TW200824046A - Resistive random access memory (RRAM) and method for fabricating the same - Google Patents

Resistive random access memory (RRAM) and method for fabricating the same Download PDF

Info

Publication number
TW200824046A
TW200824046A TW95142795A TW95142795A TW200824046A TW 200824046 A TW200824046 A TW 200824046A TW 95142795 A TW95142795 A TW 95142795A TW 95142795 A TW95142795 A TW 95142795A TW 200824046 A TW200824046 A TW 200824046A
Authority
TW
Taiwan
Prior art keywords
metal oxide
random access
access memory
layer
resistive random
Prior art date
Application number
TW95142795A
Other languages
Chinese (zh)
Other versions
TWI318437B (en
Inventor
Heng-Yuan Lee
Pang-Hsu Chen
Ching-Chiun Wang
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW95142795A priority Critical patent/TWI318437B/en
Publication of TW200824046A publication Critical patent/TW200824046A/en
Application granted granted Critical
Publication of TWI318437B publication Critical patent/TWI318437B/en

Links

Abstract

A resistive random access memory device comprises a first electrode, a second electrode and a resistive switching layer sandwiched between the first and second electrodes, wherein the resistive switching layer comprises a non-stoichiometric first metal oxide sub-layer and a stoichiometric second metal oxide sub-layer formed over the non-stoichiometric first metal oxide sub-layer.

