TWI421540B - Universal image display device and method (1) - Google Patents

Universal image display device and method (1) Download PDF

Info

Publication number
TWI421540B
TWI421540B TW96140505A TW96140505A TWI421540B TW I421540 B TWI421540 B TW I421540B TW 96140505 A TW96140505 A TW 96140505A TW 96140505 A TW96140505 A TW 96140505A TW I421540 B TWI421540 B TW I421540B
Authority
TW
Taiwan
Prior art keywords
spatial light
light modulator
emitting diode
array
hologram
Prior art date
Application number
TW96140505A
Other languages
Chinese (zh)
Other versions
TW200827771A (en
Inventor
Armin Schwertner
Original Assignee
Seereal Technologies Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB0621360.7A external-priority patent/GB0621360D0/en
Priority claimed from GB0705407A external-priority patent/GB0705407D0/en
Application filed by Seereal Technologies Sa filed Critical Seereal Technologies Sa
Publication of TW200827771A publication Critical patent/TW200827771A/en
Application granted granted Critical
Publication of TWI421540B publication Critical patent/TWI421540B/en

Links

Description

全像顯示裝置及方法(一) Full-image display device and method (1)

本案為一種用於產生三維圖像的全像顯示裝置,尤指一種緊密的裝置,包含一顯示器且在其上電腦產生的影像全像圖會在一個或二個光學式定址空間光調變器上進行編碼。此裝置可產生三維全像重建。此裝置特別是應用於可攜式裝置及手持式裝置中,例如行動電話。 The present invention is a holographic display device for generating a three-dimensional image, especially a compact device comprising a display on which a computer-generated image hologram will be in one or two optically-spaced spatial light modulators. Encoded on. This device produces a three-dimensional holographic reconstruction. This device is particularly useful in portable devices and handheld devices, such as mobile phones.

電腦產生的影像全像圖(Computer-generated video holograms,CGHs)是由一個或更多的空間光調變器(spatial light modulators,SLMs)所編譯而成;空間光調變器可包括電子或光學可控制的元件。這些元件根據影像全像圖來對全像圖值進行編碼,藉此達到調變光的振幅及相位之目的。電腦產生的影像全像圖是可以被計算出來的,例如通過同調光線追蹤、通過模擬受到場景反射的光以及參考波之間的干擾,或者通過傅立葉(Fourier)或菲涅耳(Fresnel)轉換。一個理想的空間光調變器是能表現任意複數的數值,即分別控制進入光波的相位及振幅。然而,典型的空間光調變器只能控制振幅或相位其中一種特性,並且帶有影響其他特性的不良效應。調變光的振幅及相位具有幾種不同的方式,例如利用電子式定址液晶空間光調變器、光學式定址液晶空間光調變器、磁光空間光調變器、微鏡裝置或者聲光調 變器。光的調變可為空間上連續的或由個別可定址元件所構成,可為一維或二維排列、二進制、多階層或連續。 Computer-generated video holograms (CGHs) are compiled from one or more spatial light modulators (SLMs); spatial light modulators can include electronics or optics. Controllable components. These components encode the hologram values based on the image hologram to achieve the purpose of modulating the amplitude and phase of the light. The computer-generated image hologram can be calculated, for example, by coherent ray tracing, by simulating interference between the reflected light and the reference wave, or by Fourier or Fresnel conversion. An ideal spatial light modulator is a value that can represent any complex number, that is, the phase and amplitude of the incoming light wave are separately controlled. However, a typical spatial light modulator can only control one of the amplitudes or phases, with adverse effects that affect other characteristics. The amplitude and phase of the modulated light can be varied in several ways, such as using an electronically addressed liquid crystal spatial light modulator, an optically addressed liquid crystal spatial light modulator, a magneto-optical spatial light modulator, a micromirror device, or an acousto-optic light. Tune Transformer. The modulation of light can be spatially contiguous or composed of individual addressable elements, which can be one or two dimensional, binary, multi-level or continuous.

在本發明中,專有名詞"編碼"意指提供空間光調變器控制值來對全像圖編碼,使得三維場景可以透過空間光調變器來進行重建。所以"空間光調變器編碼全像圖"是指全像圖在空間調變器上進行編碼。 In the present invention, the proper noun "encoding" means providing a spatial light modulator control value to encode the hologram such that the three-dimensional scene can be reconstructed by the spatial light modulator. Therefore, the "space light modulator coded hologram" means that the hologram is encoded on the spatial modulator.

相較於純自動式立體顯示板,觀察員透過影像全像圖可觀察到三維場景光波波前的光學重建。三維場景是在延伸於觀察員的眼睛及空間光調變器之間或者甚至空間光調變器之後的空間進行重建。空間光調變器也能利用影像全像圖進行編碼,使得觀察員能在空間光調變器之前觀察到重建的三維場景物件,而在空間光調變器上或其後方觀察到其他物件。 Compared with the pure automatic stereo display panel, the observer can observe the optical reconstruction of the wavefront of the three-dimensional scene through the image hologram. The three-dimensional scene is reconstructed in a space that extends between the observer's eye and the spatial light modulator or even after the spatial light modulator. The spatial light modulator can also be encoded using an image hologram such that the observer can observe the reconstructed three-dimensional scene object before the spatial light modulator, while other objects are observed on or behind the spatial light modulator.

空間光調變器的元件是光傳輸性較佳的元件,其射線所產生的干擾至少在一定義的位置,並且超過幾毫米的空間同調性長度。這可提供全像重建至少在一個維度具有足夠的解析度。這類型的光將稱為"充份同調光"。 The elements of the spatial light modulator are those that are more optically transmissive, with the interference produced by the rays being at least at a defined location and spatially tonality lengths in excess of a few millimeters. This provides a holographic reconstruction with sufficient resolution in at least one dimension. This type of light will be referred to as "full dimming".

為了保證足夠的時間同調性,由光源發射的光譜必需限制於一個適當狹窄的波長範圍內,也就是必需接近單色。高亮度發光二極體(LEDs)的光譜頻寬是足夠狹窄來確保全像重建的時間同調性。在空間光調變器上的繞射角度與波長成比例,意指只有一個單色光源將導致目標點的重建強烈。寬闊的光譜則導致寬闊的目 標點以及模糊的目標重建。雷射源的光譜可以被當作為單色的。發光二極體(LED)的光譜線寬是充份狹窄的,能幫助較佳的重建。 In order to ensure sufficient time homology, the spectrum emitted by the source must be limited to a suitably narrow wavelength range, ie it must be close to a single color. The spectral bandwidth of high-brightness light-emitting diodes (LEDs) is narrow enough to ensure time-harmonicity of holographic reconstruction. The diffraction angle on the spatial light modulator is proportional to the wavelength, meaning that only one monochromatic source will result in a strong reconstruction of the target point. Wide spectrum leads to wide eyes Punctuation and fuzzy target reconstruction. The spectrum of the laser source can be treated as a single color. The spectral linewidth of a light-emitting diode (LED) is sufficiently narrow to aid in better reconstruction.

空間同調性與光源的橫向寬度有關。習用的光源,像是發光二極體(LEDs)或者冷陰極發光燈(CCFLs),如果它們的發射光是通過充份狹窄的縫隙也可以滿足這些需求。雷射光源的光可視為從繞射限制的點光源所發射,根據模型的的純度、將產生目標的尖銳重建,即每一個目標點被重建為繞射限制的點。 Spatial coherence is related to the lateral width of the light source. Conventional light sources, such as light-emitting diodes (LEDs) or cold cathode light-emitting lamps (CCFLs), can also meet these needs if they emit light through a narrow gap. The light from the laser source can be viewed as being emitted from a point source limited by diffraction, and depending on the purity of the model, a sharp reconstruction of the target will be produced, ie each target point is reconstructed as a point of diffraction limitation.

從空間非同調光源所產生的光是橫向延伸,並且會造成重建目標模糊。模糊的情況是由重建在既定位置的目標點寬闊大小所決定。為了在全像圖重建上使用空間非同調光源,必須在亮度和利用孔徑限制光源橫向寬度之間找到一個折衷點。較小的光源,會得到比較好的空間同調性。 The light produced by the spatially non-coherent light source extends laterally and causes the reconstruction target to be blurred. The ambiguity is determined by the wide size of the target point reconstructed at a given location. In order to use a spatially non-coherent light source for hologram reconstruction, a compromise must be found between brightness and the use of aperture to limit the lateral width of the source. Smaller sources will give better spatial coherence.

如果從直角於縱向延展的觀點來觀察,直線光源可被視為點光源。因此,光波就能在那個方向進行同調傳播,並且非同調於其他方向。 A linear light source can be regarded as a point source if viewed from a right angle to a longitudinal extension. Therefore, the light wave can transmit in the same direction in the same direction, and it is not in the same direction.

一般而言,全像圖藉由波在水平和垂直方向的同調超重疊來全像地重建場景。上述的影像全像圖被稱做全視差全像圖。重建的物件可被視為在水平和垂直方向的移動視差,如同真實物件。 然而,較大的可視角度需要在空間光調變器的水平和垂直方向具有高的解析度。 In general, holograms reconstruct the scene in its entirety by coherent super-overlap of the waves in the horizontal and vertical directions. The above image hologram is referred to as a full parallax hologram. The reconstructed object can be viewed as a moving parallax in the horizontal and vertical directions, just like a real object. However, a larger viewing angle requires a high resolution in the horizontal and vertical directions of the spatial light modulator.

通常,空間光調變器的需求會因為限制於僅具水平視差(HPO)的全像圖而減少。全像重建僅發生於水平方向,在垂直方向不會有全像重建。這將導致重建物件具有水平移動視差。透視圖並不會在垂直移動上改變。僅具水準視差的全像圖需要空間光調變器在垂直方向的解析度會少於全視差的全像圖。僅具垂直視差(VPO)的全像圖是同樣可以如此的但較為罕見。全像重建只發生在垂直方向,會產生具有垂直移動視差的重建物件。而在水平方向不會有移動視差。由於左眼和右眼觀察到的透視圖不同,因此透視圖必須分別地產生。 In general, the demand for spatial light modulators is reduced by limiting to holograms with only horizontal parallax (HPO). The holographic reconstruction only occurs in the horizontal direction, and there is no holographic reconstruction in the vertical direction. This will cause the reconstructed object to have a horizontally moving parallax. The perspective does not change on vertical movement. A hologram with only parallax will require a spatial light modulator to have a lower resolution in the vertical direction than a full parallax hologram. A hologram with only vertical parallax (VPO) is equally possible but rare. A holographic reconstruction occurs only in the vertical direction, producing a reconstructed object with a vertical moving parallax. There is no moving parallax in the horizontal direction. Since the perspectives observed by the left and right eyes are different, the perspectives must be generated separately.

討論相關的技術 Discuss related technologies

典型地,用於產生三維圖像的裝置較缺乏緊密,即需要複雜及龐大的光學系統,使其無法使用在可攜式裝置,或在手持式裝置,例如手機。以US4,208,086為例,用於產生較大三維圖像的裝置長度是以公尺為單位。以WO 2004/044659(US2006/0055994)為參考,用於重建影像三維圖像的裝置具有超過10公分的厚度。因此,上述的習用裝置對於手機或其他可攜式、手持式或較小的顯示裝置具有過厚的厚度。 Typically, devices for generating three-dimensional images are less compact, requiring complex and bulky optical systems that render them unusable in portable devices, or in handheld devices such as cell phones. Taking US 4,208,086 as an example, the length of the device used to generate a larger three-dimensional image is in meters. With reference to WO 2004/044659 (US 2006/0055994), the device for reconstructing a three-dimensional image of an image has a thickness of more than 10 cm. Thus, the conventional devices described above have an excessive thickness for mobile phones or other portable, handheld or smaller display devices.

在WO 2004/044659(US2006/0055994)之中提及藉由充份同調光的繞射重建三維場景的裝置;裝置包括點光源或直線光源、用於對焦光線的透鏡以及空間光調變器。相較於習用的全像顯示,空間光調變器於傳輸模式至少在一個"虛擬觀察員視窗"重建三維場景(關於虛擬觀察員視窗的描述及相關的技術請參考附件I及II)。每一個虛擬觀察員視窗是設置於靠近觀察員的眼睛,並且大小上受到限制,所以虛擬觀察員視窗是於單一的繞射階級,因此每一個眼睛可以看見三維場景在圓錐狀重建空間的完整重建,圓錐狀的重建空間是延展於空間光調變器表面及虛擬觀察員視窗之間。為了讓全像重建沒有干擾,虛擬觀察員視窗的大小必需不超過重建的一個繞射階級週期性間隔。然而,這必需至少足夠大,能讓觀察員經由視窗看見三維場景的完整重建。另一個眼睛能經由相同的虛擬觀察員視窗,或是由第二個光源所產生的第二個虛擬觀察員視窗來進行觀察。此時,典型上較大的可見區域會限制於局部設置的虛擬觀察員視窗。習用的解決方法是在由習用高解度空間光調變器表面所產生的微小化大區域進行重建,以減低至虛擬觀察員視窗的尺寸大小。這將產生由於幾何上原因而較小的繞射角度,以及利用消費者層級的計算設備,即足夠實現高品質即時全像重建的光調變器解析度。 A device for reconstructing a three-dimensional scene by sufficient diffracted diffraction is mentioned in WO 2004/044659 (US 2006/0055994); the device comprises a point source or a linear source, a lens for focusing light, and a spatial light modulator. Compared to the conventional holographic display, the spatial light modulator reconstructs the 3D scene in at least one "virtual observer window" in the transmission mode (for the description of the virtual observer window and related techniques, please refer to Annexes I and II). Each virtual observer window is placed close to the observer's eyes and is limited in size, so the virtual observer window is in a single diffraction class, so each eye can see the complete reconstruction of the three-dimensional scene in the conical reconstruction space, conical The reconstruction space is extended between the surface light modulator surface and the virtual observer window. In order for the hologram reconstruction to be undisturbed, the size of the virtual observer window must not exceed the periodic interval of the reconstructed diffraction stage. However, this must be at least large enough to allow the observer to see a complete reconstruction of the 3D scene via the window. The other eye can be viewed through the same virtual observer window or a second virtual observer window generated by the second source. At this point, a typically large visible area is limited to a partially set virtual observer window. A conventional solution is to reconstruct a large area of miniaturization produced by the surface of a conventional high resolution spatial light modulator to reduce the size of the virtual observer window. This will result in a smaller diffraction angle due to geometric reasons, as well as a consumer-level computing device that is sufficient to achieve high quality instant holographic reconstruction.

然而,已知產生三維圖像的方法,呈現出由於較大的空間光調變器表面區域,因而需要一個體積大、容量大、重量重及昂貴的透鏡來聚焦的缺點。因此,裝置將有大的厚度及重量。另一個缺點,是當使用這樣大透鏡時,由於邊緣的色差將嚴重地減低重建的品質。在US 2006/250671提及一個改進包括透鏡狀陣列的光源改進方法,雖然它是應用於大範圍影像全像圖中,於此作為一個參考。 However, it is known that a method of generating a three-dimensional image exhibits the disadvantage of requiring a large volume, large capacity, heavy weight, and expensive lens to focus due to the large spatial light modulator surface area. Therefore, the device will have a large thickness and weight. Another disadvantage is that when such a large lens is used, the color difference of the edge will seriously degrade the quality of the reconstruction. An improved light source improvement method comprising a lenticular array is mentioned in US 2006/250671, although it is applied to a wide range of image holograms as a reference.

在US2004/0223049中提到了產生三維影像的手機。然而,所提及的三維影像是利用自動立體顯示所產生。利用自動立體顯示產生三維圖像的一個問題是在典型上觀看者察覺圖像是在顯示器內部,而觀看者的眼睛傾向於集中在顯示器的表面上。在許多實例中,觀看者眼睛的焦點及三維圖像的察覺位置之間的不同,將可能造成使用者不舒服的現象。在利用全像技術產生三維圖像的實例中,這些問題將不會發生,或是大大地減少。 A mobile phone that produces a three-dimensional image is mentioned in US 2004/0223049. However, the three-dimensional images mentioned are produced using autostereoscopic display. One problem with utilizing autostereoscopic display to produce a three-dimensional image is that the viewer typically perceives that the image is inside the display, while the viewer's eyes tend to focus on the surface of the display. In many instances, the difference between the focus of the viewer's eye and the perceived position of the three-dimensional image may cause a discomfort to the user. In instances where holographic techniques are used to generate three-dimensional images, these problems will not occur or be greatly reduced.

在第一方面,提供了一個全像顯示裝置,包括寫入至光學式定址空間光調變器上的有機發光二極體(OLED)陣列,有機發光二極體陣列及光學式定址空間光調變器會形成相鄰層,光學式定址空間光調變器會編碼全像圖,當讀取光束陣列照射光學式定址空間光調變器,並且光學式定址空間光調變器經由有機發光二極體 陣列進行適當的控制時,全像重建將由裝置所產生。有機發光二極體陣列及光學式定址空間光調變器可形成面對的相鄰層,並且在有機發光二極體陣列與光學式定址空間光調變器之間不具中間成像光學。有機發光二極體陣列及光學式定址空間光調變器可為固定且實體上直接相互連接或是有機發光二極體陣列及光學式定址空間光調變器為固定且實體上間接相互連接。有機發光二極體陣列及光學式定址空間光調變器可藉由隔離層實體上間接相互連接。隔離層可為角過濾器,例如布拉格濾波器(Bragg filter)。 In a first aspect, a holographic display device is provided comprising an organic light emitting diode (OLED) array, an organic light emitting diode array, and an optically addressed spatial light tone, written to an optically addressed spatial light modulator The transducer will form an adjacent layer, and the optically addressed spatial light modulator will encode a full image map, when the read beam array illuminates the optically addressed spatial light modulator, and the optically addressed spatial light modulator is via the organic light emitting diode Polar body When the array is properly controlled, the holographic reconstruction will be produced by the device. The organic light emitting diode array and the optically addressed spatial light modulator can form adjacent layers facing each other and have no intermediate imaging optics between the organic light emitting diode array and the optically addressed spatial light modulator. The organic light-emitting diode array and the optically-addressed spatial light modulator can be fixed and physically directly connected to each other or the organic light-emitting diode array and the optically-addressed spatial light modulator are fixed and physically indirectly connected to each other. The organic light emitting diode array and the optically addressed spatial light modulator can be physically interconnected by an isolation layer. The isolation layer can be an angular filter, such as a Bragg filter.

在一實施例中,於基板上提供紅外線有機發光二極體的陣列,基板對於可見光是透明的,並且紅外線有機發光二極體的陣列是鄰近光學式定址空間光調變器。紅外線光線允許對於由光學式定址空間光調變器所傳送的可見光進行振幅或相位的控制,或是一些振幅及相位的組合。 In one embodiment, an array of infrared organic light emitting diodes is provided on the substrate, the substrate is transparent to visible light, and the array of infrared organic light emitting diodes is adjacent to the optically addressed spatial light modulator. Infrared light allows for amplitude or phase control of visible light transmitted by an optically addressed spatial light modulator, or a combination of amplitude and phase.

採用陣列的方式,紅外線有機發光二極體允許對於由光學式定址空間光調變器所傳送的可見光進行振幅或相位的控制,或是一些振幅及相位的組合。有機發光二極體陣列及光學式定址空間光調變器是設置在靠近的位置,使得它們形成緊密的成對。緊密的有機發光二極體陣列及光學式定址空間光調變器成對作用於可見光上,以致於能在光學式定址空間光調變器中產生全像圖。三 維圖像可接著由座落於距離緊密的有機發光二極體陣列以及光學式定址空間光調變器的成對一些距離的觀看者所觀看到。 In an array manner, the infrared organic light emitting diode allows for amplitude or phase control of visible light transmitted by an optically addressed spatial light modulator, or a combination of amplitude and phase. The organic light emitting diode array and the optically addressed spatial light modulator are placed in close proximity such that they form a tight pair. The compact organic light emitting diode array and the optically addressed spatial light modulator act in pairs on the visible light such that a hologram can be produced in the optically addressed spatial light modulator. three The dimensional image can then be viewed by a pair of viewers positioned at a distance from the closely spaced organic light emitting diode array and the optically addressed spatial light modulator.

有機發光二極體陣列可發出非主要顏色顯示波長,且讀出的波長可為紅綠藍(RGB)之一或更多個。有機發光二極體陣列可為紅外線發射,並且寫入至光學式定址空間光調變器的紅外線感應層上。有機發光二極體陣列與光學式定址空間光調變器層可為反射式,可見光可從有機發光二極體陣列與光學式定址空間光調變器層反射至觀察員。有機發光二極體陣列可由多個且較小的覆瓦狀有機發光二極體所組成。光學式定址空間光調變器可包含液晶材料。光學式定址空間光調變器可包括感光性的染料來作為感光層。 The organic light emitting diode array can emit a non-primary color display wavelength, and the readout wavelength can be one or more of red, green, and blue (RGB). The organic light emitting diode array can be infrared emitting and written onto the infrared sensing layer of the optically addressed spatial light modulator. The organic light emitting diode array and the optically addressed spatial light modulator layer can be reflective, and visible light can be reflected from the organic light emitting diode array and the optically addressed spatial light modulator layer to the observer. The organic light emitting diode array may be composed of a plurality of and smaller shingled organic light emitting diodes. The optically addressed spatial light modulator can comprise a liquid crystal material. The optically addressed spatial light modulator can include a photosensitive dye as the photosensitive layer.

顯示器可利用背光及微透鏡陣列進行照射。微透鏡陣列可在顯示器的小區域上提供局部同調性,此區域是顯示器對於使用在重建物件之給定點的資訊進行編碼的唯一部份。顯示器可包含反射式偏光片。顯示器可包含稜鏡光學膜。 The display can be illuminated with a backlight and a microlens array. The microlens array provides local homology over a small area of the display, which is the only portion of the display that encodes information used at a given point in the reconstructed object. The display can include a reflective polarizer. The display can include a 稜鏡 optical film.

光學式定址空間光調變器可為弗里德里克茲(Freedericksz)胞元排列,以提供相位控制。全像重建可經由虛擬觀察員視窗而觀察到。虛擬觀察員視窗可利用空間或時間的多工來進行舖置。顯示可為可操作的,以對於觀察員的左眼接著右眼,在包含全像 的媒介上進行時間序列地重新編碼全像圖。 The optically addressed spatial light modulator can be arranged for Freedericksz cells to provide phase control. Whole image reconstruction can be observed via a virtual observer window. The virtual observer window can be laid out using space or time multiplex. The display can be operable to include the hologram for the observer's left eye followed by the right eye Time-series re-encoded holograms on the medium.

顯示器可產生全像重建來給予單一使用者觀看。 The display can produce a holographic reconstruction for viewing by a single user.

顯示器可以發光二極體作為它的光源。 The display can have a light-emitting diode as its light source.

顯示器可以不需要任何的投影透鏡,即可產生聚焦在螢幕上的二維圖像,且無關於螢幕離在光學遠場中的裝置的距離。 The display can produce a two-dimensional image that is focused on the screen without the need for any projection lens, and is independent of the distance of the screen from the device in the optical far field.

顯示裝置可使用分光鏡來發送全像圖像至每一個眼睛。 The display device can use a beam splitter to transmit a holographic image to each eye.

光學式定址空間光調變器可設置在光源的30mm範圍之內,且置於可攜式盒中。 The optically addressed spatial light modulator can be placed within 30 mm of the light source and placed in a portable cassette.

顯示裝置可利用光束指向元件進行虛擬觀察員視窗追蹤,光束指向元件是由等向主體材料內部的液晶區域所組成,其中,區域與矩陣之間的介面是棱形,或是球的部分形狀,或是圓柱的部分形狀,且液晶的方向是利用外加電場方式控制,以變化光束指向元件的局部折射或繞射屬性。 The display device can perform virtual observer window tracking by using a beam pointing component, wherein the beam pointing component is composed of a liquid crystal region inside the isotropic body material, wherein the interface between the region and the matrix is a prismatic shape, or a partial shape of the ball, or It is a partial shape of a cylinder, and the direction of the liquid crystal is controlled by an applied electric field to change the local refraction or diffraction property of the beam pointing element.

顯示裝置可讓光學式定址空間光調變器、光源及與光源排列 的透鏡陣列全部置於可攜式盒內,且在其中,光源經由透鏡陣列擴大10至60倍。 The display device allows optically positioned spatial light modulators, light sources, and light sources to be arranged The lens arrays are all placed in a portable case, and in which the light source is enlarged 10 to 60 times via the lens array.

有機發光二極體陣列及光學式定址空間光調變器層可以是透明的,讀出的可見光可通過此層至觀察員。 The organic light emitting diode array and the optically addressed spatial light modulator layer can be transparent, and the read visible light can pass through this layer to the observer.

光學式定址空間光調變器可對有機發光二極體陣列所發射的白光波長敏感,但是不對讀出波長敏感。 The optically addressed spatial light modulator is sensitive to the white light wavelength emitted by the organic light emitting diode array, but is not sensitive to the read wavelength.

有機發光二極體陣列可散發黃色光,讀出波長可為紅綠藍之一或更多個。 The organic light emitting diode array can emit yellow light, and the readout wavelength can be one or more of red, green and blue.

光學式定址空間光調變器可為連續的。 The optically addressed spatial light modulator can be continuous.

光學式定址空間光調變器可由多個且較小的覆瓦狀光學式定址空間光調變器所組成。 An optically addressed spatial light modulator can be comprised of multiple and smaller shingled optically addressed spatial light modulators.

顯示裝置可編碼全像圖,並且能夠使得全像重建可被產生。 The display device can encode an hologram and can enable holographic reconstruction to be produced.

顯示器可設置成只有在觀察員的眼睛是位於接近光源的圖像 平面時,全像重建才可被正確的看見。 The display can be set to only be in the image of the observer's eye that is located close to the light source In the plane, the holographic reconstruction can be seen correctly.

顯示裝置可讓重建三維場景的大小為包含全像圖媒介大小的函數,重建三維場景可在由含全像圖媒介及可觀看到重建三維場景的虛擬觀察員視窗所定義的體積內之任何地方。 The display device allows the size of the reconstructed three-dimensional scene to be a function that includes the size of the hologram medium, which can be anywhere within the volume defined by the virtual observer window containing the hologram media and the viewable reconstructed three-dimensional scene.

顯示裝置可使得顯示器編譯包括具有需要重建三維場景單一點之資訊的區域的全像圖,這個點可從定義的觀看位置所看見,此區域(a)編碼重建場景中單一點的資訊,(b)且為在全像圖中唯一編碼那點資訊的區域,以及(c)尺寸是受到限制以形成整體全像圖的一部分,尺寸大小需讓由較高繞射階層對於那點的多重重建能在定義的觀看位置中不被看到。 The display device may cause the display to compile an hologram comprising an area having information for reconstructing a single point of the three-dimensional scene, the point being viewable from a defined viewing position, the area (a) encoding a single point of information in the reconstructed scene, (b) And the area where the information is uniquely encoded in the hologram, and (c) the size is limited to form part of the overall hologram, the size of which requires multiple reconstructions of the point by the higher diffraction level Not seen in the defined viewing position.

顯示器可編譯透過決定重建物件的真實版本所產生在接近觀察員眼睛位置的波前而產生的全像圖。 The display can compile an hologram generated by a wavefront that is close to the observer's eye position as a result of determining the real version of the reconstructed object.

顯示器可讓全像重建為全像圖的菲涅耳轉換而不是全像圖的傅立葉轉換。 The display allows the hologram to be reconstructed into a Fresnel transform of the hologram rather than a Fourier transform of the hologram.

在另一方面,提供了一個全像顯示裝置,包括寫入至成對的光學式定址空間光調變器上的有機發光二極體陣列,有機發光二 極體陣列及光學式定址空間光調變器會形成相鄰層,成對的光學式定址空間光調變器編碼全像圖,當讀取光束照射成對的光學式定址空間光調變器,並且成對的光學式定址空間光調變器經由有機發光二極體陣列進行適當的控制時,全像重建將由裝置所產生。有機發光二極體陣列可發出兩種不同的波長,一種波長是用於寫入/控制一個光學式定址空間光調變器,以進行相位調整,另一種波長是用於寫入/控制另一個光學式定址空間光調變器,以進行振幅調整。有機發光二極體陣列可由二種發出不同波長的有機發光二極體所構成。可使用在有機發光二極體陣列的兩種發射波長之間的時間多工,來促使二個光學式定址空間光調變器能獨立控制。 In another aspect, a holographic display device is provided comprising an array of organic light emitting diodes written to a pair of optically addressed spatial light modulators, an organic light emitting diode The polar body array and the optically addressed spatial light modulator will form adjacent layers, and the pair of optically addressed spatial light modulators encode the hologram, when the reading beam is illuminated by the pair of optically addressed spatial light modulators When the paired optically addressed spatial light modulators are properly controlled via the organic light emitting diode array, holographic reconstruction will be produced by the device. An organic light-emitting diode array can emit two different wavelengths, one for writing/controlling an optically addressed spatial light modulator for phase adjustment and the other for writing/controlling another An optically addressed spatial light modulator for amplitude adjustment. The organic light emitting diode array can be composed of two kinds of organic light emitting diodes emitting different wavelengths. Time multiplexing between the two emission wavelengths of the organic light emitting diode array can be used to facilitate independent control of the two optically addressed spatial light modulators.

在另一方面,提出了一個由產生全像重建所構成的方法,其中全像重建包含使用於此描述的顯示裝置的步驟。 In another aspect, a method consisting of generating a holographic reconstruction is presented, wherein omni-image reconstruction includes the steps of using the display device described herein.

在另一方面,提供了一個製造顯示裝置的方法,包括取得玻璃基板及在基板上連續地印製或是其它方式先產生有機發光二極體陣列,接著產生提供光學式定址空間光調變器的層的步驟。此方法可使得在有機發光二極體及光學式定址空間光調變器之間的絕緣層為噴濺塗層或是其它厚度為10微米以下的塗層。此方法可讓有機發光二極體陣列及光學式定址空間光調變器層兩者的印製 或產生是在單一製造程序中的不同步驟。 In another aspect, a method of fabricating a display device is provided, comprising: obtaining a glass substrate and continuously printing on the substrate or otherwise generating an array of organic light emitting diodes, and subsequently generating an optically positioned spatial light modulator The steps of the layer. This method allows the insulating layer between the organic light emitting diode and the optically addressed spatial light modulator to be a sputter coating or other coating having a thickness of less than 10 microns. This method allows both the organic light emitting diode array and the optically addressed spatial light modulator layer to be printed Or production is a different step in a single manufacturing process.

利用"空間光調變器編碼全像圖"意指全像圖是在空間光調變器上進行編碼。 The use of a "space light modulator to encode an hologram" means that the hologram is encoded on a spatial light modulator.

A.紅外線有機發光二極體顯示器與光學式定址空間光調變器的緊密結合 A. Close combination of infrared organic light-emitting diode display and optical address space light modulator

這個實施例提供光學式定址空間光調變器與可在光學式定址空間光調變器上寫入圖樣的紅外線發射顯示器的緊密結合,這樣的結合能夠在適當的照明條件下產生三維圖像。 This embodiment provides an intimate combination of an optically addressed spatial light modulator with an infrared emitting display that can be formatted on an optically addressed spatial light modulator, such a combination being capable of producing a three dimensional image under appropriate lighting conditions.

光學式定址空間光調變器包括感光器層與位於在傳導性電極之間的液晶(LC)層。當電壓加至電極,入射在感光器層上的光圖樣將轉換至用於調變讀取光束的液晶層。在習用技術中,入射光圖樣是由電子式定址空間光調變器(EASLM)所調變的寫入光束所提供。電子式定址空間光調變器是由光源照射並且成像到光學式定址空間光調變器上。通常,寫入光束是非同調的,可避免斑點圖樣現象,而讀取光束是同調性的,具有產生繞射圖案的能力。 An optically addressed spatial light modulator includes a photoreceptor layer and a liquid crystal (LC) layer positioned between the conductive electrodes. When a voltage is applied to the electrodes, the light pattern incident on the photoreceptor layer will be converted to a liquid crystal layer for modulating the read beam. In conventional techniques, the incident light pattern is provided by a write beam modulated by an electronically addressed spatial light modulator (EASLM). The electronically addressed spatial light modulator is illuminated by a light source and imaged onto an optically addressed spatial light modulator. Typically, the write beam is non-coherent to avoid speckle patterning, while the read beam is coherent and has the ability to produce a diffractive pattern.

光學式定址空間光調變器相較於電子式定址空間光調變器的 優點是光學式定址空間光調變器可具有連續、非像素或非圖樣式的結構,而電子式定址空間光調變器則為像素結構。像素在光的空間分配上產生銳邊:此銳邊相當於高空間頻率。 Optically addressed spatial light modulator compared to electronically addressed spatial light modulator The advantage is that the optically addressed spatial light modulator can have a continuous, non-pixel or non-patterned structure, while the electronic addressed spatial light modulator is a pixel structure. Pixels produce sharp edges on the spatial distribution of light: this sharp edge is equivalent to a high spatial frequency.

高空間頻率會導致在光學遠場裡廣角繞射的特性。因此,電子式定址空間光調變器會產生在光學遠場中不希望出現的光學繞射加工品,必須使用如空間濾波等已知的技術來消除。在光學處理程序中,進行空間濾波需要增加額外的步驟,這會讓裝置變的較厚而且會造成光的浪費。光學式定址空間光調變器類型的裝置優點是能夠在光學式定址空間光調變器中允許連續的圖樣產生。連續的圖樣可讓光強度,具有較少的陡峭變化在任何給定方向轉換至光束傳播的方向。因此,較少的陡峭變化擁有能比電子式定址空間光調變器裝置所產生的像素邊緣低的高空間頻率的濃度。在包含光學式定址空間光調變器的裝置中,較低濃的高空間頻率可促使光學處理較為容易,並且比包含電子式定址空間光調變器的裝置更具效率。此外,相較於電子式定址空間光調變器,光學式定址空間光調變器裝置可為雙穩態裝置。因此,光學式定址空間光調變器可比電子式定址空間光調變器裝置具有較低的電源需求,這可增加可攜式裝置或手持式裝置的電池壽命。 High spatial frequencies result in wide-angle diffraction in the optical far field. Thus, electronically addressed spatial light modulators produce optically diffracted articles that are undesirable in optical far fields and must be eliminated using known techniques such as spatial filtering. In optical processing, spatial filtering requires additional steps, which can make the device thicker and waste light. An advantage of the optically addressed spatial light modulator type of device is the ability to allow continuous pattern generation in an optically addressed spatial light modulator. A continuous pattern allows the light intensity to have less sharp changes in any given direction to the direction of beam propagation. Therefore, fewer steep changes have a higher spatial frequency concentration than the edge of the pixel produced by the electronically addressed spatial light modulator device. In devices that include optically addressed spatial light modulators, the lower concentration of high spatial frequencies facilitates optical processing and is more efficient than devices that include electronically addressed spatial light modulators. Furthermore, the optically addressed spatial light modulator device can be a bistable device as compared to an electronic addressed spatial light modulator. Thus, an optically addressed spatial light modulator can have lower power requirements than an electronic addressed spatial light modulator device, which can increase the battery life of a portable device or handheld device.

在這個實施例介紹不需要成像光學的緊密裝置。光學式定址空間光調變器利用紅外線有機發光二極體顯示器寫入。有機發光 二極體顯示器是直接連接光學式定址空間光調變器,形成不具成像光學的緊密裝置。有機發光二極體可以是覆瓦狀的型式,以組成有機發光二極體陣列。光學式定址空間光調變器可由多個較小的覆瓦狀型光學式定址空間光調變器所組成。 In this embodiment, a compact device that does not require imaging optics is described. The optically addressed spatial light modulator is written using an infrared organic light emitting diode display. Organic luminescence The diode display is a direct connection to an optically addressed spatial light modulator that forms a compact device that does not have imaging optics. The organic light emitting diodes may be in the form of a tile to form an array of organic light emitting diodes. The optically addressed spatial light modulator can be comprised of a plurality of smaller shingled optically addressed spatial light modulators.

有機發光二極體顯示器與光學式定址空間光調變器的緊密組合可以是透明。透明的有機發光二極體顯示器是目前已知的,例如在之後的"有機發光二極體材料"章節中所描述的內容。在一個例子中,有機發光二極體顯示器與光學式定址空間光調變器的緊密組合是從對邊至三維圖像所形成的邊進行照射,可見光經由有機發光二極體與光學式定址空間光調變器向觀察員傳送。更好的方法是有機發光二極體顯示器發出紅外線來寫入至光學式定址空間光調變器的紅外線感應感光器層。因為人類的眼睛對紅外線不敏感,所以觀察者看不見任一種從紅外線寫入光束產生的光。 The close combination of the organic light emitting diode display and the optically addressed spatial light modulator can be transparent. Transparent organic light emitting diode displays are currently known, for example as described in the "Organic Light Emitting Diode Materials" section. In one example, the close combination of the organic light-emitting diode display and the optically-addressed spatial light modulator is to illuminate the edge formed by the edge to the three-dimensional image, and the visible light passes through the organic light-emitting diode and the optical address space. The light modulator is transmitted to the observer. A better method is that the organic light emitting diode display emits infrared light to be written to the infrared sensing photoreceptor layer of the optically addressed spatial light modulator. Because the human eye is not sensitive to infrared light, the observer cannot see any kind of light generated from the infrared writing beam.

另一個例子,有機發光二極體顯示器與光學式定址空間光調變器的緊密組合可讓寫入光束與讀取光束在光學式定址空間光調變器的對邊上為入射的。在另一個例子,有機發光二極體顯示器與光學式定址空間光調變器的緊密組合可讓反射層是在光學式定址空間光調變器的邊上,此為有機發光二極體顯示器的對邊,使得三維圖像可從光學式定址空間光調變器的相同邊觀察到,也就 是有機發光二極體顯示器所在的邊,照射源也如同有機發光二極體顯示器一樣,位於光學式定址空間光調變器的同邊上:這是反射顯示器的例子。 As another example, the close combination of an organic light emitting diode display and an optically addressed spatial light modulator allows the write beam and the read beam to be incident on opposite sides of the optically addressed spatial light modulator. In another example, the close combination of the organic light emitting diode display and the optically addressed spatial light modulator allows the reflective layer to be on the side of the optically addressed spatial light modulator, which is an organic light emitting diode display. The opposite side allows the three-dimensional image to be viewed from the same side of the optically addressed spatial light modulator, ie It is the side where the organic light-emitting diode display is located, and the illumination source is also on the same side of the optically-addressed spatial light modulator as the organic light-emitting diode display: this is an example of a reflective display.

包括紅外線有機發光二極體的陣列的實施例中,紅外線發射有機發光二極體允許對由光學式定址空間光調變器所傳送的可見光的振幅、相位或振幅及相位的組合進行控制,促使全像圖在光學式定址空間光調變器中產生。光學式定址空間光調變器可包含一對透明隔板,在隔板上塗有兩種電力導電膜,如同參考資料中US4,941,735所描述的內容。連續或不連續的感光膜可塗至其中一個導電膜上。 In an embodiment comprising an array of infrared organic light emitting diodes, the infrared emitting organic light emitting diode allows control of the combination of amplitude, phase or amplitude and phase of visible light transmitted by the optically addressed spatial light modulator, The hologram is generated in an optically addressed spatial light modulator. The optically addressed spatial light modulator can comprise a pair of transparent spacers coated with two electrically conductive films as described in the reference US 4,941,735. A continuous or discontinuous photosensitive film can be applied to one of the conductive films.

雙穩態鐵電式液晶或一些其它型式的液晶,可限制在另一個導電膜與感光膜之間。起動電壓可加至導電膜。在光學式定址空間光調變器中,光學式寫入光束可利用逐一像素的方式程式或啟動光學讀取光束的偏化。寫入光束可利用個別起動光學式定址空間光調變器的感光區來程式光學式定址空間光調變器。光學式定址空間光調變器被程式的區域,可藉由寫入光束的起動,旋轉閱讀光束的偏化。 A bistable ferroelectric liquid crystal or some other type of liquid crystal may be confined between another conductive film and a photosensitive film. The starting voltage can be applied to the conductive film. In an optically addressed spatial light modulator, the optical write beam can be programmed pixel by pixel or to initiate the polarization of the optical read beam. The write beam can be programmed to optically address the spatial light modulator using the photosensitive regions of the individual activated optically addressed spatial light modulators. The optically addressed spatial light modulator is programmed to rotate the reading beam by the start of the write beam.

圖一描述一種實施例。10是照明裝置,用於提供平面區域的照明,其中照明是具有充份的同調性以便能夠產生三維圖像。在 US 2006/250671提及一個用於大區域影像全像圖的照明裝置例子,其中一個例子是在圖四中。如同10的裝置可為白光光源陣列的形式,例如冷陰極螢光燈或發出的光線入射在聚焦系統上的白光發光二極體,其中聚焦系統可為緊密的,如透鏡狀陣列或微透鏡陣列。或者,用於10的光源可由紅、綠及藍雷射所組成,或是發出充份同調性光的紅、綠及藍發光二極體所組成。然而,具有充份空間同調性的非雷射光源(例如:發光二極體,有機發光二極體,冷陰極螢光燈)是更佳的。雷射光源的缺點,像是在全像重建上造成雷射斑點、相對上較為昂貴以及所有關於傷害全像顯示觀看者或是進行全像顯示裝置組裝工作人員的眼睛等可能的安全問題。元件10-13的厚度全部可約為數公分,或是更低。元件11可為色彩過濾器陣列,使得彩色光線(例如紅色、綠色及藍色光)的像素是射向元件12,儘管如果使用彩色光源,色彩過濾器是不需要的。元件12是在透明基板上的紅外線有機發光二極體陣列。紅外線有機發光二極體陣列將使得每一個紅外線有機發光二極體在元件13的方向發射的光,平行且符合從唯一對應的色彩像素發出的光。元件13為光學式定址空間光調變器。關於光學式定址空間光調變器,紅外線有機發光二極體陣列提供寫入光束;元件11發射的彩色光束為讀取光束。位於點14離包括緊密全像圖產生器15的裝置一些距離的觀看者,可從15的方向觀看到三維圖像。元件10、11、12及13是配置成實體連接(真實上連接),每一個形成結 構的一層,使得整體為單一、統一的物件。實體連接可為直接的。或是間接的,如果有薄的中間層,覆蓋在相鄰層之間的膜。實體連接可限制在確保正確的相互組合排列的小區域中,或是可延伸至較大的區域,甚至層的整個表面。實體連接可由層與層的黏接來實現,例如藉由使用光學傳送膠黏劑的方式,以便形成緊密的全像圖產生器15,或是藉由其它任何的方式(參考概要製造程序部份)。 Figure 1 depicts an embodiment. 10 is a lighting device for providing illumination of a planar area, wherein the illumination is sufficiently homophonic to enable generation of a three-dimensional image. in US 2006/250671 refers to an example of a lighting device for a large area image hologram, an example of which is shown in Figure 4. A device like 10 may be in the form of an array of white light sources, such as a cold cathode fluorescent lamp or a white light emitting diode that emits light incident on a focusing system, wherein the focusing system may be compact, such as a lenticular array or a microlens array. . Alternatively, the light source for 10 may be comprised of red, green, and blue lasers, or red, green, and blue light emitting diodes that emit sufficient tonal light. However, a non-laser light source (for example, a light-emitting diode, an organic light-emitting diode, a cold cathode fluorescent lamp) having a sufficient spatial coherence is preferable. Disadvantages of laser sources, such as laser spots on holographic reconstruction, are relatively expensive, and all possible safety issues with respect to the holographic display of the viewer or the eyes of a holographic display assembly worker. The thickness of elements 10-13 can all be on the order of a few centimeters or less. Element 11 can be a color filter array such that pixels of colored light (e.g., red, green, and blue light) are directed toward element 12, although a color filter is not required if a colored light source is used. Element 12 is an array of infrared organic light emitting diodes on a transparent substrate. The infrared organic light emitting diode array will cause each of the infrared organic light emitting diodes to emit light in the direction of the element 13 in parallel and conform to the light emitted from the unique corresponding color pixel. Element 13 is an optically addressed spatial light modulator. With regard to an optically addressed spatial light modulator, an infrared organic light emitting diode array provides a write beam; the color beam emitted by element 11 is a read beam. A viewer located at a distance 14 from the device including the compact hologram generator 15 can view a three-dimensional image from the direction of 15. Elements 10, 11, 12, and 13 are configured to be physically connected (realally connected), each forming a junction A layer of structure makes the whole a single, unified object. Physical connections can be direct. Or indirect, if there is a thin intermediate layer, cover the film between adjacent layers. The physical connections can be limited to small areas that ensure correct mutual alignment, or can extend to larger areas, even the entire surface of the layer. The physical connection can be achieved by layer-to-layer bonding, for example by using an optical transfer adhesive to form a compact hologram generator 15, or by any other means (refer to the outline manufacturing procedure section). ).

