been accessed more clearly than the data, for example, the length of the person's hair has changed significantly over a long period of time, This information that has been accessed by the intermediate device can be updated by the intermediate device 224. If the device is already installed, the outline is _ two_three cans, and the new shape will be added to the record. Among the collections. J · % helps two-dimensional image content to three-dimensional image content. System security is widely used. The difficulty is that the content is generated in three= format, and now most of them are _ The fact that it is produced in a two-dimensional format. Partly because the county's large-scale image recordings are continuously recorded in wide-format images' and no data can be used in three-dimensional images. In addition, there are few opportunities now. The viewer asks for 3D content or 3D content generated from 2D content. This is obviously a need for a system that supports the generation of 3D content from 2D content. Given in Fig. 23 - (10). In Figure 2 In the thirteenth, even if the viewer has three-dimensional money in the home of the viewer, the television communication company 2 employs a continuous two-dimensional television image 2304. In this (10) system, there is an intermediate system read, which can convert the two-dimensional content to the three-dimensional content. put. Miscellaneous feedstocks can be seen by the viewers (4), or 91 200824426

可由其它方來付費支援,例如廣告客戶2303。在j® -丄 L ㈡一个三中,當 ^告客戶2303的廣告由電視公司纖來播放,廣告客戶測會 支付費用23%給中卩縣統麗,並藉由已知的二物容轉換成三 維内容的轉換程序將二維内容轉換成三維内容。廣告客戶的利a 是以三維的電視廣告呈現給觀看者2302,這將比二維電視=2 引人注意。或者,觀看者·可支付費用給中間錢⑽^轉 換並接收-些或全部電視播放的三維格式。中啦統會確保三維 供是正確且同步的格式,例如假使二_像有提供它的 子應冰度圖’兩個資料集合會以同步方式提供,即三維顯示裝置 會對於對應的二_像深度圖,不會對非對應的二維圖像使 5度圖。三維顯示裝置可為全像顯示裝置、自動立軸示裝置 或疋任何習用的三維顯示裝置。 私、—軸4置的麟應適合 、-表置的類型。相似於上述的系統也可適用於非電視播 放A司的提供者所提供_容’例如電影或錄影帶供應商等。 在另-⑽統中,觀看者可支付費用提供二_容給 並且收到提供的二維内容的三維形式回覆。提供的二維内容 2如為家庭f· MP3 _,錢料軸 或圖片的圖像。 月 中間系統可包含電腦來執行計算, 使付二維圖像能顯示,例 200824426 如電腦產生全像_是自動立軸像 供者與希望觀看三、_像内容 ^用在二維内容提 行計算,因為這會比起在觀看者端孰者^傳輪網路㈣腦來執 於傳輸網路上的電腦可來同時進二更有效率。位 換的圖像處理,這可耕更有 i、—維到二維内容轉 小^ 有轉__算資源,例鄉由试 少未使用輯算處題力的數f。 Μ猎由減 縐4 U ,Λ. 如禾而要的叶异能力減少,則 t看者私賴稀置誠切會降低,因為謂f要較少㈣ 勒〜L 十异需求將會藉由位在傳輸網路上的電腦來 仃计异。最後,執行計算的軟_僅需要安裝在位於傳輸網路 上的電腦,不需要安裝在觀看者的三維顯示裝置中。這將減少觀 看者的三維齡裝記«需相及軟《版的細,並且會 :加私式碼巾任何的企業機密的保護。雜大多數三維圖像顯示 而要的计异可由中間祕來執行,不過也可能—些圖料算是在 觀看者的三維顯示裝置中執行。三維圖像顯示裝置可執行一些圖 像计^r,例如解壓縮已壓縮的圖像資料,或是從二維圖像與它的 對應深度®來產生空間光調變H的全像編碼。 在一個例子中,中間系統可利用習用二維與三維圖像之間轉 換的叶异程序’計算接收到的二維圖像的對應深度圖。對於彩色 的圖像’需要二維圖像在三個主要顏色中的三個元素,並且連同 它們的對應深度圖。接著,關於二維圖像與深度圖的資料會傳送 93 200824426 至觀看者的三維齡裝置。觀;t者的三_穌器裝置會在它的空 間光調變器中’根據接收到的二_像與深度_碼全像圖。為 了有效率的使祕送頻寬,在這個系統巾傳輸的資料可進行習用 的壓縮私序’並且在接收I置中執行對應的解壓縮動作。使用最 有效率的資料壓縮數量,相較於使用較少資料麵的頻寬需求花 費,會平衡提供資料解壓縮功能至三維顯示裝置的花費。 中間裝置可存取已知二_狀集合的資料,並在其中試圖找 到穩合它計算的三維資料的配對,或者它可存取已知二維圖形的 集合’並在其巾賴制穩合進人的二賴像資料的配對。如果 在已知形狀巾可找騎的配對,這可域計算程相速度,因為 二維或三_像之後可表示騎應已知的形狀。三維形狀的函式 庫可提供如—組運動明星的面孔或㈣形狀,例如主要的網球運 動員或足球運動員,以及全部或部分主要的運動場地,例如著名 的網球場地或是著詞足球職。修,人臉的三_像可表示 為-辦職置已存取過的龍,加上臉部表情變化,例如微笑 或皺^等’加上轉長度的變化,因為在資贿存後頭髮可能留 長或剪短如果_崎續性的差異發生,中間裝置已存取過的記 錄明顯比聽過時,例如在長日销上,人_髮長度已經明顯的 改k,則這個在中間裝置已存取過的資料可由中間裝置224進行 更新。如果中_置制在它已存取記錄當中沒有發現好配 94 200824426 對的二維或三維圖像時,它將增加新計算的三維形狀到記錄的集 合當中。 κ.觀察員視窗的空間多工與二維編碼 這個實施例是關於全像顯示器的虛擬觀察員視窗(v〇Ws)的 空間多工,並結合二維編碼的使用。除此之外,全像顯示器可如 同在A,B ’ C或D部份中所描述的内容,或是任何f用的全像顯 示器。 數個處擬觀察員視窗’例如一細於左眼的虛擬觀察員視窗 與-個用於右眼的虛擬觀察員視f,可由空間或時間多工來產生 是已知的。關於空間^,兩個虛擬觀察貞視窗是麵—個時間 ’’、占產生的並且、、二由光束分光鏡來區分,相似於自動立體顯示器, 如在而謂瞻8中所描述的内容。而關於時間多工,;獅 察員視窗是時間上依序產生的。 然而,習用的全像顯示系統具有—些缺點。對於 言,使用的照明系統在水平方向是空間非同雛的, 平線光源與透鏡狀陣列為基礎, 心7Support can be paid by other parties, such as advertiser 2303. In j®-丄L (2) one of the three, when the advertisement of the customer 2303 is broadcasted by the TV company, the advertiser will pay 23% of the fee to the Zhongli County Tongli, and convert it by the known two contents. A three-dimensional content conversion program converts two-dimensional content into three-dimensional content. The advertiser's benefit a is presented to the viewer 2302 as a three-dimensional TV commercial, which would be noticeable than 2D TV = 2. Alternatively, the viewer may pay a fee to the intermediate money (10) to convert and receive a three-dimensional format of some or all of the television broadcasts. Zhonglu will ensure that the three-dimensional supply is in a correct and synchronized format. For example, if two _images have a sub-ice diagram that provides it, the two data sets will be provided in a synchronous manner, that is, the three-dimensional display device will correspond to the corresponding _ image. The depth map does not make a 5 degree graph for non-corresponding 2D images. The three-dimensional display device can be a hologram display device, an automatic vertical axis display device, or any conventional three-dimensional display device. Private, the axis of the axis 4 should be suitable for - the type of the table. Systems similar to those described above are also applicable to providers of non-TV broadcast A divisions such as movie or video tape providers. In the other (10) system, the viewer can provide a fee for the two-dimensional content and receive a three-dimensional form of the provided two-dimensional content. The 2D content provided 2 is the image of the family f· MP3 _, money axis or picture. The monthly intermediate system can include a computer to perform calculations, so that the two-dimensional image can be displayed, for example, 200824426 such as a computer to generate a full image _ is an automatic vertical axis like a donor and hope to watch three, _ like content ^ used in two-dimensional content calculation Because this will be more efficient than the computer that is on the transmission network in the viewer's network. Bit-changing image processing, this arable has more i, - dimension to two-dimensional content to turn small ^ has turned __ computing resources, the township is tried to use less than the number of the title of the calculation. Μ 由 由 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 The computer on the transmission network is different. Finally, the softness of the calculations is only required to be installed on a computer located on the transmission network and does not need to be installed in the viewer's 3D display device. This will reduce the viewer's three-dimensional ageing record «need to be soft and soft" version of the book, and will: add private code towel to any corporate secret protection. Most of the three-dimensional image display can be performed by the middle secret, but it is also possible that some of the images are executed in the viewer's three-dimensional display device. The three-dimensional image display device may perform some image calculation, such as decompressing the compressed image data, or generating a holographic encoding of the spatial light modulation H from the two-dimensional image and its corresponding depth®. In one example, the intermediate system can calculate a corresponding depth map of the received two-dimensional image using a leaf-spreading program that converts between two-dimensional and three-dimensional images. For a color image, a three-dimensional image is required for three of the three main colors, along with their corresponding depth maps. Next, the data on the 2D image and the depth map will be transmitted from 93 200824426 to the viewer's 3D age device. The three-segment device of t will be in its spatial light modulator' based on the received _ image and depth _ code hologram. In order to efficiently make the secret bandwidth, the data transmitted in this system towel can be subjected to the conventional compressed private sequence&apos; and the corresponding decompression action is performed in the receiving I set. Using the most efficient data compression amount balances the cost of providing data decompression to a 3D display device compared to the bandwidth requirement for using fewer data faces. The intermediate device can access the data of the known binary set and try to find a pair that satisfies the three-dimensional data it calculates, or it can access the set of known two-dimensional graphics and stabilize it in its towel. Entering the second pair of information like the pairing. If the pair of known shapes can be found for riding, this can be used to calculate the phase velocity, since two or three images can be followed by a shape that should be known for riding. The three-dimensional shape library can provide the face or (iv) shape of a group of sports stars, such as a major tennis player or football player, and all or part of a major sports venue, such as a famous tennis court or a football field. Repair, the face of the face can be expressed as - the dragon has been accessed by the office, plus facial expression changes, such as smile or wrinkle ^ etc. plus the change in length, because the hair after the bribe May stay long or cut short if the difference in _ stagnation occurs, the record that the intermediate device has accessed is obviously better than the time when it was heard, for example, on the long-day sales, the length of the person _ hair has been significantly changed, then this is the intermediate device. The accessed material can be updated by the intermediary 224. If the _format does not find a 2D or 3D image of the pair of 2008 2008426 pairs in its accessed record, it will add the newly calculated 3D shape to the set of records. κ. Spatial multiplexing and two-dimensional encoding of observer windows This embodiment relates to the spatial multiplexing of virtual observer windows (v〇Ws) for holographic displays, combined with the use of two-dimensional encoding. In addition, the holographic display can be as described in A, B' C or D, or any holographic display for f. It is known that several virtual observer windows, such as a virtual observer window that is thinner than the left eye, and a virtual observer for the right eye, f, can be generated by spatial or temporal multiplexing. Regarding the space ^, the two virtual observation windows are face-times', generated and, and are distinguished by the beam splitter, similar to the autostereoscopic display, as described in the context of 8. With regard to time multiplex, the lion's window is produced in time. However, conventional hologram display systems have some drawbacks. For the sake of the words, the lighting system used is spatially non-conform, horizontal line source and lenticular array based, heart 7