Description

200824046 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種非揮發性記憶體,且特別是關於 一種電阻式隨機存取記憶體(resistance random access memory,RRAM )及其所應用之記憶胞元件。 【先前技術】 φ 由於手機、數位相機和筆記型電腦等可攜式個人設備 的逐漸流行,鑑於低耗能的考量,上述設備開機或待機的 時間比例較長,而於開機與待機狀況下仍舊必須保持資訊 的記憶狀態,非揮發性記憶體就成為必備的元件之一。因 此,非揮發性記憶體於消費性電子產品上的應用也逐漸增 大。目前,非揮發性記憶體主要以快閃記憶體(flash)為主 然而,快閃記憶體仍面臨著操作電壓過大、操作速度 φ 慢、耐久力不夠等缺點。另外,其亦可能面臨到因元件縮 小所導致之過薄的穿透閘極氧化層所導致之記憶時間不夠 長等缺點。 為了克服前述缺點,電阻式記憶體(RRAM)為目前業界 所研發出之眾多新穎記憶體之一,其係利用可變電阻的原 理來製作非揮發性記憶體。目前研發出之電阻式記憶體仍 面臨著較高的重置電流(reset current,>lmA)之問題,如此 高之操作電流使得其商業上之應用變的困難。 0949-A21771TWF(N2);P51950080TW;shawnchang 5 200824046 【發明内容】 有鑑於此,便需要一種較為改善之電阻式隨機存取記 憶體,其具有較低之重置電流,進而提升其於商業上之應 用性。 依據一實施例,本發明提供了一種電阻式隨機存取記 憶體,包括: 一第一電極;一第二電極;以及一電阻轉換層,埋設 於該第一電極與第二電極之間。其中該電阻轉換層包括非 •化學計量比(non-stoichiometric)之一第一金屬氧化物次層 以及設置於該第一金屬氧化物次層上之化學計量比 (stoichiometric)之一第二金屬氧化物次層。 依據另一實施例,本發明提供了一種電阻式隨機存取 記憶體之製造方法,包括: 提供一基底;形成一第一電極於該基底上;形成一電 阻轉換層於該下電極上以及形成一第二電極於該電阻轉換 層上。其中,上述電阻轉換層包括非化學計量比 (non-stoichiometric)之一第一金屬氧化物次層以及設置於 該第一金屬氧化物次層上之化學計量比(stoichiometric)之 一第二金屬氧化物次層。 為了讓本發明之上述和其他目的、特徵、和優點能更 明顯易懂,下文特舉一較佳實施例,並配合所附圖示,作 詳細說明如下: 【實施方式】 第1-5圖為一系列示意圖,用以說明本發明之電阻式 0949-A21771TWF(N2);P51950080TW;shawnchang 6 200824046 隨機存取記憶體及其應用之記憶胞結構。 首先,請參照第1圖,顯示了本案申請人所知悉之一 電阻式隨機存取記憶體之記憶胞結構之剖面情形。第1圖 所示之記憶胞結構係與本發明之電阻式隨機存取記憶胞比 較之用,而非用以限定本發明之範疇。 請參照第1圖,記憶胞主要包括一基底或一介電層 10,其内可設置有如電晶體或二極體之主動裝置(未顯 示)。於基底/介電層10上則設置有一介電層12,介電層 _ 12内埋設有一導電層14。於介電層12上則設置有另一介 電層16,於介電層16内則埋設有一電阻轉換層18。在此, 電阻轉換層18係採用化學計量比之可變電阻材料,例如為 氧化鎳(NiO)。於介電層16上則設置有另一導電層20。導 電層20係覆蓋電阻轉換層18並部份覆蓋介電層16。經由 實驗證明,當電阻層18採用化學計量比之氧化鎳材料時, 採用如第1圖所不之電阻式記憶胞結構所製成之電阻式記 憶體表現出高於1mA之重置電流,如此之表現並不利於其 ®於商業上之應用。 因此,本發明提供了一種電阻式隨機存取記憶體之記 憶胞結構,其重置電流可降至低於1mA之程度,有利於其 餘商業上之應用性。請參照第2圖,顯示了依據本發明一 實施例之記憶胞結構的剖面情形。 如第2圖所示,記憶胞結構主要包括一基底或一介電 層100,其内可設置有如電晶體或二極體之主動裝置(未顯 示)。於基底/介電層100上則設置有一介電層102,介電層 0949-A21771TWF(N2);P51950080TW;shawnchang 7 200824046 102内埋設有一導電層104。於介電層102上則設置有另一 介電層1〇6,於介電層106内則埋設有一電阻轉換層1〇8。 在此,電阻轉換層1〇8為一複合金屬氧化物層,其包括可 變電阻材料,例如Hf、A卜Zr、Nb、Ti、Ta、La等金屬(以 Z表示)之二元金屬氧化物(z〇x)。如第2圖所示,電阻轉 換層108包括一第一金屬氧化物次層i〇8b以及設置於第一 金屬氧化物次層上l〇8b上之一第二金屬氧化物次層200824046 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD The present invention relates to a non-volatile memory, and more particularly to a resistive random access memory (RRAM) and its application. Memory cell component. [Prior Art] φ Due to the gradual popularization of portable personal devices such as mobile phones, digital cameras and notebook computers, in view of low energy consumption, the above devices have a long time to turn on or standby, and still remain in the boot and standby conditions. Non-volatile memory is one of the must-have components in order to maintain the memory state of information. As a result, the use of non-volatile memory in consumer electronics has grown. At present, non-volatile memory is mainly flash memory. However, flash memory still faces the disadvantages of excessive operating voltage, slow operating speed, and insufficient durability. In addition, it may also face the disadvantage that the memory time caused by the excessively thin gate oxide layer caused by the shrinkage of the element is not long enough. In order to overcome the aforementioned shortcomings, Resistive Memory (RRAM) is one of the many novel memories developed by the industry at present, which utilizes the principle of a variable resistor to make non-volatile memory. The resistive memory currently developed still faces the problem of high reset current (>lmA), and such high operating current makes its commercial application difficult. 0949-A21771TWF(N2); P51950080TW; shawnchang 5 200824046 SUMMARY OF THE INVENTION In view of the above, there is a need for a relatively improved resistive random access memory having a lower reset current, thereby enhancing its commercial Application. According to an embodiment, the present invention provides a resistive random access memory body comprising: a first electrode; a second electrode; and a resistance conversion layer buried between the first electrode and the second electrode. Wherein the resistance conversion layer comprises one of a non-stoichiometric first metal oxide sublayer and a stoichiometric one of the stoichiometric ones disposed on the first metal oxide sublayer Sublayer. According to another embodiment, the present invention provides a method of fabricating a resistive random access memory, comprising: providing a substrate; forming a first electrode on the substrate; forming a resistance conversion layer on the lower electrode and forming A second electrode is on the resistance conversion layer. Wherein the resistance conversion layer comprises one of a non-stoichiometric first metal oxide sublayer and a stoichiometric one disposed on the first metal oxide sublayer, the second metal oxide Sublayer. The above and other objects, features, and advantages of the present invention will become more apparent and understood. It is a series of schematic diagrams for explaining the memory cell structure of the resistive type 0949-A21771TWF(N2); P51950080TW; shawnchang 6 200824046 random access memory and its application of the present invention. First, please refer to Fig. 1, which shows a cross-sectional view of the memory cell structure of a resistive random access memory known to the applicant. The memory cell structure shown in Fig. 1 is used in comparison with the resistive random access memory cell of the present invention, and is not intended to limit the scope of the present invention. Referring to Figure 1, the memory cell mainly comprises a substrate or a dielectric layer 10, which may be provided with an active device such as a transistor or a diode (not shown). A dielectric layer 12 is disposed on the substrate/dielectric layer 10, and a conductive layer 14 is embedded in the dielectric layer 12. Another dielectric layer 16 is disposed on the dielectric layer 12, and a resistance conversion layer 18 is buried in the dielectric layer 16. Here, the resistance conversion layer 18 is a stoichiometric variable resistance material such as nickel oxide (NiO). Another conductive layer 20 is disposed on the dielectric layer 16. The conductive layer 20 covers the resistance conversion layer 18 and partially covers the dielectric layer 16. It has been experimentally proved that when the resistive layer 18 is made of a stoichiometric ratio of nickel oxide material, the resistive memory made of the resistive memory cell structure as shown in FIG. 1 exhibits a reset current higher than 1 mA. The performance is not conducive to its commercial application. Accordingly, the present invention provides a memory cell structure for a resistive random access memory whose reset current can be reduced to less than 1 mA, which is advantageous for commercial applications. Referring to Figure 2, there is shown a cross-sectional view of a memory cell structure in accordance with an embodiment of the present invention. As shown in Fig. 2, the memory cell structure mainly includes a substrate or a dielectric layer 100 in which an active device such as a transistor or a diode (not shown) may be disposed. A dielectric layer 102 is disposed on the substrate/dielectric layer 100, and a conductive layer 104 is embedded in the dielectric layer 0949-A21771TWF(N2); P51950080TW; shawnchang 7 200824046102. Another dielectric layer 1〇6 is disposed on the dielectric layer 102, and a resistance conversion layer 1〇8 is buried in the dielectric layer 106. Here, the resistance conversion layer 1〇8 is a composite metal oxide layer including a variable resistance material such as a binary metal oxide of a metal such as Hf, Ab, Zr, Nb, Ti, Ta, and La (indicated by Z). (z〇x). As shown in Fig. 2, the resistance conversion layer 108 includes a first metal oxide sublayer i 〇 8b and a second metal oxide sublayer disposed on the first metal oxide sublayer l 〇 8b.

l〇8a,其中第一金屬氧化物次層108b與第二金屬氧化物次 層108採用具有相同元素之金屬氧化物,惟兩者間所採用 材料具有差異,第一金屬氧化物次層l〇8b包括化學計量比 (non-stoichiometric)之金屬氧化物材料,例如為Hf〇h、 A12〇3_x、ZrOx、NbOx、TiOx、NiOx、TaOx、La〇x 等金屬氧 化物,而第二金屬氧化物次層l〇8a包括化學計量比 (stoichiometric)之相同金屬氧化物材料,例如為11仍2、L〇8a, wherein the first metal oxide sublayer 108b and the second metal oxide sublayer 108 are made of a metal oxide having the same element, but the materials used are different, and the first metal oxide sublayer is 8b includes a non-stoichiometric metal oxide material such as a metal oxide such as Hf〇h, A12〇3_x, ZrOx, NbOx, TiOx, NiOx, TaOx, La〇x, and the second metal oxide. The sub-layer 8a includes a stoichiometric same metal oxide material, for example, 11 is still 2