元件10可包含一個或兩個稜鏡光學膜來增加顯示器的亮度:這樣的膜是已知的,例如在US 5,056,892與US 5,919,551中所描述的內容。元件10可包含偏光元件,或是偏光元件的集合。線性偏光薄片是其中一個例子。另外一個例子是反射式偏光片,可傳送一個線性偏化狀態,並且反射正交線性偏化狀態-這樣的薄片是已知的,例如在US 5,828,488中所描述的內容。另一個例子是反射式偏光片,可傳送一個圓形偏化狀態,並且反射正交圓形偏化狀態-這樣的薄片是已知的,例如在US 6,181,395中所描述的內容。元件10可包含聚焦系統,此聚焦系統可為緊密的,例如透鏡狀陣列或微透鏡陣列。元件10可包含其它在背光科技的領域中已知的光學元件。 The element 10 may comprise one or two xenon optical films to increase the brightness of the display: such a film is known, for example, as described in US 5,056,892 and US 5,919,551. Element 10 can comprise a polarizing element or a collection of polarizing elements. Linear polarizing sheets are an example of this. Another example is a reflective polarizer that transmits a linearly biased state and reflects an orthogonal linearly biased state - such a sheet is known, for example, as described in US 5,828,488. Another example is a reflective polarizer that transmits a circularly polarized state and reflects an orthogonal circularly biased state - such a sheet is known, for example, as described in US 6,181,395. Element 10 can include a focusing system that can be compact, such as a lenticular array or a microlens array. Element 10 can include other optical components known in the art of backlighting.

圖四是習用技術側視圖,指出垂直聚焦系統1104的三個聚焦 元件1101、1102、1103,採用圓柱形透鏡水平排列於陣列中的形式,參照於參考資料WO 2006/119920。並以水平線光源LS2幾近準直的光束通過照明單位的聚焦元件1102至觀察員平面OP為例。根據圖四,許多的線光源LS1,LS2,LS3是一個個上下排列。每一個光源發射的光,在垂直方向是充份空間同調性的,在水平方向是空間非同調性的。這個光會通過光調變器SLM的傳輸元件。這個光因為全像圖編碼的光調變器SLM的元件,僅在垂直方向的繞射。聚焦元件1102在觀察員平面OP以數個繞射階級(只有一個是有用的)成像光源LS2。由光源LS2所發射的光束是作為只通過聚焦系統1104的聚焦元件1102的例子。在圖四中,三個光束顯示第一繞射階級1105、第零繞射階級1106及負一繞射階級1107。與單一點光源相比,線光源允許非常高的光強度產生。使用多個已增加效率與針對重建三維場景的每一個部分進行線光源排列的全像區域可提升有效的光強度。另一個優點,不採用雷射,多個分隔的(例如在可為遮光器一部份的槽闌之後)常見光源可產生充份的同調光。 Figure 4 is a side view of a conventional technique showing three focusings of the vertical focusing system 1104 The elements 1101, 1102, 1103 are in the form of a cylindrical lens arranged horizontally in the array, reference is made to the reference WO 2006/119920. The beam that is nearly collimated with the horizontal line source LS2 passes through the focusing unit 1102 of the illumination unit to the observer plane OP as an example. According to Figure 4, many of the line sources LS1, LS2, LS3 are arranged one above the other. The light emitted by each light source is spatially homogenous in the vertical direction and spatially non-coherent in the horizontal direction. This light passes through the transmission element of the optical modulator SLM. This light is only diffracted in the vertical direction because of the components of the hologram-modulated optical modulator SLM. The focusing element 1102 images the light source LS2 at the observer plane OP in a number of diffraction stages (only one is useful). The light beam emitted by the light source LS2 is an example of the focusing element 1102 that passes only through the focusing system 1104. In Figure 4, the three beams show a first diffractive class 1105, a zeroth diffractive class 1106, and a negative diffractive class 1107. Line sources allow very high light intensities to be produced compared to a single point source. Efficient light intensity can be enhanced by using a plurality of holographic regions that have increased efficiency and line source alignment for each portion of the reconstructed three-dimensional scene. Another advantage is that without the use of a laser, multiple sources (e.g., after a slot that can be part of the shutter) can produce sufficient dimming.

B.兩對有機發光二極體與光學式定址空間光調變器的組合的緊密組合。 B. Close combination of the combination of two pairs of organic light emitting diodes and an optically addressed spatial light modulator.

在更進一步的實施例中,可使用兩對有機發光二極體與光學式定址空間光調變器的組合的緊密組合,以連續及緊密的方式來 調變的振幅及相位。因此,由振幅與相位組成的複數可以逐一像素的方式在傳送光中編譯。 In still further embodiments, a close combination of the combination of two pairs of organic light emitting diodes and an optically addressed spatial light modulator can be used in a continuous and compact manner. Modulated amplitude and phase. Therefore, a complex number consisting of amplitude and phase can be compiled in transmitted light one by one.

這個實施例包含第一由紅外線有機發光二極體陣列及光學式定址空間光調變器配對的緊密組合及第二由紅外線有機發光二極體陣列及光學式定址空間光調變器配對的緊密組合。 This embodiment includes a first intimate combination of an infrared organic light emitting diode array and an optically addressed spatial light modulator pair and a second closely matched pair of an infrared organic light emitting diode array and an optically addressed spatial light modulator. combination.

第一對調變傳送光的振幅,第二對調變傳送光的相位。也可以第一對調變傳送光的相位,第二對調變傳送光的振幅。每一個紅外線有機發光二極體陣列與光學式定址空間光調變器的緊密組合可如同在A部份所描述的。兩對紅外線有機發光二極體陣列與光學式定址空間光調變器的緊密組合是由紅外線過濾器所分離,紅外線過濾器會吸收紅外線而不處理可見光。 The first pair modulates the amplitude of the transmitted light, and the second pair modulates the phase of the transmitted light. It is also possible that the first pair modulates the phase of the transmitted light and the second pair modulates the amplitude of the transmitted light. The close combination of each infrared organic light emitting diode array and the optically addressed spatial light modulator can be as described in Section A. The close combination of the two pairs of infrared organic light emitting diode arrays and the optically addressed spatial light modulator is separated by an infrared filter that absorbs infrared light without processing visible light.

在第一步驟中,第一紅外線有機發光二極體陣列寫入圖樣,以提供在第一光學式定址空間光調變器中的振幅調變。在第二步驟中,第二紅外線有機發光二極體陣列寫入圖樣,以提供在第二光學式定址空間光調變器中的相位調變。紅外線濾光片阻止紅外線的洩漏從第一緊密組合一對紅外線-有機發光二極體陣列與光學式定址空間光調變器到第二緊密組合一對紅外線-有機發光二極體陣列與光學式定址空間光調變器.紅外線過濾器也預防從第二對紅 外線有機發光二極體陣列與光學式定址空間光調變器的緊密組合的紅外線洩漏至第一對紅外線有機發光二極體陣列與光學式定址空間光調變器的緊密組合。然而,紅外線過濾器傳送從第一對紅外線有機發光二極體陣列與光學式定址空間光調變器的緊密組合的可見光,以作為第二對紅外線有機發光二極體陣列與光學式定址空間光調變器的緊密組合中的讀取光束。由第二光學式定址空間光調變器傳送的光已在振幅與相位進行調變,因此當觀看者觀看包含這兩個緊密組合對的裝置所發射的光時,觀察者可觀察到三維圖像。 In a first step, the first infrared organic light emitting diode array is patterned to provide amplitude modulation in the first optically addressed spatial light modulator. In a second step, the second infrared organic light emitting diode array is patterned to provide phase modulation in the second optically addressed spatial light modulator. The infrared filter blocks the leakage of infrared rays from the first tightly combined pair of infrared-organic light emitting diode arrays and the optically addressed spatial light modulator to the second tightly combined pair of infrared-organic light emitting diode arrays and optical type Address space light modulator. Infrared filter is also prevented from the second pair of red The close combination of the infrared ray of the external organic light emitting diode array and the optically addressed spatial light modulator leaks into the close combination of the first pair of infrared organic light emitting diode arrays and the optically addressed spatial light modulator. However, the infrared filter transmits visible light from the close combination of the first pair of infrared organic light emitting diode arrays and the optically addressed spatial light modulator to serve as a second pair of infrared organic light emitting diode arrays and optically addressed spatial light. The read beam in a tight combination of modulators. The light transmitted by the second optically-spaced spatial light modulator has been modulated in amplitude and phase so that when the viewer views the light emitted by the device comprising the two closely combined pairs, the observer can observe the three-dimensional map image.

由於習用相位與振幅的調變技術促進複數數值的表現,致使有機發光二極體顯示器與光學式定址空間光調變器兩者都具有高解析度。因此,這個實施例可應用於產生全像圖像,使得觀看者可看到三維圖像。 Since the conventional phase and amplitude modulation techniques promote the performance of complex values, both the organic light emitting diode display and the optically addressed spatial light modulator have high resolution. Thus, this embodiment can be applied to produce a holographic image so that the viewer can see the three-dimensional image.

在圖二中,顯示一個實施的例子。20是照明裝置,用於提供平面區域的照明,並且照明具有充份的同調性,能夠產生三維圖像。如在US 2006/250671中提供了關於大區域影像全像圖的實例即為一個例子。這類型的裝置如同20可採用白色光源陣列的形式,例如冷陰極螢光燈或發出的光線入射在聚焦系統上的白光發光二極體,其中聚焦系統可為緊密的,如透鏡狀陣列或微透鏡陣 列。或者,用於20的光源可由紅、綠及藍雷射所組成,或是發出充份同調性光的紅、綠及藍發光二極體所組成。然而,具有充份空間同調性的非雷射光源(例如:發光二極體,有機發光二極體,冷陰極螢光燈)是更佳的。雷射光源的缺點,像是在全像重建上造成雷射斑點、相對上較為昂貴以及所有關於傷害全像顯示觀看者或是進行全像顯示裝置組裝工作人員的眼睛等可能的安全問題。 In Figure 2, an example of an implementation is shown. 20 is a lighting device for providing illumination of a planar area, and the illumination is sufficiently coherent to produce a three-dimensional image. An example of a large area image hologram as provided in US 2006/250671 is an example. This type of device can be in the form of an array of white light sources, such as a cold cathode fluorescent lamp or a white light emitting diode that emits light incident on the focusing system, wherein the focusing system can be compact, such as a lenticular array or micro. Lens array Column. Alternatively, the light source for 20 may be comprised of red, green, and blue lasers, or red, green, and blue light emitting diodes that emit sufficient tonal light. However, a non-laser light source (for example, a light-emitting diode, an organic light-emitting diode, a cold cathode fluorescent lamp) having a sufficient spatial coherence is preferable. Disadvantages of laser sources, such as laser spots on holographic reconstruction, are relatively expensive, and all possible safety issues with respect to the holographic display of the viewer or the eyes of a holographic display assembly worker.

元件20-23、26-28的厚度全部可約為數公分,或是更低。元件21可包含色彩過濾器陣列,使得彩色光線(例如紅色、綠色及藍色光)的像素是射向元件22,儘管如果使用彩色光源,色彩過濾器是不需要的。元件22是在透明基板上的紅外線有機發光二極體陣列。紅外線有機發光二極體陣列將使得每一個紅外線有機發光二極體在元件23的方向發射的光,平行且符合從唯一對應的色彩像素發出的光。元件23為光學式定址空間光調變器。關於光學式定址空間光調變器,紅外線有機發光二極體陣列提供寫入光束;元件21發射的彩色光束為讀取光束。元件26是紅外線過濾器,只傳送可見光而中斷紅外線光,使得元件22所發射的紅外線光不影響元件27。元件27是光學式定址空間光調變器。元件28是在透明基板上的紅外線有機發光二極體陣列。紅外線有機發光二極體陣列將使得每一個紅外線有機發光二極體在元件27的方向發射的光,平行且符合從唯一對應的色彩像素發出的光。關於光學式定 址空間光調變器27,紅外線有機發光二極體陣列28提供寫入光束;元件26發射的彩色光束為讀取光束。關於傳送光,元件23調變振幅,元件27調變相位。也可以元件27調變振幅,元件23調變相位。因為從透明基板28上紅外線有機發光二極體陣列來的光是發射在元件26的方向,元件26可吸收紅外線光,防止元件28的光至光學式定址空間光調變器23。這樣的設定,兩個有機發光二極體陣列22及28放出的光線,在實質上為相反的方向,確保兩個光學式定址空間光調變器23及27可放置在接近的位置。將光學式定址空間光調變器23及27靠近能夠減少光學耗損及因光束分歧而產生的像素串音問題:當光學式定址空間光調變器23及27是非常靠近的,可實現通過光學式定址空間光調變器的彩色光線光束的非重疊傳播的較佳近似值。圖二元件27及28的次序可以相反,但是這不認為是理想對於實現通過光學式定址空間光調變器23及27的彩色光線光束之間低串音及高傳輸目標的設定。 The thickness of elements 20-23, 26-28 can all be on the order of a few centimeters or less. Element 21 may comprise a color filter array such that pixels of colored light (e.g., red, green, and blue light) are directed toward element 22, although a color filter is not required if a colored light source is used. Element 22 is an array of infrared organic light emitting diodes on a transparent substrate. The infrared organic light emitting diode array will cause the light emitted by each of the infrared organic light emitting diodes in the direction of the element 23 to be parallel and conform to the light emitted from the unique corresponding color pixel. Element 23 is an optically addressed spatial light modulator. With regard to an optically addressed spatial light modulator, an infrared organic light emitting diode array provides a write beam; the color beam emitted by element 21 is a read beam. Element 26 is an infrared filter that transmits only visible light and interrupts infrared light such that the infrared light emitted by element 22 does not affect element 27. Element 27 is an optically addressed spatial light modulator. Element 28 is an array of infrared organic light emitting diodes on a transparent substrate. The infrared organic light emitting diode array will cause each of the infrared organic light emitting diodes to emit light in the direction of the element 27 in parallel and conform to the light emitted from the unique corresponding color pixel. About optical formula The address spatial light modulator 27, the infrared organic light emitting diode array 28 provides a write beam; the color beam emitted by the element 26 is a read beam. With respect to transmitting light, element 23 is modulated in amplitude and element 27 is modulated in phase. Element 27 can also be modulated in amplitude and element 23 can be modulated in phase. Since the light from the infrared organic light emitting diode array on the transparent substrate 28 is emitted in the direction of the element 26, the element 26 can absorb infrared light, preventing the light of the element 28 from being optically addressed to the spatial light modulator 23. With such a setting, the light emitted by the two organic light emitting diode arrays 22 and 28 is in substantially opposite directions, ensuring that the two optically addressed spatial light modulators 23 and 27 can be placed in close proximity. Bringing the optically-addressed spatial light modulators 23 and 27 close to the problem of reducing pixel loss and pixel crosstalk caused by beam divergence: when the optically addressed spatial light modulators 23 and 27 are in close proximity, optical A preferred approximation of the non-overlapping propagation of a colored light beam of a spatially modulated spatial modulator. The order of elements 27 and 28 of Figure 2 can be reversed, but this is not considered to be an ideal setting for achieving low crosstalk and high transmission targets between colored light beams through optically addressed spatial light modulators 23 and 27.

元件20可包含一個或兩個稜鏡光學膜來增加顯示器的亮度:這樣的膜是已知的,例如在US 5,056,892與US 5,919,551中所描述的內容。元件20可包含偏光元件,或是偏光元件的集合。線性偏光薄片是其中一個例子。另外一個例子是反射式偏光片,可傳送一個線性偏化狀態,並且反射正交線性偏化狀態-這樣的薄片是已知的,例如在US 5,828,488中所描述的內容。另一個例子是 反射式偏光片,可傳送一個圓形偏化狀態,並且反射正交圓形偏化狀態-這樣的薄片是已知的,例如在US 6,181,395中所描述的內容。元件20可包含聚焦系統,此聚焦系統可為緊密的,例如透鏡狀陣列或微透鏡陣列。元件20可包含其它在背光科技的領域中已知的光學元件。 The element 20 may comprise one or two 稜鏡 optical films to increase the brightness of the display: such a film is known, for example, as described in US 5,056,892 and US 5,919,551. Element 20 can comprise a polarizing element or a collection of polarizing elements. Linear polarizing sheets are an example of this. Another example is a reflective polarizer that transmits a linearly biased state and reflects an orthogonal linearly biased state - such a sheet is known, for example, as described in US 5,828,488. Another example is Reflective polarizers that transmit a circularly polarized state and reflect orthogonal circularly polarized states - such sheets are known, for example, as described in US 6,181,395. Element 20 can include a focusing system that can be compact, such as a lenticular array or a microlens array. Element 20 can include other optical components known in the art of backlighting.

位於點24離包括緊密全像圖產生器25的裝置一些距離的觀看者,可從25的方向觀看到三維圖像。元件20、21、22、23、26、27及28是配置成實體連接(真實上連接),每一個形成結構的一層,使得整體為單一、統一的物件。實體連接可為直接的。或是間接的,如果有薄的中間層,覆蓋在相鄰層之間的膜。實體連接可限制在確保正確的相互排列的小區域中,或是可延伸至較大的區域,甚至層的整個表面。實體連接可由層與層的黏接來實現,例如藉由使用光學傳送膠黏劑的方式,以便形成緊密的全像圖產生器15,或是藉由其它任何的方式(參考概要製造程序部份)。 A viewer located some distance from the device including the compact hologram generator 25 at point 24 can view the three-dimensional image from the direction of 25. Elements 20, 21, 22, 23, 26, 27, and 28 are configured to be physically connected (realally connected), each forming a layer of structure such that the entirety is a single, unified object. Physical connections can be direct. Or indirect, if there is a thin intermediate layer, cover the film between adjacent layers. Physical connections can be limited to small areas that ensure proper alignment, or can extend to larger areas, even the entire surface of the layer. The physical connection can be achieved by layer-to-layer bonding, for example by using an optical transfer adhesive to form a compact hologram generator 15, or by any other means (refer to the outline manufacturing procedure section). ).

在圖二中,理想情況下有機發光二極體陣列22及28放出的光線是相當準直的。然而,實際有機發光二極體放出的光線可能為不準直,例如朗伯(Lambertian)(完全擴散)分配的光。當有機發光二極體的光放射並不是十分準直時,有機發光二極體可以盡可能的靠近對應的光學式定址空間光調變器。在這樣的情況,入射 在光學式定址空間調變器表面的強度將變化至近似入射角餘弦的平方。在45°或60°的入射光將導致強度僅為垂直入射光的二分之一或是四分之一。因此,假如有機發光二極體是充份相間隔地隔開,可見光像素充份細小,並且足夠靠近光學式定址空間光調變器,幾何效應將導致橫越光學式定址空間光調變器空間上產生的電位差發生重大變化,甚至是在有機發光二極體光放射分配為郎伯(Lambertian)的限制情況下。入射的紅外線強度在有機發光二極體的光垂直入射的光學式定址空間光調變器的點之間可能不會降至零,這可能導致裝置可實現的對比減低。但是如果能簡化裝置結構,減少的對比是可接受的。 In Figure 2, the light emitted by the organic light emitting diode arrays 22 and 28 is ideally collimated. However, the light emitted by the actual organic light-emitting diode may be uncollimated, such as Lambertian (completely diffused) light. When the light emission of the organic light-emitting diode is not very collimated, the organic light-emitting diode can be as close as possible to the corresponding optically-spaced light modulator. In such a case, incident The intensity of the surface of the optically modulated spatial modulator will vary to approximately the square of the cosine of the incident angle. Incident light at 45° or 60° will result in a intensity that is only one-half or one-quarter of the normal incident light. Therefore, if the organic light-emitting diodes are spaced apart at intervals, the visible light pixels are sufficiently small and close enough to the optically-spaced spatial light modulator, the geometric effect will result in traversing the optically-spaced spatial light modulator space. There is a significant change in the potential difference generated, even in the case where the light emission of the organic light-emitting diode is limited by Lambertian. The intensity of the incident infrared light may not fall to zero between the points of the optically-addressed spatial light modulator where the light of the organic light-emitting diode is incident perpendicularly, which may result in a reduction in the achievable contrast of the device. However, if the device structure can be simplified, the reduced contrast is acceptable.

在圖二中,理想情況下有機發光二極體陣列22及28放出的光線是相當準直的。然而,實際有機發光二極體放出的光線可能為不準直,例如朗伯(Lambertian)(完全擴散)分配的光。當有機發光二極體的光放射是不準直時,有機發光二極體的幾何光分配可利用布拉格(Bragg)過濾器全像光學元件來進行修正,例如在US 5,153,670中所描述的內容。布拉格過濾器全像光學元件可造成光準直,或是比起沒有使用此元件具有較佳的準直性。圖八顯示了布拉格過濾器全像光學元件的作用實例。在圖八中,80是有機發光二極體陣列,81是全像光學元件布拉格過濾器,包含布拉格平面,例如布拉格平面84,而82為光學式定址空間光調變器。在有 機發光二極體陣列80中的一個單一有機發光二極體83,發射的紅外線的分佈是如85所示意的分佈。由有機發光二極體陣列80所發射的光射線86,在全像光學元件81中經歷散射,接著近似正交的入射在光學式定址空間光調變器82上。在這個方法中,改進入射在光學式定址空間光調變器82上的紅外線的準直性是可以實現的。 In Figure 2, the light emitted by the organic light emitting diode arrays 22 and 28 is ideally collimated. However, the light emitted by the actual organic light-emitting diode may be uncollimated, such as Lambertian (completely diffused) light. When the light emission of the organic light-emitting diode is not collimated, the geometric light distribution of the organic light-emitting diode can be corrected using a Bragg filter holographic optical element, such as described in US 5,153,670. A Bragg filter holographic optical element can cause light collimation or better collimation than without the use of this component. Figure 8 shows an example of the action of a Bragg filter holographic optical element. In Figure 8, 80 is an array of organic light emitting diodes, 81 is a holographic optical element Bragg filter, contains a Bragg plane, such as a Bragg plane 84, and 82 is an optically addressed spatial light modulator. In There A single organic light-emitting diode 83 in the array of light-emitting diodes 80 has a distribution of infrared rays emitted as indicated by 85. The light ray 86 emitted by the organic light emitting diode array 80 undergoes scattering in the holographic optical element 81 and is then incident approximately orthogonally on the optically addressed spatial light modulator 82. In this method, it is possible to improve the collimation of the infrared rays incident on the optically-addressed spatial light modulator 82.

另一個實施例如圖五所示。57是照明裝置,用於提供平面區域的照明,並且照明具有充份的同調性,能夠產生三維圖像。如在US 2006/250671中提供了關於大區域影像全像圖的實例即為一個例子。這類型的裝置可採用白色光源陣列的形式,例如冷陰極螢光燈或發出的光線入射在聚焦系統上的白光發光二極體,其中聚焦系統可為緊密的,如透鏡狀陣列或微透鏡陣列50。或者,用於57的光源可由紅、綠及藍雷射所組成,或是發出充份同調性光的紅、綠及藍發光二極體所組成。然而,具有充份空間同調性的非雷射光源(例如:發光二極體,有機發光二極體,冷陰極螢光燈)是更佳的。雷射光源的缺點,像是在全像重建上造成雷射斑點、相對上較為昂貴以及所有關於傷害全像顯示觀看者或是進行全像顯示裝置組裝工作人員的眼睛等可能的安全問題。 Another implementation is shown in Figure 5. 57 is a lighting device for providing illumination of a planar area, and the illumination is sufficiently coherent to produce a three-dimensional image. An example of a large area image hologram as provided in US 2006/250671 is an example. This type of device may take the form of a white light source array, such as a cold cathode fluorescent lamp or a white light emitting diode that emits light incident on a focusing system, wherein the focusing system can be compact, such as a lenticular array or a microlens array. 50. Alternatively, the light source for 57 may be comprised of red, green, and blue lasers, or red, green, and blue light emitting diodes that emit sufficient tonal light. However, a non-laser light source (for example, a light-emitting diode, an organic light-emitting diode, a cold cathode fluorescent lamp) having a sufficient spatial coherence is preferable. Disadvantages of laser sources, such as laser spots on holographic reconstruction, are relatively expensive, and all possible safety issues with respect to the holographic display of the viewer or the eyes of a holographic display assembly worker.

元件57可包含一個或兩個稜鏡光學膜來增加顯示器的亮度: 這樣的膜是已知的,例如在US 5,056,892與US 5,919,551中所描述的內容。元件57可包含偏光元件,或是偏光元件的集合。線性偏光薄片是其中一個例子。另外一個例子是反射式偏光片,可傳送一個線性偏化狀態,並且反射正交線性偏化狀態-這樣的薄片是已知的,例如在US 5,828,488中所描述的內容。另一個例子是反射式偏光片,可傳送一個圓形偏化狀態,並且反射正交圓形偏化狀態-這樣的薄片是已知的,例如在US 6,181,395中所描述的內容。元件57可包含其它在背光科技的領域中已知的光學元件。 Element 57 may contain one or two xenon optical films to increase the brightness of the display: Such a film is known, for example, as described in US 5,056,892 and US 5,919,551. Element 57 can comprise a polarizing element or a collection of polarizing elements. Linear polarizing sheets are an example of this. Another example is a reflective polarizer that transmits a linearly biased state and reflects an orthogonal linearly biased state - such a sheet is known, for example, as described in US 5,828,488. Another example is a reflective polarizer that transmits a circularly polarized state and reflects an orthogonal circularly biased state - such a sheet is known, for example, as described in US 6,181,395. Element 57 may comprise other optical elements known in the art of backlight technology.

元件57、50-54的厚度全部可約為數公分,或是更低。元件51可包含色彩過濾器陣列,使得彩色光線(例如紅色、綠色及藍色光)的像素是射向元件52,儘管如果使用彩色光源,色彩過濾器是不需要的。 The thickness of the elements 57, 50-54 may all be on the order of a few centimeters or less. Element 51 may comprise a color filter array such that pixels of colored light (e.g., red, green, and blue light) are directed toward element 52, although a color filter is not required if a colored light source is used.

元件52是在透明基板上的紅外線有機發光二極體陣列。紅外線有機發光二極體陣列將使得對於每一個色彩像素,一個包含二種紅外線有機發光二極體的唯一成對在元件53的方向發射的光,會平行且符合從它們所對應的色彩像素發出的光。第一種的紅外線有機發光二極體發射第一波長的紅外線。第二種的紅外線有機發光二極體發射第二波長的紅外線,第二波長與第一波長是不相同的。元件53是光學式定址空間光調變器。元件54是另一光學 式定址空間光調變器。關於光學式定址空間光調變器,紅外線有機發光二極體陣列提供寫入光束;元件51發射的彩色光束為讀取光束。光學式定址空間光調變器53是由有機發光二極體陣列52發射的兩個紅外線波長中的第一波長所控制。光學式定址空間光調變器53對於有機發光二極體陣列52所發射的兩個紅外線波長的第二波長不敏感,並且會將有機發光二極體陣列52發射的兩個紅外線波長的第二波長傳送。光學式定址空間光調變器54是由有機發光二極體陣列52發射的兩個紅外線波長中的第二波長所控制。光學式定址空間光調變器54對於有機發光二極體陣列52所發射的兩個紅外線波長的第一波長是不敏感的,或者可利用光學式定址空間光調變器53的吸收及/或來防止第一紅外線波長的光到達光學式定址空間光調變器54,藉由它的吸收,在緊密的全像圖產生器55中,並不一定需要對於第一紅外線波長不敏感的光學式定址空間光調變器54。或者也可使用發射兩種不同波長的單一種有機發光二極體,兩種不同波長的相對強度是由一個參數所決定,像是橫越有機發光二極體的電壓。兩種不同波長的放射可利用時間多工進行控制。 Element 52 is an array of infrared organic light emitting diodes on a transparent substrate. The infrared organic light emitting diode array will be such that for each color pixel, a single pair of two infrared organic light emitting diodes emitting light in the direction of element 53 will be parallel and conform to the color pixels from their corresponding color Light. The first type of infrared organic light emitting diode emits infrared rays of a first wavelength. The second infrared organic light emitting diode emits infrared light of a second wavelength, and the second wavelength is different from the first wavelength. Element 53 is an optically addressed spatial light modulator. Element 54 is another optics Space-addressed light modulator. With regard to an optically addressed spatial light modulator, an infrared organic light emitting diode array provides a write beam; the color beam emitted by element 51 is a read beam. The optically addressed spatial light modulator 53 is controlled by a first one of the two infrared wavelengths emitted by the organic light emitting diode array 52. The optically addressed spatial light modulator 53 is insensitive to the second wavelength of the two infrared wavelengths emitted by the organic light emitting diode array 52 and will emit the second of the two infrared wavelengths emitted by the organic light emitting diode array 52. Wavelength transmission. The optically addressed spatial light modulator 54 is controlled by a second of the two infrared wavelengths emitted by the organic light emitting diode array 52. The optically addressed spatial light modulator 54 is insensitive to the first wavelength of the two infrared wavelengths emitted by the organic light emitting diode array 52, or may utilize the absorption of the optically addressed spatial light modulator 53 and/or To prevent the light of the first infrared wavelength from reaching the optically-addressed spatial light modulator 54, by its absorption, in the compact hologram generator 55, the optical type that is insensitive to the first infrared wavelength is not necessarily required. Address space light modulator 54. Alternatively, a single organic light-emitting diode emitting two different wavelengths may be used. The relative intensities of the two different wavelengths are determined by a parameter such as the voltage across the organic light-emitting diode. Two different wavelengths of radiation can be controlled using time multiplexing.

對於傳送光,元件53調變振幅,元件54調變相位。也可以元件54調變振幅,元件53調變相位。這樣的設定,有機發光二極體陣列52發射具有兩種不同波長的光,確保兩個光學式定址空 間光調變器53及54可放置在非常接近的位置。將光學式定址空間光調變器53及54靠近能夠減少光學耗損及因光束分歧而產生的像素串音問題:當光學式定址空間光調變器53及54是非常靠近的,可實現通過光學式定址空間光調變器的彩色光線光束的非重疊傳播的較佳近似值。 For transmitting light, element 53 is modulated in amplitude and element 54 is modulated in phase. Element 54 can also be modulated in amplitude, and element 53 can be modulated in phase. With such a setting, the organic light emitting diode array 52 emits light having two different wavelengths, ensuring that two optical addresses are empty. The inter-optical modulators 53 and 54 can be placed in close proximity. Bringing the optically-addressed spatial light modulators 53 and 54 close to the pixel crosstalk problem that can reduce optical wear and due to beam divergence: when the optically addressed spatial light modulators 53 and 54 are in close proximity, optical optics can be achieved. A preferred approximation of the non-overlapping propagation of a colored light beam of a spatially modulated spatial modulator.

位於點56離包括緊密全像圖產生器55的裝置一些距離的觀看者,可從55的方向觀看到三維圖像。元件57、50、51、52、53及54是配置成實體連接(真實上連接),每一個形成結構的一層,使得整體為單一、統一的物件。實體連接可為直接的。或是間接的,如果有薄的中間層,覆蓋在相鄰層之間的膜。實體連接可限制在確保正確的相互排列的小區域中,或是可延伸至較大的區域,甚至層的整個表面。實體連接可由層與層的黏接來實現,例如藉由使用光學傳送膠黏劑的方式,以便形成緊密的全像圖產生器55,或是藉由其它任何的方式(參考概要製造程序部份)。 A viewer located some distance from the device including the compact hologram generator 55 at point 56 can view the three-dimensional image from the direction of 55. Elements 57, 50, 51, 52, 53 and 54 are configured to be physically connected (realally connected), each forming a layer of structure such that the entirety is a single, uniform object. Physical connections can be direct. Or indirect, if there is a thin intermediate layer, cover the film between adjacent layers. Physical connections can be limited to small areas that ensure proper alignment, or can extend to larger areas, even the entire surface of the layer. The physical connection can be achieved by layer-to-layer bonding, for example by using an optical transfer adhesive to form a compact hologram generator 55, or by any other means (refer to the outline manufacturing procedure section). ).

在光學式定址空間光調變器執行振幅調變處,在典型的設定中,入射的讀取光學光束將會藉由將光束通過線性偏光片來達到線性偏化。振幅調變是由在施加電場中液晶的旋轉所控制,其中電場是由感光層所產生,影響光的偏化狀態。在這樣的裝置中,離開光學式定址空間光調變器的光會通過另一個線性偏光片,可 因光的偏化狀態改變而減少強度,如同它通過光學式定址空間光調變器時一樣。 Where the optically addressed spatial light modulator performs amplitude modulation, in a typical setup, the incident read optical beam will be linearly polarized by passing the beam through a linear polarizer. The amplitude modulation is controlled by the rotation of the liquid crystal in the applied electric field, wherein the electric field is generated by the photosensitive layer, affecting the polarization state of the light. In such a device, light exiting the optically addressed spatial light modulator passes through another linear polarizer. The intensity is reduced by the change in the polarization state of the light as it is when optically locating the spatial light modulator.

在光學式定址空間光調變器執行相位調變處,除非它們已處於定義的線性偏化狀態,在典型的設定中,入射的讀取光學光束將會藉由將光束通過線性偏光片來達到線性偏化。相位調變是由施加電場的應用所控制,其中電場是由感光層所產生,影響光的相位狀態。在相位調變的一個例子中,使用向列型相位液晶,光軸方向是間隔固定的,但是雙折射是施加電壓的函數。在相位調變的例子中,使用鐵電性液晶,雙折射是固定的,但是光軸的方向是由施加電壓所控制。在相位調變實作中,使用其中任一種方法,輸出光束對於由施加電壓控制的輸入光束而言具有相位差。可執行相位調變的液晶元件的其中一個例子為Freedericksz胞元排列,在其中使用了具有正介電質異方向性的向列型液晶的反平行排列區域,如同在US 5,973,817所描述的內容。 In the optically-addressed spatial light modulators performing phase modulation, unless they are already in a defined linearly biased state, in a typical setting, the incident reading optical beam will be achieved by passing the beam through a linear polarizer. Linearly biased. Phase modulation is controlled by the application of an applied electric field, where the electric field is generated by the photosensitive layer, affecting the phase state of the light. In one example of phase modulation, a nematic phase liquid crystal is used, the optical axis direction being fixed at intervals, but birefringence is a function of applied voltage. In the case of phase modulation, using ferroelectric liquid crystal, birefringence is fixed, but the direction of the optical axis is controlled by the applied voltage. In phase modulation implementation, using either method, the output beam has a phase difference for the input beam that is controlled by the applied voltage. One example of a liquid crystal element that can perform phase modulation is a Freedericksz cell arrangement in which an anti-parallel arrangement of nematic liquid crystals having positive dielectric anisotropy is used, as described in US 5,973,817.

C.緊密型光源與電子式定址空間光調變器的緊密組合。 C. Close combination of compact light source and electronically addressed spatial light modulator.

這個實施例提供電子式定址空間光調變器與充份同調性緊密型光源的緊密組合,這組合能夠在適當的照明情況下產生三維圖像。 This embodiment provides a close combination of an electronic addressed spatial light modulator and a fully coherent compact light source that produces a three dimensional image with proper illumination.

在這個實施例中,描述了不需要成像光學的電子式定址空間光調變器與緊密型光源的緊密組合。這個實施例提供了一個光源或多個光源、聚焦方法、電子式定址空間光調變器(EASLM)及非必要的分光鏡元件的緊密組合,此組合能夠在適當的照明情況下產生三維圖像。 In this embodiment, a close combination of an electronic address spatial light modulator that does not require imaging optics and a compact light source is described. This embodiment provides a close combination of a light source or multiple sources, a focusing method, an electronically addressed spatial light modulator (EASLM), and an optional spectroscopic element that produces a three-dimensional image with appropriate illumination. .

在圖十一中為一個實施例。110是照明裝置用於提供平面區域的照明,其中照明是具有充份的同調性以便能夠產生三維圖像。在US 2006/250671提及一個用於大區域影像全像圖的照明裝置例子,其中一個例子是在圖四中。如同110的裝置可為白光光源陣列的形式,例如冷陰極螢光燈或發出的光線入射在聚焦系統上的白光發光二極體,其中聚焦系統可為緊密的,如透鏡狀陣列或微透鏡陣列。或者,用於110的光源可由紅、綠及藍雷射所組成,或是發出充份同調性光的紅、綠及藍發光二極體所組成。紅色,綠色及藍色發光二極體可成為有機發光二極體(OLEDs)。然而,具有充份空間同調性的非雷射光源(例如:發光二極體,有機發光二極體,冷陰極螢光燈)是更佳的。雷射光源的缺點,像是在全像重建上造成雷射斑點、相對上較為昂貴以及所有關於傷害全像顯示觀看者或是進行全像顯示裝置組裝工作人員的眼睛等可能的安全問題。 In Figure 11 is an embodiment. 110 is an illumination device for providing illumination of a planar area, wherein the illumination is sufficiently homogenous to enable generation of a three-dimensional image. An example of a lighting device for a large area image hologram is mentioned in US 2006/250671, an example of which is shown in Figure 4. The device like 110 can be in the form of a white light source array, such as a cold cathode fluorescent lamp or a white light emitting diode that emits light incident on the focusing system, wherein the focusing system can be compact, such as a lenticular array or a microlens array. . Alternatively, the light source for 110 may be comprised of red, green, and blue lasers, or red, green, and blue light emitting diodes that emit sufficient tonal light. Red, green, and blue light-emitting diodes can be organic light-emitting diodes (OLEDs). However, a non-laser light source (for example, a light-emitting diode, an organic light-emitting diode, a cold cathode fluorescent lamp) having a sufficient spatial coherence is preferable. Disadvantages of laser sources, such as laser spots on holographic reconstruction, are relatively expensive, and all possible safety issues with respect to the holographic display of the viewer or the eyes of a holographic display assembly worker.

元件110的厚度可約為數公分,或是更低。在較佳實施例中,元件110-113全部厚度會低於三公分,以便提供充份同調性的緊密光源。元件111可為色彩過濾器陣列,使得彩色光線(例如紅色、綠色及藍色光)的像素是射向元件112,儘管如果使用彩色光源,色彩過濾器是不需要的。元件112是電子式定址空間光調變器。元件113是非必要的光束分光鏡元件。位於點114離包括緊密全像圖產生器115的裝置一些距離的觀看者,可從115的方向觀看到三維圖像。 Element 110 may have a thickness of about a few centimeters or less. In the preferred embodiment, elements 110-113 will all be less than three centimeters thick to provide a closely spaced, compact source. Element 111 can be a color filter array such that pixels of colored light (e.g., red, green, and blue light) are directed toward element 112, although a color filter is not required if a colored light source is used. Element 112 is an electronic addressed spatial light modulator. Element 113 is an unnecessary beam splitter element. A viewer located at point 114 some distance from the device including the compact hologram generator 115 can view the three-dimensional image from the direction of 115.

元件110可包含一個或兩個稜鏡光學膜來增加顯示器的亮度:這樣的膜是已知的,例如在US 5,056,892與US 5,919,551中所描述的內容。元件110可包含偏光元件,或是偏光元件的集合。線性偏光薄片是其中一個例子。另外一個例子是反射式偏光片,可傳送一個線性偏化狀態,並且反射正交線性偏化狀態-這樣的薄片是已知的,例如在US 5,828,488中所描述的內容。另一個例子是反射式偏光片,可傳送一個圓形偏化狀態,並且反射正交圓形偏化狀態-這樣的薄片是已知的,例如在US 6,181,395中所描述的內容。元件110可包含其它在背光科技的領域中已知的光學元件。 The element 110 may comprise one or two xenon optical films to increase the brightness of the display: such a film is known, for example, as described in US 5,056,892 and US 5,919,551. Element 110 can comprise a polarizing element or a collection of polarizing elements. Linear polarizing sheets are an example of this. Another example is a reflective polarizer that transmits a linearly biased state and reflects an orthogonal linearly biased state - such a sheet is known, for example, as described in US 5,828,488. Another example is a reflective polarizer that transmits a circularly polarized state and reflects an orthogonal circularly biased state - such a sheet is known, for example, as described in US 6,181,395. Element 110 can include other optical components known in the art of backlighting.

電子式定址空間光調變器是空間光調變器的一種,在其中元 件陣列中的每一個元件可利用電子式進行定址。每個元件對入射的光進行一些作用,例如用來調變它所傳送的光的振幅,或者調變它所傳送的光的相位,或者調變它所傳送的光的振幅及相位的組合。在US 5,973,817中提供了一個電子式定址空間光調變器的例子,此例子為相位調變電子式定址空間光調變器。液晶電子式定址空間光調變器為電子式定址空間光調變器的一個例子。磁光電子式定址空間光調變器為電子式定址空間光調變器的另一個例子。 The electronic address space optical modulator is a kind of spatial light modulator, in which the element Each component in the array can be addressed electronically. Each element performs some effect on the incident light, for example to modulate the amplitude of the light it transmits, or to modulate the phase of the light it transmits, or to modulate the combination of the amplitude and phase of the light it transmits. An example of an electronic addressed spatial light modulator is provided in US 5,973,817, which is a phase modulated electronic addressed spatial light modulator. The liquid crystal electronic address space optical modulator is an example of an electronic address space optical modulator. The magneto-optical electronic addressing spatial light modulator is another example of an electronic addressed spatial light modulator.