2006/027228所轉的内π 士 田白用技街WO 队侍的心。廷具有可彻自動立 術的優點。細’㈣缺點是麵平方向上的全缝建技 95 200824426 取而代之的疋使用所s胃的1維編碼,僅在垂直方向產生全像重建 與移動視差。因此,垂直焦點是在重建物件的平面上,而水平焦 點是在空間光觀H的平面上。這錄光會減少空間視覺的品 質’意即它減少了觀看者接收到的全像重建的品質。同樣地,時 間多工系統也具有缺點,它·要尚不能在全部顯示狀寸中獲 得的快速空間光調變器,即時可取得也是過分的昂貴。 只有二維編碼在水平與垂直方向同時提供全像重建,而因此 二維編碼不會產生散光,散光會減少空間視覺的品f,意即減少 了觀看者接收到的全像重建的品質。因此,這個實施例的目的是 結合二維編碼來實現虛擬觀察員視窗的空間多工。 在這個實施射,财水平麵直局部性的照明會 與光束分光鏡結合’絲分級會將光分為對於左眼虛擬觀察員 視窗的光及對於右眼虛擬觀察員視窗的光。因此,必須考慮位於 光束分光鏡雜射。絲分級可為棱鏡_,第二透鏡陣列(例 如靜態陣列或是變量_,如圖二十巾卿)或是障礙遮蔽物。 圖二十五顯示了這個實施例的例子。圖二十五為包含二維光 源陣列的光源、二維透鏡陣列的透鏡、空間光調變器與光束分光 鏡的全像顯示器示賴。光束分光鏡會將離開空間光調變器的光 96 200824426 線’分離成二束絲,分別照射用於左眼的虛擬贿員視窗(v〇wl) 與用於右眼的虛擬觀察員視窗(V0WR)。在這個例子中,光源的數 量是一個或多個;透鏡的數量與光源的數量是相同的。 在這個例子中,光束分光鏡是在空間光調變器之後。光束分 光鏡與空耻調魏的位置也可相互交換。圖二十六顯示了這^ 實施例_子,在平關巾是使職鏡_作為光束分光鏡。照 明裝置包含η元件的二維光源陣列(叫脱” 乂㈣及^件的 -維透鏡陣列(L1,L2, ... Ln),在圖二十六中只顯示兩個光源與兩 個透鏡。每-個光源是利用它所關聯的透鏡來成像至觀察員平 面。光源陣列_距與透鏡_關距是要使得全部光源圖像能 同時出現在觀察員平面’即包含兩個虛擬觀察員視窗的平面。在 圖二十六中,並沒有顯示左眼虛擬觀察員視窗(v〇WL)與右眼虛擬 觀察員視窗(VOWR),因為它們是在_外面,且細的右邊。可 增加猶的視野透鏡。為了提供紐的帥同雛,透鏡陣列的 間距是相似於次全像圖的典型大小,即一至數公釐的等級。照明 在每-個透鏡岐水平且垂直m同雛的,因為光源是小的或 為點光源’且因為制二維透鏡相。透鏡_可騎射、繞射 或全像式的。 在這個例子中,光束分光鏡是一維的垂直棱鏡陣列。入射在 97 200824426 棱鏡個斜面的光,會偏斜至左眼虛擬觀察員視窗⑼雷乳),入 射在棱鏡另-個斜面的光,會偏斜至右眼虛擬觀察員視窗⑼ VOWR)。攸相同Ls與相同透鏡產生的光線,在通過光束分光鏡 之後’也為相互同調。因此,具錢直與水平聚焦红垂直與水 平移動視差的二維編碼是可能的。 瓤 全像圖是在具有二維編碼的空間光調變器上進行編碼。對於 左眼及右眼的全像圖是—個攔位—個攔位的交錯,意即攔位會交 錯編碼對於左_右眼的全像資訊。更好地是在每—個棱鏡下具 有個對於左眼全像資訊的攔位及一個對於右眼全像資訊的搁 位。另-個方法,在每—個棱鏡的斜面下也可有兩個或更多個全 像圖的攔位’例如二個對於左眼虛擬觀察員視窗的搁位,並且接 著為三個對於右眼虛擬觀察員視窗的棚位。光束分光鏡的間距可 與空間光調變器的間距相同,或為整數(例如二或三)倍數,或者, 、為了能容許透視縮短加rspective shortening),光束分光鏡的間距可 .比空間光調變器的間_微小一點,或是比它的整數(例如兩或三) 倍數稍微小一點。 從具左眼全像的欄位發出的光會重建對於左眼的目標,並且 照射左眼虛織察員視窗(V0WL);從具右眼全像的搁位發出的光 會重建對於右眼的目標,並且照射右眼虛擬觀察㈣窗㈤魏)。 98 200824426 因此,每-個眼睛會看到適當的重建。如果棱鏡_的間距是充 分的小,則眼睛不能解析棱鏡結構,且棱鏡結構不會妨礙全像圖 的重建。每-錬睛會看見具有料錢全機視差的重建,並 且沒有散光。 在光束分光鏡上將會有繞射,因為同調光會照射光束分光 鏡。光束分光鏡可視驗生乡;t繞射階__光柵。斜的棱鏡 斜面具有卿式光柵的效果。對於哪式光柵,最大強度是導向 特定的繞麵級。對於棱鏡_,—個最大強度會從棱鏡的一個 斜面導向位於左眼虛擬觀察員視窗位置的繞射階級,另一個最大 強度會從棱鏡㈣-個斜面導向位於右眼虛擬酿窗位置的 另個繞射階級。更精確來說,封裝式(envel〇ping)血心叫似如函 數的強度最大值是移至這些位置,而繞射階級是位在固定的位 置。棱鏡陣列會在左眼虛擬觀察員視窗的位置產生一個強度封裝 smc-squared函數最大值,在右眼虛擬觀察員視窗的位置產生另一 個強度封裝sine-squared函數最大值。其它繞射階級的強度將會是 很小的(意即sine squared強度函數最大值是狹窄的),並且將不會 產生干擾串音,因為棱鏡陣列的填充因子是大的,例如接近1〇〇0/(&gt;。 如同在習用技術中可見的,為了提供虛擬觀察員視窗給二個 或多個觀察員,可藉由使用更複雜的棱鏡陣列(例如兩種類型的棱 99 200824426 f具有相同的頂角,但是不同的非對稱程度,連續地相鄰配置), 生多個虛擬觀察員視窗。然而,使用靜態的棱鏡陣列是不能夠 個別地追縱觀察員。 —在另—個例子中’每個透鏡可使用多於-個光源。每個透鏡 額外的光源可來產生額外的虛擬觀察纽窗,提供給額外的 觀察員。這是描述在w〇2004/044659(us2〇〇6/〇〇55994)中對於 m個觀察員提供—個透鏡心個絲的例子。在這個更進一步的 例子中,细每個透鏡m個絲與雙倍的空間多工來產生瓜個左 邊虛擬觀察貞視窗及m個右邊虛纖察貞視窗,提供給^個觀察 員。每個透鏡m個光源是以岭—的對應方式,其中m是一個整 數0 接著是這個實施例的例子。使用2〇英吋螢幕尺寸,並具有下 列的參數值··觀察員距離2m,像素間距在垂直上為69μιη,在水 平上為207μηι,使用布克哈特(Burci^hardt)編碼,以及光學波長為 633nm。布克哈特(Burckhardt)編碼是在垂直方向,具有69μηι的次 像素間距與6mm高的虛擬觀察員視窗(垂直期間)。忽略透視縮 短,垂直棱鏡陣列的間距為414μιη,也就是在每個全棱鏡下具有 兩個空間光調變器的攔位。因此,觀察員平面中的水平期間為 3mm。這也同樣為虛擬觀察員視窗的寬度。這個寬度在直徑上是 100 200824426 小於理想大約4mm的眼睛瞳孔。在另—個相似的例子中,如果空 間光調變器具有50卿白勺較小間距,虛擬觀察員視窗將會有25^ 的寬度。 —如果成年人眼睛的分隔為65mm(這是典型的),棱鏡必須偏斜 、二 mm在那個位置光會與包含虛擬觀察員視窗的平面相 又更精確來说,強度封裝sinc_S啊^函數最大值需要偏斜士 32.5mm。廷對於2m的觀察員距離相當於是士㈣。的角度。對於 ^見折射率n—丨·5,適當的棱鏡肢為±1·%。。棱鏡肖度是定義 為基底與棱鏡斜邊之間的角度。 對於在3mm的觀察員平面中的水平期間,另—眼的位 擬觀宛胃$ /仏、鱗紐在魏施觀耗視窗與在右眼虛 擬贿㈣窗之中的串音因而是可以忽略的。 光源光源追蹤為一個簡單的㈣^ 上,在n. 狀·11與魏_只仙_平面 航崎器像雜賊之間,將會具有由視差所導致的 英啊這將可能會導致串音。上述的例子, 寸的像素,在垂直於每個棱鏡尖端所形成的轴的方 101 200824426 向,可能具有70%的填充因子,也就是在每個邊上,像素大小為 145μιη作用區域及31μιη無作用的區域。如果棱鏡陣列的建構區 域是指向空間光調變器,在棱鏡陣列與空間光調變器之間的分隔 可能大約為1mm。無串音的水平追蹤範圍將會是士 31 μιη /丨mm * 2 m = 士 62 mm。如果小的串音是可容許的,那麼追縱的範圍將會 較大。這個追蹤範圍並不是很大,但它是足夠允許一些追蹤進行, 使付觀看者將會有較少的限制’像是限制他/她的眼睛的放置位置。 空間光調變器與棱鏡陣列之間的視差是可以避免的,較好的 方法是利用將棱鏡陣列整合或是直接整合在空間光調變器中(像是 折射、繞射或是全像式棱鏡陣列)。這對於產品而言將為專業構成 要素(specialized component)。另一種選擇是棱鏡陣列的橫向機械移 動,雖然這是較不建議的,因為移動機械部分會使得裝置變得更 為複雜。 乃一卿關疑性的问碭疋田後鏡角度所決定的固定虛擬觀察員 視窗分隔。這可能會對非標準眼睛分隔的觀察員或是z_追蹤=成 困擾。其中-個解決方法’是可使用包含封袭液晶=域 (encapsulated liquid-crystal domains)的組合,如圖一十所厂、 著’電場可控制折射♦’以及偏斜角度。這個解決方法可與棱鏡 陣列合併,以便連續地個別提供變量偏斜與固定偏斜。/、一兄 102 200824426 解決方法中’可賊晶層覆蓋棱鏡陣_結構邊。接著,電場可 控制折射率’以及偏斜肖度。如果虛擬觀察員視窗具有足約容許 不同眼睛分隔的觀察員與z_追縱如此大的寬度,則變量偏斜組合 是不需要的。 一個較複雜的解決方法是使用可控制的棱鏡陣列,例如 e_wettmg棱鏡陣列(如圖二十七所示)或是填滿液晶的棱鏡(如圖二 十-所不)。在圖二十七中,具有棱鏡元件159的層包含電極1517、 1518及填滿兩個分離液體1519、152〇的凹洞。每一個液體填滿凹 洞的棱形部分。舉-個例子,液體可以是油或水。在液體i5i9、 1520之間介面的斜率是依據施加在電極1517、1518的電壓所決 定。如果液體具有不同的折射率,光束將會遭受偏向,偏向是由 施加在電極1517、1518的電壓所決定。因此,棱鏡元件159扮 浪可控制的光束指向元件。對於需要追縱虛擬觀察貞視窗至觀察 員眼睛的實作’提供電子式全像技術,這對射請人的方法而言 疋個重要的特性。由申請人提出的專利申請號DE 102007024237.0、DE 1_7〇24236·2,描述了具有棱鏡元件虛擬 觀察員視窗至觀察員眼睛的追蹤。 這疋一個使用於緊密手持式顯示器的實施例。Seik〇 (RTM) Epson (RTM) Corporation of Japan已發表單色電子式定址空間光調 103 200824426 變器,·例如D4:u_1场讀幕尺寸。-健述的例子是使 4丄3D 13U液晶顯不器面板作為空間光調變器。它具有肋πIn 2006/027228, the heart of the π Shi Shibai technical street WO team. The court has the advantage of being able to automate the machine. The fineness of (4) is the full-slit construction of the squared upwards. 95 200824426 Instead, the 1D code of the stomach is used to generate holographic reconstruction and moving parallax only in the vertical direction. Therefore, the vertical focus is on the plane of the reconstructed object, and the horizontal focus is on the plane of the spatial light view H. This recording reduces the quality of the spatial vision', meaning that it reduces the quality of the holographic reconstruction received by the viewer. Similarly, time multiplex systems also have the disadvantage that it is too expensive to obtain in real time as fast space light modulators that are not yet available in all display formats. Only two-dimensional coding provides holographic reconstruction in both horizontal and vertical directions, so two-dimensional coding does not produce astigmatism, and astigmatism reduces the spatial visual product f, which reduces the quality of holographic reconstruction received by the viewer. Therefore, the purpose of this embodiment is to achieve spatial multiplexing of virtual observer windows in conjunction with two-dimensional encoding. In this implementation, the direct local illumination of the financial plane will be combined with the beam splitter. The silk grading splits the light into light for the left eye virtual observer window and for the right eye virtual observer window. Therefore, it must be considered to be located in the beam splitter. The wire grading can be a prism _, a second lens array (e.g., a static array or a variable _, as shown in Fig. 20) or an obstacle shield. An example of this embodiment is shown in Figure twenty-fifth. Figure 25 shows a holographic display of a light source comprising a two-dimensional array of light sources, a lens of a two-dimensional lens array, a spatial light modulator and a beam splitter. The beam splitter splits the light leaving the spatial light modulator 96 200824426 into two bundles, illuminating the virtual briber window for the left eye (v〇wl) and the virtual observer window for the right eye (V0WR) ). In this example, the number of light sources is one or more; the number of lenses is the same as the number of light sources. In this example, the beam splitter is after the spatial light modulator. The position of the beam splitter and the empty shame can also be exchanged. Figure 26 shows this example. In the case of a flat towel, the mirror is used as a beam splitter. The illuminating device comprises an array of two-dimensional light sources of n elements (called "off" 四 (four) and - dimensional lens arrays (L1, L2, ... Ln), and only two light sources and two lenses are shown in Fig. 26. Each light source is imaged to the observer plane using its associated lens. The light source array_distance and lens distance are such that all light source images can appear simultaneously in the observer plane', ie the plane containing two virtual observer windows. In Figure 26, the left-eye virtual observer window (v〇WL) and the right-eye virtual observer window (VOWR) are not displayed because they are outside the _ and the thin right side. In order to provide the handsome pair, the spacing of the lens array is similar to the typical size of the sub-image, ie one to several millimeters. The illumination is horizontal and vertical m at each lens, because the light source is small or It is a point source 'and because of the two-dimensional lens phase. The lens _ can be mounted, diffracted or holographic. In this example, the beam splitter is a one-dimensional vertical prism array. The light incident on the 97 200824426 prism bevel Will be skewed The left eye virtual observer window (9) Lei milk), the light incident on the other slope of the prism will be deflected to the right eye virtual observer window (9) VOWR). The same Ls and the same lens produced light after passing through the beam splitter' It is also homologous to each other. Therefore, it is possible to have two-dimensional coding of vertical and horizontally moving parallax with horizontal and horizontal focus red. The hologram is coded on a spatial light modulator with two-dimensional code. For the left eye And the hologram of the right eye is a block-interlace of the block, meaning that the block will interleave the holographic information for the left-right eye. It is better to have a left for each prism. The eye is