Al2〇3、Zr0、Nb0、Ti0、Nl0、Ta0、La〇 等材料。舉例 來說,第一金屬氧化物次層108b可包括Hf〇 μ 一人 2-χ ’而弟—至 屬氧化物層108a包括Hf〇2,而此時义較佳地人 λ./;· χ α 71 於 0 · 11 1*5。 弟一金屬氧化物次層l〇8b與第二金屬_ 之膜厚比約介於ι:ιοο〜ιοο:ι。於介電居勿一人層108a間 一導電層110。導電層110係覆蓋電^ 06上則設置有另Al2〇3, Zr0, Nb0, Ti0, N10, Ta0, La〇, etc. For example, the first metal oxide sub-layer 108b may include Hf〇μ one person 2-χ' and the dianth-to-oxide layer 108a includes Hf〇2, and at this time, the meaning is preferably λ./;· χ α 71 is at 0 · 11 1*5. The ratio of the film thickness of the metal oxide sublayer l〇8b to the second metal _ is about ι:ιοο~ιοο:ι. A dielectric layer 110 is disposed between the dielectric layers 108a. The conductive layer 110 is covered with electricity, and the other layer is provided with another

覆蓋介電層106。導電層104與11〇可V"換層108並部份 或Ru等導電材質。 匕括如Pt、Au、TlN 扭用兼具非化學計 軋化材料時,採用如第 經由實驗證明,當電阻轉換層 量比與化學計量比之複合型態金屬 0949-A21771TWF(N2);P51950080TW;shawnchang 8 200824046 2圖所示之記憶胞結構所製成之電卩且々 % |八冗憶體且有約 ΙΟΟμΑ之重置電流。由於如此之記憶胞姓 /、 t、、、α獨:之重置雷气可 降低至低於1mA之程度,因此極有利於商業上之鹿用" 或者,如第3圖所示,電阻轉換層1〇8 第三金屬氧化物次層108c,其係設置於篦_人可更包括一 弟一金屬氧化物次 層108a之上。在此,第三金屬氧化物次 ㈢亦採用相 同於第一金屬氧化物次層1〇扑之 <非化學計量比 (non-stoichiometric)之金屬氧化物材料。如 一 時第三金屬氧化物次層l〇8c、第一金屬氧 图所示此 與第二金屬氧化物次層108a間之膜;^ 士 0物久層1〇8b 1:一卜如第2、3圖所示之複=約分別介於 之厚度約介於10~100奈米。此時,第—八^化物層108 108b與第三金屬氧化物次層⑽c較佳地包括邮—,二 第二金屬氧化物次層购包括Hf02,而x較佳=介於 〇· 1〜1.5 〇 如第2與3圖中所示之電阻式隨嫵六 #、+、, ,ι 电丨且式k機存取記憶體之製造 間述如下,首先提供一基底或—介雷 八+R ;丨電層w〇。接著於基底/ ’丨龟層100上形成一介電層1〇2,介+ "* 电層102中可設詈古 一開口(未標號),上述開口部份霖屮7 ^ ’ 1nA L ^ 出了下方之基底/介電Μ 1 〇〇。接者,於介電層102内之開口形 ^ 、 』 ^成一導電層104,、 作為一下電極之用。接著於介電居 ^ 兒尽川2上另外形成一 a !、;〇6’並於介電層106中形成-開口⑷票號)。上述開: 牙透了介電層106並部份露出下方夕道+ J ° 人a 之冷電層104。接著私 介電層106内之開口中形成一電阻鏟 号於 电丨且轉換層1〇8,例如為 〇949~A2l771TWF(N2);P51950080TW;shawnchang 9 200824046 圖或第3圖所示之複合金屬氧化物層結構。電阻轉換層i〇8 中之各金屬氧化次層可採用化學氣相沉積法(CVD)、物理 氣相沉積法(PVD)或原子層沉積法(ALD)而依序或同時製 成。車乂佳地’電阻轉換層108中之各金屬氧化物次層係採 用原子層沉積法所製成,以形成含Hf〇2以及Hf02_x等材 料次層之電阻轉換層1〇8為例,可採用Hfcl4以及H2〇作 為反應之先驅物,並於介於200〜400°C下溫度沉積而成, 而上述各別之先驅物的脈衝時間約介於100〜1000毫秒。並 於原子層沉積中適度調變上述先驅物比例,因而形成如第 2圖或第3圖所示之同時含有非化學計量比與化學計量比 至_氧化物之複合金屬氧化物層結構。或者,電阻轉換 層108亦可採用利用如含氧或含水氣氛下處理由原子沉積 而成之一化學計量比之金屬氧化層而得到具有非化學計量 比之一金屬氧化物層,進而製備出如第2圖與第3圖所示 之電阻轉換層1G8。接著,於介電層廳上形成一導電層 no’ v包層係覆蓋了電阻轉換層1〇8以及部份之鄰近介電 層06以作為上電極之用,進而製備出適用於本發明之 電阻式隨機存取記憶體之記憶胞結構。 另外,第4圖與第5圖為一系列示意圖,顯示了本發 明之電阻式隨機存取記憶體之剖面情形,其係採用如第2 圖或第3圖之電阻式隨機存取記憶胞結構以及一主動裝置 而組成。 如第4圖所不’顯不了包括本發明之電阻式隨機存取 記憶胞結構與電晶體之一電阻式隨機存取記憶體。在此, 0949-A21771TWF(N2);P51950080TW;shawnchang 200824046 電晶體包括設置於一基底200上一閘極G以及設置於基底 200内之源極區220以及汲極區240,而閘極G則包括依 序堆疊於基底200上之一閘介電層206與一閘電極208。 於基底上210則另外設置有一介電層210,覆蓋上述電晶 體。於介電層210内則埋設有如第2圖與第3圖所示之記 憶胞結構,在此仍繪示為電阻轉換層1〇8以及導電層1〇4 與110,其中導電層104係埋設於介電層210内並電性連 結於源極區220,而導電層110係設置於介電層210之上, 而電阻轉換層108則埋設於位於導電層no與1〇4間之介 電層210中。在此,電晶體可為N或p型電晶體,故源極 區220與汲極區240可視其導電型態而為一 n型或p型之 離子摻雜區。於介電層210内可更設置有導電插拴214與 212,其分別連結於閘電極208以及汲極區212,以利後續 電性連結之用。 請麥照第5圖,顯示了包括本發明之電阻式隨機存取 記憶胞結構與二極體之一電阻式隨機存取記憶體。在此, —極體包括設置於一基底300内之一第一井區302,位於 第一井區302内之一第二井區304以及一接觸區306。基 底300具有一第一摻雜特性,例如N或p型摻雜,而第一 井區302則具有一第二摻雜特性,其與基底3〇〇之第一摻 雜特性相反。摻雜區306則具有相同於第一井區302之掺 雜特性’椎其離子摻雜濃度高於第一井區川2之摻雜濃 度。於基底3⑽上則設置有一介電層3〇8,於介電層3〇8 内則設置有如第2圖與第3圖所示之記憶胞結構,在此仍 〇949-A21771TWF(N2);P51950080TW;shawnchang 11 200824046 繪示為電阻轉換層108以及導電層104與110,其中導電 層104係埋設於介電層308内並電性連結於第二井區 302,而導電層110係設置於介電層308之上,而電阻轉換 層108則埋設於位於導電層110與104間之介電層308中。 於介電層308内可更設置有導電插拴310,其係連結於接 觸區306,以利後續電性連結之用。 除了前述之低重置電流優點之外,本發明之電阻式隨 機存取記憶體亦可避免習知快閃記憶體因元件縮小時可能 • 遭遇之過薄的穿透閘極氧化層所導致之記憶時間不夠長等 缺點,進而提升其商業應用上之可能性。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 和範圍内,當可作各種之更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準。The dielectric layer 106 is covered. The conductive layers 104 and 11 can be V" replaced with a layer 108 or a conductive material such as Ru. For example, when Pt, Au, and TlN are twisted and used as non-chemical rolling materials, the composite type metal 0949-A21771TWF(N2); P51950080TW is used as shown in the experiment. ;shawnchang 8 200824046 2 The memory cell structure shown in the figure is made of electricity and 々% | eight redundant body and has a reset current of about ΙΟΟμΑ. Because of this memory, the surname of the memory, t, and α alone can be reduced to less than 1 mA, so it is very beneficial for commercial deer. Or, as shown in Figure 3, the resistor The conversion layer 1 〇 8 is a third metal oxide sub-layer 108c, which is disposed on the 篦 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Here, the third metal oxide (3) also employs a <non-stoichiometric metal oxide material which is the same as the first metal oxide sublayer. For example, the third metal oxide sublayer l〇8c, the film between the second metal oxide sublayer 108a and the second metal oxide sublayer 108a; ^士0物久层1〇8b 1:一卜如第2 The thickness of the figure shown in Fig. 3 is about 10 to 100 nm. At this time, the first-eight-layer layer 108 108b and the third metal oxide sub-layer (10)c preferably include a postal-, second-second metal oxide sub-layer including Hf02, and x is preferably = 〇·1~ 1.5 For example, the resistive type shown in Figures 2 and 3 is connected to the six #, +, , , ι electric 丨 and the k-machine access memory is described as follows, first providing a base or - Jie Lei eight + R; 丨 electric layer w〇. Then, a dielectric layer 1〇2 is formed on the substrate/'s tortoise layer 100, and an opening (not numbered) can be set in the dielectric layer 102, and the opening portion is 7^'1nA L ^ The base/dielectric Μ 1 下方 below. The opening shape in the dielectric layer 102 is formed into a conductive layer 104 for use as a lower electrode. Then, a ', 〇6' is formed on the dielectric layer 2, and an opening (4) ticket number is formed in the dielectric layer 106. The above opening: the teeth penetrate the dielectric layer 106 and partially expose the cold electric layer 104 of the