TW200827771A - Compact three dimensional image display device - Google Patents

Compact three dimensional image display device Download PDF

Info

Publication number
TW200827771A
TW200827771A TW96140505A TW96140505A TW200827771A TW 200827771 A TW200827771 A TW 200827771A TW 96140505 A TW96140505 A TW 96140505A TW 96140505 A TW96140505 A TW 96140505A TW 200827771 A TW200827771 A TW 200827771A
Authority
TW
Taiwan
Prior art keywords
light
array
spatial light
emitting diode
organic light
Prior art date
Application number
TW96140505A
Other languages
Chinese (zh)
Other versions
TWI421540B (en
Inventor
Bo Kroll
Ralf Haubler
Armin Schwertner
Original Assignee
Seereal Technologies Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB0621360.7A external-priority patent/GB0621360D0/en
Priority claimed from GB0705412A external-priority patent/GB0705412D0/en
Application filed by Seereal Technologies Sa filed Critical Seereal Technologies Sa
Publication of TW200827771A publication Critical patent/TW200827771A/en
Application granted granted Critical
Publication of TWI421540B publication Critical patent/TWI421540B/en

Links

Landscapes

  • Holo Graphy (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Stereoscopic And Panoramic Photography (AREA)

Abstract

A holographic display device comprises an OLED array writing onto an OASLM, the OLED array and OASLM forming adjacent layers. The OASLM encodes a hologram and a holographic reconstruction is then generated by the device when an array of read beams illuminates the OASLM. The OASLM is suitably controlled by the OLED array. An advantage of the device is that it lends itself to compactness.

Description

200827771 九、發明說明: 【發明所屬之技術領域】 本案為一_於產生三維圖像的全像顯示健,尤指一種緊 密的裝置’包含-顯示器且在其上電生的影像全像圖會在一 個或二個光學式定址空間光調變器上進行編碼。此裝置可產生三 維全像重建。此裝置特別是應用於可攜式裝置及手持式裝置中, 例如行動電話。 【先前技術】 電腦產生的影像全像圖(c〇mputer-ge_ted h〇1〇細s,CGHs)是由一個或更多的空間光調變器(s⑽iai light modulators, SLMs)所編譯而成;空間光調變器可包括電 子或光學可控制的元件。這些元件根據影像全像圖來對全像圖值 進行編碼,藉此達到調變光的振幅及相位之㈣。電腦產生的影 籲像全像圖是可峨計算絲的,例如通過關親追蹤、通過模 . 擬受到場景反射的光以及參考波之間的干擾,或者通過傅立葉 (Fourier)或菲涅耳(Fresnel)轉換。一個理想的空間光調變器是 月b表現任意複數的數值,即分別控制進入光波的相位及振幅。然 而,典型的空間光調變器只能控制振幅或相位其中一種特性,並 且帶有影響其他特性的不良效應。調變光的振幅及相位具有幾種 不同的方式,例如利用電子式定址液晶空間光調變器、光學式定 址液晶空間光調變器、磁光空間光調變器、微鏡裝置或者聲光調 調變200827771 IX. Description of the invention: [Technical field to which the invention pertains] The present invention is a holographic display that produces a three-dimensional image, especially a compact device that contains an image and displays an image on it. Coding is performed on one or two optically addressed spatial light modulators. This device produces a three-dimensional hologram reconstruction. This device is particularly useful in portable devices and handheld devices, such as mobile phones. [Prior Art] Computer-generated image holograms (c〇mputer-ge_ted h〇1 〇, CGHs) are compiled from one or more spatial light modulators (s(10) iia light modulators, SLMs); Spatial light modulators can include electronic or optically controllable elements. These components encode the hologram values based on the image hologram to achieve the amplitude and phase of the modulated light (4). The computer-generated image-like hologram is arbitrarily calculated, for example, by tracking, tracking, passing light from the scene, and interference between reference waves, or by Fourier or Fresnel ( Fresnel) conversion. An ideal spatial light modulator is a value that the monthly b represents an arbitrary complex number, that is, the phase and amplitude of the incoming light wave are separately controlled. However, a typical spatial light modulator can only control one of the amplitudes or phases, with adverse effects that affect other characteristics. The amplitude and phase of the modulated light can be varied in several ways, such as using an electronically addressed liquid crystal spatial light modulator, an optically addressed liquid crystal spatial light modulator, a magneto-optical spatial light modulator, a micromirror device, or an acousto-optic light. Tuning

200827771 變器、光的調變可為空間 j上運、、只的或由個別可定址元件所 可為一維或二維排列、一淮 r進制、多階層或連續。 在本發明十,專右么 付十"、、扁碼”意指提供空間光調變哭抑制 值來對全像圖編碼,使得 Μ .讀制 會L、; ” # &可以透過郎光簡ϋ來進行200827771 Transformer, light modulation can be space j, only or by individual addressable components can be one-dimensional or two-dimensional array, a hexadecimal, multi-level or continuous. In the tenth invention, the exclusive right to pay ten ", flat code means to provide a spatial light modulation to suppress the crying suppression value to encode the full image, so that the reading system will be L,;" # & Come on

空間光調變器編碼全I 器上進行柄。 h側#全細在空間 相孝交於、、、屯自動式立體顯 到三維場景光波波前的光學重建像全像圖可觀察 眼睛及空間柳,… 7、疋在延伸於觀察員的 敗狀者甚至雜__之後的空間進行 a間光調變11也能贿彡像全像酸行編碼,使得觀察員 能在f間光調魏之前觀察職建的三維場景物件,而在空間光 调變器上或其後錢_其他物件。 工間光機㈣元件是光傳輸性較佳的元件,其射線所產生 々干k至/在$義的位置,並且超過幾毫米的空間同調性長 度k可提供全像重建至少在一個維度具有足夠的解析度。這類 型的光將稱為”充份同調光,,。 為了保證足夠的時間同調性,由光源發射的光譜必需限制於 -個適當狹窄的波絲_,也就是必需接近單色。高亮度發光 極體(LEDs)的光af頻寬是足夠狹窄來確保全像重建的時間同調 性。在空間光觀器上的繞射肖度與波長成_,意指只有一個 單色光源將導致目標點的重建顏。寬騎光制導致寬闊的目 7 200827771 標點以及輸的目標重建。魏賴光譜可哺當料單色的。 發光二極體(LED)的光譜線寬是充份狹窄的,能幫助較佳的重建。 空間同調性與光源的橫向寬度有關。制的絲,像是發光 二極體(LEDs)或者冷陰極發紐⑽Ls),如果它們的發射光是 通過充份狹窄的_也可以献這些需求。雷射絲的光可視為 從繞射限制的點光源所發射,根據模型的的純度、將產生目標的 尖銳重建,即每-個目標職重建域射限制的點。 從空間非_光_產生的光是橫向延伸,並且會造成重建 目標涵。模糊的情況是由重建在既定位置的目標點寬闊大小所 決定。為了在全像建上使用空__絲,必須在亮度和 利用孔控限縣源橫向寬度之_到—個折衷點。較小的光源, 會得到比較好的空間同調性。 如果從直角於縱向延展的觀點來觀察,直線光源可被視為點 光源。因此,光波就能在那個方向進行同調傳播,並且非同調於 其他方向。 :!又而a ’全像圖藉由波在水平和垂直方向的同調超重疊來 王像地重建%景。上述的影像全像圖被稱做全視差全像圖。重建 的物件可被視為在水平㈣直方向的移動視差,如同真實物件。 8 200827771 然而,較大的可視肢需要在朗光觸器的水平和垂直方向具 有高的解析度。 通常,空間光調變器的需求會因為限制於僅具水平視差(_ 的全像圖域少。全像线僅發生於水平方向,在垂直方向不會 有全像重建。這將導致4建物件具有水平㈣視差。透視圖並不 曰在垂直雜上改k。僅具轉視差的全像_要空間光調變器 在垂直方向_減衫齡視麵全賴。僅轉直視差⑽) 的全像圖是同樣可以如此的但較騎見。全像重建只發生在垂直 方向,會產生具有垂直移動視差的重建物件。而在水平方向不合 有移動視差。由於細响__透視《不同,因此透棚 必須分別地產生。 討論相關的技術 典型地’用於產生二軸像的裝置較缺乏緊密,即需要複雜 及龐大的光料統’使其無錢耻可攜錢置,或在手持絲 置,例如手機。以US4属嶋為例,用於產生較大三維圖_ 衣置長度以公尺為單位。以WQ 2⑽4/酬59卿騎略$ 為參考’重建影像三賴像触置具有超過ig公分的厚戶。 因此,上述的習用裝置對於手機或其他可攜式、手持式或較Γ的 顯示裝置具有過厚的厚度。 、 9 200827771 在wo 2004/044659 OJS2006/0055994)之中提及藉由充份同調 光的、、>〇射重建一維場景的褒置;裝置包括點光源或直線光源、用 於對焦光線的透鏡以及空間光調變器。相較於習用的全像顯示, 工間光機祕傳輸模式至少在—個”虛擬觀察員視窗,,重建三 維場询於虛織察員視窗的描述及相關的技術請參考附件!及 H)每個虛擬觀察員視窗是設置於靠近觀察員的眼睛,並且大 —又到限’所以虛擬觀察員視窗是於單—的繞射階級,因此 每们眼目月可以看見二維場景在圓錐狀重建空間的完整重建,圓 錐狀的重趁間是延展於空間絲變器表面及虛擬贿員視窗之 間為了讓全像重建沒有干擾,虛擬觀察員視窗的大小必需不超 過f建的-個繞射階級週雛間隔L這必需至少足夠大, 能讓觀察胁由視窗看見三維場景的完整重建。另—個眼睛能經 由相同的虛擬觀察員視窗,或是由第二個光源所產生的第二個虛 极硯察㈣窗來進行觀察。此時,典型上較切可㈣域會限制 於局部設置的虛擬觀察員視窗。習用的解決方法是在由習用高解 度空間光調變器表面所產生的微小化大區域進行重建,以減低至 ^擬觀察員視窗的尺寸大小。這將產生由於幾何上原因而較小的 ^射角度’以及利用消費者層級的計算設傷,即足夠實現高品質 即時全像重建的光調變器解析度。 、 200827771 %然而’已知產生三維圖像的方法,呈現出由於較大的空間光 调變益表面區域,要—個體積大、容量大 的透鏡來衫、的缺點。耻,裝置财大的厚度及„。 :二當仙這樣域鏡時,由於邊緣的色差將嚴重地減低重 建的品質。在阶議_提及一個改進包括透鏡狀陣列的光 源改進方法,_它是朗於大範_像全侧中,於此作為一 個參考,。 β在US2_/022_中提到了產生三維影像的手機。然而,所 提及的二維影像是自社體顯示所產生。彻自動立體顯示 產生三_像的-烟題是在典型上觀看者察覺_是在顯示器 内部’而觀看者的畴傾向於針麵示器的表社。在許多實 例中’觀看者眼睛職點及三侧像的察覺位置之間的不同^ 可能造成制者不舒服的縣。在细全像技術產生三維圖像的 實例中”這些問題將不會發生,或是大大地減少。 【發明内容】 在第-方面,提供了-個全像顯示裝置,包括寫人至光學式 定址空間光調變器上的有機發光二極體(〇LED)陣列,有機發光一 極體陣列及光學式纽空間細變II會形成相鄰層,光學式定址 空間光調變器會編碼全像圖,當讀取光束陣列照射光學式定址介 間光調變H ’並域學式定址空間光觀驗由_發^二極體 11 200827771 陣列進行射的控麟’全像重建將由裝置所產生。有機發光二 極體陣列及光學式定址空間光調變器可形成面對的相鄰層,並且 在有機發光二極體陣列與光學式定址空間光調變器之間不具中間 成像光學。有機發光二極體陣列及光學式定址空間光調變器可為 固定且實體上直接被連接或是有機發光二極體陣列及光學式定 址空間光調變器為固定且實體上間接相互連接。有機發光二極體 鳙陣列及光學式定址空間光調變器可藉由隔離層實體上間接相互連 接。隔離層可為角過濾器,例如布拉格濾波器(Bragg fii忧〇。 在一實施例中,於基板上提供紅外線有機發光二極體的陣 列,基板對於可見光是透明的,並且紅外線有機發光二極體的陣 列疋鄰近光學式定址空間光調變器。紅外線光線允許對於由光學 式定址空間光調變器所傳送的可見光進行振幅或相位的控制,或 ^ 是一些振幅及相位的組合。 採用陣列的方式,紅外線有機發光二極體允許對於由光學式 定址空間光調變器所傳送的可見光進行振幅或相位的控制,或是 一些振幅及相位的組合。有機發光二極體陣列及光學式定址空間 光調變器是設置在靠近的位置,使得它們形成緊密的成對。緊密 的有機發光二極體陣列及光學式定址空間光調變器成對作用於可 見光上,以致於能在光學式定址空間光調變器中產生全像圖。三 12 200827771 、准圖像可接著由座洛於距離緊密的有機發光二極體陣列以及光學 式定址空間光調變器的成對一些距離的觀看者所觀看到。 有機發光二極體_可翻非主要齡顯示波長,且讀出的 波長可為紅綠藍(隐)之一或更多個。有機發光二極體陣列可為紅 外線發射’並且寫入至光學式定址空間光調變器的紅外線感應層 • 上。有機發光二極體_與光學式定址空間光調變器層可為反射 式,可見光可從有機發光二極體陣列與光學式定址空間光調變器 層反射至觀察員。有機發光二極體_可由多個且較小的可舖置 有機發光二鋪顺成。光學式定址线細變器可包含液晶材 料。光學式定址空間光調變器可包括感光性的染料來作為感光層。 頒不器可彻縣及微透鏡陣舰行照射。微透鏡陣列可在 # 以示1"的小區域上提供局部同調性’此區域是顯示器對於使用在 重建物件之給疋點的資訊進行編碼的唯一部份。顯示器可包含反 射式偏光片。顯示器可包含稜鏡光學膜。 -光學式定址空間光調變器可為弗里德里克兹伽命战⑹ j排列,以提供相健制。全像重建可經由虛擬觀察員視窗而 觀*到虛挺觀祭員視窗可利用空間或時間的多工來進行舖置。 ’,、、、厂、為了操作的,以對於觀察員的左眼接著右眼,在包含全像 13 200827771 的媒介上進行時間序列地重新編碼全像圖。 顯示器可產生全像重建來給予單一使用者觀看 顯示器可以發光二極體作為它的光源。 •、顯示器可以不需要任何的投影透鏡,即可產生聚焦在螢幕上 的二維圖像’且無_螢幕離在光學遠場中的裝置的距離。 顯不4置可使用分絲來發送全賴敍每—個眼睛。 光學式定址可設置在光_編顧之内,且 置於可攜式盒中。 =裝置可彻光束指向元件進行虛擬觀察員視窗追縱, 域二向主體材料内部的液晶區域所組成,其中, 分形狀面是棱形,或是球的部分形狀,或是圓柱的· 向元件的局轴電場方式控制,以變化綠 調變器、光源及與光源排列 顯不裝置可讓光料定址空間光 200827771 的透鏡陣列全部置於可攜式盒内, 擴大10至60倍 且在其中,光源經由透鏡陣列 光學式定址空間光調變器可對有機發光二極體陣 白光波長敏感’但是不_出波長敏感。 列所發射的 光二極體陣列可散發黃色光,讀出坡長可為紅綠藍之 光學式定址空間光調變器可為連續的 光學式定址空間光調變器可由多個且較小 址空間光調變器所組成。 的可舖置光學式定 顯不裝置可編碼全像圖,並且能夠使得全像 重建可被產生 顯示器可設置成只有在觀韩的眼睛是位於接近光源的圖像 200827771 平面時,全像重建才可被正確的看見。 顯不裝置可讓重建三維場景的大小為包含全像圖媒介大小的 函數’重建三維場景可在由含全像圖媒介及可觀看到重建三維場 厅、的虛擬觀察員視窗所定義的體積内之任何地方。 顯示裝置可使得顯示器編譯包括具有需要重建三維場景單一 點之貧訊的區_全像圖,這伽可從定義峨看位置所看見, 此區域(a)編碼重建場景中單—關#訊,⑹且為在全像圖中唯 、為碼那點賴親域,以及(e)尺寸是麵_則彡成整體全像 圖的邛为,尺寸大小需讓由較高繞射階層對於那點的多重重建 能在定義的觀看位置中不被看到。 。顯示器可編譯透過決定鍵物件的真實版本所產生在接近觀 察員眼睛位置的波前而產生的全像圖。 顯示ϋ可讓全像銳為全像__耳轉翻錢全像圖的 傅立葉轉換。 在另-方面’提供了-個全像顯示裝置,包括寫人至成對的 光學式定址空間光調變器上的有機發光二極體_,有機發光二 16 200827771 極體i 式二:===光調變器會形成相鄰層’成對的光學 定址外Π #餘錄照射賴的光學式 、%肢$,並且成對的光學式定址帥細變器經 極體_進行較_時,全像重建將繼所產 光二極體陣列可發出兩_的波長,—種波長是用 = .’、、二制個光學式定址空間光調變器,以進行相位調整,另 1波長是個光學式定址空縣靖器,以進 .種發出不同波長的有機 行振幅调整。有機發光二極體陣列可由 控制。 發光二極體所構成。可使用在有機發光二極體陣列的兩種發射波 長之間的_多王,來促使二個光學式定址空調龍能獨立 在另-方面’提出了-個由產生全像重建所構成的方法,其 鲁 巾全像鍵包含制於此描述賴示裝置的步驟。 、 在另—方面’提供了—鋪造顯稀㈣綠,包括取得坡 璃基板及在基板上連續地印製或是其它方式先產生有機發光二極 體陣列,接著產生提供光學歧址___的料步驟。此 方法可使得在有機發光二極體及光學式定址空間光調變器之間的 絕緣層為噴賤塗層或是其它厚度為10微米以下的塗層。此方法可 讓有機發光二極體陣列及光學式定址空間光調變器層兩者的印製 17 200827771 或產生疋在單一製造程序中的不同步驟。 利用’’空間光調變器編碼全像圖,,意指全像圖是在空間光調 變器上進行編碼。 【實施方式】 籲A.紅外線有機發光二極體顯示器與光學式定址空間光調變器的緊 • 密結合 W個貫施峨供絲狀址空間細變^與可在光學式定址 二間光凋變器上寫入圖樣的紅外線發射顯示器的緊密結合,這樣 的結合能夠在適當的照明條件下產生三維圖像。 光學式定址空間光調變器包括感光器層與位於在傳導性電極 籲之間的液晶(LC)層。,當電壓加至電極,入射在感光器層上的光圖 * #將轉換至用於調變讀取光束的液晶層。在習用技術中,入射光 ‘ 是岭子式定址空間細變器(EASLM)所觀的g入光束所 提供。電子式定址㈣賴賴是线源照射並且成像到光學式 定址空間光調變器上。通常,寫入光束是非同調的,可避免斑點 圖樣現象,而讀取光束是同調性的,具有產生繞射圖案的能力。 光學式定址空間光調變器相較於電子式定址空間光調變器的 18 200827771 優點是光學式定址空間光調魏可具有連續、非像素或非圖樣式 :結構’ ”子式定址空輕n則為像素結構。像素在細 二間刀配上產生銳邊:此銳邊相當於高空間頻率。 j空間頻率會導致在光學遠場裡廣諸射的概。因此,電 子式定光調魏會產生在光學遠場中不希望出現的光學繞 射加工’必雜用如空麟波等已知的技術來消除。在光學處 =序中’進行空間濾、波需要增加額外的步驟,這會讓裝置變的 幸乂厚而且會錢光驗費。光學式纽空間光爾_型的 優點是能夠在光學式定址空間光調變器中允許連續的圖樣魅 連續的圖樣可讓光強度,具有較少的陡養化在任何給 換至光束傳播的方向。因此’較少的陡崎變化擁有能比電子t 址空間光調變器裝置所產生的像素邊緣低的高空間 二疋 =包=该卿光繼㈣中,姆的高空= 的穿^ίΓ為容易,並且比包含電子式定址空間光調變器 式⑽間光__爾魏置。因 ;t 間光調變器可比電子戎定尤予式疋址空 m 變11健具有較低的電_ 求,这可增加可攜式裝置或手持式裝置的電池壽命。以而 在這峨· _要絲她緊錄 空間光聰紅外_發光 =疋址 TO馬八。有機發光 19 200827771The spatial light modulator encodes the handle on the full I. h side # 全细 in the space phase filial piety, ,, 屯 automatic stereoscopic display to the three-dimensional scene light wave wavefront optical reconstruction image hologram can observe the eyes and space Liu, ... 7, 延伸 in the extension of the observer Even the space after the __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ On or after the money _ other objects. The optomechanical (4) component is a component with better optical transmission, the ray generated by the ray k to / at the position of the sense, and the spatial coherence length k of more than a few millimeters can provide holographic reconstruction with at least one dimension Sufficient resolution. This type of light will be referred to as "full dimming," in order to ensure sufficient time homology, the spectrum emitted by the source must be limited to a suitably narrow wave _, that is, must be close to monochromatic. The optical af bandwidth of the polar bodies (LEDs) is narrow enough to ensure the temporal coherence of holographic reconstruction. The diffraction opacity on the spatial azimuth is _, indicating that only one monochromatic source will result in the target point. Reconstruction of the color. Wide riding light system leads to a wide eye 7 200827771 punctuation and reconstruction of the target. Wei Lai spectrum can be fed as a single color. The spectral line width of the light-emitting diode (LED) is narrow and can Helps better reconstruction. Spatial coherence is related to the lateral width of the light source. Wires, such as light-emitting diodes (LEDs) or cold cathodes (10) Ls, if their emission is through a narrow _ These requirements can be made. The light of the laser can be seen as being emitted from a point source that is limited by diffraction, depending on the purity of the model, which will produce a sharp reconstruction of the target, ie the point at which each target is retargeted. Non-light_generated light It is a horizontal extension and will result in the reconstruction of the target. The fuzzy situation is determined by the wide size of the target point reconstructed at the given position. In order to use the empty __ silk in the holographic construction, it must be in the brightness and use the hole control county source. The transverse width is _ to a compromise point. A smaller light source will give better spatial coherence. If viewed from a right angle to the longitudinal extension, the linear light source can be regarded as a point source. Therefore, the light wave can be The direction is homologous and non-coherent to the other direction. :! And the a 'hologram" reconstructs the % scene by the super-overlap of the wave in the horizontal and vertical directions. The above image hologram is called A full-view full-image image is created. The reconstructed object can be viewed as a moving parallax in the horizontal (four) direction, just like a real object. 8 200827771 However, larger visible limbs need to be high in the horizontal and vertical directions of the polar contactor. In general, the demand for spatial light modulators is limited by the fact that there is only horizontal parallax (the hologram of _ is less. The holographic line only occurs in the horizontal direction, and there is no vertical direction. Like reconstruction. This will cause the 4 building objects to have horizontal (four) parallax. The perspective view does not change the vertical miscellaneous k. Only the full image of the parallax is turned off _ the spatial light modulator is in the vertical direction _ minus the age of the face The hologram of turning only the direct parallax (10) is the same, but it is more common. The holographic reconstruction only occurs in the vertical direction, which produces a reconstructed object with vertical moving parallax, and does not have moving parallax in the horizontal direction. Because the fine __ perspective is different, the shed must be produced separately. Discussion of related technologies typically 'the device used to generate the two-axis image is less tight, that is, it requires a complicated and huge light system' to make it moneyless. Shame can be set, or in a hand-held wire, such as a mobile phone. Take US4 as an example, used to generate a larger three-dimensional map _ clothing length in meters. WQ 2 (10) 4 / reward 59 Qing riding slightly $ Refer to 'Reconstructing the image of the three-dimensional touch to have thicker households with more than ig cm. Therefore, the above-mentioned conventional device has an excessive thickness for a mobile phone or other portable, hand-held or relatively slim display device. , 9 200827771, in WO 2004/044659 OJS2006/0055994), refers to the reconstruction of a one-dimensional scene by fully dimming, >ray; the device comprises a point source or a linear source for focusing light Lens and spatial light modulators. Compared with the conventional holographic display, the inter-machine optical transmission mode is at least in the "virtual observer window," the description of the reconstructed three-dimensional field in the virtual weaver window and related technologies, please refer to the attachment! and H) A virtual observer window is placed near the observer's eyes, and the large-to-limit 'so virtual observer window is a single-drilling class, so each eye can see the complete reconstruction of the two-dimensional scene in the conical reconstruction space. The conical shape of the conical is extended between the surface of the space filament and the virtual briber window. In order to make the holographic reconstruction without interference, the size of the virtual observer window must not exceed that of the f-building. This must be at least large enough to allow the observation threat to see a complete reconstruction of the 3D scene from the window. Another eye can pass through the same virtual observer window, or the second virtual pole generated by the second light source (4) window To observe. At this time, the typical (4) domain is limited to the virtual observer window set locally. The conventional solution is to use the high resolution space. The miniaturized large area produced by the surface of the modulator is reconstructed to reduce the size of the observer window. This will result in a smaller angle of geometry for geometric reasons and the use of consumer level calculations. That is, the resolution of the optical modulator is sufficient to achieve high-quality instant holographic reconstruction. , 200827771 % However, the method of generating a three-dimensional image is known to exhibit a large volume due to a large spatial light modulation. The shortcomings of a large-capacity lens, the shame, the thickness of the device, and the thickness of the device. : When such a domain mirror is used, the color difference of the edge will seriously reduce the quality of reconstruction. In the elaboration _ mentions an improved light source improvement method including a lenticular array, which is used in the full side, as a reference. β refers to a mobile phone that produces three-dimensional images in US 2_/022_. However, the two-dimensional images mentioned are generated from the social display. The autostereoscopic display produces a three-image-smoke problem that is typically perceived by the viewer as being inside the display and the viewer's domain tends to be a pin-up. In many instances, the difference between the viewer's eye position and the perceived position of the three-sided image may result in a county that is uncomfortable. In the case where the fine holographic technique produces a three-dimensional image, "these problems will not occur, or be greatly reduced." SUMMARY OF THE INVENTION In a first aspect, a holographic display device is provided, including writing to an optical The organic light-emitting diode (〇LED) array on the address space light modulator, the organic light-emitting diode array and the optical-type blank space fine-change II will form adjacent layers, and the optical-addressed spatial light modulator will encode the whole Like the picture, when the reading beam array illuminates the optically-addressed inter-differential light modulation H' and the eigen-domain-addressed spatial light observation is performed by the _ hair ^ diode 11 200827771 array, the control of the lining 'full image reconstruction will be by the device The organic light emitting diode array and the optically addressed spatial light modulator can form adjacent layers facing each other and have no intermediate imaging optics between the organic light emitting diode array and the optically addressed spatial light modulator. The organic light-emitting diode array and the optically-addressed spatial light modulator can be fixed and physically connected directly or the organic light-emitting diode array and the optically-addressed spatial light modulator are fixed and physically indirectly mutually The organic light-emitting diode array and the optically-addressed spatial light modulator may be physically connected indirectly by the isolation layer. The isolation layer may be an angular filter, such as a Bragg filter (Bragg fii.) In an example, an array of infrared organic light emitting diodes is provided on the substrate, the substrate is transparent to visible light, and the array of infrared organic light emitting diodes is adjacent to the optically addressed spatial light modulator. The infrared light is allowed to be optically The visible light transmitted by the addressed spatial light modulator is controlled by amplitude or phase, or is a combination of amplitude and phase. In an array manner, the infrared organic light emitting diode allows for optically conditioned spatial light modulators. The transmitted visible light is controlled by amplitude or phase, or a combination of amplitude and phase. The organic light-emitting diode array and the optically-addressed spatial light modulator are placed close together so that they form a tight pair. Organic light-emitting diode array and optically-addressed spatial light modulator are paired on visible light So that the hologram can be generated in the optically-addressed spatial light modulator. 3 12 200827771 , the quasi-image can be followed by a closely spaced organic light-emitting diode array and an optically-spaced spatial light modulator Viewed by a pair of distance viewers. The organic light-emitting diode _ can be turned over to the main age display wavelength, and the read wavelength can be one or more of red, green and blue (hidden). Organic light-emitting diode The array can be infrared-emitting and written onto the infrared-sensing layer of the optically-addressed spatial light modulator. The organic light-emitting diode _ and the optically-addressed spatial light modulator layer can be reflective, visible light can be organic The light-emitting diode array and the optically-addressed spatial light modulator layer are reflected to the observer. The organic light-emitting diode can be formed by a plurality of smaller and smaller lay-up organic light-emitting devices. The optical address line fine transformer can be Contains liquid crystal materials. The optically addressed spatial light modulator can include a photosensitive dye as the photosensitive layer. It is not possible to illuminate the county and microlens array ships. The microlens array can provide local homology on a small area of #1', which is the only part of the display that encodes the information used to reconstruct the object. The display can include a reflective polarizer. The display can include a 稜鏡 optical film. - Optically addressed spatial light modulators can be arranged for Friedrich Zigba (6) j to provide a mating system. The holographic reconstruction can be viewed through the virtual observer window* to the vain viewing of the priest's window, which can be used for space or time multiplexing. ',,, factory, for operation, to re-encode the hologram in time series on the medium containing the hologram 13 200827771 for the observer's left eye followed by the right eye. The display can produce a holographic reconstruction to give a single user a view. The display can have a light emitting diode as its light source. • The display can produce a two-dimensional image focused on the screen without any projection lens and without the distance of the screen from the device in the optical far field. You can use the split wire to send all the eyes. Optical addressing can be placed in the light and placed in a portable box. = The device can be used to track the virtual observer window, and the domain is composed of a liquid crystal region inside the main body material, wherein the fractal surface is a prismatic shape, or a partial shape of the ball, or a cylindrical component. The local axis electric field mode control, with the change of the green modulator, the light source and the arrangement of the light source and the light source, allows the lens array of the light-addressed spatial light 200827771 to be placed in the portable box, which is expanded by 10 to 60 times. The light source can be sensitive to the white light wavelength of the organic light emitting diode array via the lens array optically addressed spatial light modulator, but is not wavelength sensitive. The array of light diodes emitted by the column can emit yellow light, and the optically-addressed spatial modulator whose read length can be red, green and blue can be a continuous optical address space. The optical modulator can be multiple and smaller. The space light modulator is composed of. The tilable optical display device can encode the hologram, and can enable omni-image reconstruction to be generated. The display can be set to be holographic reconstruction only when the eye of Guan Han is located in the plane of the image 200827771 close to the light source. Can be seen correctly. The display device allows the size of the reconstructed 3D scene to be a function containing the size of the hologram medium. The reconstructed 3D scene can be within the volume defined by the virtual observer window containing the hologram medium and the viewable reconstructed 3D field. Anywhere. The display device can cause the display to compile and include a region _ hologram with a need to reconstruct a single point of the three-dimensional scene, which can be seen from the defined , position, which is (a) coded to reconstruct the single-off signal in the scene. (6) and in the hologram, only the code is the point of the parent, and (e) the size is the face _, then the overall hologram is ,, the size needs to be made by the higher diffraction level for that point. Multiple reconstructions can be seen in the defined viewing position. . The display can compile an hologram generated by determining the wavefront of the observer's eye position by determining the actual version of the key object. The ϋ ϋ ϋ ϋ ϋ ϋ ϋ 全 全 全 全 全 全 全 全 全 全 全 全 全 全 全 全 全 全In another aspect, a holographic display device is provided, including an organic light-emitting diode on a pair of optically-addressed spatial light modulators, organic light-emitting diodes 16 200827771 polar body i-type two:= ==The light modulator will form the adjacent layer 'paired optical address outer Π# The optical recording of the residual recording, the % limb $, and the paired optical positioning handsome variator through the polar body _ In the case of holographic reconstruction, the wavelength of the photodiode array can be two _ wavelengths, and the wavelength is determined by using the .., two optical spatial spatial modulators for phase adjustment and the other wavelength. It is an optically-addressed space county, which adjusts the amplitude of organic lines with different wavelengths. The organic light emitting diode array can be controlled. It is composed of a light-emitting diode. It is possible to use the _Duowang between the two emission wavelengths of the organic light-emitting diode array to cause the two optically-addressed air-conditioning dragons to independently propose another method of generating holographic reconstruction. The Ruble holographic key includes the steps described herein for describing the display device. In another aspect, 'provided' to lay out the rare (four) green, including obtaining the glass substrate and continuously printing on the substrate or otherwise generating the organic light emitting diode array, and then generating the optical address __ _ material steps. This method allows the insulating layer between the organic light emitting diode and the optically addressed spatial light modulator to be a sneeze coating or other coating having a thickness of 10 microns or less. This method allows the printing of both the organic light emitting diode array and the optically addressed spatial light modulator layer 17 200827771 or to create different steps in a single manufacturing process. Encoding the hologram with the ''spatial modulator, meaning that the hologram is encoded on the spatial light modulator. [Embodiment] A. Infrared organic light-emitting diode display and optically-addressed spatial light modulator are tightly and tightly combined. W is applied to the wire-like address space to be finely changed. The close combination of the infrared-emitting display of the pattern on the fader enables such a combination to produce a three-dimensional image under appropriate lighting conditions. The optically addressed spatial light modulator includes a photoreceptor layer and a liquid crystal (LC) layer positioned between the conductive electrodes. When a voltage is applied to the electrode, the light pattern incident on the photoreceptor layer * will be converted to the liquid crystal layer for modulating the read beam. In the conventional technique, the incident light ‘ is provided by the g-in beam viewed by the Linger-type Address Space Deformer (EASLM). Electronic addressing (4) relies on line source illumination and imaging onto an optically addressed spatial light modulator. Typically, the write beam is non-coherent to avoid speckle patterns, while the read beam is coherent and has the ability to produce a diffractive pattern. Optics-addressed spatial light modulator compared to electronically-spaced spatial light modulators 18 200827771 The advantage is that optically-addressed spatial light modulation Wei can have continuous, non-pixel or non-picture style: structure ' ” sub-location address light n is a pixel structure. The pixel produces a sharp edge on the thin two-knife: this sharp edge is equivalent to a high spatial frequency. j spatial frequency will lead to a wide range of radiation in the optical far field. Therefore, the electronic fixed light adjustment Wei It will produce optical diffraction processing that is undesired in the optical far field. It must be eliminated by known techniques such as empty lining waves. In the optical field = sequence, spatial filtering, waves need to add additional steps, this will Let the device become fortunate and costly. The advantage of the optical type of space is that it can allow continuous patterning in the optically-spaced light modulator to allow light intensity, with Less steeping is applied to any direction of beam propagation. Therefore, 'less steep changes have higher space than the edge of the pixel produced by the electronic address space modulator device. The Qing Guangji (4)姆的高空 = The wearing ^ίΓ is easy, and is lighter than the electronically-spaced spatial modulator (10). The inter-t optical modulator can be compared to the electronically-predetermined 尤 尤 m m Change 11 Jian has a lower power, which can increase the battery life of the portable device or handheld device. In this case, _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Organic light 19 200827771