full of information and a position for the right eye hologram. Another method is to have two or more hologram stops under the slope of each prism. a shelf for the left eye virtual observer window, and then three booths for the right eye virtual observer window. The beam splitter spacing can be the same as the spatial light modulator spacing, or an integer (eg two or three) Multiples, or, , Allowable for perspective shortening, the beam splitter spacing can be slightly smaller than the spatial light modulator, or slightly smaller than its integer (for example, two or three) multiples. The light emitted by the image field reconstructs the target for the left eye and illuminates the left eye virtual weaver window (V0WL); the light emitted from the position with the right eye hologram reconstructs the target for the right eye and illuminates Virtual observation of the right eye (four) window (five) Wei) 98 200824426 Therefore, every eye will see an appropriate reconstruction. If the spacing of the prism _ is sufficiently small, the eye cannot resolve the prism structure, and the prism structure does not hinder the hologram Reconstruction of the graph. Each eye will see a reconstruction with a parallax of the whole machine, and there will be no astigmatism. There will be diffraction on the beam splitter because the same dimming will illuminate the beam splitter. The beam splitter can be visually verified; t is a diffraction order __grating. Oblique prism The bevel has the effect of a clear grating. For which grating, the maximum intensity is directed to a specific winding level. For the prism _, the maximum intensity will be guided from one slope of the prism to the diffraction level at the virtual observer window of the left eye, and the other maximum intensity will be guided from the prism (four)-slope to another winding at the virtual window of the right eye. Shooting class. More precisely, the enveloped (envel〇ping) bloody heart is like the maximum intensity of the function is moved to these positions, while the diffractive class is in a fixed position. The prism array produces a maximum intensity smc-squared function at the position of the left eye virtual observer window and a maximum intensity package sine-squared function at the position of the right eye virtual observer window. The intensity of the other diffraction classes will be small (meaning that the maximum sine squared intensity function is narrow) and will not interfere with crosstalk because the fill factor of the prism array is large, for example close to 1〇〇 0/(&gt;. As can be seen in the prior art, in order to provide a virtual observer window to two or more observers, a more complex prism array can be used (eg two types of ribs 99 200824426 f have the same top) Angles, but different degrees of asymmetry, continuously adjacent to each other), create multiple virtual observer windows. However, the use of static prism arrays is not able to individually track observers. - In another example, 'each lens' More than one light source can be used. An additional light source per lens can be used to create additional virtual viewing windows for additional observers. This is described in w〇2004/044659 (us2〇〇6/〇〇55994) An example of a lens core is provided for m observers. In this further example, each lens of m is multiplexed with double space to create a virtual observation window on the left side. And m right virtual fiber inspection windows, provided to ^ observers. Each lens m light sources are in a ridge-corresponding manner, where m is an integer 0 followed by an example of this embodiment. Using a 2 inch inch screen Dimensions with the following parameter values · Observer distance 2m, pixel pitch is 69μηη in the vertical, 207μηι in the horizontal, Burci^hardt encoding, and optical wavelength 633nm. The (Burckhardt) code is in the vertical direction, with a sub-pixel pitch of 69 μm and a virtual observer window of 6 mm height (vertical period). Ignore the perspective shortening, the vertical prism array has a pitch of 414 μm, that is, two under each full prism. The space light modulator is blocked. Therefore, the horizontal period in the observer plane is 3 mm. This is also the width of the virtual observer window. This width is 100 200824426 in diameter and less than the ideal eye pupil of about 4 mm. In a similar example, if the spatial light modulator has a smaller pitch of 50 s, the virtual observer window will have a width of 25^. The separation of the eyes is 65mm (this is typical), the prism must be skewed, two mm at that position will be more accurate with the plane containing the virtual observer window, the strength package sinc_S ah ^ function maximum need to be skewed 32.5mm. The observer distance for 2m is equivalent to the angle of Shi (4). For the refractive index n-丨·5, the appropriate prism limb is ±1·%. The prism distortion is defined as the base and prism bevel The angle between the other side of the observer's plane in the 3mm, the other-eye position of the stomach, $/仏, the scales in the Wei Shi view window and the cross-eye in the right eye virtual bribe (four) window Therefore it can be ignored. The source of the light source is traced to a simple (four)^, between n. shape 11 and Wei _ only _ plane akisaki like a thief, there will be a parallax caused by the English ah, which may lead to crosstalk . In the above example, the pixels of the inch, in the direction of the axis 101 200824426 perpendicular to the axis formed by the tip of each prism, may have a fill factor of 70%, that is, on each side, the pixel size is 145 μιη action area and 31 μιη no The area of action. If the construction area of the prism array is directed to a spatial light modulator, the separation between the prism array and the spatial light modulator may be approximately 1 mm. The horizontal tracking range without crosstalk will be 31 μmη /丨mm * 2 m = ± 62 mm. If small crosstalk is tolerable, the range of tracking will be larger. This tracking range is not very large, but it is sufficient to allow some tracking to occur, so that the viewer will have fewer restrictions, such as limiting the placement of his/her eyes. The parallax between the spatial light modulator and the prism array can be avoided. The better way is to integrate the prism array or directly integrate it into the spatial light modulator (such as refraction, diffraction or hologram). Prism array). This will be a specialized component for the product. Another option is the lateral mechanical movement of the prism array, although this is less recommended because moving the mechanical part can make the device more complicated. It is a secret virtual observer window separation determined by the angle of the rear mirror. This may be confusing for non-standard eye-separated observers or z_tracking =. One of the solutions' is to use a combination of encapsulated liquid-crystal domains, such as the tenth factory, the 'electric field controllable refracting ♦' and the skew angle. This solution can be combined with a prism array to continuously provide variable skew and fixed skew continuously. /, a brother 102 200824426 In the solution, the thief layer covers the prism array _ structure side. Then, the electric field can control the refractive index ' and the skewness. If the virtual observer window has a width that allows for different eye separations and z_ to track such a large width, the variable skew combination is not required. A more complicated solution is to use a controllable prism array, such as an e_wettmg prism array (as shown in Figure 27) or a liquid crystal filled prism (see Figure 20 - No). In Fig. 27, the layer having the prism element 159 includes electrodes 1517, 1518 and a cavity filled with two separated liquids 1519, 152. Each liquid fills the prismatic portion of the cavity. For example, the liquid can be oil or water. The slope of the interface between the liquids i5i9, 1520 is determined by the voltage applied to the electrodes 1517, 1518. If the liquids have different refractive indices, the beam will be biased, and the bias is determined by the voltage applied to the electrodes 1517, 1518. Thus, prism element 159 acts as a beam-directed beam pointing element. Providing an electronic holographic technique for the practice of tracking the virtual observation window to the observer's eyes is an important feature for the method of shooting people. Tracking of the virtual observer window with prism elements to the observer's eyes is described in the patent application no. DE 102007024237.0, DE 1_7〇24236. Here is an embodiment for a compact handheld display. Seik〇 (RTM) Epson (RTM) Corporation of Japan has published a monochrome electronic address space tone 103 200824426 transformer, such as D4: u_1 field read screen size. An example of a health statement is to use a 4" 3D 13U liquid crystal display panel as a spatial light modulator. It has ribs π