lower side + J ° person a. Then, a resistor is formed in the opening in the private dielectric layer 106 and the conversion layer 1〇8 is formed, for example, 〇949~A2l771TWF(N2); P51950080TW; shawnchang 9 200824046 or the composite metal shown in FIG. Oxide layer structure. Each of the metal oxide sublayers in the resistance conversion layer i〇8 may be sequentially or simultaneously formed by chemical vapor deposition (CVD), physical vapor deposition (PVD) or atomic layer deposition (ALD). The metal oxide sublayer in the resistance conversion layer 108 of the ruthenium is made by atomic layer deposition method to form a resistance conversion layer 1〇8 containing a sublayer of materials such as Hf〇2 and Hf02_x. Hfcl4 and H2 are used as precursors of the reaction, and are deposited at a temperature of 200 to 400 ° C, and the pulse time of each of the above precursors is about 100 to 1000 msec. Further, the ratio of the precursors is moderately adjusted in the atomic layer deposition, thereby forming a composite metal oxide layer structure including a non-stoichiometric ratio and a stoichiometric ratio to the oxide as shown in Fig. 2 or Fig. 3. Alternatively, the resistance conversion layer 108 may also be a metal oxide layer having a non-stoichiometric ratio obtained by treating a metal oxide layer formed by atomic deposition in an oxygen-containing or aqueous atmosphere to prepare a metal oxide layer. The resistance conversion layer 1G8 shown in Figs. 2 and 3. Then, a conductive layer no'v cladding layer is formed on the dielectric layer to cover the resistance conversion layer 1〇8 and a portion of the adjacent dielectric layer 06 for use as an upper electrode, thereby preparing a method suitable for the present invention. Memory cell structure of resistive random access memory. In addition, FIG. 4 and FIG. 5 are a series of schematic diagrams showing a cross-sectional view of the resistive random access memory of the present invention, which is a resistive random access memory cell structure as shown in FIG. 2 or FIG. And an active device. As shown in Fig. 4, a resistive random access memory cell structure of the present invention and a resistive random access memory including a transistor are not shown. Here, the 0949-A21771TWF (N2); P51950080TW; shawnchang 200824046 transistor includes a gate G disposed on a substrate 200 and a source region 220 and a drain region 240 disposed in the substrate 200, and the gate G includes A gate dielectric layer 206 and a gate electrode 208 are stacked on the substrate 200 in sequence. A dielectric layer 210 is additionally disposed on the substrate 210 to cover the above-mentioned electric crystal. The memory cell structure as shown in FIG. 2 and FIG. 3 is embedded in the dielectric layer 210, and is still shown as a resistance conversion layer 1〇8 and conductive layers 1〇4 and 110, wherein the conductive layer 104 is buried. The dielectric layer 110 is electrically connected to the source region 220, and the conductive layer 110 is disposed on the dielectric layer 210, and the resistance conversion layer 108 is buried in the dielectric between the conductive layers no and 〇4. In layer 210. Here, the transistor can be an N- or p-type transistor, so that the source region 220 and the drain region 240 can be an n-type or p-type ion doped region depending on their conductivity type. Conductive plugs 214 and 212 may be further disposed in the dielectric layer 210, which are respectively connected to the gate electrode 208 and the drain region 212 for subsequent electrical connection. Please refer to Fig. 5, which shows a resistive random access memory cell structure of the present invention and a resistive random access memory of a diode. Here, the pole body includes a first well region 302 disposed in a substrate 300, a second well region 304 and a contact region 306 located in the first well region 302. Substrate 300 has a first doping characteristic, such as N or p-type doping, while first well region 302 has a second doping characteristic that is opposite to the first doping characteristic of substrate 3. The doped region 306 has the same doping characteristics as the first well region 302. The ion doping concentration of the spine is higher than that of the first well region. a dielectric layer 3〇8 is disposed on the substrate 3(10), and a memory cell structure as shown in FIG. 2 and FIG. 3 is disposed in the dielectric layer 3〇8, and is still 〇949-A21771TWF(N2); P51950080TW; shawnchang 11 200824046 is shown as a resistance conversion layer 108 and conductive layers 104 and 110, wherein the conductive layer 104 is embedded in the dielectric layer 308 and electrically connected to the second well region 302, and the conductive layer 110 is disposed in the dielectric layer 110 Above the electrical layer 308, the resistive switching layer 108 is embedded in the dielectric layer 308 between the conductive layers 110 and 104. A conductive plug 310 may be further disposed in the dielectric layer 308, which is coupled to the contact region 306 for subsequent electrical connection. In addition to the aforementioned advantages of low reset current, the resistive random access memory of the present invention can also avoid the possibility that the conventional flash memory may be exposed to excessively thin gate oxide layers due to component shrinkage. The shortcomings of memory time are not long enough to enhance the possibility of commercial application. While the present invention has been described above by way of a preferred embodiment, it is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application.