成有機發光二極體陣列。 的可舖置型光學式定址空間光調變器所組成。 予八疋址空間光調變器,形成不具成 發光二極體可以是可舖置的型式,以組 光學式定址空間光調變器可由多個較小 〜有,發光二極體顯示器與光料定址空間光調變器的緊密組 φ 口可以疋透明。透明的有機發光二極體顯示器是目前已知的,例 在之後的有機發光二極體材料"章節巾所描述的内容。在一個 4子中有機發光一極體顯示器與光學式定址空間光調變器的緊 山、、、δ疋從對邊至二維圖像所形成的邊進行照射,可見光經由有 機發光二極體與光學式定址空間光調變n峨察員傳送。更好的 方法疋有機發光二極體顯示器發出紅外線來寫入至光學式定址空 間光,周、^的紅外線感應感光器層。因為人賴眼睛對紅外線不 鲁敏感’所以觀察者看不見任一種從紅外線寫入光束產生的光。 另一個例子,有機發光二極體顯示器與光學式定址空間光調 變器的緊密組合可讓寫人光束與讀取光束在光學式定址空間光調 又态的對邊上為入射的。在另一個例子,有機發光二極體顯示器 與光學式定址空間光調變器的緊密組合可讓反射層是在光學式定 址空間光调變器的邊上,此為有機發光二極體顯示器的對邊,使 得二維圖像可從光學式定址空間光調變器的相同邊觀察到,也就 20 200827771 疋有機發光二極體顯示n所在的邊,照射源也如同有機發光二極 體顯示器-樣,位於光學式定址空間光調_關邊上:這是反 射顯示器的例子。 包括紅外線有機發光二極體的陣列的實施例中,紅外線發射 有機舍光-極體允許對由光學式定址空間光調變器所傳送的可見 光的振幅、相位或振幅及她的組合進行㈣,促使全像圖在光 學式定址空間細魏巾產生。光學式定址空間光調魏可包含 -對透顿板’在隔板上塗有兩種電力導賴,如同參考資料中 US4,941,735所描述的内容。連續或不連續的感光膜可塗至其中一 個導電膜上。 雙穩態鐵電式液晶或—些其它型式驗晶,可限制在另一個 導電膜誠細之間。起動可加至導賴。在光學式定址空 間光調變器中,光學式寫人光束可利用逐—像素的方式程式或啟 動光學5胃取光束的偏化。寫人光束可湘侧躺光學式定址空 間光调光區來程式光學式定址㈣光調魏。光學式定 址空間光調_被程式的區域,可藉由寫人光束的起動,旋轉閱 言買光束的偏化。 圖&述-種實施例。1〇是照明襄置,用於提供平面區域的 照明,其中照明是具有充份的_性以便能夠產生三維圖像。在 21 200827771 US 2006/250671提及一個用於大區域影像全像圖的照明裝置例 子,其中-個例子是在圖四中。如同丨㈣裝置可為白光光源陣列 的形式,例如冷陰極f紐或發出·線人射在聚㈣、統上的白 光毛光極體’其中聚焦系統可為緊密的,如透鏡狀陣列或微透 鏡陣列。或者,用於10的光源可由紅、綠及藍雷射所組成,或是 發出充份同雛光的紅、綠及紐光二極體所組成。然而,具有 -充份空間同雛的非雷射光源(例如:發光二極體,有機發光二極 #冑’冷陰極榮光燈)是更佳的。雷射光源的缺點,像是在全像重建 上造成雷射賴、姉上較為昂貴以及所有_傷害全像顯示觀 看者或是進行全像顯示裝置組裝工作人員的眼睛等可能的安全問 題。元件10-13的厚度全部可約為數公分,或是更低。元件^可 為找過濾器陣列,使得彩色光線(例如紅色、綠色及藍色光)的像 素是射向元件12,齡如果制彩色統,色彩過細是不需要 的。儿件12是在透明基板上的紅外線有機發光二極體陣列。红外 •、線有機發光二極體陣列將使得每一個紅外線有機發光二極體在元 ,件I3的方向發射的光,平行且符合從唯一對應的色彩像素發出的 先;70件13為絲式定址雜細_。光學式定址空間光 調變器’紅外線有機發光二極體陣列提供寫入光束;元件U發射 的彩色光束賴取光束。錄點M離包括緊密全像随生器^ 的裝置-些距離的觀看者,可從15的方向觀相三賴像。1件 10、η、I2及I3是配置成實體連接(真實上連接),每一個形成結 22 200827771 構的一層,使得整體為單-、統—的物件。實體連接可為直接的。 或疋間接的,如果有薄的中間層,覆蓋在相鄰層之間的膜。實體 連接可限齡雜正確的相互組合排_小區域巾,或是可延伸 較大为區4 4至層的整個表面。實體連接可由層與層的黏接 來實現,修藉由賴絲魏__方式,峨形成緊密的 全像圖產生H 15,或是藉域細领方式(參考概錄造程 份)〇 几件10可包合-個或兩個稜鏡光學膜來增加顯示器的亮度: 這樣的膜是已知的,例如在US 5,056,892與us 5,919,551中所描 述_容。元件1G可包含偏光元件,或是偏光元件的集合。線: 偏光薄収其中-個例子。另外—個例子是反射式偏光片,可傳 达-個線性偏化狀態,並且反射正交雜偏化狀態這樣的薄片 是已知的,例如在US 5,828,488中所描述的内容。另一個例子是 反射式偏光片,可傳送一個圓形偏化狀態,並且反射正交圓形偏 化狀態-這樣的薄片是已知的,例如在Us 6,181,395中所描述的 内容。元件1G可包含聚減統,此聚錢統可為緊密的,例如透 鏡狀陣列或微透鏡_。元# 1G可包含其它在背光科技的領域中 已知的光學元件。 圖四是習用技術側視圖,指出垂直聚焦系統n〇4的三個聚焦 23 200827771 元件1101、1102、1103,採用圓柱形透鏡水平排列於陣列中的形 式,參照於參考資料WO 2006/119920。並以水平線光源LS2幾近 準直的光束通過照明單位的聚焦元件11〇2至觀察員平面〇p為 例。根據圖四,許多的線光源LS1,LS2, LS3是一個個上下排列。 每一個光源發射的光,在垂直方向是充份空間同調性的,在水平 方向是空財襲性的。這個光會通過光調魏SLM的傳輸元 件。這個光因為全像圖編碼的光調變器Slm的元件,僅在垂直方 向的繞射。聚焦το件11 〇2在觀察員平面〇p以數個繞射階級(只有 -個是有用的)成像光源LS2。由光源LS2所發射的光束是作為只 通過聚焦系統1104的聚焦元件贈的例子。在圖四中,三個光 束顯示第-繞射階級_、第零繞射階級聰及負一繞射階級 服。與單-點光源相比,線光源允許非常高的光強度產生。使 用多個已增加效率與針對重建三維場景的每—個部分進行線光源 _的全縣域可提升有效的光強度。另—個優點,不採用雷射, 多個分隔的(例如在可域絲—部份的_之後)常見光源可產 生充份的同調光。 =對有機發光二極體與光學式定址空間光調魏、敝合的緊密 更進〃 * Λ施财,可使料對有機發光二極體與光學 式定址空間光調變器的組合的緊密組合,以連續及緊密的方式來 24 200827771 調變的振幅及相位。因此,由振幅與相位組成的複數可以逐一像 素的方式在傳送光中編譯。 這個實施例包含第一由紅外線有機發光二極體陣列及光學式 疋址空間光调變斋配對的緊密組合及第二由紅外線有機發光二極 體陣列及光學式定址空間光調變器配對的緊密組合。 第一對調變傳送光的振幅,第二對調變傳送光的相位。也可 以第-對調變傳送光的相位,第二對調變傳送光的振幅。每一個 紅外線有機發光二極體陣列與光學式定址空間光調變器的緊密組 a可如同在A部伤所描述的。兩對紅外線有機發光二極體陣列與 光予式定址空間光調變H的緊密組合是由紅外線過濾騎分離, 紅外線過濾器會吸收紅外線而不處理可見光。 在第步驟中’第一紅外線有機發光二極體陣列寫入圖樣, 、提供在第光學^^址^卩杭調變旨巾的振幅調變。在第二步 驟中,第二紅外線有機發光二極體_寫人圖樣,以提供在第二 光學式定址空間光調變器中的相位調變。紅外線濾、光片阻止紅外 、、、、二矣、版帛緊⑯組合—對紅外線_有機發光二極體陣列與光學 式疋址空間光觀H到第二緊密組合—對紅外線有機發光二極體 車列。光子式疋址空間光調變器.紅外線過濾、器也預防從第二對紅 25 200827771 外線有機發光二極斷顺光學式定址㈣光調㈣的緊密組合 的紅外線’賴至第-對紅外線有機發光二極體_與光學式定二 空間光調魏的緊密組合。然而,紅外線猶轉送從第—對红 外線有機發光二顧_與絲式定址郎光調魏的緊密組合 的可見光’赠為第二對紅外線有機發光二極轉解光學式定 址空間光調變11㈣密組合中的讀取光束。由第二光學式定1空 間光調變器傳送的光已在振幅與相位進行調變,因此當觀看者觀 看包含這兩個緊密組合對的裝置所發射的光時,觀察者可觀 三維圖像。 π 由於習用相位與振幅_變技術促賴數數值的表現,致使 «發光二極體顯示器與光學式定址空間光調變器兩者都具有高 解析度。因此,這個實_可應祕產生全像圖像,使得觀看者 可看到三維圖像。 在圖二中,顯示—個實施_子。20是照雜置,用於提供 平面區或的,日〃、明’並且&明具有充份的同雛,能狗產生三維圖 像。如在US 2_/25G671中提供了關於大區域影像全像_實例 即為-個例子。這類型的裝置如同20可採用白色光源陣列的形 式’例如冷陰極螢紐或發出的光線人射在聚焦系統上的白光發 光二極體,其中聚㈣統可為緊密的,如透鏡狀_或微透鏡陣 26 200827771 列。或者,用於20的光源可由紅、綠及藍雷射所組成,或是發出 充份同調性光的紅、綠及藍發光二極體所組成。然而,具有充份 空間同調性的非雷射光源(例如:發光二極體,有機發光二極體, 冷陰極螢光燈)是更佳的。雷射光源的缺點,像是在全像重建上造 成雷射斑點、相對上較為昂貴以及所有關於傷害全像顯示觀看者 或是進行全像顯示裝置組裝工作人員的眼睛等可能的安全問題。 元件20-23、2㈣的厚度全部可約紐公分,或是更低。元 件21可包含色彩過濾斋陣列,使得彩色光線(例如紅色、綠色及藍 ^光)的像素是射向元件22,儘管如果使用彩色光源,祕過濾器 疋不而要的。70件22是在透赌板上的紅外線有機發光二極體陣 列。紅外線有機發光二極體陣列將使得每一個紅外線有機發光二 _在元件23的方向發射的光,平行且符合從唯—對應的色彩像 素發出的光。元件Μ為絲式紐帥細魏。·光學式定 址空間光調魏,紅外線有機發光二極體_提供寫人光束;元 件21發射的彩色光束為讀取光束。元件%是紅外線過遽器,只 傳送可見絲巾__,使得元件Μ所飾_卜線光不影 響讀27。元件27是絲式定址空聰艘H。元件28是在透 明基板上的紅外線有機發光二極體陣列。紅外線有機發光二極體 陣列將使传母-個紅外線有機發光二極體在元件π的方向發射的 光’平行且符合從唯—軸的色彩像素發㈣光。·光學式定 27 200827771 址空間光調變器27 ’紅外線有機發光二極體陣列28提供寫入光 束;元件26魏卿色林為讀取紋。_傳送光,元件23 調變振幅,兀件27調變相位。也可以元件27調變振幅,元件 調變相位。因為從透明基板28上紅外線有機發光二極體陣列來的 光疋發射在tl件26的方向,元件26可吸收紅外線光,防止元件 28的光至光學式定址空間光調變器23。這樣的設定,兩個有機發 *光二極體陣列22及28放出的光線,在實質上為相反的方向,確 #保兩個光學式定址空間光調變器23及27可放置在接_位置。 將光學式定址空間_變器23及27 #近能夠減少鮮耗損及因 光束分歧喊生的像料音_ : #光學式定址空間細變器Μ 及27是非常靠近的,可實現通過光學式定址空間光調變器的彩色 光線光束的非重疊傳播的較佳近似值。圖二元件27及^的次序 可以相反,但是料認為是理想對於實現通過光學式定址空間光 参調變器23及27的彩色光線光束之間低串音及高傳輸目標的設定。 — 元件2G可包含—個或義稜鏡光學膜來增加顯示器的亮度: 這樣的膜是已知的’例如在us 5,〇56,892與仍5,9i9,55i中所描 d的内谷。7G件20可包含偏光元件’或是偏光元件的集合。線性 偏光薄収其中—侧子H個例子是反射式偏光片,可傳 达—個線性偏化狀態,並且反射正交線性偏化狀態·這樣的薄片 是已知的,例如在us⑽,傷中所描述的内容。另一個例子是 28 200827771 偏t:二傳=一個圓形偏化狀態’並且反射正交圓形偏 二=7、存片疋已知的,例如在us 6,181,395中所描述的 户: 7Gf 20可包含聚焦系統,此聚焦系統可為緊密的 :雜藏透鏡陣列。元件2。可包含其它在背光科技: 已知的光學元件。 Ύ 位賴24離包㈣密全像誠生器25職置—些距離的觀 ,可從25的方向觀看到三維圖像。元件20、21、22、23、26 Γ及Γ是配置成實體連接(真實上連接),每一個形成結構的-g使件ι體為單-、統—的物件。實體連接可為直接的。或是 間接的’如果有薄的中間層,覆蓋在相鄰層之間的膜。實體連接 可限制在確保正確的相互排觸小區域中,或是可延伸至較大的 區域’甚至層的整個表面。實體連接可由層與層的黏接來實現, 例域由使用光學傳獅_的方式,以便形«密的全像圖產 生益I5,或是糟由其它任何的方式(參考概要製造程序部份)。 、,在圖一中’理想情況下有機發光二極體陣列22及28放出的 光線疋相w準直的。然而,實際有機發光二極體放出的光線可能 為不準直,例如朗伯(Lambertian)(完全擴散)分配的光。當有機發 光一極體的級紐不是十分準直時,有機發光二極體可以盡可 能的靠近對應的光學式紐空間光調變器。在這樣的情況,二射 29 200827771 在光學式定址空_魏表面_度將變化至近似人射角餘弦的 平方。在45。或60。的入射光將導致強度僅為垂直入射光的二分之 -或是四分之-。因此,假如有機發光二極體是充份烟隔地隔 開’可見絲素紐細小,並且足夠靠近光學式定址空間光調變 器,幾何效應將導致橫越光學式定址空間光調變器空間上產生的 電位差發生重大義’甚至是在錢發光二鋪光放射分配為郎 伯(Lambertian) 制軌τ。场的紅外、_度在錢發光二極 體的光垂紅射的絲式定址空間細魏_之卩柯能不會降 至零,這可能導致裝置可實_對_低。但是如果能簡化裝置 結才冓,減少的對比是可接受的。 、,在圖二中,理想情況下有機發光二極體陣列22及28放出的 光線是相當準直的。然而,實際有機發光二極體放出的光線可能 為不準直,例如朗伯(Lambertian)(完全擴散)分配的光。當有機發 光極體的光放射是不準直時’有機發光二_的幾何光分配可 利用布拉格(Bragg)過遽器全像光學元件來進行修正,例如在us ⑽扇中所描述_容。布拉格過齡全像光學元件可造成光 準直’或是比起沒有·此元件具有較佳的準直性。圖八顯示了 布拉格過細全像光學元件的_實例。在圖八中,80是有機發 光二極體_ ’ 81是全像絲元件雜格職H,包含布拉料 面’例如布拉格平面84,㈣為光學式定址空卩_艘器。在有 30 200827771 機發光二極斷列财的—個單—有機發光二極體83,發射的红 外線的分佈是如%所示朗分佈。由有機航二極斷列⑽所 發射的光躲%,在全像絲騎^巾_錄,㈣近似正交 的入射在絲式纽如細_ 82上。树财法巾,改進入 射在光學式疋址空間細變n 82上的紅外線的準直性是可以實現 的0 、An organic light emitting diode array. The fabricizable optically addressed spatial light modulator is composed of. To the eight-site spatial light modulator, the formation of the non-lighting diode can be a layable type, the group optically positioned spatial light modulator can be a plurality of smaller ~ have, light-emitting diode display and light The tight group φ port of the material-storing spatial light modulator can be transparent. Transparent organic light-emitting diode displays are currently known, as exemplified by the later organic light-emitting diode materials "chap towel. In a 4-sub-substance organic light-emitting diode display and an optically-addressed spatial light modulator, the tight mountain, the δ 照射 illuminates the side formed by the opposite side to the two-dimensional image, and the visible light passes through the organic light-emitting diode. Light-adjusted n-inspector transmission with optical addressing space. A better method 疋 the organic light-emitting diode display emits infrared light to write to the optically-addressed spatial light, the infrared-sensing photoreceptor layer. Because people rely on the eyes to be sensitive to infrared rays, the observer cannot see any kind of light generated from the infrared writing beam. As another example, the close combination of an organic light emitting diode display and an optically addressed spatial light modulator allows the write beam and the read beam to be incident on opposite sides of the optically addressed spatially tuned state. In another example, the close combination of the organic light emitting diode display and the optically addressed spatial light modulator allows the reflective layer to be on the side of the optically addressed spatial light modulator, which is an organic light emitting diode display. On the opposite side, the two-dimensional image can be observed from the same side of the optically-addressed spatial light modulator, that is, 20 200827771 疋 organic light-emitting diode shows the side where n is located, and the illumination source is also like an organic light-emitting diode display - Sample, located in the optical address space light tone _ off edge: This is an example of a reflective display. In an embodiment comprising an array of infrared organic light emitting diodes, the infrared emitting organic light-emitting body allows for the amplitude, phase or amplitude of the visible light transmitted by the optically addressed spatial light modulator and her combination (4), The hologram is generated in the optically addressed space. Optically-spaced spatial tones can include - two pairs of power guides on the spacers, as described in the reference US 4,941,735. A continuous or discontinuous photosensitive film can be applied to one of the conductive films. Bistable ferroelectric liquid crystals or some other types of crystals can be confined between another conductive film. Start can be added to the guide. In an optically addressed spatial light modulator, the optical write beam can be programmed in a pixel-by-pixel manner or to initiate the polarization of the optical 5 gastric beam. The human beam can be placed on the side of the optically-addressed spatial light dimming area to program the optical address (4). The optically-addressed spatial tone _ is the area of the program that can be rotated to read the polarization of the beam by the start of the write beam. Figure & described - an embodiment. 1〇 is an illumination device for providing illumination of a planar area, wherein the illumination is sufficiently sturdy to be capable of producing a three-dimensional image. An example of a lighting device for a large area image hologram is mentioned in 21 200827771 US 2006/250671, wherein an example is shown in FIG. As in the case of the 丨 (4) device, it may be in the form of a white light source array, such as a cold cathode f ray or a white light illuminating body in which the ray is emitted on the poly (four), the focus system may be tight, such as a lenticular array or micro Lens array. Alternatively, the light source for 10 may consist of red, green, and blue lasers, or a red, green, and neon diode that emits sufficient light. However, a non-laser light source (e.g., a light-emitting diode, an organic light-emitting diode #胄' cold cathode glory lamp) having a sufficient space is preferable. The shortcomings of laser sources, such as laser glare on holographic reconstruction, are expensive, and all _injury holograms show the viewer or the eyes of a holographic display assembly worker. The thickness of elements 10-13 can all be on the order of a few centimeters or less. The component ^ can be used to find a filter array such that the pixels of colored light (e.g., red, green, and blue light) are directed toward the component 12, and if the color is not uniform, the color is too thin to be required. The member 12 is an infrared organic light emitting diode array on a transparent substrate. The infrared and line organic light-emitting diode arrays will cause each of the infrared organic light-emitting diodes to emit light in the direction of the element and the element I3, parallel and consistent with the first color pixel; 70 pieces of 13 are silk Addressing _. Optically-addressed spatial light modulators 'Infrared organic light-emitting diode arrays provide a write beam; the color beam emitted by element U depends on the beam. The recorded point M is from a device that includes a close-up holographic device - some distance viewers can view the image from the direction of 15. One piece 10, η, I2, and I3 are configured to be physically connected (realally connected), each forming a layer of the structure 22 200827771, so that the whole is a single-, unified - object. Physical connections can be direct. Or indirect, if there is a thin intermediate layer, cover the film between adjacent layers. The physical connection can be limited to the correct combination of the _ small area towel, or can be extended to the entire surface of the area 4 4 to the layer. The physical connection can be realized by the adhesion of the layer and the layer. The repair is performed by the Lai Wei Wei __ method, and the 全 forms a close hologram to generate H 15, or by the domain fine collar method (refer to the overview of the production process) The piece 10 may comprise one or two 稜鏡 optical films to increase the brightness of the display: such a film is known, for example, as described in US 5,056,892 and US 5,919,551. Element 1G may comprise a polarizing element or a collection of polarizing elements. Line: Polarized thin and close one of them - an example. In addition, an example is a reflective polarizer that is capable of transmitting a linearly biased state, and a sheet that reflects the orthogonal hetero-biased state is known, for example, as described in U.S. Patent 5,828,488. Another example is a reflective polarizer that transmits a circularly polarized state and reflects an orthogonal circularly biased state - such a sheet is known, for example, as described in Us 6,181,395. Element 1G may comprise a poly-reduction system, which may be compact, such as a lens-like array or microlens. Element #1G may include other optical components known in the art of backlight technology. Figure 4 is a side view of a conventional technique, pointing out three focusings of the vertical focusing system n 〇 4 200827771 Elements 1101, 1102, 1103, in the form of cylindrical lenses arranged horizontally in the array, reference is made to the reference WO 2006/119920. The beam which is nearly collimated with the horizontal line source LS2 passes through the focusing unit 11〇2 of the illumination unit to the observer plane 〇p as an example. According to Figure 4, many of the line sources LS1, LS2, and LS3 are arranged one above the other. The light emitted by each light source is spatially homophonic in the vertical direction and empty in the horizontal direction. This light passes through the optical transmission of the Wei SLM transmission element. This light is only diffracted in the vertical direction because of the components of the hologram-encoded light modulator Slm. The focus το 11 〇 2 is in the observer plane 〇p with several diffraction stages (only one is useful) imaging light source LS2. The light beam emitted by the light source LS2 is an example given as a focusing element only through the focusing system 1104. In Figure 4, the three beams show the first-diffraction class _, the zeroth diffraction class, and the negative one-diffuser class. Line sources allow very high light intensity generation compared to single-point sources. The use of multiple increased efficiency and line-light sources for each part of the reconstructed 3D scene can increase the effective light intensity. Another advantage is that without the use of lasers, multiple sources (for example, after the field-partial _) common light source can produce sufficient dimming. = Closely and more accommodating the organic light-emitting diode and the optically-addressed space, and the combination of organic light-emitting diodes and optical-addressed spatial light modulators. Combine, in a continuous and compact manner, 24 200827771 Modulated amplitude and phase. Therefore, a complex number consisting of amplitude and phase can be compiled in the transmitted light one by one. This embodiment includes a first intimate combination of an infrared organic light emitting diode array and an optical address space, and a second pair of an infrared organic light emitting diode array and an optically addressed spatial light modulator. Close combination. The first pair modulates the amplitude of the transmitted light, and the second pair modulates the phase of the transmitted light. The phase of the transmitted light may also be modulated by the first-pair modulation, and the amplitude of the transmitted light may be modulated by the second pair. A tight set of each of the infrared organic light emitting diode array and the optically addressed spatial light modulator can be as described in the A section. The close combination of the two pairs of infrared organic light-emitting diode arrays and the optically-preserved spatial light modulation H is separated by an infrared filter rider that absorbs infrared light without processing visible light. In the first step, the first infrared organic light emitting diode array is written in a pattern, and the amplitude modulation of the optical device is provided in the first optical device. In a second step, the second infrared organic light emitting diode_writes the pattern to provide phase modulation in the second optically addressed spatial light modulator. Infrared filter, light film to prevent infrared,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Body car column. Photon 疋 空间 space opto-light modulator. Infrared filter, also prevent from the second pair of red 25 200827771 external organic light-emitting diode cut-off optical address (four) light (four) close combination of infrared 'lai to the first - to infrared organic The close combination of the illuminating diode _ and the optically fixed two-space optical modulating Wei. However, the infrared rays are still transferred from the first-to-infrared organic light-emitting _ _ and the silk-type positioning of Lang Guangwei's close combination of visible light' is given as the second pair of infrared organic light-emitting diodes to convert optically-addressed spatial light modulation 11 (four) dense The read beam in the combination. The light transmitted by the second optical fixed-space optical modulator has been modulated in amplitude and phase, so that when the viewer views the light emitted by the device containing the two closely combined pairs, the observer can view the three-dimensional image. . π Due to the performance of the conventional phase and amplitude _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Therefore, this real image can produce a holographic image so that the viewer can see the three-dimensional image. In Figure 2, an implementation_sub is shown. 20 is a miscellaneous, used to provide a flat area, and the Japanese, Ming, and & Ming have a good co-linger, can produce a three-dimensional image of the dog. For example, a large-area image hologram is provided in US 2_/25G671. This type of device can be as in the form of a white light source array, such as a cold cathode fluorescent button or a white light emitting diode that emits light onto a focusing system, wherein the poly (tetra) system can be compact, such as a lenticular image. Microlens array 26 200827771 column. Alternatively, the light source for 20 may be comprised of red, green, and blue lasers, or red, green, and blue light emitting diodes that emit sufficient tonal light. However, non-laser sources (e.g., light-emitting diodes, organic light-emitting diodes, cold cathode fluorescent lamps) having sufficient spatial homology are preferable. Disadvantages of laser sources, such as laser spots on holographic reconstruction, are relatively expensive, and all possible safety issues with regard to the holographic display of the viewer or the eyes of a holographic display assembly worker. The thickness of elements 20-23, 2 (4) can all be about one centimeter or less. Element 21 may include a color filter array such that pixels of colored light (e.g., red, green, and blue light) are directed toward element 22, although if a color light source is used, the secret filter is not desirable. The 70 piece 22 is an infrared organic light emitting diode array on a gambling board. The infrared organic light emitting diode array will cause each of the infrared organic light emitting light to be emitted in the direction of the element 23 to be parallel and conform to the light emitted from the only corresponding color pixel. The components are silky and handsome. The optical address space is optically modulated, the infrared organic light emitting diode _ provides a write beam, and the color beam emitted by the element 21 is a read beam. The component % is an infrared ray eliminator, and only the visible silk scarf __ is transmitted, so that the component Μ _ 光 光 。 。 。 。 。 。 。 。 。 。 。. Element 27 is a wire-type address. Element 28 is an array of infrared organic light emitting diodes on a transparent substrate. The infrared organic light-emitting diode array will cause the light transmitted by the mother-infrared organic light-emitting diode in the direction of the element π to be parallel and conform to the (four) light from the color-only pixel. · Optical setting 27 200827771 Address space modulator 27 'Infrared organic light emitting diode array 28 provides a write beam; component 26 Wei Qinglin is a read pattern. _ transmits light, element 23 modulates the amplitude, and element 27 modulates the phase. Element 27 can also be modulated in amplitude and the component can be modulated in phase. Since the pupil from the infrared organic light emitting diode array on the transparent substrate 28 is emitted in the direction of the t-piece 26, the element 26 can absorb the infrared light, preventing the light of the element 28 from being optically addressed to the spatial modulator 23. With such a setting, the light emitted by the two organic light-emitting diode arrays 22 and 28 is substantially opposite in direction, and the two optically-addressed spatial light modulators 23 and 27 can be placed in the connection position. . The optical address space _ variator 23 and 27 #近 can reduce the fresh wear and loss of the image sound due to the beam divergence _ : # optical address space fine Μ and 27 are very close, can be realized through optical A preferred approximation of the non-overlapping propagation of the colored light beam of the addressed spatial light modulator. The order of elements 27 and 2 of Figure 2 can be reversed, but is considered to be ideal for achieving low crosstalk and high transmission targets between the colored light beams passing through the optically addressed spatial light modulators 23 and 27. - Element 2G may contain - or an optical film to increase the brightness of the display: such films are known 'for example in the inner valleys of us 5, 〇 56, 892 and still 5, 9i9, 55i. The 7G member 20 may comprise a polarizing element' or a collection of polarizing elements. Linear polarized light is thinned out—H-side examples are reflective polarizers that convey a linearly polarized state and reflect orthogonal linearly polarized states. Such flakes are known, for example in us(10), injuries What is described. Another example is 28 200827771 partial t: two pass = a circularly biased state 'and the reflection orthogonal circular is two = 7, the memory is known, for example, as described in us 6,181,395: 7Gf 20 can Including a focusing system, this focusing system can be tight: an array of miscellaneous lenses. Element 2. Other technologies in backlight technology can be included: known optical components. Ύ 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 The elements 20, 21, 22, 23, 26 and Γ are configured to be physically connected (actually connected), and each of the -g-forming elements of the structure is a single-, unified-type object. Physical connections can be direct. Or indirect 'if there is a thin intermediate layer, cover the film between adjacent layers. Physical connections can be limited to ensuring proper mutual contact with small areas, or can extend to larger areas' or even the entire surface of the layer. The physical connection can be achieved by layer-to-layer bonding. The example field is made by using the optical lion _ to make the shape of the dense hologram I or the other way (refer to the outline manufacturing part) ). In Fig. 1, the light emitted by the organic light-emitting diode arrays 22 and 28 is ideally collimated. However, the light emitted by the actual organic light-emitting diode may be uncollimated, such as Lambertian (completely diffused) light. When the level of the organic light-emitting diode is not very collimated, the organic light-emitting diode can be as close as possible to the corresponding optical-type spatial light modulator. In such a case, the two-shot 29 200827771 will change in the optically-spaced _Wei surface _ degree to the square of the cosine of the human angle. At 45. Or 60. The incident light will result in a intensity that is only two- or - four-quarters of the normal incident light. Therefore, if the organic light-emitting diode is separated by a full smoke, the visible silk fibroin is small and close enough to the optically-spaced spatial light modulator, the geometric effect will result in traversing the optically-spaced spatial light modulator space. The resulting potential difference occurs in a significant sense 'even in the light-emitting two-spreading radiation distribution for the Lambertian orbital τ. The field's infrared, _ degree in the light-emitting diode of the light-red lasing of the silk-type address space fine _ _ Ke can not fall to zero, which may lead to the device can be _ _ low. However, if the device is simplified, the reduced contrast is acceptable. In Fig. 2, the light emitted by the organic light-emitting diode arrays 22 and 28 is ideally collimated. However, the light emitted by the actual organic light-emitting diode may be uncollimated, such as Lambertian (completely diffused) light. When the light emission of the organic light-emitting body is not collimated, the geometric light distribution of the organic light-emitting diode can be corrected by using a Bragg holographic optical element, for example, as described in the us (10) fan. Prague overage holographic optics can cause light collimation or better collimation than without. Figure VIII shows an example of a Prague oversized holographic optic. In Fig. 8, 80 is an organic light-emitting diode _'81 which is a full-image element miscellaneous H, includes a Brah-plane, such as a Bragg plane 84, and (4) is an optically-addressed space_ship. In the case of a single-organic light-emitting diode 83 having a light-emitting diode of 30 200827771, the distribution of the emitted infrared rays is distributed as shown by %. The light emitted by the organic aeronautical two-pole array (10) is occluded in the hologram, and the (four) is approximately orthogonal to the incident on the wire. It is achievable to improve the collimation of infrared rays incident on the fine-grained n 82 of the optical address space.