々解析度(1920 X ι〇80像素)、15_的像素間距與獅麵X 6·2麵的面板區域。這麵板通常使用在二_像投影顯示器。 攻個例子是計算_ 663nm的波長與5(km的觀察員距離。 對於這個振_變郎光機战使雜軸位編碼(布克哈特編 馬).而要二個像素來編碼—個複數。這三侧聯像素是垂直排列 的。如果棱鏡陣狀束分光鏡是整合在空間光觀財,棱鏡陣 Η間距曰疋30μηι。如果空間光調變器與棱鏡陣列之間具有分 隔,棱鏡陣列_距會顧不同,以處理透視驗。'、 一虛擬硯察員視窗的高度是由3 * 15卿=45师的間距去編碼 -個稷數所決定’且為7.Glnm。虛織察員視窗的寬度是由棱鏡 陣列㈣,間距所決定,且為la6mm。兩個數值都大於眼睛的 瞳孔。因此’如果虛擬觀察員視窗是在眼睛的位置,每個眼睛都 可以看見全像重建。全像重建是從二維編碼的全像㈣來,因此 並沒有上面所述-維編碼巾本身存在關光_。這個確保高的 空間視覺品質與高的深度印象(depth impressi〇n)品質。 32.5mm 〇 更精 當眼睛的分隔為65mm時,棱鏡必須偏斜光士 104 200824426 確來說,封裝sinc_squared強度函數的強度最大值需要偏斜士 32.5mm。對於〇·5 m的觀察員距離,這對應於士 3 72。的角度。對 於折射率1.5,適當的棱鏡角度為士 7.44。。棱鏡角度是定義為 基底與棱鏡斜邊之間的角度。 對於在l〇.6mm的觀察員平面中的水平期間,另一眼的位置是 在大約6繞射階級的距離(意即65mm除1〇 6mm)。由較高繞射階 級所導致的串音因而是可以忽略的,因為棱鏡_具有高的填充 因子,意即接近於1〇〇%。 廷是一個使用於大顯示器的實施例。全像顯示器可設計使用 相位凋變的空間光調變器,並具有刈卜❿的像素間距及英吋的 螢幕尺寸。對於如電視的應用,螢幕尺寸可能相當接近4〇英吋。 對於這個設計的觀察員距離為2111,波長是633nm。 使用空間光调變的兩個相位調變像素來編碼一個複數。這 兩個關聯的像素妓直排列的,並且對應的垂直間距為2 * 5〇 _ =100 μηι。藉由整合棱鏡陣列至空間光調變器中,棱鏡陣列的水 平間距也為2*50 1〇〇 μιη,因為每個棱鏡包含兩個斜面,且 每個斜面是用於空間光調變器的一個攔位。所產生12Jmm的虛擬 觀察員視窗的寬度與高度是比眼睛的曈孔絲的大。因此,如果 105 200824426 虛擬觀察貞視窗是在眼睛的位置,每魏義可以看見全像重 建。全像重建是從二維編碼的全像_來,因此並沒有—維編碼 中本身存在關光問題。這個雜高的如視覺品質與高的深度 印象品質。 當眼睛的分隔為65mm時,棱鏡必須偏斜光士 32 5mm。更精 確來說,強度封裝sinc,ared㉟數的最大值需要偏斜士 32·5麵。 對於2m的觀察員距離,這對應於过%。的角度。對於折射率η = I·5,適當的棱鏡角度為± L86。。棱鏡角度是定義為基底與棱鏡斜 邊之間的角度。 上面的例子是對於觀察員離空間光調變器的距離為5〇cm與 2m。概括來說,這個實施例可應用至觀察員離空間光調變器為 50cm至2m之間的距離。螢幕尺寸可為介於lcm(例如行動電話次 螢幕)至50英吋(例如大尺寸電視)之間。 雷射光源 RGB固態雷射光源,例如以砷化銦鎵(GaInAs)或氮砷化錮鎵 (GalnAsN)材料為基礎,對於緊密的全像顯示器可為適合的光源, 因為它們是緊密的,且具有高程度的光定向性。這樣的光源包括 由Novalux (RTM) Inc” CA,USA所製造的RGB垂直凹面發射雷射 106 200824426 (Vertical Cavity Surface Emitting Lasers,VCSEL)。這樣的光源可提 供為單-f誠雷射_,儘辣㈣源可_繞射光學元件來 產生多個光束。絲可在多模光纖帽輸,因為如果同雛對於 使用在緊密的全像顯示H巾是太高的,這可能會降低_性階 級,並且不會導致不需要的加卫品產生,例如雷射班點圖樣。雷 射光源陣列可為一維或二維的。 有機發光二極體材料 紅外線有機發光二極體材料是已提出的。例如,Del 技Μ 在以 perylenediimide-doped tris(8-quinolinolato) aluminium 為基礎 的有機發光二極體材料中發表了電致發光(electr〇luminescence),如 在 Applied Physics Letters ν〇1· 88, 071117 (2006)中所描述的内容。 说明了波長805 nm的電致發光。Domercq et al·在J Phys Chem B vol· 1〇8, 8647-8651 (2004)中發表了近似紅外線有機發光二極體 的材料。在透明基板上的有機發光二極體材料的製備是已說明 的。例如在US7,098,591中,有機發光二極體材料是在透明的氧化 銦錫電極(indium tin oxide electrodes)上製備。電極是製備在透明基 板上’透明基板可為棚砍玻璃(|3〇1*〇5;丨1丨(:攸21挪)。這些構成要素可 包含在具有透明基板的有機發光二極體裝置中。氧化銦錫層可利 用射頻磁濺鍍法(radio frequency magnetron sputtering tool)濺鍍至 107 200824426 基底之上。氧化銦錫可利用包含氧化銦與氧化錫 氧化嶋可具有在可見範圍中大約議光學·:= 可為平穩的’以避免局部增強電場的產生,局部增強電場可能會 ,低有機發光二極體材料的效能。小於大約2nm的均方根粗链度 是較好的。—個或數個實用的有機層可設置在圖樣電極表面 (patterned dectrode surface;u。有機層的厚度典型介於與 200nm之間。傳導層可依圖樣建構在有機層上,以便在有機層的 二側形成陽極與陰極。裝置可由玻璃層密封,以保護主動層^到 環境的破壞。 概要製造程序 以下描述製造圖二裝置的程序概要,不過這個程序的許多變 化將可在習用技術中找到。 在製造圖二裝置的程序中,選擇使贿明基板。如此的基板 可為硬式的基板,例如大約2〇(^111厚的硼矽玻璃片,或是它可為 軟式基板,例如聚合物基板(p〇lymer subs她),例如聚碳酸醋 _ycarbonate)、丙烯酸的(acrylic)、聚丙烯㈣卿州㈣、聚氨 酉曰polyurethane)、聚苯乙烯_购rene)、聚氯孔烯⑽_㈣ chloride)或疋類似的基板。如同前一部份所描述的,透明電極是製 備在玻璃上。如同前-部份所描述_容,紅外線有機發光二極 108 200824426 體材料是配置在玻璃上,並且電性接點是裳設在透明電極的另— 邊上,使得像素化有機發光二極體紅外線光的放射是可能的。破 璃基板可具有提供有機發光二極體像素材料的凹處。紅外線有機 發光二極體祕可印製、倾或溶製(咖丨叫讀娜在透明基 板上。分封層’也為電性絕緣層’會接著配置在有機發光二極體 像素層上。如此的分封層可為無機絕緣層(inOTganie insulat〇r 1㈣,例如二氧化矽(silicon dioxide)、氮化碎(silic〇nnitride)或碳 ^^(silicon carbide) ^^^T^^^^^(p〇iymerizable layer) ’ 例 如環氧(epoxy)。配置可利用舰或是對於無機絕緣層利用化學氣 相沉積(chemical vapour dep〇siti〇n),或是對於聚合型層糊印製或 塗層來執行。分封層,也為電性絕緣層,可具有數微米或是小於 10微米的厚度。接著,光學狀址雜光調變⑽感光層會覆蓋 分封層。感光層對於紅外線是敏感的,對於可見光是透明的,並 且可具有數微米的厚度。如此的光學特性可由吸收紅外線的染料 .來提供。光學式定址空間光調變器接著是藉由配置覆蓋在兩個導 •電層之間的液晶層來完成。液晶層可針對振幅調變献相位調變 進行設^,並且典型的厚度為數微米。接著,在裝置上配置紅外 線過濾層。這可為具有紅外線吸收色素(咖—咖硫哗 laments)的聚合物薄層的料,或者這可為無機層,例如具有紅 外線吸收元件的濺鑛或化學氣相沉積長成的二氧化石夕薄層。 109 200824426々 resolution (1920 X ι〇80 pixels), 15_ pixel pitch and lion face X 6·2 face panel area. This panel is typically used in a two-image projection display. An example of attack is to calculate the wavelength of _ 663 nm and the observer distance of 5 (km). For this vibration _ lang lang machine warfare miscellaneous axis coding (Bukhhardt horse). And two pixels to encode - a complex number The three side-by-side pixels are vertically arranged. If the prismatic array beam splitter is integrated in the space light, the prismatic pupil spacing is μ30μηι. If there is a separation between the spatial light modulator and the prism array, the prism array _ is different from each other to handle the perspective test. ', the height of a virtual observer window is determined by the spacing of 3 * 15 = 45 divisions - a number of turns ' and is 7. Glnm. The width of the window is determined by the prism array (four), the spacing, and is la6mm. Both values are larger than the pupil of the eye. So 'if the virtual observer window is in the position of the eye, the hologram reconstruction can be seen in each eye. Image reconstruction is from the two-dimensional coded hologram (4), so there is no above--the dimension code towel itself has a light-off _. This ensures high spatial visual quality and high depth impressi〇n quality. 32.5 Mm 精 more fine eye When separated by 65mm, the prism must be skewed by the light 104. 200824426 Indeed, the maximum intensity of the package sinc_squared intensity function requires a skew of 32.5 mm. For an observer distance of 〇·5 m, this corresponds to the angle of ±3 72. For a refractive index of 1.5, the appropriate prism angle is ± 7.44. The prism angle is defined as the angle between the base and the bevel of the prism. For the level in the observer plane of l〇.6mm, the position of the other eye is about 6 the distance of the diffraction class (meaning 65mm divided by 1〇6mm). The crosstalk caused by the higher diffraction class is therefore negligible because the prism_ has a high fill factor, meaning close to 1〇〇% Ting is an embodiment used in large displays. The holographic display can be designed with a phase-degraded spatial light modulator with a pixel pitch and a sized screen size. For applications such as television, the screen The size may be quite close to 4 inches. The observer distance for this design is 2111 and the wavelength is 633 nm. Two phase-modulated pixels of spatial light modulation are used to encode a complex number. The associated pixels are arranged vertically and have a corresponding vertical spacing of 2 * 5 〇 _ = 100 μηι. By integrating the prism array into the spatial light modulator, the horizontal spacing of the prism array is also 2*50 1 〇〇 μιη Because each prism contains two bevels, and each bevel is a stop for the spatial light modulator. The width and height of the resulting 12Jmm virtual observer window is larger than the pupil of the eye. Therefore, If 105 200824426 virtual observation 贞 window is in the position of the eye, every weiyi can see the hologram reconstruction. The hologram reconstruction is from the two-dimensional coded hologram _, so there is no - dimensional coding itself has the problem of Guan Guang. This high quality such as visual quality and high depth impression quality. When the separation of the eyes is 65mm, the prism must be deflected by 32 5mm. More precisely, the strength package sinc, the maximum number of ared35 requires a skewed 32.5 face. For an observer distance of 2 m, this corresponds to over %. Angle. For a refractive index η = I·5, an appropriate prism angle is ± L86. . The prism angle is defined as the angle between the base and the bevel of the prism. The above example is for the observer to be separated from the spatial light modulator by 5 〇 cm and 2 m. In summary, this embodiment can be applied to an observer distance of 50 cm to 2 m from the spatial light modulator. The screen size can range from 1cm (such as a mobile phone secondary screen) to 50 inches (such as a large TV). Laser source RGB solid-state laser sources, such as GaInAs or GalnAsN materials, are suitable light sources for compact holographic displays because they are compact and Has a high degree of light directivity. Such a light source includes an RGB vertical concave surface emitting laser 106 200824426 (Vertical Cavity Surface Emitting Lasers, VCSEL) manufactured by Novalux (RTM) Inc" CA, USA. Such a light source can be provided as a single-f laser. The spicy (four) source can ray around the optical element to produce multiple beams. The wire can be lost in a multimode fiber cap, because if the same chick is too high for use in a compact holographic display, this may reduce the _ sex class. And does not lead to unwanted reinforcements, such as laser shift patterns. The array of laser sources can be one-dimensional or two-dimensional. Organic light-emitting diode materials infrared organic light-emitting diode materials have been proposed For example, Del Technology publishes electroluminescence (electr〇luminescence) in organic light-emitting diode materials based on perylenediimide-doped tris (8-quinolinolato) aluminium, as in Applied Physics Letters ν〇1·88, 071117 (2006) describes the electroluminescence at a wavelength of 805 nm. Domercq et al. published an approximate infrared organic light emission in J Phys Chem B vol·1〇8, 8647-8651 (2004). The material of the polar body. The preparation of the organic light-emitting diode material on the transparent substrate has been described. For example, in US 7,098,591, the organic light-emitting diode material is in the transparent indium tin oxide electrode. The electrode is prepared on a transparent substrate. The transparent substrate can be shed glass (|3〇1*〇5; 丨1丨(:攸21). These constituent elements can be included in the organic light-emitting diode with a transparent substrate. In the polar device, the indium tin oxide layer can be sputtered onto the substrate of 107 200824426 by radio frequency magnetron sputtering tool. Indium tin oxide can be used in the visible range by using indium oxide and tin oxide bismuth oxide. In the case of optical optics:: = can be stationary 'to avoid the local enhanced electric field generation, local enhanced electric field may, low organic light-emitting diode material performance. Root mean square thick chain less than about 2nm is better One or several practical organic layers can be placed on the surface of the patterned electrode (patterned dectrode surface; u. The thickness of the organic layer is typically between 200 nm. The conductive layer can be constructed according to the pattern On the organic layer, an anode and a cathode are formed on both sides of the organic layer. The device may be sealed by a glass layer to protect the active layer from environmental damage. Summary Manufacturing Procedures The following outlines the procedures for making the Figure 2 device, but many variations of this program will be found in the prior art. In the process of manufacturing the device of Fig. 2, the substrate is selected to be bribed. Such a substrate may be a rigid substrate, such as about 2 Å (111 thick borosilicate glass sheets, or it may be a flexible substrate, such as a polymer substrate (p〇lymer subs her), such as polycarbonate _ycarbonate) Acrylic, polypropylene (four) qingzhou (four), polyurethane, polystyrene (poly), polychloroporylene (10) _ (tetra) chloride) or ruthenium similar substrate. As described in the previous section, the transparent electrode is fabricated on glass. As described in the previous section, the infrared organic light emitting diode 108 200824426 is disposed on the glass, and the electrical contacts are disposed on the other side of the transparent electrode, so that the pixelated organic light emitting diode Radiation of infrared light is possible. The glass substrate can have a recess that provides an organic light emitting diode pixel material. Infrared organic light-emitting diodes can be printed, tilted or dissolved (Curry is called Nana on a transparent substrate. The sub-sealing layer 'also is an electrically insulating layer' will then be placed on the organic light-emitting diode pixel layer. The sealing layer may be an inorganic insulating layer (inOTganie insulat〇r 1 (four), such as silicon dioxide, silic〇nnitride or silicon carbide ^^^T^^^^^( P〇iymerizable layer) ' Epoxy, for example. Configurable for use in ships or for chemical vapor deposition (chemical vapour dep〇siti〇n) or for polymeric layer paste printing or coating The sealing layer, which is also an electrically insulating layer, may have a thickness of a few micrometers or less than 10 micrometers. Then, the optical address stray light modulation (10) photosensitive layer covers the sealing layer. The photosensitive layer is sensitive to infrared rays, It is transparent to visible light and can have a thickness of several micrometers. Such optical properties can be provided by infrared absorbing dyes. The optically addressed spatial light modulator is then covered by two layers between the conductive layers. The LCD layer is finished The liquid crystal layer can be set for amplitude modulation, and typically has a thickness of several micrometers. Then, an infrared filter layer is disposed on the device. This can be an polymerization with infrared absorbing pigments. A thin layer of material, or this may be an inorganic layer, such as a thin layer of silica dioxide grown by sputtering or chemical vapor deposition of an infrared absorbing element. 109 200824426