元件110,111,112及113是配置成實體連接(真實上連接),每一個形成結構的一層,使得整體為單一、統一的物件。實體連接可為直接的。或是間接的,如果有薄的中間層,覆蓋在相鄰層之間的膜。實體連接可限制在確保正確的相互組合排列的小區域中,或是可延伸至較大的區域,甚至層的整個表面。實體連接可由層與層的黏接來實現,例如藉由使用光學傳送膠黏劑的方式,以便形成緊密的全像圖產生器115,或是藉由其它任何的方式(參考概要製造程序部份)。 Elements 110, 111, 112, and 113 are configured to be physically connected (realally connected), each forming a layer of structure such that the entirety is a single, unified object. Physical connections can be direct. Or indirect, if there is a thin intermediate layer, cover the film between adjacent layers. The physical connections can be limited to small areas that ensure correct mutual alignment, or can extend to larger areas, even the entire surface of the layer. The physical connection can be achieved by layer-to-layer bonding, for example by using optically transmissive adhesives to form a compact hologram generator 115, or by any other means (refer to the outline manufacturing procedure section). ).

圖四是習用技術側視圖,指出垂直聚焦系統1104的三個聚焦元件1101、1102、1103,採用圓柱形透鏡水平排列於陣列中的形式。並以水平線光源LS2幾近準直的光束通過照明單位的聚焦元 件1102至觀察員平面OP為例。根據圖四,許多的線光源LS1,LS2,LS3是一個個上下排列。每一個光源發射的光,在垂直方向是充份空間同調性的,在水平方向是空間非同調性的。這個光會通過光調變器SLM的傳輸元件。這個光因為全像圖編碼的光調變器SLM的元件,僅在垂直方向的繞射。聚焦元件1102在觀察員平面OP以數個繞射階級(只有一個是有用的)成像光源LS2。由光源LS2所發射的光束是作為只通過聚焦系統1104的聚焦元件1102的例子。在圖四中,三個光束顯示第一繞射階級1105、第零階級1106及負一階級1107。與單一點光源相比,線光源允許非常高的光強度產生。使用多個已增加效率與針對重建三維場景的每一個部分進行線光源排列的全像區域可提升有效的光強度。另一個優點,不採用雷射,多個分隔的(例如在可為遮光器一部份的槽闌之後)常見光源可產生充份的同調光。 Figure 4 is a side view of a conventional technique showing the three focusing elements 1101, 1102, 1103 of the vertical focusing system 1104 in the form of cylindrical lenses arranged horizontally in the array. And the beam that is nearly collimated by the horizontal line source LS2 passes through the focus element of the illumination unit The case 1102 to the observer plane OP is taken as an example. According to Figure 4, many of the line sources LS1, LS2, LS3 are arranged one above the other. The light emitted by each light source is spatially homogenous in the vertical direction and spatially non-coherent in the horizontal direction. This light passes through the transmission element of the optical modulator SLM. This light is only diffracted in the vertical direction because of the components of the hologram-modulated optical modulator SLM. The focusing element 1102 images the light source LS2 at the observer plane OP in a number of diffraction stages (only one is useful). The light beam emitted by the light source LS2 is an example of the focusing element 1102 that passes only through the focusing system 1104. In Figure 4, the three beams show a first diffractive class 1105, a zeroth class 1106, and a negative one class 1107. Line sources allow very high light intensities to be produced compared to a single point source. Efficient light intensity can be enhanced by using a plurality of holographic regions that have increased efficiency and line source alignment for each portion of the reconstructed three-dimensional scene. Another advantage is that without the use of a laser, multiple sources (e.g., after a slot that can be part of the shutter) can produce sufficient dimming.

通常,全像顯示用來在虛擬觀察員視窗中重建波前。波前是一個實際物體會產生的東西,如果它存在的話。當觀察員的眼睛是位於可能為多個虛擬觀察員視窗(VOWs)中的一個虛擬觀察員視窗時,他會看見重建的物件。如圖六A所示,全像顯示由下列構成要素所組成:光源,透鏡,空間光調變器及非必要光束分光鏡。 Typically, the hologram display is used to reconstruct the wavefront in the virtual observer window. A wavefront is something that an actual object will produce if it exists. When the observer's eyes are in a virtual observer window that may be in multiple virtual observer windows (VOWs), he will see the reconstructed object. As shown in Fig. 6A, the hologram display is composed of the following components: a light source, a lens, a spatial light modulator, and an unnecessary beam splitter.

為了幫助空間光調變器與可顯示全像圖像的緊密型光源的緊密組合產生,單一光源及圖六A的單一透鏡可由光源陣列及透鏡陣列或透鏡狀陣列分別取代,如圖六B所示。在圖六B中,光源照射空間光調變器,並且透鏡成像光源至觀察員平面。空間光調變器編碼全像圖像且調變進入的波前,使得波前可重建在虛擬觀察員視窗中。非必要光束分光鏡元件可使用來產生數個虛擬觀察員視窗,例如一個用於左眼的虛擬觀察員視窗與一個用於右眼的虛擬觀察員視窗。 In order to facilitate the close combination of the spatial light modulator and the compact light source that can display the holographic image, the single light source and the single lens of FIG. 6A can be replaced by the light source array and the lens array or the lenticular array, respectively, as shown in FIG. 6B. Show. In Figure 6B, the light source illuminates the spatial light modulator and the lens images the light source to the observer plane. The spatial light modulator encodes the holographic image and modulates the incoming wavefront so that the wavefront can be reconstructed in the virtual observer window. The optional beam splitter element can be used to create a number of virtual observer windows, such as a virtual observer window for the left eye and a virtual observer window for the right eye.

假設使用光源陣列與透鏡陣列或是透鏡狀陣列,陣列中的光源必須分隔,使得通過透鏡陣列或是透鏡狀陣列全部透鏡的光同時至虛擬觀察員視窗。 Assuming that an array of light sources is used with a lens array or a lenticular array, the light sources in the array must be separated such that light passing through the lens array or the lenticular array of all lenses simultaneously reaches the virtual observer window.

圖六B的裝置適合採用可應用於緊密全像顯示的緊密設計。這樣的全像顯示可適用於行動應用,例如在行動電話或個人數位助理中。典型地,這樣的全像顯示將有一英吋或幾英吋等級的螢幕尺吋。全像次顯示螢幕的尺吋可小至一公分。適合的元件將在下面作詳細描述。 The device of Figure 6B is suitable for a compact design that can be applied to a compact hologram display. Such a holographic display can be applied to mobile applications, such as in a mobile phone or a personal digital assistant. Typically, such a hologram display will have a screen size of one inch or a few inches. The size of the full-image display screen can be as small as one centimeter. Suitable components will be described in detail below.

1)光源/光源陣列 1) Light source / light source array

固定的單一光源可使用於簡單的情況下。如果觀察員移動, 觀察員可被追蹤,顯示器可進行調整以使得產生的圖像可讓在新位置的觀察員看得見。此時,要不是沒虛擬觀察員視窗的追蹤,就是追蹤是在空間光調器之後使用光束指向元件來進行。 A fixed single source can be used for simple situations. If the observer moves, The observer can be tracked and the display can be adjusted so that the resulting image is visible to the observer at the new location. At this point, if there is no tracking of the virtual observer window, the tracking is done using the beam pointing element after the spatial light modulator.

可設定的光源陣列可藉由以背光照亮的液晶顯示器(LCD)來實現。為了產生點或線光源的陣列,只有適當的像素是切換到傳送狀態。這些光源的孔徑必須足夠小,以保證提供充份空間同調,性予目標全像重建。點光源的陣列可與包含二維排列透鏡的透鏡陣列一起使用。線光源的陣列是較推薦與包含平行排列圓柱形透鏡的透鏡狀陣列一起使用。 A configurable array of light sources can be implemented by a liquid crystal display (LCD) illuminated in a backlight. In order to generate an array of point or line sources, only the appropriate pixels are switched to the transfer state. The apertures of these sources must be small enough to provide sufficient spatial coherence for the target holographic reconstruction. An array of point sources can be used with a lens array comprising two-dimensionally arranged lenses. An array of line sources is more preferably used with lenticular arrays comprising cylindrical lenses arranged in parallel.

較好的是將有機發光二極體顯示器作為光源陣列。身為自發光裝置,比起液晶顯示器大部分產生的光會由如色彩過濾器等元件吸收或是為處在非充份傳遞狀態下的像素,能具有更好的緊密性及更好的省電效果。然而,液晶顯示器可能比有機發光二極體顯示器更具有整體價格優勢,即使有機發光二極體顯示器能比液晶顯示器以更有效率的方式提供光線。當以有機發光二極體顯示器作為光源陣列時,只有切換至其上的像素需要在眼睛位置產生虛擬觀察員視窗。有機發光二極體顯示器可具有二維排列的像素或是一維排列的線光源。每一個點光源的發光區域或是每一個線光源的寬度都需要足夠的小,來保證提供充份空間同調性於目標 的全像重建。同樣的,點光源的陣列較適合與包含二維排列透鏡的透鏡陣列一起使用。線光源的陣列是較適合與包含平行排列圓柱形透鏡的透鏡狀陣列一起使用。 It is preferred to use an organic light emitting diode display as the light source array. As a self-illuminating device, most of the light generated by the liquid crystal display can be absorbed by components such as a color filter or pixels that are in a non-perfect state, which can have better tightness and better province. Electric effect. However, liquid crystal displays may have an overall price advantage over organic light emitting diode displays, even though organic light emitting diode displays can provide light in a more efficient manner than liquid crystal displays. When an organic light emitting diode display is used as the light source array, only the pixels switched to it need to create a virtual observer window at the eye position. The organic light emitting diode display may have a two-dimensional array of pixels or a one-dimensional array of line sources. The light-emitting area of each point source or the width of each line source needs to be small enough to ensure that the space is coherent to the target. The holographic reconstruction. Similarly, an array of point sources is preferred for use with lens arrays comprising two-dimensionally aligned lenses. An array of line sources is more suitable for use with a lenticular array comprising cylindrical lenses arranged in parallel.

2)聚焦方法:單一透鏡,透鏡陣列或透鏡狀陣列 2) Focus method: single lens, lens array or lenticular array

聚焦工具成像一個光源或多個光源至觀察員平面。當空間光調變器是非常靠近聚焦工具時,在空間光調變器中編碼的資訊的傅立葉轉換是在觀察員平面中。聚焦工具包含一個或數個聚焦元件。空間光調變器與聚焦工具的位置是可以交換的。 The focusing tool images a light source or multiple sources to the observer plane. When the spatial light modulator is very close to the focusing tool, the Fourier transform of the information encoded in the spatial light modulator is in the observer plane. The focusing tool contains one or several focusing elements. The position of the spatial light modulator and the focusing tool is interchangeable.

對於電子式定址空間光調變器與充份同調性的緊密型光源的緊密組合,薄的聚焦工具是必要的:習用具有凸面的折射透鏡是過厚的。取而代之的是使用繞射或全像透鏡。繞射或全像透鏡可具有單一透鏡、透鏡陣列或透鏡狀陣列的功能。這樣的材料是存在的,如由Physical Optics Corporation,Torrance,CA,USA所提供的表面起伏全像產品。或者是使用透鏡陣列。透鏡陣列包含二維排列的透鏡,每一個透鏡分配至光源陣列的一個光源。另一個選擇是使用透鏡狀陣列。透鏡狀陣列包含一維排列的圓柱形透鏡,每一個透鏡有一個在光源陣列中的對應光源。如上所述,如果使用光源陣列與透鏡陣列或是透鏡狀陣列,陣列中的光源必須分隔,使得通過透鏡陣列或是透鏡狀陣列全部透鏡的光同時至虛擬 觀察員視窗。 For the close combination of an electronically addressed spatial light modulator with a well-constrained compact light source, a thin focusing tool is necessary: conventionally used refractive lenses are too thick. Instead, a diffractive or holographic lens is used. A diffractive or holographic lens can have the function of a single lens, a lens array, or a lenticular array. Such materials are present, such as surface relief holographic products provided by Physical Optics Corporation, Torrance, CA, USA. Or use a lens array. The lens array comprises two-dimensionally arranged lenses, each lens being assigned to a light source of the array of light sources. Another option is to use a lenticular array. The lenticular array comprises a one-dimensional array of cylindrical lenses, each lens having a corresponding source in the array of light sources. As described above, if a light source array and a lens array or a lenticular array are used, the light sources in the array must be separated so that the light passing through the lens array or the lenticular array of all the lenses is simultaneously virtual Observer window.

通過透鏡陣列或是透鏡狀陣列的透鏡的光對於任何其它的透鏡是非同調的。因此,在空間光調變器上編碼的全像圖是由次全像圖所組成,每一個次全像圖對應至一個透鏡。每一個透鏡的孔徑必須足夠大,以保證重建物件的解析度足夠。可以使用孔徑與全像圖編碼區域典型尺寸幾乎一樣大的透鏡,如在US2006/0055994中所描述的例子。也就是說每一個透鏡的孔徑是一或數毫米。 Light passing through a lens array or a lens of a lenticular array is non-coherent to any other lens. Therefore, the hologram image encoded on the spatial light modulator is composed of a sub-hologram, and each sub-image corresponds to one lens. The aperture of each lens must be large enough to ensure that the resolution of the reconstructed object is sufficient. A lens having an aperture that is almost as large as the typical size of the hologram encoding region can be used, as exemplified in US 2006/0055994. That is to say, the aperture of each lens is one or several millimeters.

3)空間光調變器 3) Spatial light modulator

全像圖是在空間光調變器上編碼。通常,對於全像圖的編碼是由複數的二維陣列所組成。因此,理想上空間光調變器應該能夠調變通過空間光調變器每一個像素的局部光光束的振幅及相位。然而,一般的空間光調變器只能調變振幅或是相位,而不能獨立進行調變。 The hologram is encoded on the spatial light modulator. Typically, the encoding of an hologram is made up of a complex two-dimensional array. Therefore, ideally the spatial light modulator should be able to modulate the amplitude and phase of the local light beam passing through each pixel of the spatial light modulator. However, a general spatial light modulator can only modulate the amplitude or phase, and cannot be independently modulated.

振幅調變空間光調變器可與軌跡相位編碼組合使用,例如布克哈特(Burckhardt)編碼。它的缺點是需要三個像素來編碼一個複數,並且重建的物件亮度較低。 Amplitude modulated spatial light modulators can be used in combination with track phase encoding, such as Burckhardt encoding. Its disadvantage is that it requires three pixels to encode a complex number, and the reconstructed object is less bright.

相位調變空間光調變器可產生較高亮度的重建。舉例而言,可使用所謂的2相位編碼,利用兩個像素來編碼一個複數。 The phase modulation spatial light modulator produces a higher brightness reconstruction. For example, so-called 2-phase encoding can be used, using two pixels to encode a complex number.

儘管電子式定址空間光調變器具有明顯邊緣的特性,這將導致不希望的較高繞射階級在它們的繞射圖樣中,可藉由使用柔軟孔徑來減少或排除這些問題。柔軟孔徑是不具尖銳傳送截止的孔徑。柔軟孔徑傳送方法的一個例子是具有高斯圖形。高斯圖形是已知對於繞射系統有幫助的。理由是高斯函數的傅立葉轉換為高斯函數本身的數學結果。因此,相較於利用具有在本身傳送圖形中尖銳截止的孔徑進行傳送,除了橫向比例參數之外,光束強度波形函數的繞射是不改變的。可使用高斯傳送圖形的薄片陣列。當這些被提供與電子式定址空間光調變器孔徑排列在一起,與具有在光束傳送圖形中尖銳截止的系統相比,將得到無較高繞射階級或大量減低的較高繞射階級系統。高斯過濾器或柔軟孔徑過濾器會抑制繞射加工品為高空間頻率。高斯器過濾或柔軟孔徑過濾器會最小化在對於左右眼的虛擬觀察員視窗之間的串音。 Although electronically addressed spatial light modulators have significant edge characteristics, which would result in undesirable higher diffraction levels in their diffraction patterns, these problems can be reduced or eliminated by using soft apertures. The soft aperture is an aperture that does not have a sharp delivery cutoff. An example of a soft aperture transmission method is to have a Gaussian pattern. Gaussian graphics are known to be useful for diffraction systems. The reason is that the Fourier transform of the Gaussian function is a mathematical result of the Gaussian function itself. Therefore, the diffraction of the beam intensity waveform function is not changed except for the transmission with an aperture having a sharp cutoff in the transmission pattern itself. An array of sheets of Gaussian transfer graphics can be used. When these are provided in alignment with the electronically addressed spatial light modulator aperture, a higher diffraction-level system without higher diffraction levels or substantial reduction will be obtained compared to systems with sharp cut-offs in the beam delivery pattern. . A Gaussian filter or a soft aperture filter suppresses the diffraction of the product to a high spatial frequency. Gaussian filter or soft aperture filters minimize crosstalk between virtual observer windows for the left and right eyes.

4)光束分光鏡元件 4) Beam splitter component

虛擬觀察員視窗會限制在空間光調變器編碼資訊的傅立葉轉換的一個週期性區間。使用現有最大解析度的空間光調變器,虛擬觀察員視窗的大小為10毫米的層級。在一些情況下,對於應用 在沒有追蹤的全像顯示中時,這可能會是太小的。空間多工的虛擬觀察員視窗是這個問題的一個解決方法:產生多個虛擬觀察員視窗。在空間多工的例子中,虛擬觀察員視窗會在空間光調變器上不同的位置同時產生。這可由光束分光鏡來實現。舉例而言,空間光調變器上的一組像素編碼虛擬觀察員視窗1的資訊,另一組像素編碼虛擬觀察員視窗2的資訊。光束分光鏡會區分這二組的光,使得虛擬觀察員視窗1與虛擬觀察員視窗2會並列在觀察員平面。可由無接縫配置虛擬觀察員視窗1與虛擬觀察員視窗2來產生較大的虛擬觀察員視窗。多工也可以用來產生左右眼的虛擬觀察員視窗。在這樣的情況下,並不需要無接縫並置,且在對於左眼的一個或數個虛擬觀察員視窗與對於右眼的一個或數個虛擬觀察員視窗之間可具有間隔。必需要小心虛擬觀察員視窗的較高繞射階級並不會與其它的虛擬觀察員視窗重疊。 The virtual observer window limits a periodic interval of the Fourier transform of the spatial light modulator encoded information. Using the existing maximum resolution spatial light modulator, the virtual observer window is 10 millimeters in size. In some cases, for the application This may be too small when there is no holographic display tracked. A spatially multiplexed virtual observer window is a solution to this problem: creating multiple virtual observer windows. In the case of spatial multiplexing, virtual observer windows are generated simultaneously at different locations on the spatial light modulator. This can be achieved by a beam splitter. For example, one set of pixels on the spatial light modulator encodes information for the virtual observer window 1 and another set of pixels encodes information for the virtual observer window 2. The beam splitter will distinguish the two sets of light so that the virtual observer window 1 and the virtual observer window 2 will be juxtaposed on the observer plane. The virtual observer window 1 and the virtual observer window 2 can be configured to create a larger virtual observer window. Multiplex can also be used to create virtual observer windows for the left and right eyes. In such cases, no seam juxtaposition is required and there may be a gap between one or several virtual observer windows for the left eye and one or several virtual observer windows for the right eye. Care must be taken that the higher diffraction level of the virtual observer window does not overlap with other virtual observer windows.

分光鏡元件的一個簡單例子是包含黑色條紋的視差屏障,其中黑色條紋之間具有透明區域,如在US2004/223049中所描述的內容。另一個例子是雙凸透鏡狀薄片,如在US2004/223049中所描述的內容。分光鏡元件的另一個例子是透鏡陣列與稜鏡遮蔽物。在緊密的全像顯示中,典型地可能會希望具有分光鏡元件,然而典型10毫米大小的虛擬觀察員視窗僅足夠提供一眼,這並不符合一般觀看者具有兩個眼睛,並且相隔約為10公分。然而,可 以使用時間多工來作為空間多工的另一個選擇。在缺少空間多工的情況下,將不需要再使用分光鏡元件。 A simple example of a beam splitter element is a parallax barrier comprising black stripes with a transparent area between the black stripes, as described in US 2004/223049. Another example is a lenticular sheet, as described in US 2004/223049. Another example of a beam splitter element is a lens array and a sputum shield. In a compact hologram display, it may typically be desirable to have a beam splitter element, whereas a typical 10 mm virtual observer window is only sufficient to provide one eye, which is not consistent with a typical viewer having two eyes and is approximately 10 cm apart. . However, Use time multiplex as an alternative to spatial multiplexing. In the absence of space multiplex, it will not be necessary to use the beam splitter element.

空間多工也可使用在彩色全像重建的產生。對於空間色彩多工,像素會進行分群,每一群包含紅色,綠色及藍色色彩元素。這些群是空間上分隔在空間光調變器,並且同時照射紅色,綠色及藍色光。每一群會利用針對目標對應的色彩元素計算的全像圖編碼。每一群重建它的全像目標重建的色彩元素。 Spatial multiplexing can also be used in the generation of color hologram reconstruction. For spatial color multiplex, the pixels are grouped, and each group contains red, green, and blue color elements. These clusters are spatially separated in a spatial light modulator and simultaneously illuminate red, green and blue light. Each group will utilize a hologram encoding calculated for the color element corresponding to the target. Each group recreates the color elements of its holographic target reconstruction.

5)時間多工 5) Time multiplexing

在時間多工的情況下,虛擬觀察員視窗會在空間光調變器上相同的位置相繼產生。這可由交替光源的位置與同時重編碼空間光調變器來實現。光源的交替位置必須使得觀察員平面中的虛擬觀察員視窗是無接縫並置的。如果時間多工是足夠快的,即完整週期大於25Hz,眼睛將會看見連續擴展的虛擬觀察員視窗。 In the case of time multiplexing, the virtual observer windows are generated one after the other at the same position on the spatial light modulator. This can be achieved by the position of the alternating light source and the simultaneous re-encoding of the spatial light modulator. The alternate positions of the light sources must be such that the virtual observer windows in the observer plane are seamlessly juxtaposed. If the time multiplex is fast enough, that is, the full period is greater than 25 Hz, the eye will see a continuously expanding virtual observer window.

多工也可以用來產生左右眼的虛擬觀察員視窗。在這樣的情況下,並不需要無接縫並置,且在對於左眼的一個或數個虛擬觀察員視窗與對於右眼的一個或數個虛擬觀察員視窗之間可具有間隔。這樣的多工可為空間或時間多工。 Multiplex can also be used to create virtual observer windows for the left and right eyes. In such cases, no seam juxtaposition is required and there may be a gap between one or several virtual observer windows for the left eye and one or several virtual observer windows for the right eye. Such multiplexing can be space or time multiplex.

空間與時間的多工也可以結合。舉一個例子,三個虛擬觀察員視窗是為空間多工,用以產生對於一個眼睛的擴大虛擬觀察員視窗。這個擴大的虛擬觀察員視窗是時間多工,以產生對於左眼的擴大虛擬觀察員視窗以及對於右眼的擴大虛擬觀察員視窗。 The multiplex of space and time can also be combined. As an example, three virtual observer windows are spatially multiplexed to create an expanded virtual observer window for one eye. This expanded virtual observer window is time multiplexed to create an enlarged virtual observer window for the left eye and an expanded virtual observer window for the right eye.

必需要小心虛擬觀察員視窗的較高繞射階級並不會與其它的虛擬觀察員視窗重疊。 Care must be taken that the higher diffraction level of the virtual observer window does not overlap with other virtual observer windows.

對於擴大虛擬觀察員視窗的多工是較建議與空間光調變器的重編碼一起使用,因為它提供了具對於觀察員移動,視差連續變化的擴大虛擬觀察員視窗。簡單而言,沒有重編碼的多工,會在擴大的虛擬觀察員視窗的不同部份,提供重覆的內容。 The multiplexing of the expanded virtual observer window is more recommended than the re-encoding of the spatial light modulator because it provides an expanded virtual observer window with continuous changes in parallax for observer movement. In simple terms, multiplex without re-encoding will provide duplicate content in different parts of the expanded virtual observer window.

時間多工也可使用在彩色全像重建的產生。對於三個色彩元素的時間色彩多工,會依序在空間光調變器上編碼。這三個光源會與空間光調變器上的重編碼同時切換。如果完整週期的重覆是足夠快的,即大於25Hz,眼睛會看見連續的色彩重建。 Time multiplexing can also be used in the generation of color hologram reconstruction. For time color multiplexing of three color elements, they are encoded sequentially on the spatial light modulator. These three sources will switch simultaneously with the re-encoding on the spatial light modulator. If the repetition of the full cycle is fast enough, ie greater than 25 Hz, the eye will see a continuous color reconstruction.

6)不想要的較高繞射階級的處理 6) Undesirable processing of higher diffraction classes

如果較大的虛擬觀察員視窗是由較小的虛擬觀察員視窗拼湊而成的,虛擬觀察員視窗的較高繞射階級,將可能在其它虛擬觀 察員視窗中產生擾亂串音,除非有執行避免此問題的步驟。舉一個例子,如果每一個虛擬觀察員視窗都是位於空間光調變器編碼資訊的傅立葉轉換的第零繞射階級中,虛擬觀察員視窗的第一繞射階級將可能與鄰近的虛擬觀察員視窗重疊。這樣的重疊可能會導致擾亂的背景,如果不想要的圖像強度超過需求圖像強度的約5%時,這將可能會變的特別的明顯。在這樣的情況,會傾向於補償或抑制較高的繞射階級。 If the larger virtual observer window is pieced together by a smaller virtual observer window, the higher diffraction level of the virtual observer window will likely be in other virtual views. Disturbing crosstalk occurs in the inspector window unless there are steps to avoid this problem. As an example, if each virtual observer window is in the zeroth diffraction stage of the Fourier transform of the spatial light modulator encoded information, the first diffraction level of the virtual observer window will likely overlap with the adjacent virtual observer window. Such overlap may result in a disturbing background, which may become particularly noticeable if the unwanted image intensity exceeds about 5% of the required image intensity. In such cases, it tends to compensate or suppress higher diffraction classes.

如果照射空間光調變器的角度是不變的話,可以使用固定的角過濾器。這要不是全像顯示不具追蹤功能就是光束分光鏡元件(例如光束指向元件)是位於空間光調變器之後的狀況。固定的角過濾器可為布拉格濾波器(Bragg filter)或是法布立-培若定規具(Fabry Perot Etalon)。 If the angle of the illuminated spatial light modulator is constant, a fixed angle filter can be used. If this is not the holographic display, there is no tracking function or the beam splitter element (such as the beam pointing element) is located behind the spatial light modulator. The fixed angle filter can be a Bragg filter or a Fabry Perot Etalon.

在空間光調變器產生具不想要的繞射階級的幾何光強度分配上,可使用布拉格過濾器成像光學元件來對幾何光強度分配作修正,例如在US 5,153,670中所描述的內容。布拉格過濾器全像光學元件可造成與沒使用此元件時不同的光強度分配。圖七顯示了布拉格過濾器全像光學元件的功能。在圖七中,70是空間光調變器,71是全像光學元件布拉格過濾器,包含布拉格平面,例如布拉格平面74。在空間光調變器70上的單一元件73提供如圖中75 的繞射光強度分配。由空間光調變器70繞射的光線76,在全像光學元件71中經歷散射,接著在不同於70與71之間的原始傳播的方向傳送。如果光線76傳送的方向在70與71之間為不想要的第一階級繞射光,可以容易看見布拉格過濾器71成功改變這些光至不同的方向,可使它不會造成不想要且可能妨礙觀看者的光學加工品,典型的觀看者將會位於接近垂直於70的方向。 The Bragg filter imaging optics can be used to modify the geometric light intensity distribution, as described in US 5,153,670, where the spatial light modulator produces a geometric light intensity distribution with an unwanted diffraction level. The Bragg filter holographic optical element can result in a different light intensity distribution than when the component is not used. Figure 7 shows the function of the Bragg filter holographic optics. In Figure 7, 70 is a spatial light modulator and 71 is a holographic optical element Bragg filter containing a Bragg plane, such as a Bragg plane 74. A single element 73 on the spatial light modulator 70 is provided as shown in Figure 75 The intensity of the diffracted light is distributed. Light ray 76, which is diffracted by spatial light modulator 70, undergoes scattering in holographic optical element 71 and is then transmitted in a different direction than the original propagation between 70 and 71. If the direction in which the light rays 76 are transmitted is between the 70 and 71 unwanted unwanted first-order diffracted light, it can be easily seen that the Bragg filter 71 successfully changes the light to a different direction so that it does not cause unwanted and may hinder viewing. The optically processed product of a typical viewer will be located approximately perpendicular to the direction of 70.

在專利申請號DE 10 2006 030 503中提及用於抑制繞射階級的可調式法布立-培若定規。所提到的是介於兩個塗上部分反射塗層的共面玻璃薄片之間的液晶層。對於每一個塗層光束的反射,光束是部分反射及部分傳送。傳送光束的干擾以及它們之間的相位差將決定干擾是否為建設性或者為破壞性,如在法布立-培若定規具標準中所描述的內容。給定一個波長,干擾及傳送會隨著光束的入射角而改變。 An adjustable method for suppressing the diffractive class is mentioned in the patent application No. DE 10 2006 030 503. Mentioned is a liquid crystal layer between two coplanar glass sheets coated with a partially reflective coating. For each reflection of the coated beam, the beam is partially reflected and partially transmitted. The interference of the transmitted beam and the phase difference between them will determine whether the interference is constructive or destructive, as described in the Fabry-Perrault specification. Given a wavelength, the interference and transmission will vary with the angle of incidence of the beam.

給定一個光傳播方向,干擾可藉由改變液晶對於給定光的傳送方向的折射率來作調整。折射率是由施加於液晶層的電場來作控制。因此,在法布立-培若定規具的所有限制中,角傳送特性是能夠被調整的,並且繞射階級可依需求選擇傳送或為反射。例如,如果法布立-培若定規具是設定為第零階級最佳傳送及第一階級最佳反射,可能還是會有一些不想要的第二階級與較高階級的傳送。在法布立-培若定規具的所有限制中,這裝置可幫助對於特定 繞射階級進行固定或依序選擇,根據需求為傳送或為反射。 Given a direction of light propagation, the interference can be adjusted by changing the refractive index of the liquid crystal for the direction of propagation of a given light. The refractive index is controlled by an electric field applied to the liquid crystal layer. Therefore, in all the limitations of the Fabry-Perrault gauge, the angular transmission characteristics can be adjusted, and the diffractive class can be selectively transmitted or reflected as desired. For example, if the Fabry-Perrault gauge is set to the optimal transmission of the zeroth class and the best reflection of the first class, there may still be some unwanted transmissions of the second and higher classes. In all the restrictions of the Fabry-Perrault gauge, this device can help The diffractive class is fixed or sequentially selected for transmission or reflection as required.

空間過濾器可使用在繞射階級的選擇。空間過濾器可設置在空間光調變器與虛擬虛擬觀察員視窗之間,並且包含透明與不透明區域。這些空間過濾器可用來傳送需要的繞射階級,並且阻礙不想要的繞射階級。這些空間過濾器可為固定的或是可設定的。例如:設置在空間光調變器與虛擬觀察員視窗之間的電子式定址空間光調變器可作為可設定式空間過濾器。 Space filters can be used in the selection of the diffraction class. The spatial filter can be placed between the spatial light modulator and the virtual virtual observer window and contains transparent and opaque areas. These spatial filters can be used to deliver the desired diffractive class and block unwanted diffracting classes. These spatial filters can be fixed or configurable. For example, an electronic address space light modulator disposed between the spatial light modulator and the virtual observer window can be used as a settable spatial filter.

7)眼部追蹤 7) Eye tracking

在具有眼部追蹤的電子式定址空間光調變器與充份同調性的緊密型光源的緊密組合中,眼部位置偵測器可偵測觀察員的眼部位置。所以,一個或數個虛擬觀察員視窗可自動地設置在眼部位置,使得觀察員可透過虛擬觀察員視窗看到重建的物件。 In an intimate combination of an electronically addressed spatial light modulator with eye tracking and a well-constrained compact light source, the eye position detector detects the observer's eye position. Therefore, one or several virtual observer windows can be automatically placed in the eye position so that the observer can see the reconstructed object through the virtual observer window.

然而,因為額外裝置需求與影響效能的電力需求限制,追蹤並不是都能實踐的,尤其對於可攜式裝置或是手持式裝置。沒有追蹤,觀察員必須自行調整顯示器的位置。這是很容易可以做到的,因為在較佳的實施例中,緊密顯示器是可能包含在個人數位助理或行動電話中的手持式顯示器。個人數位助理或行動電話的使用者,通常會垂直地觀看顯示器,對於調整虛擬觀察員視窗來 對應使用者眼部的位置,並不會有太大的幫助。大家都知道,手持式裝置的使用者會傾向自己改變手上裝置的方向,以獲得最理想的觀看狀態,如同在WO01/96941中所描述的內容。因此,在這樣的裝置中,並不需要使用者眼部追蹤及複雜且不緊密如包含掃描鏡的追蹤光學。但是眼睛追蹤可以應用在其它的裝置中,如果對於裝置而言,額外需求的設備與電源不會造成過度的負擔。 However, tracking is not always possible because of the additional device requirements and power demand limitations that affect performance, especially for portable devices or handheld devices. Without tracking, the observer must adjust the position of the display. This is easily achievable because in the preferred embodiment, the compact display is a hand held display that may be included in a personal digital assistant or mobile phone. A personal digital assistant or a user of a mobile phone usually views the display vertically, for adjusting the virtual observer window. Corresponding to the position of the user's eyes, it will not be of much help. It is well known that users of handheld devices tend to change the orientation of the device on hand to obtain the most desirable viewing state, as described in WO 01/96941. Therefore, in such a device, the user's eye tracking is not required and the tracking optics are not as compact as the scanning mirror. However, eye tracking can be applied to other devices, and for the device, the extra demand for the device and the power supply does not cause an excessive burden.

在沒有追蹤的情況下,電子式定址空間光調變器與充份同調性緊密型光源的緊密組合,需要足夠大的虛擬觀察員視窗來簡化顯示器的調整。較好的虛擬觀察員視窗大小應該是眼睛瞳孔大小的數倍。這可由使用小間距空間光調變器的單一較大虛擬觀察員視窗來完成,或是由使用大間距空間光調變器的數個較小虛擬觀察員視窗拼湊而成。 In the absence of tracking, the close combination of an electronic address space light modulator with a fully coherent compact light source requires a large virtual observer window to simplify display adjustment. A better virtual observer window size should be several times the size of the pupil of the eye. This can be done by a single large virtual observer window using a small pitch spatial light modulator or by a number of smaller virtual observer windows using a large pitch spatial light modulator.

虛擬觀察員視窗的位置是由光源陣列中的光源位置來決定。眼部位置偵測器偵測眼部的位置,並且設定光源的位置,以讓虛擬觀察員視窗適合眼部的位置。在US2006/055994與US2006/250671中描述了這種類型的追蹤。 The position of the virtual observer window is determined by the position of the light source in the array of light sources. The eye position detector detects the position of the eye and sets the position of the light source to fit the virtual observer window to the position of the eye. This type of tracking is described in US 2006/055994 and US 2006/250671.

另一種方式,當光源位於是固定的位置時,虛擬觀察員視窗可被移動。光源追蹤需要對於光源的光入射角變化相對不敏感的 空間光調變器。如果光源是為了移動虛擬觀察員視窗位置而移動,由於在緊密組合中可能有異常光傳播情況,這樣的設定將可能很難實現緊密型光源與空間光調變器的緊密組合,在這樣實例中,在顯示器中具有固定的光路徑及作為顯示器中最後光學元件的光束指向元件,將會有所幫助。 Alternatively, the virtual observer window can be moved when the light source is in a fixed position. Light source tracking needs to be relatively insensitive to changes in the angle of incidence of light from the source Space light modulator. If the light source is moved to move the virtual observer window position, such settings may make it difficult to achieve a tight combination of a compact light source and a spatial light modulator due to the possibility of abnormal light propagation in tight combinations, in such an example, It would be helpful to have a fixed light path in the display and a beam pointing element that is the last optical component in the display.

圖二十及二十一中顯示了光束指向元件。這個光束指向元件在顯示器的輸出端變化光束的角度。它可具有對於x與y追蹤可控制稜鏡及對於z-追蹤可控制透鏡的光學特性。例如,圖二十及二十一的光束指向元件的任一個或兩個都可應用於單一裝置內。光束指向元件是可控制繞射元件或是可控制折射元件。可控制折射元件可包含填滿液晶的凹洞陣列,液晶是嵌入在具有等向性線電偶極子電化率張量矩陣中。凹洞具有稜鏡或透鏡的形狀。電場控制液晶的有效折射率且因此幫助光束指向。電場可在元件間變化,用以產生在元件間變化的光束指向特性。如圖二十所示,電場是施加在透明的電極之間。液晶具有單軸折射特性,並且可被選擇,以使得垂直它的光軸折射率等同於主體材料或"矩陣"的折射率。其餘的設定,可從習用技術中獲得。主體材料具有等向折射率。如果液晶的光軸是沿著z方向排列,如圖二十所示的適當電場應用,沿著z方向傳播的平面波,當它通過光束指向元件時並不會有折射發生,因為它並沒有遇到任何垂直於它的波映廷向 量(Poynting vector)的折射率變化。然而,如果施加電場在電極上,使得液晶的光軸是垂直於z方向,沿著z方向傳播被偏化平行於光軸的平面波,當它通過光束指向元件時,將遭遇最多的折射,因為沿著它的(系統可提供的)偏化的方向,它經歷最多可能的折射率變化。折射的程度將可在這兩個極端例子之間,藉由選擇施加在主體材料的適當電場而進行調整。 The beam directing elements are shown in Figures 20 and 21. This beam pointing element changes the angle of the beam at the output of the display. It can have optical properties for x and y tracking controllable and for z-tracking controllable lenses. For example, either or both of the beam directing elements of Figures 20 and 21 can be applied to a single device. The beam directing element is a controllable diffractive element or a controllable refractive element. The controllable refractive element may comprise an array of recesses filled with liquid crystal, the liquid crystal being embedded in an isotropic linear dipole susceptibility tensor matrix. The cavity has the shape of a crucible or a lens. The electric field controls the effective refractive index of the liquid crystal and thus helps the beam to be directed. The electric field can vary between components to produce a beam directing characteristic that varies between components. As shown in Figure 20, the electric field is applied between the transparent electrodes. The liquid crystal has a uniaxial refractive property and can be selected such that its refractive index perpendicular to its optical axis is equivalent to the refractive index of the host material or "matrix". The rest of the settings can be obtained from the conventional technology. The host material has an isotropic refractive index. If the optical axis of the liquid crystal is aligned along the z direction, as applied by the appropriate electric field as shown in Fig. 20, the plane wave propagating along the z direction does not have refraction when it passes through the beam pointing element because it does not encounter it. To any wave that is perpendicular to it The refractive index change of the Poynting vector. However, if an electric field is applied to the electrode such that the optical axis of the liquid crystal is perpendicular to the z-direction, a plane wave that is biased parallel to the optical axis is propagated along the z-direction, and when it passes through the beam to the element, the most refraction is encountered because It experiences the most likely refractive index change along its (system-providable) biasing direction. The degree of refraction will be adjusted between these two extreme examples by selecting the appropriate electric field applied to the host material.

如果凹洞是棱形,而不是透鏡形狀,那麼將可完成光束指向。圖二十一顯示對於光束指向合適的棱形。如果液晶的光軸是沿著z方向排列,如圖二十一所示的適當電場應用,沿著z方向傳播的平面波,當它通過光束指向元件時並不會有折射發生,因為它並沒有在它的偏化方向遇到任何的折射率變化。然而,如果電子領域是應用橫越電極如此的液晶光軸是與z方向垂直的,平面波傳播沿著z方向這個是被偏化平行於光軸將經驗最多的折射因為它通過光束指向元件,因為它經驗最多可能的折射率系統可提供變化垂直的它的波映廷向量(Poynting vector)。 If the cavity is prismatic rather than lens shaped, the beam will be pointed. Figure 21 shows the orientation of the beam to the appropriate prism. If the optical axis of the liquid crystal is aligned along the z direction, as applied by the appropriate electric field as shown in Fig. 21, the plane wave propagating along the z direction does not have refraction when it passes through the beam pointing element because it does not Any refractive index change is encountered in its direction of polarization. However, if the electronic field is to apply a traverse electrode such that the liquid crystal axis is perpendicular to the z-direction, the plane wave propagates along the z-direction which is biased parallel to the optical axis to experience the most refraction because it passes through the beam pointing element because Its most probable refractive index system provides its Poynting vector that varies vertically.

然而,如果施加電場在電極上,使得液晶的光軸是垂直於z方向,沿著z方向傳播被偏化平行於光軸的平面波,當它通過光束指向元件時,將遭遇最多的折射,因為它經歷最多垂直它的(系統可提供的)波映廷向量(Poynting vector)的可能折射率變化。折射的程度將可在這兩個極端例子之間,藉由選擇施加在主體材料的 適當電場而進行調整。 However, if an electric field is applied to the electrode such that the optical axis of the liquid crystal is perpendicular to the z-direction, a plane wave that is biased parallel to the optical axis is propagated along the z-direction, and when it passes through the beam to the element, the most refraction is encountered because It undergoes a maximum of possible refractive index changes perpendicular to its (system-provided) Poynting vector. The degree of refraction will be between these two extreme examples, by choosing to apply to the host material Adjust with an appropriate electric field.

8)範例 8) Examples

接著將描述一個電子式定址空間光調變器與充份同調性緊密型光源的緊密組合的例子,此組合能夠在適當的照明情況下產生三維圖像,並且可設置於個人數位助理或行動電話中。電子式定址空間光調變器與充份同調性緊密型光源的緊密組合包含作為光源陣列的有機發光二極體顯示器、電子式定址空間光調變器與透鏡陣列,如圖十二所示。 An example of a close combination of an electronic addressed spatial light modulator and a fully coherent compact light source will now be described. This combination can produce a three-dimensional image with appropriate illumination and can be placed in a personal digital assistant or mobile phone. in. The close combination of an electronic addressed spatial light modulator and a fully coherent compact light source includes an organic light emitting diode display as an array of light sources, an electronic addressed spatial light modulator and a lens array, as shown in FIG.