另-個實關如®五所示。57是照明裝置,用於提供平面區 域的照明,並且照明具有充份的同調性,能夠產生三維圖像。如 在US 2006/250671中提供了關於大區域影像全像圖的實例即為一 個例子。這_雜置可_白色光轉觸形式,例如冷陰極 耳螢絲或發出的光線人射在聚㈣、統上的自光發光二極體,其中 聚焦系統可騎密的,如透鏡轉列或微透鏡陣列Μ。或者,用 於57的絲可由紅、綠及藍雷射所組成,或是發出充份同調性光 的紅、綠及藍發光二極體所組成。然而,具有充份空間同調性的 非雷射光源(例如:發光三極體,有機發光二極體,冷陰極營光燈) 疋更佳的。f射光源的缺點’像是在全像重建上造成雷射斑點、 相對上較為昂貴以及所有關於傷害全像顯示觀看者或是進行全像 顯示裝置組裝工作人員的眼睛等可能的安全問題。 元件57可包含一個或兩個稜鏡光學膜來增加顯示器的亮度·· 31 200827771 這樣的膜是已知的,例如在US 5,056,892與加5,919,551中所描 述的内容。元件57可包含偏光元件,或是偏光元件的集合。線: 偏光薄肢其中-個例子。另外—個例子是反射式偏光片,可傳 送-個線性偏化狀態’並且反射正交線性偏化狀態_這樣的薄片 是已知的,例如在US 5,828,488中所描述的内容。另一個例子是 反射式偏光片’可傳送-個圓形偏化狀態,並且反射正交圓形= 化狀態-這樣的薄片是已知的’例如在仍⑽挪巾所描述的 内容。元件57可包含其它在背光科技的領域中已知的光學元件。 元件57、财4的厚度全部可約域公分,歧更低。元件 51可包含色彩過滤器陣列,使得彩色光線(例如紅色、綠色及藍色 光)的像素是射向元件52,儘管如果使用彩色光源,色彩過渡哭日 不需要的。 …。疋 元件52是在透明基板上的紅外線有機發光二極體陣列。 線有機發光二極轉顺使得對於每—個色彩像素,—個包含二 種紅外線有機發光二極體的唯—麟在元件%的額發射的二— 會平行且符合從它情對應的色彩像素發㈣光。第—種的红外 線有機發光二極體發射第—波長的紅輕。第二種的紅外線 發光二極體發射第二波長的紅外線,第二波長與第—波長是、 同的。元件53是光學式定址空間光調變器。元件%是另—光學 32 200827771 式定址郎光調義。_光學式定址空間光㈣ϋ,紅外線有 機發光二減陣列提供寫人光束;树51發射的彩色光束為讀取 光束。光學式定址空間光靖n μ是由有機發光二極體陣列^ 發射的兩個紅外線波長中的第_波長所控制。光學式定址空間光 調變器53對於有機發光冰體陣列52所發射的兩個紅外線波長 的第-波長;f敏感,並且會將有機發光二極體_ η發射的兩個 紅外線波長的第二波長傳送。光學式定址空間光調魏Μ是由有 機發光二極辦列52發射的兩條外線波長巾的第二波長所控 制。光學式定址空間光調變器54對於有機發光二極體陣列2所 發射的兩條外線波長㈣—波長是不敏感的,或者可利用光學 式疋址二間光凋變态53的吸收及/或來防止第一紅外線波長的光 到達光學式定址空間光調變器54,藉由它的吸收,在緊密的全像 圖產生裔55中,並不一定需要對於第一紅外線波長不敏感的光學 式定址空間光調變器54。或者也可使用發射兩種不同波長的單一 種有機發光二極體,兩種不同波長的相對強度是由一個參數所決 定,像是橫越有機發光二極體的電壓。兩種不同波長的放射可利 用時間多工進行控制。 對於傳送光,元件53調變振幅,元件54調變相位。也可以 几件54調變振幅,元件53調變相位。這樣的設定,有機發光二 極體陣列52發射具有兩種不同波長的光,確保兩個光學式定址空 33 200827771 間光調變11 53及54可放置麵常接近的位置。將絲式定址空 間光。周U 53及54 #近能約減少光雜損及因絲分歧而產生 的像素串θ問題·當光學式定址空間光調魏%及%是非常靠 近的’可實現通錢學式定址雜細賴的彩色光線光束的非 重疊傳播的較佳近似值。 位於點56離包括緊密全像圖產生器%的裝置—些距離的觀 看者,可從55的方向觀看到三維圖像。元件π、m ^ 及54是配置成實體連接(真實上連接),每-細彡成結構的-層, 使得整體為單-、統—的物件。實體連接可為直接的。或是間接 、士果有薄的中間層’覆盍在相鄰層之間的膜。實體連接可限 制在確保正確的相互排列的小區域中,或是可延伸至較大的區 域’甚至層的整絲面。實體連射由層與層雜接來實現,例 如藉由使帛絲傳郷細的方式,崎形絲_全像圖產生 為55 ’献藉域它任何的对(參考概要製絲序部份)。 在光學式定址空間光調變器執行振幅調變處,在典型的設定 中,入射的讀取光學光束將會藉由將光束通過線性偏光片來達到 線14偏化。振幅調變是由在施加電場中液晶的旋轉所控制,其中 包場疋由感光層所產生,影響光的偏化狀態。在這樣的裝置中, 離開光學式定址空間光調變器的光會通過另一個線性偏光片,可 34 200827771 因光的偏化狀態改變而減少強度,如同它通過光學式定址空間光 調變器時一樣。 · 在光學式定址空間光調變n執行相位調魏,除非它們已處 於定義的線性偏化㈣,在典朗設定中,人·讀取光學光束 將會藉由將光束通猶性偏光片來達親性偏化。她調變是由 ⑯加電%的應用所㈣’其巾電場是由感光層所產生,影響光的 相位狀態。在相位調變的一個例子中,使用向列型相位液晶,光 軸方向疋咖固定的’但是鑛射是施加頓的函數。在相位調 變_子巾’使職概液晶,雙㈣是狀的,但是光軸的方 向疋由杨賴所控制。在她調變實作巾,使用其巾任一種方 法’輸出光束對於由施加電壓控制的輸人光束而言具有相位差。 可執仃相位機的液晶元件的其中一個例子為&她ricksz元件 刺在其中使用了具有正介電質異方向性的向列型液晶的反平 ;行排列區域’如同在US 5,973,817所描述的内容。 C.緊密型光源與電子式定址空間光調變器的緊密組合。 …独實糊提供奸式纽帥_魏與絲_性緊密 :先源的緊密組合’這組合能夠在適當的朗情況下產生三維圖 像0 35 200827771 在這個實施例中,描述了不需要成像光學的電子式定址空間 光調變器與緊密型光源的緊密組合。這個實施例提供了一個光源 或多個光源、聚焦方法、電子式定址空間光調變器(EASlm)及非 必要的分光鏡元件的緊密組合,此組合能夠在適當的照明情況下 產生三維圖像。 在圖十一中為一個實施例。11〇是照明裝置用於提供平面區域 的照明,其中照明是具有充份的同調性以便能夠產生三維圖像。 在US 2006/25〇671提及-細於大區域影像全像圖的照明裝置例 子’其中-個例子是在_中。如同11G職置可為白光光源陣 列的形式,例如冷陰極螢紐紐出的統人射在聚焦系統上的 白光發光二極體,其中聚㈣統可為緊密的,如透鏡狀陣列或微 透,車列。或者,用於11G的光源可由紅、綠及藍雷射所組成, 或是發出充份_性光的紅、綠及藍舰二極體顺成。紅色, 綠色及藍色發光二極體可成為有機發光二極體(〇leds)。然而,具 有充份空間_性的非f射光源(例如:發光二極體,有機發光二 私體〃陰極螢光纟成更佳的。魏絲的缺點,像是在全像重 建上造成雷射斑點、麵上較為 觀看者或是進行全伽-^ 爛①㈣王像頒不 衣置組裝I作人貞魏睛等可能的安全 問題。 X 土 36 200827771 元件110的厚度可約為數公分,或是更低。在較佳實施例中, 元件110 I〗3 h卩厚度會低於三公分,以便提供充份同調性的緊密 光源。元件111可為色彩過濾器陣列,使得彩色光線(例如紅色、 綠色及藍色光)的像素是射向元件112,儘管如果使_色光源, 色彩過濾II是不需要的。元件112是電子式定址空調變器。 兀件113是非必要的絲分光鏡元件。位於點114離包括緊密全 侧產生器115的裝置-些距離的觀看者,可從115的方向觀看 到三維圖像。 元件110可包含-個或兩個稜鏡光學膜來增加顯示器的亮 度:這樣的膜是已知的’例如在us 5,056,894US 5,919,551中 所描述的内容。元件110可包含偏光元件,或是偏光元件的集合。 線性偏光薄片是其中_侧子。另外—個例子是反射式偏光片, 可傳送-鱗性偏錄態’獻反射正交雜偏化㈣·這樣的 薄片是已知的’例如在US 5,828,488中所描述的内容。另一個例 子是反射式偏光片,可傳送一個圓形偏化狀態,並且反射正交圓 形偏化狀態_這樣的薄片是已知的,例如在1;86,181,395中所描 述的内容。元件削可包含其它在縣科技的領域中已知的光= 元件。 電子式定址空間光調變器是空間光調變器的一種,在其中元 37 200827771 件陣列中的每—個元件可彻電子式進行定址。每個元件對入射 、光進仃」乍用例如用來調變它所傳送的光的振幅,或者調 欠匕所傳达的光的相位’麵輕它所傳送的光的振幅及相位的 、且口在US 5,973,817中提供了 一個電子式定址空間光調變器的 赃’關子為相位調變電子式定址謂光調變器。液晶電子式 定址空間光調變||為電子錢址如_魏的—侧子。磁光 包子式疋址空間光調變n為電子式定址空間光調魏的另一個例 —70件110 ’ 111 .,112及m是配置成實體連接(真實上連接), 每-個形成結構的-層,使得整體為單―、統—的物件。實體連 接可為直接的。或是隨的,如果有薄財間層,覆蓋在相鄰層 之間的膜。龍連接可關在確保正確的相互組合排觸小^ 中,或是可延伸至較大的區域,甚至層的整個表面。實體連接可 由層與層雜接來實現,例如藉由使用光學傳送軸劑的方式, 以便形成緊密的全像ffl產生n 115 ’或是藉由其它任何的方式(參 考概要製造程序部份)。 乂 圖四是習用技術侧視圖,指出垂直聚焦系統丨〗0 4的三個聚焦 元件1101、1102、1103,採用圓柱形透鏡水平排列於陣列中:形' 式。並以水平線光源LS2幾近準直的光束通過照明單位的聚焦元 38 200827771 件1102至觀4貞平面qP為例。根細四,許多的線规风脱, LS3是-個個上下排列。每—個光源發射的光,在垂直方向是充 份空朗雛的,在水付向是雜_雛的。_光會通過 光敵為SLM的傳輸元件。這個光因為全像義碼的光調變器 SLM的TL件’僅在垂直方向的繞射。聚焦元件在觀察員平面 OP以數個繞㈣級(只有_個是有_成像光源— 由光源LS2 ‘所發射的光束是作為只通過聚㈣、統賭㈣焦元件觀的例 |子在圖四中,二個光束顯示第一繞射階級η%、第零階級聰 及負p白級11〇7。與單一點光源相比,線光源允許非常高的光強 度產生。使❹個⑽加效輪針對纽三維場景的每一個部分 進行線光源剩的全像區域可提升有效的光強度。另—個優點, 不採用雷射,多個分隔的(例如在可為遮光器-部份的槽闌之後) 苇見光源可產生充份的同調光。 通吊,全像顯示用來在虛擬觀察員視窗中重建波前。波前是 :個實際滅會產生的東西,如果它存在的話。#觀察員的眼睛 疋位於可$為多個虛擬觀耗視窗(v〇Ws)巾的_個虛擬觀察員 視自他會看見重建的物件。如圖六A所示,全像顯示由下列 構成要素所組成:光源,透鏡,空間光調變ϋ及非必要光束分光 鏡0 39 200827771 為了幫助空間光調變器與可顯示全像圖像的緊密型光源的緊 孩、組合產生,單一光源及圖六A的單一透鏡可由光源陣列及透鏡 陣列或透鏡狀陣列分別取代,如圖六B所示。在圖六b中,光源 照射空間光調變器,並且透鏡成像光源至觀察員平面。空間光調 變器編碼全像圖像且調變進入的波前,使得波前可重建在虛擬觀 祭員視自中。非必要光束分光鏡元件可使用來產生數個虛擬觀察 員視窗,例如一個用於左眼的虛擬觀察員視窗與一個用於右眼的 虛擬觀察員視窗。 假設使用辆_與透鏡_或是透餘_,陣列中的光 源必須分隔,使得通過透鏡_或是透鏡狀_全部透鏡的光同 時至虛擬觀察員視窗。 圖八B的裝輯合_可顧於緊密全像顯示的f密設叶。 的全細对_於行動顧,例如在機魏油人數位 幕=。=?,這樣的全像顯示將有-英时或幾英时等級的螢 下面作詳=顯示螢幕的尺啊小至-公分。適合的元件將在 Ϊ)光源/光源陣列 況下。如果觀察員移動, 固疋的單-柄可使祕簡單的情$ 200827771 觀察員可被魏’顯示n可進行調整缝得產生的圖像可讓在新 位置的觀察S看得見。此時,要*是沒虛擬觀察員視窗的追縱, 就是追蹤是在空間光調器之後使用光束指向元件來進行。 可設定的光鱗列可藉由以背光照亮的液晶顯示糾⑽來 實現。為了產生點或線光源轉列’只錢#的像素是切換到傳 送狀態。這些光_錄續足夠小,⑽證提供输空間同調 性予目標全像重建。點光__可與包含二維侧透鏡的透鏡 陣列-起使用。線光源的陣列是較推薦與包含平行排列圓柱形透 鏡的透鏡狀陣列一起使用。 較好的是將有機發光二極體顯示器作為光源陣列。身為自發 光裝置,比起液晶顯示!1大部分產生的光會由如色彩過濾器等元 件吸收或是為處在非充份傳遞狀態下的像素,能具有更好的緊密 性及更好的省電效果。然而,液晶顯示器可能比有機發光二極體 顯示器更具有整簡格優勢,即使有機發光二極體齡器能比液 曰曰顯不㈣更有效麵方式提供光線。當財機發光二極體顯示 抑作為光源陣啊,只有切換至其上⑽素需要在眼睛位置產生 虛擬U視自。有機發光二極體顯示器可具有二維排列的像素 或疋維排列的線光源。每一個點光源的發光區域或是每一個線 光源的見度都需要足夠的小,來保證提供充份空間同讎於目標 41 200827771 的全像重建。同樣的,點光源的陣列較適合與包含二維排列透鏡 的透鏡陣列-起仙。線光源的_是較適合與包含平行排列圓 柱形透鏡的透鏡狀陣列一起使用。 2)聚焦方法:單一透鏡,透鏡陣列或透鏡狀陣列 聚焦工具絲-個絲或多個光源至觀察員平面。當空間光 垂調變器是非常靠近聚焦工具時,在空間光調變器中編碼:資訊的 傅立葉轉換是在觀察員平面中。聚焦工具包含—個或數個聚焦元 件。空間光調變器與聚焦工具的位置是可以交換的。 對於電子式定址空間光調變器與充份同調性的緊密型光源的 緊检組合,薄的聚焦工具是必要的:習用具有凸面的折射透鏡是 過厚的。取而代之的是使用繞射或全像透鏡。繞射或全像透鏡可 餐 具有單一透鏡、透鏡陣列或透鏡狀陣列的功能。這樣的材料是存 在的,如由 Physical Optics Corporation,Torrance,CA,USA 所提供 的表面起伏全像產品。或者是使用透鏡陣列。透鏡陣列包含二維 排列的透鏡,每一個透鏡分配至光源陣列的一個光源。另一個選 擇疋使用透鏡狀陣列。透鏡狀陣列包含一維排列的圓柱形透鏡, 每個透鏡有一個在光源陣列中的對應光源。如上所述,如果使 用光源陣列與透鏡陣列或是透鏡狀陣列,陣列中的光源必須分 ^ ’使得通過透鏡陣列或是透鏡狀陣列全部透鏡的光同時至虛擬 42 200827771 觀察員視窗。 通過透鏡_錢魏轉_透_光躲任何其它的透 鏡是非同調的。因此,在空間光調變器上編碼的全像圖是由次全 像圖所組成’每-個次全像_應至—個透鏡。每—個透鏡的孔 徑必須足狀,_職建物件_禮足夠。可贿用孔徑盘 全像圖編碼區域典型尺寸幾乎—樣大的透鏡,如在 US2006/0055994 中戶斤;l ^ 斤柄这的例子。也就是說每一個透鏡的孔徑是 一或數毫米。 3)空間光調變器 王像圖疋在工間光賴H上編碼。通常,對於全像圖的編碼 疋由複數的-、轉顺組成。因此,理想上空間細變器應該能 • _變通過空間光調變器每一個像素的局部光光束的振幅及相 ♦ 位。然而,—般的空間光調_只能調變振幅或是相位,而不能 ^ 獨立進行調變。 振幅調變空間光調變料與執跡相位編碼組合使用,例如布 克哈特(Burckhardt)編碼。它的缺點是需要三個像素來編碼一個複 數,並且重建的物件亮度較低。 43 200827771 相位調變賴可纽 可佶用所★田沾儿又J垔建。舉例而言, 明、目位編碼,利用兩個像素來編碼—個複數。 可藉由使用柔軟 致不希^二空間光_具有_邊緣的特性,這將導 希王的^繞射階級在它觸繞射圖樣中, 或:除這些問題。柔軟孔徑是不具尖銳傳送截止的孔 L木叙孔授傳送方法的一個例子是具有高斯圖形 已知對於繞㈣、財幫_。理蚁高斯函數_轉娜从 :瓣身的數學結果。因此’相較於利用具有在本= 大銳截止的孔麵行傳送,除了橫向比例參數之外,光束強度 _函數的繞狀不改變的。可使用高斯傳送圖形的薄片陣列二 “些被提供與電子式定址空間細變器孔#排列在—起,與具 、光束傳^銳截止的系統相比,將得到無較高繞射階 j或大量減低的較高繞麵級祕。高斯過絲或錄孔徑過遽 ,會_繞射加工品為高空間鮮。高斯器過駐柔軟孔徑過渡 态會取小化在對於左右眼的虛擬觀察員視窗之間的串音。 4)光束分光鏡元件 虛擬觀察員視窗會限制在空間光調變器編碼資訊的傅立葉轉 換的一個週期性區間。使用現有最大解析度的空間光調變器,虛 擬觀察員視窗的大小為1〇毫米的層級。在一些情況下,對於應用 200827771 在沒有追_全像顯示巾時,這可能會是;Μ、的。㈣多工的虛 擬2察員視S是這___鑛決綠··鼓多健擬觀察員 視έ)在工間夕工的例子中,虛擬觀察員視窗會在空間光調變器 不同的位置同B禮生。這可由光束分光鏡來實現。舉例而言, 工間光调、^:社的—組像素編碼虛擬觀察員視窗1的資訊,另一 組像素編碼她觀察員視窗2的資訊。光束分光鏡會區分這二组 ,光,使得迦觀察員視窗1與虛纖察員視窗2會並列在觀察 員平面。可由無接缝配置虛擬觀察員視窗1與虛織察員視窗2 來產生車乂大的虛擬齡員視窗。多工也可以絲產生左右眼的虛 擬觀察員視自。在這樣的情況下,並不需要無接縫並置,且在對 ;左艮的個或數個虛擬觀察員視窗與對於右眼的一個或婁丈個虛 擬觀察員視窗之間可具有間隔。必需要小心虛擬觀察員視窗的較 高繞射階級並不會與其它的虛擬觀察員視窗重疊。 分光鏡元件的一個簡單例子是包含黑色條紋的視差屏障,其 中黑色條紋之間具有透明區域,如在US2004/223049中所描述的 内合。另一個例子是雙凸透鏡狀薄片,如在US2004/223049中所 榣述的内容。分光鏡元件的另一個例子是透鏡陣列與稜鏡遮蔽 物。在緊密的全像顯示中,典型地可能會希望具有分光鏡元件, 然而典型10毫米大小的虚擬觀察員視窗僅足夠提供一眼,這並不 符合一般觀看者具有兩個眼睛,並且相隔約為1〇公分。然而,可 45 200827771 工,吏用挪色全像重建的產生。對於空間色彩多 Ί仃轉’每—群包含紅色’綠色及藍色色彩元素。 這些群是郎上分秘郎__,並關_射紅色,綠色 及藍色光。每-群會針對目標對應的色彩轉計算的全像圖 編碼。每i重建它的全像目標重建的色彩元素。 5)時間多工 在時間多工的情況下,虛擬觀察員視窗會在空間光調變器上 相同的位置相繼產生。這可由交替光源的位置與同時重編碼空間 光調變器來實現。光源較雜置必緻得娜貞平财的虛擬 觀察員視窗是無接缝並置的。如果_多工是足夠快的,即完整 週期大於25Hz,眼睛將會看見連續擴展的虛擬觀察員視窗。 多工也可以用來產生左右眼的虛擬觀察員視窗。在這樣的情 況下,並不需要無接缝並置,且在對於左眼的一個或數個虛擬觀 察員視窗與對於右眼的一個或數個虛擬觀察員視窗之間可具有間 隔。這樣的多工可為空間或時間多工。 46 200827771 二間與時間的多工也可以結 舉一個例子,三個虛擬觀察 ^ 對於一個眼睛的擴大虛擬觀察員 視由义個擴大的虛擬觀 的擴大趣解胃視r ΘΑ,料生對於左眼 丁、貝視自以及對於右眼的擴大虛擬觀察員視窗。 必需要小心虛擬觀察員視窗 虛擬觀察員視窗重疊。 的較高繞射階級並不會與其它的Another - a real off as shown in the five. 57 is a lighting device for providing illumination in a planar area, and the illumination is sufficiently coherent to produce a three-dimensional image. An example of a large area image hologram as provided in US 2006/250671 is an example. This may be a white light-touching form, such as a cold cathode ear filament or a self-lighting diode that emits light on a poly (four) system, wherein the focusing system can be mounted on a lens, such as a lens Or a microlens array. Alternatively, the filaments for 57 may be composed of red, green, and blue lasers, or red, green, and blue light emitting diodes that emit sufficient tonal light. However, non-laser sources with sufficient spatial coherence (eg, light-emitting diodes, organic light-emitting diodes, cold cathode camplights) are better. The disadvantages of the f-light source are such as the possibility of causing laser speckles on holographic reconstruction, relatively expensive, and all possible safety issues with respect to the hologram of the viewer or the eyes of the holographic display assembly worker. The element 57 may comprise one or two bismuth optical films to increase the brightness of the display. The film is known in the art, as described in U.S. Patent No. 5,056,892 and U.S. Patent No. 5,919,. Element 57 can comprise a polarizing element or a collection of polarizing elements. Line: Polarized thin limbs - an example. Further, an example is a reflective polarizer, a sheet that can transmit a linearly biased state ' and reflects an orthogonal linearly biased state, such as that described in U.S. Patent 5,828,488. Another example is that the reflective polarizer 'can transmit a circularly polarized state, and the reflective orthogonal circular = state - such a sheet is known, for example, as described in the still (10). Element 57 may comprise other optical elements known in the art of backlight technology. The thicknesses of the elements 57 and 4 can be approximately equal centimeters, and the difference is lower. Element 51 may comprise a color filter array such that pixels of colored light (e.g., red, green, and blue light) are directed toward element 52, although color transitions are not required if a colored light source is used. ....疋 Element 52 is an array of infrared organic light emitting diodes on a transparent substrate. The line organic light-emitting diodes turn so that for each color pixel, a single-infrared emitting diode containing two infrared organic light-emitting diodes will be parallel and conform to the color pixels corresponding to it. Hair (four) light. The first type of infrared organic light-emitting diode emits a red-light wavelength of the first wavelength. The second infrared light emitting diode emits infrared light of a second wavelength, and the second wavelength is the same as the first wavelength. Element 53 is an optically addressed spatial light modulator. Component % is another - optics 32 200827771 The style is addressed by Lang Guang. _ Optically-addressed spatial light (four) ϋ, the infrared organic illuminating diminishing array provides a write beam; the colored beam emitted by the tree 51 is a read beam. The optically addressed spatial aperture n μ is controlled by the _ wavelength of the two infrared wavelengths emitted by the organic light emitting diode array. The optically-addressed spatial light modulator 53 is sensitive to the first wavelength of the two infrared wavelengths emitted by the organic light-emitting ice body array 52; f, and the second of the two infrared wavelengths emitted by the organic light-emitting diode_n Wavelength transmission. The optically addressed spatial light tone is controlled by the second wavelength of the two outer line wavelengths emitted by the organic light emitting diode 52. The optically-addressed spatial light modulator 54 is insensitive to the two outer-wavelength (four)-wavelengths emitted by the organic light-emitting diode array 2, or may utilize the absorption of the optically-transmissive light-transformed state 53 and/or Or to prevent the light of the first infrared wavelength from reaching the optically-addressed spatial light modulator 54, by which absorption, in the compact hologram generation 55, does not necessarily require optics that are insensitive to the first infrared wavelength. Space-addressed light modulator 54. Alternatively, a single organic light-emitting diode emitting two different wavelengths may be used. The relative intensities of the two different wavelengths are determined by a parameter such as the voltage across the organic light-emitting diode. Two different wavelengths of radiation can be controlled by time multiplexing. For transmitting light, element 53 is modulated in amplitude and element 54 is modulated in phase. It is also possible to modulate the amplitude by a few 54 and the phase of the component 53. With such a setting, the organic light-emitting diode array 52 emits light having two different wavelengths, ensuring that the two optically-arranged spaces 133 and 27 can be placed in close proximity to each other. The wire is addressed to the space light. Weeks U 53 and 54 #近能约约光 pixel loss and pixel string θ problem caused by silk divergence · When the optical address space light tone Wei% and % are very close 'can achieve money-based learning address A preferred approximation of the non-overlapping propagation of the colored light beam. A viewer located at point 56 from the device including the % of the compact hologram generator can view the three-dimensional image from the direction of 55. The elements π, m ^ and 54 are arranged to be physically connected (realally connected), each layer-structured-layer, so that the whole is a single-, unified--object. Physical connections can be direct. Or indirect, thin and thin intermediate layers 'covering the film between adjacent layers. The physical connections can be limited to small areas that ensure proper alignment, or can extend to larger areas or even the entire surface of the layer. The physical continuation is achieved by layer-to-layer splicing. For example, by making the filature pass fine, the smear-like hologram is generated as a 55' field (any reference to the silk-spinning part). . Where the optically addressed spatial light modulator performs amplitude modulation, in a typical setup, the incident read optical beam will be biased by line 14 by passing the beam through a linear polarizer. The amplitude modulation is controlled by the rotation of the liquid crystal in the applied electric field, wherein the envelope field is generated by the photosensitive layer, which affects the polarization state of the light. In such a device, light exiting the optically addressed spatial light modulator passes through another linear polarizer, which can be reduced in intensity due to changes in the polarization state of the light, as it passes through the optically addressed spatial light modulator. Same time. · Perform phase adjustment in the optically-spaced optical modulation, unless they are already in the defined linear polarization (4). In the setting, the human reading optical beam will be passed through the beam. Achieving pro-bias. Her modulation is made up of 16% of the application (4). The electric field is generated by the photosensitive layer, which affects the phase state of the light. In one example of phase modulation, a nematic phase liquid crystal is used, and the direction of the optical axis is fixed, but the mineralization is a function of the application. In the phase modulation _ 巾 巾 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 In her practice of changing the towel, using either of its methods, the output beam has a phase difference for the input beam controlled by the applied voltage. One example of a liquid crystal element of a configurable phase machine is & her ricksz element spurs the use of a nematic liquid crystal having a positive dielectric anisotropy; the row alignment area is as described in US 5,973,817 Content. C. Close combination of compact light source and electronically addressed spatial light modulator. ...individually provide a new style of traits _Wei and silk _ sexually close: close combination of the source 'this combination can produce a three-dimensional image in the appropriate case 0 35 200827771 In this embodiment, it is described that no imaging is required The close combination of an optical electronically addressed spatial light modulator and a compact light source. This embodiment provides a close combination of a light source or multiple sources, a focusing method, an electronically addressed spatial light modulator (EASlm), and an optional spectroscopic element that produces a three-dimensional image with appropriate illumination. . In Figure 11 is an embodiment. 11〇 is a lighting device for providing illumination of a planar area, wherein the illumination is sufficiently homogenous to enable generation of a three-dimensional image. An example of a lighting device that is finer than a large-area image hologram is mentioned in US 2006/25 〇 671, where the example is in _. Just as the 11G job can be in the form of a white light source array, such as a white cathode light-emitting diode on a focusing system, where the poly (four) system can be tight, such as a lenticular array or micro-transparent. , car train. Alternatively, the light source for 11G may consist of red, green, and blue lasers, or red, green, and blue ship diodes that emit sufficient _ sexual light. Red, green and blue light-emitting diodes can be organic light-emitting diodes (〇leds). However, a non-f-light source with sufficient space _ (for example: a light-emitting diode, an organic light-emitting two-body 〃 cathode fluorescent 纟 is better. The shortcomings of Wei Si, such as the ray caused by ray reconstruction Shooting spots, more viewers on the face, or performing a full gamma-^1 (4) king image, no clothing assembly, I may be a safety problem such as human eye, etc. X 土36 200827771 The thickness of component 110 can be about several centimeters, or It is lower. In the preferred embodiment, the element 110 I 3 3 h 卩 will be less than three centimeters in thickness to provide a tightly tuned compact source. The element 111 can be a color filter array such that colored light (eg red The pixels of green, blue and blue light are directed toward element 112, although color filtering II is not required if a _ color source is used. Element 112 is an electronic addressable air conditioner. Element 113 is an optional wire beam splitter element. A viewer located at point 114 from the device including the close full-sided generator 115 may view a three-dimensional image from the direction of 115. Element 110 may include one or two x-ray films to increase the brightness of the display: Such a film is For example, the element 110 may comprise a polarizing element or a collection of polarizing elements. The linear polarizing sheet is one of the side elements. Another example is a reflective polarizer, which can be transmitted. - Scalar biased state 'reflective orthogonal hetero-biased (4) - such flakes are known 'for example as described in US 5,828, 488. Another example is a reflective polarizer that transmits a circular polarization The state, and the reflection of the orthogonal circularly polarized state _ such a sheet is known, for example, as described in 1; 86, 181, 395. Element shaving may include other light known in the field of county technology. = Component The electronically addressed spatial light modulator is a type of spatial light modulator, in which each component in the array of elements 27 200827771 can be electronically addressed. Each component is incident on the light. For example, it is used to modulate the amplitude of the light it transmits, or to adjust the phase of the light transmitted by the ' ' light to the amplitude and phase of the light it transmits, and the mouth provides an electronic version in US 5,973,817. set The 空间' Guanzi of the space-space optical modulator is a phase-modulated electronic address-based optical modulator. The liquid crystal electronically-positioned spatial light modulation|| is an electronic money address such as _Wei-side. Magneto-optical buns Another example of the optical modulation of the address space is the electronically-spaced space-lighted Wei—70 pieces of 110 '111., 112 and m are configured as physical connections (real connection), each forming a structural-layer, The whole is a single-unit--the object. The physical connection can be direct. Or, if there is a thin fiscal layer, cover the film between the adjacent layers. The dragon connection can be closed to ensure the correct mutual combination Touch small, or extend to a larger area, even the entire surface of the layer. The physical connection can be achieved by layer-to-layer hybridization, for example by using an optical transmission of a talc to form a compact full image ff1 to produce n 115 ' or by any other means (refer to the Summary Manufacturing Procedures section).乂 Figure 4 is a side view of a conventional technique, indicating that the three focusing elements 1101, 1102, and 1103 of the vertical focusing system 丨 0 4 are horizontally arranged in the array by a cylindrical lens: a shape. The beam that is nearly collimated with the horizontal line source LS2 passes through the focusing unit of the illumination unit 38 200827771 to the plane QP of the view 1102 to the 4 贞 plane. The roots are fine, many wire gauges are off, and LS3 is one by one. The light emitted by each light source is filled in the vertical direction, and the water is paid in the water. The light will pass through the transmission element of the SLM. This light is only diffracted in the vertical direction because of the TL of the full-image-like light modulator SLM. The focusing element is on the observer plane OP in several winding (fourth) stages (only _ one is _ imaging source - the light beam emitted by the light source LS2' is used as an example only through the poly (four), gambling (four) focal element view | The two beams show the first diffraction class η%, the zeroth class Cong and the negative p white level 11〇7. Compared with a single point source, the line source allows a very high light intensity to be generated. The wheel performs the holographic area of the line source for each part of the New Zealand 3D scene to enhance the effective light intensity. Another advantage is that no laser is used, and multiple separations (for example, in the case of a shutter-part slot) After 阑 seeing the light source can produce sufficient dimming. The omni-directional display is used to reconstruct the wavefront in the virtual observer window. The wavefront is: what is actually produced, if it exists. # observer The eyes are located at a virtual observer who can see multiple reconstructed windows (v〇Ws) as if they would see the reconstructed object. As shown in Figure 6A, the hologram display consists of the following components: Light source, lens, spatial light modulation and non-essential light Beam splitter 0 39 200827771 In order to help the spatial light modulator and the compact light source capable of displaying the holographic image, the single light source and the single lens of FIG. 6A can be respectively arranged by the light source array and the lens array or the lenticular array Instead, as shown in Figure 6B. In Figure 6b, the light source illuminates the spatial light modulator and the lens images the light source to the observer plane. The spatial light modulator encodes the holographic image and modulates the incoming wavefront, making The wavefront can be reconstructed from the virtual spectator's view. The unnecessary beam splitter element can be used to create several virtual observer windows, such as a virtual observer window for the left eye and a virtual observer window for the right eye. Assuming that the _ and _ or _ _ _, the light source in the array must be separated, so that the light passing through the lens _ or lenticular lens is simultaneously to the virtual observer window. Figure 8B The close-to-full hologram shows the full-key pair. In the action, for example, in the machine, the number of people in the oil is ===, such a holographic display will have a -English or a few inches = Details display screen ah small scale - the lower elements of suitable cm Ϊ) light source / light sources in an array of conditions. If the observer moves, the solid-single-handle can make the secret simple. $200827771 The observer can be displayed by Wei's n can be adjusted to produce an image that can be seen in the new position of the observation S. At this point, it is necessary to track the virtual observer window, that is, the tracking is performed using the beam pointing component after the spatial light modulator. The configurable scale column can be realized by liquid crystal display correction (10) illuminated by backlight. In order to generate a point or line source, the pixel of the 'only money#' is switched to the transfer state. These light_records are small enough, and (10) the evidence provides the spatial coherence of the transmission to the target holographic reconstruction. The spot light __ can be used with a lens array comprising a two-dimensional side lens. An array of line sources is preferably used with lenticular arrays comprising cylindrical lenses arranged in parallel. It is preferred to use an organic light emitting diode display as the light source array. As a self-illuminating device, compared with the liquid crystal display! 1 Most of the generated light will be absorbed by components such as color filters or pixels that are in a non-full transfer state, which can be better tight and better. The power saving effect. However, liquid crystal displays may have a more simplistic advantage than organic light-emitting diode displays, even though the organic light-emitting diodes provide light in a more efficient manner than liquids. When the financial LED is displayed as a light source array, only switching to the top (10) requires a virtual U-view at the eye position. The organic light emitting diode display may have a two-dimensional array of pixels or a line source arranged in a two-dimensional arrangement. The illuminating area of each point source or the visibility of each line source needs to be small enough to ensure that the holographic reconstruction of the target 41 200827771 is provided. Similarly, an array of point sources is preferred for arrays of lenses comprising two-dimensionally arranged lenses. The line source _ is more suitable for use with a lenticular array comprising cylindrical lenses arranged in parallel. 2) Focusing method: single lens, lens array or lenticular array Focus the tool wire - a wire or multiple sources to the observer plane. When the spatial light modulator is very close to the focusing tool, it is coded in the spatial light modulator: the Fourier transform of the information is in the observer plane. The focus tool contains one or several focus elements. The position of the spatial light modulator and the focusing tool is interchangeable. For the close inspection of an electronically addressed spatial light modulator with a closely accommodating compact light source, a thin focusing tool is necessary: the conventional refractive lens with a convex surface is too thick. Instead, a diffractive or holographic lens is used. A diffractive or holographic lens can function as a single lens, lens array or lenticular array. Such materials are present, such as surface relief holographic products supplied by Physical Optics Corporation, Torrance, CA, USA. Or use a lens array. The lens array comprises two-dimensionally arranged lenses, each lens being assigned to a light source of the array of light sources. Another option is to use a lenticular array. The lenticular array comprises a one-dimensional array of cylindrical lenses, each lens having a corresponding source of light in the array of light sources. As noted above, if a source array is used with a lens array or a lenticular array, the light sources in the array must be separated such that the light passing through the lens array or the lenticular array of all lenses simultaneously to the virtual window. Through the lens _ Qian Wei turn _ through _ light to hide any other lens is non-coherent. Therefore, the hologram image encoded on the spatial light modulator is composed of sub-holograms, and each of the holograms should be directed to a lens. The aperture of each lens must be sufficient, and the _ occupational construction object _ is sufficient. Brittle aperture plate The full-image coding area is typically a size-like lens, as in the case of US2006/0055994; l ^ 柄 handle this example. That is to say, the aperture of each lens is one or several millimeters. 3) Space light modulator The king image is coded on the workroom. Usually, the encoding of the hologram consists of a complex -, transition. Therefore, ideally, the spatial fine-tuner should be able to change the amplitude and phase of the local light beam of each pixel through the spatial light modulator. However, the general spatial light _ can only be modulated by amplitude or phase, but not independently. Amplitude modulated spatial light modulations are used in combination with the tracked phase encoding, such as Burckhardt coding. It has the disadvantage of requiring three pixels to encode a complex number and that the reconstructed object is less bright. 43 200827771 Phase modulation Lai Ke New can be used ★ Tian Zhaner and J Jianjian. For example, the explicit and target encoding uses two pixels to encode a complex number. By using the softness of the two spatial light _ with _ edge characteristics, this will guide the king's diffraction class in its touch diffraction pattern, or: in addition to these problems. The soft aperture is a hole that does not have a sharp transfer cutoff. An example of a transfer method is to have a Gaussian graph known for winding (four), Cai Bang. The ant gaussian function _ turn Na from: the mathematical result of the valve body. Therefore, the shape of the beam intensity_function does not change except for the transmission using the hole face having the cutoff at the present = sharp cut. A thin array of Gaussian transfer patterns can be used. "Some are provided in alignment with the electronically addressed spatial fine transformer hole #. Compared with a system with a beam and a sharp cutoff, a higher diffraction order is obtained. Or a large number of lower winding level secrets. Gaussian silk or recording aperture is too high, the _ ray diffraction processed product is high space fresh. Gaussian device over the soft aperture transition state will be reduced to the virtual observer for the left and right eyes Crosstalk between windows. 4) Beam splitter component The virtual observer window limits the periodic interval of the Fourier transform of the spatial light modulator encoded information. Using the existing maximum resolution spatial light modulator, virtual observer window The size is 1〇mm. In some cases, for the application 200827771, there is no chase _ full image display towel, this may be; Μ, (4) multiplexed virtual 2 inspector S is this __ In the case of the interworker's work, the virtual observer window will be in the same position as the B in the spatial light modulator. This can be achieved by a beam splitter. In terms of workshop Tune, ^: the group-pixel code encodes the information of the virtual observer window 1, and the other group of pixels encodes the information of her observer window 2. The beam splitter will distinguish the two groups, the light, so that the observer window 1 and the virtual fiber inspector The window 2 will be juxtaposed on the observer plane. The virtual observer window 1 and the virtual weaver window 2 can be configured without seams to create a large virtual window of the squat. The multiplex can also create a virtual observer for the left and right eyes. In this case, there is no need for seamless juxtaposition, and there may be a gap between one or several virtual observer windows on the left side and one or a virtual observer window on the right eye. The higher diffractive class of the observer window does not overlap with other virtual observer windows. A simple example of a beam splitter element is a parallax barrier containing black stripes with transparent areas between the black stripes, as in US 2004/223049 Another example of the description is the lenticular sheet, as described in US 2004/223049. Another example of a beam splitter element is Mirror arrays and 稜鏡 shields. In a compact hologram display, it may typically be desirable to have a beam splitter element, whereas a typical 10 mm virtual observer window is only enough to provide one eye, which is not in line with the average viewer. The eyes are separated by about 1 cm. However, it can be used for the reconstruction of the holographic hologram. For the spatial color, the 'each-group contains red' green and blue color elements. It is a lang _ _ _ _, and off _ shoot red, green and blue light. Each - group will be encoded for the target corresponding color to the calculated hologram encoding. Each i reconstruct its hologram target reconstructed color elements. 5) Time multiplexing In the case of time multiplexing, the virtual observer windows are successively generated at the same position on the spatial light modulator. This can be achieved by the position of the alternating light source and the simultaneous re-encoding of the spatial light modulator. The light source is more miscellaneous, and the virtual observer window of Nai Ping Ping is seamlessly juxtaposed. If _ multiplex is fast enough, that is, the full period is greater than 25 Hz, the eye will see a continuously expanding virtual observer window. Multiplex can also be used to create virtual observer windows for the left and right eyes. In such cases, no seam juxtaposition is required and there may be a gap between one or more virtual observer windows for the left eye and one or several virtual observer windows for the right eye. Such multiplexing can be space or time multiplex. 46 200827771 Two times and time multiplex can also be cited as an example, three virtual observations ^ for an eye-expanded virtual observer, depending on the expansion of the virtual view of the expanded interest of the stomach, r 料, expected for the left eye Ding, Beishi and the expanded virtual observer window for the right eye. Care must be taken in the virtual observer window The virtual observer windows overlap. The higher diffraction class does not interact with the other

I對於擴大虛擬觀察員視窗的多工是較建議與空間光調變器的 ' 起使用,因為它提供了具對於觀察員移動,視差連續變 化的擴大趣觀察員補。簡單而言,沒有重編碼的多工,會在 擴大的虛擬觀察員視窗的不同部份,提供重覆的内容。 寸間多工也可使用在彩色全像重建的產生。對於三個色彩元 素的時間色彩多工,會依序在空間光調變器上編碼。這三個光源 ^ η二間光調變器上的重編碼同時切換。如果完整週期的重覆是 足夠快的’即大於25Hz,眼睛會看見連續的色彩重建。 6)不想要触高繞麵級的處理 如果較大的虛擬觀察員視窗是由較小的虛擬觀察員視窗拼湊 而成的’虛擬觀察員視窗的較高繞射階級,將可能在其它虛擬觀 47 200827771 祭貝視窗中產生擾料音,除非有執行避免制題的步驟。舉— 個例子’如果每—個虛擬觀察員視窗都是位於空間光調變器編石馬 貝㈣傳立賴換的第零_階級中,虛擬觀察員視窗的第一结 射階級將可能麟近的虛擬觀察員贿重疊。這樣随疊可能: $致航的u ’如果不想要的圖像強度超過需求圖像強度的約 5/〇日守’這將可能會變的特別的明顯。在這樣的情況,會傾向於補 償或抑制較高的繞射階級。 如果照射蝴光調魏的缝是不㈣話,可以使賴定的 角過濾m要不是全像顯示不具追縱魏就是光束分光鏡元件 (例如光束指向元件)是位於空間細_之後的狀況。蚊的角過 渡益可為雜格iHLagg fll㈣献法布立培若魏具㈣^ Perot E)talon)〇 在空間光調變器產生具不想要的繞射階級的幾何光強度分配 上,可使用布拉格過濾器成像光學元件來對幾何光強度分配作修 正,例如在US 5,153,670中所描述的内容。布拉格過濾器全像光 學元件可造成與沒使用此元件時不同的光強度分配。圖七顯示了 布拉格過濾器全像光學元件的功能。在圖七中,7〇是空間光調變 器,71是全像光學元件布拉格過濾器,包含布拉格平面,例如布 拉格平面74。在空間光調變器70上的單一元件73提供如圖中乃 48 200827771 的繞射光強度分配。由空間光調變器70繞射的光線76,在全像 光學元件71中經歷散射,接著在不同於70與71之間的原始傳播 的方向傳送。如果光線76傳送的方向在70與71之間為不想要的 第一階級繞射光,可以容易看見布拉格過濾器71成功改變這些光 至不同的方向,可使它不會造成不想要且可能妨礙觀看者的光學 加工品,典型的觀看者將會位於接近垂直於70的方向。 在專利申請號DE 10勘6 030 5〇3中提及用於抑制繞射階級 的可調式法粒絲魏。到的是條兩魅上部分反射塗 層的共面玻璃薄片之間的液晶層。對於每—個塗層光束的反射, 光束疋部分反射及部分傳送。傳送光束的干擾以及它們之間的相 位差將決疋干擾是縣建設性或者為破雜,如在法布立_痒若定 規具標準中所描述_容。給定—個波長,干擾及傳送會隨著光 束的入射角而改變。 給定-個光傳射向,干擾可藉由改魏晶對於給定光的傳 达方向的折射率來作調整。折射率是由施加於液晶層 控制。耻,在法社娜魏細 是 =整—階級可依需求選擇傳送或為角:: 土 =布魏具是設定為第零階級最佳傳送及第一階級最 ^ 第二與較高階級的傳 运。在法粒·縣魏躺財_中,钱置 = 49 200827771 繞射階級進行固定或依序選擇 根據需求為傳送或為反射。 空間過濾、料侧在繞射階級的選擇。空間過絲可設置在 空間光調賴與虛擬虛擬觀察員視窗之間,並且包含透明與不透 明區域。这些空間猶II可时傳送需要的繞射階級,並且阻礙 不想要的繞鑛級。這些空_濾斯為固定的或是可設定的。 例如··設置在空間光調變器與虛擬觀察員視窗之關電子式定址 空間光調變器可作為可設定式空間過濾器。I's more accommodating to the expansion of the virtual observer window than with the spatial light modulator, because it provides an expanded observer supplement with a constant change in parallax for observer movement. In simple terms, multiplex without re-encoding will provide duplicate content in different parts of the expanded virtual observer window. Inter-input multiplex can also be used in the reconstruction of color holograms. For time color multiplexing of three color elements, they are encoded sequentially on the spatial light modulator. The re-encoding on the three light sources ^ η two-to-side optical modulator is switched at the same time. If the repeat of the full cycle is fast enough 'i.e., greater than 25 Hz, the eye will see a continuous color reconstruction. 6) Do not want to touch the processing of the level of the surface. If the larger virtual observer window is made up of smaller virtual observer windows, the higher diffraction class of the 'virtual observer window' will be available in other virtual views 47 200827771 Spoiler sounds are generated in the Bay window unless there are steps to avoid the problem. Let's take an example. If every virtual observer window is in the zeroth class of the spatial light modulator, the first firing class of the virtual observer window will be close. Virtual observers overlap. This may be as follows: $ voyage u ’ If the unwanted image intensity exceeds the required image intensity by about 5/〇 守 ’, this may become particularly noticeable. In such cases, it tends to compensate or suppress higher diffraction classes. If the slit that illuminates the butterfly is not (4), it can be made that the angular filter m of the dynasty is not the hologram or the beam splitter element (for example, the beam pointing element) is located after the space _. The angle transition of the mosquito can be used as a hybrid iHLagg fll (4). The method is used to produce a geometrical light intensity distribution with an unwanted diffraction class. The Bragg filter imaging optical element is modified for geometric light intensity distribution, such as described in US 5,153,670. A Bragg filter holographic optical component can result in a different light intensity distribution than when the component is not used. Figure 7 shows the function of the Bragg filter holographic optics. In Figure 7, 7 is a spatial light modulator and 71 is a holographic optical element Bragg filter containing a Bragg plane, such as a Bragg plane 74. A single element 73 on the spatial light modulator 70 provides a diffracted light intensity distribution as shown in Fig. 48 200827771. Light 76, which is diffracted by spatial light modulator 70, undergoes scattering in holographic optical element 71 and is then transmitted in a different direction than the original propagation between 70 and 71. If the direction in which the light rays 76 are transmitted is between the 70 and 71 unwanted unwanted first-order diffracted light, it can be easily seen that the Bragg filter 71 successfully changes the light to a different direction so that it does not cause unwanted and may hinder viewing. The optically processed product of a typical viewer will be located approximately perpendicular to the direction of 70. An adjustable method for suppressing the diffractive class is mentioned in the patent application no. DE 10 6 6 030 5 〇 3. The result is a liquid crystal layer between the coplanar glass sheets of the partially reflective coating of the two charms. For each reflection of the coated beam, the beam is partially reflected and partially transmitted. The interference of the transmitted beam and the phase difference between them will determine whether the interference is constructive or detrimental, as described in the Fabry _itch standard. Given a wavelength, the interference and transmission will change with the angle of incidence of the beam. Given a light transmission direction, the interference can be adjusted by changing the refractive index of Weijing for the direction of propagation of a given light. The refractive index is controlled by application to the liquid crystal layer. Shame, in the Fashe Nawei fine = the whole class can be selected according to the needs of the transmission or the angle:: soil = cloth Wei is set to the zero class best transmission and the first class most ^ second and higher class Transport. In the law of the county Weiwei _ _, money set = 49 200827771 The diffraction class is fixed or sequential selection According to the demand for transmission or reflection. Space filtering, the choice of the material side in the diffraction class. Space filaments can be placed between the spatial light and the virtual virtual observer window and contain transparent and opaque areas. These spaces are capable of transmitting the required diffractive class and obstructing unwanted ore-levels. These empty _ filters are fixed or configurable. For example, set in the spatial light modulator and virtual observer window electronically located spatial light modulator can be used as a configurable spatial filter.