在兩個光學式定址空間光調變器裝置之間的層,必需要是足 ,以確保在一個光學式定址空間光調變器中的電場不會影 響另-個絲式定址空間光調變II的效能。紅外線過濾層可為足 夠厚,以完現這個目標。然而,如果紅外線過㈣是不夠厚的時 候’可利⑽如藉由光學_將光學式定址空間糊變器裝置與 具充分厚度的麵片結合,或是藉她置另外的光學透明層,例 如上述的錢層或是聚合物層來增加厚度。無論如何,二個 光學式定址空間光調魏裝置必須不能她太遠,使得光學繞射 效應減低像素串音。例如,如果像素寬是1G微米,光學式定^ 間光調變器層最好應相隔小於100微米。在其中一個 I 空岐調變器中的液晶層是設定去執行振幅調變;在另一個光興 式疋址空間光調變器中的液晶層是設定去執行相位調變。于 變哭上稍騎—個光料-空間光調 夂為及有機發光二_層的方法進行尤月 份可製備成單一元件,接荖钍 / 衣置的其它部 璃層,使得每—㈣學式/層之間具有充分分隔的玻 個光學式定址空間光調變^的^光f變器的電場不會影響另一 用配置另外的材料絲置的第—μ裝㈣其它部份的製備是利 光二極體層的像辛愈笛.部分上,這具有促進第二有機發 像素有機發先二極趙層的像素的精確排列的 110 200824426 優點。 17月b使用塗上傳導透明電極(⑺。如也哗壮册印脱拉 X例如氧化銦錫)的薄分隔層,來替代使用財充分厚度的 分隔層緊鄰光學式定址空間光調變器。這個電極扮演兩個液晶層 的共同电極。再者,作為傳導電極它是—個等電位面 (quipotential)目此’它保護電場,並且防止從—個光學式定址 空間光調變H批—個光學式定址空間光婦器的電場漏損。 。圖九顯示了-個裝置結構的例子,它可由上述程序或類似的 、,序進行衣在使用的過程巾,表面照射充分同調可見的 光至圖九中的裝置結構910,使得離裝置—段距離(與裝置的尺度 有^在點911的觀看者可看到三維圖像。裝置中的層,從%直到 9〇8是不需要與相互的尺度有關。層9〇是基底層,例如玻璃層。 層91疋有機發光二極體底板層,提供有機發光二極體電源,並且 了為全部或部分透明。層92是紅外線有機發光二極體陣列。層% 疋用於至少部分紅外線細準的布拉格過絲全像元件。在一些 ^知例中,層93是可以省略的。層94是電性絕緣層。層%是光 予式疋址空間光调以感光與電極層。層%是用於可見光絲幅 調變的液晶層。層97是分隔層,特別是薄的分隔層。層%是透 月電極層。層99是線性偏光層。層9⑻是紅外線過濾層,可傳送 111 200824426 可見光,但是會阻擋從有機發光二極體陣列92與9〇6的紅外線 光。層901疋用於可見光束相位調變的液晶層。層9〇2是分隔層, 特別是薄的分Μ。層9〇3是光學式定址m光調賴感光與電 極層。層9G4是電性絕緣層。層9G5是·至少部分紅外線光目苗 準的布拉格過濾、器全像元件。在一些實施例中,層9〇5是可以省 略的。層9〇6是紅外線有機發光二極體陣列。層9〇7是有機發光 -極體底板層,提供有機發光二極體電源,並且可為全部或部分 透明。層_是遮蓋材料的平面,例如玻璃。在製造的過程中, 裝置910的製造可由基底層9〇開始,依次配置每一層,直到最後 一層908增加完成。上述的程序會具有促進高精確的結構的層排 列的優點。或者,層的製造可以分成兩個或多個部分,並且具有 充份程度調整的結合在一起。 對於裝置的製造,將不想要的雙折射轉在最小值是非常重 要勺例如不想要的應力引起雙折射(stress-induced birefringence)。應力引起雙折射會導致光的線性或圓形偏化狀態改 是至光的橢圓偏化狀恶。具有光的理想線性或圓形偏化狀態的裝 置中’光的橢圓偏化狀態的存在會減少對比及色彩保真度,也因 此會降低裝置的效能。 實作 112 200824426 基於習用的技術,對於上述實施例中的光學式定址空間光調 變器,-個在可見絲圍為透明,但是會吸收紅外線的感光層是 需要的。在另-㈣作中,感光層可為_式的,以便能具有能 傳送可見光的透明間隔,例如紅色、、綠色及藍色光束,以及會對 從有機發光二極體來的光敏感的非透明區域。在這個例子中,感 光材料對可見光不需要是透明的。另外,寫入光束不需要為紅外 線光。在-個實作巾,寫人光束能由非主要顯示色彩來產生,例 如藉由黃色光有機發光二極體。在兩個光學式定址空間光調變器 之間的過濾ϋ會因此需要在黃色中,具有駄的光學吸收,使其 能阻擋黃色光,但是為了達啦生有作用的光學顯示⑽目的, 在其它的光學波長上仍然需要有充份的傳輸。在另一個實作中, 寫入光束能由紫外線有機發光二極體來產生。在兩個光學式定址 空間光調變器之間的過濾器會因此需要在紫外線中,具有強大的 光學吸收,使其能阻擋紫外線光,但是為了達到產生有作用的光 學顯示器的目的,在其它的光學波長上仍然需要有充份的傳輸。 i外線有機發光二極體材料已由伽et al Applied physics Letters 79, 2276 (2001)及 Wong et al. Org· Lett· 7 (23),5131 (2005)發表。此 外,雖然強调了使用有機發光二極體材料,也是可以使用其它的 發光二極體材料或是其它的顯示技術,例如表面傳導電子發射顯 示斋(Surface-conduction Electron-emitter Display,SED)技術。 113 200824426 。雖然:,在此所描述的實補是_振幅與她在郎光調變 ^中的連續編碼’基於制的技術,振幅與相位的二個不相等組 合的任何連、_重編碼都可制來編碼全像像素,兩個組合盘乘 上任何實數會相等無關,但不是乘上任何複數(實數除外)。這個理 .由是像素可能的全像編碼的向量糾,會藉由任何振幅與相位的 :兩個不鱗組合,在向量空間感知中延伸,任何兩個組合盘乘上 任何實數會鱗㈣,但枝紅任何魏(餘除外)。 在參考圖中,所顯示的相關尺寸是不需要按照比例的。 本案所揭露之技術,得由熟f本技術人士據以實施,而其前 2有之作法亦翻性,t依法提出專利之申請。惟上述之The layer between the two optically-addressed spatial light modulator devices must be sufficient to ensure that the electric field in an optically addressed spatial light modulator does not affect another silk-spaced spatial light modulation II Performance. The infrared filter layer can be thick enough to accomplish this goal. However, if the infrared ray (4) is not thick enough, 'Keli' (10), if by optical _ combining the optically-addressed space splicer device with a sheet of sufficient thickness, or by placing another optically transparent layer, for example The above money layer or polymer layer to increase the thickness. In any case, the two optically addressed spatial light-tuning devices must not be too far away for us to reduce the optical crosstalk effect. For example, if the pixel width is 1 Gm, the optical intermodulation layer should preferably be less than 100 microns apart. The liquid crystal layer in one of the I spatial modulators is set to perform amplitude modulation; the liquid crystal layer in another optically active spatial spatial modulator is set to perform phase modulation. A little ride on the crying - a light - space light tone and organic light two layer method can be prepared into a single component, the other parts of the glass / clothing, so that each (four) study The electric field of the glass-optic spatially-spaced light-modulating device with sufficient separation between the layers/layers does not affect the preparation of the other portion of the first-phase (four) portion of the other material. It is a symmetry of the polarized light diode layer. In part, this has the advantage of facilitating the precise alignment of the pixels of the second organic luminescent pixel organic first polar diode layer. In July b, a thin spacer layer coated with a conductive transparent electrode ((7).) is used instead of a fully-spaced spacer layer in close proximity to the optically addressed spatial light modulator. This electrode acts as a common electrode for the two liquid crystal layers. Moreover, as a conductive electrode, it is an equipotential surface, which protects the electric field and prevents the electric field leakage of the H-batch-optical space-spot photon device from the optically-addressed spatial light. . . Figure 9 shows an example of a device structure which can be used by the above-described procedure or the like, and the surface of the process towel is used to illuminate the visible light to the device structure 910 in Fig. 9 so that the device is separated from the device. The distance (with the scale of the device) can be seen by the viewer at point 911. The layers in the device, from % up to 9〇8, do not need to be related to the mutual dimensions. Layer 9 is the base layer, such as glass. Layer 91 疋 organic light-emitting diode bottom layer, providing organic light-emitting diode power supply, and is transparent to all or part. Layer 92 is an infrared organic light-emitting diode array. Layer % 疋 is used for at least part of infrared fine-tuning The Prague holographic hologram element. In some examples, the layer 93 can be omitted. The layer 94 is an electrically insulating layer. The layer % is a photo-preserved space illuminating light to the photosensitive layer and the electrode layer. Liquid crystal layer for visible light amplitude modulation. Layer 97 is a separation layer, especially a thin separation layer. Layer % is a transflective electrode layer, layer 99 is a linear polarizing layer, and layer 9 (8) is an infrared filter layer, which can be transmitted 111 200824426 Visible light, but The infrared light from the organic light-emitting diode arrays 92 and 9〇6 is blocked. The layer 901 is used for the liquid crystal layer of the visible beam phase modulation. The layer 9〇2 is a separation layer, especially a thin bifurcation. 3 is an optically-addressed m-light-sensing photosensitive and electrode layer. Layer 9G4 is an electrically insulating layer. Layer 9G5 is a Bragg filter holographic element that is at least partially infrared-lighted. In some embodiments, layer 9 〇5 can be omitted. Layer 9〇6 is an infrared organic light-emitting diode array. Layer 9〇7 is an organic light-emitting body bottom layer, which provides an organic light-emitting diode power supply, and can be transparent to all or part of the layer. _ is the plane of the covering material, such as glass. During the manufacturing process, the fabrication of the device 910 can be initiated by the substrate layer 9 ,, with each layer being placed in sequence until the last layer 908 is added. The above procedure will have a structure that promotes high precision. The advantages of layer arrangement. Alternatively, the fabrication of the layer can be divided into two or more parts and combined with a sufficient degree of adjustment. For the manufacture of the device, it is very important to turn the unwanted birefringence to a minimum. For example, unwanted stress causes stress-induced birefringence. Stress causes birefringence to cause linear or circularly polarized states of light to be elliptically polarized to light. Ideal linear or circular deviation of light The presence of an elliptically polarized state of light in a device that reduces the contrast and color fidelity, and thus reduces the performance of the device. Implementation 112 200824426 Based on conventional techniques, for the optical addressing space in the above embodiment A light modulator, a photosensitive layer that is transparent in the visible filament but absorbs infrared light is required. In the other - (4), the photosensitive layer can be _-type so as to have a transparent interval capable of transmitting visible light. For example, red, green, and blue beams, as well as non-transparent areas that are sensitive to light from organic light-emitting diodes. In this example, the photosensitive material need not be transparent to visible light. In addition, the write beam does not need to be infrared light. In a real towel, the writing beam can be produced by a non-primary display color, for example by a yellow light organic light emitting diode. The filter 在 between the two optically addressed spatial light modulators will therefore need to be in yellow, with a haze of optical absorption that will block the yellow light, but for the purpose of achieving an optical display (10), There is still a need for adequate transmission at other optical wavelengths. In another implementation, the write beam can be produced by an ultraviolet organic light emitting diode. The filter between the two optically addressed spatial light modulators will therefore need to have strong optical absorption in the ultraviolet light, so that it can block ultraviolet light, but in order to achieve the purpose of producing an effective optical display, in other There is still a need for sufficient transmission at the optical wavelength. i External organic light-emitting diode materials have been published by Gaet al Applied physics Letters 79, 2276 (2001) and Wong et al. Org. Lett. 7 (23), 5131 (2005). In addition, although the use of organic light-emitting diode materials is emphasized, other light-emitting diode materials or other display technologies such as Surface-conduction Electron-emitter Display (SED) technology may be used. . 113 200824426. Although: the actual complement described here is _ amplitude and her continuous coding in the Lang Guang modulation ^ based on the technology, any combination of two unequal combinations of amplitude and phase can be made To encode a full-image pixel, it is irrelevant that the two combination disks are multiplied by any real number, but not multiplied by any complex number (except for real numbers). This is determined by the vector ensemble of the pixel's possible holographic encoding, which is extended in vector space perception by any combination of amplitude and phase: two non-scale combinations, any two combination disks multiplied by any real number scale (four), But the branch is red (except for the rest). In the reference figures, the relevant dimensions shown are not necessarily to scale. The technology disclosed in this case can be implemented by the skilled person, and the first two methods are also turned over, and the patent application is filed according to law. But the above