0949-A21771TWF(N2);P51950080TW;shawnchang 12 200824046 【圖式簡單說明】 第1圖為一示意圖,部份顯示了依據本發明一實施例 之一電阻式隨機存取記憶體之剖面情形; 第2圖為一示意圖,部份顯示了依據本發明一實施例 之一電阻式隨機存取記憶體之剖面情形; 第3圖為一示意圖,部份顯示了依據本發明另一實施 例之一電阻式隨機存取記憶體之剖面情形; φ 第4圖為一示意圖,顯示了依據本發明一實施例之一 電阻式隨機存取記憶體之剖面情形;以及 第5圖為一示意圖,顯示了依據本發明另一實施例之 一電阻式隨機存取記憶體之剖面情形。 【主要元件符號說明】 10〜基底/介電層; 12、16〜介電層; φ 14、20〜導電層; 18〜電阻轉換層; 100〜基底/介電層; 102、106〜介電層; 104、110〜導電層; 108a〜第一金屬氧化物次層; 108b〜第二金屬氧化物次層; 108c〜第三金屬氧化物次層; 108〜電阻轉換層; 0949-A21771TWF(N2);P51950080TW;shawnchang 13 200824046 200〜基底; 206〜閘介電層; 208〜閘電極; 210〜介電層; 212、214〜導電插拴; 220〜源極區, 24 0〜 >及極區, 300〜基底; ⑩ 302〜第一井區; 304〜第二井區; 3 06〜接觸區; 308〜介電層; 310〜導電插拴。 0949-A21771TWF(N2);P51950080TW;shawnchang 140949-A21771TWF(N2); P51950080TW; shawnchang 12 200824046 [Simplified Schematic] FIG. 1 is a schematic view showing a cross-sectional view of a resistive random access memory according to an embodiment of the present invention; BRIEF DESCRIPTION OF THE DRAWINGS FIG. 3 is a schematic view showing a cross-sectional view of a resistive random access memory according to an embodiment of the present invention; FIG. 3 is a schematic view partially showing a resistive type according to another embodiment of the present invention; a cross-sectional view of the random access memory; φ FIG. 4 is a schematic view showing a cross-sectional view of a resistive random access memory according to an embodiment of the present invention; and FIG. 5 is a schematic view showing the basis A cross-sectional view of a resistive random access memory of another embodiment of the invention. [Main component symbol description] 10~substrate/dielectric layer; 12,16~dielectric layer; φ14,20~conductive layer; 18~resistive conversion layer; 100~substrate/dielectric layer; 102,106~dielectric Layer; 104, 110~ conductive layer; 108a~ first metal oxide sublayer; 108b~ second metal oxide sublayer; 108c~ third metal oxide sublayer; 108~ resistance conversion layer; 0949-A21771TWF(N2 ); P51950080TW; shawnchang 13 200824046 200~ substrate; 206~ gate dielectric layer; 208~ gate electrode; 210~ dielectric layer; 212, 214~ conductive plug; 220~ source region, 24 0~ > Zone, 300~base; 10 302~ first well zone; 304~second well zone; 3 06~ contact zone; 308~ dielectric layer; 310~ conductive plug. 0949-A21771TWF(N2); P51950080TW;shawnchang 14