7)眼部追縱 在具有眼部追縱的電子式定址空間光調變器與充份同雛的 緊密型光源的緊密組合f,眼部位置鋼器可_觀察員的眼部 位置。所以,一個或數個虛擬觀察員視窗可自動地設置在眼部位 置,使彳于觀祭員可透過虛擬觀察員視窗看到重建的物件。 然而,因為額外裝置需求與影響效能的電力需求限制,追蹤 並不是都能實踐的,尤其對於可攜式裝置或是手持式裝置。沒有 追蹤,觀察員必須自行調整顯示器的位置。這是很容易可以做到 的,因為在較佳的實施例中,緊密顯示器是可能包含在個人數位 助理或行動電話中的手持式顯示器。個人數位助理或行動電話的 使用者,通常會垂直地觀看顯示器,對於調整虛擬觀察員視窗來 50 200827771 對應使用者眼部的位置,並不會有太大崎助。、 持式裝置的使用者會傾向自己改變手上裝置道手 想的觀看狀態,如同在侧卿中所描述的得最理 這樣的裝置中,並不需要朗者眼部触及複雜且 掃描,追蹤光學。但是眼睛追縱可以應用在其它的‘中二 果對於裝勤言’ 求的賴與電鮮會造細度的負擔。 在沒有追縱的情況下,電子式定址空間光調變器與充份同碉 =密型光源的緊密組合’需要足夠大的虛擬觀察員視窗 顯不器的調整。較好的虛織察員視窗大小應該是眼睛瞳孔大小 的數倍。这可由使用小間距空間光調變器的單—較大虛擬觀察員 ^來域,或是由制Af植如光調料峨她小虛擬觀 祭貝視窗拼湊而成。 虛擬觀察員視自的位置是由光源陣列中的光源位置來決定。 眼部位置侧II偵測眼部的位置,並且設定光源的位置,以讓虚 11觀不員視囪適合眼部的位置。在US2⑽㈤分9舛與 US2_/25()671巾财了這翻麵的追縱。 。、另-種方式,當光源位於是固定的位置時,虛擬觀察員視窗 可被移動。光源追縱需要對於光源的光人射肖變化相對不敏感的 51 200827771 空間光調變器。如果光源是為了移動虛擬觀察員視窗位置而移 動’由於在緊密組合中可能有異常光傳播情況,這樣的設定將可 能很難實現緊密型光源與空間光調變器的緊密組合,在這樣實例 中,在顯示器中具有固定的光路徑及作為顯示器中最後光學元件 的光束指向元件,將會有所幫助。 圖二十及二十-中顯示了綠指向元件。這絲束指向元件 在顯示器的輪出端變化光束的角度。它可具有胁χ與y追縱可 控制稜鏡及對於ζ·翁可控繼鏡的絲雜。例如,圖二十及 二十-的光束指向元件的任—個或兩個都可應用於單—裝置内。 光束指向元収可控概航件或是可㈣折射元件。可控制折 射70件可包含填藏晶的關陣列,液晶是嵌人在具有等向性線 電偶極子電鱗張量矩陣中。_具有稜鏡錢鏡的形狀。電場 控制液晶的有效折射率且耻幫助光束指向。電場可在元件間變 化,用以產生在元件間變化的光束指向特性。如圖二十所示,電 :是施加在透·電極之間。液晶具有單歸射特性,並且可^ k擇以使知垂直匕的光軸折射率等同於主體材料或”矩陣"的折 射率。其餘的設定’可從制技射獲得。主體材料具有等向折 射率。如果液晶的光軸是沿著z方向制,如圖二十所示的適當 電%應用’沿著Z方向侧的平面波,當它通過絲指向元件時 並不會有折射發生,料它並沒有遇到任何垂直於它的波映廷向 52 2008277717) Eye tracking In the close combination of the electronic address space light modulator with eye tracking and the compact light source of the same type, the eye position steel can be the observer's eye position. Therefore, one or several virtual observer windows can be automatically placed in the eye area so that the spectator can see the reconstructed object through the virtual observer window. However, tracking is not always possible because of the additional device requirements and power demand limitations that affect performance, especially for portable devices or handheld devices. Without tracking, the observer must adjust the position of the display. This is easily achievable because in the preferred embodiment, the compact display is a hand held display that may be included in a personal digital assistant or mobile phone. A personal digital assistant or a mobile phone user usually views the display vertically, and there is not much help in adjusting the position of the virtual observer window to the eyes of the user. The user of the device will tend to change the viewing state of the hand device, as in the device described in the side, which does not require the eye to touch the complex and scan, tracking Optical. However, the eye tracking can be applied to the burden of other ‘suggestions and slogans. In the absence of tracking, the close combination of the electronic address space light modulator with the full-size = dense light source requires a large enough adjustment of the virtual observer window display. A better virtual weaver window size should be several times the size of the pupil of the eye. This can be done by a single-large virtual observer using a small-pitch spatial light modulator, or by making a small virtual view of the Af plant. The position that the virtual observer sees is determined by the position of the light source in the array of light sources. The eye position side II detects the position of the eye and sets the position of the light source so that the virtual eye is suitable for the position of the eye. In the US2 (10) (five) points 9 舛 and US2 _ / 25 () 671 owed money to this face-to-face memorial. . Alternatively, the virtual observer window can be moved when the light source is in a fixed position. The source tracking needs to be relatively insensitive to the light source's illuminating change. 2008 27771 Space light modulator. If the light source is moved to move the virtual observer window position, 'this setting may make it difficult to achieve a tight combination of a compact light source and a spatial light modulator due to the possibility of abnormal light propagation in tight combinations, in such an instance, It would be helpful to have a fixed light path in the display and a beam pointing element that is the last optical component in the display. Green pointing elements are shown in Figures 20 and 20-. This tow pointing element changes the angle of the beam at the wheel end of the display. It can have a threat and a y tracking control and a wire for the controllable mirror. For example, either or both of the beam directing elements of Figures 20 and 20 can be used in a single device. The beam is directed to the controllable orbital or the (four) refractive element. The controllable refractive index 70 may comprise an array of filled crystals, the liquid crystal being embedded in an isotropic linear electric dipole tensor matrix. _ has the shape of a money mirror. The electric field controls the effective refractive index of the liquid crystal and shame helps the beam to point. The electric field can vary from element to element to produce a beam directing characteristic that varies between elements. As shown in Fig. 20, electricity is applied between the electrodes. The liquid crystal has a single return characteristic, and can be selected such that the refractive index of the optical axis of the vertical 等同 is equivalent to the refractive index of the host material or the "matrix". The remaining settings can be obtained from the technique. The host material has the same The refractive index. If the optical axis of the liquid crystal is made along the z-direction, the appropriate electric % as shown in Fig. 20 applies a plane wave along the Z-direction side, and no refraction occurs when it passes through the wire to the element. It does not encounter any vertical waves that are perpendicular to it. 52 200827771

量(Ρ〇_η§Vec㈣的折射率變化。然而,如果施加電場在電極上, 使仔液峨刪餘z柯,H 光軸的平面波,當它通過光束細元件時,將遭遇最多的折射, 因為沿者㈣(魏可提供_㈣W,德歷最多可能的 率變化。補的紐將可錢兩她辦仔之間,藉由選擇施加 在主體材料的適當電場而進行調整。The refractive index change of the quantity (Ρ〇_η§Vec(4). However, if an electric field is applied to the electrode, the liquid wave of the H-axis, the plane wave of the H-axis, will encounter the most refraction when it passes through the beam fine element. Because the follower (four) (Wei Ke provides _ (four) W, the most likely rate change of the German calendar. The supplement of the new will be able to adjust between the two, by choosing the appropriate electric field applied to the host material.

一如果關疋祕,而不是魏形狀,那舰可完絲束指向。 圖-十-顯讀於光束指向合適的稜形。如果液晶的光軸是沿著Ζ 方向排列,如圖二十-所示的適當電場應用,沿著Ζ方向傳播的 平面波’當它通過縣細元件時並不會有㈣發生,因為它並 沒有在它的偏化方向遇到任何的折射率變化ϋ如果電子領 域是顧橫越電極如此的液晶光轴是與ζ方向垂直的,平面波傳 播化者Ζ方向讀是被偏化平行於光軸將鎌最多的折射因為它 通過光束細it件,因為它經驗最多可能的折射料、統可提供變 化垂直的它㈣映軸量(Poymingvector)。 然而,果施加電場㈣極上,使得液晶的絲是垂直於z 方向’沿著z方向傳播被偏化平行於光軸的平面波,當它通過光 束指向το件時,將遭遇最多的折射,因為它經歷最多垂直它的(系 統可提供的)波映廷向量(Poyntingvec㈣的可能折射率變化。折射 的程度將可在這兩個極端例子之間,藉由選擇施加在主體材料的 53 200827771 適當電場而進行調整。 8)範例 接著將描述一個電子式定址空間光調變器與充份同調性緊密 生光源的緊铪組合的例子,此組合能夠在適當的照明情況下產生 二維圖像,並且可設置於個人數位助理或行動電話中。電子式定 址空間光調_與充份_性緊_統的緊密組合包含作為光 源陣列的有機發光—極體顯示II、電子式定址空間光調變器與透 鏡陣列,如圖十二所示。 取決於虛擬觀察員視窗(在圖十二中以ow代表)的位置需 求,會啟動有機發光二極體顯示器中的特定像素。這些像素照2 電子式定址空間光調變H,並且藉由透鏡陣列成像在觀察員平 面。透鏡_的每個透鏡至少—個像素在有機發光二極體顯示器 中被啟動起來。在繪圖給定的尺寸大小,如果像素間距為, 可追蹤到帶有400μπι橫向增量的虛擬觀察員視窗。這樣的追蹤是 準連續的。 疋 有機發光二極體像素是具有部分空間_性的光源。部分的 同調性會產生目標點的模糊的重建。在繪圖給定的尺寸大丨 果像素寬度為20微米,在距離顯示器10〇亳米的 知點會產生帶 54 200827771 有100微米的橫向模糊的重建 足夠的。 這對於人類視覺系統的解析度是 通過透鏡_的不同透鏡的光,並沒有明顯的制同調性。 同調性的需求是限制至透鏡陣列的每-個單—透鏡。因此,重建 目標點的解析度是由魏_關距來決定。對於人類視覺系统 而言,典型的透鏡間距將為1毫米階級,以保證充份解析度。如 果有機發光二極體間距是2〇微米,這表示透鏡間距與有機發光二 極體間距的比值為5G:卜如果每—個透鏡僅有單—個有機發光二 極體被照亮’這麵每5〇λ2=2,有機發光二極财,僅有一個 有機發光二極體將被照亮。因此,此顯示器將為低功率顯示器。 在此所指的全像顯示與傳統有機發光二鋪顯示器之制差異是 前者集中絲觀看者的_,狀後者魏絲&球面度。傳統 的有機發光二極體顯示器實現約的發光度,(發明者 於κ作中D反之在貝務上’照射型有機發光二極體應能實現 1,000 cd/mA2發光度的數倍。 虛擬觀察員視窗是限制在空間光調變器中編㈣訊的傅立葉 頻譜的-個繞麵級。如果郎光調賴的像雜距是吻瓜,並 且需要兩娜素來編碼-倾數,即如果在相_變電子式定址 空間光調變ϋ上仙2相位編碼,在漏邮的波長,虛擬觀察員 55 200827771 視窗會有10mm寬的寬度。虛擬觀 :::虛擬,視窗拼凑成擴大的 夕的^兄下,需要額外的光學元件,如光束分光鏡。工 =像重建可由時間多工來實現。彩 光體 :波長計算的全像圖的空間光調變器_步重編 顯示器可包含眼部位置備測器,用以摘測觀察員的眼睛位 置。眼部位置細騎接控财機發光二極體顯示器的像 的控制單位。 ’、 在空間光調變器上編碼的全像圖的計算最好是由外部的編碼 單元來執行’目為它需要較高的計算能力。顯示資料會接著送至 個人數位助理或行動電話,以顯示全像產生的三維圖像。 對於實務上的例子,可使用由Sanyo (RTM) Epson Imaging Devices Corporation of Japan 所製造的 2·6 英吋螢幕尺时 XGA液晶顯示器電子式定址空間光調變器。次像素的間距為 17μιη。如果這疋使用於紅綠藍全像顯示的建構’利用全像圖的振 56 200827771 幅調變編碼,在距離電子式定址空間光調魏a4m的地方,觀察 視窗根據計算為Umm寬。對於單色的情況,觀察視窗根據計: 為4mm寬。如果使用相同的設定,但是改用2相位編碼的相位^ 變,觀察視窗根據計算為6mm寬。如果使用相同的設定,但是改 用基諾形式(Kinoform)編碼的相位調變,祕視窗根據計算為 12mm 寬。 此外’仍具有其它種焉解析度的電子式定士止空間光調變器。 Seiko (RTM) Epson (RTM) Corporation 〇fJapan 已發表單色電子式 定址空間光觀H,例如D4:L3D13U 13英啊幕尺寸且像素間 距為15μηι的面板。此公司也發表了同類型的面板 D5:L3D09U-61G00,具有〇·9英对螢幕尺寸及1〇_的像素間距。 於西元2006年12月12日,此公司公告發表同類型的面板 L3D07U_81G00,具有〇·7英吋螢幕尺寸及8·5μιη的像素間距。如 果D4:L3D13U 1·3英吋面板用於建構單色的全像顯示,並採用全 像的布克哈特(Burckhardt)振幅調變編碼,則距離電子式定址空間 光調變器0.4m的位置,虛擬觀察員視窗可計算出為5 6mm寬。 D•成對的電子式定址空間光調變器的緊密組合 在另一個實施例中,可以依序及緊密的方式,利用二個電子 式又址空間光調變器的組合來調變光的振幅及相位。所以,包含 57 200827771 振幅及相位的複數 ’可以逐-像素的方式,編碼於傳送光中 …這個實施例包含二個電子式定址空間光觀騎緊密組合。 第-個電子式定址空間光調魏調變傳送光的振幅,第二個電子 式定址郎光調變器觀傳送光的相位。也可以第—個電子式定 址空間光觀傳送光的她,第二個電子式定址 變器調變傳絲的振幅。每—㈣子式定址空間光觀_可如c 部份所描述—樣。除了採用二個電子式定址空間光調變器之外, =的配置可㈣C部份所描述的—樣。任何相雜是幫助振幅 ^目位的獨立調變的其它種二個電子式定址空間賴變器調變特 性的任意組合都是可能的。 帛々驟中’第—電子式定㈣間糊變器利用圖樣編 振幅觀。在第—步財,第二電子式定址空間光調 編碼’骑行她霞。從第二電子式定址空間光 —專送的光已經於振幅及相位上進行調變,因此,當觀察 置這二個電子式定址簡調變11的裝置所發射的光 π可觀察到三維圖像。 外,Γ於她與雜的_技術促進複數數值絲現。除此之 夕’包子式定址空間光調變器可具有高解析度。因此,此實施例 58 200827771 可用於產生全像®來使得三_像可由觀察員觀察到。 圖十三為一個實施例。130是照明裝置,用於提供平面區域的 照明’其帽蚊具有充__細便能夠產生三維圖像。在 US 2006/250671提及一個用於大區域影像全像圖的照明裝置例 子,其中―_子是在_中。㈣⑽雜置可為自光光源陣 列的形式,例如冷陰㈣絲或糾的絲从錢㈣統上的 白先發先二歸,其_、祕可絲密的,域鏡轉列或微 透鏡陣列。或者,祕B0的光财由紅、綠域雷射所組成, 献發出充份同雛光的紅、綠及藍贱二極體馳成。紅、綠 及藍發光二極體可為有機發光二極體(〇LEDs)。然而,且有充份* 間同雛的非雷射光源(例如:發光二極體,有機發光二極體^ =榮光燈)是更㈣。魏絲的缺點,像是在全像重建上造成 2斑點、相對上較為昂貴以及所有_傷害全像顯示觀看者或 疋進仃全像顯示裝置組裝讀人員魏睛等可㈣安全問題。 树m可包含-個或兩個稜鏡光學膜來增加顯示器的亮 又·廷樣的膜是已知的,例如在us 5,056,892與仍洲州中 :=内容。元件13。可包含偏光元件,或是偏光元件繼^ =偏光薄片是其中-個例子。另外-個例子是反射式偏光片, 可傳送-轉性偏化狀態,並城射正交紐魏雜·這樣的 59 200827771 薄片是已知的,例如在US 5,828,488中所描述的内容。另一個例 子是反射式偏光片,可傳送一個圓形偏化狀態,並且反射正交圓 形偏化狀態·-這樣的薄片是已知的,例如在US6,181 395中所^ 述的内容。元件可包含聚㈣統,此聚㈣統可為緊密的田 例如透鏡狀陣列或微透鏡陣列。元件13〇可包含其它在背光科技 的領域中已知的光學元件。 元件130的厚度可約為數公分,或是更低。在較佳的實作中, 兀件130·134的厚度全部是小於3公分的,以提供充份同調性的緊 密光源。元件131可為战職料列,使縣色統⑽如紅色 綠色及藍色光)的像素是射向元件132,儘管如果使用彩色光源, 色彩過瀘H不需要的。元件132是電子式定妙間光調變器。 元件133是電子式定址空間細魏。元件134是非必要的光束 分光鏡元件。對於傳送光’元件132調變振幅而树133調變相 位。或是,由树133調變振幅而元件132調變相位。將電子式 定址空間光調變H m及13s #近能賊少辨耗損及因光束分 歧而產生的像素φ音問題··當電子式定址空間光調變器I%及⑶ :非¥#近的’可貫現通過電子式定址空間光機騎彩色光線 光束的非重雜播雜佳近健。位於點135純括緊密全像圖 產生器136的裝置一些距離的觀看者,可從136財向觀看到三 維圖像。 200827771 以牛130、13卜132、133及134是配置成實體連接(直 接”母一個形成結構的一層,使得整體為單―、統—^連 體連接可為直接的。或是_的,如果有_中間層°實 鄰層之間賊。實财接可限齡雜正麵相轉才目 中,或是可延伸至較大的區域,甚至層的整個表面。•體:、 由層與層祕接來實現,例域由使料學傳獅^ 可 以便形成緊密的全側產生H ‘或是藉由其它任 ^ 考概要製造程序部份)。 : 參 在電子式定址郎細魏、執龍幅調魏,在典型的咬定 中,入射的讀取光學光束將會藉由將光束通過線性偏光片來= 線性偏化。振蝴變是由在施加t場巾液晶職轉所控制,施加 電場會影響光的偏化狀態。麵樣躲置巾,子式定址空 間光調變器触會通過另-個線性偏光片,可因光的偏化狀態: 變而減少強度,如啦通過電子式定址空間光調魏時一樣。 在電子式定址空間光調變器執行相位調變處,除非它們已處 於疋義的線性偏化狀態,在典型的設定中,入射的讀取光學光束 將會藉由將光束通過線性偏光片來達到線性偏化。相位調變是由 電場的應用所控制’電場會影響光_位狀態。在相位調變的一 61 200827771 個例子中’使用向列型相位液晶,光軸方向是間隔固定的,但是 又折射疋⑯加賴的函數。在她觀的—烟子巾,使用鐵電 卜液日日又折射疋固定的’但是光軸的方向是由施加電壓所控制。 在相位調變實針,使職巾任—種方法,輸㈣束與為施加電 虔函數的輸人光束會具有她差。可執行她霞的減元件的 f中-侧子為F_erieksz元件制,在射使用了具有正介電 質異方向性的向列型;夜晶的反平行排列區域,如同在呢,973,8口 所描述的内容。 ’ ’ 用於緊密全像顯示的緊密組合,包含兩個則、分隔或最小分 隔方式結合的電子式定址如光麵^。較佳的實施方式是兩個 空間光調變ϋ具有相_量的像素。因為兩個電子式定址空間光 5周k器對於觀察員來說並不是等距離的,兩個電子式定址空間光 調變器的像制距可能需要麵的不同(但會贿大概相同),來補 償不同距離對於觀察員所造成的影響。已通過第—空間光調變器 的像素的光’會通過第二空間光調變器對應的像素。因此,光是 會經由兩健間光調變ϋ來調變,並且可社地實現複雜的振= 與相位調變。舉-個例子,第-空間光調變器進行振幅調變 弟一二間光s周變益進行相位調變。同樣地,任何相當於是幫助振 幅及相位的獨立調變的其它種二個空間光調變器調變特性的任音 組合都是可能的。 ~ 62 200827771 必需注意’通過第-空間光調變器的像素的光,只能通過第 二空間光調變器對應的像素。如果從第一空間光調變器像素射出 的光,通過第二空間光難n非對應、鄰近的像素時;串音將會 舍生。每些串音可能會導致圖像品質降低關題。在此提供四個 在像素間最小化串音_的可能方法。由f用的技術可顯而易見 的,這些方法可同樣的朗於㈣份實施例。 ⑴第-個最0單的方法是直接將調整像素後的兩個空間光調 變器連結或黏接在-起。在第—空間光調變器的像素,可能會有 引起光偏轉播的繞射縣。空間光調變器之_分隔必須要足 夠的薄’薄至第二空間光調變轉近像素之間的串音到達可接受 的程度。舉-個例子’具有1〇卿像素間距的兩個電子式定址空 :光調變器關隔’必須小於或等於1G綱叫的等級。這在傳 製造的空間光調變H巾是幾乎何能實_,因為麵蓋的厚度 即為1mm的等級。當然:,能使空間光調變器之間具有薄的分隔^ 、月'口方式’疋較推薦進行在一個程序當中。可應用概要製造 長序部份所描述的製造方法,絲作包含兩_隔距驗小或最 小的電子式定址空間細變器的裝置。 圖十四顯示由狹缝1〇μιη寬的繞射計算而得的菲科繞射數 63 200827771 據圖表,在二維模型中變化離狹縫的距離,縱軸為s]it(z),橫軸為 slit(X)。均勻照明的狹缝是位在χ軸上·5μπι到+5μιη之間,並且Z 為零微米。光傳送媒介被用來獲得15的折射率,為用於緊密裝置 祕型齡。選定的光為具有633⑽真空波長的紅光。綠色與藍 色波長比紅色光小,因此對於紅色光的計算,在三個顏色紅、綠 及藍當中,展現出最強的繞射影響。可以使用ρ_— -Teehndogy (RTM) c〇rp·,Needham,組,的產品 m她㈤ ♦ (RTM)軟體來執行計算。圖十五顯示些微的強度留在狹縫中心上 1〇μιη見犯圍内,為離狹縫距離的函數。在距離狹縫卿m的地方, 圖十五顯示大於9〇%的強度仍然在狹縫的ΙΟμηι寬的範圍内。因 此在4個—維桓型中’小於5%的像素強度會入射在每一個鄰近 的像素上。這是在像素間零邊界寬的_情況下的計算結果。實 際在像素間的邊界寬是大於零的,因此串音問題在真實系統中會 低於:^輯打的結果。在圖十四巾’雜耳繞射圖接近狹縫, -例如離狹缝5〇μιη ’並且有點近似在狹缝的高帽型強度函數。因 .2 ’沒有寬的繞鱗徵接近狹縫。寬的繞射特徵是高帽型函數的 遠場繞射函數的特性,此為制已知的 sine squared函數。寬的繞 、寺徵可由圖十四中距離狹縫細阿的例子觀察到。這指出了綠 ,應可糊將_電子歧址空間光調變器缝的足_近= 制而且將兩個電子式定址空間光調變器設置的非常接近的一 個k點疋繞射數據圖表的函數型式,會域場特性改變至較有效 64 200827771 率包含接近垂直於狹缝的軸的光的函數型式。這個優點是與習用 全像技術的想法相違背的的技術會傾向認為在光通過空間 光調變器的小孔徑時’會引起強的、大的及不可避免的繞射效應。 因此,制的技術;^會有將兩個空脱調變器靠近在l起的動 機’會預触樣的方式會導致必然發生且嚴重由繞射效應所引起 的像素串音問題。 圖十六顯示賊分佈㈣高姻,強度分料離狹缝距離的 函數。等高線的標繪是在對數尺度上,而不是線性尺度。使用了 十條等南線,全部含括觸強度因數範圍。對於1〇卿的狹缝寬 度強度刀配大私度的邊界在距離狹縫大約的範圍内是清 楚的。 在進一步的實施例中,可減少第一電子式定址空間光調變器 的像素孔徑區域來減輕在第二電子式定址空間光調變器的串音問 題0 (2)第二個方法是在兩個空間光調變器之間使用透鏡陣列,如 圖十七所不。較好的方法是讓透鏡的數量和每一個空間光調變間 中的像素數量鱗。兩個空間光調變器關距以及透鏡陣列的間 距可以輕微的不同,來補償觀察員的距離差距。每—個透鏡成像 65 200827771 第一空間光調變器的像素至第二空間光調變器對應的像素上,如 圖十七中大罝光束171所示。也可能光會通過鄰近的透鏡造成串 音問題,如大量光束172所示。如果它的強度是足夠的低,或是 它的方向是充份的不同,使其無法到達虛擬觀察員視窗時,將可 被忽視。 母個透鏡的數值孔徑(Numerical Aperture, NA)必須足夠的 _ 大,以成像具充份解析度的像素。舉一個例子,對於5μπι的解析 度,需要約為G.2的數值孔徑(ΝΑ)。這也表示如果假定是幾合光 學,如果空間光調變器與透鏡陣列的間距為1〇μπι,透鏡陣列與每 一空間光調變器之間的最大距離大約為25μιη。 < \ 也可能指派每個空間光調變器的數個像素至透鏡陣列的一個 _ 透鏡舉-個例子,以第一空間光調變器的四個像素為一群,可 错由透鏡陣列中的—個透鏡來成像到第二空間光調變器的一個由 四個像素所組錢群。這樣的透斜觸透鏡數量會絲一個空 1光调h中的像素數量的四分之—。如此可允許使用較高數值 孔徑的透鏡,因此可獲得較高解析度的成像像素。 (3)第三個方法是射㈣減少第—電子式奴郎光調變器 的像素孔n繞射的觀點來,第二空間光調變器由第一空間光 66 200827771 周夂的的_像素所照射的區域,是由第—電子式定址空間光調 變器的像素孔徑寬度D及繞射摘決定,如圖十人所示。在圖十 斤中d兩個i子式定址空間光調變器之間的距離,❿…是兩個 f 級繞射最小值之間的距離,發生於第零階級最大值的任一 邊。攻是假定為夫朗和斐(Fraunh〇fer)繞射,或是夫朗和斐繞射的 合理近似。 減少孔徑寬度D -方面可減少照射區域細部分的直接投射 的範圍,如圖十八中的虛線所示。在另—方面,依照繞射角正比 於夫朗和斐繞射中的1/D,繞射角會被增加。這增加了在第二電子 式定址工間光賴上照射區蘭寬度w··區域的全部寬度為 W。在夫朗和斐繞射方法中,給予分隔d,D可被決定,並利用方 程式W = D + 2dX/D來最小化〜,此方程式是從夫朗和斐繞射中的 兩個第一階最小值之間的距離推得。 例如’如果λ是0.5 μηι,d是1〇〇_及w是2〇μιη,可得到d 為ΙΟμιη的最小值。然而在這個例子巾,夫朗和斐方法可能不會 是-個好的近似,這侧子酬了使用電子式定址空間光調變^ 之間的距離來控制夫朗和銳射方式中的繞射過程的原則。 (4)第四個方法了光纖面板來成像第—空航調變器的像 67 200827771 素至弟·一空間光调變斋的像素上。光纖面板是由二維排列的平行 光纖所構成。光纖的長度與也因此面板的厚度典型為數公釐,面 板表面的對角線長度是長至數英吋。舉一個例子,光纖的間距可 為 6μπι。Edmund Optics Inc.of Barrington,New Jersey,USA 有銷隹 具有如此光纖間距的光纖面板。每一條光纖從它的其中一瑞引導 光皇另一端。因此,在面板一端的圖像會被傳送至另一端,具有、 高解析度且不用聚焦元件。這樣的面板可作為兩個空間光調變器 之間的分隔層,如圖十九所示。多模光纖較佳於單模光纖,因為 多梃光纖的耦合效率比單模光纖好。當光纖核心的折射率與液晶 的折射率是相穩合時,會得到最佳的耦合效率,因為這可最小化 菲淫耳背向反射損失。 在兩個空間光調變器之間沒有額外的玻璃蓋。偏光片、電極 與配向層是直接連接光纖面板。這些層每_個都是非常的薄,即 為I’m的等級。因此,液晶(LC)層La與LC2是在靠近面板 的地方。通過第—空間光調變器像素的光會被引導至第二空間光 調變器對應的像素。這可最小化鄰近像素的串音。面板傳送第一 空間光調變11輸_的光分佈至第二空間光調變器的輸入端。平 句而°母個像素應至少—個光纖。如果每個像素少於-個光纖 的铦,平均而s,空間光調變器將喪失解析度,造成顯示於全像 顯示中的應用的圖像品質減低。 68 200827771 在圖十九中,第-空間光調變器調變振幅,第二空間光調變 裔調變相位。其它健進完整赫調變的兩個電子式定址空間光 調變器的調變特性組合都是可能的。 图十,、、、員示了對於全像目中編石馬振幅與相位資訊的緊密排列的 例子。 104是照明裝置用於提供平面區域的照明,其中照明是具有充 份的同調性以便能夠產生三維圖像。在us鳩/250671提及一個 _ 用於大區域影像全像圖的照明裝置例子。如同刚的裝置可為白 光光源_的形式’例如冷陰極螢紐紐出的光以射在聚焦 系統上的自光發光二歸,射聚㈣統可騎密的,如透鏡狀 陣列或微透鏡陣列刚。或者,用於雨的光源可由紅、綠及該雷 射所組成,歧發出充朗雛光的紅、敍麵光二極體戶: 成。然而’具有充份空間同調性的非雷射光源(例如:發光二極體, t發光二極體,冷陰極螢光燈)是更佳的。雷射光源的缺點,像 象重建上造成雷射賴、相對上較為昂責以及所有關於傷 。王象頭不觀看者或是進行全像顯示裝置組、 可能的安全問題。 作人貝的眼睛等 示器的亮 70件104可包含一個或兩個稜鏡光學膜來增加顯 69 200827771 度··這樣的膜是已知的,例如在us 5,056,892與us 5卿別中 所描述的内容。元件綱可包含偏光元件,或是偏光元件的集合。 線性偏光料是其中-個例子。另外—個例子是反射式偏光片, 铺送-赠性偏錄態,獻反射正交雜觀織_這樣的 薄片是已知的,例如在US 5,828中所描述的内容。另一個例 子是反射式偏光片,可傳送-侧形偏化麟,並且反射正交圓 形偏化狀態·這樣的薄片是已知的,例如在us 6,⑻,395中所描 述的内谷。7G件104可包含其它在背光科技的領域中已知的光學 元件。 元件104, 100-103❸厚度全部可約為數公分,或是更低。元件 .可包含色彩過濾器陣列,使得彩色光線(例如紅色、綠色及藍 =)的像素是射向元件102,儘管如果使用彩色光源,色彩過= T是不需要的。元件102是編碼相位資訊的電子式定址空間光調 9變器’例如Freedericksz元件。元件⑽是編碼振幅資訊的電子式 疋址工間光5驗&、’例如在—般商業上的液晶顯示器I置中。元 件102的每一個元件,在此以107麵,會與元件103中對應的 兀件排列’以108表示。然而,儘管元件1〇2與1〇3中的元件具 有相同的橫向間隔或間距,元件1〇2中的元件大小會小於或等於 元件103中的元件,因為離開元件1〇7的光在進入元件⑽的元 件108之月’典型地會經歷一些繞射。振幅與相位的編碼次序可 200827771 與圖十中所示的相反。 位於點106離包括腎宓入μ ^ *王像圖產生器丨〇5的裝置一些距離的 觀看者,可從1G5的方向觀看到三雜像。元件顺·、朋、 102與103是如之前所描述的配置成實體連接,以便能形成緊密的 全像圖產生器105。 構成要素^3對或—對有機發光二極體與光學式定址空間光 調變器組合或是-個或兩個電子式定址空間光調變器的緊密組 合’且具有目標全像重建的大倍率三維圖像顯示裝置If the secret is not the Wei shape, then the ship can be pointed at the silk. Figure-T-Reading is directed at the beam pointing to the appropriate prism. If the optical axis of the liquid crystal is aligned along the Ζ direction, as shown in Figure XX, the appropriate electric field application, the plane wave propagating along the Ζ direction does not occur when it passes through the county fine component (4) because it does not Any refractive index change is encountered in its direction of polarization. If the electron field is such that the liquid crystal axis of the electrode is perpendicular to the ζ direction, the plane wave propagator Ζ direction reading is biased parallel to the optical axis. The most refracting of the 因为 is because it passes through the beam of the fine piece, because it experiences the most likely refracting material, and it can provide the variation of its vertical (D) axis (Poymingvector). However, if the electric field is applied to the (four) pole, the filament of the liquid crystal is perpendicular to the z-direction. Propagating along the z-direction is a plane wave that is biased parallel to the optical axis. When it passes through the beam, it will encounter the most refraction because it The maximum refractive index change of the Poyntingvec vector (Polytingvec) is experienced by the most vertical (the system can provide). The degree of refraction will be between these two extreme examples, by selecting the appropriate electric field applied to the host material 53 200827771 8) The example will next describe an example of a close combination of an electronically addressed spatial light modulator and a fully coherent compact source that produces a two-dimensional image with appropriate illumination and Set up in a personal digital assistant or mobile phone. The close combination of the electronic address space tone _ and the _ _ tightness system includes an organic light-emitting body display II as an array of light sources, an electronic address space light modulator and a lens array, as shown in FIG. Depending on the location requirements of the virtual observer window (represented by ow in Figure 12), a particular pixel in the organic light emitting diode display is activated. These pixels are spatially modulated by a 2-electronic spatial modulation H and imaged by the lens array on the observer plane. At least one pixel of each lens of the lens_ is activated in the organic light emitting diode display. In drawing a given size, if the pixel spacing is , it can be traced to a virtual observer window with a horizontal increment of 400 μm. Such tracking is quasi-continuous.疋 Organic light-emitting diode pixels are light sources with partial spatial symmetry. Partial homology produces a fuzzy reconstruction of the target point. In the given size of the drawing, the pixel width is 20 microns, and at a distance of 10 mils from the display, the point will be generated. 54 200827771 has a reconstruction of 100 μm lateral blur enough. This resolution for the human visual system is through the different lenses of the lens _, and there is no obvious coherence. The need for coherence is limited to every single lens of the lens array. Therefore, the resolution of the reconstruction target point is determined by the Wei_guan distance. For the human visual system, the typical lens pitch will be 1 mm class to ensure full resolution. If the spacing of the organic light-emitting diodes is 2 μm, this means that the ratio of the lens pitch to the spacing of the organic light-emitting diodes is 5 G: if only one single organic light-emitting diode is illuminated for each lens, 'this side Every 5 〇 λ2 = 2, organic light-emitting diodes, only one organic light-emitting diode will be illuminated. Therefore, this display will be a low power display. The difference between the omni-image display referred to here and the conventional organic light-emitting two-screen display is that the former concentrates on the viewer's _, and the latter is the Weis & spheroid. Conventional organic light-emitting diode displays achieve about luminosity, (inventors in the κ process, D, on the other hand, the illuminating organic light-emitting diodes should be able to achieve several times the luminosity of 1,000 cd/mA2. The virtual observer window is limited to the Fourier spectrum of the four-tone spectrum in the spatial light modulator. If Lang Guang’s image-like pitch is a melon, and two nucleus is needed to encode the number of tilts, ie if In the phase-changing electronic address space, the color modulation is on the phase 2, and at the wavelength of the leaked mail, the virtual observer 55 200827771 window will have a width of 10 mm wide. Virtual view::: virtual, window patchwork into an enlarged eve ^ Brother, need additional optical components, such as beam splitter. Work = image reconstruction can be achieved by time multiplexing. Color light body: wavelength calculation of the full-image spatial light modulator _ step re-display can include eyes The position detector is used to measure the position of the observer's eyes. The eye position is finely controlled by the control unit of the image of the light-emitting diode display. ', the hologram of the coded on the spatial light modulator The calculation is best done by an external editor The unit performs the task as it requires higher computing power. The display data is then sent to the personal digital assistant or mobile phone to display the three-dimensional image produced by the hologram. For practical examples, Sanyo (RTM) can be used. Equipped by the Epson Imaging Devices Corporation of Japan, the XGA liquid crystal display electronically-spaced spatial light modulator manufactured by Epson Imaging Devices Corporation of Japan. The sub-pixel spacing is 17μιη. If this is used in the construction of red, green and blue holographic displays' Using the hologram 56 200827771 amplitude modulation coding, the observation window is Umm wide according to the calculation of the distance from the electronic address space Wei Wei. For the monochrome case, the observation window is based on: 4mm width. The same setting is used, but the phase of the 2 phase encoding is changed, and the observation window is calculated to be 6 mm wide. If the same setting is used, but the phase modulation of the Kinoform encoding is used, the secret window is calculated to be 12 mm. Wide. In addition, there are electronic electronic space-defining optical modulators that still have other kinds of resolutions. Seiko (RTM) Epson (RTM) Corporation 〇fJapa n Published monochrome electronic address space light view H, such as D4: L3D13U 13-inch screen size and pixel spacing of 15μηι panel. The company also published the same type of panel D5: L3D09U-61G00, with 〇 · 9 English On the screen size and pixel spacing of 1〇_. On December 12, 2006, the company announced the same type of panel L3D07U_81G00, with a 7-inch screen size and a pixel pitch of 8. 5μιη. If D4:L3D13U The 1·3 inch panel is used to construct a monochrome holographic display, and uses the holographic Burckhardt amplitude modulation code, which is 0.4m away from the electronically addressed spatial light modulator, virtual observer The window can be calculated to be 5 6mm wide. D•Digital Combination of Paired Electronic Address Space Light Modulators In another embodiment, a combination of two electronic spatial and spatial spatial modulators can be used to modulate light in a sequential and compact manner. Amplitude and phase. Therefore, a complex number comprising amplitude and phase of 57 200827771 can be encoded in transmitted light in a pixel-by-pixel manner... This embodiment includes two electronically-addressed spatial light-viewing close combinations. The first electronically-spaced spatial tone modulates the amplitude of the transmitted light, and the second electronically locates the phase of the transmitted light. It is also possible to transmit light to the first electronically located spatial light, and the second electronic address transducer modulates the amplitude of the filament. Each—(d) sub-addressed spatial view _ can be as described in section c. In addition to using two electronically addressed spatial light modulators, the configuration of = can be as described in section C. Any combination of any other two types of electronic address space transformer modulating characteristics that are independent of modulation of the amplitude field can be possible. In the first step, the first-electronic (4) paste changer uses the pattern to compose the amplitude view. In the first step, the second electronically-addressed space light-coded code ‘ride her. From the second electronically-located spatial light—the transmitted light has been modulated in amplitude and phase. Therefore, when observing the light π emitted by the device with these two electronic addressing changes, a three-dimensional image can be observed. image. In addition, she is jealous of her and the _ technology to promote the plural values. In addition to this, the 'bucket-type address space light modulator can have high resolution. Thus, this embodiment 58 200827771 can be used to generate a hologram® such that the _image can be observed by an observer. Figure 13 is an embodiment. 130 is a lighting device for providing illumination of a planar area. The tussah mosquitoes are capable of producing a three-dimensional image. An example of a lighting device for a large area image hologram is mentioned in US 2006/250671, where the "_" is in _. (4) (10) Miscellaneous may be in the form of a self-light source array, such as a cold-yellow (four) wire or a stenciled wire from the money (four) system of white-first hair, which is _, secret, dense, domain mirror or microlens array. Or, the secret of B0 is composed of red and green-field lasers, and it is provided with red, green and blue-necked diodes that are full of light. The red, green and blue light emitting diodes may be organic light emitting diodes (〇LEDs). However, there are a full range of non-laser sources (eg, light-emitting diodes, organic light-emitting diodes ^ glory lights) that are more than four (4). Weis's shortcomings, such as 2 spots on the holographic reconstruction, are relatively expensive, and all _ damage holograms show the viewer or 疋 仃 仃 显示 display device assembly reader Wei Jing, etc. (4) security issues. It is known that the tree m may contain one or two 稜鏡 optical films to increase the brightness of the display. For example, in us 5, 056, 892 and still state: = content. Element 13. A polarizing element may be included, or a polarizing element may be one of the examples. In addition, an example is a reflective polarizer, a transmissive-transformed state, and a singularity of the singularity of the singularity of the singularity of the singularity of the singularity of the singularity of the singularity of the singularity of the singularity of the singularity of the singularity. Another example is a reflective polarizer that transmits a circularly polarized state and reflects an orthogonal circularly biased state. Such a sheet is known, for example, as described in U.S. Patent 6,181,395. The component may comprise a poly(tetra) system, which may be a compact field such as a lenticular array or a microlens array. Element 13A can include other optical components known in the art of backlighting. Element 130 can have a thickness of about a few centimeters or less. In a preferred implementation, the thickness of the jaws 130·134 is all less than 3 cm to provide a tightly tuned compact source. Element 131 can be a battlefield, such that the pixels of the county (10), such as red green and blue light, are directed toward element 132, although if a color light source is used, color over-H is not required. Element 132 is an electronic precision optical modulator. Element 133 is an electronic address space fine. Element 134 is an optional beam splitter element. The transmitted light 'element 132 is modulated in amplitude and the tree 133 is modulated in phase. Alternatively, the amplitude is modulated by tree 133 and component 132 is phase modulated. The electronic address space is modulated by H m and 13s #近能 thief to reduce the loss and the pixel φ sound problem caused by the beam divergence ·· When the electronic address space light modulator I% and (3): non ¥# near The 'non-heavy miscellaneous miscellaneous hybrids' that can be used to ride a colored light beam through an electronically-addressed space optomechanical machine. A viewer located at point 135 of the omnidirectional hologram generator 136 at some distance can view a three-dimensional image from 136. 200827771 The cows 130, 13 Bu 132, 133 and 134 are configured as a physical connection (directly) the mother to form a layer of the structure, so that the whole is a single-, system-^ connected connection can be direct. Or _, if There is a thief between the middle layer and the real layer. The real wealth can be limited to the age of the front, or can extend to a larger area, or even the entire surface of the layer. The layer is connected to realize the case, the case field is made by the material to pass the lion to form a tight full-sided H' or the other parts of the test procedure are used to manufacture the program.) : Participate in the electronic location of Lang Xiwei, In a typical bite, the incident reading optical beam will be linearly polarized by passing the beam through a linear polarizer. The vibration is controlled by the application of the t-field liquid crystal job. The application of an electric field affects the state of polarization of the light. The surface is hidden by the towel, and the sub-addressed spatial light modulator will pass through another linear polarizer, which can reduce the intensity due to the polarization state of the light. The electronic address space is the same as that of Wei Shi. In the electronic address space light modulator At the phase modulation, unless they are in a deviating linearly biased state, in a typical setup, the incident reading optical beam will be linearly polarized by passing the beam through a linear polarizer. The electric field is controlled by the application of the electric field. The electric field affects the state of the light_bit. In the case of a phase modulation of 61.27771771, 'the nematic phase liquid crystal is used, and the optical axis direction is fixed at intervals, but the function of refracting 加16 plus In her view of the smoky towel, the use of ferroelectric liquid is refraction and 疋 fixed daily, but the direction of the optical axis is controlled by the applied voltage. In the phase modulation, the real needle is used as a method. The input (four) beam and the input beam for applying the electric enthalpy function will have her difference. The f-side of the subtractive element that can perform her Xia is made of F_erieksz element, and the direction of the positive dielectric directionality is used in the shot. Column type; the anti-parallel area of the night crystal, as described in 973, 8 s. ' ' Close combination for tight hologram display, including two, separated or minimally separated electronic combination Addressing as glossy ^ A preferred embodiment is that two spatially modulated pixels have phase-numbered pixels. Because the two electronically addressed spatial light 5 weeks are not equidistant to the observer, the two electronically addressed spatial light The imager of the modulator may need to be different in surface (but the bribe is about the same) to compensate for the effect of different distances on the observer. The light that has passed through the pixel of the first-space light modulator will pass through the second space. The pixel corresponding to the light modulator. Therefore, the light is modulated by the two light shifts, and the complex vibration and phase modulation can be realized. For example, the first-space light modulation The amplitude modulation is performed by the amplitude modulation. Similarly, any combination of the modulation characteristics of the other two kinds of spatial optical modulators that are independent of the amplitude modulation and the phase modulation are possible. ~ 62 200827771 It must be noted that the light passing through the pixels of the first-space optical modulator can only pass through the pixels corresponding to the second spatial light modulator. If the light emitted from the first spatial light modulator pixel passes through the second spatial light, n is not corresponding to the adjacent pixel; the crosstalk will be rounded off. Every crosstalk can cause image quality degradation. Four possible ways to minimize crosstalk between pixels are provided here. As will be apparent from the techniques used for f, these methods are equally similar to the four embodiments. (1) The first-to-zeroest method is to directly connect or bond the two spatial light modulators after adjusting the pixels. In the pixels of the first-space optical modulator, there may be a diffraction county that causes the light to deflect. The spatial light modulator's _ separation must be sufficiently thin to be as thin as the second spatial light modulation to near the pixel crosstalk to an acceptable level. For example - two electronic addressing spaces with a pixel spacing of 1 :: the optical modulator separation must be less than or equal to the level of the 1G specification. This is the spatial light modulation H towel that is manufactured in the space is almost _, because the thickness of the cover is 1mm. Of course: it can make a thin separation between the spatial light modulators, and the monthly 'portal mode' is recommended in a program. The manufacturing method described in the long-term part of the outline manufacturing can be applied, and the wire is used as a device comprising a small or minimum electronically-spaced space variator. Figure 14 shows the Fico's diffraction number calculated from the diffraction of the slit 1〇μηη wide. 200827771 According to the graph, the distance from the slit is changed in the two-dimensional model, and the vertical axis is s]it(z). The horizontal axis is slit(X). The uniformly illuminated slit is located between 5 μπι and +5 μιη on the x-axis and Z is zero micron. The optical transmission medium was used to obtain a refractive index of 15 for the tight age of the compact device. The selected light is red light having a vacuum wavelength of 633 (10). The green and blue wavelengths are smaller than the red light, so for the calculation of red light, the strongest diffraction effect is exhibited among the three colors red, green and blue. You can use the ρ_—Teehndogy (RTM) c〇rp·, Needham, group, product, m (5) ♦ (RTM) software to perform calculations. Figure 15 shows that the slight intensity remains at the center of the slit. 1 〇 μιη sees the inside of the slit as a function of the distance from the slit. At a distance from the slit m, Fig. 15 shows that the intensity greater than 9〇% is still in the range of the width of the slit ΙΟμηι. Therefore, less than 5% of the pixel intensity in the four-dimensional type will be incident on each adjacent pixel. This is the calculation result in the case where the zero boundary between pixels is wide. In fact, the boundary width between pixels is greater than zero, so the crosstalk problem will be lower in the real system than the result of the series. In Fig. 14 the 'hear diffraction pattern is close to the slit, - for example, from the slit 5 〇 μηη' and somewhat approximates the high hat strength function of the slit. Because .2 ' does not have a wide circular sign approaching the slit. The wide diffraction characteristic is a characteristic of the far-field diffraction function of the high-hat function, which is a known sine squared function. The wide winding and temple sign can be observed from the example of the distance slit in Figure 14. This points out that the green, should be able to paste the _ electronic ambiguity spatial light modulator seam foot _ near = system and set the two electronic address space light modulator very close a k point 疋 diffraction data chart The functional version, the local field property changes to a more efficient 64 200827771 rate contains a function pattern of light that is close to the axis perpendicular to the slit. This advantage is that techniques that contradict the idea of conventional holographic techniques tend to assume that a strong, large, and unavoidable diffraction effect occurs when light passes through a small aperture of a spatial light modulator. Therefore, the technique of manufacturing; ^ there will be a way to bring the two air-off modulators close to each other, and the pre-touching method will result in a pixel crosstalk problem that must occur and is severely caused by the diffraction effect. Figure 16 shows the thief distribution (four) high marriage, the function of the strength separation from the slit distance. The plot of the contour is on a logarithmic scale, not a linear scale. Ten lines, such as the South Line, were used, all of which included a range of intensity factors. For the 1 〇 的 slit width strength knife, the boundary of the large private degree is clear within the range of the distance from the slit. In a further embodiment, the pixel aperture region of the first electronically addressed spatial light modulator can be reduced to mitigate the crosstalk problem in the second electronically addressed spatial light modulator. 0 (2) The second method is A lens array is used between the two spatial light modulators, as shown in Figure 17. A better approach is to have the number of lenses and the number of pixels in each spatial light modulation. The distance between the two spatial light modulators and the distance between the lens arrays can be slightly different to compensate for the observer's distance difference. Each lens is imaged. 65 200827771 The pixel of the first spatial light modulator is on the pixel corresponding to the second spatial light modulator, as shown by the large beam 171 in FIG. It is also possible that light will cause crosstalk problems through adjacent lenses, as indicated by a large number of beams 172. If its intensity is low enough, or if its direction is sufficiently different to make it impossible to reach the virtual observer window, it can be ignored. The numerical aperture (NA) of the master lens must be large enough to image a pixel with sufficient resolution. As an example, for a resolution of 5 μm, a numerical aperture (ΝΑ) of approximately G.2 is required. This also means that if it is assumed to be a combination of optical, if the distance between the spatial light modulator and the lens array is 1 〇 μm, the maximum distance between the lens array and each spatial light modulator is about 25 μm. < \ It is also possible to assign a number of pixels of each spatial light modulator to one of the lens arrays, one example of which is a group of four pixels of the first spatial light modulator, which may be misplaced by the lens array A lens is imaged into the second spatial light modulator by a group of four pixels. The number of such squint lenses will be one-fourth of the number of pixels in the space 1 h. This allows the use of lenses with higher numerical apertures, thus resulting in higher resolution imaging pixels. (3) The third method is to shoot (four) to reduce the pixel hole n diffraction of the first-electronic slave light modulator, and the second spatial light modulator is made up of the first spatial light 66 200827771 The area illuminated by the pixel is determined by the pixel aperture width D and the diffraction of the first-electronic address spatial light modulator, as shown by the ten people. In Figure 10, the distance between two i-subsequence-addressed spatial light modulators, ❿... is the distance between the two f-level diffraction minimums, occurring on either side of the zeroth class maximum. The attack is assumed to be a diffraction of Fraunh〇fer or a reasonable approximation of the Fraun and Fiji diffraction. Reducing the aperture width D - aspect reduces the range of direct projection of the thin portion of the illumination area, as indicated by the dashed line in Figure 18. On the other hand, the diffraction angle is increased in accordance with the diffraction angle being proportional to 1/D in the Fraunhofer diffraction. This increases the total width W of the area width of the illumination area on the second electronically-positioned work area. In the Fraun and Fiji diffraction methods, the division d, D can be determined, and the equation W = D + 2dX/D is used to minimize ~, which is the first of two from the Fraun and Fiji diffractions. The distance between the order minimums is derived. For example, if λ is 0.5 μηι, d is 1 〇〇 _ and w is 2 〇 μιη, the minimum value of d is ΙΟμιη can be obtained. However, in this example, the Fraunhofer method may not be a good approximation. This side uses the distance between the electronically addressed spatial light modulations to control the winding in the fulang and the acute mode. The principle of the shooting process. (4) The fourth method is to use the fiber optic panel to image the image of the first-air-air modulator. 67 200827771 The color of the space is changed to the pixel of the space. The fiber optic panel is made up of two-dimensionally aligned parallel fibers. The length of the fiber and therefore the thickness of the panel is typically a few centimeters, and the diagonal length of the panel surface is as long as several inches. As an example, the spacing of the fibers can be 6 μm. Edmund Optics Inc. of Barrington, New Jersey, USA has sold fiber optic panels with such fiber spacing. Each fiber guides the other end of the light from one of its ray. Therefore, the image at one end of the panel is transmitted to the other end, with high resolution and no focusing components. Such a panel acts as a separate layer between the two spatial light modulators, as shown in Figure 19. Multimode fiber is preferred over single mode fiber because multi-turn fiber has better coupling efficiency than single mode fiber. When the refractive index of the core of the fiber is stabilized with the refractive index of the liquid crystal, the optimum coupling efficiency is obtained because it minimizes the loss of spectacles. There is no additional glass cover between the two spatial light modulators. The polarizer, the electrode and the alignment layer are directly connected to the fiber optic panel. Each of these layers is very thin, i.e., the grade of I'm. Therefore, the liquid crystal (LC) layers La and LC2 are located close to the panel. Light passing through the first spatial light modulator pixel is directed to the pixel corresponding to the second spatial light modulator. This minimizes crosstalk from neighboring pixels. The panel transmits the light of the first spatial light modulation 11 to the input of the second spatial light modulator. The parent sentence should be at least one fiber. If each pixel is less than - 光纤 of the fiber, on average, s, the spatial light modulator will lose resolution, resulting in reduced image quality for the application displayed in the hologram display. 68 200827771 In Figure 19, the first-space optical modulator modulates the amplitude, and the second spatial modulates the phase. It is possible to combine the modulation characteristics of the two electronically addressed spatial light modulators of other health-integrated spatial modulations. Figure 10, , and , are examples of tight alignment of the amplitude and phase information of the stone in the full image. 104 is an illumination device for providing illumination of a planar area, wherein the illumination is sufficiently homophonic to enable generation of a three-dimensional image. An example of a lighting device for a large-area image hologram is mentioned in us鸠/250671. Just as the device can be in the form of a white light source _ such as cold cathode fluorescent light, the self-light illuminating on the focusing system, the concentrating (four) can be mounted, such as a lenticular array or microlens. The array just got. Alternatively, the light source for rain may be composed of red, green, and the laser, and the red and the light-emitting diodes of the red light are generated. However, non-laser sources (e.g., light-emitting diodes, t-light diodes, cold cathode fluorescent lamps) having sufficient spatial coherence are more preferable. The shortcomings of the laser source, the image reconstruction caused the laser, relatively relatively high blame and all the injuries. Wang Xiangtou does not watch the viewer or perform a holographic display device group, possible security issues. The bright 70 piece 104 of the eye of the person's eye can include one or two 稜鏡 optical films to increase the display. 200827771 degrees. Such films are known, for example, in us 5, 056, 892 and us 5 Described content. The component class can include a polarizing element or a collection of polarizing elements. Linear polarizers are one of them. Further, an example is a reflective polarizer, a spread-to-feed biased state, and a sheet of reflective orthopedic woven fabrics are known, such as those described in U.S. Patent 5,828. Another example is a reflective polarizer that can transmit a laterally polarized lining and reflect an orthogonal circularly polarized state. Such a sheet is known, such as the inner valley described in us 6, (8), 395. . The 7G piece 104 can include other optical components known in the art of backlighting. The thickness of the elements 104, 100-103 can all be on the order of a few centimeters or less. The component may include a color filter array such that pixels of colored light (e.g., red, green, and blue =) are directed toward element 102, although if a colored light source is used, color over = T is not required. Element 102 is an electronic addressed spatial light modulator that encodes phase information, such as a Freedericksz component. The component (10) is an electronic stencil that encodes amplitude information, and is, for example, in a commercially available liquid crystal display. Each element of element 102, here 107, will be represented by 108 in correspondence with the corresponding element in element 103. However, although the elements in elements 1〇2 and 1〇3 have the same lateral spacing or spacing, the element size in element 1〇2 will be less than or equal to the element in element 103, since light exiting element 1〇7 is entering The month of the element 108 of the component (10) typically undergoes some diffraction. The encoding order of amplitude and phase can be reversed from that shown in Figure 10 in 200827771. A viewer located at a distance 106 from the device including the renal artery into the μ^*wang image generator 丨〇5 can view the three-image from the direction of 1G5. The components, 102, and 103 are configured to be physically connected as previously described so as to form a compact hologram generator 105. The constituent elements ^3 are or - the combination of the organic light emitting diode and the optically addressed spatial light modulator or the close combination of one or two electronically addressed spatial light modulators and have a large target reconstruction Magnification three-dimensional image display device