例尚不足叫蓋本案所欲保護之專纖圍,因此 專利範圍如附。 _曱W 114 200824426 【圖式簡單說明】 圖一為包含單一光學式定址空間光調變器及單一有機發光二 極體陣列的全像顯示裝置示意圖; 圖二為包含一對元件的全像顯示裝置示意圖,每一個元件包 含單一光學式定址空間光調變器及單一有機發光二極體陣列; 圖三為移動式三維顯示裝置示意圖; 圖四為習用的全像顯示示意圖; 圖五為利用單一有機發光二極體陣列控制兩個光學式定址空 間光調變器的全像顯示示意圖; 圖六A為全像顯示示意圖; 圖六B為適合驗實現緊密的全像齡示意圖; 圖七為包含肋減少有隨高繞射階級問題的布拉格過濾全 像光學it件的全像顯示的—個構成元件示意圖; 圖八為包含用以提升有機發光二極體陣列所發射的光的準直 的布拉格财全像絲元件的全像顯示的—個構成元件示意圖; 圖九為全像顯示裝置示意圖; 圖十為包含用來連軸碼振幅及相位的兩個電子以址空間 光調變器的全像顯示裝置示意圖; 二曰 115 200824426 圖十一為包括單一電子式定址空間光調變器的全像顯示裝置 示意圖; 圖十—為根據實施例,全像顯示的一個特定具體化示意圖; 圖十二為包含用來連續編碼振幅及相位的兩個電子式定址空 間光调變為的全像顯示裝置示意圖; 圖十四為使用MathCad (RTM)所獲得的繞射模擬結果; 圖十五為使用MathCad (RTM)所獲得的繞射模擬結果; 圖十六為使用MathCad (RTM)所獲得的繞射模擬結果; 圖十七為根據實施例,兩個電子式定址空間光調變器之間具 有透鏡層的排列示意圖; 、 、圖十八為當光從一個電子式定址空間光調變器行進至第二個 電子式定址空間光調變器時所發生的繞射程序示意圖; 圖十九為兩個電子式定址郎棚變⑽結構*意圖,在其 中兩個電子式定址空間光調變器之間具有—個賴面板;- 圖一十為光束指向元件示意圖; 圖二十一為光束指向元件示意圖; 圖二十二為促使3維視覺溝通為可能的系統示意圖; 田圖二十三為將二維圖像内容轉換為三維圖像内容的方法示音 116 200824426 圖一十四為根據實施例,全像顯示元件的具體化示意圖; 圖二十五為包含二維光源陣列形式的光源、二維透鏡陣列形 式的透鏡、空間光調變器與光束分光鏡的全像顯示示意圖。光束 分光鏡會將離開空間光調變器的光線分成兩束光,分別照射用於 左眼的虛擬觀察員視窗(V0WL)及用於右眼的虛擬觀察員視窗 (V0WR); 圖二十六為包含二維光源陣列中的二個光源、二維透鏡陣列 中的二個透鏡、空間光調變器與光束分光鏡的全像顯示示意圖。 光束分光鏡會將離開空間光調變器的光線分成兩束光,分別照射 用於左眼的虛擬觀察員視窗(V0WL)及用於右眼的虛擬觀察員視窗 (V0WR); 圖二十七為棱鏡光束指向元件的剖面示意圖。 【主要元件符號說明】 照明裝置.................... 色彩過濾器陣列................ 紅外線有機發光二極體陣列..........12 光學式定址空間光調變器...........13 緊密全像圖產生器· 照明裝置..... 117 200824426 色彩過濾器陣列...............21 紅外線有機發光二極體陣列..........22 光學式定址空間光調變器...........23 點.....................24 緊密全像圖產生器..............25 紅外線過濾器................26 光學式定址空間光調變器...........27 紅外線有機發光二極體陣列..........28 行動電話..................30 螢幕區域..................31 天線....................32 攝影機.................. · 33 攝影機...................34 按鍵....................35 按鍵........· · · .........36 聚焦元件..................1101 聚焦元件..................1102 聚焦元件..................1103 垂直聚焦系統................1104 第一繞射階級................1105 第零繞射階級................1106 118 200824426 負一繞射階級................1107 微透鏡陣列.................50 色彩過濾器陣列...............51 紅外線有機發光二極體陣列..........52 光學式定址空間光調變器...........53 光學式定址空間光調變器...........54 緊密的全像圖產生器.............55 點.....................56 照明裝置..................57 空間光調變器................70 全像光學元件布拉格過濾器..........71 單一元件..................73 布拉格平面.................74 繞射光強度分配...............75 光線....................76 有機發光二極體陣列.............80 全像光學元件布拉格過濾器..........81 光學式定址空間光調變器...........82 單一有機發光二極體.............83 布拉格平面.................84 發射的紅外線的分佈·· ...........85 119 200824426 光射線...................86 基底層...................90 有機發光二極體底板層............91 紅外線有機發光二極體陣列..........92 布拉格過濾器全像元件............93 電性絕緣層··...............94 光學式定址空間光調變器感光與電極層.....95 液晶層...................96 分隔層...................97 透明電極層.................98 線性偏光層.................99 紅外線過濾層................900 液晶層...................901 分隔層...................902 光學式定址空間光調變器感光與電極層.....903 電性絕緣層.................904 布拉格過濾器全像元件............905 紅外線有機發光二極體陣列..........906 有機發光二極體底板層............907 遮蓋材料的平面...............098 表面....................909 120 200824426 裝置結構..................910 黑占· · · ..................911 微透鏡陣列.................100 色彩過濾器陣列...............101 電子式定址空間光調變器...........102 電子式定址空間光調變器...........103 照明裝置..................104 緊密全像圖產生器..............105 黑占.....................106 元件....................107 元件....................108 照明裝置用.................110 色彩過濾器陣列...............111 電子式定址空間光調變器...........112 光束分光鏡元件...............113 黑占............... 114 緊密全像圖產生器..............115 照明裝置..................130 色彩過濾器陣列...............131 電子式定址空間光調變器...........132 電子式定址空間光調變器...........133 121 200824426 光束分光鏡元件...............134 點.....................135 緊密全像圖產生器..............136 光束.................. · · 171 光束....................172 使用者...................220 使用者...................221 連線....................222 連線....................223 中間系統..................224 電視傳播公司................2300 中間系統.................. 2301 觀看者...................2302 廣告客戶..................2303 二維内容..................2304 三維内容..................2305 支付費用..................2306 棱鏡元件..................159 電極....................1517 電極· · ..................1518 凹洞....................1519 122 200824426The case is not enough to cover the special fiber circumference that the case wants to protect, so the patent scope is attached. _曱W 114 200824426 [Simplified Schematic] FIG. 1 is a schematic diagram of a holographic display device including a single optical address spatial light modulator and a single organic light emitting diode array; FIG. 2 is a holographic display including a pair of components Schematic diagram of the device, each component comprises a single optical address space optical modulator and a single organic light emitting diode array; Figure 3 is a schematic diagram of a mobile three-dimensional display device; Figure 4 is a schematic diagram of a conventional holographic display; The organic light emitting diode array controls the holographic display of two optically-positioned spatial light modulators; Figure 6A is a schematic diagram of the holographic display; Figure 6B is a schematic diagram suitable for achieving a compact full-image age; The rib is reduced by a holographic display of the holographic image of the holographic filtered hologram of the high-diffraction class. Figure VIII is a schematic diagram containing the collimation to enhance the light emitted by the array of organic light-emitting diodes. A schematic diagram of a constituent image of a full-length image of a silk-like component; Figure 9 is a schematic diagram of a holographic display device; Schematic diagram of the full-image display device of two electrons of the amplitude and phase of the address space optical modulator; II 115 200824426 Figure 11 is a schematic diagram of a holographic display device including a single electronic address spatial light modulator; According to an embodiment, a specific embodiment of the holographic display; FIG. 12 is a schematic diagram of a holographic display device including two electronic address spatial light modulations for continuously encoding amplitude and phase; FIG. 14 is a use of MathCad (RTM) obtained diffraction simulation results; Figure 15 is the diffraction simulation results obtained using MathCad (RTM); Figure 16 is the diffraction simulation results obtained using MathCad (RTM); Embodiments, a schematic diagram of a arrangement of lens layers between two electronically addressed spatial light modulators; and FIG. 18 shows that light travels from an electronic addressed spatial light modulator to a second electronically addressed spatial light Schematic diagram of the diffraction procedure that occurs when the modulator is used; Figure 19 shows the intention of two electronically located Langpan transformers (10) structures, between which two electronically addressed spatial light modulators have Figure 10 is a schematic diagram of the beam pointing component; Figure 21 is a schematic diagram of the beam pointing component; Figure 22 is a schematic diagram of the system that facilitates 3D visual communication; Method for converting content into three-dimensional image content 116 201224426 FIG. 14 is a schematic diagram of a holographic display element according to an embodiment; FIG. 25 is a light source, a two-dimensional lens array including a two-dimensional array of light sources Schematic representation of the holographic display of the form of the lens, the spatial light modulator and the beam splitter. The beam splitter splits the light exiting the spatial light modulator into two beams, respectively illuminating the virtual observer window (V0WL) for the left eye and the virtual observer window (V0WR) for the right eye; Figure 26 is included A schematic diagram of the full image display of two light sources in a two-dimensional light source array, two lenses in a two-dimensional lens array, a spatial light modulator, and a beam splitter. The beam splitter splits the light exiting the spatial light modulator into two beams, respectively illuminating the virtual observer window (V0WL) for the left eye and the virtual observer window (V0WR) for the right eye; Figure 27 is a prism A schematic cross-sectional view of the beam pointing element. [Main component symbol description] Lighting device.................... Color filter array................ Infrared organic Light-emitting diode array..........12 Optically-addressed spatial light modulator...........13 Compact hologram generator·Lighting device..... 117 200824426 Color Filter Array...............21 Infrared Organic Light Emitter Array..........22 Optical Address Space Light Modulator.. .........23 points.....................24 Tight hologram generator........... ...25 Infrared filter................26 Optically-addressed spatial light modulator...........27 Infrared organic light-emitting diode Array..........28 Mobile Phone..................30 Screen Area............... ...31 Antenna....................32 Camera.................. · 33 Camera.. .................34 Buttons....................35 Buttons........· · · .........36 Focusing elements..................1101 Focusing elements.................. ...1102 Focusing element..................1103 Vertical focusing system................1104 First diffraction class ................1105 The zeroth diffraction class................1106 118 200824426 Negative one diffraction class................1107 microlens array. ................50 Color Filter Array...............51 Infrared Organic Light Emitter Array... ....52 Optical Addressing Space Light Modulator ...........53 Optical Addressing Space Light Modulator...........54 Tight Full Image Generator.............55 points.....................56 Lighting device......... .........57 Space light modulator................70 holographic optical element Bragg filter..........71 Single component..................73 Bragg plane.................74 Diffraction light intensity distribution..... ..........75 Light....................76 Organic Light Emitter Array........... ..80 holographic optical element Bragg filter..........81 Optically-addressed spatial light modulator...........82 single organic light-emitting diode... ..........83 Prague plane.................84 Distribution of infrared rays emitted...·........85 119 200824426 Light rays...................86 Base layer...................90 Organic light-emitting diode Bottom plate Layer............91 Infrared organic light-emitting diode array..........92 Bragg filter hologram element............ 93 Electrical Insulation Layer··...............94 Optical Addressing Space Light Modulator Photosensitive and Electrode Layer.....95 Liquid Crystal Layer....... ............96 Separation layer..................97 Transparent electrode layer............ .....98 Linear polarizing layer.................99 Infrared filter layer................900 Liquid crystal layer. ..................901 Separator...................902 Optical Addressing Space Light Modulator Sensit With the electrode layer ..... 903 Electrical insulation layer.................904 Bragg filter hologram element............905 Infrared organic light-emitting diode array..........906 Organic light-emitting diode bottom layer............907 Covering material plane........ .......098 Surface....................909 120 200824426 Device structure................ ..910 黑占· · · ..................911 Microlens Array.................100 Color Filter Array...............101 Electronic Address Space Light Modulator ...........102 Electronic Address Space Light Modulator.... .... ...103 Lighting device..................104 Tight hologram generator..............105 Black.. ...................106 Components....................107 Components.... .............108 Lighting Fixtures.................110 Color Filter Array........... ....111 Electronic Addressing Space Light Modulator ...........112 Beam Beamsplitter Element...............113 Black... ............ 114 Tight hologram generator..............115 Lighting device.............. ....130 Color Filter Array...............131 Electronic Address Space Light Modulator ...........132 Electronic Address Space Light Modulator...........133 121 200824426 Beam splitter element...............134 points............ .........135 Tight hologram generator..............136 Beam.................. · · 171 Beams....................172 Users..................220 Users. ..................221 Connections....................222 Connections... ..............223 Intermediate System..................224 Television Communication Company ........... .....2300 Intermediate system.................. 2301 Viewers................... 2302 Advertisers..................2303 Two-dimensional content.... ..............2304 3D content..................2305 Payment of fees............ ... 2306 prism elements..................159 electrodes..............1517 Electrode · · ..................1518 Ditch...................1519 122 200824426