取決於虛擬觀察員視窗(在圖十二中以OW代表)的位置需求,會啟動有機發光二極體顯示器中的特定像素。這些像素照射電子式定址空間光調變器,並且藉由透鏡陣列成像在觀察員平面。透鏡陣列的每個透鏡至少一個像素在有機發光二極體顯示器中被啟動起來。在繪圖給定的尺寸大小,如果像素間距為20μm,可追蹤到帶有400μm橫向增量的虛擬觀察員視窗。這樣的追蹤是準連續的。 Depending on the location requirements of the virtual observer window (represented by OW in Figure 12), a particular pixel in the organic light emitting diode display is activated. These pixels illuminate the electronically addressed spatial light modulator and are imaged by the lens array at the observer plane. At least one pixel of each lens of the lens array is activated in the organic light emitting diode display. In drawing a given size, if the pixel pitch is 20 μm, a virtual observer window with a lateral increment of 400 μm can be traced. Such tracking is quasi-continuous.

有機發光二極體像素是具有部分空間同調性的光源。部分的同調性會產生目標點的模糊的重建。在繪圖給定的尺寸大小,如果像素寬度為20微米,在距離顯示器100毫米的目標點會產生帶 有100微米的橫向模糊的重建。這對於人類視覺系統的解析度是足夠的。 Organic light-emitting diode pixels are light sources with partial spatial homology. Partial homology will produce a fuzzy reconstruction of the target point. In drawing a given size, if the pixel width is 20 microns, a tape will be produced at a target point of 100 mm from the display. There is a 100 micron lateral blur reconstruction. This is sufficient for the resolution of the human visual system.

通過透鏡陣列的不同透鏡的光,並沒有明顯的共同同調性。同調性的需求是限制至透鏡陣列的每一個單一透鏡。因此,重建目標點的解析度是由透鏡陣列的間距來決定。對於人類視覺系統而言,典型的透鏡間距將為1毫米階級,以保證充份解析度。如果有機發光二極體間距是20微米,這表示透鏡間距與有機發光二極體間距的比值為50:1。如果每一個透鏡僅有單一個有機發光二極體被照亮,這表示每50^2=2,500有機發光二極體中,僅有一個有機發光二極體將被照亮。因此,此顯示器將為低功率顯示器。在此所指的全像顯示與傳統有機發光二極體顯示器之間的差異是前者集中光於觀看者的眼睛,反之後者發射光至2π球面度。傳統的有機發光二極體顯示器實現約1,000cd/m^2的發光度,(發明者於實作中計算),反之在實務上,照射型有機發光二極體應能實現1,000cd/m^2發光度的數倍。 Light passing through different lenses of the lens array does not have significant common homology. The need for coherence is limited to each single lens of the lens array. Therefore, the resolution of the reconstruction target point is determined by the pitch of the lens array. For the human visual system, the typical lens pitch will be 1 mm class to ensure full resolution. If the organic light emitting diode pitch is 20 micrometers, this means that the ratio of the lens pitch to the organic light emitting diode pitch is 50:1. If only one organic light-emitting diode is illuminated for each lens, this means that only one organic light-emitting diode will be illuminated per 50^2 = 2,500 organic light-emitting diodes. Therefore, this display will be a low power display. The difference between the holographic display referred to herein and the conventional organic light-emitting diode display is that the former concentrates on the viewer's eyes, whereas the latter emits light to 2π steradian. The conventional organic light-emitting diode display achieves a luminance of about 1,000 cd/m^2 (calculated by the inventor in practice), whereas in practice, the illumination type organic light-emitting diode should be able to achieve 1,000 cd/m^ 2 times the luminosity.

虛擬觀察員視窗是限制在空間光調變器中編碼資訊的傅立葉頻譜的一個繞射階級。如果空間光調變器的像素間距是10μm,並且需要兩個像素來編碼一個複數,即如果在相位調變電子式定址空間光調變器上使用2相位編碼,在500nm的波長,虛擬觀察員 視窗會有10mm寬的寬度。虛擬觀察員視窗可利用空間或時間多工,將數個虛擬觀察員視窗拼湊成擴大的虛擬觀察員視窗。在空間多工的情況下,需要額外的光學元件,如光束分光鏡。 The virtual observer window is a diffractive class that limits the Fourier spectrum of the encoded information in the spatial light modulator. If the spatial light modulator has a pixel pitch of 10 μm and two pixels are required to encode a complex number, ie if 2-phase encoding is used on a phase-modulated electronically addressed spatial light modulator, at 500 nm wavelength, the virtual observer The window will have a width of 10mm wide. The virtual observer window can utilize space or time multiplexing to piece together several virtual observer windows into an expanded virtual observer window. In the case of spatial multiplexing, additional optical components such as beam splitters are required.

彩色全像重建可由時間多工來實現。彩色有機發光二極體顯示器的紅色,綠色及藍色像素是利用具有對紅色,綠色及藍色光學波長計算的全像圖的空間光調變器的同步重編碼來相繼地啟動。 Color hologram reconstruction can be achieved by time multiplexing. The red, green, and blue pixels of a color organic light emitting diode display are sequentially activated using synchronous re-encoding of a spatial light modulator having an hologram of the red, green, and blue optical wavelengths.

顯示器可包含眼部位置偵測器,用以偵測觀察員的眼睛位置。眼部位置偵測器連接控制有機發光二極體顯示器的像素活動的控制單位。 The display can include an eye position detector to detect the observer's eye position. The eye position detector is connected to a control unit that controls the pixel activity of the organic light emitting diode display.

在空間光調變器上編碼的全像圖的計算最好是由外部的編碼單元來執行,因為它需要較高的計算能力。顯示資料會接著送至個人數位助理或行動電話,以顯示全像產生的三維圖像。 The calculation of the hologram encoded on the spatial light modulator is preferably performed by an external coding unit because it requires higher computational power. The display data is then sent to a personal digital assistant or mobile phone to display a three-dimensional image of the full image.

對於實務上的例子,可使用由Sanyo(RTM)Epson(RTM)Imaging Devices Corporation of Japan所製造的2.6英吋螢幕尺吋XGA液晶顯示器電子式定址空間光調變器。次像素的間距為17μm。如果這是使用於紅綠藍全像顯示的建構,利用全像圖的振 幅調變編碼,在距離電子式定址空間光調變器0.4m的地方,觀察視窗根據計算為1.3mm寬。對於單色的情況,觀察視窗根據計算為4mm寬。如果使用相同的設定,但是改用2相位編碼的相位調變,觀察視窗根據計算為6mm寬。如果使用相同的設定,但是改用基諾形式(Kinoform)編碼的相位調變,觀察視窗根據計算為12mm寬。 For practical examples, a 2.6 inch screen size XGA liquid crystal display electronically positioned spatial light modulator manufactured by Sanyo (RTM) Epson (RTM) Imaging Devices Corporation of Japan can be used. The pitch of the sub-pixels is 17 μm. If this is the construction used for the red, green and blue hologram display, use the hologram The amplitude modulation code is 0.4m wide from the observation window at a distance of 0.4m from the electronic address space optical modulator. For the case of monochrome, the viewing window is calculated to be 4 mm wide. If the same setting is used, but the phase modulation of the 2 phase encoding is used, the viewing window is calculated to be 6 mm wide. If the same setting is used, but the phase modulation of the Kinoform encoding is used, the viewing window is calculated to be 12 mm wide.

此外,仍具有其它種高解析度的電子式定址空間光調變器。Seiko(RTM)Epson(RTM)Corporation of Japan已發表單色電子式定址空間光調變器,例如D4:L3D13U 1.3英吋螢幕尺寸且像素間距為15μm的面板。此公司也發表了同類型的面板D5:L3D09U-61G00,具有0.9英吋螢幕尺寸及10μm的像素間距。於西元2006年12月12日,此公司公告發表同類型的面板L3D07U-81G00,具有0.7英吋螢幕尺寸及8.5μm的像素間距。如果D4:L3D13U 1.3英吋面板用於建構單色的全像顯示,並採用全像的布克哈特(Burckhardt)振幅調變編碼,則距離電子式定址空間光調變器0.4m的位置,虛擬觀察員視窗可計算出為5.6mm寬。 In addition, there are other high resolution electronic address space optical modulators. Seiko (RTM) Epson (RTM) Corporation of Japan has published a monochrome electronic address space optical modulator, such as a D4:L3D13U 1.3 inch screen size with a 15 micron pitch panel. The company also published the same type of panel D5: L3D09U-61G00, with a 0.9 inch screen size and a pixel pitch of 10μm. On December 12, 2006, the company announced the same type of panel L3D07U-81G00 with a 0.7-inch screen size and a pixel pitch of 8.5 μm. If the D4:L3D13U 1.3 inch panel is used to construct a monochrome holographic display and uses the holographic Burckhardt amplitude modulation code, the distance from the electronically addressed spatial light modulator is 0.4m. The virtual observer window can be calculated to be 5.6mm wide.

D.成對的電子式定址空間光調變器的緊密組合 D. Close combination of pairs of electronically addressed spatial light modulators

在另一個實施例中,可以依序及緊密的方式,利用二個電子式定址空間光調變器的組合來調變光的振幅及相位。所以,包含 振幅及相位的複數,可以逐一像素的方式,編碼於傳送光中。 In another embodiment, the combination of two electronically addressed spatial light modulators can be used to modulate the amplitude and phase of the light in a sequential and compact manner. So, including The complex amplitude and phase can be encoded in the transmitted light pixel by pixel.

這個實施例包含二個電子式定址空間光調變器的緊密組合。第一個電子式定址空間光調變器調變傳送光的振幅,第二個電子式定址空間光調變器調變傳送光的相位。也可以第一個電子式定址空間光調變器調變傳送光的相位,第二個電子式定址空間光調變器調變傳送光的振幅。每一個電子式定址空間光調變器都可如C部份所描述一樣。除了採用二個電子式定址空間光調變器之外,整體的配置可如同C部份所描述的一樣。任何相當於是幫助振幅及相位的獨立調變的其它種二個電子式定址空間光調變器調變特性的任意組合都是可能的。 This embodiment includes a close combination of two electronically addressed spatial light modulators. The first electronically addressed spatial light modulator modulates the amplitude of the transmitted light, and the second electronically addressed spatial light modulator modulates the phase of the transmitted light. It is also possible to modulate the phase of the transmitted light by a first electronically addressed spatial light modulator, and the second electronically addressed spatial light modulator modulates the amplitude of the transmitted light. Each electronic address space light modulator can be as described in Section C. In addition to using two electronically addressed spatial light modulators, the overall configuration can be as described in Section C. Any combination of other two types of electronically addressed spatial light modulator modulation characteristics that are equivalent to independent modulation of amplitude and phase is possible.

在第一步驟中,第一電子式定址空間光調變器利用圖樣編碼,以進行振幅調變。在第一步驟中,第二電子式定址空間光調變器利用圖樣編碼,以進行相位調變。從第二電子式定址空間光調變器所傳送的光已經於振幅及相位上進行調變,因此,當觀察員觀察裝置這二個電子式定址空間光調變器的裝置所發射的光時,可觀察到三維圖像。 In a first step, the first electronically addressed spatial light modulator utilizes pattern coding for amplitude modulation. In a first step, the second electronically addressed spatial light modulator utilizes pattern coding for phase modulation. The light transmitted from the second electronically addressed spatial light modulator has been modulated in amplitude and phase, so that when the observer observes the light emitted by the device of the two electronically addressed spatial light modulators, A three-dimensional image can be observed.

由於相位與振幅的調變技術促進複數數值的表現。除此之外,電子式定址空間光調變器可具有高解析度。因此,此實施例 可用於產生全像圖來使得三維圖像可由觀察員觀察到。 The phase-and-amplitude modulation technique promotes the performance of complex values. In addition, electronically addressed spatial light modulators can have high resolution. Therefore, this embodiment It can be used to generate a hologram to make a three-dimensional image viewable by an observer.

圖十三為一個實施例。130是照明裝置,用於提供平面區域的照明,其中照明是具有充份的同調性以便能夠產生三維圖像。在US 2006/250671提及一個用於大區域影像全像圖的照明裝置例子,其中一個例子是在圖四中。如同130的裝置可為白光光源陣列的形式,例如冷陰極螢光燈或發出的光線入射在聚焦系統上的白光發光二極體,其中聚焦系統可為緊密的,如透鏡狀陣列或微透鏡陣列。或者,用於130的光源可由紅、綠及藍雷射所組成,或是發出充份同調性光的紅、綠及藍發光二極體所組成。紅、綠及藍發光二極體可為有機發光二極體(OLEDs)。然而,具有充份空間同調性的非雷射光源(例如:發光二極體,有機發光二極體,冷陰極螢光燈)是更佳的。雷射光源的缺點,像是在全像重建上造成雷射斑點、相對上較為昂貴以及所有關於傷害全像顯示觀看者或是進行全像顯示裝置組裝工作人員的眼睛等可能的安全問題。 Figure 13 is an embodiment. 130 is a lighting device for providing illumination of a planar area, wherein the illumination is sufficiently homogenous to enable generation of a three-dimensional image. An example of a lighting device for a large area image hologram is mentioned in US 2006/250671, an example of which is shown in Figure 4. The device like 130 can be in the form of an array of white light sources, such as a cold cathode fluorescent lamp or a white light emitting diode that emits light incident on the focusing system, wherein the focusing system can be compact, such as a lenticular array or a microlens array. . Alternatively, the light source for 130 may be comprised of red, green, and blue lasers, or red, green, and blue light emitting diodes that emit sufficient tonal light. The red, green, and blue light emitting diodes may be organic light emitting diodes (OLEDs). However, a non-laser light source (for example, a light-emitting diode, an organic light-emitting diode, a cold cathode fluorescent lamp) having a sufficient spatial coherence is preferable. Disadvantages of laser sources, such as laser spots on holographic reconstruction, are relatively expensive, and all possible safety issues with respect to the holographic display of the viewer or the eyes of a holographic display assembly worker.

元件130可包含一個或兩個稜鏡光學膜來增加顯示器的亮度:這樣的膜是已知的,例如在US 5,056,892與US 5,919,551中所描述的內容。元件130可包含偏光元件,或是偏光元件的集合。線性偏光薄片是其中一個例子。另外一個例子是反射式偏光片,可傳送一個線性偏化狀態,並且反射正交線性偏化狀態-這樣的 薄片是已知的,例如在US 5,828,488中所描述的內容。另一個例子是反射式偏光片,可傳送一個圓形偏化狀態,並且反射正交圓形偏化狀態-這樣的薄片是已知的,例如在US 6,181,395中所描述的內容。元件130可包含聚焦系統,此聚焦系統可為緊密的,例如透鏡狀陣列或微透鏡陣列。元件130可包含其它在背光科技的領域中已知的光學元件。 The element 130 may comprise one or two 稜鏡 optical films to increase the brightness of the display: such a film is known, for example, as described in US 5,056,892 and US 5,919,551. Element 130 can comprise a polarizing element or a collection of polarizing elements. Linear polarizing sheets are an example of this. Another example is a reflective polarizer that transmits a linearly biased state and reflects an orthogonal linearly biased state - such Sheets are known, for example, as described in US 5,828,488. Another example is a reflective polarizer that transmits a circularly polarized state and reflects an orthogonal circularly biased state - such a sheet is known, for example, as described in US 6,181,395. Element 130 can include a focusing system that can be compact, such as a lenticular array or a microlens array. Element 130 can include other optical components known in the art of backlighting.

元件130的厚度可約為數公分,或是更低。在較佳的實作中,元件130-134的厚度全部是小於3公分的,以提供充份同調性的緊密光源。元件131可為色彩過濾器陣列,使得彩色光線(例如紅色、綠色及藍色光)的像素是射向元件132,儘管如果使用彩色光源,色彩過濾器是不需要的。元件132是電子式定址空間光調變器。元件133是電子式定址空間光調變器。元件134是非必要的光束分光鏡元件。對於傳送光,元件132調變振幅而元件133調變相位。或是,由元件133調變振幅而元件132調變相位。將電子式定址空間光調變器132及133靠近能夠減少光學耗損及因光束分歧而產生的像素串音問題:當電子式定址空間光調變器132及133是非常靠近的,可實現通過電子式定址空間光調變器的彩色光線光束的非重疊傳播的較佳近似值。位於點135離包括緊密全像圖產生器136的裝置一些距離的觀看者,可從136的方向觀看到三維圖像。 Element 130 can have a thickness of about a few centimeters or less. In a preferred implementation, the thickness of elements 130-134 are all less than 3 cm to provide a tightly tuned compact source. Element 131 can be a color filter array such that pixels of colored light (e.g., red, green, and blue light) are directed toward element 132, although a color filter is not required if a colored light source is used. Element 132 is an electronic addressed spatial light modulator. Element 133 is an electronic addressed spatial light modulator. Element 134 is an optional beam splitter element. For transmitting light, element 132 is modulated in amplitude and element 133 is modulated in phase. Alternatively, component 133 modulates the amplitude and component 132 modulates the phase. Proximating the electronically addressed spatial light modulators 132 and 133 to reduce optical loss and pixel crosstalk caused by beam divergence: when the electronically addressed spatial light modulators 132 and 133 are in close proximity, A preferred approximation of the non-overlapping propagation of a colored light beam of a spatially modulated spatial modulator. A viewer located at point 135 some distance from the device including the compact hologram generator 136 can view the three-dimensional image from the direction of 136.

元件130、131、132、133及134是配置成實體連接(真實上連接),每一個形成結構的一層,使得整體為單一、統一的物件。實體連接可為直接的。或是間接的,如果有薄的中間層,覆蓋在相鄰層之間的膜。實體連接可限制在確保正確的相互排列的小區域中,或是可延伸至較大的區域,甚至層的整個表面。實體連接可由層與層的黏接來實現,例如藉由使用光學傳送膠黏劑的方式,以便形成緊密的全像圖產生器136,或是藉由其它任何的方式(參考概要製造程序部份)。 Elements 130, 131, 132, 133, and 134 are configured to be physically connected (realally connected), each forming a layer of structure such that the entirety is a single, unified object. Physical connections can be direct. Or indirect, if there is a thin intermediate layer, cover the film between adjacent layers. Physical connections can be limited to small areas that ensure proper alignment, or can extend to larger areas, even the entire surface of the layer. The physical connection can be achieved by layer-to-layer bonding, for example by using optically transmissive adhesives to form a compact hologram generator 136, or by any other means (refer to the Summary Manufacturing Procedures section). ).

在電子式定址空間光調變器執行振幅調變處,在典型的設定中,入射的讀取光學光束將會藉由將光束通過線性偏光片來達到線性偏化。振幅調變是由在施加電場中液晶的旋轉所控制,施加電場會影響光的偏化狀態。在這樣的裝置中,離開電子式定址空間光調變器的光會通過另一個線性偏光片,可因光的偏化狀態改變而減少強度,如同它通過電子式定址空間光調變器時一樣。 Where the electronically addressed spatial light modulator performs amplitude modulation, in a typical setup, the incident read optical beam will be linearly biased by passing the beam through a linear polarizer. The amplitude modulation is controlled by the rotation of the liquid crystal in the applied electric field, and the application of the electric field affects the polarization state of the light. In such a device, light exiting the electronically addressed spatial light modulator passes through another linear polarizer, which reduces the intensity due to changes in the polarization state of the light, as it does when electronically addressing the spatial light modulator. .

在電子式定址空間光調變器執行相位調變處,除非它們已處於定義的線性偏化狀態,在典型的設定中,入射的讀取光學光束將會藉由將光束通過線性偏光片來達到線性偏化。相位調變是由電場的應用所控制,電場會影響光的相位狀態。在相位調變的一 個例子中,使用向列型相位液晶,光軸方向是間隔固定的,但是雙折射是施加電壓的函數。在相位調變的一個例子中,使用鐵電性液晶,雙折射是固定的,但是光軸的方向是由施加電壓所控制。在相位調變實作中,使用其中任一種方法,輸出光束與為施加電壓函數的輸入光束會具有相位差。可執行相位調變的液晶元件的其中一個例子為Freedericksz胞元排列,在其中使用了具有正介電質異方向性的向列型液晶的反平行排列區域,如同在US 5,973,817所描述的內容。 In the electronically addressed spatial light modulators performing phase modulation, unless they are already in a defined linearly biased state, in a typical setting, the incident reading optical beam will be achieved by passing the beam through a linear polarizer. Linearly biased. Phase modulation is controlled by the application of an electric field that affects the phase state of the light. One in phase modulation In one example, a nematic phase liquid crystal is used, the optical axis direction being fixed at intervals, but birefringence is a function of applied voltage. In one example of phase modulation, using ferroelectric liquid crystal, birefringence is fixed, but the direction of the optical axis is controlled by the applied voltage. In phase modulation implementation, using either method, the output beam will have a phase difference from the input beam that is a function of the applied voltage. One example of a liquid crystal element that can perform phase modulation is a Freedericksz cell arrangement in which an anti-parallel arrangement of nematic liquid crystals having positive dielectric anisotropy is used, as described in US 5,973,817.

用於緊密全像顯示的緊密組合,包含兩個以小分隔或最小分隔方式結合的電子式定址空間光調變器。較佳的實施方式是兩個空間光調變器具有相同數量的像素。因為兩個電子式定址空間光調變器對於觀察員來說並不是等距離的,兩個電子式定址空間光調變器的像素間距可能需要稍稍的不同(但會仍舊大概相同),來補償不同距離對於觀察員所造成的影響。已通過第一空間光調變器的像素的光,會通過第二空間光調變器對應的像素。因此,光是會經由兩個空間光調變器來調變,並且可獨立地實現複雜的振幅與相位調變。舉一個例子,第一空間光調變器進行振幅調變,而第二空間光調變器進行相位調變。同樣地,任何相當於是幫助振幅及相位的獨立調變的其它種二個空間光調變器調變特性的任意組合都是可能的。 A compact combination for compact hologram display with two electronically addressed spatial light modulators combined in small or minimal separation. A preferred embodiment is that the two spatial light modulators have the same number of pixels. Because the two electronically addressed spatial light modulators are not equidistant to the observer, the pixel spacing of the two electronically addressed spatial light modulators may need to be slightly different (but will still be about the same) to compensate for the difference. The impact of distance on the observer. The light that has passed through the pixels of the first spatial light modulator passes through the pixels corresponding to the second spatial light modulator. Therefore, light is modulated by two spatial light modulators, and complex amplitude and phase modulation can be achieved independently. As an example, the first spatial light modulator performs amplitude modulation, and the second spatial light modulator performs phase modulation. Similarly, any combination of other two spatial light modulator modulation characteristics that are equivalent to independent modulation of amplitude and phase is possible.

必需注意,通過第一空間光調變器的像素的光,只能通過第二空間光調變器對應的像素。如果從第一空間光調變器像素射出的光,通過第二空間光調變器非對應、鄰近的像素時,串音將會發生。這些串音可能會導致圖像品質降低的問題。在此提供四個在像素間最小化串音問題的可能方法。由習用的技術可顯而易見的,這些方法可同樣的應用於B部份實施例。 It must be noted that the light passing through the pixels of the first spatial light modulator can only pass through the pixels corresponding to the second spatial light modulator. Crosstalk will occur if the light exiting the first spatial light modulator pixel passes through a non-corresponding, adjacent pixel of the second spatial light modulator. These crosstalk may cause problems with reduced image quality. Four possible ways to minimize crosstalk between pixels are provided here. As will be apparent from conventional techniques, these methods are equally applicable to the Part B embodiment.

(1)第一個最簡單的方法是直接將調整像素後的兩個空間光調變器連結或黏接在一起。在第一空間光調變器的像素,可能會有引起光偏離傳播的繞射現象。空間光調變器之間的分隔必須要足夠的薄,薄至第二空間光調變器鄰近像素之間的串音到達可接受的程度。舉一個例子,具有10μm像素間距的兩個電子式定址空間光調變器的間隔,必須小於或等於10-100μm的等級。這在傳統製造的空間光調變器中是幾乎不可能實現的,因為玻璃蓋的厚度即為1mm的等級。當然,能使空間光調變器之間具有薄的分隔層的"三明治"方式,是較推薦進行在一個程序當中。可應用概要製造程序部份所描述的製造方法,來製作包含兩個間隔距離很小或最小的電子式定址空間光調變器的裝置。 (1) The first and easiest way is to directly connect or bond the two spatial light modulators after adjusting the pixels. In the pixels of the first spatial light modulator, there may be a diffraction phenomenon that causes the light to deviate from propagation. The separation between the spatial light modulators must be sufficiently thin to be as thin as possible to the acceptable crosstalk between adjacent pixels of the second spatial light modulator. As an example, the spacing of two electronically addressed spatial light modulators having a pixel pitch of 10 μm must be less than or equal to a level of 10-100 μm. This is almost impossible to achieve in a conventionally manufactured spatial light modulator because the thickness of the glass cover is a rating of 1 mm. Of course, a "sandwich" approach that enables a thin separation layer between spatial light modulators is more recommended in a program. The fabrication method described in the Summary Manufacturing Procedure section can be applied to fabricate an apparatus comprising two electronically addressed spatial light modulators having a small or minimal separation distance.

圖十四顯示由狹縫10μm寬的繞射計算而得的菲涅耳繞射數 據圖表,在二維模型中變化離狹縫的距離,縱軸為slit(z),橫軸為slit(x)。均勻照明的狹縫是位在x軸上-5μm到+5μm之間,並且z為零微米。光傳送媒介被用來獲得1.5的折射率,為用於緊密裝置的典型媒介。選定的光為具有633nm真空波長的紅光。綠色與藍色波長比紅色光小,因此對於紅色光的計算,在三個顏色紅、綠及藍當中,展現出最強的繞射影響。可以使用Parametric Technology(RTM)Corp.,Needham,MA,USA.的產品MathCad(RTM)軟體來執行計算。圖十五顯示些微的強度留在狹縫中心上10μm寬範圍內,為離狹縫距離的函數。在距離狹縫20μm的地方,圖十五顯示大於90%的強度仍然在狹縫的10μm寬的範圍內。因此,在這個二維模型中,小於5%的像素強度會入射在每一個鄰近的像素上。這是在像素間零邊界寬的限制情況下的計算結果。實際在像素間的邊界寬是大於零的,因此串音問題在真實系統中會低於這裡所計算的結果。在圖十四中,菲涅耳繞射圖接近狹縫,例如離狹縫50μm,並且有點近似在狹縫的高帽型強度函數。因此,沒有寬的繞射特徵接近狹縫。寬的繞射特徵是高帽型函數的遠場繞射函數的特性,此為習用已知的sinc squared函數。寬的繞射特徵可由圖十四中距離狹縫300μm的例子觀察到。這指出了繞射效應可利用將兩個電子式定址空間光調變器設置的足夠接近來控制,而且將兩個電子式定址空間光調變器設置的非常接近的一個優點是繞射數據圖表的函數型式,會由遠場特性改變至較有效 率包含接近垂直於狹縫的軸的光的函數型式。這個優點是與習用全像技術的想法相違背的,習用的技術會傾向認為在光通過空間光調變器的小孔徑時,會引起強的、大的及不可避免的繞射效應。因此,習用的技術不會有將兩個空間光調變器靠近在一起的動機,會預期這樣的方式會導致必然發生且嚴重由繞射效應所引起的像素串音問題。 Figure 14 shows the Fresnel diffraction number calculated from the diffraction of a slit 10 μm wide. According to the graph, the distance from the slit is varied in the two-dimensional model, with the vertical axis being slit(z) and the horizontal axis being slit(x). The uniformly illuminated slit is between -5 [mu]m and +5 [mu]m on the x-axis and z is zero micron. Optical transmission media are used to achieve a refractive index of 1.5, which is a typical medium for compact devices. The selected light is red light having a vacuum wavelength of 633 nm. The green and blue wavelengths are smaller than the red light, so for the calculation of red light, among the three colors red, green and blue, the strongest diffraction effect is exhibited. Calculations can be performed using the product MathCad (RTM) software from Parametric Technology (RTM) Corp., Needham, MA, USA. Figure 15 shows that the slight intensity remains in the 10 μm wide range at the center of the slit as a function of the distance from the slit. At a distance of 20 μm from the slit, Fig. 15 shows that the intensity greater than 90% is still in the range of 10 μm wide of the slit. Therefore, in this two-dimensional model, less than 5% of the pixel intensity is incident on each of the adjacent pixels. This is the result of the calculation of the zero boundary width between pixels. The actual boundary width between pixels is greater than zero, so the crosstalk problem will be lower in the real system than the result calculated here. In Figure 14, the Fresnel diffraction pattern approaches the slit, for example 50 μm from the slit, and somewhat approximates the high hat strength function of the slit. Therefore, there is no wide diffraction feature close to the slit. The wide diffraction characteristic is a characteristic of the far-field diffraction function of the high-hat type function, which is a conventionally known sinc squared function. The wide diffraction pattern can be observed by the example of the distance slit 300 μm in Fig. 14. This indicates that the diffraction effect can be controlled by the close proximity of the two electronically addressed spatial light modulators, and that the very close advantage of setting the two electronically addressed spatial light modulators is the diffraction data graph. The function type will change from far-field characteristics to more effective The rate contains a functional pattern of light that is close to the axis perpendicular to the slit. This advantage is contrary to the idea of conventional holographic techniques, which tend to be thought to cause strong, large, and unavoidable diffraction effects when light passes through a small aperture of a spatial light modulator. Thus, conventional techniques do not have the motivation to bring the two spatial light modulators together, and would expect such a way to cause pixel crosstalk problems that would inevitably occur and are severely caused by diffraction effects.

圖十六顯示強度分佈的等高線圖,強度分佈為離狹縫距離的函數。等高線的標繪是在對數尺度上,而不是線性尺度。使用了十條等高線,全部含括100強度因數範圍。對於10μm的狹縫寬度,強度分配大程度的邊界在距離狹縫大約50μm的範圍內是清楚的。 Figure 16 shows a contour plot of the intensity distribution as a function of distance from the slit. The plot of the contour is on a logarithmic scale, not a linear scale. Ten contour lines were used, all including a range of 100 intensity factors. For a slit width of 10 μm, a large degree of intensity distribution boundary is clear in the range of about 50 μm from the slit.

在進一步的實施例中,可減少第一電子式定址空間光調變器的像素孔徑區域來減輕在第二電子式定址空間光調變器的串音問題。 In a further embodiment, the pixel aperture area of the first electronically addressed spatial light modulator can be reduced to mitigate crosstalk problems in the second electronically addressed spatial light modulator.

(2)第二個方法是在兩個空間光調變器之間使用透鏡陣列,如圖十七所示。較好的方法是讓透鏡的數量和每一個空間光調變間中的像素數量相等。兩個空間光調變器的間距以及透鏡陣列的間距可以輕微的不同,來補償觀察員的距離差距。每一個透鏡成像 第一空間光調變器的像素至第二空間光調變器對應的像素上,如圖十七中大量光束171所示。也可能光會通過鄰近的透鏡造成串音問題,如大量光束172所示。如果它的強度是足夠的低,或是它的方向是充份的不同,使其無法到達虛擬觀察員視窗時,將可被忽視。 (2) The second method is to use a lens array between the two spatial light modulators, as shown in Figure 17. A better approach is to have the number of lenses equal to the number of pixels in each spatial light modulation. The spacing of the two spatial light modulators and the spacing of the lens arrays can be slightly different to compensate for the observer's distance difference. Imaging of each lens The pixels of the first spatial light modulator are on the pixels corresponding to the second spatial light modulator, as shown by a plurality of light beams 171 in FIG. It is also possible that light will cause crosstalk problems through adjacent lenses, as indicated by a large number of beams 172. If its intensity is low enough, or if its direction is sufficiently different to make it impossible to reach the virtual observer window, it can be ignored.

每個透鏡的數值孔徑(Numerical Aperture,NA)必須足夠的大,以成像具充份解析度的像素。舉一個例子,對於5μm的解析度,需要約為0.2的數值孔徑(NA)。這也表示如果假定是幾合光學,如果空間光調變器與透鏡陣列的間距為10μm,透鏡陣列與每一空間光調變器之間的最大距離大約為25μm。 The numerical aperture (NA) of each lens must be large enough to image a pixel with sufficient resolution. As an example, for a resolution of 5 μm, a numerical aperture (NA) of about 0.2 is required. This also means that if it is assumed to be a polyhedron, if the distance between the spatial light modulator and the lens array is 10 μm, the maximum distance between the lens array and each spatial light modulator is about 25 μm.

也可能指派每個空間光調變器的數個像素至透鏡陣列的一個透鏡。舉一個例子,以第一空間光調變器的四個像素為一群,可藉由透鏡陣列中的一個透鏡來成像到第二空間光調變器的一個由四個像素所組成的群。這樣的透鏡陣列的透鏡數量會為每一個空間光調變器中的像素數量的四分之一。如此可允許使用較高數值孔徑的透鏡,因此可獲得較高解析度的成像像素。 It is also possible to assign several pixels of each spatial light modulator to one lens of the lens array. As an example, a group of four pixels of the first spatial light modulator can be imaged by a lens in the lens array to a group of four pixels of the second spatial light modulator. The number of lenses of such a lens array will be one quarter of the number of pixels in each spatial light modulator. This allows the use of lenses with higher numerical apertures, thus enabling higher resolution imaging pixels.

(3)第三個方法是盡可能的減少第一電子式定址空間光調變器的像素孔徑。從繞射的觀點來,第二空間光調變器由第一空間光 調變器的一個像素所照射的區域,是由第一電子式定址空間光調變器的像素孔徑寬度D及繞射角所決定,如圖十八所示。在圖十八中,d兩個電子式定址空間光調變器之間的距離,而w是兩個第一階級繞射最小值之間的距離,發生於第零階級最大值的任一邊。這是假定為夫朗和斐(Fraunhofer)繞射,或是夫朗和斐繞射的合理近似。 (3) The third method is to reduce the pixel aperture of the first electronically addressed spatial light modulator as much as possible. From the perspective of diffraction, the second spatial light modulator consists of the first spatial light The area illuminated by one pixel of the modulator is determined by the pixel aperture width D and the diffraction angle of the first electronically addressed spatial light modulator, as shown in FIG. In Figure 18, d is the distance between two electronically addressed spatial light modulators, and w is the distance between the two first-order diffraction minimums, occurring on either side of the zeroth class maximum. This is assumed to be a diffraction of Fraunhofer or a reasonable approximation of the Fraunhofer diffraction.

減少孔徑寬度D一方面可減少照射區域中心部分的直接投射的範圍,如圖十八中的虛線所示。在另一方面,依照繞射角正比於夫朗和斐繞射中的1/D,繞射角會被增加。這增加了在第二電子式定址空間光調變器上照射區域的寬度w.照射區域的全部寬度為w。在夫朗和斐繞射方法中,給予分隔d,D可被決定,並利用方程式w=D+2dλ/D來最小化w,此方程式是從夫朗和斐繞射中的兩個第一階最小值之間的距離推得。 Reducing the aperture width D on the one hand reduces the range of direct projection of the central portion of the illumination area, as indicated by the dashed line in FIG. On the other hand, the diffraction angle is increased in accordance with the diffraction angle being proportional to 1/D in the Fraunhofer diffraction. This increases the width of the illuminated area on the second electronically-spaced spatial light modulator. w. The full width of the illuminated area is w. In the Fraun and Fiji diffraction methods, the division d, D can be determined, and the equation w=D+2dλ/D is used to minimize w, which is the first of two from the Fraun and Fiji diffractions. The distance between the order minimums is derived.

例如,如果λ是0.5μm,d是100μm及w是20μm,可得到D為10μm的最小值。然而在這個例子中,夫朗和斐方法可能不會是一個好的近似,這個例子說明了使用電子式定址空間光調變器之間的距離來控制夫朗和斐繞射方式中的繞射過程的原則。 For example, if λ is 0.5 μm, d is 100 μm, and w is 20 μm, a minimum value of D of 10 μm can be obtained. In this case, however, the Fraunhofer method may not be a good approximation. This example illustrates the use of the distance between the electronically addressed spatial light modulators to control the diffraction in the Fraunhofer diffraction mode. The principle of the process.

(4)第四個方法使用了光纖面板來成像第一空間光調變器的像 素至第二空間光調變器的像素上。光纖面板是由二維排列的平行光纖所構成。光纖的長度與也因此面板的厚度典型為數公釐,面板表面的對角線長度是長至數英吋。舉一個例子,光纖的間距可為6μm。Edmund Optics Inc.of Barrington,New Jersey,USA有銷售具有如此光纖間距的光纖面板。每一條光纖從它的其中一瑞引導光至另一端。因此,在面板一端的圖像會被傳送至另一端,具有高解析度且不用聚焦元件。這樣的面板可作為兩個空間光調變器之間的分隔層,如圖十九所示。多模光纖較佳於單模光纖,因為多模光纖的耦合效率比單模光纖好。當光纖核心的折射率與液晶的折射率是相穩合時,會得到最佳的耦合效率,因為這可最小化菲涅耳背向反射損失。 (4) The fourth method uses a fiber optic panel to image the image of the first spatial light modulator The pixel is on the pixel of the second spatial light modulator. The fiber optic panel is composed of two-dimensionally arranged parallel fibers. The length of the fiber and therefore the thickness of the panel is typically a few centimeters, and the diagonal length of the panel surface is as long as several inches. As an example, the spacing of the fibers can be 6 μm. Edmund Optics Inc. of Barrington, New Jersey, USA has sold fiber optic panels with such fiber spacing. Each fiber guides light from one of its sources to the other. Therefore, the image at one end of the panel is transmitted to the other end with high resolution and no focusing components. Such a panel can serve as a separation layer between two spatial light modulators, as shown in Figure 19. Multimode fiber is preferred over single mode fiber because multimode fiber has better coupling efficiency than single mode fiber. When the refractive index of the fiber core is stable with the refractive index of the liquid crystal, the best coupling efficiency is obtained because it minimizes the Fresnel back reflection loss.

在兩個空間光調變器之間沒有額外的玻璃蓋。偏光片、電極與配向層是直接連接光纖面板。這些層每一個都是非常的薄,即為1-10μm的等級。因此,液晶(LC)層LC1與LC2是在靠近面板的地方。通過第一空間光調變器像素的光會被引導至第二空間光調變器對應的像素。這可最小化鄰近像素的串音。面板傳送第一空間光調變器輸出端的光分佈至第二空間光調變器的輸入端。平均而言,每個像素應至少一個光纖。如果每個像素少於一個光纖的話,平均而言,空間光調變器將喪失解析度,造成顯示於全像顯示中的應用的圖像品質減低。 There is no additional glass cover between the two spatial light modulators. The polarizer, the electrode and the alignment layer are directly connected to the fiber optic panel. Each of these layers is very thin, ie a grade of 1-10 μm. Therefore, the liquid crystal (LC) layers LC1 and LC2 are located close to the panel. Light passing through the first spatial light modulator pixel is directed to a pixel corresponding to the second spatial light modulator. This minimizes crosstalk from neighboring pixels. The panel transmits the light distribution at the output of the first spatial light modulator to the input of the second spatial light modulator. On average, each pixel should have at least one fiber. If there are less than one fiber per pixel, on average, the spatial light modulator will lose resolution, resulting in reduced image quality for applications displayed in holographic displays.

在圖十九中,第一空間光調變器調變振幅,第二空間光調變器調變相位。其它能促進完整複雜調變的兩個電子式定址空間光調變器的調變特性組合都是可能的。 In Figure 19, the first spatial light modulator modulates the amplitude and the second spatial light modulator modulates the phase. Other combinations of modulation characteristics of two electronically addressed spatial light modulators that promote complete complex modulation are possible.

圖十顯示了對於全像圖中編碼振幅與相位資訊的緊密排列的例子。 Figure 10 shows an example of the tight alignment of the encoded amplitude and phase information in the hologram.

104是照明裝置用於提供平面區域的照明,其中照明是具有充份的同調性以便能夠產生三維圖像。在US 2006/250671提及一個用於大區域影像全像圖的照明裝置例子。如同104的裝置可為白光光源陣列的形式,例如冷陰極螢光燈或發出的光線入射在聚焦系統上的白光發光二極體,其中聚焦系統可為緊密的,如透鏡狀陣列或微透鏡陣列100。或者,用於104的光源可由紅、綠及藍雷射所組成,或是發出充份同調性光的紅、綠及藍發光二極體所組成。然而,具有充份空間同調性的非雷射光源(例如:發光二極體,有機發光二極體,冷陰極螢光燈)是更佳的。雷射光源的缺點,像是在全像重建上造成雷射斑點、相對上較為昂貴以及所有關於傷害全像顯示觀看者或是進行全像顯示裝置組裝工作人員的眼睛等可能的安全問題。 104 is an illumination device for providing illumination of a planar area, wherein the illumination is sufficiently homogenous to enable generation of a three-dimensional image. An example of a lighting device for a large area image hologram is mentioned in US 2006/250671. The device like 104 may be in the form of a white light source array, such as a cold cathode fluorescent lamp or a white light emitting diode that emits light incident on a focusing system, wherein the focusing system may be compact, such as a lenticular array or a microlens array. 100. Alternatively, the light source for 104 may be comprised of red, green, and blue lasers, or red, green, and blue light emitting diodes that emit sufficient tonal light. However, a non-laser light source (for example, a light-emitting diode, an organic light-emitting diode, a cold cathode fluorescent lamp) having a sufficient spatial coherence is preferable. Disadvantages of laser sources, such as laser spots on holographic reconstruction, are relatively expensive, and all possible safety issues with respect to the holographic display of the viewer or the eyes of a holographic display assembly worker.

元件104可包含一個或兩個稜鏡光學膜來增加顯示器的亮 度:這樣的膜是已知的,例如在US 5,056,892與US 5,919,551中所描述的內容。元件104可包含偏光元件,或是偏光元件的集合。線性偏光薄片是其中一個例子。另外一個例子是反射式偏光片,可傳送一個線性偏化狀態,並且反射正交線性偏化狀態-這樣的薄片是已知的,例如在US 5,828,488中所描述的內容。另一個例子是反射式偏光片,可傳送一個圓形偏化狀態,並且反射正交圓形偏化狀態-這樣的薄片是已知的,例如在US 6,181,395中所描述的內容。元件104可包含其它在背光科技的領域中已知的光學元件。 Element 104 may include one or two xenon optical films to increase the brightness of the display </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; Element 104 can comprise a polarizing element or a collection of polarizing elements. Linear polarizing sheets are an example of this. Another example is a reflective polarizer that transmits a linearly biased state and reflects an orthogonal linearly biased state - such a sheet is known, for example, as described in US 5,828,488. Another example is a reflective polarizer that transmits a circularly polarized state and reflects an orthogonal circularly biased state - such a sheet is known, for example, as described in US 6,181,395. Element 104 can include other optical components known in the art of backlighting.