I 圖二十四顯示了—個構成要素包含—對或二對有機發光二極 體與光學式纽郎光調變驗合或是—個或兩個電子式定址* 參狀機n的緊敎合,且具有目標全像重建的大倍率三維圖像 顯不裝置。這個裝置的構成要素包括空間光調變器與充份同娜 ㈣密型光源的緊密組合(例如在a、B、C與D部份所描述的内 容),這樣的組合能夠在適當的照明情況,於虛擬觀察員視窗(在圖 二十四標料〇w) +產生看得見的三維圖像’這麵置元件可例 如整合在個人數位助理或行動電話中。如圖二十四所示,空間光 調變器與充份同調性的緊密型光源的緊密組合包含光源陣列、空 間光5周變裔及透鏡陣列。在圖二十四中的空間光調變p,包人一 71 200827771 址空間光調變器。 對或二對有機發光二極雜絲歧址朗光簡n組合或是一 個或兩個電子式定址空間細變器的緊密組合,或是—個有二發 光二極體及光學式定址空·調變騎組合觸及—個電子式^ 在-個簡單_子巾,光源陣列可由下列方式形成。單一光 源如單色的發光二極體,放置在緊鄰孔徑陣列的位置,使其能照 籲射孔控。如果孔徑是一維陣列的狹缝,從狹缝傳送出去的光合形 成一維陣列的光源。如果孔徑是二轉列的圓,圓的照射齡即 形成二維陣列的光源。典型的孔徑寬將約為2〇_。這樣的光源陣 列適合用於對於一眼的觀察員視窗的產生。 在圖二十四中,光源陣列是設置在距離透鏡陣列u的距離位 鮝置。光源_可為圖—元件1G的光源,並且可麵性的包含圖一 "巾的元件1卜確切的說,每一個在光源陣列中的光源是設置在距 離透鏡陣列中匕所對應的透鏡u距離的地方。在較佳的實施例中, 光源陣列與透鏡陣列的平面是呈平行狀的。空間光調變器可位在 透鏡陣列的任-it。虛擬觀察員視窗與透鏡陣列的距離為u。透鏡 陣列中的透鏡是聚光鏡,聚焦長度f是由f=1/[1/u+1/v]所給定。 在較^^的M施例中,V的值是在3Q〇mm到的範圍内。更 好的實施例中,V大約為400mm。在較佳的實施例+,u的值是在 72 200827771 到3Gmm糊内。更好的實施例中,u大約為2。麵。放 =數Μ是由v/u所決定,是經由空間_魏讀後的光源, 在虛擬__被放大的因素。在較佳的實施例中,Μ的值是 在1〇到⑼的範_。更好的實施例中,Μ大約為2G。為了實現 如此的放大因數,並且具有好的全像圖像品質,需要準碟排列的 光源陣列與透鏡_。為了維持精確的排列,以及在光源陣列盘I Figure 24 shows that a component consists of - or two pairs of organic light-emitting diodes and optical Neutron light modulation or one or two electronic addressing * parametric machine n A large-magnification three-dimensional image display device with a target hologram reconstruction. The components of this device include a close combination of a spatial light modulator and a full-filled (four) dense light source (such as those described in sections a, B, C and D), which can be combined in appropriate lighting conditions. In the virtual observer window (in Figure 24, the standard 〇 w) + produces a visible three-dimensional image 'this surface element can be integrated, for example, in a personal digital assistant or mobile phone. As shown in Fig. 24, the close combination of the spatial light modulator and the well-conformed compact light source includes an array of light sources, a 5-week variant of spatial light, and a lens array. In Figure 24, the spatial light modulation p, Bao Renyi 71 200827771 address space light modulator. A close combination of two or two pairs of organic light-emitting diodes, or a combination of one or two electronically-spaced spatial transformers, or two light-emitting diodes and optical addressing Modulation riding combination touches - an electronic type ^ In a simple _ sub-cloth, the array of light sources can be formed in the following manner. A single light source, such as a single-color light-emitting diode, is placed in close proximity to the aperture array, allowing it to be calibrated. If the aperture is a slit of a one-dimensional array, the light that is transmitted from the slit merges into a one-dimensional array of light sources. If the aperture is a circle of two revolutions, the illumination age of the circle forms a two-dimensional array of light sources. A typical aperture width will be approximately 2 〇 _. Such an array of light sources is suitable for use in the production of an observer window at a glance. In Fig. 24, the light source array is disposed at a distance from the lens array u. The light source _ can be the light source of the figure-component 1G, and can include the elements of the figure 1 " towel. Specifically, each light source in the light source array is disposed at a distance from the lens array. u distance to the place. In a preferred embodiment, the array of light sources is parallel to the plane of the lens array. The spatial light modulator can be located in any-it of the lens array. The distance between the virtual observer window and the lens array is u. The lens in the lens array is a condensing mirror, and the focal length f is given by f = 1 / [1/u + 1 / v]. In the M example of the ^^, the value of V is in the range of 3Q〇mm to. In a more preferred embodiment, V is approximately 400 mm. In the preferred embodiment +, the value of u is in the 72 200827771 to 3Gmm paste. In a more preferred embodiment, u is about 2. surface. Put = number is determined by v / u, is the source of the light after the space _ Wei read, the factor is amplified in the virtual __. In the preferred embodiment, the value of Μ is in the range of 1 〇 to (9). In a more preferred embodiment, Μ is approximately 2G. In order to achieve such an amplification factor and have a good holographic image quality, a light source array and a lens _ arranged in a quasi-disc are required. In order to maintain accurate alignment, as well as in the light source array disk

透鏡陣狀__的_,朗舰树_壽命為止,、 裝置元件需轉能朗顧敎度。 虛擬觀察員視窗可以是可追蹤的或不可追縱的。如果虛擬觀 /Τ、員視窗疋可追賴,難據虛鐵察貞視窗所需的位置,光源 陣列中特疋的光源會被啟動。啟動的光源會照射空間光調變器, 並且藉域餅列成像錢察Λ平面。在光鱗财,對於透鏡 鲁陣列中的每-個透鏡至少啟動一個光源。追蹤是為準連續的。如 果u疋20mm且ν疋4〇〇mm,假若像素間距為2〇μιη,可追蹤到 — 帶有働μπι橫向增量的虛擬觀察員視窗。這樣的追蹤是準連續 的。如果u是20mm且ν是4〇〇mm,f大概是19mm。 在光源陣列中的光源可能僅具有部分的空間同調性。部分的 同调性會導致目標點的模糊重建。如果u是2〇_且v是4〇〇_, 假若光源寬度為2Gpm,轉齡||鳩麵的目獅的重建會有 73 200827771 ΙΟΟμιη的橫向模糊。這對於人類視覺系統的解析度是足夠的。 在通過透鏡陣列中不同透鏡的光之間並不需要具有任何明顯 的相互同調性。同調性的需求是限制在透鏡陣列中的每一個單一 透因此,重建目標點的解析度是由透鏡陣列的間距來決定。 典型的透制距縣lmm的#級,絲證對於人舰聽統的充 份解析度。 虛擬觀察員視窗是限制在空間光調變器中編碼資訊的傅立葉 頻譜的一個繞射階級。如果空間光調變器的像素間距是1G_,並 且需要兩轉素來編碼—個魏,即如果在她機 空間光調變器上節相位編碼,在·m的波長,虛擬觀察員 視窗會有ω咖寬喊度。虛擬觀察員視窗可细雜或時間多 工,將數健纖料視转凑錢大的顧觀察貞職。在空 間多工的情況下,需要額外 工 1卜的姆讀,如光束分域。在部份c =了-鮮工的綠,這❹工的綠也可能翻於本案實作 彩色全像重建可由時間多士 示哭^ ^ ^色有機發光二極體顯 rr綠色及藍色像素是利用具有對紅色,綠色及龄色光 予波長計异的全像圖的空間 孤 L盗的同步重編碼來相繼地啟 200827771 動0 I置7L件形成的顯示器可包含眼部位置偵測器,用以偵測觀 祭員的眼睛位置。眼部位置侧II連接控制光源_巾光源的啟 動的控制單位。 在空間光調變器上編碼的全像圖的計算最好是由外部的編碼 單元來執行·,因為它需要較高的計算能力。顯示資料會接著送至 個人數位助理或行動電話,以顯示全像產生的三維圖像。 對於實務上的例子,可使用由Sany〇 (RTM) Ep· (rtm)The lens array __ _, the lang ship tree _ the end of life, the device components need to be able to turn the latitude. The virtual observer window can be traceable or untrackable. If the virtual view / Τ, 员 window can be traced, it is difficult to see the position required by the window, and the special light source in the light source array will be activated. The activated light source illuminates the spatial light modulator and images the surface of the wafer by the domain cake. At least one light source is activated for each lens in the lens array. Tracking is quasi-continuous. If u疋20mm and ν疋4〇〇mm, if the pixel pitch is 2〇μιη, it can be traced to – a virtual observer window with 働μπι lateral increment. Such tracking is quasi-continuous. If u is 20 mm and ν is 4 〇〇 mm, f is approximately 19 mm. The light source in the array of light sources may only have partial spatial homology. Partial homology leads to fuzzy reconstruction of the target point. If u is 2〇_ and v is 4〇〇_, if the source width is 2Gpm, the reconstruction of the lion with the age of ||鸠面 will have a lateral blur of 73 200827771 ΙΟΟμιη. This is sufficient for the resolution of the human visual system. It is not necessary to have any significant mutual homology between the light passing through the different lenses in the lens array. The need for coherence is limited to each single pass in the lens array. Therefore, the resolution of the reconstructed target point is determined by the pitch of the lens array. The typical translucent degree of the county lmm, the silk card for the full resolution of the human ship listening system. The virtual observer window is a diffractive class that limits the Fourier spectrum of the encoded information in the spatial light modulator. If the pixel pitch of the spatial light modulator is 1G_, and two digits are needed to encode - Wei, that is, if the phase encoding is performed on the hermographic spatial modulator, the virtual observer window will have omega coffee at the wavelength of ·m Wide shouting. The virtual observer window can be fine or time-consuming, and the number of health materials can be turned into a big money to observe the misconduct. In the case of space multiplex, an additional reading of 1 b is required, such as beam splitting. In part c = - fresh green, this completed green may also be turned over in this case. The color hologram reconstruction can be cried by the time toast ^ ^ ^ color organic light emitting diode rr green and blue pixels The display is formed by using the synchronous re-encoding of the spatial lone thief with the hologram of the red, green and the color light to the wavelength-differentiated hologram. The display formed by the 7L piece may include an eye position detector. Used to detect the position of the eyes of the priest. The eye position side II is connected to the control unit for controlling the start of the light source. The calculation of the hologram encoded on the spatial light modulator is preferably performed by an external coding unit because it requires higher computational power. The display data is then sent to a personal digital assistant or mobile phone to display a three-dimensional image of the hologram. For practical examples, use by Sany〇 (RTM) Ep· (rtm)

Imagmg Devices Corp〇rati〇n 〇f Japan 所製造的 % 英吋螢幕尺对 xga液晶顯示m子式定址空間光調㈣。次像素的間距為 17μιη如果&疋侧於紅、全像顯示的建構,糊全像圖的振 幅调變編碼,在距離電子式定址空間光調變器G.4m的地方,觀察 視窗根據^為Umm寬。騎單色的軌,麟視窗根據計算 為4馳寬。如果使用相同的設定,但是改用2她編碼的相位調 變,觀察視窗根據計算^ 6mm寬。如果使用相同的設定,但是改 用土諾形式(Kmofonn)編碼的相位調變,觀察視窗根據計算為 12mm 寬。 75 200827771 仍具有其它種高解析度的電子式定址空間光調變器。驗〇 (RTM) Epson (RTM) Corporate ofJapan已發表單色電子式定址 空間光調變器,例如D4:L3D13U 1.3射螢幕尺寸且像素間距為 15μπι的面板。此公司也發表了同類型的面板 D5:L3D09U-61G00 ’具有〇.9英吋螢幕尺寸及1〇卿的像素間距。The % inch screen ruler manufactured by Imagmg Devices Corp〇rati〇n 〇f Japan displays the m sub-address space light tone (4) for xga liquid crystal. The sub-pixel pitch is 17μιη. If the &疋 side is constructed in red, the hologram display, the amplitude modulation code of the paste hologram is at the distance from the electronically-positioned spatial light modulator G.4m, and the observation window is based on ^ It is wide for Umm. Riding a monochromatic track, the Lin window is calculated to be 4 wide. If the same setting is used, but the phase modulation of 2 her encoding is used instead, the viewing window is calculated according to the calculation width of 6 mm. If the same setting is used, but the phase modulation of the Knofonn code is used, the observation window is calculated to be 12 mm wide. 75 200827771 There are still other high resolution electronic address space optical modulators. Verification (RTM) Epson (RTM) Corporate of Japan has published a monochrome electronically addressed spatial light modulator, such as the D4:L3D13U 1.3 panel with a screen size of 15μm. The company also published the same type of panel D5: L3D09U-61G00 ' with a 9.9 inch screen size and a pixel spacing of 1 inch.