Claims (1)

200824426 十、申請專利範圍: L 一種三維内容產生系統,包含一内容產生方,係產生一個二維 内容並且將該内容傳送至一遠端中間系統;該遠端中間系統係處 理該内容’以幫助隨後的全像重建,並將處理過後的内容傳送至 、一全像顯示裝置;該全像顯示裝置係於其上產生該内容的三維全 像重建。 2·如申請專利範圍第1項所述之三維内容產生系統,其中該二維 内容係為電視影像。 3·如申請專利範圍第1項所述之三維内容產生系統,其中該二維 内容係為軟片(電影),或錄影内容。 士申明專利範圍第1項所述之三維内容產生系統,其中該二維 •内各係為如照片或圖片的影像内容。 :如任何上述巾請專概圍所述之三軸容產生祕,其中該遠 端中間系統係_計算及加人—棘圖之方式處理該内容。 .如任何上述申請專利範騎述之三軸容產生祕,其中該顯 124 200824426 示裝置係包含一同步裝置 ’以補償該遠财間系統所造成的 延遲。 7·如任何上述申請專利範 端中間系統係設計成包含 實體環境的三維圖。 園所述之三_容產生_,其中該遠 -資料,該資料係定義闕於該内容之一 8·如申請專利範圍第 環境係為一運動場。 7項所述之三維内容產生_,其中該實體 9:如任何上述中請專利範圍所述之三維内容產生系統,其中該顯 不裝置係包含—停格功能’用以產生-靜態的全像重建。 10.如任何上述申請專利範圍所述之三維内容產生系統,其中該顯 不裝置係包含—放大功能,讓-㈣者能夠放大該全像重建的- 部份。 11·如任何上述申請專利範圍所述之三維内容產生系統,其中一用 戶係以支付費用的方式,來存取已經由該遠端中間系統處理過的 内容。 12·如任何上述申請專利範圍所述之三維内容產生系統,其中一廣 125 200824426 σ客戶係以支付費用的方式, / 采讓他的廣告能夠經由該遠端中間 糸統處理,使其能插入至 亥内今中,並且經由該顯示裝置進行全 像重建。 1 如任何上述申請專纖_狀三_容產生祕,其中產生 象重建所*的編碼係分佈在該遠端巾n該顯示裝 的計算單元之間。 1山 1如任何上述中請專利範圍所述之三維内容產生系統,其中該遠 &amp; ’系統κ成包含_資料,該資料係定義制容元素的三 、、隹貝體圖’用以幫助該内容之處理。 县如任何上述申請專利範騎述之三軸容產生祕,其中該全 、頁下衣置係為-種能從全像重建模式_到習用二維顯示模式 的顯示裝置。 ★任何上述申請專利範圍所述之三維内容產生系統,其中該全 像顯示裝置係為—手持可攜絲置。 县任何上述申請專利範圍所述之三維内容產生系統,其中該全 .、、、貝示破置係為一個人數位助理(PDA)。 126 200824426 18·如任何上述申請專利範圍所述之三維内容產生系統,其中該全 像顯示I置係為—電玩裝置。 19·種二維内容產生系統,包含一内容產生方,係產生一個二維 内谷並且將該内容傳送至一遠端中間系統;該遠端中間系統係處 理&quot;亥内各,以幫助隨後的三維顯示,並將處理過後的内容傳送至 —維顯示裝置;該三維顯示裝置係於其上產生該内容的三維顯 示0 20·如任何上述申請專利範圍所述之三維内容產生系統,其中該裝 置係包含複數個光束分光鏡,能夠讓一觀察員的眼睛看見一立體 影像。 21· —種三維内容產生方法,包含使用如任何上述申請專利範圍第 1項至第20項所述之三維内容產生系統之步驟。 22· —種對於全像重建之内容處理方法,其中一網路經營者提供一 三維内容產生系統,在其中由一内容產生方所產生的一個二維内 容係傳送至一遠端中間系統;該遠端中間系統係處理該内容,以 幫助隨後的全像重建,並將處理過後的内容傳送至一全像顯示裝 127 200824426200824426 X. Patent application scope: L A three-dimensional content generation system, comprising a content producer, generates a two-dimensional content and transmits the content to a remote intermediate system; the remote intermediate system processes the content to help Subsequent holographic reconstruction, and the processed content is transmitted to a holographic display device; the holographic display device is coupled to a three-dimensional holographic reconstruction of the content. 2. The three-dimensional content generation system of claim 1, wherein the two-dimensional content is a television image. 3. The three-dimensional content generation system of claim 1, wherein the two-dimensional content is a film (movie), or a video content. The three-dimensional content generation system described in claim 1, wherein the two-dimensional interior is an image content such as a photo or a picture. : If any of the above-mentioned towels, please specifically describe the three-axis capacity, which is handled by the remote intermediate system in a way of calculating and adding people. As is the case with any of the above-mentioned patent applications, the triaxial capacity is generated, wherein the display device 200824426 includes a synchronizing device to compensate for the delay caused by the remote accounting system. 7. Any such patent application intermediate system is designed to include a three-dimensional map of the physical environment. The third _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The three-dimensional content generated by the item 7 is: wherein the entity 9 is a three-dimensional content generation system as described in any of the above-mentioned patents, wherein the display device includes a stop function to generate a static hologram reconstruction. 10. A three-dimensional content generation system as claimed in any of the preceding claims, wherein the display device comprises a zoom-in function that allows -(4) to amplify the portion of the hologram reconstruction. 11. A three-dimensional content generation system according to any of the preceding claims, wherein a user accesses content that has been processed by the remote intermediate system in a fee-paying manner. 12. A three-dimensional content generation system as described in any of the above-mentioned patent applications, wherein a wide 125 200824426 σ client pays a fee, / allows his advertisement to be processed via the remote intermediate system so that it can be inserted To the present and the present, and the holographic reconstruction is performed via the display device. 1 If any of the above-mentioned applications are in the form of a fiber, the code system that produces the image is distributed between the computing units of the display device. 1山1 is a three-dimensional content generation system as described in any of the above-mentioned patent scopes, wherein the far &amp; 'system κ is included _ data, the data is defined by the third element of the manufacturing element, the mussel figure' to help The processing of this content. The county, as in any of the above-mentioned patent applications, is capable of producing a three-axis display, wherein the full and bottom clothes are a display device capable of switching from a holographic reconstruction mode to a conventional two-dimensional display mode. The three-dimensional content producing system of any of the above-mentioned patent applications, wherein the holographic display device is a hand-held portable wire. A three-dimensional content generation system according to any of the above-mentioned patent application scopes, wherein the entire ., , and Beshang breaks are a number of position assistants (PDAs). 126 200824426 18. The three-dimensional content generation system of any of the preceding claims, wherein the holographic display I is a video game device. 19. A two-dimensional content generation system comprising a content producer that generates a two-dimensional inner valley and transmits the content to a remote intermediate system; the remote intermediate system processes &quot;Hai each to help subsequently a three-dimensional display, and the processed content is transmitted to the three-dimensional display device; the three-dimensional display device is configured to generate a three-dimensional display of the content. The three-dimensional content generation system of any of the above-mentioned patent applications, wherein The device includes a plurality of beam splitters that allow an observer's eye to see a stereo image. A method of producing a three-dimensional content, comprising the steps of using a three-dimensional content generation system as described in any of the above-mentioned claims. 22. A content processing method for holographic reconstruction, wherein a network operator provides a three-dimensional content generation system in which a two-dimensional content generated by a content producer is transmitted to a remote intermediate system; The remote intermediate system processes the content to aid subsequent holographic reconstruction and delivers the processed content to a holographic display device 127 200824426 置;該全像顯示裝置係利用編 生該内容的三維全像重建。 Γ中一内谷產生方係產生一個二維 ;該遠端中間系統係處理該内容, 23· —種三維内容產生方法,在其中一 内容,並傳送至一遠端中間系統 以幫助隨制全像重建,並將處理過後_容傳送至—全像顯示 裝置;該全像顯示$置係於其上產生_容的三維全像重建。 24. 如申請專利翻第23項所述之三_容產生方法,其中該遠 端中間系_侧計算及加人—深麵之方式處理該内容。 25. 種通信方法,包含使用如任何上述申請專利範圍第丨項至第 20項所述之三維内容產生系統之步驟。 128The holographic display device utilizes a three-dimensional hologram reconstruction that produces the content. The middle middle valley generating system generates a two-dimensional; the remote intermediate system processes the content, and a three-dimensional content generating method, in which one content is transmitted to a remote intermediate system to help with the system Like reconstruction, and after processing, the content is transmitted to the holographic display device; the holographic display shows the three-dimensional holographic reconstruction on which the _ volume is generated. 24. The method for generating a _ capacity according to claim 23, wherein the remote intermediate system _ side calculation and addition-deep method handle the content. 25. A method of communication comprising the steps of using a three-dimensional content generation system as described in any of the above-mentioned claims. 128
TW96140508A 2006-10-26 2007-10-26 3d content generation system TWI442763B (en)