元件104,100-103的厚度全部可約為數公分,或是更低。元件101可包含色彩過濾器陣列,使得彩色光線(例如紅色、綠色及藍色光)的像素是射向元件102,儘管如果使用彩色光源,色彩過濾器是不需要的。元件102是編碼相位資訊的電子式定址空間光調變器,例如Freedericksz胞元。元件103是編碼振幅資訊的電子式定址空間光調變器,例如在一般商業上的液晶顯示器裝置中。元件102的每一個元件,在此以107表示,會與元件103中對應的元件排列,以108表示。然而,儘管元件102與103中的元件具有相同的橫向間隔或間距,元件102中的元件大小會小於或等於元件103中的元件,因為離開元件107的光在進入元件103的元件108之前,典型地會經歷一些繞射。振幅與相位的編碼次序可 與圖十中所示的相反。 The thickness of the elements 104, 100-103 may all be on the order of a few centimeters or less. Element 101 may comprise a color filter array such that pixels of colored light (e.g., red, green, and blue light) are directed toward element 102, although a color filter is not required if a colored light source is used. Element 102 is an electronic addressed spatial light modulator that encodes phase information, such as a Freedericksz cell. Element 103 is an electronic address spatial light modulator that encodes amplitude information, such as in a commercially available liquid crystal display device. Each of the elements of element 102, designated 107 here, will be aligned with the corresponding elements of element 103, indicated at 108. However, although elements in elements 102 and 103 have the same lateral spacing or spacing, the element size in element 102 may be less than or equal to the elements in element 103, as light exiting element 107 precedes element 108 of element 103, typically The ground will experience some diffraction. The encoding order of amplitude and phase can be Contrary to what is shown in Figure 10.

位於點106離包括緊密全像圖產生器105的裝置一些距離的觀看者,可從105的方向觀看到三維圖像。元件104、100、101、102與103是如之前所描述的配置成實體連接,以便能形成緊密的全像圖產生器105。 A viewer located at point 106 some distance from the device including the compact hologram generator 105 can view the three-dimensional image from the direction of 105. Elements 104, 100, 101, 102, and 103 are configured to be physically connected as previously described to form a compact hologram generator 105.

E.構成要素包含一對或二對有機發光二極體與光學式定址空間光調變器組合或是一個或兩個電子式定址空間光調變器的緊密組合,且具有目標全像重建的大倍率三維圖像顯示裝置 E. The constituent element comprises a close combination of one or two pairs of organic light emitting diodes with an optically addressed spatial light modulator or one or two electronically addressed spatial light modulators, and has a target holographic reconstruction Large magnification three-dimensional image display device

圖二十四顯示了一個構成要素包含一對或二對有機發光二極體與光學式定址空間光調變器組合或是一個或兩個電子式定址空間光調變器的緊密組合,且具有目標全像重建的大倍率三維圖像顯示裝置。這個裝置的構成要素包括空間光調變器與充份同調性的緊密型光源的緊密組合(例如在A、B、C與D部份所描述的內容),這樣的組合能夠在適當的照明情況,於虛擬觀察員視窗(在圖二十四標示為OW)中產生看得見的三維圖像,這個裝置元件可例如整合在個人數位助理或行動電話中。如圖二十四所示,空間光調變器與充份同調性的緊密型光源的緊密組合包含光源陣列、空間光調變器及透鏡陣列。在圖二十四中的空間光調變器,包含一 對或二對有機發光二極體與光學式定址空間光調變器組合或是一個或兩個電子式定址空間光調變器的緊密組合,或是一個有機發光二極體及光學式定址空間光調變器的組合成對及一個電子式定址空間光調變器。 Figure 24 shows a compact combination of one or two pairs of organic light-emitting diodes with an optically addressed spatial light modulator or one or two electronically addressed spatial light modulators. A large-magnification three-dimensional image display device for reconstructing a target hologram. The components of this device include a close combination of a spatial light modulator and a well-consistent compact light source (such as those described in sections A, B, C and D), which can be combined in appropriate lighting conditions. A visible three-dimensional image is produced in the virtual observer window (labeled OW in Figure 24), which may be integrated, for example, in a personal digital assistant or mobile phone. As shown in Fig. 24, the close combination of the spatial light modulator and the well-toned compact light source includes a light source array, a spatial light modulator, and a lens array. The spatial light modulator in Figure 24 includes one Close combination of two or two pairs of organic light emitting diodes and optically addressed spatial light modulators or one or two electronically addressed spatial light modulators, or an organic light emitting diode and optical addressing space The combination of optical modulators is paired and an electronically addressed spatial light modulator.

在一個簡單的例子中,光源陣列可由下列方式形成。單一光源如單色的發光二極體,放置在緊鄰孔徑陣列的位置,使其能照射孔徑。如果孔徑是一維陣列的狹縫,從狹縫傳送出去的光會形成一維陣列的光源。如果孔徑是二維陣列的圓,圓的照射集合即形成二維陣列的光源。典型的孔徑寬將約為20μm。這樣的光源陣列適合用於對於一眼的觀察員視窗的產生。 In a simple example, the array of light sources can be formed in the following manner. A single source, such as a monochromatic light-emitting diode, is placed in close proximity to the array of apertures to illuminate the aperture. If the aperture is a slit of a one-dimensional array, the light that is transmitted from the slit will form a one-dimensional array of light sources. If the aperture is a circle of a two-dimensional array, the illuminated set of circles forms a two-dimensional array of light sources. A typical aperture width will be approximately 20 μm. Such an array of light sources is suitable for the generation of an observer window for one eye.

在圖二十四中,光源陣列是設置在距離透鏡陣列u的距離位置。光源陣列可為圖一元件10的光源,並且可選擇性的包含圖一中的元件11。確切的說,每一個在光源陣列中的光源是設置在距離透鏡陣列中它所對應的透鏡u距離的地方。在較佳的實施例中,光源陣列與透鏡陣列的平面是呈平行狀的。空間光調變器可位在透鏡陣列的任一邊。虛擬觀察員視窗與透鏡陣列的距離為u。透鏡陣列中的透鏡是聚光鏡,聚焦長度f是由f=1/[1/u+1/v]所給定。在較佳的實施例中,v的值是在300mm到600mm的範圍內。更好的實施例中,v大約為400mm。在較佳的實施例中,u的值是在 10mm到30mm的範圍內。更好的實施例中,u大約為20mm。放大因數M是由v/u所決定。M是經由空間光調變器調變後的光源,在虛擬觀察員視窗被放大的因素。在較佳的實施例中,M的值是在10到60的範圍內。更好的實施例中,M大約為20。為了實現如此的放大因數,並且具有好的全像圖像品質,需要準確排列的光源陣列與透鏡陣列。為了維持精確的排列,以及在光源陣列與透鏡陣列之間維持相同的距離,直到超過元件的使用壽命為止,裝置元件需要具有強烈的機械穩定度。 In Fig. 24, the light source array is disposed at a distance from the lens array u. The array of light sources can be the source of the element 10 of Figure 1, and can optionally include the elements 11 of Figure 1. Specifically, each of the light sources in the array of light sources is located at a distance u from the lens u corresponding to the lens array. In a preferred embodiment, the array of light sources is parallel to the plane of the lens array. The spatial light modulator can be located on either side of the lens array. The distance between the virtual observer window and the lens array is u. The lens in the lens array is a condensing mirror, and the focal length f is given by f = 1 / [1/u + 1 / v]. In a preferred embodiment, the value of v is in the range of 300 mm to 600 mm. In a more preferred embodiment, v is approximately 400 mm. In a preferred embodiment, the value of u is In the range of 10mm to 30mm. In a more preferred embodiment, u is approximately 20 mm. The amplification factor M is determined by v/u. M is a factor that is modulated by the spatial light modulator and is magnified in the virtual observer window. In a preferred embodiment, the value of M is in the range of 10 to 60. In a more preferred embodiment, M is about 20. In order to achieve such an amplification factor and have good holographic image quality, an array of light sources and a lens array that are accurately aligned are required. In order to maintain a precise alignment and maintain the same distance between the array of light sources and the lens array, the device components need to have strong mechanical stability until the lifetime of the component is exceeded.

虛擬觀察員視窗可以是可追蹤的或不可追蹤的。如果虛擬觀察員視窗是可追蹤的,則根據虛擬觀察員視窗所需的位置,光源陣列中特定的光源會被啟動。啟動的光源會照射空間光調變器,並且藉由透鏡陣列成像至觀察員平面。在光源陣列中,對於透鏡陣列中的每一個透鏡至少啟動一個光源。追蹤是為準連續的。如果u是20mm且v是400mm,假若像素間距為20μm,可追蹤到帶有400μm橫向增量的虛擬觀察員視窗。這樣的追蹤是準連續的。如果u是20mm且v是400mm,f大概是19mm。 The virtual observer window can be traceable or untrackable. If the virtual observer window is traceable, a particular light source in the array of light sources will be activated depending on the desired position of the virtual observer window. The activated light source illuminates the spatial light modulator and is imaged by the lens array to the observer plane. In the array of light sources, at least one light source is activated for each lens in the lens array. Tracking is quasi-continuous. If u is 20 mm and v is 400 mm, if the pixel pitch is 20 μm, a virtual observer window with a lateral increment of 400 μm can be traced. Such tracking is quasi-continuous. If u is 20mm and v is 400mm, f is about 19mm.

在光源陣列中的光源可能僅具有部分的空間同調性。部分的同調性會導致目標點的模糊重建。如果u是20mm且v是400mm,假若光源寬度為20μm,距離顯示器100mm的目標點的重建會有 100μm的橫向模糊。這對於人類視覺系統的解析度是足夠的。 The light source in the array of light sources may only have partial spatial homology. Partial homology can lead to fuzzy reconstruction of the target point. If u is 20mm and v is 400mm, if the width of the light source is 20μm, the reconstruction of the target point of 100mm from the display will be 100 μm lateral blur. This is sufficient for the resolution of the human visual system.

在通過透鏡陣列中不同透鏡的光之間並不需要具有任何明顯的相互同調性。同調性的需求是限制在透鏡陣列中的每一個單一透鏡。因此,重建目標點的解析度是由透鏡陣列的間距來決定。典型的透鏡間距將為1mm的等級,以保證對於人類視覺系統的充份解析度。 It is not necessary to have any significant mutual homology between the light passing through the different lenses in the lens array. The need for coherence is limited to each single lens in the lens array. Therefore, the resolution of the reconstruction target point is determined by the pitch of the lens array. A typical lens pitch will be on the order of 1 mm to ensure adequate resolution for the human visual system.

虛擬觀察員視窗是限制在空間光調變器中編碼資訊的傅立葉頻譜的一個繞射階級。如果空間光調變器的像素間距是10μm,並且需要兩個像素來編碼一個複數,即如果在相位調變電子式定址空間光調變器上使用2相位編碼,在500nm的波長,虛擬觀察員視窗會有10mm寬的寬度。虛擬觀察員視窗可利用空間或時間多工,將數個虛擬觀察員視窗拼湊成擴大的虛擬觀察員視窗。在空間多工的情況下,需要額外的光學元件,如光束分光鏡。在部份C描述了一些多工的方法,這些多工的方法也可能應用於本案實作中。 The virtual observer window is a diffractive class that limits the Fourier spectrum of the encoded information in the spatial light modulator. If the spatial aperture of the spatial light modulator is 10 μm and two pixels are required to encode a complex number, ie if 2-phase encoding is used on a phase-modulated electronic address spatial light modulator, at a wavelength of 500 nm, the virtual observer window There will be a width of 10mm wide. The virtual observer window can utilize space or time multiplexing to piece together several virtual observer windows into an expanded virtual observer window. In the case of spatial multiplexing, additional optical components such as beam splitters are required. Some multiplexed methods are described in Section C, and these multiplexed methods may also be applied to the implementation of this case.

彩色全像重建可由時間多工來實現。彩色有機發光二極體顯示器的紅色,綠色及藍色像素是利用具有對紅色,綠色及藍色光學波長計算的全像圖的空間光調變器的同步重編碼來相繼地啟 動。 Color hologram reconstruction can be achieved by time multiplexing. The red, green, and blue pixels of a color organic light-emitting diode display are successively activated by synchronous re-encoding of a spatial light modulator having a hologram of red, green, and blue optical wavelengths. move.

裝置元件形成的顯示器可包含眼部位置偵測器,用以偵測觀察員的眼睛位置。眼部位置偵測器連接控制光源陣列中光源的啟動的控制單位。 The display formed by the device components can include an eye position detector for detecting the position of the observer's eyes. The eye position detector is connected to a control unit that controls the activation of the light source in the array of light sources.

在空間光調變器上編碼的全像圖的計算最好是由外部的編碼單元來執行,因為它需要較高的計算能力。顯示資料會接著送至個人數位助理或行動電話,以顯示全像產生的三維圖像。 The calculation of the hologram encoded on the spatial light modulator is preferably performed by an external coding unit because it requires higher computational power. The display data is then sent to a personal digital assistant or mobile phone to display a three-dimensional image of the full image.

對於實務上的例子,可使用由Sanyo(RTM)Epson(RTM)Imaging Devices Corporation of Japan所製造的2.6英吋螢幕尺吋XGA液晶顯示器電子式定址空間光調變器。次像素的間距為17μm。如果這是使用於紅綠藍全像顯示的建構,利用全像圖的振幅調變編碼,在距離電子式定址空間光調變器0.4m的地方,觀察視窗根據計算為1.3mm寬。對於單色的情況,觀察視窗根據計算為4mm寬。如果使用相同的設定,但是改用2相位編碼的相位調變,觀察視窗根據計算為6mm寬。如果使用相同的設定,但是改用基諾形式(Kinoform)編碼的相位調變,觀察視窗根據計算為12mm寬。 For practical examples, a 2.6 inch screen size XGA liquid crystal display electronically positioned spatial light modulator manufactured by Sanyo (RTM) Epson (RTM) Imaging Devices Corporation of Japan can be used. The pitch of the sub-pixels is 17 μm. If this is used for the construction of the red, green and blue hologram display, the amplitude modulation code of the hologram is used, and the observation window is calculated to be 1.3 mm wide at a distance of 0.4 m from the electronic address space light modulator. For the case of monochrome, the viewing window is calculated to be 4 mm wide. If the same setting is used, but the phase modulation of the 2 phase encoding is used, the viewing window is calculated to be 6 mm wide. If the same setting is used, but the phase modulation of the Kinoform encoding is used, the viewing window is calculated to be 12 mm wide.

仍具有其它種高解析度的電子式定址空間光調變器。Seiko(RTM)Epson(RTM)Corporation of Japan已發表單色電子式定址空間光調變器,例如D4:L3D13U 1.3英吋螢幕尺寸且像素間距為15μm的面板。此公司也發表了同類型的面板D5:L3D09U-61G00,具有0.9英吋螢幕尺寸及10μm的像素間距。於西元2006年12月12日,此公司公告發表同類型的面板L3D07U-81G00,具有0.7英吋螢幕尺寸及8.5μm的像素間距。如果D4:L3D13U 1.3英吋面板用於建構單色的全像顯示,並採用全像的布克哈特(Burckhardt)振幅調變編碼,則距離電子式定址空間光調變器0.4m的位置,虛擬觀察員視窗可計算出為5.6mm寬。 There are still other high resolution electronic address space light modulators. Seiko (RTM) Epson (RTM) Corporation of Japan has published a monochrome electronic address space optical modulator, such as a D4:L3D13U 1.3 inch screen size with a 15 micron pitch panel. The company also published the same type of panel D5: L3D09U-61G00, with a 0.9 inch screen size and a pixel pitch of 10μm. On December 12, 2006, the company announced the same type of panel L3D07U-81G00 with a 0.7-inch screen size and a pixel pitch of 8.5 μm. If the D4:L3D13U 1.3 inch panel is used to construct a monochrome holographic display and uses the holographic Burckhardt amplitude modulation code, the distance from the electronically addressed spatial light modulator is 0.4m. The virtual observer window can be calculated to be 5.6mm wide.

F.包含一對或兩對有機發光二極體與光學式定址空間光調變器組合或是一個或兩個電子式定址空間光調變器的緊密組合,且具有目標全像重建的三維圖像顯示裝置 F. A compact combination of one or two pairs of organic light emitting diodes combined with an optically addressed spatial light modulator or one or two electronically addressed spatial light modulators with a target holographic reconstruction Image display device

一對或兩對有機發光二極體與光學式定址空間光調變器組合或是一個或兩個電子式定址空間光調變器的緊密組合,是較推薦使用於手持式三維顯示裝置或是較大的三維顯示裝置中,因為這樣的組合是非常緊密的。這樣的組合可整合至例如行動電話、衛星導航裝置、車用顯示器、電腦遊戲裝置、個人數位助理(PDA)、筆記型電腦顯示器、桌上型電腦螢幕或是薄型電視顯示器中。這 樣的三維顯示器是較針對於單一使用者。使用者一般是位在垂直於裝置光發射面的位置,並且是離裝置可得到最佳觀看效果的距離,例如約為500mm的距離。大家都知道,手持式裝置的使用者會傾向自己改變手上裝置的方向,以獲得最理想的觀看狀態,如同在WO01/96941中所描述的內容。因此,在這樣的裝置中,並不需要使用者眼部追蹤及複雜且不緊密如包含掃描鏡的追蹤光學。但是眼睛追蹤可以應用在其它的裝置中,如果對於裝置而言,額外需求的設備與電源不會造成過度的負擔。 A close combination of one or two pairs of organic light emitting diodes with an optically addressed spatial light modulator or one or two electronically addressed spatial light modulators is preferred for handheld 3D display devices or In larger 3D display devices, because such combinations are very tight. Such a combination can be integrated into, for example, a mobile phone, a satellite navigation device, a car display, a computer game device, a personal digital assistant (PDA), a notebook computer display, a desktop computer screen, or a thin television display. This A three-dimensional display is more specific to a single user. The user is typically positioned perpendicular to the light emitting surface of the device and is the distance from which the device can be optimally viewed, such as a distance of approximately 500 mm. It is well known that users of handheld devices tend to change the orientation of the device on hand to obtain the most desirable viewing state, as described in WO 01/96941. Therefore, in such a device, the user's eye tracking is not required and the tracking optics are not as compact as the scanning mirror. However, eye tracking can be applied to other devices, and for the device, the extra demand for the device and the power supply does not cause an excessive burden.

包含一對或兩對有機發光二極體與光學式定址空間光調變器組合或是一個或兩個電子式定址空間光調變器的緊密組合,且具有目標全像重建的衛星導航三維圖像顯示裝置具有如下的優點。駕駛者可找到路線資訊的三維圖像,例如在下一個路口要執行的操控方式,並且因為三維圖像資訊能更符合接近駕駛者駕駛時的感知,能比二維圖像資訊來的更佳。其它顯示器上的資訊,例如選單,可以三維方式顯示。顯示器上部份或是全部的資訊皆可以三維方式顯示。 A three-dimensional map of satellite navigation with one or two pairs of organic light-emitting diodes combined with an optically-spaced spatial light modulator or one or two electronically-spaced spatial light modulators with target holographic reconstruction The image display device has the following advantages. The driver can find a three-dimensional image of the route information, such as the way to be performed at the next intersection, and because the three-dimensional image information is more in line with the perception when the driver is driving, it can be better than the two-dimensional image information. Information on other displays, such as menus, can be displayed in three dimensions. Some or all of the information on the display can be displayed in three dimensions.

包含一對或兩對有機發光二極體與光學式定址空間光調變器組合或是一個或兩個電子式定址空間光調變器的緊密組合,且具有目標全像重建的車用三維圖像顯示裝置具有如下的優點。此裝 置可能可以直接地顯示三維資訊,例如在倒車的時候,或是試圖通過比車輛稍寬或是稍窄的地方,顯示汽車保險桿(防護板)與鄰近物件(如牆壁)靠近情況的三維圖像。在通道比車輛較狹窄的地方,三維圖像顯示裝置可幫助駕駛者了解車輛通不過此通道。三維圖像可利用裝設在車輛上的感應器所提供的資訊來建立。其它的車輛資訊可以三維方式顯示在顯示器上,例如速度、溫度、每分鐘引擊轉速或是其它該顯示於車輛中的資訊。衛星導航資訊可三維地顯示在顯示器上。顯示器上部份或是全部的資訊皆可以三維方式顯示。 A three-dimensional map of a vehicle that includes a pair or two pairs of organic light-emitting diodes combined with an optically-spaced spatial light modulator or one or two electronically-positioned spatial light modulators with target holographic reconstruction The image display device has the following advantages. This dress It is possible to display three-dimensional information directly, for example, when reversing, or attempting to display a three-dimensional view of the proximity of a car bumper (guard) to an adjacent object (such as a wall) by a position slightly wider or narrower than the vehicle. image. Where the passage is narrower than the vehicle, the three-dimensional image display device helps the driver understand that the vehicle does not pass through the passage. The three-dimensional image can be created using information provided by sensors mounted on the vehicle. Other vehicle information can be displayed on the display in three dimensions, such as speed, temperature, per minute firing speed, or other information displayed in the vehicle. Satellite navigation information can be displayed in three dimensions on the display. Some or all of the information on the display can be displayed in three dimensions.

輸出視窗的大小是由傅立葉平面中繞射圖樣的週期性間隔所限制。如果有機發光二極體顯示器或是電子式定址空間光調變器中的像素間距是接近10μm,那麼對於波長500nm的可見光,在距離500mm的地方,根據全像圖的空間光調變器所使用的編碼,虛擬觀察員視窗(VOW)的寬度約為10mm到25mm。這對於一個眼睛而言是足夠寬的。對於另外一眼的第二虛擬觀察員,可由對空間光調變器的內容進行空間或時間上的多工方式來建立。在缺少追蹤的情況下,為了看見最佳的三維圖像,觀察員必須旋轉或移動裝置及/或他自己本身的位置,讓他的眼睛能位在虛擬觀察員視窗,並且位於離裝置最佳的距離。 The size of the output window is limited by the periodic spacing of the diffracted patterns in the Fourier plane. If the pixel pitch in the organic light emitting diode display or the electronic address spatial light modulator is close to 10 μm, then for a visible light with a wavelength of 500 nm, at a distance of 500 mm, according to the spatial light modulator of the hologram The code, virtual observer window (VOW) is about 10mm to 25mm wide. This is wide enough for one eye. For another second virtual observer, the spatial or temporal multiplexing of the content of the spatial light modulator can be established. In the absence of tracking, in order to see the best three-dimensional image, the observer must rotate or move the device and/or his own position so that his eyes can be in the virtual observer window and at the optimal distance from the device. .

數個虛擬觀察員視窗拼湊而成的方式可讓調整顯示裝置位置及方向的程序較為容易。兩個或三個虛擬觀察員視窗可在x-及y-方向並列,使得虛擬觀察員視窗可涵蓋較大的區域。拼湊的方式可由空間或時間多工,或是空間及時間多工的組合來完成。在時間多工中,光是時間上依序地投射至虛擬觀察員視窗中。如果虛擬觀察員視窗具有不同的內容,空間光調變器必須重編碼。在空間多工中,對於不同虛擬觀察員視窗的內容,是在相同的時間於空間光調變器中進行編碼,但是是在空間光調變器的不同區域。光束分光鏡可將空間光調變器不同區域的光分至不同的虛擬觀察員視窗。可使用空間及時間多工的組合。 The patchwork of several virtual observer windows makes it easier to adjust the position and orientation of the display device. Two or three virtual observer windows can be juxtaposed in the x- and y-directions such that the virtual observer window can cover a larger area. The patchwork can be done by spatial or temporal multiplexing, or by a combination of space and time multiplexing. In time multiplex, light is projected onto the virtual observer window in time. If the virtual observer window has different content, the spatial light modulator must be re-encoded. In spatial multiplexing, the content of the different virtual observer windows is encoded in the spatial light modulator at the same time, but in different areas of the spatial light modulator. The beam splitter splits the light in different areas of the spatial light modulator into different virtual observer windows. A combination of space and time multiplexing can be used.

典型用於行動電話或個人數位助理的手持式三維顯示裝置的螢幕尺寸大小是在從一英吋到數英吋的範圍之間。全像次顯示可具有螢幕尺寸小至一公分的螢幕。 The size of a hand-held three-dimensional display device typically used for mobile phones or personal digital assistants ranges from one inch to several inches. The full-image display can have a screen size as small as one centimeter.

三維圖像顯示裝置可切換顯示二維圖像,例如藉由顯示相同的圖像至觀看者的每一個眼睛的方式。 The three-dimensional image display device can switch to display a two-dimensional image, for example, by displaying the same image to each of the viewer's eyes.

圖三顯示了包含一對或兩對有機發光二極體與光學式定址空間光調變器組合或是一個或兩個電子式定址空間光調變器的緊密組合的三維圖像顯示裝置的實施例。在圖三中的裝置是行動電話 30,在行動電話上,當配備相似裝置的另外一方的三維影像圖像顯示在螢幕區域31的時候,使用者可撥打電話。行動電話有裝配天線32,以進行行動通訊。在其它的實施方式中,天線可位於行動電話30的主體中。行動電話30裝配兩個攝影機33及34,分別記錄使用者左眼及右眼的圖像。左眼及右眼的圖像包含立體圖像資料。行動電話30配備數字及“*”及“#”符號的按鍵35,以及其它功能的按鍵36,例如在螢幕上的選單中移動,退回或是啟動關閉等。在按鍵上顯示的標示例如"ON" "OFF"或是"2",可避免顛倒混淆,可防止在進行三維影像電話通話的雙方,觀看對方時顛倒混淆。在使用上,兩個觀看者的眼睛與兩個攝影機33及34最好是共面的,並且使用者的臉是位在接近垂直於螢幕區域31的位置。這樣能確保兩個攝影機33及34在包含觀看者眼睛的平面中記錄視差。觀看者的頭部對於顯示器的最理想觀察位置是預先決定的,使得兩個攝影機33及34能在這個位置獲得觀看者頭部最理想的圖像品質。對於三維圖像電話通話中的另一方也是同樣如此,使得雙方可處在最理想圖像品質的雙向三維圖像電話通話中。為了確保每一個觀看者精確地面向攝影機33及34,可能會較希望確保對於每個眼睛的虛擬觀察員視窗不會比每個眼睛大太多,因為這樣可以限制觀看者的眼界對於觀看者攝影機方向在位置及方向上的錯誤。藉由將裝置朝向拍照的目標,裝罝可對目標進行三維拍照。或者,可藉由裝置螢幕上的小按鍵圖示來引導使 用者使用,藉此完成裝置的最理想方向設置。裝置也可具備眼部追蹤功能。在此所描述的裝置格式與用法可使用於可全像地、自動立體顯示地或利用其它任何方法產生三維圖像的裝置。 Figure 3 shows the implementation of a three-dimensional image display device comprising a close combination of one or two pairs of organic light emitting diodes and an optically addressed spatial light modulator or one or two electronically addressed spatial light modulators. example. The device in Figure 3 is a mobile phone 30. On the mobile phone, when the 3D image of the other party equipped with the similar device is displayed on the screen area 31, the user can make a call. The mobile phone has an antenna 32 for mobile communication. In other embodiments, the antenna can be located in the body of the mobile phone 30. The mobile phone 30 is equipped with two cameras 33 and 34 for recording images of the left and right eyes of the user. The images of the left and right eyes contain stereoscopic image data. The mobile phone 30 is equipped with a digital and "*" and "#" symbol button 35, as well as other function buttons 36, such as moving in the menu on the screen, rewinding or starting to close. The indications displayed on the buttons, such as "ON" "OFF" or "2", can avoid reversing the confusion and prevent the two sides of the three-dimensional video telephone conversation from being confused when viewing the other party. In use, the eyes of the two viewers are preferably coplanar with the two cameras 33 and 34, and the user's face is positioned approximately perpendicular to the screen area 31. This ensures that the two cameras 33 and 34 record the parallax in the plane containing the viewer's eyes. The viewer's head is pre-determined for the most optimal viewing position of the display so that the two cameras 33 and 34 can obtain the most desirable image quality of the viewer's head at this location. The same is true for the other party in a three-dimensional image telephone call, so that both parties can be in a two-way three-dimensional image telephone conversation with the best image quality. In order to ensure that each viewer is accurately facing the cameras 33 and 34, it may be desirable to ensure that the virtual observer window for each eye is not much larger than each eye, as this can limit the viewer's eye to the viewer's camera orientation. An error in position and orientation. By mounting the device toward the target of the photograph, the mount can take a three-dimensional photograph of the target. Alternatively, it can be guided by a small button icon on the device screen. It is used by the user to complete the optimal orientation setting of the device. The device can also have an eye tracking function. The device format and usage described herein can be used for devices that can produce a three-dimensional image in a holographic, autostereoscopic, or any other method.

在雙向的三維影像電話通話期間,攝影機33及34分別記錄使用者的右眼及左眼圖像。從這些圖像獲得的資料,會用於在三維影像通話中另一方對應的手持裝置上,以建立三維影像圖像。如果三維圖像是自動立體顯示地產生,從攝影機33及34的觀看可直接地使用在自動立體顯示器中產生兩個眼睛的圖像。如果三維圖像是全像地產生,包含從攝影機33及34觀看的資料應該要進行處理,例如藉由使用產生全像圖的電腦,例如在一個或兩個空間光調變器之上允許全像資料的適當編碼。當三維圖像是全像地產生,此三維顯示器為一種全像顯示器。相較於自動立體顯示器,全像顯示器提供全深度資訊,即調節(眼睛聚焦)與視差。全像顯示器提供目標的全像重建,即在正確的深度產生全部目標點的全像重建。 During a two-way three-dimensional video call, cameras 33 and 34 record the user's right and left eye images, respectively. The data obtained from these images will be used on the corresponding handheld device in the 3D video call to create a 3D image. If the three-dimensional image is produced in an autostereoscopic display, the images of the two eyes can be directly used in the autostereoscopic display by viewing from the cameras 33 and 34. If the three-dimensional image is holographically generated, the data contained in viewing from cameras 33 and 34 should be processed, for example by using a computer that produces a hologram, such as on one or two spatial light modulators. Like the proper encoding of the material. When the three-dimensional image is produced in a holographic manner, the three-dimensional display is a holographic display. Compared to autostereoscopic displays, holographic displays provide full depth information, ie adjustment (eye focus) and parallax. A holographic display provides holographic reconstruction of the target, ie holographic reconstruction of all target points at the correct depth.

在此所描述的手持式三維顯示器的應用包含保持雙向三維影像電話的通話。另一個應用是包括由通話中的另一方顯示目標或場景的三維顯示,例如在購買之前先觀看產品,或是檢查物品是否有損害。另一個應用是包括個體身份的確認,可由三維顯示來 獲得幫助。三維顯示可增進對外觀上非常相像的個體進行區別能力,例如雙胞胎或是偽裝的人。另一個應用是包括利用圖像來觀看個體,以進行更進一步的連絡,例如在約會服務中,三維圖像可幫助決定。另一個應用是包括利用三維顯示來觀看成人內容的方式,觀看者會喜歡三維顯示勝於二維顯示。 The application of the handheld three-dimensional display described herein includes a call to maintain a two-way three-dimensional videophone. Another application involves displaying a three-dimensional display of a target or scene by the other party in the call, such as viewing the product prior to purchase, or checking for damage. Another application is to include confirmation of individual identities, which can be displayed in three dimensions. Get help. Three-dimensional display enhances the ability to distinguish individuals who look very similar, such as twins or disguised people. Another application involves the use of images to view individuals for further contact, such as in dating services, where three-dimensional images can aid in decision making. Another application includes a way to view adult content using a three-dimensional display, and viewers will prefer a three-dimensional display over a two-dimensional display.

不同個體的眼睛之間會有不同的距離。在一個實施例中,具有目標全像重建的三維顯示裝置會有選單選項,能夠讓顯示器的使用者變化投射左眼與右眼的虛擬觀察員視窗之間的距離。在選單選項的選擇上,使用者按下裝置上的按鍵來增加或是減少虛擬觀察員視窗之間的分隔。如果這是已設定好的,當觀看顯示器並且試圖觀看三維圖像時,可選擇最佳的虛擬觀察員視窗之間的分隔距離,讓觀看者觀看可實現的最好三維圖像。接著,所選擇的距離可儲存在使用者的偏好當中。如果有多個個體使用裝置時,則可將多個使用者偏好儲存在裝置當中。這樣的選單選項可被實作,儘管裝置具有能力各別地去追蹤觀看者的眼睛位置,因為使用者所選擇希望的虛擬觀察員視窗之間的精確距離會比追縱軟體的選擇來的更好。一旦這樣的選擇產生了,將可加快追蹤的速度,因為在眼睛之間的距離成為固定的參數之後,對於觀察員的眼睛所需要的精確位置決定會較低。能夠選擇兩個虛擬觀察員視窗之間更好的距離,也提供了超越自動立體顯示系統的優點,在自動 立體顯示系統中,左眼與右眼圖像之間的距離是傾向於使用裝置硬體來固定。 Different individuals have different distances between their eyes. In one embodiment, a three-dimensional display device with target holographic reconstruction has a menu option that allows the user of the display to vary the distance between the virtual observer window projecting the left eye and the right eye. In the selection of menu options, the user presses a button on the device to increase or decrease the separation between the virtual observer windows. If this is already set, when viewing the display and attempting to view the three-dimensional image, the separation distance between the best virtual observer windows can be selected to allow the viewer to view the best three-dimensional image that can be achieved. The selected distance can then be stored in the user's preferences. If there are multiple individuals using the device, multiple user preferences can be stored in the device. Such menu options can be implemented, although the device has the ability to track the viewer's eye position separately, because the precise distance between the virtual observer windows selected by the user is better than the choice of the software. . Once such a choice is made, the speed of tracking will be accelerated because the precise positional decision required for the observer's eyes will be lower after the distance between the eyes becomes a fixed parameter. The ability to choose a better distance between two virtual observer windows also provides the advantage of surpassing the autostereoscopic display system, in automatic In a stereoscopic display system, the distance between the left eye and right eye images tends to be fixed using the device hardware.

G.包含一對或兩對有機發光二極體與光學式定址空間光調變器組合或是一個或兩個電子式定址空間光調變器的緊密組合的平面投影機系統 G. Planar projector system comprising one or two pairs of organic light emitting diodes combined with an optically addressed spatial light modulator or one or two electronically addressed spatial light modulators

從裝置發射的光也可投射到螢幕或牆或是一些其它的表面上,來取代如F部份所描述的投射光至數個虛擬觀察員視窗的方式。因此,在行動電話或個人數位助理或是在其它裝置中的三維顯示裝置也能如同以口袋型投影機的方式來使用。 Light emitted from the device can also be projected onto a screen or wall or some other surface to replace the way the projected light is projected into several virtual observer windows as described in Section F. Therefore, a three-dimensional display device in a mobile phone or a personal digital assistant or in other devices can also be used as a pocket projector.

可藉由使用空間光調變器調變入射光的振幅及相位來提升全像投攝圖的品質。因此,複數值的全像圖可在空間光調變器上編碼,讓重建在螢幕或牆上的圖像具有較好品質。 The quality of the hologram can be improved by using a spatial light modulator to modulate the amplitude and phase of the incident light. Therefore, a complex-valued hologram can be encoded on a spatial light modulator, allowing for better quality of images reconstructed on the screen or wall.

在先前部份所描述的一對或兩對有機發光二極體與光學式定址空間光調變器組合或一個或兩個電子式定址空間光調變器的緊密組合,可作為空間光調變器使用於投影機中。由於此組合的大小為緊密的,投影機也將會是緊密的。投影機甚至可同為如行動電話或是個人數位助理或是一些其它的裝置:可藉由"三維顯示 器"與"投影機"模式來進行切換。 The close combination of one or two pairs of organic light-emitting diodes described in the previous section with an optically-addressed spatial light modulator or one or two electronically-positioned spatial light modulators can be used as spatial light modulation The device is used in the projector. Since the size of this combination is tight, the projector will also be tight. The projector can even be a mobile phone or a personal digital assistant or some other device: by "three-dimensional display" The "and" projector mode is used to switch.

相較於習用的二維投影機,全像式二維投影機具有不需要投影透鏡以及投射的圖像在光學遠場中的全部距離都是聚焦的優點。習用的全像式二維投影機,例如在WO2005/059881中所描述的內容,使用單一空間光調變器,因此無法進行複雜的調變。在此所描述的全像式二維投影機,將能夠進行複雜的調變,因此能具有非常佳的圖像品質。 Compared to conventional two-dimensional projectors, holographic two-dimensional projectors have the advantage of not requiring a projection lens and that the projected image is focused at all distances in the optical far field. Conventional holographic two-dimensional projectors, such as those described in WO2005/059881, use a single spatial light modulator, so that complex modulation cannot be performed. The holographic two-dimensional projector described herein will be able to perform complex modulations and thus have excellent image quality.

H.使用一個或兩個紅外線有機發光二極體顯示器與光學式定址空間光調變器的緊密組合的自動立體或全像顯示器 H. Autostereoscopic or holographic display using a tight combination of one or two infrared organic light emitting diode displays and an optically addressed spatial light modulator

紅外線有機發光二極體顯示器與光學式定址空間光調變器的緊密組合(例如A部份所描述的內容)也能使用在自動立體顯示器(ASD)中,特別是在行動電話或是個人數位助理中的手持式自動立體顯示器。然而對於典型的觀看者而言,觀看自動立體顯示器並不像觀看全像顯示器一樣的舒適,雖然在一些情況下,自動立體顯示器比起全像顯示器可能較為便宜或是較容易去產生或去提供圖像資料。自動立體顯示器提供數個觀看區域,藉由每個觀看區域顯示三維場景的不同觀點。如果觀看者的眼睛是在不同的觀看區域,他將看到立體的圖像。自動立體顯示器與全像技術的差異: 自動立體顯示器提供兩個平面圖像,而全像技術更提供三維場景中每一個目標點的Z-資訊。 The close combination of an infrared organic light-emitting diode display and an optically-addressed spatial light modulator (such as described in Part A) can also be used in auto-stereoscopic displays (ASD), especially in mobile phones or personal digital Hand-held autostereoscopic display in the assistant. However, for a typical viewer, viewing an autostereoscopic display is not as comfortable as viewing a full-image display, although in some cases an autostereoscopic display may be cheaper or easier to generate or provide than a full-image display. Image data. The autostereoscopic display provides several viewing areas, with each viewing area displaying a different perspective of the three dimensional scene. If the viewer's eyes are in different viewing areas, he will see a stereoscopic image. The difference between autostereoscopic display and holographic technology: The autostereoscopic display provides two planar images, while the holographic technique provides Z-information for each target point in the three-dimensional scene.

通常,自動立體顯示器是以顯示器上觀看區域的空間多工為基礎,並且使用光素分光鏡元件,例如雙凸透鏡(lenticulars)、障礙遮蔽物(barrier masks)或是稜鏡遮蔽物(prism masks)。障礙遮蔽物也可稱之為"視差障礙"。自動立體顯示器的缺點是每一個觀看區域的解析度會典型地反比於觀看區域的數量。但是這個缺點可由如上所描述的自動立體顯示器的優點來補償。 Typically, autostereoscopic displays are based on spatial multiplexing of the viewing area on the display and use photonic spectroscopic elements such as lenticulars, barrier masks or prism masks. . Obstacle masks can also be called "parallax obstacles." A disadvantage of autostereoscopic displays is that the resolution of each viewing area is typically inversely proportional to the number of viewing areas. However, this disadvantage can be compensated for by the advantages of the autostereoscopic display as described above.

紅外線有機發光二極體顯示器與振幅調變光學式定址空間光調變器的緊密組合(例如在A部份所描述的內容)可使用來成為具有高解析度的振幅調變顯示器。如果紅外線有機發光二極體顯示器與振幅調變光學式定址空間光調變器的緊密組合是與光束分光鏡元件結合的話,則可建構出具高解析度的自動立體顯示器。緊密組合的高解析度可補償因為空間多工而損失的解析度。 The close combination of an infrared organic light emitting diode display and an amplitude modulated optically addressed spatial light modulator (such as described in Section A) can be used to provide a high resolution amplitude modulated display. If the close combination of the infrared organic light emitting diode display and the amplitude modulation optical address spatial light modulator is combined with the beam splitter element, a high resolution autostereoscopic display can be constructed. The high resolution of the tight combination compensates for the loss of resolution due to spatial multiplex.

對於需要一個或多個額外的光學式定址空間光調變器的自動立體顯示器,使用一個或多個有機發光二極體陣列與一個或多個光學式定址空間光調變器的緊密組合(例如:在A與B部份所描述的內容)的優點是非圖樣式的光學式定址空間光調變器。自動立體 顯示器包含光束分光鏡與有機發光二極體陣列,可能會由於圖樣式的有機發光二極體而具有加工品,例如:在光束分光鏡期間與有機發光二極體期間之間的疊紋效應(Moiré effects)。相較之下,在緊密組合的光學式定址空間光調變器上的資訊是連續的:僅有光束分光鏡期間,不會出現週期性的加工品。 For autostereoscopic displays that require one or more additional optically addressed spatial light modulators, use a tight combination of one or more organic light emitting diode arrays with one or more optically addressed spatial light modulators (eg The advantage of what is described in sections A and B) is the non-patterned optically addressed spatial light modulator. Autostereo The display includes a beam splitter and an organic light emitting diode array, which may have a processed product due to the patterned organic light emitting diode, for example, a moiré effect between the beam splitter and the organic light emitting diode period ( Moiré effects). In contrast, the information on the tightly combined optically addressed spatial light modulator is continuous: during the beam splitter only, periodic artifacts do not occur.

自動立體顯示器的光源可為一個或多個光源,例如發光二極體,雷射,有機發光二極體或冷陰極螢光燈。光源不需為同調性的。如果使用有機發光二極體且自動立體顯示器顯示色彩圖像,則會在光源與光發射顯示器及振幅調變光學式定址空間光調變器的緊密組合之間需要色彩過濾器層,例如紅色,綠色及藍色過濾器。 The light source of the autostereoscopic display can be one or more light sources, such as light emitting diodes, lasers, organic light emitting diodes or cold cathode fluorescent lamps. The light source does not need to be homogenous. If an organic light emitting diode is used and the autostereoscopic display displays a color image, a color filter layer, such as red, is required between the light source and the light emitting display and the close combination of the amplitude modulated optically addressed spatial light modulator. Green and blue filters.