於西兀2006年12 $ 12日,此公司公告發表同類型的面板 L3D07U 81G00 ’具有0 7英吋螢幕尺寸及8 5㈣的像素間距。如 果D4..L3D13U 1.3英吋面板用於建構單色的全像顯示,並採用全 像的布克哈娜urekhanit)純觀編碼,赃離f子找址空間 光調變器G.4m的位置,虛擬觀察貞視窗可計算料5 6随寬。 F.包含-對或兩對有機發光二極體與光學式定址空間光調變器組 合或是—個或_電子式定址㈣光調變器的緊密組合,且具有 目標全像重建的三維圖像顯示裝置 、β 一對或兩對有機發光二極驗絲式定址帥糊變器組合 或疋-個或_電子式定址空間細魏爾密組合,是較推薦 使用於手持式三軸稀置或是較大的三軸稀置巾,因為這 ==疋非常緊密的。這樣的組合可整合至例如行動電話、衛 '、衣置車用顯不器、電腦遊戲裝置、個人數位助理(p 、 、、己顯不!^、桌上型電腦螢幕或㈣型電視顯示器中。這 76 200827771 ===Γ對於單,者。㈣-般是位在垂直 m U纟且讀裝置可制最佳觀看效果的距 會傾向自己轉手上#置=轉知道,傾錄置的使用者 同々wnm/o 衣置的方向,以獲得最理想的觀看狀態,如 =:41中所描述的内容。因此,在這樣的裝置中,並 風而作θ卜料物及複雜且不緊密如包含掃描鏡的追蹤光 财以翻在其它的敍中,如果對於裝置而言, u求的設倾電源不會造成過度的負擔。 、a蛾峨雜發光二鋪與光學式定址如光調變器 右=疋個或兩個電子式定址空間光調變器的緊密組合,且具 加It王像重建的衛星導航三維圖像顯示裝置具有如下的優點。 =可找到路線資訊的三維圖像,例如在下—個路口要執行的 2方式’亚且因為三_像資訊能更符合接近駕駛者駕駛時的 選單,可^上㈣訊,例如 三維方式顯= 顯示11上部份歧全觸資訊皆可以 *入、·蛾兩對有機發光二極體與光學式幻歧間光調變器 疋-個或兩個電子式定址㈣光調變器的緊_合,且具 目標全像重建的車用三維圖像顯示裝置具有如下的優點。此裝 77 200827771 置可能可以直接地顯示三維#訊’例如在倒車的時候,或是試圖 通過比車補讀是料的财,顯对轉險桿(防護板)與鄰近 物件(如牆爾近情況的三義像。在通道比車输狹窄的地方, -、’隹圖像顯轉置可幫助駕驶者了解車輛财過此通道。三維圖 像可利用衣α在車輛上的感應II所提供的資訊來建立。其它的車 輛資訊可以三維方式顯示在顯示器上,例如速度、溫度、每分鐘 引擊轉速或是其它該顯示於車财㈣訊。衛星導航資訊可三維 地顯示在顯示器上。顯示器上部份或是全部的資訊皆可以三維方 式顯示。 輸出視自的大小是由傅立葉平财繞棚制職性間隔所 限ti如果有機發光一極體顯不器或是電子式定址空間光調變器 中的像侧距是接近1G,’那麼對於波長·碰的可見光,: 輯500疆的地方,根據全像圖的空間光調變器所使用的編石馬, 虛擬觀察員視窗(vow)的寬度約為10mm到25inm。這對於—個 '眼睛而言是足夠寬的。對於另外-眼的第二虛擬觀察員,可由對 空間光調變器的内容進行空間或時間上的多工方式來建立。在缺 )追縱的情況下’為了看見最佳的三_像,觀察員必須旋轉或 移動襄置及/或他自己本麵位置,讓他祕睛能位在施觀察員 視窗’並且位於離裝置最佳的距離。 78 200827771 數個虛滅察貞視㈣凑*成的方式可讓調整顯示裝置位置 及方向的程序較為容易。兩個或三個虛擬觀察員視窗可在乂_及> 方向並列’使得虛擬觀察員視窗可涵蓋較大的區域。拼凑的方式 可由空間或時間多工,歧空間及時,工的組合來完成。工 在時間多工巾,光是_上依序地投射至虛織察員視窗中。如 果虛擬觀察員視窗具有不_.内容,空間光調變器必須重編碼。 -在空間多工中,對於不同虛擬觀察員視窗的内容,是在相同的時 #敝空間光調變器中進行編碼,但是是在空間光調變器的不同區 域^束分光鏡可將空間光調變器不同區域的光分至不同的虛擬 觀察員視窗。可使用空間及時間多工的組合。 典咖贿_域個人触脑的铸式三獅貞示裝置的 且是在從—英对到數英忖的範圍之間。全像次顯示可 /、有螢幕尺寸小至一公分的螢幕。 圖二顯示了包含-對或兩對有機、 間光調變II組合或是—個或式定址空 ,A 于式疋址&間光調變器的緊宓 組合的三__轉置柯❹卜在圖三巾魏置是行動電: 79 200827771 在行動電話上’當配備相似裝置的另外—方的三維影像圖 顯不在絲區域W的時候,使用者可撥打電話。行動電話有装配 天線32 ’以進行行動通訊。在其它的實施方式中,天線可位於行 動電話3〇的主體中。行動電話30裝配兩個攝影機33及34,分^ 記錄使用者左眼及右眼_像。左眼及右眼的圖像包含立體=像 資料。行動電話30配備數字及“*,,及“#”符號的按鍵% ’以及2 Ϊ能幕增物動’或是啟動^ 鍵上頒不的軚示例如”〇N"OFF”或是”2,,,可 喊’可防止在進行三維影像電話通話的雙方,觀看對方時^ 財。在使用上’兩個觀看者的眼睛與兩個攝影機33及34最好 :共面^並且使用者的臉是位在接近垂直於榮幕區域幻的位 奸==兩個_ 33及34在包含觀看者目_ =龜。硯看者的頭部對於顯示器的最理想觀察 先 疋的,使得兩個攝影機%及34能在這個 預先决 理想的崎。祖衝軸 === ,雙向 T為了確保母一個硯看者精確地面向 :望確保對於每個眼睛的虛擬觀察員視窗不會比二 :及:樣可以_看者的眼界對於觀看者攝影機方:位 進行照的目標’裝置可對目標 氣。或者,可猎由物幕上的小按鍵圖示綱使 200827771 用者使用’藉此完絲置的最理想方向設置。裝置也可具傷眼部 追蹤功能。在此所描述的裝置格式與用法可使用於可全像地、^ 動立體顯示地或其它任何方法產生三維圖像的裝置。 在雙向的三維影像電話通話躺,攝雜%及M分別記錄 使用者的右眼及左眼®像。從這些圖像獲得的資料,會用於在三 維影像通話中另-方對應的手持裝置上,以建立三維影像圖像。 如果三維圖像是自動立體顯示地產生,從攝影機33及34的觀看 可直接地使用在自動立體顯示器中產生兩個眼睛的圖像。如果三 維圖像是全像地產生,包含從攝影機33及34觀看的資料應該要 進行處理,例如藉由使贿生全像_電腦,例如在—個或兩個 空間光調變器之上允許全像㈣的適#編碼。#三_像是全像 也產生此一維顯示益為一種全像顯示器。相較於自動立體顯示 益’全像顯示器提供全深度資訊’即調節(眼睛聚焦)與視差。全像 顯示器提供目標的全像重建,即在正確的深度產生全部目標點的 全像重建。 在此所描述的手持式三維顯示器的應甩包含保持雙向三維影 像電話的通話。另—個應肢包括由通話中的另—方顯示目標或 %景的三維齡,例如在顧之縣觀看產品,或是檢查物品是 否有損吾。另一個應用是包括個體身份的確認,可由三維顯示來 81 200827771 獲得助。二維顯示可增輯 力,例如雙胞船或是倍壯的乂 的個體進行區別能 看個體,以進行更進m。另一個應用是包括利用圖像來觀 可幫助’ 連絡’例如在約會服務中,三維圖像 j為助心。另—個翻 豕 方式,觀看者合直歡1不來觀看成人内容的 曰口歡一、、參顯不勝於二維顯示。 一有目咖㈣會有铜·。在—個實施例中,具 π王像重建的二維顯示裝置會有選單選項 上的姆增域是減少虛擬 t貝視自之_分隔。如料是已設定 且試_像時,可選擇最佳的虛擬== 隔距離’嶋魏物_紐三梅。㈣,所選= 距離可儲存在使用者的偏好 勺 如果有多個個體使用裝置時, 則可將夕個使用者偏好儲存在裝置當中。這樣的選單選項 =儘管裝置具魏力各職錢_看者的_錄,、二 擇輕的虛擬觀顧視窗之間的精確距離會比追縱軟體 的選擇來的更好。-旦這樣的選擇產生了,將可加快追縱的速度, 因為在眼睛之間的距離成為固定的參數之後,對於觀 所需要的精確位置決定會較低。能 丁、、、又月 間更好的距離,也提供了超越自si員視窗之 動立體顯示系統的優點,在自動 82 200827771 立體顯示系統中’左眼與右眼圖像之間的距離是傾向於使用裝置 硬體來固定。 G·包含一對或兩對有機發光二極體與光學式定址空間光調變器組 合或是一個或兩個電子式定址空間光調變器的緊密組合的平面投 影機系統 從裝置發射的光也可投射到螢幕或牆或是一些其它的表面 上,來取代如F部份所描述的投射光至數個虛擬觀察員視窗的方 式。因此,在行動電話或個人數位助理或是在其它裝置中的三維 顯示裝置也能如同以口袋型投影機的方式來使用。 可藉由制空賴器賴人縣的振幅及她來提升全 壽像投攝圖的0口貝。因此,複數值的全像圖可在空間光調變器上編 碼,讓重建在螢幕或牆上的圖像具有較好品質。 在先前部份· 對或兩對核發光二極體與光學 ,址空間光調變H組合或—個或兩個電子式定址空間變界的緊 密組合’可作為空間光調變器使用於投影機中。由於此組合的大 小為緊密的’投賴也將妓緊㈣。投影機甚至可料 電話或是個人數位助理歧―些其它的裝置:可藉由”三維顯示 83 200827771 裔”與”投影機”模式來進行切換。 相較於習用的二維投影機,全像式二維投影機具有不需要投 影透鏡以及㈣的圖縣光學遠場巾的全部距轉是聚焦的優 點。習用的全像式二維投影機,例如在wo·,5·中所描述 的内容’使用單-空間光調變器,因此無法進行複_調變。在 此所描述的全像式二維投影機,將能夠進行複雜的調變,因此能 具有非常佳的圖像品質。 H.使用-個或兩個紅外線有機發光二鋪顯㈤與光學式定址空 間光調變器的緊密組合的自動立體或全像顯示器 衫發光二極體顯示器與光蝴址空間光調變器的 Α ___崎)錢個在自齡醜示器 體顯示器L峨觀 巾帳式自動立 不俊•臺入°硯看自動立體顯示器並 不像規看王像顯樣的舒適,雖然在— =器比起全侧㈣可能較為便宜或是躲== :像資料。自動立體顯示器提供數個觀看區域,藉由: _不二維場景的不同觀點 區域,他將看到立體的·。&的眼睛是在不同的觀看 。自動立軸*贿全倾術的差異: 84 200827771 自動立體顯示ϋ提供兩個平關像,*全像技術更提供三維場景 中每一個目標點的Ζ-資訊。 通苇,自動立體顯示器是以顯示器上觀看區域的空間多工為 基礎’亚且使用光素分光鏡元件,例如雙凸透鏡_1(^㈣、障礙 遮蔽物(barrier masks)或是稜鏡遮蔽物(prism masks)。障礙遮蔽物也 可稱之為”視差障礙”。自動立體顯示器的缺點是每—個觀看區域 的解析度會典型地反比於觀輕_數量。但是這個缺點可由如 上所描述的自動立體顯示器的優點來補償。 紅外線有機發光二極體顯示器與振幅調變光學式定址空間光 凋、交為的緊密組合(例如在A部份所描述的内容)可使用來成為具 有高解析度的振幅調變顯示器。如果紅外線有機發光二極體顯示 器與振幅調變光學式定址空間光調變器的緊密組合是與光束分光 鏡元件結合的話,則可建構出具高解析度的自動立體顯示器。緊 始、組合的南解析度可補償因為空間多工而損失的解析度。 對於需要一個或多個額外的光學式定址空間光調變器的自動 立體顯示器,使用一個或多個有機發光二極體陣列與一個或多個 光學式定址空間光調變器的緊密組合(例如··在八與6部份所描述 的内谷)的優點是非圖樣式的光學式定址空間光調變器。自動立體 85 200827771 顯示器包含絲分光鏡與有機發光二極體陣列,可能會由於圖樣 式的有機發光二極體而具有加工品,例如:在光束分光鏡期間與 有機發光4體_之_赦效應(M咖他㈣。相較之下, 在緊密組合的絲奴址郎光賴器、上㈣訊是_的:僅有 光束分光鏡期間,不會出現週期性的加工品。 自動立體顯不器的光源可為—個或多個光源,例如發光二極 體’雷射’有機發光二極體或冷陰極螢光燈。光源不需為同調性 的。如果使用有機發光二極體且自動立體顯示器顯示色彩圖像, 則會在光職光發射齡器及振幅觀光學式定址空間光調變器 的緊密組合之間f要色彩過濾器層’例如紅色,聽及藍色過^ 器。 紅外線有機發光二極醜示器與光學式定址空間光調變器的 緊密組合(例如在A部份所描述的内容)也可以使用在全像顯示, 餐別是在彳了動電話或個人轉助理巾的手持式齡器。全像顯示 是以顯示器上觀看區域的空間多工為基礎,並且使用光素分光 鏡兀件,例如雙凸透鏡(lenticulars)、障礙遮蔽物(bawer細ks)^ 是稜鏡遮蔽物(prism masks)。障礙遮蔽物也可稱之為,,視差障礙 "。紅外線有機發光二極體顯示器與光學式定址空間光調變器的緊 密組合(例如在A部份所描述的内容)可使用來成為具有高解析度 的王像顯示益。如果紅外線有機發光二極體顯示器與振幅調變光 86 200827771 學式定址m細變n的緊練合是與光束分錢元件結合的 話’則可建構ώ具高崎度的全像騎器。緊密組合的高解析度 可補償因為空間多工而損失的解析度。在另—個實施射,兩^ 有機發光二極斜列與光學式定址空間細變器的緊密組合的組On the 12th of December, 2006, the company announced that the same type of panel L3D07U 81G00 ’ has a pixel size of 0 7 inches and a pixel pitch of 8 5 (four). If the D4..L3D13U 1.3 inch panel is used to construct a monochrome holographic display, and the holographic image of the hologram is used, the position of the G.4m is determined. The virtual observation window can calculate the width of the material. F. In-situ or pair of organic light-emitting diodes combined with an optically-addressed spatial light modulator or a close combination of - or - electronically addressed (four) optical modulators, and having a three-dimensional map of target holographic reconstruction Like a display device, a pair of β or two pairs of organic light-emitting diodes, or a combination of 疋- or _ electronic address space, it is recommended for handheld triaxial thinning or Larger triaxial thinner towels because this ==疋 is very tight. Such a combination can be integrated into, for example, a mobile phone, a toilet, a display device for a clothing, a computer game device, a personal digital assistant (p, , , , , , , , , , , , , , , , , , , , This 76 200827771 ===Γ for the single, the person. (4) is generally in the vertical m U纟 and the reading device can make the best viewing effect, the distance will tend to turn to the hand #定=转知, the use of dumping The same direction as the wnm/o clothing to obtain the most ideal viewing state, as described in =: 41. Therefore, in such a device, the wind is θ 卜 material and complex and not close If the tracking light containing the scanning mirror is turned over in other refinements, if the device is used, the tilting power supply required by u will not cause an excessive burden. A moth and a light-emitting second shop and an optical address such as a light tone The close combination of the right = one or two electronically-positioned spatial light modulators, and the satellite navigation three-dimensional image display device with the reconstruction of the Itan image has the following advantages: = 3D image of the route information can be found , for example, at the next intersection - 2 ways to perform For the three-image information, it is more in line with the driver's menu when driving. You can use the (4) signal, for example, the three-dimensional display = display 11 partial touch information can be *, moth two pairs of organic light-emitting diodes The three-dimensional image display device for vehicle and the optical phantom-modulation optical modulator 疋-one or two electronic addressing (four) optical modulators and the target holographic reconstruction have the following advantages. 77 200827771 It may be possible to directly display the 3D #讯's, for example, when reversing, or trying to pass the compensation of the car, showing the contrarian pole (protective board) and adjacent objects (such as the wall Sanyi image. Where the channel is narrower than the car, -, '隹 image display transposition can help the driver understand the vehicle to spend this channel. The three-dimensional image can use the information provided by the clothing alpha sensing II on the vehicle. Other vehicle information can be displayed on the display in three dimensions, such as speed, temperature, speed per minute, or other display in the vehicle (4). Satellite navigation information can be displayed in three dimensions on the display. Or all The information can be displayed in three dimensions. The size of the output is limited by the interval of the occupation of the Fu Li Ye Cai Cai. If the organic light is displayed in the polar body or the image side in the electronic address space light modulator It is close to 1G, 'then visible light for wavelengths and collisions:: where the 500th Xinjiang is used, the width of the virtual observer window (vow) is about 10mm to 25inm according to the lithograph used by the spatial illuminator of the hologram. This is wide enough for an 'eye'. For the second-eye observer of the other-eye, it can be established by spatial or temporal multiplexing of the content of the spatial light modulator. In the case of 'seeing the best three-image, the observer must rotate or move the position and/or his own position so that he can be positioned in the observer window' and at the best distance from the device. 78 200827771 Several methods of imagining and ignoring (4) make it easier to adjust the position and orientation of the display device. Two or three virtual observer windows can be juxtaposed in the 乂_ and > directions so that the virtual observer window can cover a larger area. The patchwork method can be completed by space or time multiplex, and the space is timely and the combination of work. In the time of work, the work towel is projected onto the virtual weaver window in sequence. If the virtual observer window has no content, the spatial light modulator must be re-encoded. - In spatial multiplexing, the content of different virtual observer windows is encoded in the same time space, but in different areas of the spatial light modulator, the beam splitter can be used to spatial light. The light in different areas of the modulator is divided into different virtual observer windows. A combination of space and time multiplexing can be used. The code of the bribe _ domain personal brain-throwing three-lion display device is between the range of - English to several miles. The full-image display can be / with a screen size as small as one centimeter. Figure 2 shows the three-_transtransformation of a combination of -, or two pairs of organic, inter-optic modulation II or - or an address space, A, and the inter-mode optical modulator. In the picture three, Wei Wei is the mobile power: 79 200827771 On the mobile phone, when the other three-dimensional image of the similar device is not in the silk area W, the user can make a call. The mobile phone has an antenna 32' for assembly communication. In other embodiments, the antenna can be located in the body of the mobile telephone 3〇. The mobile phone 30 is equipped with two cameras 33 and 34, which record the left eye and right eye image of the user. The images of the left and right eyes contain stereo = image data. The mobile phone 30 is equipped with a number and "*,, and "#" symbol for the button % 'and 2 Ϊ 幕 增 增 增 ' or the start ^ button on the 軚 example such as "〇 N " OFF" or "2 ,,, can be shouted 'can prevent both parties in the 3D video call, when watching the other party. In the use of 'two viewers' eyes with two cameras 33 and 34 best: coplanar ^ and the user's face is in a position close to the illusion of the glory of the glory == two _ 33 and 34 in Contains viewers _ = turtles. The best view of the viewer's head for the display is first, so that the two cameras % and 34 can be ideal in this pre-preparation. The ancestor punch ===, the two-way T is to ensure that the mother is a precise face of the viewer: hope to ensure that the virtual observer window for each eye is no more than two: and: can be _ viewer's vision for the viewer camera side: The target of the photo is taken to the target gas. Alternatively, you can use the small button icon on the screen to use the 200827771 user to use the ideal orientation setting. The device can also have an eye tracking function. The device format and usage described herein can be used to create a three-dimensional image that can be fully imaged, stereoscopically displayed, or any other method. In a two-way three-dimensional video call, the % and M recordings of the user's right eye and left eye® images, respectively. The data obtained from these images will be used to create a 3D image on the other handheld device in the 3D video call. If the three-dimensional image is produced in autostereoscopic display, the images of the two eyes can be directly used in the autostereoscopic display by viewing from the cameras 33 and 34. If the three-dimensional image is generated in a holographic manner, the information contained in the viewers 33 and 34 should be processed, for example by allowing the bribe to be fully imaged, for example, on one or two spatial light modulators. The full image (four) of the appropriate # code. #三_像像像 This one-dimensional display is also produced as a holographic display. Compared to the autostereoscopic display, the full-image display provides full depth information, ie adjustment (eye focus) and parallax. A holographic display provides holographic reconstruction of the target, ie, holographic reconstruction of all target points at the correct depth. The application of the handheld three-dimensional display described herein includes a call to hold a two-way three-dimensional videophone. Another one should include the three-dimensional age of the target or % view from the other side of the call, such as viewing the product in Guzhi County, or checking if the item is detrimental to me. Another application is the identification of individual identities, which can be assisted by a three-dimensional display. The two-dimensional display can increase the force, for example, the individual of the twin boat or the strong cockroach can distinguish the individual to make more progress. Another application involves the use of images to help 'contact', for example in dating services, where the three-dimensional image j is a boost. Another way to turn around is that the viewers will not be able to watch the adult content, and the participation will be better than the two-dimensional display. There is a eye (4) there will be copper. In an embodiment, the two-dimensional display device with π-image reconstruction has a menu option to reduce the virtual t-view. If it is set and try _, you can choose the best virtual == separation distance 嶋 Wei Wei _ New Sanmei. (4) The selected = distance can be stored in the user's preference. If there are multiple individuals using the device, then the user preferences can be stored in the device. Such a menu option = even though the device has a lot of money for the _ watcher's _ recorded, the precise distance between the two virtual viewing windows will be better than the choice of the software. Once such a choice is made, it will speed up the tracking, because after the distance between the eyes becomes a fixed parameter, the precise position decision required for the view will be lower. The better distance between Ding, and, and the month, also provides the advantage of moving the stereoscopic display system beyond the siren window. In the automatic 82 200827771 stereo display system, the distance between the left eye and the right eye image is a tendency. Use the device hardware to fix it. G. Light emitted from the device by a planar projector system comprising one or two pairs of organic light emitting diodes combined with an optically addressed spatial light modulator or one or two electronically addressed spatial light modulators It can also be projected onto a screen or wall or some other surface to replace the way the projected light is projected into several virtual observer windows as described in Section F. Therefore, a three-dimensional display device in a mobile phone or a personal digital assistant or in other devices can also be used as a pocket projector. It is possible to improve the volatility of the full-life image by taking the amplitude of the Lai Ren County and her. Therefore, a complex-valued hologram can be coded on a spatial light modulator, allowing for better quality of images reconstructed on the screen or wall. In the previous part, the pair or the pair of nuclear light-emitting diodes and the optical, spatial spatial light modulation H combination or the close combination of one or two electronic addressing space boundaries can be used as a spatial light modulator for the projector. in. Since the size of this combination is tight, the investment will also be tight (4). The projector can even be used for telephone or personal digital assistants - some other devices: can be switched by "three-dimensional display 83 200827771" and "projector" mode. Compared with the conventional two-dimensional projector, the omni-directional two-dimensional projector has the advantage that all the rotations of the Tuxian optical far field towel without the need for a projection lens and (4) are focused. The conventional omni-directional two-dimensional projector, for example, described in WO·, 5· uses a single-space optical modulator, so that complex _ modulation cannot be performed. The holographic two-dimensional projector described here will be able to perform complex modulations and thus have excellent image quality. H. Use of one or two infrared organic light-emitting two-ply display (5) Auto-stereoscopic or holographic display shirt with a close combination of optically-spaced spatial light modulators, light-emitting diode display and light-mask spatial light modulator _ ___崎) Money in the age-old ugly body display L峨 巾 帐 帐 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动 自动From the full side (four) may be cheaper or hide ==: like information. The autostereoscopic display provides several viewing areas, and by: _ not different views of the two-dimensional scene, he will see the stereoscopic. & the eyes are in different viewings. The difference between automatic vertical axis and bribery: 84 200827771 Auto stereo display provides two flat images, and *Full Image technology provides information on each target point in a 3D scene. Wanted, autostereoscopic displays are based on spatial multiplexing of the viewing area on the display, and use photon beam splitter elements such as lenticular lenses_1 (^(4), barrier masks or 稜鏡 稜鏡 物(prism masks). Obstacle masks may also be referred to as "parallax barriers." A disadvantage of autostereoscopic displays is that the resolution of each viewing area is typically inversely proportional to the number of light. However, this disadvantage can be as described above. The advantages of the auto-stereoscopic display are compensated. The close combination of the infrared organic light-emitting diode display and the amplitude-modulated optical address space, such as those described in Part A, can be used to achieve high resolution. Amplitude-modulated display. If the close combination of the infrared organic light-emitting diode display and the amplitude-modulated optically-addressed spatial light modulator is combined with the beam splitter element, a high-resolution autostereoscopic display can be constructed. The initial, combined South resolution compensates for the loss of resolution due to spatial multiplex. For one or more additional lights An autostereoscopic display of an address-spaced optical modulator that uses a close combination of one or more organic light-emitting diode arrays with one or more optically-addressed spatial light modulators (eg, in eight and six sections) The advantage of the described inner valley is the non-patterned optically addressed spatial light modulator. Autostereo 85 200827771 The display contains a wire splitter and an organic light emitting diode array, which may have due to the patterned organic light emitting diode Processed products, for example: during the beam splitter and the organic light-emitting body _ _ 赦 effect (M café (four). In contrast, in the close combination of the silk slaves Lang Guanglai, Shang (four) news is _: During the beam splitter only, periodic processed products will not appear. The source of the autostereoscopic display can be one or more light sources, such as a light-emitting diode 'laser' organic light emitting diode or cold cathode fluorescent light. Light source. The light source does not need to be homophonic. If the organic light-emitting diode is used and the auto-stereoscopic display displays the color image, it will be close in the light-light emission ageing device and the amplitude sightseeing space-addressing light modulator. Between the color filter layer 'for example, red, listening and blue over the device. Infrared organic light-emitting diode display and optically-addressed spatial light modulator close combination (such as described in Part A) Content) can also be used in holographic display, the meal is a handheld age device that is smashing the phone or personally transferring the assistant towel. The holographic display is based on the spatial multiplexing of the viewing area on the display, and uses the photon spectroscopy. Mirror elements, such as lenticulars, obstacles (bawer fine ks) ^ are prism masks. Obstacle masks can also be called, parallax barriers. Infrared organic light-emitting diodes The close combination of the body display and the optically addressed spatial light modulator (such as described in Section A) can be used to provide a high resolution image. If the infrared organic light-emitting diode display and the amplitude modulation light are combined with the beam-dividing element, then a high-yield hologram can be constructed. The high resolution of tightly combined can compensate for the loss of resolution due to spatial multiplex. In the case of another implementation, a combination of two ^ organic light-emitting diode oblique columns and an optically-addressed spatial fine transformer

合可以依序且緊㈣方式使絲賴光的振幅油位,如B部份 所描述的内容。因此’由振幅與相位組賴複數,可利用逐一像 素的方式在傳达光巾編碼。如果兩對紅外線有機發光二極體顯示 器與振幅觀絲式定址郎光觀⑽緊她合是與光束分光 鏡7G件結合,則可建構出高解析度的全像顯示器。緊密組合的高 2可細物多I·轉減。嫩束分光鏡元 維二,可提供數個觀看區域,藉由每個觀看區域顯示三 將Ιί丨同觀占如果觀看者的眼睛是在不同的觀看區域,他 將看到立體的圖像。 L三維傳輸中需要的資料處理系統。 二二傳==資料處理純。在圖二十 像的拍攝:#料可_ 疋在二維傳輪中。用於建立圖 類似功能触絲進彳 标的行動電域置3G或是一些具有 其中—方细的裝置ΓΓγ °對於三維圖像顯示的資料處理可在 置,或是可在另―方2仃,裝置可為行動電話%錢等效的裝 的裝置中執行’但是最妓能在位於兩 87 200827771 =⑽權輸網路上的中間系統224中執行。傳輪網路 3弟連線222 ’中間系統224及第二連線。及奶 個連線可為無線連線或非叙綠Λ 算的電腦,使得三侧像、、⑽ 4可包含執行計 —固像,例如電腦產生的全像圖或自動立體 订心疋缺的,因為計算將不耗費行動電話的電池電力,但取 而代之使用主要的電源。可使用位於傳輸網路的電腦來對大量的 二維影像餘聰__時進行處理,這可鱗更有 Γ十算資=例如藉由減少未使用的計算處理能力的數量。㈣ :要能力減少,則行動電話或其它類似裝置的重量將會降 位在:輪=1:電腦電路與記憶體’因為計算需求將會藉由 •要安壯如:行計算。最後,執行計算的軟體將僅 二要女衣在位於傳輸網路上的電腦,Μ要絲在行動電話或盆 置中。這將減少行動電話的記憶體需求以及軟體盜版 數二圖像:會:程式碼中任何的企業機密的保護。雖然大多 =1=顯不需要的計算可由中間系統224來執行,不過也可 是在資料傳送前於使用者裝置中進行。例如,如 果兩個拍_像是料她的,細侧 兩個圖像之縣異的差細像,朗為差關像 幫助資料傳送的資料_制 口像非吊易於進灯可 地,:唯圖像顯-、壯 此將可促進資料的傳送。同樣 像顯讀置爾—細⑽,修解除壓縮的圖 88 200827771 像資料 一科:系統的一個例子中’第-圖像舆第二圖像形成 -對立歸相像,並且由使用者220的裝置經由連線边 至尹間裝置224。第二傳送圖像可為兩個立體顯示圖像之差= 圖像’因為__她糊物較 果 ^電話交談是在進行t,則第_圖像可為現在圖像與前二二 =的圖像之間的差異。職的’第二圖像可為現鱼 圖,中間1 2?4 接者,根據從接收資料的對應深度 的n 1 可利用白用對於二維與三維(3D)圖像之間轉換 料异程縣對二維㈣圖像進行計算情於彩 心並且軸們的對應深 接者’關於二維圖像與深度圖的資料會經由連線223傳送 八221的裝置。使用者221的裝置會在它的緊密型三維顯 L ’根據接_的二維圖像與深度圖編碼全像圖。為了有 /的使用傳蝴見’在這個系統中傳輸的資料可進行習用的壓 、去&序亚且在接蚊置巾執行對應的解壓縮動作。使用最有效 I的資料麵數量,她於使陳少資料難_寬需求花費, -平衡仃動裝置的電池執行資料壓縮與解壓縮的電力。 並在 中間叙置224可存取包含已知三維形狀集合的函式庫, 89 200827771 =試^_合树私4㈣的崎,或者它取 已知二維圖形集合的函 匕3 p / 聰合進入的二維 叶形狀中可找到好的配對,這可加快 狀-:狀的函式庫可提供如—組運_星的面孔或身體形 狀例如主要的網球運動員或足球運動員,以及全部或部分主要 的運動場地,例如著名_球場地或是著名的足球場地。例如, 人臉的三維圖像可表示為一個中間裝置224已存取過的資料,加 上臉部表情變化’例如微笑或皺眉等,加上頭髮長度的變化,因 為在資料儲存後頭髮可能留長或剪短。如果一組持續性的差異發 生’中間裝置224 6存取過的記錄明顯比資料過時,例如在長時 間上’人的頭髮長度已經明顯的改變,則這個在中間裝置故已 存取過的資料可由中間裝置224進行更新。如果中間裝置從遇 =在它已存取過的記錄當中沒有發現好配對的二維或三維圖像 時’它將增加新的形狀到記錄的集合當中。 J.幫助二維圖像内容至三維圖像内容的系統 安全廣泛採用的三維顯示技術中的一個困難是彳艮少内容是以 三維格式產生’並且現在大部份的内容仍持續以二維格式產生的 事實。部分上是因為現在所使用的大多數圖像記錄襞置都持續記 錄二維圖像,並且沒有資料是可以使用在三維圖像中。此外,現 200827771 在很少有機會能讓觀看者要求三維的内容或是獲得從二維内容產 生的三維内容。 這非常明顯需要-個支援從二維内容產生三維内容的系統。 在,二十三中給定一個系統。在圖二十三中,即使在觀看者測 的家中具有三_示裝置,電視傳播公司23⑻ 圖像酬。在這個系統中,.具有中間系細1,可將二:= 換到二維内容23〇5。這樣的轉換程序可由觀看者付費支援,或是 可由其它方來付費支援,例如廣告客戶2303。在圖二十三中,告 廣告客戶23〇3的廣告由電視公司23〇〇來播放,廣告客戶細會 2費用纖給侧統咖,並藉由已知的:維内容轉換衫 :内谷的轉換程序將二維内容轉換成三維内容。廣告客戶的利益 7三維的電視廣告呈現給觀看者纖,這將比二維電視廣告更 〜主意。或者’觀看者23G2可支付f躲中啦統迦來轉 =接收-些或全部電婦放的三維格式。中料統會確保三維 各的提供是正確且同步的格式,例如假 、” 2“度® ’ _歸集合會明步方式提供,即 輔獅则,彻__二維圖Γ象使 ^ —維顯不裝置可為全像顯示裝置、自動 h任何㈣的三維顯示裝置。提供三軸示 u —維顯轉置的_。她於上述㈣、統也可翻於非電視播 200827771 放公司的提供者所提供的内容,例如電影或錄影帶供應商等 在另一種系統中,觀看者可支付費用提供二維内容給中間系 統,並且收到提供的二維内容的三維形式回覆。提供的二維内容 可例如為家錢 MP3 _,献其它錄影軸減是如照片 或圖片的圖像。 中間系統可包含電腦來執行計算,使得三糊像能顯示,例 產生全像圖或是自動立體圖像。最好是·在二維内容提 供者,希望觀看三_像内容的觀看者之間傳輸網蘭電腦來執 ―十口為這胃比起在觀看者端執行如此的程序更有效率。位 於傳輸網路上的電腦可使用來同時進行大量的二維到三維内容轉 ^的圖像處理’ 4可允許更有效率關料算資源,例如藉由減 ^未使用的計算處理能力的數量。如果需要的計算能力減少,則 t看者的三維顯示裝置的成本將會降低,因為它將需要較少的带 ^電路_憶體’且計算需求將會藉由位在傳輸網路上的電‘ ρΓίΓ最後’執行計細顧將健要安裝在健傳輪網路 〜要綠錢看者的三維顯示裝置巾。這將減少 ^麵三_科置需紅及㈣紐的翻,並且會 ^要何的企#機密的保護。象然大多數三維圖像顯示 、^可中間系統來執行,不過也可能一些圖像計算是在 92 200827771 嬈看者的二維顯示裝置中執行。二 f —、准圖像顯示裝置可執行一些圖 像计异,例如解壓縮已壓縮 π口像貝枓,或是從二維圖像與它的 對應/木度圖來產生空間光觀n的全像編瑪。 在^_子巾’巾間祕可利㈣用二維與三義像之間轉 的=异程序,計算接收到的二維圖像的對應深度圖。對於彩色 ^圖像,需要二維輯在三魅絲色+的三個元素,並且連同 匕們的對應糊。歸,_二__議#料會傳送 ^看者的二維顯示裝置。觀看者的三維顯示器裝置會在它的空 間光調變財,根據接_二_物_編碼全像圖。為 了有效率的使用傳送頻寬,在這個系統中傳輸的資料可進行習用 賴縮程序,並且在接收裝置中執行對應的解壓縮動作。使用最 有效率的資難缝量,她於伽較少動银縮_寬需求花 費,會平衡提供資料解壓縮功能至三維顯示裝置的花費。 中間裝置可存取已知三維雜集合的資料,並在其中試圖找 到穩合它計算的三維資料的晴,或者它可存取已知二維圖形的 木口 ’並在其巾鋼找聰合進人的二軸像資料的配對。如果 在已知形财可找翁的崎,這可加鱗算料的速度,因為 二維或三維圖像之後可表示為對應已知的形狀。三轉狀的函式 庫可提供如-㈣_星的面孔或身體形狀,例如主要的網球運 93 200827771 動員或足球運動員,以及全部或部分主要的運動場地,例如著名 的、、罔球%地或疋著名的足料地。例如,人臉的三維圖像可表示 為個^間裝置已存取過的資料,加上臉部表情變化,例如微笑 或敵f等加上碩髮長度的變化,因為在資料儲存後頭髮可能留 長或剪短。如果-組持續性的差異發生,㈣裝置已存取過的記 錄明顯比資料過時,例如在長時間上,人的頭髮長度已經明顯的 改k ’則这個在中顺置已存取過的資料可由中間裝置似進行 更新:如果㈣裝置制在它已存取記錄當中沒有發現好配 對的二維或三維圖像時’它將增加新計算的三維形狀到記錄的集 合當中。 K.觀察員視窗的空間多工與二維編碼 乂個貝%例是關於全像顯示器的虛擬觀察員視窗⑽呢)的 空間多工’並結合二維編碼的使用。除此之外,全像顯示器可如 同在A B’C或D部份中所描述的内容,或是任何習用的全像顯 數個處擬觀察S視窗’例如—細於左眼的虛擬觀窣員視窗 與-個用於右眼的虛擬觀察員視窗,可㈣間或時間多工來產生 疋已知的。關於空間多’兩個虛擬觀察員視窗是在同一個時間 點產生的,亚且經由光束分光鏡來區分,相似於自動立體顯示器, 94 200827771 如在WO 20_27228中所描述的内容。而關於時間多工,虛 察員視窗是時間上依序產生的。 然而’習用的全像顯示系統具有—些缺點。對於空間多工而 言,使用的照明系統在水平方向是空__性的,並且是以 平線光源與透鏡狀陣列為基礎,如圖四由習用技術恥 2006/0腦所獲得軸容。這财可细自動立職示器已 術的優點。然而,它賴點是在水平方向上的全像重建是不可能。 取而代之的是使騎丨維編碼,僅在垂直方向產生全像重b ”移動視i 0此’垂直焦點是在重建物件的平面上,而隹 點是在空間光調變器的平面上。這些散光會減少空間視覺的品 貝’思即匕減少了觀看者接收_全像重建的品質。囉地 間多工系統也具有缺點,它們需要尚不能在全部顯示ϋ尺寸作 付的快速空縣輕H ’即時可取得也是過分的昂貴。 " _只有二維編碼在水平射財向㈣提供全像重建,而因此 一維編碼不會產生縣,散光會減少空職覺的品質,意即減少 了觀看者接❹m全缝建的品f。耻,軸實補的目的是 結合一維編碼來實現虛擬觀察胃視諸空間多工。 在化個Λ W种’具有水平錢直局輕卿雛的照明會 95 200827771 與光束分光鏡結合,光束分光鏡會將光分為對於左眼虛擬觀察員 視窗的光及對於右眼虛擬觀察員視窗的光。因此,必須考慮位於 光束分光鏡的繞射。光束分光鏡可為棱鏡陣列,第二透鏡陣列(例 如靜態陣列或是變量陣列,如圖二十中所示)或是障礙遮蔽物。 圖二十五顯示了這個實施例的例子。圖二十五為包含二維光 . 源陣列的光源、二維透鏡陣列的透鏡、空間光調變器與光束分光 • 鏡的全像顯示器示意圖。光束分光鏡會將離開空間光調變器的光 線’分離成二束光線,分別照射用於左眼的虛擬觀察員視窗(VOWL) 與用於右眼的虛擬觀察員視窗(V0WR)。在這個例子中,光源的數 量是一個或多個;透鏡的數量與光源的數量是相同的。 在這個例子中,光束分光鏡是在空間光調變器之後。光束分 光鏡與空間光調變器的位置也可相互交換。圖二十六顯示了這個 實施例的例子,在平面圖中是使用棱鏡陣列作為光束分光鏡。照 ” 明裝置包含η元件的二維光源陣列(LSI,LS2, ··· LSn )及n元件的 一、、隹透鏡陣列(Ll,L2,…Ln) ’在圖二十六中只顯示兩個光源與兩 個透鏡。每一個光源是利用它所關聯的透鏡來成像至觀察員平 、 面。光源陣列的間距與透鏡陣列的間距是要使得全部光源圖像能 同日才出現在觀察員平面,即包含兩個虛擬觀察員視窗的平面。在 圖一十’、中’並丨又有顯示左眼虛擬觀察貝視窗(VOWL)與右眼虛擬 96 200827771 觀察員視窗(VOWR),因為它們是在圖的外面,且為圖的右邊。可 增加額外的視野透鏡。為了提供充份的空間_性,透鏡陣列的 間距是相似於次全像_典型大小,即—至數公釐的等級。照明 在每-個透鏡岐水平且垂直雜__,料辆是小的或 為點光源’且因為使用二維透鏡陣列。透鏡陣列可為折射、繞射 或全像式的。 在這個例子中,光束分光鏡是一維的垂直棱鏡陣列。入射在 棱鏡-個斜面的光,會偏斜至錄虛擬觀察員視窗⑼v〇wl),入 射在棱鏡另-個斜面的光,會偏斜至右眼虛擬觀察貝視窗⑼ VOWR)。從相同LS與相同透鏡產生的光線,在通過光束分光鏡 之後’也為相互關。因此,具錢直與水平聚焦並且垂直與水 平移動視差的二維編碼是可能的。 王像囷疋在具有—維編碼的空間光調變器上進行編碼。對於 左眼及右_全侧是位—個攔位的交錯,意即攔位會交 錯編碼對於魏與右_全像資訊。更好地是在每—個棱鏡下具 有個對於左眼全像資訊的攔位及一個對於右眼全像資訊的棚 位。另一個方法,在每一個棱鏡的斜面下也可有兩個或更多個全 像圖的攔位,例如三個對於左眼虛擬觀察員視窗的攔位,並且接 著為三個對於右眼虛擬觀察員視窗的攔位。光束分光鏡的間距可 97 200827771 與空間光調變器的間距相同,或為整數(例如二或三)倍數,或者, 為了能容許透視縮短(perspective shortening),光束分光鏡的間距可 比空間光調變器的間距稍微小一點,或是比它的整數(例如兩或三) 倍數猶微小一點。 從具左眼全像的欄位發出的光會重建對於左眼的目標,並且 照射左眼虛擬觀察員視窗(V0WL);從具右眼全像的攔位發出的光 會重建對於右眼的目標,並且照射右眼虛擬觀察員視窗(v〇WR)。 因此,母一個眼睛會看到適當的重建。如果棱鏡陣列的間距是充 分的小,則眼睛不能解析棱鏡結構,且棱鏡結構不會妨礙全像圖 的重建。每一個眼睛會看見具有全聚焦與全移動視差的重建,並 且沒有散光。 在光束分光鏡上將會有繞射,因為同調光會照射光束分光 鏡。光束分光鏡可視為產生多重繞射階級的繞射光栅。斜的棱鏡 斜面具有閃耀式光柵的效果。對於閃耀式光柵,最大強度是導向 特定的繞射階級。對於棱鏡陣列,一個最大強度會從棱鏡的一個 斜面導向位於左眼虛擬觀察員視窗位置的繞射階級,另一個最大 強度會從棱鏡的另一個斜面導向位於右眼虛擬觀察員視窗位置的 另一個繞射)¾級。更精確來說,封裝式(6ην61〇ρ_) Sine-Squared函 數的強度最大值是移至這些位置,而繞射階級是位在固定的位 98 200827771 置。棱鏡陣列會在左眼虛擬觀察員視窗的位置產生一個強度封裝 sinc-squared函數最大值,在右眼虛擬觀察員視窗的位置產生另— 個強度封裝sine-squared函數最大值。其它繞射階級的強度將會是 很小的(意即sine squared強度函數最大值是狹窄的),並且將不會 產生干擾串音’因為棱鏡陣列的填充因子是大的,例如接近1〇〇%。 Μ _ 如同在習用技術中可見的,為了提供虛織察員視窗給二個 或多個觀察員,可藉由使用更複雜的棱鏡陣列(例如兩種類型的棱 鏡’具有相同的頂角,但是不同的非對稱程度,連續地相鄰配置), 產生多個虛擬觀察員視窗。然而,使用靜態的棱鏡陣列是不能夠 個別地追縱觀察員。 、在另-個例子中,每個透鏡可使用多於—個光源。每個透鏡 • 貞卜的光源可利用來產生額外的虛擬觀察員視窗,提供給額外的 觀祭貝。這是描述在wo 2004/044659 (US2006/0055994)中,對於 瓜個觀察員提供—個透鏡與m個光源的例子。在這個更進一步的 =子中,利用每個透鏡m個光源與雙倍的空間多工來產生㈤個左 疑觀員視個右邊虛擬觀察員視窗,提供給㈤個觀察 貝。母個透鏡m個光源是以m對—的對财式,財m是一健 99 200827771 接著是這個實施例的例子。使用20英吋螢幕尺寸,並具有下 列的參數值··觀察員距離2m,像素間距在垂直上為69μηι,在水 平上為207μηι,使用布克哈特編碼,以及光學波長為 633nm。布克哈特(Burckhardt)編碼是在垂直方向,具有69,的次 像素間距與6mm高的虛擬觀察員視窗(垂直期間)。忽略透視縮 短’垂直棱鏡陣列的間距為414μπι,也就是在每個全棱鏡下具有 兩個空間光_變器的欄位。因此,觀察員平面中的水平期間為 3mm。這也同樣為虛擬觀察員視窗的寬度。這個寬度在直徑上是 小於理想大約4mm的眼睛瞳孔。在另一個相似的例子中,如果空 間光調變器具有50μιη的較小間距,虛擬觀察員視窗將會有2、5mm 的寬度。 如果成年人眼睛的分隔為65mm(這是典型的),棱鏡必須偏斜 光± 32.5mm,在那個位置光會與包含虛擬觀察員視窗的平面相 父。更精確來說,強度封裝sinC_Square(j函數最大值需要偏斜土 32.5mm。這對於2m的觀察員距離相當於是士 〇·93。的角度。對於 棱鏡折射率1.5,適當的棱鏡角度為士 I%。。棱鏡角度是定義 為基底與棱鏡斜邊之間的角度。 對於在3mm的觀察員平面中的水平期間,另一眼的位置是在 大約21繞射階級的距離(意即65麵除^腿)。由另一個虛擬觀察 100 200827771 員視窗的較高繞麵級所導致在左眼虛擬觀察員絲與在右眼虛 擬觀察員視窗之中的串音因而是可以忽略的。 為了實作追蹤,光源追蹤為一個簡單的追蹤方法,意即適應 光源的位置。如果空間光調變器與棱鏡_不是在相同的平面 上’在空間細變ϋ像素與棱鏡之間,將會具有由視差所導致的 擾亂相關橫向偏移。這將可能會導致擾亂串音。上述的例子,2〇 英对螢幕尺寸的像素,在垂直於每個棱鏡尖端所形成的轴的方 向,可能具有70%的填充因子,也就是在每個邊上,像素大小為 145μιη作用區域及31μιη無作用的區域。如果棱鏡陣列的建構區 域疋私向空間光調變器,在棱鏡陣列與空間光調變器之間的分隔 可能大約為1mm。無串音的水平追蹤範圍將會是士 31 μιη/ i 2 m = 士 62 mm。如果小的串音是可容許的,那麼追蹤的範圍將會 較大。這個追縱範圍並不是很大,但它是足夠允許一些追蹤進行, 使付觀看者將會有較少的限制,像是限制他/她的眼睛的放置位置。 空間光調變器與棱鏡陣列之間的視差是可以避免的,較好的 方法是利用將棱鏡陣列整合或是直接整合在空間光調變器中(像是 折射、繞射或是全像式棱鏡陣列)。這對於產品而言將為專業構成 要素(specialized component)。另一種選擇是棱鏡陣列的橫向機械移 動,雖然這是較不建議的,因為移動機械部分會使得裝置變得更 101 200827771 為複雜。 另-侧鍵性關題是_鏡肢所蚊_定虛擬觀察員 視窗分隔。這可能會對非標準眼睛分隔的觀察員或是&追縱造成 困擾。其中-個解決方法’是可使用包含封裝液晶區域 (encapsulated liquid-crystal domains)的組合,如圖二十一所示。接 著,電場可_卿率,以及偏斜岐。這轉財法可與棱鏡 陣列合併,以便連續地個別提供變量偏斜與固定偏斜。在另—種 解決方法中,可職晶層覆蓋棱鏡_的結構邊。接著,電場可 控制折射率’以及偏斜纽。如果虛擬觀察員視t具有足=容許 不同眼h分隔的觀察員與2_魏如此A的寬度,則變量偏斜組合 疋不需要的。 • 錄複_解決方法是使用可控制的棱辦列,例如 e_wettlng棱鏡陣列(如圖二十七所示)或是填滿液晶的棱鏡(如圖二 斤示)在圖一十七中,具有棱鏡元件159的層包含電極 1518及填滿兩個分離液體⑸9、⑽的凹洞。每—個液體填滿凹 /同的牙夂形部分。舉一個例子,液體可以是油或水。在液體⑸$、 1520之間介面的斜率是依據施加在電極⑸7、1518的電壓所決 =。如果㈣具有獨的折卿,紗將會遭受偏向,偏向是由 細加在電極1517、1518的電壓所決定。因此,棱鏡元件⑼扮 102 200827771 演可控制的光束指向元件。對於需要追蹤虛擬觀察M視窗至觀察 員眼睛的實作,提供電子式全像技術,輯对請人的方法而言 疋-個重要的特性。由申請人提出的專利申請號证 刪㈣期讪、DE搬⑽鳩236·2,描述了具有棱鏡元件虛擬 觀察員視窗至觀察員眼睛的追蹤。 這是一個使用於緊密手持式顯示ϋ的實施例。Seiko (RTM) Epson (RTM) C—orati〇n of japan已發表單色電子式定址空間光調 又阳例如D4.L3D13U 1·3英忖螢幕尺寸。一個描述的例子是使 用D4:L3D13U液晶顯示器面板作為空間光調變器。它具有腿^ 的解析度(1· X 1〇8〇像素)、1S]Lim的像素間距與⑽醜X 16.2mm的面板區域。這個面板通常使用在二維圖像投影顯示器。 、身這们例子疋计异關於663nm的波長與50cm的觀察員距離。 牙於這個振空間光調冑器是使用軌跡相位編碼(布克哈特編 碼)·需要二轉素來編碼—倾數。這三侧聯像素是垂直排列 的如果棱鏡陣列光束分光鏡是整合在空間光調變器中,棱鏡陣 列的間距會是3〇μηι。如果帥光調變器與棱鏡陣狀間具有分 & ’棱鏡陣列關距會稍微不同,以處理透視縮短。 虛擬觀察員視窗的高度是由 103 200827771 -個複數所決S,且為7·〇 mm。虛織察員視窗的寬度是由棱鏡 陣列的30μπι間距所決定,且為1〇 6mm。兩個數值都大於眼睛的 瞳孔。因此’如果虛纖察員視窗是在眼睛的位置,每個眼睛都 可以看見全像重建。全像重建是從二維編碼的全像圖而來,因此 並沒有上面所述-維編碼中本身存在的閃光問題。這個確保高的 空間視覺品質與高的深度印象(depth impressi〇n)品質。 # #眼睛的分隔為65mm時,棱鏡必須偏斜光± 32.5mm。更精 確來說,封t sine-squared㉟度函數的強度最大值需要偏斜土 2.;5mm對於〇·5 m的觀察員距離,這對應於士⑽。的角度。對 於折射率η I·5 ’適當的棱鏡肢為± 7 44。。棱鏡肢是定義為 基底與棱鏡斜邊之間的角度。 • 躲在则醜的觀察員平面中的水平期間,另-眼的位置是 在大約6繞射階級的距離(意即65職除1〇.6_。由較高繞射階 級所導致的串音因而是可⑽略的,因為棱鏡陣列具有高的填充 因子’意即接近於100%。 這是-個使用於大顯示器的實施例。全像顯示器可設計使用 相位調變物_魏,並具有5GMm的像素舰及2G英时的 螢幕尺寸。對於如電視的細,螢幕尺寸可能相當接近4〇英时。 104 200827771 對於這個設計的觀察員距離為2m,波長是633nm。 使用空間光調變器的兩個相位調變像素來編碼一個複數。這 兩個關聯的像素是垂直排觸,並且對應的垂直間距為2 * 5〇叫 100 μηι。藉由整合棱鏡陣列至空間光調變器中,棱鏡陣列的水 Τ間距也為2*50 μιη= 100 μηι,因為每個棱鏡包含兩個斜面,且 母個斜面是胁空間光調魏的—個攔位。所產生12 7咖的虛擬 硯察員視窗的寬度與高度是比眼睛的瞳孔還來的大。因此,如果 虛擬觀察員視窗是在眼睛的位置,每個眼睛都可以看見全像重 建。全像重歧從二維編碼的全像_來,因此並沒有 中本身存在_光_。這個確保高的空間視覺品f與高的深度The amplitude and oil level of the filament can be made in order and tightly (4), as described in Part B. Therefore, by combining the amplitude and phase, the light towel encoding can be conveyed by means of pixel by pixel. If two pairs of infrared organic light-emitting diode displays are combined with the amplitude-viewing-type Lang Guangguan (10) and the beam splitter 7G, a high-resolution holographic display can be constructed. The tightly combined high 2 can reduce the amount of fines. The tender beam splitter element dimension 2 can provide several viewing areas, and each viewing area displays three. If the viewer's eyes are in different viewing areas, he will see a stereoscopic image. A data processing system required for L-dimensional transmission. Two two pass == data processing pure. In the picture of the picture twenty: #料可_ 疋 in the two-dimensional transmission. The action electric field used to establish the similar function of the touch screen is set to 3G or some devices with the square shape ΓΓ γ ° can be placed in the data processing of the three-dimensional image display, or can be in the other side, The device can be executed in a device that is equivalent to a mobile phone's equivalent, but can be executed in the intermediate system 224 located on the two 87 200827771 = (10) rights network. The transmission network 3 brothers connect 222 'intermediate system 224 and the second connection. The connection between the milk and the wireless connection can be a wireless connection or a non-synchronized computer, so that the three-sided image, (10) 4 can include an implementation-fixation image, such as a computer-generated hologram or auto-stereoscopic missing. Because the calculation will not consume the battery power of the mobile phone, but instead use the main power source. A computer located on the transmission network can be used to process a large number of two-dimensional images, which can be scaled up, for example, by reducing the amount of unused computational processing power. (4): If the ability is reduced, the weight of the mobile phone or other similar device will be reduced to: Wheel = 1: Computer circuit and memory 'Because the computing needs will be made by • To be as strong as: Line calculation. Finally, the software that performs the calculations will only be on the computer on the transmission network, and it will be in the mobile phone or in the basin. This will reduce the memory requirements of the mobile phone and the software piracy number two images: will: the protection of any corporate secrets in the code. Although most = 1 = significantly unnecessary calculations may be performed by the intermediate system 224, it may be performed in the user device prior to data transfer. For example, if two shots are like her, the image of the difference between the two images on the thin side is the image of the difference that helps the data transmission. The mouth is like a non-hanging light. Only the image display - and this will promote the transfer of data. Similarly, the display is as shown in Fig. 88. This is an example of the system: in the example of the system, the first image, the second image is formed, the image is opposite, and the device is used by the user 220. Connect to the Yin room device 224 via the connection. The second transmitted image can be the difference between two stereoscopic display images = image 'because __ her paste is more fruitful ^ phone conversation is in the process of t, then the _ image can be the current image with the first two two = The difference between the images. The second image of the job can be the current fish map, the middle 1 2? 4 picker, according to the corresponding depth from the received data n 1 can be used for the conversion between two-dimensional and three-dimensional (3D) images Cheng County calculates the two-dimensional (four) image in the color center and the corresponding deeper of the axes 'the information about the two-dimensional image and the depth map will transmit the eight 221 device via the connection 223. The user 221's device encodes the hologram in its compact 3D image and depth map. In order to have / use the transmission, the information transmitted in this system can be used for the pressure, go & and the corresponding decompression action in the mosquito net. Using the number of data planes with the most effective I, she makes it difficult to make Chen Shao's data _ wide demand, - balance the battery of the smashing device to perform data compression and decompression. And in the middle of the description 224 can access the library containing the known set of three-dimensional shapes, 89 200827771 = test ^_ Heshu private 4 (four) of the Saki, or it takes the function of the known two-dimensional graphics set 3 p / Confucian A good pairing can be found in the two-dimensional leaf shape that enters, which can speed up the shape-like library to provide a face or body shape such as a main tennis player or football player, and all or part of it. The main sports venues, such as the famous _ stadium or the famous football venue. For example, a three-dimensional image of a human face can be represented as data that has been accessed by an intermediary device 224, plus facial expression changes such as smiles or frowns, plus changes in hair length, as hair may remain after data storage Long or short. If a set of persistent differences occurs, the record accessed by the intermediate device 2426 is significantly more out of date than the data, for example, the length of the person's hair has changed significantly over a long period of time. The update can be made by the intermediary device 224. If the intermediate device does not find a good paired 2D or 3D image among the records it has accessed, it will add a new shape to the set of records. J. System security for 2D image content to 3D image content One of the difficulties in widely used 3D display technology is that less content is produced in 3D format and most of the content continues to be in 2D format. The facts produced. Partly because most image recording devices used today continue to record two-dimensional images, and no data can be used in three-dimensional images. In addition, there is very little opportunity for viewers to request 3D content or 3D content generated from 2D content. This is obviously a need for a system that supports the generation of 3D content from 2D content. In twenty-three, a system is given. In Figure 23, even if there is a three-in-one device in the home of the viewer's test, the TV broadcast company 23 (8) image pays. In this system, with the intermediate system fine 1, you can change two:= to two-dimensional content 23〇5. Such a conversion procedure can be supported by the viewer for payment, or can be supported by other parties, such as advertiser 2303. In Figure 23, the advertiser's 23〇3 advertisement is broadcasted by the TV company's 23〇〇, and the advertiser's details will be 2% to the side, and by the known: dimension content conversion shirt: Inner Valley The conversion program converts 2D content into 3D content. Advertiser Benefits 7-dimensional TV commercials are presented to viewers, which will be more than 2D TV ads. Or the 'viewer 23G2 can pay for the escape from the singer's turn to receive the three-dimensional format of some or all of the women. The media system will ensure that the three-dimensional supply is in a correct and synchronized format, such as false, "2" degree® ' _ collection will be provided in a clear-cut manner, that is, the auxiliary lion, the __ two-dimensional image makes ^ The dimension display device can be a holographic display device, an automatic h any (four) three-dimensional display device. Provides a three-axis display u - the _ of the transposed. In the above (4), she can also turn to the content provided by the provider of the non-TV broadcast 200827771 company, such as a movie or video tape provider. In another system, the viewer can pay for the two-dimensional content to the intermediate system. And receive a three-dimensional form of the reply of the provided two-dimensional content. The 2D content provided can be, for example, the home money MP3 _, and the other video axis reduction is an image such as a photo or a picture. The intermediate system can include a computer to perform calculations such that the three paste images can be displayed, for example, to produce an hologram or an autostereoscopic image. It is better to be in a two-dimensional content provider, who wants to watch a three-dimensional content viewer between the transfer of the computer to perform - ten mouths for this stomach is more efficient than performing such a program on the viewer side. Computers located on the transmission network can use a large amount of 2D to 3D content to process image processing at the same time. 4 allows for more efficient accounting resources, such as by reducing the amount of unused computational processing power. If the required computing power is reduced, the cost of the viewer's 3D display device will be reduced because it will require fewer circuits and the computing requirements will be based on the power on the transmission network. Γ Γ Γ Γ ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' This will reduce the face-to-face _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Most of the three-dimensional image display can be performed by an intermediate system, but it is also possible that some image calculations are performed in the two-dimensional display device of the viewer. The second f-, quasi-image display device may perform some image differentiation, such as decompressing the compressed π-port image, or generating a spatial photon from the two-dimensional image and its corresponding/wood map. The whole image is compiled. In the ^_ 巾 巾 巾 巾 巾 巾 巾 巾 巾 巾 巾 巾 巾 巾 巾 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 For the color ^ image, you need two elements of the two charms in the three charms, and together with their corresponding paste. Return, _ two __ discussion # material will be transmitted ^ viewer's two-dimensional display device. The viewer's 3D display device will change its color in its space, according to the _ _ _ _ coded hologram. In order to efficiently use the transmission bandwidth, the data transmitted in this system can be used in a conventional program, and the corresponding decompression action is performed in the receiving device. Using the most efficient cost, she spends less on the cost of the gamma, which will balance the cost of providing data decompression to the 3D display. The intermediate device can access the data of the known three-dimensional miscellaneous collection, and try to find the stability of the three-dimensional data calculated by it, or it can access the wooden mouth of the known two-dimensional figure and find the intelligence in the towel steel. The pairing of human biaxial images. If you know the shape of the money, you can add the speed of the scale, because the 2D or 3D image can be represented as a corresponding known shape. A three-turn library can provide faces or body shapes such as -(d)_stars, such as the main tennis player 93 200827771 mobilization or football player, and all or part of the main sports venues, such as the famous, Ryukyu% Or the famous land. For example, a three-dimensional image of a human face can be represented as a material that has been accessed by the device, plus facial expression changes, such as a smile or an enemy f plus a change in the length of the hair, because the hair may be stored after the data is stored. Stay long or cut short. If the -group persistence difference occurs, (4) the records that the device has accessed are significantly more outdated than the data, for example, over a long period of time, the length of the person's hair has been significantly changed to k', and this has been accessed in the middle. The data may be updated by the intermediary device: if the (4) device system does not find a good paired 2D or 3D image in its accessed record, it will add the newly calculated 3D shape to the recorded set. K. Space Multiplication and Two-Dimensional Coding of the Observer Window One example is the spatial multiplex of the virtual observer window (10) of the holographic display and combined with the use of two-dimensional coding. In addition, the holographic display can be as described in A B'C or D, or any conventional holographic display to observe the S window 'for example - a virtual view closer to the left eye The employee window and a virtual observer window for the right eye can be (iv) or time multiplexed to produce known 疋. With respect to the space, the two virtual observer windows are generated at the same point in time, and are distinguished by a beam splitter, similar to an autostereoscopic display, 94 200827771, as described in WO 20_27228. With regard to time multiplex, the virtual observer window is generated in time. However, the conventional holographic display system has some disadvantages. For spatial multiplexing, the lighting system used is empty in the horizontal direction, and is based on a flat-line light source and a lenticular array, as shown in Figure 4, which is obtained by the conventional technical shame 2006/0 brain. This can be used to fine-tune the advantages of the automatic display. However, it is impossible to reconstruct the hologram in the horizontal direction. Instead, the rider is coded to produce a full image weight b only in the vertical direction. "Moving view i 0" The vertical focus is on the plane of the reconstructed object, and the defect is on the plane of the spatial light modulator. Astigmatism will reduce the visual quality of the space. It reduces the quality of the viewer's reception and holographic reconstruction. The inter-ground multiplex system also has shortcomings, and they need a fast empty county light H that cannot yet be displayed in all sizes. 'Instant access is also too expensive. " _ Only two-dimensional code provides holographic reconstruction in horizontal financial direction (4), and therefore one-dimensional coding does not produce counties, astigmatism will reduce the quality of empty sense, meaning that it is reduced The viewers are connected to the product of f-sewn construction. Shame, the purpose of the shaft is to combine the one-dimensional coding to realize the virtual observation of the stomach and the space multiplex. In the 种 种 种 种 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有Illumination 95 200827771 In combination with a beam splitter, the beam splitter splits the light into light for the left-eye virtual observer window and for the right-eye virtual observer window. Therefore, consideration must be given to the winding around the beam splitter. The beam splitter can be a prism array, a second lens array (such as a static array or a variable array, as shown in Figure 20) or a barrier mask. Figure 25 shows an example of this embodiment. Twenty-five is a schematic diagram of a holographic display containing a two-dimensional light source array, a two-dimensional lens array lens, a spatial light modulator, and a beam splitting mirror. The beam splitter will leave the light from the spatial light modulator. 'Separated into two beams of light, respectively illuminating the virtual observer window (VOWL) for the left eye and the virtual observer window (V0WR) for the right eye. In this example, the number of light sources is one or more; the number of lenses The number of light sources is the same. In this example, the beam splitter is after the spatial light modulator. The positions of the beam splitter and the spatial light modulator can also be interchanged. Figure 26 shows this embodiment. In the example, a prism array is used as a beam splitter in a plan view. A two-dimensional light source array (LSI, LS2, ··· LSn) including an n-element and an n-element, 隹 lens array (Ll, L2, ... Ln) 'displays only two light sources with two lenses in Figure 26. Each light source is imaged to the observer's plane and face using its associated lens. The spacing of the array of light sources and the spacing of the lens array are such that all of the source image can appear on the observer plane on the same day, i.e., the plane containing the two virtual observer windows. In the figure, the top, the middle, and the left eye virtual observation shell window (VOWL) and the right eye virtual 96 200827771 observer window (VOWR), because they are outside the figure, and are on the right side of the figure. Additional field of view lenses can be added. In order to provide sufficient spatial latitude, the pitch of the lens array is similar to the sub-total _ typical size, i.e., to a few tens of meters. Illumination is horizontal and vertical at each lens __, the vehicle is small or a point source' and because a two-dimensional lens array is used. The lens array can be refractive, diffractive or holographic. In this example, the beam splitter is a one-dimensional array of vertical prisms. Light incident on the prism-slope will deflect to the virtual observer window (9)v〇wl), and the light incident on the other slope of the prism will be skewed to the right eye virtual observation window (9) VOWR). Light rays generated from the same LS and the same lens are also closed to each other after passing through the beam splitter. Therefore, two-dimensional encoding with money straight and horizontal focus and vertical and horizontal moving parallax is possible. The king image is encoded on a spatial light modulator with a dimensional code. For the left eye and the right _ full side is a bit-interlace of the block, meaning that the block will be mis-coded for the Wei and right _ hologram information. It is better to have a stop for the left eye hologram information and a shed for the right eye hologram information under each prism. Alternatively, there may be two or more hologram stops under the bevel of each prism, such as three for the left eye virtual observer window, and then three for the right eye virtual observer. The block of the window. The distance between the beam splitters can be the same as the spacing of the spatial light modulators, or an integer (for example, two or three) multiples, or, in order to allow perspective shortening, the beam splitter can be compared to the spatial light The pitch of the transformer is slightly smaller, or slightly smaller than its integer (for example, two or three) multiples. Light emitted from a field with a full-eye image of the left eye reconstructs the target for the left eye and illuminates the left-eye virtual observer window (V0WL); light emitted from the block with the right-eye hologram reconstructs the target for the right eye And illuminate the right eye virtual observer window (v〇WR). Therefore, the mother will see an appropriate reconstruction in one eye. If the pitch of the prism array is sufficiently small, the eye cannot resolve the prism structure and the prism structure does not interfere with the reconstruction of the hologram. Each eye will see a reconstruction with full focus and full motion parallax, and no astigmatism. There will be diffraction on the beam splitter because the same dimming will illuminate the beam splitter. The beam splitter can be viewed as a diffraction grating that produces multiple diffraction classes. Oblique prism The bevel has the effect of a blazed grating. For blazed gratings, the maximum intensity is directed to a particular diffraction class. For a prism array, one maximum intensity will be directed from one bevel of the prism to the diffraction level at the virtual observer window of the left eye, and the other maximum intensity will be directed from the other bevel of the prism to another diffraction at the virtual observer window of the right eye. ) 3⁄4 level. More precisely, the maximum intensity of the encapsulated (6ην61〇ρ_) Sine-Squared function is moved to these positions, while the diffractive class is located at a fixed bit 98 200827771. The prism array produces a maximum intensity sinc-squared function at the position of the left eye virtual observer window and a maximum intensity packed sine-squared function at the position of the right eye virtual observer window. The intensity of the other diffraction classes will be small (meaning that the maximum sine squared intensity function is narrow) and will not interfere with crosstalk 'because the fill factor of the prism array is large, for example close to 1〇〇 %. Μ _ As can be seen in the prior art, in order to provide a virtual weaver window to two or more observers, a more complex prism array can be used (eg two types of prisms have the same apex angle but different The degree of asymmetry, continuously adjacently configured, produces multiple virtual observer windows. However, the use of static prism arrays does not allow individual observers to be traced. In another example, more than one light source can be used per lens. Each lens • The light source of the cymbal can be used to create additional virtual observer windows for additional viewing. This is an example of a lens and m light sources provided for melon observers in WO 2004/044659 (US 2006/0055994). In this further sub-segment, each lens is used with m light sources and double spatial multiplexing to produce (5) left suspects looking at the right virtual observer window for (five) observations. The mother lens m light sources are m pairs - the financial formula, the m is a health 99 200827771 followed by an example of this embodiment. A 20-inch screen size is used with the following parameter values: Observer distance 2m, pixel pitch is 69μηι in the vertical, 207μηι in the horizontal, using the Bookhart code, and the optical wavelength is 633nm. The Burckhardt code is in the vertical direction with a sub-pixel pitch of 69, and a virtual observer window (vertical period) of 6 mm height. Ignore the perspective shortening. The vertical prism array has a pitch of 414 μm, that is, a field with two spatial light variators under each full prism. Therefore, the horizontal period in the observer plane is 3 mm. This is also the width of the virtual observer window. This width is smaller than the ideal pupil of the eye by about 4 mm in diameter. In another similar example, if the spatial light modulator has a smaller pitch of 50 μm, the virtual observer window will have a width of 2, 5 mm. If the adult's eye is separated by 65mm (which is typical), the prism must be deflected by ±32.5mm, at which point the light will be the same as the plane containing the virtual observer window. More precisely, the strength package sinC_Square (j function maximum requires 32.5mm of skewed soil. This is equivalent to an angle of ±90 for an observer distance of 2m. For a prism refractive index of 1.5, the appropriate prism angle is ±I% The prism angle is defined as the angle between the base and the bevel of the prism. For the horizontal period in the observer plane of 3 mm, the position of the other eye is at a distance of about 21 diffraction stages (meaning that the 65 faces are removed) The cross-hatch between the left-eye virtual observer wire and the right-eye virtual observer window is negligible by another virtual observation 100. The higher-level level of the 200827771 window is thus negligible. A simple tracking method, which means adapting the position of the light source. If the spatial light modulator is not on the same plane as the prism _ in the space between the pixels and the prism, there will be disturbances caused by parallax. Lateral offset. This may cause disturbing crosstalk. The above example, 2 inches to the screen size of the pixel, in the direction perpendicular to the axis formed by each prism tip, can Can have a fill factor of 70%, that is, on each side, the pixel size is 145μηη action area and 31μιη inactive area. If the prism array is constructed in a private space light modulator, in prism array and space light The separation between the modulators may be approximately 1 mm. The horizontal tracking range without crosstalk will be 31 μιη / i 2 m = ± 62 mm. If small crosstalk is tolerable, then the range of tracking will be Larger. This tracking range is not very large, but it is enough to allow some tracking to be performed, so that the viewer will have fewer restrictions, such as limiting the placement of his/her eyes. The parallax between the prism array and the prism array can be avoided. It is better to integrate the prism array or directly integrate it into a spatial light modulator (such as a refraction, diffraction or holographic prism array). For the product it will be a specialized component. Another option is the lateral mechanical movement of the prism array, although this is less recommended because the moving mechanical part will make the device even more 101 200827771 is complicated. The other-side key issue is _ Mirrored Mosquito _ _ virtual observer window separation. This may cause confusion for non-standard eye-separated observers or & A combination comprising encapsulated liquid-crystal domains can be used, as shown in Figure 21. Next, the electric field can be ambiguous and skewed. This conversion method can be combined with the prism array for continuous Variable skew and fixed skew are provided separately. In another solution, the service layer covers the structural edge of the prism _. Then, the electric field can control the refractive index 'and the skew. If the virtual observer sees t as the width of the observer that allows the different eye h to be separated from the width of 2_Wei, then the variable skew combination is not needed. • Recording _ solution is to use a controllable edge array, such as e_wettlng prism array (as shown in Figure 27) or liquid crystal filled prism (shown in Figure 2) in Figure 17. The layer of prismatic element 159 comprises an electrode 1518 and a cavity filled with two separate liquids (5) 9, (10). Each liquid fills the concave/same gingival portion. As an example, the liquid can be oil or water. The slope of the interface between the liquids (5)$, 1520 is determined by the voltage applied to the electrodes (5) 7, 1518. If (4) has a unique fold, the yarn will be biased, and the bias is determined by the voltage applied to the electrodes 1517, 1518. Therefore, the prism element (9) acts as a controllable beam directing element. For the implementation of the need to track the virtual observation M window to the observer's eyes, the electronic holographic technology is provided, which is an important feature for the method of asking people. The patent application number issued by the applicant, (4), DE (10), 236, 2, describes the tracking of the virtual observer window with prism elements to the observer's eyes. This is an embodiment for a compact handheld display. Seiko (RTM) Epson (RTM) C-orati〇n of japan has published a monochrome electronic address space light tone and a positive image such as D4.L3D13U 1·3 inch screen size. An illustrative example is the use of a D4:L3D13U liquid crystal display panel as a spatial light modulator. It has the resolution of the leg ^ (1 · X 1 〇 8 〇 pixels), the pixel pitch of 1S] Lim and the panel area of (10) ugly X 16.2 mm. This panel is typically used in 2D image projection displays. The example of this is about the wavelength of 663 nm and the observer distance of 50 cm. Tooth in this vibrating space is based on the track phase encoding (Bukhart code). It requires two transposons to encode the number of tilts. The three side-by-side pixels are vertically aligned. If the prism array beam splitter is integrated into the spatial light modulator, the prism array spacing will be 3〇μηι. If the handsome light modulator and the prism array have a sub- & prism array, the distance will be slightly different to handle the perspective shortening. The height of the virtual observer window is determined by 103 200827771 - a complex number of S, and is 7·〇 mm. The width of the virtual weaver window is determined by the 30 μπι spacing of the prism array and is 1 〇 6 mm. Both values are greater than the pupil of the eye. Therefore, if the virtual fiber viewer window is in the position of the eye, the hologram reconstruction can be seen in each eye. The hologram reconstruction is derived from the two-dimensional coded hologram, so there is no flash problem in the above-mentioned dimension coding. This ensures high spatial visual quality and high depth impressi〇n quality. # # When the separation of the eyes is 65mm, the prism must be deflected by ± 32.5mm. More precisely, the maximum intensity of the sine-squared 35 degree function requires skewed soil 2. 5 mm for the observer distance of 〇·5 m, which corresponds to ±10. Angle. The appropriate prism for the refractive index η I·5 ' is ± 7 44. . The prism limb is defined as the angle between the base and the bevel of the prism. • During the level of hiding in the ugly observer plane, the position of the other eye is at a distance of about 6 diffraction classes (meaning that 65 is divided by 1〇.6_. Crosstalk caused by higher diffraction classes thus It can be (10) omitted, because the prism array has a high fill factor, which means close to 100%. This is an embodiment used for large displays. The holographic display can be designed to use phase modulation _Wei and has 5GMm The size of the pixel ship and the 2G inch screen. For thinner TVs, the screen size may be quite close to 4 inches. 104 200827771 The observer distance for this design is 2m and the wavelength is 633nm. Two of the space light modulators are used. Phase-modulated pixels to encode a complex number. The two associated pixels are vertical touches, and the corresponding vertical spacing is 2 * 5 100 100 μηι. By integrating the prism array into the spatial light modulator, the prism array The spacing of the otters is also 2*50 μιη= 100 μηι, because each prism contains two bevels, and the parent bevel is a stop of the space-lighted Wei-wei. The virtual observer window of 12 7 coffee is produced. Width and height It is larger than the pupil of the eye. Therefore, if the virtual observer window is in the position of the eye, the hologram reconstruction can be seen in each eye. The hologram is different from the two-dimensional coded hologram, so there is no self. Exist _ light_. This ensures high spatial visuals f with high depth