Claims (1)

200824046 十、申請專利範園: 1.一種電阻式隨機存取記憶體,包括: 一第一電極, 一第二電極;以及 一電阻轉換層,埋設於該第一電極與第-带』 ^ ^ 極之門 其中該電阻轉換層包括: s ’ 金屬氧化 非化學計量比(non-stoichiometric)之—第 物次層;以及200824046 X. Patent application garden: 1. A resistive random access memory comprising: a first electrode, a second electrode; and a resistance conversion layer embedded in the first electrode and the first band ^ ^ The gate of the pole, wherein the resistance conversion layer comprises: s 'metal oxidization non-stoichiometric - the first sub-layer; 化學計量比(stoichiometric)之一第二金屬, 層,設置於該第一金屬氧化物次層上。 平物次 2·如申請專利範圍第1項所述之電阻式隨機;^取^ Ti、 Ta、 體,其中該電阻轉換層係擇自Hf、Al、Zr、Nb、 °己憶 La等金屬之氧化物所組成之族群。 3 ·如申請專利耗圍弟1項所述之電卩且式隨機 體,其中該第一金屬氧化物次層與該第二全蜃」 至屬乳化物次舞 間具有介於1:100〜100:1之膜厚比。 4·如申請專利範圍第1項所述之電阻式ρ 八1¾機存取記怜 體,其中該電阻轉換層更包括非I m " 十一 ^ 外化學計量比 (non-stoichiometric)之一第三金屬氧化物次展 ^ 运,设置於兮繁 二金屬氧化物層上。 、w 5·如申請專利範圍第4項所述之電阻式隨機存取 體,其中該第一金屬氧化物次層與該第二令p^ " —I屬氧化物次芦 與該第二金屬氧化物次層間分別具有介於曰 、1.100 〜100:1 之 膜厚比。 0949-A21771TWF(N2);P51950080TW;shawnchang 15 200824046 6. 如申請專利範圍第1項所述之電阻式隨機存取記憶 體,其中該電阻轉換層具有介於10〜100奈米之一厚度。 7. 如申請專利範圍第4項所述之電阻式隨機存取記憶 體,其中該電阻轉換層具有介於10〜1〇〇奈米之一厚度。 8. 如申請專利範圍第1項所述之電阻式隨機存取記憶 體,其中該第一金屬氧化物次層包括Hf〇2_x,該第二金屬 氧化物次層包括Hf02,X介於0·1〜1.5。 9. 如申請專利範圍第4項所述之電阻式隨機存取記憶 ⑩ 體,其中該第一金屬氧化物次層包括Hf02_x,該第二金屬 氧化物次層包括Hf02,該第三金屬氧化物次層包括 Hf02_y,X 介於 0.1 〜1.5 而 y 介於 0.1 〜1.5。 10. 如申請專利範圍第1項所述之電阻式隨機存取記憶 體,其中該第一與第二電極包括Pt、Au、TiN或Ru。 11. 如申請專利範圍第1項所述之電阻式隨機存取記憶 體,更包括一基底,設置於該第一電極下方,其中該基底 包括一主動裝置,而該第一電極係電性連結於該主動裝置。 ’ 12.如申請專利範圍第11項所述之電阻式隨機存取記 憶體,其中該主動裝置為一二極體或一電晶體。 13. 如申請專利範圍第11項所述之電阻式隨機存取記 憶體,其中該第一電極係電性連結於該主動裝置内之一離 子摻雜區。 14. 一種電阻式隨機存取記憶體之製造方法,包括: 提供一基底, 形成一第一電極於該基底上; 0949-A21771TWF(N2);P51950080TW;shawnchang 200824046 形成一電阻轉換層於該第一電極上,其 層包括: 禮轉換 非化學计量比(non_stoichiometric)之一第—人戸七 物次層;以及 孟_氧化 化學計量比(stoichiometric)之一第二金屬氧化 層’ e又置於該第一金屬氧化物次層上; 以及 形成一第二電極於該電阻轉換層上。 ' is.如巾請專職圍第14項所述m隨 憶體之製造方法,其中形成該電阻轉換層之方 ° 沉積法(ALD)。 /钓京子層 16·如申睛專利範圍第15項所述之 愔妒夕制! 士、+ ^ %丨八^機存取記 U月且之衣化方法,其中該電阻轉換層係一 形成。 早—步驟中所 17.如申睛專利範圍第14項所述之電阻 憶體之製造方法,其中於該基底中設置有—番子取°己 兮笼一 +扣; 主動裝置,而 3弟一电極係電性連結於該主動裝置。 叫 ^如申請專利範圍第π項所述之電 憶體之製造方法,其中該主動裝置為-二極F體式^存曰取記 a 19.如t料鄕圍第14賴狀電以^體。 I思體之製造方法,其中該電阻轉換層係擇自 尤 Nb、Ti、Ta、La等金屬之氧化物所組成之族群 r、 2〇·如申清專利範圍第14項所述之電卩且气p & 憶體之製造方法,其中該第一金屬氧化物次展I ▲、存取。己 曰人該第二金 0949-A21771 TWF( N2) ; P51950080TW;shawnchang 17 200824046 屬氧化物次層間具有介於1:100〜100:1之膜厚比。 21. 如申請專利範圍第14項所述之電阻式隨機存取記 憶體之製造方法,其中該電阻轉換層更包括非化學計量比 (non-stoichiometric)之一第三金屬氧化物次層,設置於該第 二金屬氧化物次層上。 22. 如申請專利範圍第21項所述之電阻式隨機存取記 憶體,其中該第一金屬氧化物次層與該第三金屬氧化物次 層與該第二金屬氧化物次層間分別具有介於1:100〜100:1 ®之膜厚比。 23. 如申請專利範圍第14項所述之電阻式隨機存取記 憶體之製造方法,其中該電阻轉換層具有介於10〜100奈米 之一厚度。 24. 如申請專利範圍第21項所述之電阻式隨機存取記 憶體之製造方法,其中該電阻轉換層具有介於10〜100奈米 之一厚度。 0 25.如申請專利範圍第14項所述之電阻式隨機存取記 憶體之製造方法,其中該第一金屬氧化物次層包括 Hf〇2_x,該第二金屬氧化物次層包括Hf02,x介於0.1〜1.5。 26.如申請專利範圍第21項所述之電阻式隨機存取記 憶體之製造方法,其中該第一金屬氧化物次層包括 Hf02_x,該第二金屬氧化物次層包括Hf02,該第三金屬氧 化物次層包括Hf02_y,X介於0.1〜1.5而y介於0.1〜1·5。 0949-A21771TWF(N2);P51950080TW;shawnchang 18A stoichiometric second metal layer disposed on the first metal oxide sublayer. Level 2: Resistor type random as described in item 1 of the patent application scope; ^T, Ta, and body, wherein the resistance conversion layer is selected from metals such as Hf, Al, Zr, Nb, and The group of oxides. 3 · If the patent application consumes a power-type random body as described in item 1, wherein the first metal oxide sub-layer and the second full-thickness belong to the emulsifier sub-dance between 1:100~ A film thickness ratio of 100:1. 4. The resistive ρ 八 ⁄ 存取 存取 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , The third metal oxide is sub-displayed and disposed on the second metal oxide layer. The resistive random accessor of claim 4, wherein the first metal oxide sublayer and the second metal oxide and the second oxide and the second The metal oxide sublayers have a film thickness ratio of between 曰 and 1.100 〜100:1, respectively. 6. The resistive random access memory of claim 1, wherein the resistance conversion layer has a thickness of between 10 and 100 nm. 7. The resistive random access memory of claim 4, wherein the resistance conversion layer has a thickness of between 10 and 1 nanometer. 8. The resistive random access memory of claim 1, wherein the first metal oxide sublayer comprises Hf〇2_x, the second metal oxide sublayer comprises Hf02, and X is between 0· 1 to 1.5. 9. The resistive random access memory 10 according to claim 4, wherein the first metal oxide sublayer comprises Hf02_x, and the second metal oxide sublayer comprises Hf02, the third metal oxide The secondary layer includes Hf02_y, X is between 0.1 and 1.5 and y is between 0.1 and 1.5. 