紅外線有機發光二極體顯示器與光學式定址空間光調變器的緊密組合(例如在A部份所描述的內容)也可以使用在全像顯示,特別是在行動電話或個人數位助理中的手持式顯示器。全像顯示器是以顯示器上觀看區域的空間多工為基礎,並且使用光素分光鏡元件,例如雙凸透鏡(lenticulars)、障礙遮蔽物(barrier masks)或是稜鏡遮蔽物(prism masks)。障礙遮蔽物也可稱之為"視差障礙"。紅外線有機發光二極體顯示器與光學式定址空間光調變器的緊密組合(例如在A部份所描述的內容)可使用來成為具有高解析度的全像顯示器。如果紅外線有機發光二極體顯示器與振幅調變光 學式定址空間光調變器的緊密組合是與光束分光鏡元件結合的話,則可建構出具高解析度的全像顯示器。緊密組合的高解析度可補償因為空間多工而損失的解析度。在另一個實施例中,兩對有機發光二極體陣列與光學式定址空間光調變器的緊密組合的組合可以依序且緊密的方式使用來調變光的振幅與相位,如B部份所描述的內容。因此,由振幅與相位組成的複數,可利用逐一像素的方式在傳送光中編碼。如果兩對紅外線有機發光二極體顯示器與振幅調變光學式定址空間光調變器的緊密組合是與光束分光鏡元件結合,則可建構出高解析度的全像顯示器。緊密組合的高解析度可補償因為空間多工而損失的解析度。具有光束分光鏡元件的全像顯示器可提供數個觀看區域,藉由每個觀看區域顯示三維場景的不同觀點。如果觀看者的眼睛是在不同的觀看區域,他將看到立體的圖像。 The close combination of an infrared organic light-emitting diode display and an optically-addressed spatial light modulator (such as described in Part A) can also be used in holographic displays, especially in mobile phones or personal digital assistants. Display. A holographic display is based on spatial multiplexing of the viewing area on the display and uses photon spectroscopy elements such as lenticulars, barrier masks or prism masks. Obstacle masks can also be called "parallax obstacles." The close combination of an infrared organic light emitting diode display and an optically addressed spatial light modulator (such as described in Section A) can be used to make a full resolution display with high resolution. If the infrared organic light emitting diode display and the amplitude modulation light The close combination of the spatially-spaced optical modulators, combined with the beam splitter elements, enables the construction of high-resolution holographic displays. The high resolution of the tight combination compensates for the loss of resolution due to spatial multiplex. In another embodiment, the combination of the close combination of two pairs of organic light emitting diode arrays and an optically addressed spatial light modulator can be used in a sequential and compact manner to modulate the amplitude and phase of the light, such as portion B. What is described. Therefore, the complex number consisting of amplitude and phase can be encoded in the transmitted light by pixel by pixel. If the close combination of the two pairs of infrared organic light emitting diode displays and the amplitude modulated optically addressed spatial light modulator is combined with the beam splitter elements, a high resolution holographic display can be constructed. The high resolution of the tight combination compensates for the loss of resolution due to spatial multiplex. A holographic display with a beam splitter element can provide several viewing areas with different views of the three dimensional scene displayed by each viewing area. If the viewer's eyes are in different viewing areas, he will see a stereoscopic image.

I.三維傳輸中需要的資料處理系統。 I. A data processing system required for three-dimensional transmission.

圖二十二顯示了三維傳輸中需要的資料處理系統。在圖二十二中,其中一方220與另一方221是在三維傳輸中。用於建立圖像的拍攝資料可利用圖三中顯示的行動電話裝置30或是一些具有類似功能的裝置來進行收集。對於三維圖像顯示的資料處理可在其中一方220的裝置中執行,裝置可為行動電話30或是等效的裝置,或是可在另一方221的裝置中執行,但是最好是能在位於兩 個行動電話之間的傳輸網路上的中間系統224中執行。傳輸網路包含第一連線222,中間系統224及第二連線223。222及223兩個連線可為無線連線或非無線連線。中間系統224可包含執行計算的電腦,使得三維圖像,例如電腦產生的全像圖或自動立體顯示圖能夠被顯示。在兩個行動電話之間的傳輸網路使用電腦來執行計算是較好的,因為計算將不耗費行動電話的電池電力,但取而代之使用主要的電源。可使用位於傳輸網路的電腦來對大量的三維影像電話通話的圖像同時進行處理,這可允許更有效率地利用計算資源,例如藉由減少未使用的計算處理能力的數量。如果需要的計算能力減少,則行動電話或其它類似裝置的重量將會降低,它將需要較少的電腦電路與記憶體,因為計算需求將會藉由位在傳輸網路上的電腦來執行計算。最後,執行計算的軟體將僅需要安裝在位於傳輸網路上的電腦,不需要安裝在行動電話或其它類似的裝置中。這將減少行動電話的記憶體需求以及軟體盜版的範圍,並且會增加程式碼中任何的企業機密的保護。雖然大多數三維圖像顯示需要的計算可由中間系統224來執行,不過也可能一些圖像計算是在資料傳送前於使用者裝置中進行。例如,如果兩個拍攝圖像是非常相似的,若兩個圖像是傳送成第一圖像及兩個圖像之間差異的差異圖像,則因為差異圖像非常易於進行可幫助資料傳送的資料壓縮技術,因此將可促進資料的傳送。同樣地,三維圖像顯示裝置可執行一些圖像計算,例如解除壓縮的圖 像資料。 Figure 22 shows the data processing system required for 3D transmission. In Fig. 22, one of the parties 220 and the other party 221 are in three-dimensional transmission. The photographing data for creating an image can be collected using the mobile telephone device 30 shown in FIG. 3 or some devices having similar functions. The data processing for the three-dimensional image display can be performed in a device of one of the parties 220, the device can be a mobile phone 30 or an equivalent device, or can be executed in the device of the other party 221, but preferably can be located Two Execution is performed in the intermediate system 224 on the transport network between mobile phones. The transmission network includes a first connection 222, an intermediate system 224 and a second connection 223. The two connections 222 and 223 can be wireless or non-wireless. The intermediate system 224 can include a computer that performs calculations such that a three-dimensional image, such as a computer-generated hologram or autostereoscopic display, can be displayed. It is better to use a computer to perform calculations on the transmission network between the two mobile phones, since the calculation will not consume the battery power of the mobile phone, but instead use the main power source instead. Computers located on the transmission network can be used to simultaneously process images of a large number of three-dimensional videophone calls, which allows for more efficient use of computing resources, such as by reducing the amount of unused computational processing power. If the required computing power is reduced, the weight of the mobile phone or other similar device will be reduced, and it will require less computer circuitry and memory, as computing needs will be performed by a computer located on the transmission network. Finally, the software that performs the calculations will only need to be installed on a computer located on the transport network and will not need to be installed in a mobile phone or other similar device. This will reduce the memory requirements of the mobile phone and the scope of software piracy, and will increase the protection of any corporate secrets in the code. While most of the computation required for three-dimensional image display can be performed by intermediate system 224, it is also possible that some image calculations are performed in the user device prior to data transfer. For example, if the two captured images are very similar, if the two images are difference images that are transmitted as the first image and the difference between the two images, the difference image is very easy to perform to facilitate data transfer. The data compression technology will therefore facilitate the transfer of data. Similarly, the three-dimensional image display device can perform some image calculations, such as decompressing the map. Like information.

在圖二十二的系統的一個例子中,第一圖像與第二圖像形成一對立體顯示圖像,並且由使用者220的裝置經由連線222傳送至中間裝置224。第二傳送圖像可為兩個立體顯示圖像之間的差異圖像,因為差異圖像典型地將比完整圖像需要較少的資料。如果三維電話交談是在進行中,則第一圖像可為現在圖像與前一個時間點的圖像之間的差異。同樣的,第二圖像可為現在圖像與前一個時間點的圖像之間的差異。接著,根據從接收資料的對應深度圖,中間裝置224可利用習用對於二維與三維(3D)圖像之間轉換的計算程序來對二維(2D)圖像進行計算。對於彩色的圖像,需要二維圖像在三個主要顏色中的三個元素,並且連同它們的對應深度圖。接著,關於二維圖像與深度圖的資料會經由連線223傳送至使用者221的裝置。使用者221的裝置會在它的緊密型三維顯示裝置中,根據接收到的二維圖像與深度圖編碼全像圖。為了有效率的使用傳送頻寬,在這個系統中傳輸的資料可進行習用的壓縮程序,並且在接收裝置中執行對應的解壓縮動作。使用最有效率的資料壓縮數量,相較於使用較少資料壓縮的頻寬需求花費,會平衡行動裝置的電池執行資料壓縮與解壓縮的電力。 In one example of the system of FIG. 22, the first image and the second image form a pair of stereoscopic display images and are transmitted by the device of the user 220 to the intermediate device 224 via the connection 222. The second transmitted image may be a difference image between two stereoscopic display images, as the difference image will typically require less material than the full image. If the three-dimensional telephone conversation is in progress, the first image may be the difference between the current image and the image at the previous point in time. Similarly, the second image can be the difference between the current image and the image at the previous point in time. Next, based on the corresponding depth map from the received material, the intermediary 224 can calculate the two-dimensional (2D) image using a conventional calculation program for conversion between two-dimensional and three-dimensional (3D) images. For a color image, three elements of the two-dimensional image in three main colors are required, along with their corresponding depth maps. Next, the data about the two-dimensional image and the depth map is transmitted to the device of the user 221 via the connection 223. The user 221's device encodes the hologram based on the received two-dimensional image and depth map in its compact three-dimensional display device. In order to efficiently use the transmission bandwidth, the data transmitted in this system can be subjected to a conventional compression procedure, and a corresponding decompression action is performed in the receiving device. Using the most efficient amount of data compression, the battery of the mobile device is compressed and decompressed by the battery compared to the bandwidth requirement with less data compression.

中間裝置224可存取包含已知三維形狀集合的函式庫,並在 其中試圖找到穩合它計算的三維資料的配對,或者它可存取包含已知二維圖形集合的函式庫,並在其中試圖找到穩合進入的二維圖像資料的配對。如果在已知形狀中可找到好的配對,這可加快計算程序的速度,因為二維或三維圖像之後可表示為對應已知的形狀。三維形狀的函式庫可提供如一組運動明星的面孔或身體形狀,例如主要的網球運動員或足球運動員,以及全部或部分主要的運動場地,例如著名的網球場地或是著名的足球場地。例如,人臉的三維圖像可表示為一個中間裝置224已存取過的資料,加上臉部表情變化,例如微笑或皺眉等,加上頭髮長度的變化,因為在資料儲存後頭髮可能留長或剪短。如果一組持續性的差異發生,中間裝置224已存取過的記錄明顯比資料過時,例如在長時間上,人的頭髮長度已經明顯的改變,則這個在中間裝置224已存取過的資料可由中間裝置224進行更新。如果中間裝置224遇到在它已存取過的記錄當中沒有發現好配對的二維或三維圖像時,它將增加新的形狀到記錄的集合當中。 The intermediate device 224 can access a library containing a collection of known three-dimensional shapes and It seeks to find a match that satisfies the three-dimensional data it computes, or it can access a library containing a collection of known two-dimensional graphics in which it attempts to find a pair of stable incoming two-dimensional image data. This can speed up the calculation process if a good pairing can be found in a known shape, since a two- or three-dimensional image can then be represented as corresponding to a known shape. The three-dimensional shape library can provide the face or body shape of a group of sports stars, such as a major tennis player or football player, as well as all or part of a major sports venue, such as a famous tennis court or a famous football pitch. For example, a three-dimensional image of a human face can be represented as an item that has been accessed by an intermediate device 224, plus facial expression changes, such as a smile or frown, plus a change in the length of the hair, because the hair may remain after the data is stored. Long or short. If a set of persistent differences occurs, the records that the intermediate device 224 has accessed are significantly more obsolete than the data, for example, over a long period of time, the length of the person's hair has changed significantly, then the data that has been accessed by the intermediate device 224 The update can be made by the intermediary device 224. If the intermediary device 224 encounters a two- or three-dimensional image of a pair that has not been found among the records it has accessed, it will add a new shape to the set of records.

J.幫助二維圖像內容至三維圖像內容的系統 J. System for helping 2D image content to 3D image content

安全廣泛採用的三維顯示技術中的一個困難是很少內容是以三維格式產生,並且現在大部份的內容仍持續以二維格式產生的事實。部分上是因為現在所使用的大多數圖像記錄裝置都持續記錄二維圖像,並且沒有資料是可以使用在三維圖像中。此外,現 在很少有機會能讓觀看者要求三維的內容或是獲得從二維內容產生的三維內容。 One of the difficulties in safely adopted 3D display technology is the fact that very little content is produced in a three-dimensional format, and now most of the content continues to be produced in a two-dimensional format. Partly because most image recording devices used today continue to record two-dimensional images, and no data can be used in three-dimensional images. In addition, now There are very few opportunities for viewers to request three-dimensional content or to obtain three-dimensional content generated from two-dimensional content.

這非常明顯需要一個支援從二維內容產生三維內容的系統。在圖二十三中給定一個系統。在圖二十三中,即使在觀看者2303的家中具有三維顯示裝置,電視傳播公司2300持續播放二維電視圖像2304。在這個系統中,具有中間系統2301,可將二維內容轉換到三維內容2305。這樣的轉換程序可由觀看者付費支援,或是可由其它方來付費支援,例如廣告客戶2303。在圖二十三中,當廣告客戶2303的廣告由電視公司2300來播放,廣告客戶2303會支付費用2306給中間系統2301,並藉由已知的二維內容轉換成三維內容的轉換程序將二維內容轉換成三維內容。廣告客戶的利益是以三維的電視廣告呈現給觀看者2302,這將比二維電視廣告更引人注意。或者,觀看者2302可支付費用給中間系統2301來轉換並接收一些或全部電視播放的三維格式。中間系統會確保三維內容的提供是正確且同步的格式,例如假使二維圖像有提供它的對應深度圖,兩個資料集合會以同步方式提供,即三維顯示裝置會對於對應的二維圖像使用深度圖,不會對非對應的二維圖像使用深度圖。三維顯示裝置可為全像顯示裝置、自動立體顯示裝置或是任何習用的三維顯示裝置。提供三維顯示裝置的資料應適合於三維顯示裝置的類型。相似於上述的系統也可適用於非電視播 放公司的提供者所提供的內容,例如電影或錄影帶供應商等。 This is obviously a system that supports the generation of 3D content from 2D content. A system is given in Figure 23. In FIG. 23, even if the viewer 2303 has a three-dimensional display device in the home, the television communication company 2300 continues to play the two-dimensional television image 2304. In this system, with an intermediate system 2301, two-dimensional content can be converted to three-dimensional content 2305. Such conversion procedures may be supported by the viewer for payment or may be supported by other parties, such as advertiser 2303. In FIG. 23, when the advertisement of the advertiser 2303 is played by the television company 2300, the advertiser 2303 pays the fee 2306 to the intermediate system 2301, and converts the known two-dimensional content into three-dimensional content by the conversion program. Dimensional content is converted into three-dimensional content. The advertiser's benefit is presented to the viewer 2302 as a three-dimensional television commercial, which will be more noticeable than the two-dimensional television commercial. Alternatively, viewer 2302 may pay a fee to intermediate system 2301 to convert and receive some or all of the three-dimensional format of the television broadcast. The intermediate system will ensure that the provision of the three-dimensional content is a correct and synchronized format. For example, if the two-dimensional image has its corresponding depth map, the two data sets will be provided in a synchronous manner, that is, the three-dimensional display device will correspond to the corresponding two-dimensional image. Like using a depth map, a depth map is not used for non-corresponding 2D images. The three-dimensional display device can be a holographic display device, an autostereoscopic display device, or any conventional three-dimensional display device. The data providing the three-dimensional display device should be suitable for the type of three-dimensional display device. Systems similar to the above are also applicable to non-TV broadcasts. The content provided by the company's provider, such as a movie or video tape provider.

在另一種系統中,觀看者可支付費用提供二維內容給中間系統,並且收到提供的二維內容的三維形式回覆。提供的二維內容可例如為家庭電影的MP3檔案,或是其它錄影帶內容或是如照片或圖片的圖像。 In another system, the viewer can pay for the two-dimensional content to the intermediary system and receive a three-dimensional form of the provided two-dimensional content. The provided two-dimensional content can be, for example, an MP3 file of a home movie, or other video content or an image such as a photo or a picture.

中間系統可包含電腦來執行計算,使得三維圖像能顯示,例如電腦產生全像圖或是自動立體圖像。最好是利用在二維內容提供者與希望觀看三維圖像內容的觀看者之間傳輸網路的電腦來執行計算,因為這會比起在觀看者端執行如此的程序更有效率。位於傳輸網路上的電腦可使用來同時進行大量的二維到三維內容轉換的圖像處理,這可允許更有效率地利用計算資源,例如藉由減少未使用的計算處理能力的數量。如果需要的計算能力減少,則觀看者的三維顯示裝置的成本將會降低,因為它將需要較少的電腦電路與記憶體,且計算需求將會藉由位在傳輸網路上的電腦來執行計算。最後,執行計算的軟體將僅需要安裝在位於傳輸網路上的電腦,不需要安裝在觀看者的三維顯示裝置中。這將減少觀看者的三維顯示裝置的記憶體需求以及軟體盜版的範圍,並且會增加程式碼中任何的企業機密的保護。雖然大多數三維圖像顯示需要的計算可由中間系統來執行,不過也可能一些圖像計算是在 觀看者的三維顯示裝置中執行。三維圖像顯示裝置可執行一些圖像計算,例如解壓縮已壓縮的圖像資料,或是從二維圖像與它的對應深度圖來產生空間光調變器的全像編碼。 The intermediate system can include a computer to perform calculations such that the three-dimensional image can be displayed, such as a computer-generated hologram or auto-stereoscopic image. It is preferable to perform the calculation using a computer that transfers the network between the two-dimensional content provider and the viewer who wishes to view the three-dimensional image content, since this is more efficient than executing such a program on the viewer side. Computers located on the transmission network can perform image processing for large amounts of 2D to 3D content conversion at the same time, which allows for more efficient use of computing resources, for example by reducing the amount of unused computational processing power. If the required computing power is reduced, the cost of the viewer's 3D display device will be reduced because it will require less computer circuitry and memory, and computing needs will be performed by a computer located on the transmission network. . Finally, the software that performs the calculations will only need to be installed on a computer located on the transmission network and will not need to be installed in the viewer's 3D display device. This will reduce the memory requirements of the viewer's three-dimensional display device and the scope of software piracy, and will increase the protection of any corporate secrets in the code. Although most of the calculations required for 3D image display can be performed by an intermediate system, it is possible that some image calculations are Executed in the viewer's three-dimensional display device. The three-dimensional image display device may perform some image calculations, such as decompressing the compressed image data, or generating a holographic encoding of the spatial light modulator from the two-dimensional image and its corresponding depth map.

在一個例子中,中間系統可利用習用二維與三維圖像之間轉換的計算程序,計算接收到的二維圖像的對應深度圖。對於彩色的圖像,需要二維圖像在三個主要顏色中的三個元素,並且連同它們的對應深度圖。接著,關於二維圖像與深度圖的資料會傳送至觀看者的三維顯示裝置。觀看者的三維顯示器裝置會在它的空間光調變器中,根據接收到的二維圖像與深度圖編碼全像圖。為了有效率的使用傳送頻寬,在這個系統中傳輸的資料可進行習用的壓縮程序,並且在接收裝置中執行對應的解壓縮動作。使用最有效率的資料壓縮數量,相較於使用較少資料壓縮的頻寬需求花費,會平衡提供資料解壓縮功能至三維顯示裝置的花費。 In one example, the intermediate system can calculate a corresponding depth map of the received two-dimensional image using a computational program that converts between two-dimensional and three-dimensional images. For a color image, three elements of the two-dimensional image in three main colors are required, along with their corresponding depth maps. Next, the data about the two-dimensional image and the depth map is transmitted to the viewer's three-dimensional display device. The viewer's 3D display device encodes the hologram based on the received 2D image and depth map in its spatial light modulator. In order to efficiently use the transmission bandwidth, the data transmitted in this system can be subjected to a conventional compression procedure, and a corresponding decompression action is performed in the receiving device. Using the most efficient amount of data compression, the cost of providing data decompression to a 3D display device is balanced compared to the bandwidth requirement for using less data compression.

中間裝置可存取已知三維形狀集合的資料,並在其中試圖找到穩合它計算的三維資料的配對,或者它可存取已知二維圖形的集合,並在其中試圖找到穩合進入的二維圖像資料的配對。如果在已知形狀中可找到好的配對,這可加快計算程序的速度,因為二維或三維圖像之後可表示為對應已知的形狀。三維形狀的函式庫可提供如一組運動明星的面孔或身體形狀,例如主要的網球運 動員或足球運動員,以及全部或部分主要的運動場地,例如著名的網球場地或是著名的足球場地。例如,人臉的三維圖像可表示為一個中間裝置已存取過的資料,加上臉部表情變化,例如微笑或皺眉等,加上頭髮長度的變化,因為在資料儲存後頭髮可能留長或剪短。如果一組持續性的差異發生,中間裝置已存取過的記錄明顯比資料過時,例如在長時間上,人的頭髮長度已經明顯的改變,則這個在中間裝置已存取過的資料可由中間裝置224進行更新。如果中間裝置遇到在它已存取過的記錄當中沒有發現好配對的二維或三維圖像時,它將增加新計算的三維形狀到記錄的集合當中。 The intermediary device can access data of a known set of three-dimensional shapes and attempt to find a match that satisfies the three-dimensional data it computes, or it can access a collection of known two-dimensional graphics and attempt to find a stable entry therein. Pairing of 2D image data. This can speed up the calculation process if a good pairing can be found in a known shape, since a two- or three-dimensional image can then be represented as corresponding to a known shape. A three-dimensional shape library can provide the face or body shape of a group of sports stars, such as the main tennis game. Mobilize or football players, and all or part of the main sports venues, such as the famous tennis courts or famous football venues. For example, a three-dimensional image of a human face can be represented as an item that has been accessed by an intermediate device, plus facial expression changes, such as a smile or frown, plus a change in the length of the hair, because the hair may remain long after the data is stored. Or cut short. If a set of persistent differences occurs, the records that the intermediate device has accessed are significantly more outdated than the data, for example, over a long period of time, the length of the person's hair has changed significantly, then the data that has been accessed by the intermediate device can be intermediate Device 224 is updated. If the intermediary device encounters a two- or three-dimensional image of a pair that has not been found in the records it has accessed, it will add the newly calculated three-dimensional shape to the set of records.

K.觀察員視窗的空間多工與二維編碼 K. Space multiplexing and two-dimensional coding of observer windows

這個實施例是關於全像顯示器的虛擬觀察員視窗(VOWs)的空間多工,並結合二維編碼的使用。除此之外,全像顯示器可如同在A,B,C或D部份中所描述的內容,或是任何習用的全像顯示器。 This embodiment relates to the spatial multiplexing of virtual observer windows (VOWs) for holographic displays, combined with the use of two-dimensional encoding. In addition, the holographic display can be as described in Sections A, B, C or D, or any conventional holographic display.

數個處擬觀察員視窗,例如一個用於左眼的虛擬觀察員視窗與一個用於右眼的虛擬觀察員視窗,可由空間或時間多工來產生是已知的。關於空間多工,兩個虛擬觀察員視窗是在同一個時間點產生的,並且經由光束分光鏡來區分,相似於自動立體顯示器, 如在WO 2006/027228中所描述的內容。而關於時間多工,虛擬觀察員視窗是時間上依序產生的。 A number of pseudo-observer windows, such as a virtual observer window for the left eye and a virtual observer window for the right eye, are known to be generated by spatial or temporal multiplexing. With regard to spatial multiplexing, two virtual observer windows are generated at the same point in time and are distinguished by a beam splitter, similar to an autostereoscopic display. The content as described in WO 2006/027228. With regard to time multiplex, the virtual observer window is generated in time.

然而,習用的全像顯示系統具有一些缺點。對於空間多工而言,使用的照明系統在水平方向是空間非同調性的,並且是以水平線光源與透鏡狀陣列為基礎,如圖四由習用技術WO 2006/027228所獲得的內容。這具有可利用自動立體顯示器已知技術的優點。然而,它的缺點是在水平方向上的全像重建是不可能。取而代之的是使用所謂的1維編碼,僅在垂直方向產生全像重建與移動視差。因此,垂直焦點是在重建物件的平面上,而水平焦點是在空間光調變器的平面上。這些散光會減少空間視覺的品質,意即它減少了觀看者接收到的全像重建的品質。同樣地,時間多工系統也具有缺點,它們需要尚不能在全部顯示器尺寸中獲得的快速空間光調變器,即時可取得也是過分的昂貴。 However, conventional hologram display systems have some drawbacks. For spatial multiplexing, the illumination system used is spatially non-coherent in the horizontal direction and is based on a horizontal line source and a lenticular array, as shown in Figure 4 by the prior art WO 2006/027228. This has the advantage that the known techniques of autostereoscopic displays can be utilized. However, its disadvantage is that holographic reconstruction in the horizontal direction is impossible. Instead, so-called 1D coding is used, which produces holographic reconstruction and moving parallax only in the vertical direction. Thus, the vertical focus is on the plane of the reconstructed object and the horizontal focus is on the plane of the spatial light modulator. These astigmatisms reduce the quality of spatial vision, meaning that it reduces the quality of holographic reconstruction received by the viewer. Similarly, time multiplex systems also have the disadvantage that they require fast space light modulators that are not yet available in all display sizes, and are readily available at an instant.

只有二維編碼在水平與垂直方向同時提供全像重建,而因此二維編碼不會產生散光,散光會減少空間視覺的品質,意即減少了觀看者接收到的全像重建的品質。因此,這個實施例的目的是結合二維編碼來實現虛擬觀察員視窗的空間多工。 Only two-dimensional coding provides holographic reconstruction in both horizontal and vertical directions, and therefore two-dimensional coding does not produce astigmatism, which reduces the quality of spatial vision, meaning that the quality of holographic reconstruction received by the viewer is reduced. Therefore, the purpose of this embodiment is to achieve spatial multiplexing of virtual observer windows in conjunction with two-dimensional encoding.

在這個實施例中,具有水平與垂直局部空間同調性的照明會 與光束分光鏡結合,光束分光鏡會將光分為對於左眼虛擬觀察員視窗的光及對於右眼虛擬觀察員視窗的光。因此,必須考慮位於光束分光鏡的繞射。光束分光鏡可為稜鏡陣列,第二透鏡陣列(例如靜態陣列或是變量陣列,如圖二十中所示)或是障礙遮蔽物。 In this embodiment, the illumination will have horizontal and vertical local spatial coherence In combination with the beam splitter, the beam splitter splits the light into light for the left eye virtual observer window and for the right eye virtual observer window. Therefore, the diffraction at the beam splitter must be considered. The beam splitter can be a tantalum array, a second lens array (such as a static array or a variable array, as shown in Figure 20) or a barrier mask.

圖二十五顯示了這個實施例的例子。圖二十五為包含二維光源陣列的光源、二維透鏡陣列的透鏡、空間光調變器與光束分光鏡的全像顯示器示意圖。光束分光鏡會將離開空間光調變器的光線,分離成二束光線,分別照射用於左眼的虛擬觀察員視窗(VOWL)與用於右眼的虛擬觀察員視窗(VOWR)。在這個例子中,光源的數量是一個或多個;透鏡的數量與光源的數量是相同的。 An example of this embodiment is shown in Figure twenty-fifth. Figure 25 is a schematic diagram of a holographic display comprising a light source of a two-dimensional array of light sources, a lens of a two-dimensional lens array, a spatial light modulator, and a beam splitter. The beam splitter splits the light exiting the spatial light modulator into two beams that illuminate the virtual observer window (VOWL) for the left eye and the virtual observer window (VOWR) for the right eye. In this example, the number of light sources is one or more; the number of lenses is the same as the number of light sources.

在這個例子中,光束分光鏡是在空間光調變器之後。光束分光鏡與空間光調變器的位置也可相互交換。圖二十六顯示了這個實施例的例子,在平面圖中是使用稜鏡陣列作為光束分光鏡。照明裝置包含n元件的二維光源陣列(LS1,LS2,...LSn)及n元件的二維透鏡陣列(L1,L2,...Ln),在圖二十六中只顯示兩個光源與兩個透鏡。每一個光源是利用它所關聯的透鏡來成像至觀察員平面。光源陣列的間距與透鏡陣列的間距是要使得全部光源圖像能同時出現在觀察員平面,即包含兩個虛擬觀察員視窗的平面。在圖二十六中,並沒有顯示左眼虛擬觀察員視窗(VOWL)與右眼虛擬 觀察員視窗(VOWR),因為它們是在圖的外面,且為圖的右邊。可增加額外的視野透鏡。為了提供充份的空間同調性,透鏡陣列的間距是相似於次全像圖的典型大小,即一至數公釐的等級。照明在每一個透鏡內是水平且垂直空間同調性的,因為光源是小的或為點光源,且因為使用二維透鏡陣列。透鏡陣列可為折射、繞射或全像式的。 In this example, the beam splitter is after the spatial light modulator. The positions of the beam splitter and the spatial light modulator can also be interchanged. An example of this embodiment is shown in Fig. 26, in which a 稜鏡 array is used as a beam splitter in plan view. The illumination device comprises an array of two-dimensional two-dimensional light sources (LS1, LS2, ... LSn) and a two-dimensional lens array (L1, L2, ... Ln) of n elements, and only two light sources are shown in Figure 26. With two lenses. Each light source is imaged to the observer plane using its associated lens. The spacing of the array of light sources and the spacing of the lens arrays are such that all of the source images can appear simultaneously on the observer plane, ie, the plane containing the two virtual observer windows. In Figure 26, the left eye virtual observer window (VOWL) and the right eye virtual are not displayed. Observer windows (VOWR) because they are outside the graph and are on the right side of the graph. Additional field of view lenses can be added. In order to provide sufficient spatial coherence, the pitch of the lens array is similar to the typical size of the sub-image, ie, one to several millimeters. Illumination is horizontal and vertical spatially tonal in each lens because the source is small or a point source and because a two-dimensional lens array is used. The lens array can be refractive, diffractive or holographic.

在這個例子中,光束分光鏡是一維的垂直稜鏡陣列。入射在稜鏡一個斜面的光,會偏斜至左眼虛擬觀察員視窗(to VOWL),入射在稜鏡另一個斜面的光,會偏斜至右眼虛擬觀察員視窗(to VOWR)。從相同LS與相同透鏡產生的光線,在通過光束分光鏡之後,也為相互同調。因此,具有垂直與水平聚焦並且垂直與水平移動視差的二維編碼是可能的。 In this example, the beam splitter is a one-dimensional array of vertical turns. Light incident on a slope is deflected to the left eye virtual observer window (to VOWL), and light incident on the other slope is skewed to the right eye virtual observer window (to VOWR). Light rays generated from the same LS and the same lens are also homologous to each other after passing through the beam splitter. Therefore, two-dimensional encoding with vertical and horizontal focusing and vertical and horizontal moving parallax is possible.

全像圖是在具有二維編碼的空間光調變器上進行編碼。對於左眼及右眼的全像圖是一個欄位一個欄位的交錯,意即欄位會交錯編碼對於左眼與右眼的全像資訊。更好地是在每一個稜鏡下具有一個對於左眼全像資訊的欄位及一個對於右眼全像資訊的欄位。另一個方法,在每一個稜鏡的斜面下也可有兩個或更多個全像圖的欄位,例如三個對於左眼虛擬觀察員視窗的欄位,並且接著為三個對於右眼虛擬觀察員視窗的欄位。光束分光鏡的間距可 與空間光調變器的間距相同,或為整數(例如二或三)倍數,或者,為了能容許透視縮短(perspective shortening),光束分光鏡的間距可比空間光調變器的間距稍微小一點,或是比它的整數(例如兩或三)倍數稍微小一點。 The hologram is encoded on a spatial light modulator with two-dimensional code. The hologram for the left and right eyes is a stagger of one field of a field, meaning that the field will interleave the holographic information for the left and right eyes. It is better to have a field for the left eye hologram information and a field for the right eye hologram information under each armpit. Alternatively, there may be two or more hologram fields under each bevel, such as three fields for the left eye virtual observer window, and then three for the right eye virtual The field of the observer window. The distance between the beam splitters can be The same as the spacing of the spatial light modulator, or an integer (for example, two or three) multiple, or, in order to allow perspective shortening, the distance of the beam splitter can be slightly smaller than the spacing of the spatial light modulator, Or a little smaller than its integer (for example, two or three) multiples.

從具左眼全像的欄位發出的光會重建對於左眼的目標,並且照射左眼虛擬觀察員視窗(VOWL);從具右眼全像的欄位發出的光會重建對於右眼的目標,並且照射右眼虛擬觀察員視窗(VOWR)。因此,每一個眼睛會看到適當的重建。如果稜鏡陣列的間距是充分的小,則眼睛不能解析稜鏡結構,且稜鏡結構不會妨礙全像圖的重建。每一個眼睛會看見具有全聚焦與全移動視差的重建,並且沒有散光。 Light emitted from a field with a full-eye image of the left eye reconstructs the target for the left eye and illuminates the virtual observer window (VOWL) of the left eye; the light emitted from the field with the full image of the right eye reconstructs the target for the right eye And illuminate the right eye virtual observer window (VOWR). Therefore, each eye will see an appropriate reconstruction. If the spacing of the 稜鏡 array is sufficiently small, the eye cannot resolve the 稜鏡 structure and the 稜鏡 structure does not interfere with the reconstruction of the hologram. Each eye will see a reconstruction with full focus and full motion parallax and no astigmatism.

在光束分光鏡上將會有繞射,因為同調光會照射光束分光鏡。光束分光鏡可視為產生多重繞射階級的繞射光柵。斜的稜鏡斜面具有閃耀式光柵的效果。對於閃耀式光柵,最大強度是導向特定的繞射階級。對於稜鏡陣列,一個最大強度會從稜鏡的一個斜面導向位於左眼虛擬觀察員視窗位置的繞射階級,另一個最大強度會從稜鏡的另一個斜面導向位於右眼虛擬觀察員視窗位置的另一個繞射階級。更精確來說,封裝式(enveloping)sinc-squared函數的強度最大值是移至這些位置,而繞射階級是位在固定的位 置。稜鏡陣列會在左眼虛擬觀察員視窗的位置產生一個強度封裝sinc-squared函數最大值,在右眼虛擬觀察員視窗的位置產生另一個強度封裝sinc-squared函數最大值。其它繞射階級的強度將會是很小的(意即sinc squared強度函數最大值是狹窄的),並且將不會產生干擾串音,因為稜鏡陣列的填充因子是大的,例如接近100%。 There will be diffraction on the beam splitter because the same dimming will illuminate the beam splitter. The beam splitter can be viewed as a diffraction grating that produces multiple diffraction classes. The oblique bevel has the effect of a blazed grating. For blazed gratings, the maximum intensity is directed to a particular diffraction class. For the 稜鏡 array, one maximum intensity will be directed from one ramp of the 导向 to the diffraction level at the virtual observer window of the left eye, and the other maximum intensity will be directed from the other slope of the 导向 to the virtual observer window at the right eye. A diffraction class. More precisely, the maximum intensity of the enveloping sinc-squared function is moved to these positions, while the diffractive class is in a fixed position. Set. The 稜鏡 array produces a maximum intensity of the sinc-squared function at the position of the virtual observer window of the left eye and a maximum value of the sinc-squared function at the position of the virtual observer window of the right eye. The intensity of the other diffraction classes will be small (meaning that the sinc squared intensity function maximum is narrow) and will not cause interference crosstalk because the fill factor of the 稜鏡 array is large, for example close to 100% .

如同在習用技術中可見的,為了提供虛擬觀察員視窗給二個或多個觀察員,可藉由使用更複雜的稜鏡陣列(例如兩種類型的稜鏡,具有相同的頂角,但是不同的非對稱程度,連續地相鄰配置),產生多個虛擬觀察員視窗。然而,使用靜態的稜鏡陣列是不能夠個別地追蹤觀察員。 As can be seen in the prior art, in order to provide a virtual observer window to two or more observers, by using a more complex array of cymbals (eg, two types of cymbals, having the same apex angle, but different non- The degree of symmetry, continuously adjacently configured, produces multiple virtual observer windows. However, the use of static 稜鏡 arrays is not able to track observers individually.

在另一個例子中,每個透鏡可使用多於一個光源。每個透鏡額外的光源可利用來產生額外的虛擬觀察員視窗,提供給額外的觀察員。這是描述在WO 2004/044659(US2006/0055994)中,對於m個觀察員提供一個透鏡與m個光源的例子。在這個更進一步的例子中,利用每個透鏡m個光源與雙倍的空間多工來產生m個左邊虛擬觀察員視窗及m個右邊虛擬觀察員視窗,提供給m個觀察員。每個透鏡m個光源是以m對一的對應方式,其中m是一個整數。 In another example, more than one light source can be used per lens. Additional light sources for each lens can be utilized to create additional virtual observer windows for additional observers. This is an example of a lens and m light sources provided for m observers in WO 2004/044659 (US 2006/0055994). In this further example, m light sources per multiplex and double spatial multiplexing are used to generate m left virtual observer windows and m right virtual observer windows for m observers. Each of the lens m light sources is in an m-to-one correspondence, where m is an integer.

接著是這個實施例的例子。使用20英吋螢幕尺寸,並具有下列的參數值:觀察員距離2m,像素間距在垂直上為69μm,在水平上為207μm,使用布克哈特(Burckhardt)編碼,以及光學波長為633nm。布克哈特(Burckhardt)編碼是在垂直方向,具有69μm的次像素間距與6mm高的虛擬觀察員視窗(垂直期間)。忽略透視縮短,垂直稜稜鏡陣列的間距為414μm,也就是在每個全稜稜鏡下具有兩個空間光調變器的欄位。因此,觀察員平面中的水平期間為3mm。這也同樣為虛擬觀察員視窗的寬度。這個寬度在直徑上是小於理想大約4mm的眼睛瞳孔。在另一個相似的例子中,如果空間光調變器具有50μm的較小間距,虛擬觀察員視窗將會有25mm的寬度。 This is followed by an example of this embodiment. A 20 inch screen size was used with the following parameter values: observer distance 2 m, pixel pitch 69 μm in the vertical, 207 μm in the horizontal, Burckhardt encoding, and optical wavelength 633 nm. The Burckhardt code is in the vertical direction with a sub-pixel pitch of 69 μm and a virtual observer window (vertical period) of 6 mm height. Ignoring the perspective shortening, the vertical prismatic array has a pitch of 414 μm, that is, a field with two spatial light modulators under each full edge. Therefore, the horizontal period in the observer plane is 3 mm. This is also the width of the virtual observer window. This width is less than the ideal pupil of the eye of about 4 mm in diameter. In another similar example, if the spatial light modulator has a smaller pitch of 50 μm, the virtual observer window will have a width of 25 mm.

如果成年人眼睛的分隔為65mm(這是典型的),稜稜鏡必須偏斜光±32.5mm,在那個位置光會與包含虛擬觀察員視窗的平面相交。更精確來說,強度封裝sinc-squared函數最大值需要偏斜±32.5mm。這對於2m的觀察員距離相當於是±0.93°的角度。對於稜稜鏡折射率n=1.5,適當的稜稜鏡角度為±1.86°。稜稜鏡角度是定義為基底與稜稜鏡斜邊之間的角度。 If the adult's eye is separated by 65 mm (which is typical), the ridge must deflect light by ±32.5 mm, at which point the light will intersect the plane containing the virtual observer window. More precisely, the maximum value of the intensity package sinc-squared function needs to be skewed by ±32.5 mm. This corresponds to an angle of ±0.93° for an observer distance of 2 m. For a prismatic refractive index n = 1.5, a suitable ridge angle is ± 1.86 °. The angle of the ridge is defined as the angle between the base and the bevel of the rib.

對於在3mm的觀察員平面中的水平期間,另一眼的位置是在大約21繞射階級的距離(意即65mm除3mm)。由另一個虛擬觀察 員視窗的較高繞射階級所導致在左眼虛擬觀察員視窗與在右眼虛擬觀察員視窗之中的串音因而是可以忽略的。 For the level in the 3 mm observer plane, the position of the other eye is at a distance of approximately 21 diffraction stages (ie 65 mm divided by 3 mm). By another virtual observation The higher diffractive class of the window causes crosstalk between the left eye virtual observer window and the right eye virtual observer window to be negligible.

為了實作追蹤,光源追蹤為一個簡單的追蹤方法,意即適應光源的位置。如果空間光調變器與稜鏡陣列不是在相同的平面上,在空間光調變器像素與稜鏡之間,將會具有由視差所導致的擾亂相關橫向偏移。這將可能會導致擾亂串音。上述的例子,20英吋螢幕尺寸的像素,在垂直於每個稜鏡尖端所形成的軸的方向,可能具有70%的填充因子,也就是在每個邊上,像素大小為145μm作用區域及31μm無作用的區域。如果稜鏡陣列的建構區域是指向空間光調變器,在稜鏡陣列與空間光調變器之間的分隔可能大約為1mm。無串音的水平追蹤範圍將會是±31μm/1mm * 2m=±62mm。如果小的串音是可容許的,那麼追蹤的範圍將會較大。這個追蹤範圍並不是很大,但它是足夠允許一些追蹤進行,使得觀看者將會有較少的限制,像是限制他/她的眼睛的放置位置。 In order to implement tracking, the source tracking is a simple tracking method, which means adapting the position of the light source. If the spatial light modulator is not on the same plane as the 稜鏡 array, there will be a disturbing related lateral offset caused by the parallax between the spatial light modulator pixels and 稜鏡. This will probably cause disturbing crosstalk. In the above example, a 20-inch screen size pixel may have a fill factor of 70% in the direction perpendicular to the axis formed by each tip of the crucible, that is, on each side, the pixel size is 145 μm. 31 μm inactive area. If the construction area of the 稜鏡 array is directed to a spatial light modulator, the separation between the 稜鏡 array and the spatial light modulator may be approximately 1 mm. The horizontal tracking range without crosstalk will be ±31μm/1mm * 2m=±62mm. If small crosstalk is tolerable, the range of tracking will be larger. This tracking range is not very large, but it is enough to allow some tracking to occur so that the viewer will have fewer restrictions, such as limiting the placement of his/her eyes.

空間光調變器與稜鏡陣列之間的視差是可以避免的,較好的方法是利用將稜鏡陣列整合或是直接整合在空間光調變器中(像是折射、繞射或是全像式稜鏡陣列)。這對於產品而言將為專業構成要素(specialized component)。另一種選擇是稜鏡陣列的橫向機械移動,雖然這是較不建議的,因為移動機械部分會使得裝置變得更 為複雜。 The parallax between the spatial light modulator and the 稜鏡 array can be avoided. The better way is to integrate the 稜鏡 array or integrate it directly into the spatial light modulator (such as refraction, diffraction or full Image 稜鏡 array). This will be a specialized component for the product. Another option is the lateral mechanical movement of the 稜鏡 array, although this is less recommended because moving the mechanical part will make the device more To be complicated.

另一個關鍵性的問題是由稜鏡角度所決定的固定虛擬觀察員視窗分隔。這可能會對非標準眼睛分隔的觀察員或是z-追蹤造成困擾。其中一個解決方法,是可使用包含封裝液晶區域(encapsulated liquid-crystal domains)的組合,如圖二十一所示。接著,電場可控制折射率,以及偏斜角度。這個解決方法可與稜鏡陣列合併,以便連續地個別提供變量偏斜與固定偏斜。在另一種解決方法中,可用液晶層覆蓋稜鏡陣列的結構邊。接著,電場可控制折射率,以及偏斜角度。如果虛擬觀察員視窗具有足夠容許不同眼睛分隔的觀察員與z-追蹤如此大的寬度,則變量偏斜組合是不需要的。 Another key issue is the separation of fixed virtual observer windows as determined by the angle of view. This can be confusing for non-standard eye-separated observers or z-tracking. One solution is to use a combination of encapsulated liquid-crystal domains, as shown in Figure 21. Then, the electric field can control the refractive index, as well as the skew angle. This solution can be combined with the 稜鏡 array to continuously provide variable skew and fixed skew continuously. In another solution, the liquid crystal layer can be used to cover the structural edges of the tantalum array. Then, the electric field can control the refractive index, as well as the skew angle. If the virtual observer window has enough observers to allow different eye separations and z-tracking such a large width, a variable skew combination is not required.

一個較複雜的解決方法是使用可控制的稜鏡陣列,例如e-wetting稜鏡陣列(如圖二十七所示)或是填滿液晶的稜鏡(如圖二十一所示)。在圖二十七中,具有稜鏡元件159的層包含電極1517、1518及填滿兩個分離液體1519、1520的凹洞。每一個液體填滿凹洞的棱形部分。舉一個例子,液體可以是油或水。在液體1519、1520之間介面的斜率是依據施加在電極1517、1518的電壓所決定。如果液體具有不同的折射率,光束將會遭受偏向,偏向是由施加在電極1517、1518的電壓所決定。因此,稜鏡元件159扮 演可控制的光束指向元件。對於需要追蹤虛擬觀察員視窗至觀察員眼睛的實作,提供電子式全像技術,這對於申請人的方法而言是一個重要的特性。由申請人提出的專利申請號DE 102007024237.0、DE 102007024236.2,描述了具有稜鏡元件虛擬觀察員視窗至觀察員眼睛的追蹤。 A more complicated solution is to use a controllable array of iridium, such as an e-wetting array (as shown in Figure 27) or a liquid filled 稜鏡 (as shown in Figure 21). In Fig. 27, the layer having the tantalum element 159 includes electrodes 1517, 1518 and a cavity filled with two separated liquids 1519, 1520. Each liquid fills the prismatic portion of the cavity. As an example, the liquid can be oil or water. The slope of the interface between the liquids 1519, 1520 is determined by the voltage applied to the electrodes 1517, 1518. If the liquids have different refractive indices, the beam will be biased, which is determined by the voltage applied to the electrodes 1517, 1518. So 稜鏡 component 159 A controllable beam pointing element. Providing electronic holographic techniques for the need to track the virtual observer window to the observer's eyes is an important feature for the applicant's approach. Tracking of the virtual observer window with the 稜鏡 element to the observer's eye is described in the patent application nos. DE 102007024237.0, DE 102007024236.2.

這是一個使用於緊密手持式顯示器的實施例。Seiko(RTM)Epson(RTM)Corporation of Japan已發表單色電子式定址空間光調變器,例如D4:L3D13U 1.3英吋螢幕尺寸。一個描述的例子是使用D4:L3D13U液晶顯示器面板作為空間光調變器。它具有HDTV的解析度(1920 x 1080像素)、15μm的像素間距與28.8mm x 16.2mm的面板區域。這個面板通常使用在二維圖像投影顯示器。 This is an embodiment for a compact handheld display. Seiko (RTM) Epson (RTM) Corporation of Japan has published a monochrome electronic address space optical modulator, such as the D4:L3D13U 1.3 inch screen size. An illustrative example is the use of a D4:L3D13U liquid crystal display panel as a spatial light modulator. It has HDTV resolution (1920 x 1080 pixels), 15μm pixel pitch and 28.8mm x 16.2mm panel area. This panel is typically used in 2D image projection displays.

這個例子是計算關於663nm的波長與50cm的觀察員距離。對於這個振幅調變空間光調變器是使用軌跡相位編碼(布克哈特編碼):需要三個像素來編碼一個複數。這三個關聯像素是垂直排列的。如果稜鏡陣列光束分光鏡是整合在空間光調變器中,稜鏡陣列的間距會是30μm。如果空間光調變器與稜鏡陣列之間具有分隔,稜鏡陣列的間距會稍微不同,以處理透視縮短。 This example is to calculate the distance between the wavelength of 663 nm and the observer distance of 50 cm. For this amplitude-modulated spatial optical modulator, track phase encoding (Buckhardt encoding) is used: three pixels are required to encode a complex number. These three associated pixels are arranged vertically. If the 稜鏡 array beam splitter is integrated into the spatial light modulator, the spacing of the 稜鏡 array will be 30 μm. If there is a separation between the spatial light modulator and the 稜鏡 array, the spacing of the 稜鏡 array will be slightly different to handle the perspective shortening.

虛擬觀察員視窗的高度是由3 * 15μm=45μm的間距去編碼 一個複數所決定,且為7.0mm。虛擬觀察員視窗的寬度是由稜鏡陣列的30μm間距所決定,且為10.6mm。兩個數值都大於眼睛的瞳孔。因此,如果虛擬觀察員視窗是在眼睛的位置,每個眼睛都可以看見全像重建。全像重建是從二維編碼的全像圖而來,因此並沒有上面所述一維編碼中本身存在的閃光問題。這個確保高的空間視覺品質與高的深度印象(depth impression)品質。 The height of the virtual observer window is encoded by a spacing of 3 * 15 μm = 45 μm Determined by a complex number and is 7.0mm. The width of the virtual observer window is determined by the 30 μm spacing of the 稜鏡 array and is 10.6 mm. Both values are greater than the pupil of the eye. Therefore, if the virtual observer window is in the position of the eye, the hologram reconstruction can be seen in each eye. The holographic reconstruction is derived from a two-dimensionally encoded hologram, so there is no flash problem inherent in the one-dimensional encoding described above. This ensures high spatial visual quality and high depth impression quality.

當眼睛的分隔為65mm時,稜鏡必須偏斜光±32.5mm。更精確來說,封裝sinc-squared強度函數的強度最大值需要偏斜±32.5mm。對於0.5m的觀察員距離,這對應於±3.72°的角度。對於折射率n=1.5,適當的稜鏡角度為±7.44°。稜鏡角度是定義為基底與稜鏡斜邊之間的角度。 When the separation of the eyes is 65 mm, the 稜鏡 must be deflected by ±32.5 mm. More precisely, the maximum intensity of the package sinc-squared intensity function needs to be skewed by ±32.5 mm. For an observer distance of 0.5 m, this corresponds to an angle of ± 3.72°. For a refractive index n = 1.5, a suitable 稜鏡 angle is ± 7.44 °. The 稜鏡 angle is defined as the angle between the base and the skewed edge.

對於在10.6mm的觀察員平面中的水平期間,另一眼的位置是在大約6繞射階級的距離(意即65mm除10.6mm)。由較高繞射階級所導致的串音因而是可以忽略的,因為稜鏡陣列具有高的填充因子,意即接近於100%。 For the level in the 10.6 mm observer plane, the position of the other eye is at a distance of about 6 diffraction stages (ie 65 mm divided by 10.6 mm). The crosstalk caused by the higher diffraction level is therefore negligible because the 稜鏡 array has a high fill factor, meaning close to 100%.

這是一個使用於大顯示器的實施例。全像顯示器可設計使用相位調變的空間光調變器,並具有50μm的像素間距及20英吋的螢幕尺寸。對於如電視的應用,螢幕尺寸可能相當接近40英吋。 對於這個設計的觀察員距離為2m,波長是633nm。 This is an embodiment for use with large displays. The hologram display can be designed with a phase-modulated spatial light modulator with a pixel pitch of 50 μm and a screen size of 20 inches. For applications such as television, the screen size can be quite close to 40 inches. The observer distance for this design is 2m and the wavelength is 633nm.

使用空間光調變器的兩個相位調變像素來編碼一個複數。這兩個關聯的像素是垂直排列的,並且對應的垂直間距為2 * 50μm=100μm。藉由整合稜鏡陣列至空間光調變器中,稜鏡陣列的水平間距也為2 * 50μm=100μm,因為每個稜鏡包含兩個斜面,且每個斜面是用於空間光調變器的一個欄位。所產生12.7mm的虛擬觀察員視窗的寬度與高度是比眼睛的瞳孔還來的大。因此,如果虛擬觀察員視窗是在眼睛的位置,每個眼睛都可以看見全像重建。全像重建是從二維編碼的全像圖而來,因此並沒有一維編碼中本身存在的閃光問題。這個確保高的空間視覺品質與高的深度印象品質。 The two phase modulated pixels of the spatial light modulator are used to encode a complex number. The two associated pixels are vertically arranged and the corresponding vertical spacing is 2 * 50 μm = 100 μm. By integrating the 稜鏡 array into the spatial light modulator, the horizontal spacing of the 稜鏡 array is also 2 * 50μm = 100μm, since each 稜鏡 contains two slopes, and each slope is used for spatial light modulators a field. The width and height of the resulting 12.7 mm virtual observer window is greater than the pupil of the eye. Therefore, if the virtual observer window is in the position of the eye, the hologram reconstruction can be seen in each eye. The holographic reconstruction is derived from the two-dimensional coded hologram, so there is no flash problem in the one-dimensional coding itself. This ensures high spatial visual quality and high depth impression quality.

當眼睛的分隔為65mm時,稜鏡必須偏斜光±32.5mm。更精確來說,強度封裝sinc-squared函數的最大值需要偏斜±32.5mm。對於2m的觀察員距離,這對應於±0.93°的角度。對於折射率n=1.5,適當的稜鏡角度為±1.86°。稜鏡角度是定義為基底與稜鏡斜邊之間的角度。 When the separation of the eyes is 65 mm, the 稜鏡 must be deflected by ±32.5 mm. More precisely, the maximum value of the intensity package sinc-squared function needs to be skewed by ±32.5 mm. For an observer distance of 2 m, this corresponds to an angle of ± 0.93°. For a refractive index n = 1.5, a suitable 稜鏡 angle is ± 1.86 °. The 稜鏡 angle is defined as the angle between the base and the skewed edge.

上面的例子是對於觀察員離空間光調變器的距離為50cm與2m。概括來說,這個實施例可應用至觀察員離空間光調變器為 50cm至2m之間的距離。螢幕尺寸可為介於1cm(例如行動電話次螢幕)至50英吋(例如大尺寸電視)之間。 The above example is for the observer to be 50 cm and 2 m away from the spatial light modulator. In summary, this embodiment can be applied to an observer away from the spatial light modulator. A distance between 50cm and 2m. The screen size can range from 1cm (such as a mobile phone secondary screen) to 50 inches (such as a large TV).

雷射光源 Laser source

RGB固態雷射光源,例如以砷化銦鎵(GaInAs)或氮砷化銦鎵(GaInAsN)材料為基礎,對於緊密的全像顯示器可為適合的光源,因為它們是緊密的,且具有高程度的光定向性。這樣的光源包括由Novalux(RTM)Inc.,CA,USA所製造的RGB垂直凹面發射雷射(Vertical Cavity Surface Emitting Lasers,VCSEL)。這樣的光源可提供為單一雷射或雷射陣列,儘管每個光源可利用繞射光學元件來產生多個光束。光束可在多模光纖中傳輸,因為如果同調性對於使用在緊密的全像顯示器中是太高的,這可能會降低同調性階級,並且不會導致不需要的加工品產生,例如雷射班點圖樣。雷射光源陣列可為一維或二維的。 RGB solid-state laser sources, such as GaInAs or GaInAsN, are suitable sources for compact holographic displays because they are compact and highly Light directionality. Such light sources include RGB Vertical Cavity Surface Emitting Lasers (VCSELs) manufactured by Novalux (RTM) Inc., CA, USA. Such a light source can be provided as a single laser or laser array, although each light source can utilize a diffractive optical element to produce multiple beams. The beam can be transmitted in a multimode fiber because if the coherence is too high for use in a compact hologram display, this may reduce the homology class and will not cause unwanted artifacts, such as laser classes. Dot pattern. The array of laser sources can be one or two dimensional.

有機發光二極體材料 Organic light emitting diode material

紅外線有機發光二極體材料是已提出的。例如,Del Caño et al.在以perylenediimide-doped tris(8-quinolinolato)aluminium為基礎的有機發光二極體材料中發表了電致發光(electroluminescence),如在Applied Physics Letters vol.88,071117(2006)中所描述的內容。 Infrared organic light emitting diode materials have been proposed. For example, Del Caño et al. published electroluminescence in organic light-emitting diode materials based on perylenediimide-doped tris (8-quinolinolato) aluminium, as in Applied Physics Letters vol. 88, 071117 (2006). The content described in ).

說明了波長805nm的電致發光。Domercq et al.在J Phys Chem B vol.108,8647-8651(2004)中發表了近似紅外線有機發光二極體的材料。在透明基板上的有機發光二極體材料的製備是已說明的。例如在US7,098,591中,有機發光二極體材料是在透明的氧化銦錫電極(indium tin oxide electrodes)上製備。電極是製備在透明基板上,透明基板可為硼矽玻璃(borosilicate glass)。這些構成要素可包含在具有透明基板的有機發光二極體裝置中。氧化銦錫層可利用射頻磁濺鍍法(radio frequency magnetron sputtering tool)濺鍍至基底之上。氧化銦錫可利用包含氧化銦與氧化錫的目標來濺鍍。氧化銦錫層可具有在可見範圍中大約85%的光學傳輸。氧化銦錫可為平穩的,以避免局部增強電場的產生,局部增強電場可能會降低有機發光二極體材料的效能。小於大約2nm的均方根粗糙度是較好的。一個或數個實用的有機層可設置在圖樣電極表面(patterned electrode surface)上。有機層的厚度典型介於2nm與200nm之間。傳導層可依圖樣建構在有機層上,以便在有機層的二側形成陽極與陰極。裝置可由玻璃層密封,以保護主動層受到環境的破壞。 Electroluminescence at a wavelength of 805 nm is illustrated. Domercq et al., J. Phys Chem B vol. 108, 8647-8651 (2004), disclose materials for near-infrared organic light-emitting diodes. The preparation of an organic light-emitting diode material on a transparent substrate has been described. For example, in US 7,098,591, organic light-emitting diode materials are prepared on transparent indium tin oxide electrodes. The electrode is prepared on a transparent substrate, and the transparent substrate may be borosilicate glass. These constituent elements may be included in an organic light emitting diode device having a transparent substrate. The indium tin oxide layer can be sputtered onto the substrate using a radio frequency magnetron sputtering tool. Indium tin oxide can be sputtered using a target containing indium oxide and tin oxide. The indium tin oxide layer can have an optical transmission of about 85% in the visible range. Indium tin oxide can be smooth to avoid local enhanced electric field generation, and local enhanced electric field may reduce the performance of the organic light emitting diode material. A root mean square roughness of less than about 2 nm is preferred. One or several practical organic layers may be disposed on the patterned electrode surface. The thickness of the organic layer is typically between 2 nm and 200 nm. The conductive layer can be constructed on the organic layer in accordance with the pattern to form an anode and a cathode on both sides of the organic layer. The device may be sealed by a layer of glass to protect the active layer from environmental damage.

概要製造程序 Summary manufacturing process

以下描述製造圖二裝置的程序概要,不過這個程序的許多變化將可在習用技術中找到。 An outline of the procedure for making the apparatus of Figure 2 is described below, although many variations of this procedure will be found in the prior art.

在製造圖二裝置的程序中,選擇使用透明基板。如此的基板可為硬式的基板,例如大約200μm厚的硼矽玻璃片,或是它可為軟式基板,例如聚合物基板(polymer substrate),例如聚碳酸酯(polycarbonate)、丙烯酸的(acrylic)、聚丙烯(polypropylene)、聚氨酯(polyurethane)、聚苯乙烯(polystyrene)、聚氯孔烯(polyvinyl chloride)或是類似的基板。如同前一部份所描述的,透明電極是製備在玻璃上。如同前一部份所描述的內容,紅外線有機發光二極體材料是配置在玻璃上,並且電性接點是裝設在透明電極的另一邊上,使得像素化有機發光二極體紅外線光的放射是可能的。玻璃基板可具有提供有機發光二極體像素材料的凹處。紅外線有機發光二極體材料可印製、噴塗或溶製(solution-processed)在透明基板上。分封層,也為電性絕緣層,會接著配置在有機發光二極體像素層上。如此的分封層可為無機絕緣層(inorganic insulator layer),例如二氧化矽(silicon dioxide)、氮化矽(silicon nitride)或碳化矽(silicon carbide)或是它可為聚合型層(polymerizable layer),例如環氧(epoxy)。配置可利用濺鍍或是對於無機絕緣層利用化學氣相沉積(chemical vapour deposition),或是對於聚合型層利用印製或塗層來執行。分封層,也為電性絕緣層,可具有數微米或是小於10微米的厚度。接著,光學式定址空間光調變器的感光層會覆蓋分封層。感光層對於紅外線是敏感的,對於可見光是透明的,並 且可具有數微米的厚度。如此的光學特性可由吸收紅外線的染料來提供。光學式定址空間光調變器接著是藉由配置覆蓋在兩個導電層之間的液晶層來完成。液晶層可針對振幅調變或是相位調變進行設定,並且典型的厚度為數微米。接著,在裝置上配置紅外線過濾層。這可為具有紅外線吸收色素(infra red absorbing pigments)的聚合物薄層的形式,或者這可為無機層,例如具有紅外線吸收元件的濺鍍或化學氣相沉積長成的二氧化矽薄層。 In the process of manufacturing the device of Fig. 2, a transparent substrate is selected for use. Such a substrate may be a rigid substrate, such as a boron germanium glass sheet of about 200 μm thick, or it may be a flexible substrate, such as a polymer substrate such as polycarbonate, acrylic, Polypropylene, polyurethane, polystyrene, polyvinyl chloride or the like. As described in the previous section, the transparent electrode is prepared on glass. As described in the previous section, the infrared organic light emitting diode material is disposed on the glass, and the electrical contacts are disposed on the other side of the transparent electrode, so that the pixelated organic light emitting diode infrared light is Radiation is possible. The glass substrate can have a recess that provides an organic light emitting diode pixel material. The infrared organic light emitting diode material can be printed, sprayed or solution-processed on a transparent substrate. The sub-sealing layer, which is also an electrically insulating layer, is then disposed on the organic light-emitting diode pixel layer. Such a sealing layer may be an inorganic insulator layer such as silicon dioxide, silicon nitride or silicon carbide or it may be a polymerizable layer. For example, epoxy. The configuration can be performed by sputtering or by chemical vapour deposition for the inorganic insulating layer, or by printing or coating the polymeric layer. The sub-sealing layer, which is also an electrically insulating layer, may have a thickness of a few microns or less than 10 microns. Next, the photosensitive layer of the optically addressed spatial light modulator will cover the encapsulation layer. The photosensitive layer is sensitive to infrared light and transparent to visible light, and And it can have a thickness of several micrometers. Such optical properties can be provided by dyes that absorb infrared light. The optically addressed spatial light modulator is then completed by configuring a liquid crystal layer that covers between the two conductive layers. The liquid crystal layer can be set for amplitude modulation or phase modulation, and typically has a thickness of a few microns. Next, an infrared filter layer is disposed on the device. This may be in the form of a thin layer of polymer having infra red absorbing pigments, or it may be an inorganic layer, such as a thin layer of ceria grown with sputtering or chemical vapor deposition of an infrared absorbing element.

在兩個光學式定址空間光調變器裝置之間的層,必需要是足夠厚的,以確保在一個光學式定址空間光調變器中的電場不會影響另一個光學式定址空間光調變器的效能。紅外線過濾層可為足夠厚,以完現這個目標。然而,如果紅外線過濾層是不夠厚的時候,可利用例如藉由光學黏劑將光學式定址空間光調變器裝置與具充分厚度的玻璃片結合,或是藉由配置另外的光學透明層,例如上述的無機層或是聚合物層來增加層的厚度。無論如何,二個光學式定址空間光調變器裝置必須不能相隔太遠,使得光學繞射效應減低像素串音。例如,如果像素寬是10微米,光學式定址空間光調變器層最好應相隔小於100微米。在其中一個光學式定址空間光調變器中的液晶層是設定去執行振幅調變;在另一個光學式定址空間光調變器中的液晶層是設定去執行相位調變。 The layer between the two optically addressed spatial light modulator devices must be sufficiently thick to ensure that the electric field in one optically addressed spatial light modulator does not affect the other optically addressed spatial light modulation. The performance of the device. The infrared filter layer can be thick enough to accomplish this goal. However, if the infrared filter layer is not thick enough, the optically-addressed spatial light modulator device can be combined with a glass sheet having a sufficient thickness, for example, by an optical adhesive, or by arranging another optically transparent layer. For example, the inorganic layer or the polymer layer described above increases the thickness of the layer. In any event, the two optically addressed spatial light modulator devices must not be too far apart, so that the optical diffraction effect reduces pixel crosstalk. For example, if the pixel width is 10 microns, the optically addressed spatial light modulator layers should preferably be less than 100 microns apart. The liquid crystal layer in one of the optically addressed spatial light modulators is set to perform amplitude modulation; the liquid crystal layer in another optically addressed spatial light modulator is set to perform phase modulation.

裝置的其它部份可利用上述對於每一個光學式定址空間光調變器及有機發光二極體層的方法進行製備。或者,裝置的其它部份可製備成單一元件,接著結合到裝置第一部份上,利用例如一個用以確保在光學式定址空間光調變器層之間具有充分分隔的玻璃層,使得每一個光學式定址空間光調變器的電場不會影響另一個光學式定址空間光調變器的作用。裝置的其它部份的製備是利用配置另外的材料至裝置的第一部分上,這具有促進第二有機發光二極體層的像素與第一有機發光二極體層的像素的精確排列的優點。 Other portions of the device can be fabricated using the methods described above for each of the optically addressed spatial light modulators and organic light emitting diode layers. Alternatively, other portions of the device may be fabricated as a single component, and then bonded to the first portion of the device, using, for example, a glass layer to ensure adequate separation between the optically-addressed spatial modulator layers, such that each The electric field of an optically addressed spatial light modulator does not affect the function of another optically addressed spatial light modulator. The remainder of the device is prepared by arranging additional material onto the first portion of the device, which has the advantage of facilitating precise alignment of the pixels of the second organic light emitting diode layer with the pixels of the first organic light emitting diode layer.

也可能使用塗上傳導透明電極(conducting transparent electrode)(例如氧化銦錫)的薄分隔層,來替代使用具有充分厚度的分隔層緊鄰光學式定址空間光調變器。這個電極扮演兩個液晶層的共同電極。再者,作為傳導電極它是一個等電位面(equipotential)。因此,它保護電場,並且防止從一個光學式定址空間光調變器到另一個光學式定址空間光調變器的電場漏損。 It is also possible to use a thin spacer layer coated with a conducting transparent electrode (e.g., indium tin oxide) instead of using a spacer layer having a sufficient thickness in close proximity to the optically addressed spatial light modulator. This electrode acts as a common electrode for the two liquid crystal layers. Furthermore, as a conductive electrode it is an equipotential surface. Thus, it protects the electric field and prevents electric field leakage from one optically addressed spatial light modulator to another optically addressed spatial light modulator.

圖九顯示了一個裝置結構的例子,它可由上述程序或類似的程序進行製造。在使用的過程中,表面909照射充分同調可見的光至圖九中的裝置結構910,使得離裝置一段距離(與裝置的尺度有關)在點911的觀看者可看到三維圖像。裝置中的層,從90直到 908是不需要與相互的尺度有關。層90是基底層,例如玻璃層。層91是有機發光二極體底板層,提供有機發光二極體電源,並且可為全部或部分透明。層92是紅外線有機發光二極體陣列。層93是用於至少部分紅外線光瞄準的布拉格過濾器全像元件。在一些實施例中,層93是可以省略的。層94是電性絕緣層。層95是光學式定址空間光調變器感光與電極層。層96是用於可見光束振幅調變的液晶層。層97是分隔層,特別是薄的分隔層。層98是透明電極層。層99是線性偏光層。層900是紅外線過濾層,可傳送可見光,但是會阻擋從有機發光二極體陣列92與906的紅外線光。層901是用於可見光束相位調變的液晶層。層902是分隔層,特別是薄的分隔層。層903是光學式定址空間光調變器感光與電極層。層904是電性絕緣層。層905是用於至少部分紅外線光瞄準的布拉格過濾器全像元件。在一些實施例中,層905是可以省略的。層906是紅外線有機發光二極體陣列。層907是有機發光二極體底板層,提供有機發光二極體電源,並且可為全部或部分透明。層908是遮蓋材料的平面,例如玻璃。在製造的過程中,裝置910的製造可由基底層90開始,依次配置每一層,直到最後一層908增加完成。上述的程序會具有促進高精確的結構的層排列的優點。或者,層的製造可以分成兩個或多個部分,並且具有充份程度調整的結合在一起。 Fig. 9 shows an example of a device structure which can be manufactured by the above program or the like. During use, surface 909 illuminates substantially coherently visible light to device structure 910 in FIG. 9, such that a viewer at point 911 can see a three dimensional image at a distance from the device (related to the dimensions of the device). The layer in the device, from 90 until 908 is not required to be related to each other's scale. Layer 90 is a base layer, such as a glass layer. Layer 91 is an organic light emitting diode backplane layer that provides an organic light emitting diode power supply and may be wholly or partially transparent. Layer 92 is an array of infrared organic light emitting diodes. Layer 93 is a Bragg filter hologram element for at least partial infrared light aiming. In some embodiments, layer 93 can be omitted. Layer 94 is an electrically insulating layer. Layer 95 is an optically addressed spatial light modulator photosensitive and electrode layer. Layer 96 is a liquid crystal layer for visible beam amplitude modulation. Layer 97 is a separator layer, particularly a thin separator layer. Layer 98 is a transparent electrode layer. Layer 99 is a linear polarizing layer. Layer 900 is an infrared filter layer that transmits visible light but blocks infrared light from organic light emitting diode arrays 92 and 906. Layer 901 is a liquid crystal layer for phase modulation of the visible beam. Layer 902 is a separator layer, particularly a thin separator layer. Layer 903 is an optically addressed spatial light modulator photosensitive and electrode layer. Layer 904 is an electrically insulating layer. Layer 905 is a Bragg filter hologram element for at least partial infrared light aiming. In some embodiments, layer 905 can be omitted. Layer 906 is an array of infrared organic light emitting diodes. Layer 907 is an organic light emitting diode backplane layer that provides an organic light emitting diode power supply and may be wholly or partially transparent. Layer 908 is a plane that covers the material, such as glass. During fabrication, the fabrication of device 910 can begin with substrate layer 90, with each layer being disposed in sequence until the last layer 908 is added. The above described procedure has the advantage of facilitating a layer arrangement of highly accurate structures. Alternatively, the manufacture of the layer can be divided into two or more sections and bonded together with a sufficient degree of adjustment.

對於裝置的製造,將不想要的雙折射維持在最小值是非常重要的,例如不想要的應力引起雙折射(stress-induced birefringence)。應力引起雙折射會導致光的線性或圓形偏化狀態改變至光的橢圓偏化狀態。具有光的理想線性或圓形偏化狀態的裝置中,光的橢圓偏化狀態的存在會減少對比及色彩保真度,也因此會降低裝置的效能。 For the manufacture of the device, it is very important to maintain the unwanted birefringence at a minimum, such as unwanted stress-induced birefringence. Stress induced birefringence causes a linear or circularly polarized state of light to change to an elliptically polarized state of light. In devices with ideal linear or circularly polarized states of light, the presence of elliptically polarized states of light reduces contrast and color fidelity, and thus reduces device performance.

實作 Practice

基於習用的技術,對於上述實施例中的光學式定址空間光調變器,一個在可見光範圍為透明,但是會吸收紅外線的感光層是需要的。在另一個實作中,感光層可為圖樣式的,以便能具有能傳送可見光的透明間隔,例如紅色、綠色及藍色光束,以及會對從有機發光二極體來的光敏感的非透明區域。在這個例子中,感光材料對可見光不需要是透明的。另外,寫入光束不需要為紅外線光。在一個實作中,寫入光束能由非主要顯示色彩來產生,例如藉由黃色光有機發光二極體。在兩個光學式定址空間光調變器之間的過濾器會因此需要在黃色中,具有強大的光學吸收,使其能阻擋黃色光,但是為了達到產生有作用的光學顯示器的目的,在其它的光學波長上仍然需要有充份的傳輸。在另一個實作中,寫入光束能由紫外線有機發光二極體來產生。在兩個光學式定址空間光調變器之間的過濾器會因此需要在紫外線中,具有強大的 光學吸收,使其能阻擋紫外線光,但是為了達到產生有作用的光學顯示器的目的,在其它的光學波長上仍然需要有充份的傳輸。紫外線有機發光二極體材料已由Qiu et al.Applied Physics Letters 79,2276(2001)及Wong et al.Org.Lett.7(23),5131(2005)發表。此外,雖然強調了使用有機發光二極體材料,也是可以使用其它的發光二極體材料或是其它的顯示技術,例如表面傳導電子發射顯示器(Surface-conduction Electron-emitter Display,SED)技術。 Based on conventional techniques, for the optically addressed spatial light modulator of the above embodiment, a photosensitive layer that is transparent in the visible range but absorbs infrared light is needed. In another implementation, the photosensitive layer can be patterned to provide transparent spacing that transmits visible light, such as red, green, and blue light beams, as well as non-transparent that is sensitive to light from organic light-emitting diodes. region. In this example, the photosensitive material need not be transparent to visible light. In addition, the writing beam does not need to be infrared light. In one implementation, the write beam can be produced by a non-primary display color, such as by a yellow light organic light emitting diode. The filter between the two optically addressed spatial light modulators will therefore need to be in yellow with strong optical absorption to block yellow light, but for the purpose of producing an active optical display, in other There is still a need for sufficient transmission at the optical wavelength. In another implementation, the write beam can be produced by an ultraviolet organic light emitting diode. The filter between the two optically addressed spatial light modulators will therefore need to be strong in the UV Optical absorption allows it to block ultraviolet light, but for the purpose of producing an effective optical display, sufficient transmission is still required at other optical wavelengths. Ultraviolet organic light-emitting diode materials have been published by Qiu et al. Applied Physics Letters 79, 2276 (2001) and Wong et al. Org. Lett. 7 (23), 5131 (2005). In addition, although emphasis is placed on the use of organic light-emitting diode materials, other light-emitting diode materials or other display technologies such as Surface-conduction Electron-emitter Display (SED) technology may be used.

雖然,在此所描述的實施例是強調振幅與相位在空間光調變器中的連續編碼,而基於習用的技術,振幅與相位的二個不相等組合的任何連續權重編碼都可使用來編碼全像像素,兩個組合與乘上任何實數會相等無關,但不是乘上任何複數(實數除外)。這個理由是像素可能的全像編碼的向量空間,會藉由任何振幅與相位的兩個不相等組合,在向量空間感知中延伸,任何兩個組合與乘上任何實數會相等無關,但不是乘上任何複數(實數除外)。在參考圖中,所顯示的相關尺寸是不需要按照比例的。 Although the embodiments described herein emphasize continuous encoding of amplitude and phase in a spatial optical modulator, any continuous weighting of two unequal combinations of amplitude and phase can be used for encoding based on conventional techniques. A holographic pixel, the two combinations are independent of multiplying any real number, but not multiplied by any complex number (except for real numbers). The reason is that the vector space of the possible holographic coding of the pixel will extend in the vector space perception by any two unequal combinations of amplitude and phase. Any two combinations will be independent of any real number, but not multiplied. Any plural (except real numbers). In the reference figures, the relevant dimensions shown are not necessarily to scale.

本案所揭露之技術,得由熟習本技術人士據以實施,而其前所未有之作法亦具備專利性,爰依法提出專利之申請。惟上述之實施例尚不足以涵蓋本案所欲保護之專利範圍,因此,提出申請專利範圍如附。 The technology disclosed in this case can be implemented by a person familiar with the technology, and its unprecedented practice is also patentable, and the application for patent is filed according to law. However, the above embodiments are not sufficient to cover the scope of patents to be protected in this case. Therefore, the scope of the patent application is attached.

十二、附件一:12. Annex I: 技術入門 Introduction to technology

下面這部份的目的是提供一些實作本發明的系統中的數個重要技術入門。 The purpose of this section below is to provide an introduction to several important techniques in implementing the system of the present invention.

在習用的全像技術中,觀察員可看見目標的全像重建(這可為改變的場景);他離全像圖的距離並不是無論如何相關的。在一個典型光學排列中的重建是在或接近照射全像圖的光源的成像平面上,所以是在全像圖的傅立葉平面上。因此,重建具有相同被重建的真實世界物件的遠場光分配。 In the conventional holographic technique, the observer can see the holographic reconstruction of the target (this can be a changing scene); his distance from the hologram is not related anyway. The reconstruction in a typical optical arrangement is on or near the imaging plane of the source that illuminates the hologram, so it is on the Fourier plane of the hologram. Thus, far field light distribution with the same reconstructed real world object is reconstructed.

一個早期的系統(在WO 2004/044659及US 2006/0055994所描述的內容)定義了一個非常不同的排列,重建物件完全不是在或接近全像圖的傅立葉平面。取而代之的,虛擬觀察員視窗範圍是在全像圖的傅立葉平面;觀察員只有將他的眼睛置於這個位置,才能看見正確的重建。全像圖在液晶顯示器(或其它類型的空間光調變器)上編碼,並且被照射,使得虛擬觀察員視窗成為全像圖的傅立葉轉換(因此,它是直接成像到眼睛的傅立葉轉換);重建物件接著為全像圖的菲涅耳轉換,因為它並不是在透鏡的聚焦平面中。它是改由近場光分配(near-field light distribution)(使用球面波前為模型,相對於遠場分配的平面波前)定義。這個重建可出現在虛擬 觀察員視窗(這是如上所述的,在全像圖的傅立葉平面中)與液晶顯示器之間的任何地方,或是甚至在液晶顯示器之後作為虛擬的目標。 An earlier system (described in WO 2004/044659 and US 2006/0055994) defines a very different arrangement in which the reconstructed object is not at or near the Fourier plane of the hologram. Instead, the virtual observer window is in the Fourier plane of the hologram; the observer only sees his eyes in this position to see the correct reconstruction. The hologram is encoded on a liquid crystal display (or other type of spatial light modulator) and illuminated such that the virtual observer window becomes a Fourier transform of the hologram (hence, it is a Fourier transform directly imaged to the eye); reconstruction The object is then a Fresnel transformation of the hologram because it is not in the focal plane of the lens. It is defined by the near-field light distribution (using the spherical wavefront as the model, relative to the plane wavefront assigned to the far field). This reconstruction can appear in virtual The observer window (this is as described above, in the Fourier plane of the hologram) and anywhere between the liquid crystal display, or even behind the liquid crystal display as a virtual target.

這個方法會產生數個結果。第一,全像影像系統的設計者會面臨到的基本限制是液晶顯示器(或其它類型的光調變器)的像素間距。目標是使用像素間距是商業上可得且價格合理的液晶顯示器,來產生大的全像重建。但是在過去這是不可能的,因為下面的理由。傅立葉平面中鄰近繞射階級之間的週期性間隔是由λD/p所決定的,λ是照射光的波長,D是全像圖到傅立葉平面的距離,p是液晶顯示器的像素間距。但是在習用的全像顯示器中,重建物件是在傅立葉平面。因此,重建物件必須持續小於週期性間隔;如果它是較大的,則它的邊將從鄰近的繞射階級模糊至重建中。這將導致非常小的重建物件-典型只有數cm寬,即使具有昂貴且專業的小間距顯示器。但是利用現在的方法,虛擬觀察員視窗(這是如上所述的,設置在全像圖的傅立葉平面中)只需要和眼睛瞳孔一樣大。因此,即使液晶顯示器具有中等間距大小,也是可以使用的。並且因為重建物件可在虛擬觀察員視窗與全像圖之間完全填滿平截頭體(frustum),它的確是可以非常的大,也就是可以比週期性間隔大很多。再者,使用光學式定址空間光調變器就不會有像素紋理(pixelation),並且因此沒有週期性,使得保持虛擬觀察員 視窗小於週期性間隔的限制是不再需要的。 This method will produce several results. First, the basic limitation that designers of holographic imaging systems face is the pixel pitch of liquid crystal displays (or other types of light modulators). The goal is to use a liquid crystal display with pixel pitch that is commercially available and reasonably priced to produce a large hologram reconstruction. But in the past this was impossible because of the following reasons. The periodic spacing between adjacent diffraction classes in the Fourier plane is determined by λD/p, λ is the wavelength of the illumination light, D is the distance from the hologram to the Fourier plane, and p is the pixel pitch of the liquid crystal display. But in conventional holographic displays, the reconstructed object is in the Fourier plane. Therefore, the reconstructed object must continue to be less than the periodic interval; if it is larger, its edges will be blurred from the adjacent diffraction class to the reconstruction. This will result in very small reconstructed objects - typically only a few cm wide, even with expensive and professional small pitch displays. But with the current method, the virtual observer window (which is set in the Fourier plane of the hologram as described above) only needs to be as large as the pupil of the eye. Therefore, even if the liquid crystal display has a medium pitch size, it can be used. And because the reconstructed object completely fills the frustum between the virtual observer window and the hologram, it can be very large, which can be much larger than the periodic interval. Furthermore, there is no pixelation using optically addressed spatial light modulators, and therefore there is no periodicity, keeping virtual observers The window is less than the periodic interval limit is no longer needed.

還有另一個的優點。當計算全像圖時,以全像物件的知識為開始-例如你可能會有賽車的三維圖像檔案。那個檔案將會描述從數個不同觀看位置應該如何看見物件。在習用的全像技術中,需要用來產生賽車重建的全像圖是直接從計算密集程序中的三維圖像檔案中獲得。但虛擬觀察員視窗方法可實現一個不同且更具計算效率的技術方法。以重建物件的一個平面為開始,我們可以計算虛擬觀察員視窗,因為這是目標的菲涅耳轉換。我們接著對全部目標平面執行此,並總計結果來產生累計的菲涅耳轉換;這定義了橫越虛擬觀察員視窗的波場(wave field)。我們接著計算全像圖,作為這個虛擬觀察員視窗的傅立葉轉換。雖然虛擬觀察員視窗包含物件的全部資訊,只有單一平面的虛擬觀察員視窗必須轉換到全像圖,且不是多平面的物件。如果從虛擬觀察員視窗到全像圖不是單一的轉換步驟,而是反覆的轉換,像是遞迴式傅立葉轉換演算法(Iterative Fourier Transformation Algorithm),這會是特別有利的。每一個反覆步驟只包含虛擬觀察員視窗的單一傅立葉轉換,來取代一個對於整個物件平面,可大量的減低計算量。 There is another advantage. When calculating the hologram, start with the knowledge of holistic objects - for example you might have a 3D image of the car. That file will describe how objects should be seen from several different viewing positions. In the conventional holographic technique, the hologram required to generate the car reconstruction is obtained directly from the 3D image archive in the computationally intensive program. But the virtual observer window approach enables a different and more computationally efficient technical approach. Starting with a plane that reconstructs the object, we can calculate the virtual observer window because this is the Fresnel transformation of the target. We then do this for all target planes and sum the results to produce a cumulative Fresnel transition; this defines the wave field that traverses the virtual observer window. We then calculate the hologram as the Fourier transform of this virtual observer window. Although the virtual observer window contains all the information about the object, only a single planar virtual observer window must be converted to an hologram and not a multi-plane object. This is particularly advantageous if the transition from the virtual observer window to the hologram is not a single conversion step, but a repeated conversion, such as an Iterative Fourier Transformation Algorithm. Each of the repeated steps contains only a single Fourier transform of the virtual observer window, replacing one for the entire object plane, which can greatly reduce the amount of computation.

虛擬觀察員視窗方法的另一個令人關注的結果是需要用來重建給定目標點的全部資訊是包含在全像圖相當小的區域內;這對 比於重建給定目標點是散佈在整個全像圖的習用全像技術。因為我們需要編碼資訊到全像圖中小很多的區域,所以這也就是說明我們需要處理與編碼的資訊量是遠低於針對習用的全像圖。這接著說明對於即時影像全像技術,可使用習用的計算裝置(例如價格效能合乎大眾市場的習用數位信號處理器(digital signal processor,DSP)。 Another interesting result of the virtual observer window approach is that all the information needed to reconstruct a given target point is contained in a fairly small area of the hologram; Compared to reconstructing a given target point is a conventional holographic technique that is interspersed throughout the hologram. Because we need to encode information into a much smaller area of the hologram, this means that the amount of information we need to process and encode is much lower than that for the hologram. This, in turn, illustrates the use of conventional computing devices for instant image holography (e.g., a digital signal processor (DSP) with a price performance that is compatible with the mass market.

然而,有一些低於希望的結果。第一,觀看全像圖的距離是重要的-利用這樣的方法編碼及照射全像圖,只有當眼睛是放置在全像圖的傅立葉平面時,才會看見最佳的重建;在一般的全像圖中,觀看距離並不是很重要。然而,有各式各樣的方法用來減少此Z敏感度或圍繞它的設計,並且通常在實務上全像重建的Z敏感度不是極大的。 However, there are some lower than hopeful results. First, it is important to view the distance of the hologram - using this method to encode and illuminate the hologram, only when the eye is placed in the Fourier plane of the hologram, the best reconstruction is seen; in general As shown in the figure, viewing distance is not very important. However, there are a variety of methods for reducing this Z-sensitivity or design around it, and generally the Z-sensitivity of holographic reconstruction is not very large in practice.

同樣地,因為利用這樣的方法編碼及照射全像圖,最佳的全像重建只能從一個精確而且很小的觀看位置來看到(意即精確定義Z,如上所述,並且X與Y座標),可能會需要眼部追蹤。和Z感光度相同,有各式各樣的方法用來減少X及Y敏感度或圍繞它的設計,例如,隨著像素間距減少(因為它會跟隨液晶顯示器的製造進步),虛擬觀察員的視窗大小將會增加。此外,更有效率的編碼技術(像是基諾形式編碼)會促進使用較大部分的週期性間隔作為 虛擬觀察員視窗,並且會因此而增大虛擬觀察員視窗。 Similarly, because such a method is used to encode and illuminate the hologram, the best hologram reconstruction can only be seen from a precise and small viewing position (meaning that Z is precisely defined, as described above, and X and Y Eye coordinates may require eye tracking. As with Z sensitivity, there are a variety of methods used to reduce the X or Y sensitivity or design around it, for example, as the pixel pitch is reduced (because it will follow the manufacturing progress of the LCD), the virtual observer window The size will increase. In addition, more efficient coding techniques (like Keno format coding) facilitate the use of a larger portion of the periodic interval as The virtual observer window will increase the virtual observer window accordingly.