印象品質。 X 當眼睛的分隔為65mm時,棱鏡必須偏斜光± 32.5咖。更精 確來說,強度封裝Sinc-squared函數的最大值需要偏斜± mm月。 對於2m的觀察員距離,這對應於±㈣。的角度。對於折射率〇 = 適當的觸度為± U6。。棱鏡繼絲為基底 邊之間的角度。 上面_子是對於觀察員離空間光調變器的距離為5〇咖與 如。概括來說,這個實關可應収觀料離㈣光調變器為 105 200827771 50cm至2m之間的距離。螢幕尺寸可為介於icm(例如行動電話次 螢幕)至50英吋(例如大尺寸電視)之間。 雷射光源 RGB固態雷射光源,例如以神化銦鎵(GaInAs)或氮珅化錮鎵 (GalnAsN)材料為基礎,對於緊密的全像顯示器可為適合的光源, 因為它們S緊㈣,且脑雜度的光定向性。這樣的光源包括 由Novalux (RTM) Inc·,CA,USA所製造的RGB垂直凹面發射雷射 (Vertical Cavity Surface Emitting Lasers,VCSEL)。這樣的光源可提 供為單一雷射或雷射陣列,儘管每個光源可利用繞射光學元件來 產生多個光束。光束可在多模光纖中傳輸,因為如果同調性對於 使用在緊密的全像顯示器中是太高的,這可能會降低同調性階 級,並且不會導致不需要的加工品產生,例如雷射班點圖樣。雷 射光源陣列可為一維或二維的。 有機發光二極體材料 紅外線有機發光二極體材料是已提出的。例如,Del Cafto et al. 在以 perylenediimide-doped tris(8-quinolinolato) aluminium 為基礎 的有機發光二極體材料中發表了電致發光(electroluminescence),如 在 Applied Physics Letters voL 88, 071117 (2006)中所描述的内容。 106 200827771 說明了波長805 nm的電致發光。Domercq et al·在j PhyS chem B vol· 108, 8647-8651 (2004)中發表了近似紅外線有機發光二極體 的材料。在透明基板上的有機發光二極體材料的製備是已說明 的。例如在US7,098,591中,有機發光二極體材料是在透明的氧化 銦錫電極(indium tin oxide electrodes)上製備。電極是製備在透明基 板上’透明基板可為硼石夕玻璃(|5讎迎(^81咖)。這些構成要素可 包含在具有透明基板的有機發光二極體裝置中。氧化銦錫層可利 用射頻磁錢鑛法(radio freqUenCy magnetron sputtering 濺鑛至 基底之上。氧化銦錫可利用包含氧化銦與氧化錫的目標來濺鍍。 氧化銦錫層可具有在可見範圍中大約85%的光學傳輪。氧化銦錫 可為平穩的,以避免局部增強電場的產生,局部增強電場可能會 降低有機發光二極體材料的效能。小於大約2^的均方根粗糙产 是較好的。—個或數個實用的有機層可設置在圖樣電極表= (patterned electrode surface)上。有機層的厚度典型介於2·與 2〇Onm之間。傳導層可依圖樣建構在有機層上,以便在有機層的 二側形成陽極與陰極。裝置可由玻璃層密封,以保護主動層受到 環境的破壞。 概要製造程序 以下把述製造圖一裝置的程序概要,不過這個程序的哼多傲 化將可在習用技術中找到。 ^ & 107 200827771 在製造圖二裝置的程序中,選擇使用透明基板。如此的基板 可為硬式的基板,例如大約的硼矽玻璃片,或是它可為 幸人式基板,例如聚合物基板&〇lymer⑽批咖),例如聚碳酸酯 (polycarbonate) ^ (acrylic) ^ (polypropylene) ^ 醋(polyurethane)、聚苯乙烯(p〇1yStyrene)、聚氯孔烯⑦ chloride)或疋類似的基板。如同前一部份所描述的,·透明電極是製 備在玻璃上。如同前—部份所描述_容,紅外線有機發光二極 體材料是配置在玻璃上,並且電性接點是裝設在透明電極的另一 邊上’使得像素化有機發光二極體紅外線光的放射是可能的。玻 %基板可具有提供有機發光二極體像素材料的凹處。紅外線有機 發光二極體材料可印製、f塗綠製(SGlutiGn_pfGeessed)在透明基 板上。分封層,也為電性絕緣層,會接著配置在有機發光二極體 像素層上。如此的分封層可為無機絕緣層(in〇rganic insulat〇r 咖〇’例如二氧化矽_繼&硫)、氮化矽_議碰^ 化矽(silicon carbide)或是它可為聚合型層(pdymerimwe layer),例 如環氧(epoxy)。配置可利用濺鍍或是對於無機絕緣層利用化學氣 相沉積(chemical vapour deposition),或是對於聚合型層利用印製或 塗層來執行。分封層,也為電性絕緣層,可具有數微米或是小於 10微米的厚度。接著,光學式定址空間細變器的層會覆蓋 为封層。感光層對於紅外線是敏感的,對於可見光是透明的,並 108 200827771 且可具有數微料厚度。如關光學雜可由魏紅外線的染料 來提供。光學式定址空間光調變ϋ接著是藉由配置覆蓋在兩個導 電層之間的液晶層來完成。液晶層可針對振幅調變歧相位調變 進行設定,並且典㈣厚度域微米。接著,在裝置上配置紅外 線過遽層。這可為具有紅外線吸收色素(infta red如。~Impression quality. X When the separation of the eyes is 65mm, the prism must deflect light ± 32.5 coffee. More precisely, the maximum value of the intensity-encapsulated Sinc-squared function needs to be skewed by ± mm months. For an observer distance of 2 m, this corresponds to ± (four). Angle. For refractive index 〇 = the appropriate touch is ± U6. . The prism is the angle between the edges of the substrate. The above _ sub is the distance between the observer and the spatial light modulator is 5 与. In a nutshell, this can be viewed from the ground. (4) The light modulator is 105 200827771 50cm to 2m distance. The screen size can range from icm (such as a mobile phone secondary screen) to 50 inches (such as a large TV). Laser source RGB solid-state laser sources, such as Gain As or GalnAsN, are suitable sources for compact holographic displays because they are tight (4) and brain The light directionality of the noise. Such light sources include RGB Vertical Cavity Surface Emitting Lasers (VCSELs) manufactured by Novalux (RTM) Inc., CA, USA. Such a source can be provided as a single laser or laser array, although each source can utilize a diffractive optical element to produce multiple beams. The beam can be transmitted in a multimode fiber because if the coherence is too high for use in a compact hologram display, this may reduce the homology class and will not cause unwanted artifacts, such as laser classes. Dot pattern. The array of laser sources can be one or two dimensional. Organic Light Emitting Diode Materials Infrared organic light emitting diode materials have been proposed. For example, Del Cafto et al. published electroluminescence in organic light-emitting diode materials based on perylenediimide-doped tris (8-quinolinolato) aluminium, as in Applied Physics Letters voL 88, 071117 (2006). What is described in . 106 200827771 illustrates electroluminescence at a wavelength of 805 nm. Domercq et al. published a material for an approximately infrared organic light-emitting diode in j PhyS chem B vol. 108, 8647-8651 (2004). The preparation of an organic light-emitting diode material on a transparent substrate has been described. For example, in US 7,098,591, organic light-emitting diode materials are prepared on transparent indium tin oxide electrodes. The electrode is prepared on a transparent substrate. The transparent substrate may be borax glass. These constituent elements may be included in an organic light emitting diode device having a transparent substrate. The indium tin oxide layer may be Radiation frexUenCy magnetron sputtering is applied to the substrate. Indium tin oxide can be sputtered with a target containing indium oxide and tin oxide. The indium tin oxide layer can have an optical of about 85% in the visible range. The indium tin oxide can be smooth to avoid the local enhanced electric field generation, and the local enhanced electric field may reduce the performance of the organic light emitting diode material. The root mean square roughness of less than about 2^ is better. One or several practical organic layers may be disposed on the patterned electrode surface. The thickness of the organic layer is typically between 2 and 2 〇 Onm. The conductive layer may be constructed on the organic layer according to the pattern so that An anode and a cathode are formed on both sides of the organic layer. The device may be sealed by a glass layer to protect the active layer from environmental damage. Outline Manufacturing Procedure The procedure for manufacturing the device of Figure 1 will be described below. However, the arrogance of this program will be found in the conventional technology. ^ & 107 200827771 In the process of manufacturing the device of Figure 2, the transparent substrate is selected. Such a substrate can be a hard substrate, such as approximately boron Glass sheet, or it can be a lucky substrate, such as polymer substrate & 〇lymer (10) batch coffee, such as polycarbonate ^ (acrylic) ^ (polypropylene) ^ vinegar (polyurethane), polystyrene (p 〇1yStyrene), polychlorinated 7 chloride) or a similar substrate. As described in the previous section, the transparent electrode is fabricated on glass. As described in the previous section, the infrared organic light-emitting diode material is disposed on the glass, and the electrical contacts are mounted on the other side of the transparent electrode to make the pixelated organic light-emitting diode infrared light. Radiation is possible. The glass substrate may have a recess that provides an organic light emitting diode pixel material. Infrared organic light-emitting diode materials can be printed, f-coated green (SGlutiGn_pfGeessed) on a transparent substrate. The sub-sealing layer, which is also an electrically insulating layer, is then disposed on the organic light-emitting diode pixel layer. Such a sealing layer may be an inorganic insulating layer (in〇rganic insulat〇r curry 'such as cerium oxide _ subsequent & sulphur), tantalum nitride _ silicon silicon silicon silicon carbide or it may be polymeric A pdymerimwe layer, such as epoxy. The configuration can be performed by sputtering or by chemical vapour deposition for the inorganic insulating layer, or by printing or coating the polymeric layer. The sub-sealing layer, which is also an electrically insulating layer, may have a thickness of a few microns or less than 10 microns. Next, the layer of the optically addressed spatial thinner is overlaid as a seal. The photosensitive layer is sensitive to infrared light, transparent to visible light, and may have a slight thickness. If the optical impurity is provided by Wei infrared dye. The optically addressed spatial light modulation is then accomplished by configuring a liquid crystal layer overlying the two conductive layers. The liquid crystal layer can be set for amplitude modulation and phase modulation, and the thickness of the (4) thickness is micrometer. Next, an infrared ray layer is placed on the device. This can be an infrared absorbing pigment (infta red such as ~

Pigmen_聚合物薄層的形式,或者這可為無機層,例如具有紅 外線吸收元件的濺鍍或化學氣相沉積長成的二氧化矽薄層。 f 在兩個光學式定址空間光調變器裝置之間的層,必需要是足 夠厚的,以確保在-個光學式定址空間光調變財的電場不會影 響另-個光學式定址空間光調變H的效能。紅外線猶層可為足 夠厚,以完現這個目標。然而,如果紅外線過濾層是不夠厚的時 候,可利關如藉由光學觀將光學式定址空間光婦器裝置與 具充分厚度的㈣片結合,或是藉纽置另外的光學透明層,例 如上述的無機層或是聚合物層來增加層的厚度。無論如何,二個 光學式纽空間光觀H裝置必須不能她太遠,使得光學繞射 效應減低像素串音。例如,如果像素寬是1G微米,鱗式定址空 間光調變器層最好應相隔小於1〇〇微米。在其中一個光學式定址 空間光調變n巾的液晶層是設定去執行振幅調變;在另—個光學 式定址空間光調變器中的液晶層是設定去執行相位調變。 109 200827771 2===於每-蝴式定址纖調 份可製備解-树,接著結麵技的其它部 :以確保在先學式定址空間先調變器層之二充=: 璃=使得每-個絲式定址㈣光機⑽料不會影變另一 固予式疋址空間光調_作用。裝置的其它部份的製備是利 置的第—部分上,這具有促進第二有機發 -日的像素與第—有機發光二極體層的像素的精確排列的 也可能使用塗上傳導透明電極(conducting transparent d咖d_域化_)_分_,她伽射充分厚度的 刀Μ緊鄰光學式定址空間光賴器。這個電極扮演兩個液晶層 的共同電極。再者’作為傳導電極它是—個等電位面 (eqUiP〇tential) °因此,它賴電場,並且防止從-個絲式定址 工間光撕㈣另—個光學式定址空間光調魏的電場漏損。 圖九顯示了-個裝置結構的例子,它可由上述程序或類似的 程序進打製造。在使用的過程中,表面9〇9照射充分同調可見的 光至圖九巾的|置結構910 ’使彳f離裝置—段距離(與|置的尺度 有關)在·點911的觀看者可看到三賴像。裝置中的層,從9〇直到 110 200827771 908疋不需要與相互的尺度有關。層9〇是基底層,例如玻璃層。 層91是有機發光二極體底板層,提供有機發光二極體電源,並且 可為王4或部分透明。層92是紅外線有機發光二極體陣列。層% 疋用於至少部分紅外線光_準的布拉格過濾、器全像元件 〇在^ -—些 貝知例中,層93是可以省略的。層94是電性絕緣層。層95是光 予式疋址^間細變藏與電極層。層96是麟可見光絲幅 鲁》周变的液晶層。層97是分隔層,特別是薄的分隔層。層兕是透 明電極層。層99是線性偏光層。層_是紅外線過遽層,可傳送 可見光,但是會阻擒從有機發光二極體陣歹U 92與9〇6的紅外線 光。層901是用於可見光束相位調變的液晶層。層搬是分隔層, 特別是薄的分隔層。層9〇3是光學式定址空間光調變器感光與電 極層。層爾是·絕緣層。層9〇5是用於至少部分紅外線光聪 .準的布拉格過濾器全像元件。在—些實施例中,層應是可以省 修.略的。層906是紅外線有機發光二極體陣列。層9〇7是有機發光 二極體底板層,提供有機發光二極體電源,魏可為全部或^分 透明。層9G8是遮蓋材料的平面,例如玻璃。在製造的過程中, 裝置910的製造可由基底層%開始’依次配置每—層,直到最後 一層遍增加完成。上述的程序會具有促進高精確的結構的層排 列的優點。或者,層的製造可以分成兩個或多個部分,並且具有 充份程度調整的結合在一起。 a 111 200827771 對於裝置的製造’將不想要的雙折射轉在最小值是非常重 要的’例如不想要的應力引起雙折射(stress_induced bireMngence)。應力引起雙折射會導致光的線性或圓形偏化狀態改 變至光的猶偏錄態。具有光_想_或_偏化狀態的裝 置中,光的橢圓偏化狀態的存在會減少對比及色彩保真度,也因 此會降低裝置的效能。 ⑩實作 基於習用的技術,對於上述實施例中的光學式定址空間光調 變器,一個在可見光範圍為透明,但是會吸收紅外線的感光層是 需要的。在另-個實作巾,感光層可顧樣式的,以便能具有能 傳送可見光的透明間隔,例如紅色、綠色及藍色光束,以及會對 從有機發光二極體來的光敏感的非透明區域。在這個例子中,感 光材料對可見光不需要是透明的。另外,寫入光束不需要為紅外 線光。在一個實作中,寫入光束能由非主要顯示色彩來產生,例 如藉由η色光有機發光二極體。在兩個光學式定址空間光調變器 之間的過濾裔會因此需要在黃色中,具有強大的光學吸收,使其 能阻擋黃色光,但是為了達到產生有作用的光學顯示器的目的, 在其它的光學波長上仍然需要有充份的傳輸。在另一個實作中, 寫入光束能由紫外線有機發光二極體來產生。在兩個光學式定址 空間光調變器之間的過濾器會因此需要在紫外線中,具有強大的 112 200827771 光學吸收,使其能ϋΜ#料轉,但是為了_產生有作用的光 學顯示器的目的’在其它的光學波長上健需要有充份的傳輸。 兔外線有機發光一極體材料已由Qiu et al Applied physics Letters 79’ 2276 (2001)及 Wong et ai. 0rg Lett 7 ⑼,5131 (2〇〇5)發表。此 外,雖然強調了使用有機發光二極體材料,也是可以使用其它的 毛光-極體材料或疋其它軸示技術,例如表面傳導電子發射顯 示态(Surface-conduction Electron-emitter Di物y,SED)技術。 抑雖然,在此所描述的實施例是強調振幅與相位在空間光調變 器中的連續編碼,而基於習用的技術,振幅與相位的二個不相等 組合的任何剌職編碼都可使絲編碼全雜素,兩個組合與 乘上^何實數會鱗域’财絲上倾概(實鎌外)。這個 理由是像素可能的全像編碼_量空間,會藉由任何振幅與相位 的兩個不相等組合’在向量空間感知中延伸,任何兩個組合與乘 上任何實數會辦無關,料是乘上任何概(餘料)。” 在荼考圖巾’賴示的細尺寸是不需要触比例的。 本案所揭露之技術,得錄f本技術人士據以實施,而其前 =未有之作法亦具備專讎,爰依法提出專利之申請。惟上述^ 4例尚不足以涵蓋本鑛欲保護之專利範圍,因此, 專利範圍如附。 明 113 200827771 【圖式簡單說明】 圖一為包含單一光學式定址空間光調變器及單一有機發光二 極體陣列的全像顯示裝置示意圖; 圖二為包含一對元件的全像顯示裝置示意圖,每一個元件包 含單一光學式定址空間光調變器及單一有機發光二極體陣列; — 圖二為移動式三維顯示裝置示意圖; _ 圖四為習用的全像顯示示意圖; 圖五為利用單一有機發光二極體陣列控制兩個光學式定址空 間光調變器的全像顯示示意圖; 圖A為全像顯示示意圖; 圖六β為適合用於實現緊密的全像顯示示意圖; 圖七為包含肋減少有陳高繞麵關題的雜格過濾全 _ 像光學元件的全像顯示的一個構成元件示意圖; • 目人為包含用以提升有機發光三鋪_所發射的光的準直 的布拉格财全像絲元件的全雜科-觸成播示意圖; 圖九為全像顯示裝置示意圖; 針為包含絲連續編驗财她的_電子式定址空間 光_變器的全像顯示裝置示意圖,· 114 200827771 圖十一為包括單一電子式定址空間光調變器的全像顯示裝置 示意圖; 圖十二為根據實施例,全像顯示的一個特定具體化示意圖; 圖十三為包含用來連續編碼振幅及相位的兩個電子式定址空 間光調變器的全像顯示裝置示意圖; ▲ 圖十四為使用MathCad (RTM)所獲得的繞射模擬結果; 參 圖十五為使用MathCad (M)所獲得的繞射模擬結果; 圖十六為使用MathCad (RTM)所獲得的繞射模擬結果; 圖十七為根據實施例,兩個電子式定址空間光調變器之間具 有透鏡層的排列示意圖; 圖十八為當光從一個電子式定址空間光調變器行進至第二個 電子式定址空間光調變器時所發生的繞射程序示意圖; • 圖十九為兩個電子式定址空間光調變器的結構示意圖,在其 • 中兩们兒子式定址空間光調變器之間具有一個光纖面板; 圖二十為光束指向元件示意圖; 圖二十一為光束指向元件示意圖; 圖二十二為促使3維視覺溝通為可能的系統示意圖; 圖一十二為將二維圖像内容轉換為三維圖像内容的方法示意 115 200827771 圖一十四為根據實施例,全像顯示元件的具體化示意圖; 圖一十五為包含二維光源陣列形式的光源、二維透鏡陣列形 式的透鏡、m光調龍與光束分光鏡的全像齡示意圖。光束 分光鏡會將離開空間細魏的光線分成兩束光,分舰射用於 左眼的虛擬觀察員視窗⑽L)及用於減的虛擬觀察員視窗 (V0WR); 圖一十/、為包含二維光源陣列中的二個光源、二維透鏡陣列 中的一個透鏡、空間光調變器與光束分光鏡的全像顯示示意圖。 光束分光鏡會將糊空間光調變器的紐分成兩束光,分別照射 用於左眼的虛擬觀察員視窗(v〇WL)及用於右眼的虛擬觀察員視 (V0WR); ”、 圖二十七為棱鏡光束指向元件的剖面示意圖。 【主要元件符號說明】 照明裝置........· 色彩過濾器陣列....... · · 紅外線有機發光-極體陣列···· 光學式定址空間光調變器····· 黑占· · ·. 緊密全像圖產生器........ 照明裝置......... 116 200827771 色彩過濾器陣列......········· 21 紅外線有機發光二極體陣列..........22 光學式定址空間光調變器........ · · .23 1¾ · · ......-------------24 緊密全像圖產生器..............25 紅外線過濾器.......· · · .....26 , 光學式定址空間光調變器...........27 • 紅外線有機發光二極體陣列..........28 行動電話·.................30 螢幕區域· · · ......········ 31 天線· · ............. · · · · 32 攝影機·· ............ · · · · 33 攝影機············· ......34 按鍵··....... ...........35 • 按鍵....................36 聚焦元件· · · ......· · · ......1101 聚焦元件··········· .......1102 聚焦元件..................1103 垂直聚焦系統·········· ......1104 第一繞射階級················ 1105 第零繞射階級................1106 117 200827771 負一繞射階級................1107 微透鏡陣列.................50 色彩過濾器陣列·..............51 紅外線有機發光二極體陣列· · · · ......52 光學式定址空間光調變器··········· 53 光學式定址空間光調變器··········· 54 緊密的全像圖產生器·· ·· .........55 黑占·........... ......... 56 照明裝置· · ................57 空間光調變器················ 70 全像光學元件布拉格過濾器·········· 71 單一元件........ · ...... · · 73 布拉格平面· · · ......········ 74 繞射光強度分配· · · · ....... · · · 75 光線....................76 有機發光二極體陣列............ · 80 全像光學元件布拉格過濾器.....,.....81 光學式定址空間光調變器...........82 單一有機發光二極體.............83 布拉格平面.................84 發射的紅外線的分佈·· · ...... · · · 85 118 200827771 光射線...................86 基底層................... 90 有機發光二極體底板層......······ 91 紅外線有機發光二極體陣列........ · 92 布拉格過濾器全像元件............93 電性絕緣層.............. · · · 94 ^ 光學式定址空間光調變器感光與電極層.....95 • 液晶層...................96 分隔層..................' · 97 透明電極層················· 98 線性偏光層········ ....... · 99 紅外線過濾層··..............900 液晶層................... 901 分隔層··················· 902 _ 光學式定址空間光調變器感光與電極層····· 903 ^ 電性絕緣層.................904 布拉格過濾器全像元件·· ......· · · 905 紅外線有機發光二極體陣列··· ........906 有機發光二極體底板層·,· .......... 907· 遮蓋材料的平面·· ·· ...........098 表面.........· ......· · · · 909 119 200827771 裝置結構........· · · .......910 點.....................911 微透鏡陣列.................100 色彩過濾器陣列·· · ............101 電子式定址空間光調變器...........102 電子式定址空間光調變器· · · ....... 103 ’ 照明裝置·················· 104 _ 緊密全像圖產生器........... · · · 105 黑占··..... 1〇6 元件· · ........ 107 元件................... · 108 照明裝置用......... 110 色彩過濾器陣列...............111 電子式定址空間光調變器· · .........112 • 光束分光鏡元件········ .......113 • ,點——..... 114 緊密全像圖產生器·············· 115 照明裝置· · · · ......········ 130 色彩過濾器陣列··············· 131 電子式定址空間光調變器·........ · · 132 電子式定址空間光調變器........---133 120 200827771 光束分光鏡元件··············· 134 點············· · ....... 135 緊密全像圖產生器..............136 光束·········· ..........171 光束· · · · .......········· 172 使用者· · · ......·········· 220 ’ 使用者.....................221 _ 連線·.................. · 222 連線·· · · ................ 223 中間系統·· .......········· 224 電視傳播公司....... 2300 中間系統............ 2301 觀看者· · · · ............... 2302 廣告客戶.....············· 2303 • 二維内容·················· 2304 • 三維内麥·················· 2305 支付費用· · ...... 2306 棱鏡元件..................159 電極···················· 1517 電極···················· 1518 凹洞.........······.....1519 121 200827771The form of the Pigmen_polymer layer, or this may be an inorganic layer, such as a thin layer of cerium oxide grown by sputtering or chemical vapor deposition with an infrared absorbing element. f The layer between the two optically-addressed spatial light modulator devices must be sufficiently thick to ensure that the electric field of the optically modulated space in an optically addressed space does not affect another optically addressed spatial light. Modulate the performance of H. The infrared layer can be thick enough to accomplish this goal. However, if the infrared filter layer is not thick enough, it can be used to combine the optically-addressed space light device with an optically transparent (4) sheet or by attaching another optically transparent layer, such as The above inorganic layer or polymer layer increases the thickness of the layer. In any case, the two optical neon space H-devices must not be too far away for us to reduce the optical crosstalk effect. For example, if the pixel width is 1 Gm, the scaled address spatial light modulator layer should preferably be less than 1 〇〇 micrometer apart. The liquid crystal layer of one of the optically addressed spatial light modulation n-types is set to perform amplitude modulation; the liquid crystal layer in another optically addressed spatial light modulator is set to perform phase modulation. 109 200827771 2===The solution-tree can be prepared for each-foam-addressed fiber-modulated portion, followed by other parts of the junction technique: to ensure that the first-order spatially-spaced first-order modulator layer is filled with two: = glass = Each-wire-addressed (four) optical machine (10) does not affect the other fixed-frame space light tone. The preparation of the other portions of the device is on the first portion of the device, which has the precise alignment of the pixels promoting the second organic-day pixel and the first organic light-emitting diode layer. It is also possible to use a conductive transparent electrode ( Conducting transparent d coffee d_ domain _) _ points _, she gamma full thickness of the knife Μ next to the optical address space light absorber. This electrode acts as a common electrode for the two liquid crystal layers. Furthermore, 'as a conductive electrode, it is an equipotential surface (eqUiP〇tential). Therefore, it depends on the electric field and prevents the light from being torn from the -wire-type site. (4) Another optically-addressed space-lighted Wei electric field Leakage. Fig. 9 shows an example of a device structure which can be manufactured by the above program or the like. During use, the surface 9〇9 illuminates the light that is sufficiently coherent to the visible light of the nine-spotted structure 910' to make the 彳f away from the device-segment distance (related to the scale of the set) at the point 911 viewer See the three Lai. The layers in the device, from 9〇 up to 110 200827771 908疋, do not need to be related to each other's dimensions. Layer 9 is a substrate layer, such as a glass layer. Layer 91 is an organic light-emitting diode backplane layer that provides an organic light-emitting diode power supply and can be either king 4 or partially transparent. Layer 92 is an array of infrared organic light emitting diodes. Layer % 疋 is used for at least part of the infrared light _ quasi-Braille filter, hologram element 〇 ^ — 些 些 贝 知 层 层 层 层 层 层 层 层 层 层 层 层 层 层 层 层 层 层Layer 94 is an electrically insulating layer. Layer 95 is a fine-grained and electrode layer between the optical and optical addresses. The layer 96 is a liquid crystal layer which is changed by the ray of the visible light. Layer 97 is a separator layer, particularly a thin separator layer. The layer is a transparent electrode layer. Layer 99 is a linear polarizing layer. The layer _ is an infrared ray layer that transmits visible light but blocks infrared light from the organic light-emitting diode arrays U 92 and 9 〇 6 . Layer 901 is a liquid crystal layer for phase modulation of the visible beam. The layer is a separate layer, especially a thin separator. Layer 9〇3 is the optically addressed spatial light modulator photosensitive and electrode layer. The layer is an insulating layer. Layer 9〇5 is a Bragg filter hologram element for at least part of the infrared light. In some embodiments, the layers should be omitted. Layer 906 is an array of infrared organic light emitting diodes. The layer 9〇7 is an organic light-emitting diode bottom layer, which provides an organic light-emitting diode power supply, and Wei Ke is all or transparent. Layer 9G8 is the plane of the covering material, such as glass. During the manufacturing process, the fabrication of device 910 can be performed from the base layer %' in turn, each layer is layered until the last layer is incremented. The above described procedure has the advantage of facilitating a highly accurate structure of the layer arrangement. Alternatively, the manufacture of the layer can be divided into two or more sections and bonded together with a sufficient degree of adjustment. a 111 200827771 It is very important for the manufacture of the device to turn the unwanted birefringence to a minimum value, for example, unwanted stress induced birefringence (stress_induced bireMngence). Stress-induced birefringence causes the linear or circularly polarized state of light to change to the hemispherical state of light. In devices with light_thinking or _biasing states, the presence of ellipsometric state of light reduces contrast and color fidelity, and therefore reduces device performance. 10 Implementation Based on conventional techniques, for the optically addressed spatial light modulator of the above embodiment, a photosensitive layer that is transparent in the visible range but absorbs infrared light is required. In another implementation towel, the photosensitive layer can be patterned so as to have transparent intervals capable of transmitting visible light, such as red, green and blue light beams, and non-transparent sensitive to light from organic light-emitting diodes. region. In this example, the photosensitive material need not be transparent to visible light. In addition, the write beam does not need to be infrared light. In one implementation, the write beam can be produced by a non-primary display color, such as by an n-color organic light-emitting diode. The filter between the two optically addressed spatial light modulators will therefore need to be in yellow, with strong optical absorption that will block yellow light, but for the purpose of producing a functioning optical display, in other There is still a need for sufficient transmission at the optical wavelength. In another implementation, the write beam can be produced by an ultraviolet organic light emitting diode. The filter between the two optically addressed spatial light modulators will therefore need to be in the UV, with a strong optical absorption of 112 200827771, enabling it to turn, but for the purpose of producing a functional optical display 'There is a need for adequate transmission at other optical wavelengths. Rabbit external organic light-emitting polar materials have been published by Qiu et al Applied physics Letters 79' 2276 (2001) and Wong et al. 0rg Lett 7 (9), 5131 (2〇〇5). In addition, although emphasis is placed on the use of organic light-emitting diode materials, other hair-polar material or other axial display techniques such as surface-conducting electron emission display (Surface-conduction Electron-emitter Di y, SED) may be used. )technology. Rather, the embodiments described herein emphasize continuous encoding of amplitude and phase in a spatial light modulator, and based on conventional techniques, any mismatched combination of two unequal combinations of amplitude and phase can cause the wire to be The code is full of impurities, and the two combinations and multiplications of the real number will scale the field. The reason is that the pixel's possible holographic coding_quantity space will extend in vector space perception by any two unequal combinations of amplitude and phase. Any two combinations will be independent of any real number. Any summary (remaining material). The fine size of the 图考图 towel is not required to be proportioned. The technology disclosed in this case can be recorded by the technical person, and the former The patent application is filed. However, the above-mentioned 4 cases are not enough to cover the scope of patents to be protected by the mine. Therefore, the scope of patents is attached. Ming 113 200827771 [Simple description of the diagram] Figure 1 contains a single optical address space light modulation Schematic diagram of a holographic display device of a single organic light emitting diode array; FIG. 2 is a schematic diagram of a holographic display device including a pair of components, each component comprising a single optical address spatial light modulator and a single organic light emitting diode Array; — Figure 2 is a schematic diagram of a mobile 3D display device; _ Figure 4 is a schematic diagram of a conventional holographic display; Figure 5 is a holographic display for controlling two optically addressed spatial light modulators using a single organic light-emitting diode array Schematic diagram; Figure A is a schematic diagram showing the hologram; Figure 6 is a schematic diagram suitable for achieving a compact holographic display; Figure 7 is a rib-reducing reduction with a high-profile Grid filtering full _ a schematic diagram of a constituent element of a holographic display of an optical component; • a full miscellaneous-touching of a full-length ray element comprising a collimation to enhance the collimation of the emitted light Figure 9 is a schematic diagram of a holographic display device; the needle is a schematic diagram of a holographic display device containing a continuous recording and verification of her _electronic address space optical _ variator, · 114 200827771 Figure 11 includes a single electronic address Schematic diagram of a holographic display device of a spatial light modulator; FIG. 12 is a specific embodiment of a holographic display according to an embodiment; FIG. 13 is a diagram showing two electronically addressed spatial light for continuously encoding amplitude and phase. Schematic diagram of the holographic display device of the modulator; ▲ Figure 14 shows the diffraction simulation results obtained using MathCad (RTM); Figure 15 shows the diffraction simulation results obtained using MathCad (M); Diffraction simulation results obtained using MathCad (RTM); FIG. 17 is a schematic diagram showing the arrangement of lens layers between two electronic address spatial light modulators according to an embodiment; Schematic diagram of the diffraction procedure that occurs when light travels from an electronically addressed spatial light modulator to a second electronically addressed spatial light modulator; • Figure 19 shows two electronically addressed spatial light modulators Schematic diagram of the structure, in which there is a fiber optic panel between the two son-positioned spatial light modulators; Figure 20 is a schematic diagram of the beam pointing component; Figure 21 is a schematic diagram of the beam pointing component; Figure 22 is a 3D visual communication is a possible system schematic; FIG. 12 is a schematic diagram of a method for converting 2D image content into 3D image content. 200827771 FIG. 14 is a schematic diagram of a holographic display element according to an embodiment; Figure fifteen is a schematic diagram showing the full image age of a light source in the form of a two-dimensional light source array, a lens in the form of a two-dimensional lens array, an m-lighting dragon and a beam splitter. The beam splitter splits the light leaving the space into two beams, the sub-ship is used for the virtual observer window (10) L) of the left eye and the virtual observer window (V0WR) for subtraction; Figure 10/, contains 2D A schematic diagram of the holographic display of two light sources in the array of light sources, one of the two-dimensional lens arrays, the spatial light modulator, and the beam splitter. The beam splitter splits the button of the paste space light modulator into two beams, respectively illuminating the virtual observer window (v〇WL) for the left eye and the virtual observer view (V0WR) for the right eye; ”, Figure 2 Seventeen is a schematic cross-sectional view of the prism beam pointing element. [Explanation of main component symbols] Lighting device........·Color filter array....... · · Infrared organic light-polar array·· ·· Optical Addressing Space Light Modulator················································································ Array of arrays...········· 21 Infrared organic light-emitting diode arrays..........22 Optically-positioned spatial light modulators... .. · · .23 13⁄4 · · ......-------------24 Tight hologram generator..............25 Infrared filter.......· · · .....26 , Optically-addressed spatial light modulator...........27 • Infrared organic light-emitting diode array.. ........28 Mobile Phones.................30 Screen Area············· 31 Antenna · · ............. · · · · 32 Photography ·· ............ · · · · 33 Cameras····························· ...........35 • Buttons....................36 Focusing elements · · · ......· · · .....1101 Focusing elements··········································· System···········1104 The first diffraction class······································ ...........1106 117 200827771 Negative one diffraction class................1107 microlens array........... ......50 Color Filter Array·..............51 Infrared Organic Light Emitter Array· · · · ......52 Optical Address Space Light调器··········· 53 Optically-spaced spatial light modulator······································································· .....55 黑占·.......................... 56 Lighting Devices · · ................ 57 Space light modulator········································································ · · · · · 73 Bra Grid plane · · · ......················································· ..........76 Organic Light Emitting Diode Array............ 80 holographic optical element Bragg filter.....,.....81 Optical Addressing Space Light Modulators...........82 Single Organic Light Emitting Diodes.............83 Prague Plane........ ....84 Distribution of infrared rays emitted ··· · · · · 85 118 200827771 Light rays.................. .86 basal layer................... 90 Organic Light Emitting Primer Layer......······ 91 Infrared Organic Light Emitting Diode Array........ · 92 Bragg filter hologram components............93 Electrical insulation layer.............. · · 94 ^ Optical Addressing Space Light Modulator Photosensitive and Electrode Layer.....95 • Liquid Crystal Layer...................96 Separation Layer.... ..............' · 97 Transparent Electrode Layer ············································ ...... · 99 Infrared filter layer ··..............900 Liquid crystal layer........................ 901 Separation layer········· ··········· 902 _ Optical Addressing Space Light Modulator Photosensitive and Electrode Layer····· 903 ^ Electrical Insulation Layer.................. ..904 Bragg filter hologram element···· · 905 Infrared organic light-emitting diode array···........906 Organic light-emitting diode bottom layer··· .......... 907· Plane of covering material ···· ...........098 Surface.........·...... · · · 909 119 200827771 Installation structure....................................910 points.....................911 Microlens Array.................100 Color Filter Array···............101 Electronic Address Space Light Modulator. ..........102 Electronic Address Space Light Modulator · · · ....... 103 ' Lighting Fixture··················· · 104 _ Compact hologram generator........... · · · 105 黑占·..... 1〇6 Components··........ 107 Components. .................. · 108 Lighting Fixtures......... 110 Color Filter Array............. ..111 Electronic Addressing Space Light Modulator · · .........112 • Beam Beamsplitter Elements········ ....113 • , 点——..... 114 Tight hologram generator················································· ······· 130 Color Filter Array··················································· Address Space Light Modulators........---133 120 200827771 Beam Beamsplitter Elements··································································· ···· · ....... 135 Compact hologram generator..............136 Beam············.. .....171 Beam · · · · ··········· 172 User · · · ············ 220 ' User.....................221 _ Connection·.................. · 222线·· · · ................ 223 Intermediate System············· 224 TV Communication Company... ... 2300 Intermediate System............ 2301 Viewers · · · · ............... 2302 Advertisers.....·· ··········· 2303 • Two-dimensional content················································································ ········ 2305 Payment Fee · · ...... 2306 Prism Element..................159 Electrode········ ············ 1517 Electrode············································································ ··.....1519 121 200827771

Claims (1)

200827771 十、申請專利範圍: 1· 一種全像顯示裝置,包含: 一有機發光二極體陣列,該有 /为機务先_極體陣列係寫至一光學 疋址空間光調變器上;該有機 — ,機毛先一極體陣列與該光學式 間光調變器係形成相鄰層;該 止二 入你门 磙先予式疋址空間光調變器係編碼一 :像圖4當-讀取光束_照射該光學式定址空間光調變器, 亚且箱學式定址空間光調變輯經由該有機發光二極體陣列進 打適當的控料,該全像顯示裝置係產生—全像重建。 α申請專利範圍第1項所述之全像顯示裝置,其中該有機發光 -極體陣顺該光學式定址空間光調魏係形成面對的相鄰層, 並且在該有機發光二極體_與該光學式定址空間光調變器^ 係不具中間成像光學。 曰 3.如申請專利範圍第i或2項所述之全像顯示裝置,其中該有機 發光二極體_與該光學式定址空間光靖器係為固定且實體上 直接相互連接。 、 4·如申請專利範圍第丨或2項所述之全像顯示裝置,其中該有機 發光二極_列與該光學式定址空間細魏係翻定且實體^ 123 200827771 間接相互連接。 5.如申請專利範圍第4項所述之全像顯示裝置,其中該有機發光 -極體陣顺該光學式定址空間光調賴係透過—隔離層實體上 間接相互連接。 ' 、如巾^專利範圍第5項所述之全像顯示裝置,其巾該隔離層係 為角過濾裔,例如一布拉格過濾器(Bragg fiiter)。 ^如任何上述申請專纖圍所述之全像顯示裝置,其巾該有機發 光二極體陣列係發射一非主要顏色顯示波長(職町⑺丄· display wavelength),且讀出波長(read_〇ut酿心咖)係為 紅綠藍(RGB)之一個或更多個。 &amp;如任何上針請專娜_述之全像飾裝置,其巾該有機發 光二極體陣列係為紅外線,並且寫至該光學式定址空間光調變器 上的一紅外線感應層。 ^如任何上述巾料纖圍所述之全像顯祿置,其巾該有機發 光=極體陣列與該光學式定址空間光調變器層係為反射式的,可 見光可從該有機發光二極體陣列與該光學式定址空間光調變器層 124 200827771 反射至一觀察員。 1、〇·如任何上述申請專利範圍所述之全像顯示裝置,其中該有機發 光-極體陣列係由複數個較小的可舖置有機發《二極體所拼凑而 成0 11. 如任何上述申請專利範圍所述之全像顯示裝置,其巾該光學式 疋址空間光調變器係包含液晶材料。 12. 如任何上述㈣專娜騎述之全軸稀置,其巾該光 定址空間光調變H係包含作為一感光器層的—感紐染料。^ 13. 如任何上射料概騎述之全像顯示, 係利用一背光與微透鏡陣列進行照射。 时 14.如申請專利範圍第13項所述之全像顯示裝置,. :列係於該顯示器的一小部份上提供局部同調性,該部:::: 的 顯示器編碼—資訊之唯—部份,該資訊係用於重建被重建物^ 一給定點。 卞 瓜如任何上述申料·_叙全細雜置,射該光學式 125 200827771 疋址空間細變HH Freederieksz元件湖,以提_目位控 16.如任何上射請翻範圍所述之全侧示裝置,射該全像重 建係可藉由一虛擬觀察員視窗觀察到。 r π.如任何上述申請專利範圍所述之全像顯示裝置,其中複數個虛 擬觀察員視窗可利用空間或時間多工方式舖置拼湊而成。亚 =·如任何上述申請翻範騎述之全像顯示裝置,其巾該顯示器 糸三可操作的’以對於—觀察員的左眼接著右眼,在包含全像的 媒;|上進行時間序列地重新編碼一全像圖。 19·如任何上述申請專利範圍 係可產生—提供單一使用者I F利範圍所述之全_示裝置,其巾該顯示器 使用者觀看的全像重建。 .如任何上述申請專利範圍所述之全像 係可一 顯示裝置,其中該顯示器200827771 X. Patent application scope: 1. A holographic display device comprising: an organic light emitting diode array, the OLED array is written to an optical address space optical modulator; The organic-, machine-first-pole array and the optical-to-mode optical modulator form an adjacent layer; the second-into-first-input-first-address space-space optical modulator is coded one: like FIG. When the read-beam beam illuminates the optically-addressed spatial light modulator, the sub-box-type address-spaced light tone modulation is appropriately controlled by the organic light-emitting diode array, and the holographic display device is generated - holographic reconstruction. The holographic display device of claim 1, wherein the organic light-emitting body array is arranged in the optically-spaced spatial light-modulating Wei system to form an adjacent layer facing the organic light-emitting diode. There is no intermediate imaging optics with this optically addressed spatial light modulator. 3. The hologram display device of claim i, wherein the organic light-emitting diodes are fixedly and physically interconnected with each other. 4. The holographic display device of claim 2, wherein the organic light emitting diode column is indirectly connected to the optical address space and the entity ^ 123 200827771 is indirectly connected. 5. The holographic display device of claim 4, wherein the organic light-emitting body array is indirectly interconnected by the optically-addressed spatial light-transmitting-transparent layer. The holographic display device of the invention of claim 5, wherein the barrier layer is an angular filter, such as a Bragg fiiter. ^ The omni-directional display device of any of the above-mentioned applications, wherein the organic light-emitting diode array emits a non-primary color display wavelength (the display wavelength), and the read wavelength (read_) 〇ut brewing coffee) is one or more of red, green and blue (RGB). &amp; If any upper needle is used, please refer to the full-image decoration device, the organic light-emitting diode array is infrared, and is written to an infrared sensing layer on the optically-addressed spatial light modulator. ^ such as the above-mentioned lining of the lining of the lining of the lining, the organic illuminating body = the polar body array and the optically-addressed spatial light modulating layer are reflective, visible light can be from the organic illuminating The polar body array and the optically addressed spatial light modulator layer 124 200827771 are reflected to an observer. 1. The holographic display device of any of the above-mentioned patent applications, wherein the organic light-emitting body array is made up of a plurality of smaller layable organic hair "diodes". The holographic display device of any of the above patent applications, wherein the optical address space light modulator comprises a liquid crystal material. 12. If any of the above (4) Pinna is fully thinned, the light-addressed spatial light modulation H of the towel contains a photosensitive dye as a photoreceptor layer. ^ 13. If any of the upper shots are displayed in full image, a backlight and microlens array are used for illumination. 14. The holographic display device of claim 13 wherein: the column provides a local coherence on a small portion of the display, the display code of the portion:::: - information only - In part, the information is used to reconstruct the reconstructed object.卞 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如The side view device can be observed by a virtual observer window. r π. The holographic display device of any of the preceding claims, wherein the plurality of virtual observer windows can be patched together using spatial or temporal multiplexing. ???==================================================================================================== Recode a hologram. 19. Any of the above-identified patent claims may be made to provide a full-image device as described in the context of a single user, which is a holographic reconstruction of the display by the user of the display. A hologram as described in any of the above patent claims, wherein the display device 如住何上述申請專利範圍 像, 所述之全像顯示裝置,其中一全像圖 126 200827771 像係透過-光束分光鏡傳送至一觀察者的每個眼睛。 22.如任何上述巾料職_述之全像顯示輕,其巾該光學式 定址空間光觀H係設置在—光源的編細之内,並且是· 一可攜式盒中。 _ 23·如任何上述申請專利範圍所述之全雜示裝置,其中係利用一 光束細元件騎魏_纖㈣鋪_,該光束指向元件 係由一等向主體材料内部的複數個液晶區域所組成,其中,該複 數们區域與鱗之間的複數個介面係為—棱形,或是—球的部分 形^’或是一圓柱的部分形狀,且該複數個液晶的方向係透過外 加免場方式控制,以變化該光束指向元件的局部折射或繞射特性。 肇 士任何上述申請專利範圍所述之全像顯示裝置,其中該光學式 • 植空間光調變器、一光源及與該光源排列的-透鏡陣列係全部 置於—可攜式盒内,且在其中,該光源係經由該透鏡陣列擴大1〇 至60倍。 κ 25·—種產生一全像重建的方法,包含使用如任何上述申請專利範 圍第1項至弟24項所述之全像顯示裝置之步驟。 127For example, the above-mentioned full-image display device, wherein a hologram 126 200827771 image is transmitted through a beam splitter to each eye of an observer. 22. If the holographic image of any of the above-mentioned materials is light, the optically-spaced view of the towel is disposed within the splicing of the light source and is in a portable case. </ RTI> </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> </ RTI> <RTIgt; The composition, wherein the plurality of interfaces between the plurality of regions and the scales are - prismatic, or - the partial shape of the sphere ^ or a partial shape of a cylinder, and the direction of the plurality of liquid crystals is externally exempted Field mode control to vary the local refraction or diffraction characteristics of the beam pointing element. The holographic display device of any of the above-mentioned patent applications, wherein the optical spatial light modulator, a light source, and a lens array arranged with the light source are all placed in a portable cassette, and Therein, the light source is enlarged by 1 to 60 times via the lens array. Κ25· A method of producing a holographic reconstruction comprising the steps of using a holographic display device as described in any of the above-mentioned patents, the first to the second. 127
TW96140505A 2006-10-26 2007-10-26 Universal image display device and method (1) TWI421540B (en)

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
GBGB0621360.7A GB0621360D0 (en) 2006-10-26 2006-10-26 Compact three dimensional image display device
GBGB0625838.8A GB0625838D0 (en) 2006-10-26 2006-12-22 Compact three dimensional image display device
GBGB0705411.7A GB0705411D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GB0705412A GB0705412D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GB0705408A GB0705408D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GB0705403A GB0705403D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GB0705401A GB0705401D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GBGB0705404.2A GB0705404D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GB0705399A GB0705399D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GB0705398A GB0705398D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GBGB0705405.9A GB0705405D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GB0705409A GB0705409D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GB0705407A GB0705407D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GBGB0705402.6A GB0705402D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GB0705410A GB0705410D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GB0705406A GB0705406D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device

Publications (2)

Publication Number Publication Date
TW200827771A true TW200827771A (en) 2008-07-01
TWI421540B TWI421540B (en) 2014-01-01

Family

ID=44771492

Family Applications (6)

Application Number Title Priority Date Filing Date
TW096140510A TWI454742B (en) 2006-10-26 2007-10-26 Compact three dimensional image display device
TW96140508A TWI442763B (en) 2006-10-26 2007-10-26 3d content generation system
TW96140506A TWI421541B (en) 2006-10-26 2007-10-26 Full image display device and method (2)
TW96140505A TWI421540B (en) 2006-10-26 2007-10-26 Universal image display device and method (1)
TW96140509A TWI406115B (en) 2006-10-26 2007-10-26 Holographic display device and method for generating holographic reconstruction of three dimensional scene
TW96140507A TWI432002B (en) 2006-10-26 2007-10-26 Mobile telephone system and method for using the same

Family Applications Before (3)

Application Number Title Priority Date Filing Date
TW096140510A TWI454742B (en) 2006-10-26 2007-10-26 Compact three dimensional image display device
TW96140508A TWI442763B (en) 2006-10-26 2007-10-26 3d content generation system
TW96140506A TWI421541B (en) 2006-10-26 2007-10-26 Full image display device and method (2)

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW96140509A TWI406115B (en) 2006-10-26 2007-10-26 Holographic display device and method for generating holographic reconstruction of three dimensional scene
TW96140507A TWI432002B (en) 2006-10-26 2007-10-26 Mobile telephone system and method for using the same

Country Status (2)

Country Link
JP (1) JP2014209247A (en)
TW (6) TWI454742B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9019584B2 (en) 2012-03-12 2015-04-28 Empire Technology Development Llc Holographic image reproduction mechanism using ultraviolet light
TWI501053B (en) * 2011-10-28 2015-09-21 Jing Heng Chen Holographic imaging device and method thereof
TWI508040B (en) * 2013-01-07 2015-11-11 Chunghwa Picture Tubes Ltd Stereoscopic display apparatus and electric apparatus thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5397190B2 (en) * 2009-11-27 2014-01-22 ソニー株式会社 Image processing apparatus, image processing method, and program
CN102736393B (en) 2011-04-07 2014-12-17 台达电子工业股份有限公司 Display device for displaying multiple visual angle images
TWI493160B (en) * 2013-05-13 2015-07-21 Global Fiberoptics Inc Method for measuring the color uniformity of a light spot and apparatus for measuring the same
TWI537605B (en) 2014-08-28 2016-06-11 台達電子工業股份有限公司 Autostereoscopic display device and autostereoscopic display method using the same
CN104463964A (en) * 2014-12-12 2015-03-25 英华达(上海)科技有限公司 Method and equipment for acquiring three-dimensional model of object
TWI670850B (en) * 2019-03-08 2019-09-01 友達光電股份有限公司 Display device
WO2021230868A1 (en) * 2020-05-14 2021-11-18 Hewlett-Packard Development Company, L.P. Nitrogen vacancy sensor with integrated optics
CN113973198B (en) * 2020-07-22 2024-04-09 中移(苏州)软件技术有限公司 Holographic image generation method, device, equipment and computer readable storage medium
TWI778508B (en) * 2021-01-28 2022-09-21 誠屏科技股份有限公司 Display apparatus
TWI782822B (en) * 2021-12-16 2022-11-01 國立清華大學 Three-dimensional imaging method and system using scanning-type coherent diffraction

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69128103T2 (en) * 1990-04-05 1998-04-02 Seiko Epson Corp Optical device
MY124160A (en) * 1997-12-05 2006-06-30 Dynamic Digital Depth Res Pty Improved image conversion and encoding techniques
JP2000078611A (en) * 1998-08-31 2000-03-14 Toshiba Corp Stereoscopic video image receiver and stereoscopic video image system
GB2350963A (en) * 1999-06-09 2000-12-13 Secr Defence Holographic Displays
GB2350962A (en) * 1999-06-09 2000-12-13 Secr Defence Brit Holographic displays
JP2002123688A (en) * 2000-10-16 2002-04-26 Sony Corp Holographic stereogram print order receipt system and its method
US6683665B1 (en) * 2000-11-20 2004-01-27 Sarnoff Corporation Tiled electronic display structure and method for modular repair thereof
JP2002223456A (en) * 2001-01-24 2002-08-09 Univ Nihon Image data distribution method and image distributor, and recording medium
JP3679744B2 (en) * 2001-09-26 2005-08-03 三洋電機株式会社 Image composition method and apparatus
US6721077B2 (en) * 2001-09-11 2004-04-13 Intel Corporation Light emitting device addressed spatial light modulator
JP2003289552A (en) * 2002-03-28 2003-10-10 Toshiba Corp Image display terminal and stereoscopic image display system
GB2390172A (en) * 2002-06-28 2003-12-31 Sharp Kk Polarising optical element and display
JP2004040445A (en) * 2002-07-03 2004-02-05 Sharp Corp Portable equipment having 3d display function and 3d transformation program
CN101349889B (en) * 2002-11-13 2012-04-25 希瑞尔技术有限公司 Video hologram and device for reconstructing video holograms
GB0307923D0 (en) * 2003-04-05 2003-05-14 Holographic Imaging Llc Spatial light modulator imaging system
GB2406730A (en) * 2003-09-30 2005-04-06 Ocuity Ltd Directional display.
JP4230331B2 (en) * 2003-10-21 2009-02-25 富士フイルム株式会社 Stereoscopic image generation apparatus and image distribution server
ATE439850T1 (en) * 2004-12-21 2009-09-15 Alpha Biocare Gmbh DIPTEREN DOLL PREPARATION FOR THE TREATMENT OF WOUNDS
DE102004063838A1 (en) * 2004-12-23 2006-07-06 Seereal Technologies Gmbh Method and apparatus for calculating computer generated video holograms
US20060187297A1 (en) * 2005-02-24 2006-08-24 Levent Onural Holographic 3-d television

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI501053B (en) * 2011-10-28 2015-09-21 Jing Heng Chen Holographic imaging device and method thereof
US9019584B2 (en) 2012-03-12 2015-04-28 Empire Technology Development Llc Holographic image reproduction mechanism using ultraviolet light
TWI502294B (en) * 2012-03-12 2015-10-01 Empire Technology Dev Llc Holographic image reproduction mechanism using ultraviolet light
TWI508040B (en) * 2013-01-07 2015-11-11 Chunghwa Picture Tubes Ltd Stereoscopic display apparatus and electric apparatus thereof

Also Published As

Publication number Publication date
TW200839295A (en) 2008-10-01
TWI421541B (en) 2014-01-01
JP2014209247A (en) 2014-11-06
TW200844693A (en) 2008-11-16
TWI421540B (en) 2014-01-01
TWI406115B (en) 2013-08-21
TW200824426A (en) 2008-06-01
TWI442763B (en) 2014-06-21
TWI432002B (en) 2014-03-21
TW200841042A (en) 2008-10-16
TWI454742B (en) 2014-10-01
TW200845698A (en) 2008-11-16

Similar Documents

Publication Publication Date Title
TW200827771A (en) Compact three dimensional image display device
KR101457235B1 (en) Mobile telephony system comprising holographic display
JP5191491B2 (en) Small holographic display device
JP5222300B2 (en) Small holographic display device
CN101568889B (en) Holographic display device
US8416479B2 (en) Compact holographic display device
JP2010507822A (en) Content generation system
KR20090094078A (en) Holographic display device
TWI403868B (en) Holographic display device and method
WO2008049910A1 (en) Compact holograhic display device