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
GBGB0621360.7A GB0621360D0 (en) 2006-10-26 2006-10-26 Compact three dimensional image display device
GBGB0625838.8A GB0625838D0 (en) 2006-10-26 2006-12-22 Compact three dimensional image display device
GB0705399A GB0705399D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GB0705401A GB0705401D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GB0705403A GB0705403D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GB0705412A GB0705412D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GBGB0705404.2A GB0705404D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GBGB0705402.6A GB0705402D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GB0705406A GB0705406D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GB0705409A GB0705409D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GBGB0705405.9A GB0705405D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GB0705410A GB0705410D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GB0705408A GB0705408D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GB0705407A GB0705407D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GB0705398A GB0705398D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GBGB0705411.7A GB0705411D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device

Publications (2)

Publication Number Publication Date
TW200824426A true TW200824426A (en) 2008-06-01
TWI442763B TWI442763B (en) 2014-06-21

Family

ID=44771492

Family Applications (6)

Application Number Title Priority Date Filing Date
TW96140506A TWI421541B (en) 2006-10-26 2007-10-26 Full image display device and method (2)
TW96140508A TWI442763B (en) 2006-10-26 2007-10-26 3d content generation system
TW96140507A TWI432002B (en) 2006-10-26 2007-10-26 Mobile telephone system and method for using the same
TW96140509A TWI406115B (en) 2006-10-26 2007-10-26 Holographic display device and method for generating holographic reconstruction of three dimensional scene
TW096140510A TWI454742B (en) 2006-10-26 2007-10-26 Compact three dimensional image display device
TW96140505A TWI421540B (en) 2006-10-26 2007-10-26 Universal image display device and method (1)

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW96140506A TWI421541B (en) 2006-10-26 2007-10-26 Full image display device and method (2)

Family Applications After (4)

Application Number Title Priority Date Filing Date
TW96140507A TWI432002B (en) 2006-10-26 2007-10-26 Mobile telephone system and method for using the same
TW96140509A TWI406115B (en) 2006-10-26 2007-10-26 Holographic display device and method for generating holographic reconstruction of three dimensional scene
TW096140510A TWI454742B (en) 2006-10-26 2007-10-26 Compact three dimensional image display device
TW96140505A TWI421540B (en) 2006-10-26 2007-10-26 Universal image display device and method (1)

Country Status (2)

Country Link
JP (1) JP2014209247A (en)
TW (6) TWI421541B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5397190B2 (en) * 2009-11-27 2014-01-22 ソニー株式会社 Image processing apparatus, image processing method, and program
CN102736393B (en) 2011-04-07 2014-12-17 台达电子工业股份有限公司 Display device for displaying multiple visual angle images
TWI501053B (en) * 2011-10-28 2015-09-21 Jing Heng Chen Holographic imaging device and method thereof
US9019584B2 (en) 2012-03-12 2015-04-28 Empire Technology Development Llc Holographic image reproduction mechanism using ultraviolet light
TWI508040B (en) * 2013-01-07 2015-11-11 Chunghwa Picture Tubes Ltd Stereoscopic display apparatus and electric apparatus thereof
TWI493160B (en) * 2013-05-13 2015-07-21 Global Fiberoptics Inc Method for measuring the color uniformity of a light spot and apparatus for measuring the same
TWI537605B (en) 2014-08-28 2016-06-11 台達電子工業股份有限公司 Autostereoscopic display device and autostereoscopic display method using the same
CN104463964A (en) * 2014-12-12 2015-03-25 英华达(上海)科技有限公司 Method and equipment for acquiring three-dimensional model of object
TWI670850B (en) * 2019-03-08 2019-09-01 友達光電股份有限公司 Display device
WO2021230868A1 (en) * 2020-05-14 2021-11-18 Hewlett-Packard Development Company, L.P. Nitrogen vacancy sensor with integrated optics
CN113973198B (en) * 2020-07-22 2024-04-09 中移(苏州)软件技术有限公司 Holographic image generation method, device, equipment and computer readable storage medium
TWI778508B (en) * 2021-01-28 2022-09-21 誠屏科技股份有限公司 Display apparatus
TWI782822B (en) * 2021-12-16 2022-11-01 國立清華大學 Three-dimensional imaging method and system using scanning-type coherent diffraction

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0451681B1 (en) * 1990-04-05 1997-11-05 Seiko Epson Corporation Optical apparatus
JP4698831B2 (en) * 1997-12-05 2011-06-08 ダイナミック ディジタル デプス リサーチ プロプライエタリー リミテッド Image conversion and coding technology
JP2000078611A (en) * 1998-08-31 2000-03-14 Toshiba Corp Stereoscopic video image receiver and stereoscopic video image system
GB2350963A (en) * 1999-06-09 2000-12-13 Secr Defence Holographic Displays
GB2350962A (en) * 1999-06-09 2000-12-13 Secr Defence Brit Holographic displays
JP2002123688A (en) * 2000-10-16 2002-04-26 Sony Corp Holographic stereogram print order receipt system and its method
US6683665B1 (en) * 2000-11-20 2004-01-27 Sarnoff Corporation Tiled electronic display structure and method for modular repair thereof
JP2002223456A (en) * 2001-01-24 2002-08-09 Univ Nihon Image data distribution method and image distributor, and recording medium
JP3679744B2 (en) * 2001-09-26 2005-08-03 三洋電機株式会社 Image composition method and apparatus
US6721077B2 (en) * 2001-09-11 2004-04-13 Intel Corporation Light emitting device addressed spatial light modulator
JP2003289552A (en) * 2002-03-28 2003-10-10 Toshiba Corp Image display terminal and stereoscopic image display system
GB2390172A (en) * 2002-06-28 2003-12-31 Sharp Kk Polarising optical element and display
JP2004040445A (en) * 2002-07-03 2004-02-05 Sharp Corp Portable equipment having 3d display function and 3d transformation program
KR100891293B1 (en) * 2002-11-13 2009-04-06 씨리얼 테크놀로지스 게엠베하 Method and device for reconstructing a three-dimensional hologram, and hologram-bearing medium
GB0307923D0 (en) * 2003-04-05 2003-05-14 Holographic Imaging Llc Spatial light modulator imaging system
GB2406730A (en) * 2003-09-30 2005-04-06 Ocuity Ltd Directional display.
JP4230331B2 (en) * 2003-10-21 2009-02-25 富士フイルム株式会社 Stereoscopic image generation apparatus and image distribution server
DE502004009944D1 (en) * 2004-12-21 2009-10-01 Alpha Biocare Gmbh PREPARATION OF DIPTERIAN DOLLS FOR THE TREATMENT OF WOUNDS
DE102004063838A1 (en) * 2004-12-23 2006-07-06 Seereal Technologies Gmbh Method and apparatus for calculating computer generated video holograms
US20060187297A1 (en) * 2005-02-24 2006-08-24 Levent Onural Holographic 3-d television

Also Published As

Publication number Publication date
TWI421541B (en) 2014-01-01
TWI442763B (en) 2014-06-21
TWI421540B (en) 2014-01-01
TW200839295A (en) 2008-10-01
TW200841042A (en) 2008-10-16
JP2014209247A (en) 2014-11-06
TW200827771A (en) 2008-07-01
TW200844693A (en) 2008-11-16
TW200845698A (en) 2008-11-16
TWI406115B (en) 2013-08-21
TWI454742B (en) 2014-10-01
TWI432002B (en) 2014-03-21

Similar Documents

Publication Publication Date Title
TW200824426A (en) 3D content generation system
US11700364B2 (en) Light field display
US11022806B2 (en) Augmented reality light field head-mounted displays
US10948712B2 (en) Augmented reality light field display
US10432919B2 (en) Shuttered waveguide light field display
US9860522B2 (en) Head-mounted light field display
JP5191491B2 (en) Small holographic display device
CN104704821B (en) Scan two-way light-field camera and display
CN105492957B (en) Using the image display of pairs of glasses form
JP2010507822A (en) Content generation system
JP2010507954A (en) Mobile phone system with holographic display
JP2010507824A (en) Holographic display device
JP2010507823A (en) Small holographic display device
JP2010508539A (en) Small holographic display device
US20230045982A1 (en) Shuttered Light Field Display
TW201237474A (en) Method for forming a microretarder film
TWI403868B (en) Holographic display device and method
RU2727853C1 (en) Fully three-dimensional image dynamic display
CN115145027B (en) Display assembly and head-mounted display device
CN114167621A (en) Naked eye 3D display device
RU2374668C1 (en) Monitor-glasses for viewing computer and television images with grid focusing system