10. The resistive random access memory of claim 1, wherein the first and second electrodes comprise Pt, Au, TiN or Ru. 11. The resistive random access memory of claim 1, further comprising a substrate disposed under the first electrode, wherein the substrate comprises an active device, and the first electrode is electrically connected In the active device. 12. The resistive random access memory device of claim 11, wherein the active device is a diode or a transistor. 13. The resistive random access memory device of claim 11, wherein the first electrode is electrically coupled to one of the ion doped regions of the active device. A method of manufacturing a resistive random access memory, comprising: providing a substrate to form a first electrode on the substrate; 0949-A21771TWF(N2); P51950080TW; shawnchang 200824046 forming a resistance conversion layer at the first On the electrode, the layer includes: one of the non-stoichiometric ones - the human seven-sub-layer; and one of the stoichiometric ones of the second metal oxide layer 'e a first metal oxide sublayer; and a second electrode formed on the resistance conversion layer. 'is. For example, please refer to the manufacturing method of the m-memory body described in Item 14, in which the resistance conversion layer (ALD) is formed. /Kianjingzi layer 16· As stated in the 15th item of the scope of the patent application, the 愔妒 制 system! Shi, + ^ % 丨 ^ ^ 存取 存取 U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U The method for manufacturing a resistor-remembered body according to claim 14, wherein the substrate is provided with a scorpion-sucking cage + a buckle; an active device, and 3 brothers An electrode is electrically connected to the active device. For example, the manufacturing method of the electronic memory body described in the πth item of the patent application is as follows: wherein the active device is a 2-pole F body type, and the storage device is a 19. . The manufacturing method of the body of the body, wherein the resistance conversion layer is selected from the group consisting of oxides of metals such as Nb, Ti, Ta, La, etc., and the electric enthalpy according to item 14 of the patent scope of Shenqing. And a method for producing a gas p & a memory in which the first metal oxide is sub-distributed and accessed. The second gold 0949-A21771 TWF(N2); P51950080TW; shawnchang 17 200824046 has a film thickness ratio of 1:100~100:1 between the oxide sublayers. 21. The method of manufacturing a resistive random access memory according to claim 14, wherein the resistance conversion layer further comprises a non-stoichiometric one of the third metal oxide sublayers. On the second metal oxide sublayer. 22. The resistive random access memory according to claim 21, wherein the first metal oxide sublayer and the third metal oxide sublayer and the second metal oxide sublayer respectively have a dielectric layer The film thickness ratio is 1:100~100:1 ® . 23. The method of manufacturing a resistive random access memory according to claim 14, wherein the resistance conversion layer has a thickness of from 10 to 100 nm. 24. The method of manufacturing a resistive random access memory device according to claim 21, wherein the resistance conversion layer has a thickness of from 10 to 100 nm. The method of manufacturing a resistive random access memory according to claim 14, wherein the first metal oxide sublayer comprises Hf〇2_x, and the second metal oxide sublayer comprises Hf02, x Between 0.1 and 1.5. 26. The method of manufacturing a resistive random access memory according to claim 21, wherein the first metal oxide sublayer comprises Hf02_x, and the second metal oxide sublayer comprises Hf02, the third metal The oxide sublayer includes Hf02_y, X is between 0.1 and 1.5 and y is between 0.1 and 1.5. 0949-A21771TWF(N2); P51950080TW; shawnchang 18
TW95142795A 2006-11-20 2006-11-20 Resistive random access memory (rram) and method for fabricating the same TWI318437B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95142795A TWI318437B (en) 2006-11-20 2006-11-20 Resistive random access memory (rram) and method for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95142795A TWI318437B (en) 2006-11-20 2006-11-20 Resistive random access memory (rram) and method for fabricating the same