上面的描述是假設我們所處理的是傅立葉全像圖(Fourier holograms)。虛擬觀察員視窗是在全像圖的傅立葉平面中,意即在光源的成像平面中。例如一個優點,非繞射光是聚焦在所謂的直流點(DC-spot)中。這方法也可使用在虛擬觀察員視窗不是在光源的成像平面中的菲涅耳全像圖。然而,必須小心非繞射光不是像擾亂背景為可見的。另一點需要注意的是轉換這個詞應該解釋為包括任何數學上或計算上的方法,相等或近似於描述光傳播的轉換。轉換只是去近似實體的程序,更精準地是由馬克斯威爾(Maxwellian)波傳播方程式所定義;菲涅耳與傅立葉轉換是二階近似法,但是具有優點(i)因為相對於微分它們是代數,它們可用計算上較有效率的方式進行處理,而且(ii)可精確的實作在光學系統上。 The above description assumes that we are dealing with Fourier holograms. The virtual observer window is in the Fourier plane of the hologram, meaning in the imaging plane of the light source. For example, one advantage is that the non-diffracted light is focused in a so-called DC-spot. This method can also be used with a Fresnel hologram in the virtual observer window that is not in the imaging plane of the light source. However, care must be taken that non-diffracted light is not visible as disturbing the background. Another point to note is that the word conversion should be interpreted to include any mathematical or computational method that is equal or similar to the transformation that describes light propagation. Conversion is just a procedure to approximate the entity, more precisely defined by the Maxwellian wave propagation equation; Fresnel and Fourier transform are second-order approximations, but have advantages (i) because they are algebraic relative to the differentiation, They can be processed in a computationally efficient manner and (ii) can be accurately implemented on an optical system.

更進一步的細節在US patent application 2006-0138711、US 2006-0139710與US 2006-0250671中描述,這些內容是列為參考。 Further details are described in US Patent Application 2006-0138711, US 2006-0139710, and US 2006-0250671, the disclosures of each of which are incorporated herein by reference.

十三、附件二:XIII. Annex II:

描述中所使用的名詞術語 Terminology used in the description

電腦產生的全像圖 Computer-generated hologram

電腦產生影像全像圖(CGH)是從場景中計算而得的全像圖。電腦產生影像全像圖可包含複數數值,用來代表重建場景需要的光波的振幅與相位。電腦產生影像全像圖是可以利用例如同調光線追蹤、模擬場景與參考波之間的干擾或是傅立葉或菲涅耳轉換來計算。 The computer generated image hologram (CGH) is a hologram calculated from the scene. The computer generated image hologram may contain complex values representing the amplitude and phase of the light waves required to reconstruct the scene. Computer-generated image holograms can be calculated using, for example, coherent ray tracing, interference between simulated scenes and reference waves, or Fourier or Fresnel conversion.

編碼 coding

編碼是一個程序,在其中會提供空間光調變器(例如它的構成元件、或是對於連續的光調變器像是光學式定址空間光調變器的連續區域)影像全像圖的控制值。一般而言,全像圖包含代表振幅與相位的複數數值。 Coding is a program in which a spatial light modulator (such as its constituent elements or a continuous region of a continuous optical modulator such as an optically addressed spatial light modulator) is provided for image hologram control. value. In general, holograms contain complex values that represent amplitude and phase.

編碼區域 Coding area

編碼區域典型為影像全像圖空間上的有限區域,在那裡會編碼單一場景點的全像圖資料。空間上的限制,不是利用陡峭截斷就是利用平滑轉換來實現,平滑轉換是透過虛擬觀察員視窗到影像全像圖的傅立葉轉換來達成。 The coded region is typically a finite region of the image hologram space where the hologram data for a single scene point is encoded. Spatial constraints are achieved either by steep truncation or by smooth transitions, which are achieved by Fourier transforms from the virtual observer window to the image hologram.

傅立葉轉換 Fourier transform

傅立葉轉換是用來計算在空間光調變器遠場中的光傳播。波前是利用平面波描述。 Fourier transform is used to calculate the light propagation in the far field of the spatial light modulator. Wavefronts are described using plane waves.

傅立葉平面 Fourier plane

傅立葉平面包含在空間光調變器中的光分佈的傅立葉轉換。無需要任何的聚焦透鏡,傅立葉平面即為無窮大的。如果在接近空間光調變器的光路徑上具有聚焦透鏡,則傅立葉平面會等於包含光源的成像的平面。 The Fourier plane contains the Fourier transform of the light distribution in the spatial light modulator. Without any focusing lens, the Fourier plane is infinite. If there is a focusing lens on the light path close to the spatial light modulator, the Fourier plane will be equal to the plane of imaging containing the light source.

菲涅耳轉換 Fresnel conversion

菲涅耳轉換是用來計算在空間光調變器近場中的光的傳播。波前是描述成球面波。光波的相位因素包含一個受橫向座標二次地影響的項。 Fresnel conversion is used to calculate the propagation of light in the near field of a spatial light modulator. The wavefront is described as a spherical wave. The phase factor of the light wave contains an item that is affected twice by the lateral coordinate.

平截頭體 Frustum

虛擬平截頭體是建構在虛擬觀察員視窗與空間光調變器之間,並且在空間光調變器之後延伸。場景是在這個平截頭體中重建。重建場景的大小會受到這個平截頭體的限制,而不受空間光調變器的週期性間隔所限制。 The virtual frustum is constructed between the virtual observer window and the spatial light modulator and extends after the spatial light modulator. The scene is reconstructed in this frustum. The size of the reconstructed scene is limited by this frustum and is not limited by the periodic spacing of the spatial light modulator.

成像光學 Imaging optics

成像光學是一個或多個光學元件,例如透鏡、透鏡狀陣列或是微透鏡陣列,用來形成一個或多個光源的成像。在參考中並沒有提到成像光學,這也說明了在建構全像重建的時候,是不會使用成像光學來在傅立葉平面與一個或兩個空間光調變器之間的平面,形成一個或二個空間光調變器的成像,如文中所述。 Imaging optics are one or more optical elements, such as lenses, lenticular arrays, or microlens arrays, used to form an image of one or more light sources. Imaging optics is not mentioned in the reference, which also shows that when constructing holographic reconstruction, imaging optics are not used to form a plane between the Fourier plane and one or two spatial light modulators. Imaging of two spatial light modulators as described herein.

光系統 Light system

光系統可包括同調性光源,像是雷射,或是部分同調性光源,像發光二極體。部份同調性光源的時間及空間上同調性必須是充份的,以幫助產生好的場景重建,也就是放射表面的光譜線寬及橫向延展必須是充份小的。 The light system may include a coherent light source, such as a laser, or a partially coherent light source, such as a light emitting diode. The temporal and spatial coherence of some homogenous light sources must be sufficient to help produce good scene reconstruction, ie the spectral linewidth and lateral extent of the radiating surface must be sufficiently small.

虛擬觀察員視窗(VOW) Virtual Observer Window (VOW)

虛擬觀察員視窗為在觀察員平面中的虛擬視窗,可藉由它可看到重建的三維物件。虛擬觀察員視窗是全像圖的傅立葉轉換,並且是設置在一個周期性間隔中,以避免觀察到多個物件重建。虛擬觀察員視窗的大小必須至少是眼睛瞳孔的大小。如果在具有眼部追蹤的系統中,至少有一個虛擬觀察員視窗是設置在觀察員的眼睛位置,則虛擬觀察員視窗可遠小於觀察員的橫向移動範 圍。這促進了中等解析度並且小週期性間隔的空間光調變器的使用。 The virtual observer window is a virtual window in the observer plane, from which the reconstructed three-dimensional object can be seen. The virtual observer window is a Fourier transform of the hologram and is placed in a periodic interval to avoid observing multiple object reconstructions. The size of the virtual observer window must be at least the size of the pupil of the eye. If in the system with eye tracking, at least one virtual observer window is placed at the observer's eye position, the virtual observer window can be much smaller than the observer's lateral movement Wai. This promotes the use of medium resolution and small periodic spaced spatial light modulators.

可以將虛擬觀察員視窗想像成是鑰匙孔,藉由它可看到重建的三維物件,可以是每個眼睛一個處擬觀察員視窗,或是二個眼睛一起共用一個虛擬觀察員視窗。 The virtual observer window can be thought of as a keyhole through which the reconstructed three-dimensional object can be seen, either as an observer window at each eye or as a virtual observer window with two eyes.

週期性間隔 Periodic interval

如果電腦產生的影像全像圖是顯示在由個別可定址元件所組成的空間光調變器上,則會取樣電腦產生的影像全像圖。這個取樣會導致繞射圖樣的週期性重複。 If the computer-generated image hologram is displayed on a spatial light modulator consisting of individual addressable components, the computer-generated image hologram will be sampled. This sampling will result in periodic repetition of the diffracted pattern.

週期性間隔為λD/p,其中λ是指波長,D是全像圖至傅立葉平面之間的距離,p是空間光調變器元件的間距。然而,光學式定址空間光調變器不具有取樣,因此不會有繞射圖樣的週期性重複;重複實際上受到抑制。 The periodic interval is λD/p, where λ is the wavelength, D is the distance from the hologram to the Fourier plane, and p is the spacing of the spatial light modulator elements. However, optically addressed spatial light modulators do not have sampling, so there is no periodic repetition of the diffraction pattern; repetition is actually suppressed.

重建 reconstruction

編碼全像圖且被照射的空間光調變器會重建原始的光分佈。這個光分佈是使用來計算全像圖。理想上,觀察員是沒有辦法區別原始的光分佈與重建的光分佈。在大多數的全像顯示器中,會重建場景的光分佈。在我們的顯示器中,反而是會重建虛擬觀察員視窗中的光分佈。 The spatial light modulator that encodes the full image and is illuminated reconstructs the original light distribution. This light distribution is used to calculate the hologram. Ideally, there is no way for observers to distinguish between the original light distribution and the reconstructed light distribution. In most hologram displays, the light distribution of the scene is reconstructed. In our display, the light distribution in the virtual observer window is reconstructed instead.

場景 Scenes

被重建的場景是真實或為電腦產生的三維光分佈。在特殊的例子中,它也可以是二維的光分佈。場景構成了安排在空間中的各種固定或移動的物件。 The reconstructed scene is a three-dimensional light distribution that is real or computer generated. In a special case, it can also be a two-dimensional light distribution. The scene constitutes a variety of fixed or moving objects arranged in space.

空間光調變器(SLM) Spatial Light Modulator (SLM)

空間光調變器是用來調變進入光的波前。理想的空間光調變器應具有表示任何複數數值的能力,也就是分別控制光波的振幅與相位。然而,典型習用的空間光調變器僅能控制其中一種特性,不是振幅就是相位,帶有亦會影響另一特性的不良副作用。 A spatial light modulator is used to modulate the wavefront of incoming light. An ideal spatial light modulator should have the ability to represent any complex value, that is, to control the amplitude and phase of the light wave, respectively. However, a typical conventional spatial light modulator can only control one of the characteristics, either amplitude or phase, with undesirable side effects that would also affect the other characteristic.

10‧‧‧照明裝置 10‧‧‧Lighting device

11‧‧‧色彩過濾器陣列 11‧‧‧Color Filter Array

12‧‧‧紅外線有機發光二極體陣列 12‧‧‧Infrared organic light emitting diode array

13‧‧‧光學式定址空間光調變器 13‧‧‧Optical addressed spatial light modulator

14‧‧‧點 14‧‧‧ points

15‧‧‧緊密全像圖產生器 15‧‧‧Complete hologram generator

20‧‧‧照明裝置 20‧‧‧Lighting device

21‧‧‧色彩過濾器陣列 21‧‧‧Color Filter Array

22‧‧‧紅外線有機發光二極體陣列 22‧‧‧Infrared organic light emitting diode array

23‧‧‧光學式定址空間光調變器 23‧‧‧Optical addressed spatial light modulator

24‧‧‧點 24‧‧‧ points

25‧‧‧緊密全像圖產生器 25‧‧‧Complete hologram generator

26‧‧‧紅外線過濾器 26‧‧‧Infrared filter

27‧‧‧光學式定址空間光調變器 27‧‧‧Optical addressed spatial light modulator

28‧‧‧紅外線有機發光二極體陣列 28‧‧‧Infrared organic light emitting diode array

30‧‧‧行動電話 30‧‧‧Mobile Phone

31‧‧‧螢幕區域 31‧‧‧Screen area

32‧‧‧天線 32‧‧‧Antenna

33‧‧‧攝影機 33‧‧‧ camera

34‧‧‧攝影機 34‧‧‧ camera

35‧‧‧按鍵 35‧‧‧ button

36‧‧‧按鍵 36‧‧‧ button

1101‧‧‧聚焦元件 1101‧‧‧ Focusing components

1102‧‧‧聚焦元件 1102‧‧‧ Focusing components

1103‧‧‧聚焦元件 1103‧‧‧ Focusing components

1104‧‧‧垂直聚焦系統 1104‧‧‧Vertical Focusing System

1105‧‧‧第一繞射階級 1105‧‧‧The first diffraction class

1106‧‧‧第零繞射階級 1106‧‧‧The zeroth diffraction class

1107‧‧‧負一繞射階級 1107‧‧‧negative diffracted class

50‧‧‧微透鏡陣列 50‧‧‧Microlens array

51‧‧‧色彩過濾器陣列 51‧‧‧Color Filter Array

52‧‧‧紅外線有機發光二極體陣列 52‧‧‧Infrared organic light emitting diode array

53‧‧‧光學式定址空間光調變器 53‧‧‧Optical addressed spatial light modulator

54‧‧‧光學式定址空間光調變器 54‧‧‧Optical addressed spatial light modulator

55‧‧‧緊密的全像圖產生器 55‧‧‧Complete hologram generator

56‧‧‧點 56‧‧‧ points

57‧‧‧照明裝置 57‧‧‧Lighting device

70‧‧‧空間光調變器 70‧‧‧Space light modulator

71‧‧‧全像光學元件布拉格過濾器 71‧‧‧Whole image optical element Bragg filter

73‧‧‧單一元件 73‧‧‧ single component

74‧‧‧布拉格平面 74‧‧‧ Prague plane

75‧‧‧繞射光強度分配 75‧‧‧Diffractive light intensity distribution

76‧‧‧光線 76‧‧‧Light

80‧‧‧有機發光二極體陣列 80‧‧‧Organic LED array

81‧‧‧全像光學元件布拉格過濾器 81‧‧‧Whole Image Optical Element Bragg Filter

82‧‧‧光學式定址空間光調變器 82‧‧‧Optical addressed spatial light modulator

83‧‧‧單一有機發光二極體 83‧‧‧Single organic light-emitting diode

84‧‧‧布拉格平面 84‧‧‧ Prague plane

85‧‧‧發射的紅外線的分佈 85‧‧‧ Distribution of infrared rays emitted

86‧‧‧光射線 86‧‧‧Light rays

90‧‧‧基底層 90‧‧‧ basal layer

91‧‧‧有機發光二極體底板層 91‧‧‧ Organic light-emitting diode bottom layer

92‧‧‧紅外線有機發光二極體陣列 92‧‧‧Infrared organic light emitting diode array

93‧‧‧布拉格過濾器全像元件 93‧‧‧Prague filter hologram components

94‧‧‧電性絕緣層 94‧‧‧Electrical insulation

95‧‧‧光學式定址空間光調變器感光與電極層 95‧‧‧Optical addressed spatial light modulator photosensitive and electrode layer

96‧‧‧液晶層 96‧‧‧Liquid layer

97‧‧‧分隔層 97‧‧‧Separation layer

98‧‧‧透明電極層 98‧‧‧Transparent electrode layer

99‧‧‧線性偏光層 99‧‧‧linear polarizing layer

900‧‧‧紅外線過濾層 900‧‧‧Infrared filter

901‧‧‧液晶層 901‧‧‧Liquid layer

902‧‧‧分隔層 902‧‧‧Separation layer

903‧‧‧光學式定址空間光調變器感光與電極層 903‧‧‧Optical addressed spatial light modulator photosensitive and electrode layer

904‧‧‧電性絕緣層 904‧‧‧Electrical insulation

905‧‧‧布拉格過濾器全像元件 905‧‧ ‧ Prague filter hologram components

906‧‧‧紅外線有機發光二極體陣列 906‧‧‧Infrared organic light emitting diode array

907‧‧‧有機發光二極體底板層 907‧‧‧ Organic light-emitting diode bottom layer

098‧‧‧遮蓋材料的平面 098‧‧‧Face of the covering material

909‧‧‧表面 909‧‧‧ surface

910‧‧‧裝置結構 910‧‧‧Device structure

911‧‧‧點 911‧‧ points

100‧‧‧微透鏡陣列 100‧‧‧Microlens array

101‧‧‧色彩過濾器陣列 101‧‧‧Color Filter Array

102‧‧‧電子式定址空間光調變器 102‧‧‧Electronic Address Space Light Modulator

103‧‧‧電子式定址空間光調變器 103‧‧‧Electronic Address Space Light Modulator

104‧‧‧照明裝置 104‧‧‧Lighting device

105‧‧‧緊密全像圖產生器 105‧‧‧Compact hologram generator

106‧‧‧點 106‧‧‧ points

107‧‧‧元件 107‧‧‧ components

108‧‧‧元件 108‧‧‧ components

110‧‧‧照明裝置用 110‧‧‧ for lighting installations

111‧‧‧色彩過濾器陣列 111‧‧‧Color Filter Array

112‧‧‧電子式定址空間光調變器 112‧‧‧Electronic Address Space Light Modulator

113‧‧‧光束分光鏡元件 113‧‧‧ Beam beam splitter components

114‧‧‧點 114‧‧‧ points

115‧‧‧緊密全像圖產生器 115‧‧‧Compact hologram generator

130‧‧‧照明裝置 130‧‧‧Lighting device

131‧‧‧色彩過濾器陣列 131‧‧‧Color Filter Array

132‧‧‧電子式定址空間光調變器 132‧‧‧Electronic Address Space Light Modulator

133‧‧‧電子式定址空間光調變器 133‧‧‧Electronic Address Space Light Modulator

134‧‧‧光束分光鏡元件 134‧‧‧beam beam splitter element

135‧‧‧點 135‧‧ points

136‧‧‧緊密全像圖產生器 136‧‧‧Complete hologram generator

171‧‧‧光束 171‧‧‧ Beam

172‧‧‧光束 172‧‧‧ Beam

220‧‧‧使用者 220‧‧‧Users

221‧‧‧使用者 221‧‧‧Users

222‧‧‧連線 222‧‧‧Connected

223‧‧‧連線 223‧‧‧Connected

224‧‧‧中間系統 224‧‧‧Intermediate system

2300‧‧‧電視傳播公司 2300‧‧‧TV Communications

2301‧‧‧中間系統 2301‧‧‧Intermediate system

2302‧‧‧觀看者 2302‧‧‧ Viewers

2303‧‧‧廣告客戶 2303‧‧‧Advertisers

2304‧‧‧二維內容 2304‧‧‧Two-dimensional content

2305‧‧‧三維內容 2305‧‧‧3D content

2306‧‧‧支付費用 2306‧‧‧Payment fees

159‧‧‧稜鏡元件 159‧‧‧稜鏡 Components

1517‧‧‧電極 1517‧‧‧electrode

1518‧‧‧電極 1518‧‧‧electrode

1519‧‧‧凹洞 1519‧‧‧dove

1520‧‧‧凹洞 1520‧‧‧Deep

圖一為包含單一光學式定址空間光調變器及單一有機發光二極體陣列的全像顯示裝置示意圖;圖二為包含一對元件的全像顯示裝置示意圖,每一個元件包含單一光學式定址空間光調變器及單一有機發光二極體陣列;圖三為移動式三維顯示裝置示意圖;圖四為習用的全像顯示示意圖;圖五為利用單一有機發光二極體陣列控制兩個光學式定址空間光調變器的全像顯示示意圖;圖六A為全像顯示示意圖;圖六B為適合用於實現緊密的全像顯示示意圖;圖七為包含用以減少有關較高繞射階級問題的布拉格過濾全像光學元件的全像顯示的一個構成元件示意圖;圖八為包含用以提升有機發光二極體陣列所發射的光的準直的布拉格過濾全像光學元件的全像顯示的一個構成元件示意圖;圖九為全像顯示裝置示意圖;圖十為包含用來連續編碼振幅及相位的兩個電子式定址空間光調變器的全像顯示裝置示意圖; 圖十一為包括單一電子式定址空間光調變器的全像顯示裝置示意圖;圖十二為根據實施例,全像顯示的一個特定具體化示意圖;圖十三為包含用來連續編碼振幅及相位的兩個電子式定址空間光調變器的全像顯示裝置示意圖;圖十四為使用MathCad(RTM)所獲得的繞射模擬結果;圖十五為使用MathCad(RTM)所獲得的繞射模擬結果;圖十六為使用MathCad(RTM)所獲得的繞射模擬結果;圖十七為根據實施例,兩個電子式定址空間光調變器之間具有透鏡層的排列示意圖;圖十八為當光從一個電子式定址空間光調變器行進至第二個電子式定址空間光調變器時所發生的繞射程序示意圖;圖十九為兩個電子式定址空間光調變器的結構示意圖,在其中兩個電子式定址空間光調變器之間具有一個光纖面板;圖二十為光束指向元件示意圖;圖二十一為光束指向元件示意圖;圖二十二為促使3維視覺溝通為可能的系統示意圖;圖二十三為將二維圖像內容轉換為三維圖像內容的方法示意圖; 圖二十四為根據實施例,全像顯示元件的具體化示意圖;圖二十五為包含二維光源陣列形式的光源、二維透鏡陣列形式的透鏡、空間光調變器與光束分光鏡的全像顯示示意圖。光束分光鏡會將離開空間光調變器的光線分成兩束光,分別照射用於左眼的虛擬觀察員視窗(VOWL)及用於右眼的虛擬觀察員視窗(VOWR);圖二十六為包含二維光源陣列中的二個光源、二維透鏡陣列中的二個透鏡、空間光調變器與光束分光鏡的全像顯示示意圖。光束分光鏡會將離開空間光調變器的光線分成兩束光,分別照射用於左眼的虛擬觀察員視窗(VOWL)及用於右眼的虛擬觀察員視窗(VOWR);圖二十七為稜鏡光束指向元件的剖面示意圖。 1 is a schematic diagram of a holographic display device including a single optical address spatial light modulator and a single organic light emitting diode array; FIG. 2 is a schematic diagram of a holographic display device including a pair of components, each component including a single optical address Spatial light modulator and single organic light-emitting diode array; Figure 3 is a schematic diagram of a mobile three-dimensional display device; Figure 4 is a conventional holographic display schematic; Figure 5 is a single organic light-emitting diode array for controlling two optical Schematic diagram of the holographic display of the address space optical modulator; Figure 6A is a schematic diagram of the holographic display; Figure 6B is a schematic diagram suitable for achieving a compact holographic display; Figure 7 is included to reduce the problem associated with higher diffraction levels Schematic diagram of a constituent element of a holographic display of a holographic filter of a holographic optical element; FIG. 8 is a holographic display of a holographic filtered holographic optical element including collimation for enhancing the light emitted by the array of organic light emitting diodes Schematic diagram of constituent elements; Figure 9 is a schematic diagram of a holographic display device; Figure 10 is a diagram showing two electronic formulas for continuously encoding amplitude and phase Spatial light modulator means is a schematic diagram showing the whole image; 11 is a schematic diagram of a holographic display device including a single electronic address spatial light modulator; FIG. 12 is a specific embodiment of a holographic display according to an embodiment; FIG. 13 is included for continuously encoding amplitude and Schematic diagram of the holographic display device of two electronically-positioned spatial light modulators of phase; Figure 14 shows the diffraction simulation results obtained using MathCad (RTM); Figure 15 shows the diffraction obtained using MathCad (RTM) Simulation results; Figure 16 is a diffraction simulation result obtained using MathCad (RTM); Figure 17 is a schematic diagram showing the arrangement of lens layers between two electronic address spatial light modulators according to an embodiment; Schematic diagram of a diffraction procedure that occurs when light travels from an electronically addressed spatial light modulator to a second electronically addressed spatial light modulator; Figure 19 shows two electronically addressed spatial light modulators Schematic diagram of the structure, in which there is a fiber optic panel between two electronically-positioned spatial light modulators; Figure 20 is a schematic diagram of the beam pointing component; Figure 21 is a schematic diagram of the beam pointing component; Figure 22 is Making three-dimensional schematic view of a possible visual communication system; FIG twenty-three schematic two-dimensional images to convert the three-dimensional image content is the content of the method; Figure 24 is a schematic diagram of a holographic display element according to an embodiment; Figure 25 is a light source comprising a two-dimensional array of light sources, a lens in the form of a two-dimensional lens array, a spatial light modulator and a beam splitter The hologram shows the schematic. The beam splitter splits the light exiting the spatial light modulator into two beams, respectively illuminating the virtual observer window (VOWL) for the left eye and the virtual observer window (VOWR) for the right eye; Figure 26 contains A schematic diagram of the full image display of two light sources in a two-dimensional light source array, two lenses in a two-dimensional lens array, a spatial light modulator, and a beam splitter. The beam splitter splits the light leaving the spatial light modulator into two beams, respectively illuminating the virtual observer window (VOWL) for the left eye and the virtual observer window (VOWR) for the right eye; A schematic view of the cross section of the mirror beam directed to the component.

10‧‧‧照明裝置 10‧‧‧Lighting device

11‧‧‧色彩過濾器陣列 11‧‧‧Color Filter Array

12‧‧‧紅外線有機發光二極體陣列 12‧‧‧Infrared organic light emitting diode array

13‧‧‧光學式定址空間光調變器 13‧‧‧Optical addressed spatial light modulator

14‧‧‧點 14‧‧‧ points

15‧‧‧緊密全像圖產生器 15‧‧‧Complete hologram generator

Claims (23)

一種全像顯示裝置,包含:一有機發光二極體陣列,該有機發光二極體陣列係寫至一光學式定址空間光調變器上,該有機發光二極體陣列與該光學式定址空間光調變器形成相鄰層,其中該有機發光二極體陣列與該光學式定址空間光調變器係透過一隔離層實體上間接相互連接,該隔離層即一角過濾器或包含該角過濾器,該光學式定址空間光調變器編碼一全像圖,且當一讀取光束陣列照射該光學式定址空間光調變器,並且該光學式定址空間光調變器係經由該有機發光二極體陣列進行適當的控制時,由該全像顯示裝置產生一全像重建。 A holographic display device comprising: an organic light emitting diode array, the organic light emitting diode array is written to an optical address space optical modulator, the organic light emitting diode array and the optical addressing space The optical modulator forms an adjacent layer, wherein the organic light emitting diode array and the optically addressed spatial light modulator are physically interconnected through an isolation layer, that is, a corner filter or the angle filter is included The optically addressed spatial light modulator encodes a hologram, and when a read beam array illuminates the optically addressed spatial light modulator, and the optically addressed spatial light modulator is via the organic light emitting When the diode array is properly controlled, a holographic reconstruction is produced by the hologram display device. 如申請專利範圍第1項所述之全像顯示裝置,其中該有機發光二極體陣列與該光學式定址空間光調變器形成面對的相鄰層,並且在該有機發光二極體陣列與該光學式定址空間光調變器之間不具中間成像光學。 The hologram display device of claim 1, wherein the organic light emitting diode array and the optical address spatial light modulator form an adjacent layer facing each other, and the organic light emitting diode array is There is no intermediate imaging optics between the optically addressed spatial light modulator. 如申請專利範圍第1項所述之全像顯示裝置,其中該有機發光二極體陣列與該光學式定址空間光調變器係為固定且實體上直接相互連接。 The holographic display device of claim 1, wherein the organic light-emitting diode array and the optically-addressed spatial light modulator are fixed and physically directly connected to each other. 如申請專利範圍第1項所述之全像顯示裝置,其中該有機發光二極體陣列與該光學式定址空間光調變器係為固定且實體上間接相互連接。 The holographic display device of claim 1, wherein the organic light emitting diode array and the optically addressed spatial light modulator are fixed and physically indirectly connected to each other. 如申請專利範圍第4項所述之全像顯示裝置,其中該隔離層係為該角過濾器,例如一布拉格過濾器(Bragg filter)。 The hologram display device of claim 4, wherein the spacer layer is the corner filter, such as a Bragg filter. 如申請專利範圍第1至5項之其中一項所述之全像顯示裝置,其中該有機發光二極體陣列發射一非主要顏色顯示波長(non-primary colour display wavelength),且讀出波長(read-out wavelengths)係為紅綠藍(RGB)之一個或更多個。 The hologram display device according to any one of claims 1 to 5, wherein the organic light emitting diode array emits a non-primary colour display wavelength and the readout wavelength ( Read-out wavelengths) are one or more of red, green and blue (RGB). 如申請專利範圍第1至5項之其中一項所述之全像顯示裝置,其中該有機發光二極體陣列係為紅外線發射,並且寫至該光學式定址空間光調變器上的一紅外線感應層。 The hologram display device according to any one of claims 1 to 5, wherein the organic light emitting diode array is infrared light emitting, and an infrared light written on the optical address space light modulator Sensing layer. 如申請專利範圍第1至5項之其中一項所述之全像顯示裝置,其中該有機發光二極體陣列與該光學式定址空間光調變器層係為反射式的,而可見光從該有機發光二極體陣列與該光學式定址空間光調變器層反射至一觀察員。 The hologram display device according to any one of claims 1 to 5, wherein the organic light-emitting diode array and the optically-addressed spatial light modulator layer are reflective, and visible light is The organic light emitting diode array and the optically addressed spatial light modulator layer are reflected to an observer. 如申請專利範圍第1至5項之其中一項所述之全像顯示裝置,其中該有機發光二極體陣列係由複數個較小的覆瓦狀有機發光二極體所拼湊而成。 The hologram display device according to any one of claims 1 to 5, wherein the organic light-emitting diode array is made up of a plurality of smaller shingled organic light-emitting diodes. 如申請專利範圍第1至5項之其中一項所述之全像顯示裝置,其中該光學式定址空間光調變器包含液晶材料或其中該光學式定址空間光調變器包含作為一感光器層的一感光性染料。 The hologram display device according to any one of claims 1 to 5, wherein the optically addressed spatial light modulator comprises a liquid crystal material or wherein the optically addressed spatial light modulator comprises as a photoreceptor A photosensitive dye of the layer. 如申請專利範圍第1至5項之其中一項所述之全像顯示裝置,其中該顯示器係利用一背光與微透鏡陣列進行照射。 The hologram display device of any one of claims 1 to 5, wherein the display is illuminated with a backlight and a microlens array. 如申請專利範圍第11項所述之全像顯示裝置,其中該微透鏡陣列於該顯示器的一小部份上提供局部同調性,該部份係為編碼一資訊的該顯示器之唯一部份,該資訊係用於重建被重建物件的一給定點。 The holographic display device of claim 11, wherein the microlens array provides local coherence on a small portion of the display, the portion being the only part of the display that encodes a message, This information is used to reconstruct a given point of the reconstructed object. 如申請專利範圍第1至5項之其中一項所述之全像顯示裝置,其中該光學式定址空間光調變器係為一弗里德里克茲(Freedericksz)胞元排列,以提供相位控制。 The holographic display device of any one of claims 1 to 5, wherein the optically addressed spatial light modulator is a Freedericksz cell arrangement to provide phase control . 如申請專利範圍第1至5項之其中一項所述之全像顯示裝置, 其中該全像重建係可透過一虛擬觀察員視窗觀察到。 A hologram display device according to any one of claims 1 to 5, The hologram reconstruction can be observed through a virtual observer window. 如申請專利範圍第1至5項之其中一項所述之全像顯示裝置,其中複數個虛擬觀察員視窗可利用空間或時間多工方式舖置拼湊而成。 A holographic display device according to any one of claims 1 to 5, wherein the plurality of virtual observer windows can be patched together by spatial or temporal multiplexing. 如申請專利範圍第1至5項之其中一項所述之全像顯示裝置,其中該顯示器係為可操作的,以對於一觀察員的左眼接著右眼,在包含全像的媒介上進行時間序列地重新編碼一全像圖。 A hologram display device according to any one of claims 1 to 5, wherein the display is operable to perform time on a medium containing an omnipresent for an observer's left eye followed by a right eye Serially recode a hologram. 如申請專利範圍第1至5項之其中一項所述之全像顯示裝置,其中該顯示器產生提供一單一使用者觀看的一全像重建。 The holographic display device of any one of claims 1 to 5, wherein the display produces a holographic reconstruction that provides a single user view. 如申請專利範圍第1至5項之其中一項所述之全像顯示裝置,其中該顯示器係不需任何的投影透鏡,即可產生聚焦在一螢幕上的一二維圖像,且無關於該螢幕離在光學遠場中之該裝置之距離。 The hologram display device according to any one of claims 1 to 5, wherein the display is capable of generating a two-dimensional image focused on a screen without any projection lens, and is not related to The screen is at a distance from the device in the optical far field. 如申請專利範圍第1至5項之其中一項所述之全像顯示裝置,其中一全像圖像係透過一光束分光鏡傳送至一觀察者的每個眼睛。 A hologram display device according to any one of claims 1 to 5, wherein a holographic image is transmitted through a beam splitter to each eye of an observer. 如申請專利範圍第1至5項之其中一項所述之全像顯示裝置,其中該光學式定址空間光調變器係設置在一光源的30mm範圍之內,並且是置於一可攜式盒中。 The holographic display device according to any one of claims 1 to 5, wherein the optically-addressed spatial light modulator is disposed within a range of 30 mm of a light source and is placed in a portable type. In the box. 如申請專利範圍第1至5項之其中一項所述之全像顯示裝置,其中存在用於追蹤複數個虛擬觀察員視窗的一光束指向元件,該光束指向元件係由一等向主體材料內部的複數個液晶區域所組成,其中,該複數個區域與矩陣之間的複數個介面係為一稜形,或是一球的部分形狀,或是一圓柱的部分形狀,且該複數個液晶的方向係利用外加電場方式控制,以變化該光束指向元件的局部折射或繞射特性。 A hologram display device according to any one of claims 1 to 5, wherein there is a beam pointing element for tracking a plurality of virtual observer windows, the beam pointing element being internal to an isotropic body material a plurality of liquid crystal regions, wherein the plurality of interfaces between the plurality of regions and the matrix are a prismatic shape, or a partial shape of a ball, or a partial shape of a cylinder, and a direction of the plurality of liquid crystals It is controlled by an applied electric field to vary the local refraction or diffraction characteristics of the beam pointing element. 如申請專利範圍第1至5項之其中一項所述之全像顯示裝置,其中該光學式定址空間光調變器、一光源及與該光源排列的一透鏡陣列係全部置於一可攜式盒內,且在其中,該光源係經由該透鏡陣列擴大10及60倍。 The holographic display device according to any one of claims 1 to 5, wherein the optically-addressed spatial light modulator, a light source, and a lens array arranged with the light source are all placed in a portable Within the cassette, and wherein the source is enlarged 10 and 60 times via the lens array. 一種產生一全像重建的方法,包含使用如申請專利範圍第1項至第5項之其中一項所述之全像顯示裝置之步驟。 A method of producing a holographic reconstruction comprising the steps of using a hologram display device according to any one of claims 1 to 5.
TW96140505A 2006-10-26 2007-10-26 Universal image display device and method (1) TWI421540B (en)

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
GBGB0621360.7A GB0621360D0 (en) 2006-10-26 2006-10-26 Compact three dimensional image display device
GBGB0625838.8A GB0625838D0 (en) 2006-10-26 2006-12-22 Compact three dimensional image display device
GB0705407A GB0705407D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GBGB0705411.7A GB0705411D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GB0705408A GB0705408D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GBGB0705405.9A GB0705405D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GB0705409A GB0705409D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GBGB0705404.2A GB0705404D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GB0705412A GB0705412D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GBGB0705402.6A GB0705402D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GB0705399A GB0705399D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GB0705406A GB0705406D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GB0705410A GB0705410D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GB0705398A GB0705398D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GB0705401A GB0705401D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GB0705403A GB0705403D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device

Publications (2)

Publication Number Publication Date
TW200827771A TW200827771A (en) 2008-07-01
TWI421540B true TWI421540B (en) 2014-01-01

Family

ID=44771492

Family Applications (6)

Application Number Title Priority Date Filing Date
TW96140508A TWI442763B (en) 2006-10-26 2007-10-26 3d content generation system
TW96140506A TWI421541B (en) 2006-10-26 2007-10-26 Full image display device and method (2)
TW96140507A TWI432002B (en) 2006-10-26 2007-10-26 Mobile telephone system and method for using the same
TW96140505A TWI421540B (en) 2006-10-26 2007-10-26 Universal image display device and method (1)
TW096140510A TWI454742B (en) 2006-10-26 2007-10-26 Compact three dimensional image display device
TW96140509A TWI406115B (en) 2006-10-26 2007-10-26 Holographic display device and method for generating holographic reconstruction of three dimensional scene

Family Applications Before (3)

Application Number Title Priority Date Filing Date
TW96140508A TWI442763B (en) 2006-10-26 2007-10-26 3d content generation system
TW96140506A TWI421541B (en) 2006-10-26 2007-10-26 Full image display device and method (2)
TW96140507A TWI432002B (en) 2006-10-26 2007-10-26 Mobile telephone system and method for using the same

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW096140510A TWI454742B (en) 2006-10-26 2007-10-26 Compact three dimensional image display device
TW96140509A TWI406115B (en) 2006-10-26 2007-10-26 Holographic display device and method for generating holographic reconstruction of three dimensional scene

Country Status (2)

Country Link
JP (1) JP2014209247A (en)
TW (6) TWI442763B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5397190B2 (en) * 2009-11-27 2014-01-22 ソニー株式会社 Image processing apparatus, image processing method, and program
CN102736393B (en) 2011-04-07 2014-12-17 台达电子工业股份有限公司 Display apparatus for displaying multiple images of viewing angles
TWI501053B (en) * 2011-10-28 2015-09-21 Jing Heng Chen Holographic imaging device and method thereof
WO2013136358A1 (en) * 2012-03-12 2013-09-19 Empire Technology Development Llc Holographic image reproduction mechanism using ultraviolet light
TWI508040B (en) * 2013-01-07 2015-11-11 Chunghwa Picture Tubes Ltd Stereoscopic display apparatus and electric apparatus thereof
TWI493160B (en) * 2013-05-13 2015-07-21 Global Fiberoptics Inc Method for measuring the color uniformity of a light spot and apparatus for measuring the same
TWI537605B (en) 2014-08-28 2016-06-11 台達電子工業股份有限公司 Autostereoscopic display device and autostereoscopic display method using the same
CN104463964A (en) * 2014-12-12 2015-03-25 英华达(上海)科技有限公司 Method and equipment for acquiring three-dimensional model of object
TWI670850B (en) * 2019-03-08 2019-09-01 友達光電股份有限公司 Display device
WO2021230868A1 (en) * 2020-05-14 2021-11-18 Hewlett-Packard Development Company, L.P. Nitrogen vacancy sensor with integrated optics
CN113973198A (en) * 2020-07-22 2022-01-25 中移(苏州)软件技术有限公司 Holographic image generation method, device and equipment and computer readable storage medium
TWI778508B (en) * 2021-01-28 2022-09-21 誠屏科技股份有限公司 Display apparatus
TWI782822B (en) * 2021-12-16 2022-11-01 國立清華大學 Three-dimensional imaging method and system using scanning-type coherent diffraction

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6683665B1 (en) * 2000-11-20 2004-01-27 Sarnoff Corporation Tiled electronic display structure and method for modular repair thereof
TW594069B (en) * 1999-06-09 2004-06-21 Holographic Imaging Llc Holographic display
US20040196524A1 (en) * 2003-04-05 2004-10-07 Holographic Imaging Llc. Spatial light modulator imaging systems
US20050030608A1 (en) * 2001-09-11 2005-02-10 Kwasnick Robert F. Light emitting device addressed spatial light modulator
US20060139711A1 (en) * 2004-12-23 2006-06-29 Seereal Technologies Gmbh Method of computing a hologram

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69128103T2 (en) * 1990-04-05 1998-04-02 Seiko Epson Corp Optical device
CA2305735C (en) * 1997-12-05 2008-01-08 Dynamic Digital Depth Research Pty. Ltd. Improved image conversion and encoding techniques
JP2000078611A (en) * 1998-08-31 2000-03-14 Toshiba Corp Stereoscopic video image receiver and stereoscopic video image system
GB2350963A (en) * 1999-06-09 2000-12-13 Secr Defence Holographic Displays
JP2002123688A (en) * 2000-10-16 2002-04-26 Sony Corp Holographic stereogram print order receipt system and its method
JP2002223456A (en) * 2001-01-24 2002-08-09 Univ Nihon Image data distribution method and image distributor, and recording medium
JP3679744B2 (en) * 2001-09-26 2005-08-03 三洋電機株式会社 Image composition method and apparatus
JP2003289552A (en) * 2002-03-28 2003-10-10 Toshiba Corp Image display terminal and stereoscopic image display system
GB2390172A (en) * 2002-06-28 2003-12-31 Sharp Kk Polarising optical element and display
JP2004040445A (en) * 2002-07-03 2004-02-05 Sharp Corp Portable equipment having 3d display function and 3d transformation program
JP4473133B2 (en) * 2002-11-13 2010-06-02 シーリアル、テクノロジーズ、ゲーエムベーハー Image hologram and image hologram reproducing apparatus
GB2406730A (en) * 2003-09-30 2005-04-06 Ocuity Ltd Directional display.
JP4230331B2 (en) * 2003-10-21 2009-02-25 富士フイルム株式会社 Stereoscopic image generation apparatus and image distribution server
DE502004009944D1 (en) * 2004-12-21 2009-10-01 Alpha Biocare Gmbh PREPARATION OF DIPTERIAN DOLLS FOR THE TREATMENT OF WOUNDS
US20060187297A1 (en) * 2005-02-24 2006-08-24 Levent Onural Holographic 3-d television

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW594069B (en) * 1999-06-09 2004-06-21 Holographic Imaging Llc Holographic display
US6683665B1 (en) * 2000-11-20 2004-01-27 Sarnoff Corporation Tiled electronic display structure and method for modular repair thereof
US20050030608A1 (en) * 2001-09-11 2005-02-10 Kwasnick Robert F. Light emitting device addressed spatial light modulator
US20040196524A1 (en) * 2003-04-05 2004-10-07 Holographic Imaging Llc. Spatial light modulator imaging systems
US20060139711A1 (en) * 2004-12-23 2006-06-29 Seereal Technologies Gmbh Method of computing a hologram

Also Published As

Publication number Publication date
TWI442763B (en) 2014-06-21
TWI406115B (en) 2013-08-21
TW200827771A (en) 2008-07-01
TWI421541B (en) 2014-01-01
TW200839295A (en) 2008-10-01
TW200845698A (en) 2008-11-16
JP2014209247A (en) 2014-11-06
TW200844693A (en) 2008-11-16
TWI432002B (en) 2014-03-21
TWI454742B (en) 2014-10-01
TW200841042A (en) 2008-10-16
TW200824426A (en) 2008-06-01

Similar Documents

Publication Publication Date Title
TWI421540B (en) Universal image display device and method (1)
JP5191491B2 (en) Small holographic display device
JP5222300B2 (en) Small holographic display device
KR101457235B1 (en) Mobile telephony system comprising holographic display
US8958137B2 (en) Holographic display device with 2D encoding
US8416479B2 (en) Compact holographic display device
US20100118117A1 (en) 3d content generation system
KR20090094078A (en) Holographic display device
TWI403868B (en) Holographic display device and method
WO2008049910A1 (en) Compact holograhic display device