Publications (2)

Publication Number Publication Date
TW200824046A true TW200824046A (en) 2008-06-01
TWI318437B TWI318437B (en) 2009-12-11

Family

ID=44771383

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95142795A TWI318437B (en) 2006-11-20 2006-11-20 Resistive random access memory (rram) and method for fabricating the same

Country Status (1)

Country Link
TW (1) TWI318437B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104465986A (en) * 2013-09-17 2015-03-25 华邦电子股份有限公司 Resistive memory and manufacture method thereof
CN104733608A (en) * 2013-12-18 2015-06-24 华邦电子股份有限公司 Resistive memory and manufacturing method thereof
TWI508340B (en) * 2013-11-05 2015-11-11 Winbond Electronics Corp Resistive random access memory and method of manufacture thereof
US10461252B2 (en) 2016-04-27 2019-10-29 National Sun Yat-Sen University Resistive random access memory
CN113268133A (en) * 2020-02-17 2021-08-17 财团法人工业技术研究院 Internal memory arithmetic unit and arithmetic method thereof
TWI824516B (en) * 2021-05-12 2023-12-01 美商特憶智能科技公司 Resistive random-access memory devices with multicomponent electrodes and discontinuous interface layers

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI496146B (en) * 2011-09-23 2015-08-11 Univ Nat Sun Yat Sen Resistance random access memory (rram) structure having a silicon nitride insulation layer
TWI501234B (en) * 2011-09-23 2015-09-21 Univ Nat Sun Yat Sen Resistance random access memory (rram) structure having a silicon oxide insulation layer
US9847478B2 (en) 2012-03-09 2017-12-19 Taiwan Semiconductor Manufacturing Company, Ltd. Methods and apparatus for resistive random access memory (RRAM)
TWI559518B (en) 2014-04-02 2016-11-21 華邦電子股份有限公司 Resistive random access memory and method of fabricating the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104465986A (en) * 2013-09-17 2015-03-25 华邦电子股份有限公司 Resistive memory and manufacture method thereof
CN104465986B (en) * 2013-09-17 2017-12-05 华邦电子股份有限公司 Resistance-type memory and its manufacture method
TWI508340B (en) * 2013-11-05 2015-11-11 Winbond Electronics Corp Resistive random access memory and method of manufacture thereof
CN104733608A (en) * 2013-12-18 2015-06-24 华邦电子股份有限公司 Resistive memory and manufacturing method thereof
CN104733608B (en) * 2013-12-18 2017-06-09 华邦电子股份有限公司 Resistance-type memory and its manufacture method
US10461252B2 (en) 2016-04-27 2019-10-29 National Sun Yat-Sen University Resistive random access memory
CN113268133A (en) * 2020-02-17 2021-08-17 财团法人工业技术研究院 Internal memory arithmetic unit and arithmetic method thereof
TWI824516B (en) * 2021-05-12 2023-12-01 美商特憶智能科技公司 Resistive random-access memory devices with multicomponent electrodes and discontinuous interface layers

Also Published As

Publication number Publication date
TWI318437B (en) 2009-12-11

Similar Documents

Publication Publication Date Title
TW200824046A (en) Resistive random access memory (RRAM) and method for fabricating the same
US7498600B2 (en) Variable resistance random access memory device and a method of fabricating the same
US9397292B2 (en) Methods for forming resistive switching memory elements by heating deposited layers
US9373789B2 (en) Resistive random access memory and method for fabricating the same
US7759771B2 (en) Resistance random access memory and method of manufacturing the same
TWI352423B (en) Nonvolatile memory device and fabrication method t
US8148765B2 (en) Resistive random access memory
TW201742284A (en) Barrier layer for correlated electron material
CN102412309B (en) Switching device and the memory device including described switching device
US20100065803A1 (en) Memory device and manufacturing method thereof
WO2016176936A1 (en) Non-volatile resistive switching memory device and manufacturing method therefor
KR101570742B1 (en) Resistive random access memory and method of fabricating the same
TW200427055A (en) Transistor devices, CMOS constructions, capacitor constructions, and methods of forming transistor devices and capacitor constructions
KR20090126530A (en) Resistance random access memory
WO2014121618A1 (en) High-reliability non-volatile memory and preparation method therefor
TWI274388B (en) Nano-crystal non-volatile memory device employing oxidation inhibiting and charge storage enhancing layer and make the same
CN103597597B (en) Variable resistor element and manufacture method thereof
TW201121035A (en) Resistance switching memory
US20120181498A1 (en) Vertical nonvolatile memory device and method for fabricating the same
CN113948520A (en) Hafnium oxide based ferroelectric capacitor and preparation method thereof
JP2017055082A (en) Manufacturing method for nonvolatile storage device
US8980721B2 (en) Resistive memory device and method of fabricating the same
KR101935608B1 (en) Variable resistor and electronic devices using the same
CN107403822A (en) Resistive random access internal memory and its manufacture method
TW515029B (en) Capacitor stack structure and method of fabricating

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees