TWI824516B - Resistive random-access memory devices with multicomponent electrodes and discontinuous interface layers - Google Patents
Resistive random-access memory devices with multicomponent electrodes and discontinuous interface layers Download PDFInfo
- Publication number
- TWI824516B TWI824516B TW111117735A TW111117735A TWI824516B TW I824516 B TWI824516 B TW I824516B TW 111117735 A TW111117735 A TW 111117735A TW 111117735 A TW111117735 A TW 111117735A TW I824516 B TWI824516 B TW I824516B
- Authority
- TW
- Taiwan
- Prior art keywords
- electrode
- layer
- rram device
- alloy
- interface layer
- Prior art date
Links
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 109
- 239000000956 alloy Substances 0.000 claims abstract description 109
- 239000000463 material Substances 0.000 claims abstract description 74
- 229910000314 transition metal oxide Inorganic materials 0.000 claims abstract description 55
- 239000007769 metal material Substances 0.000 claims abstract description 48
- 239000000126 substance Substances 0.000 claims abstract description 25
- 239000010408 film Substances 0.000 claims description 69
- 238000000034 method Methods 0.000 claims description 40
- 239000011148 porous material Substances 0.000 claims description 29
- 229910052715 tantalum Inorganic materials 0.000 claims description 28
- 229910001362 Ta alloys Inorganic materials 0.000 claims description 25
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 21
- 238000000151 deposition Methods 0.000 claims description 20
- 229910001325 element alloy Inorganic materials 0.000 claims description 20
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 20
- 229910002056 binary alloy Inorganic materials 0.000 claims description 19
- 238000004519 manufacturing process Methods 0.000 claims description 19
- 229910052735 hafnium Inorganic materials 0.000 claims description 17
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 16
- 229910002058 ternary alloy Inorganic materials 0.000 claims description 15
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 13
- 239000010955 niobium Substances 0.000 claims description 12
- 229910002059 quaternary alloy Inorganic materials 0.000 claims description 12
- 229910052721 tungsten Inorganic materials 0.000 claims description 12
- 229910052726 zirconium Inorganic materials 0.000 claims description 12
- 229910052750 molybdenum Inorganic materials 0.000 claims description 11
- 229910052758 niobium Inorganic materials 0.000 claims description 11
- 229910021193 La 2 O 3 Inorganic materials 0.000 claims description 10
- 229910052719 titanium Inorganic materials 0.000 claims description 9
- 229910052697 platinum Inorganic materials 0.000 claims description 6
- 229910052763 palladium Inorganic materials 0.000 claims description 5
- 229910052741 iridium Inorganic materials 0.000 claims description 4
- 238000007254 oxidation reaction Methods 0.000 claims description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 3
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims description 3
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 3
- 229910044991 metal oxide Inorganic materials 0.000 claims description 3
- 150000004706 metal oxides Chemical class 0.000 claims description 3
- 239000011733 molybdenum Substances 0.000 claims description 3
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 3
- 230000003647 oxidation Effects 0.000 claims description 3
- 239000010409 thin film Substances 0.000 claims description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 3
- 239000010937 tungsten Substances 0.000 claims description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 2
- 230000007704 transition Effects 0.000 claims 1
- 230000000712 assembly Effects 0.000 abstract 1
- 238000000429 assembly Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 311
- 229910052751 metal Inorganic materials 0.000 description 83
- 239000002184 metal Substances 0.000 description 57
- 229910052760 oxygen Inorganic materials 0.000 description 40
- 239000001301 oxygen Substances 0.000 description 40
- -1 oxygen ions Chemical class 0.000 description 25
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 24
- 230000015572 biosynthetic process Effects 0.000 description 24
- 230000008569 process Effects 0.000 description 24
- 239000010936 titanium Substances 0.000 description 23
- 229910001093 Zr alloy Inorganic materials 0.000 description 16
- 239000000758 substrate Substances 0.000 description 16
- 239000004065 semiconductor Substances 0.000 description 15
- 238000010587 phase diagram Methods 0.000 description 10
- 229910001080 W alloy Inorganic materials 0.000 description 9
- 238000000231 atomic layer deposition Methods 0.000 description 9
- 238000005229 chemical vapour deposition Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 229910000449 hafnium oxide Inorganic materials 0.000 description 9
- 239000000395 magnesium oxide Substances 0.000 description 9
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 9
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 9
- 238000005240 physical vapour deposition Methods 0.000 description 9
- 229910020015 Nb W Inorganic materials 0.000 description 8
- 229910020018 Nb Zr Inorganic materials 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 6
- 238000004544 sputter deposition Methods 0.000 description 6
- 229910001182 Mo alloy Inorganic materials 0.000 description 5
- 229910003087 TiOx Inorganic materials 0.000 description 5
- 229910003134 ZrOx Inorganic materials 0.000 description 5
- 230000006399 behavior Effects 0.000 description 5
- HLLICFJUWSZHRJ-UHFFFAOYSA-N tioxidazole Chemical compound CCCOC1=CC=C2N=C(NC(=O)OC)SC2=C1 HLLICFJUWSZHRJ-UHFFFAOYSA-N 0.000 description 5
- 229910001257 Nb alloy Inorganic materials 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 229910002620 Hf–Nb Inorganic materials 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(IV) oxide Inorganic materials O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000009257 reactivity Effects 0.000 description 3
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 description 3
- VSSLEOGOUUKTNN-UHFFFAOYSA-N tantalum titanium Chemical compound [Ti].[Ta] VSSLEOGOUUKTNN-UHFFFAOYSA-N 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 2
- XGZGDYQRJKMWNM-UHFFFAOYSA-N tantalum tungsten Chemical compound [Ta][W][Ta] XGZGDYQRJKMWNM-UHFFFAOYSA-N 0.000 description 2
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QBXVTOWCLDDBIC-UHFFFAOYSA-N [Zr].[Ta] Chemical compound [Zr].[Ta] QBXVTOWCLDDBIC-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- QKQUUVZIDLJZIJ-UHFFFAOYSA-N hafnium tantalum Chemical compound [Hf].[Ta] QKQUUVZIDLJZIJ-UHFFFAOYSA-N 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- JZLMRQMUNCKZTP-UHFFFAOYSA-N molybdenum tantalum Chemical compound [Mo].[Ta] JZLMRQMUNCKZTP-UHFFFAOYSA-N 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- RHDUVDHGVHBHCL-UHFFFAOYSA-N niobium tantalum Chemical compound [Nb].[Ta] RHDUVDHGVHBHCL-UHFFFAOYSA-N 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002000 scavenging effect Effects 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Semiconductor Memories (AREA)
- Laminated Bodies (AREA)
Abstract
本發明係關於一種電阻式隨機存取儲存(RRAM)器件。一個RRAM 器件可包括第一電極,製造於所述第一電極上的第一界面層;製造於所述第一界面層上的切換氧化物層;和製造於所述切換氧化物層上的第二電極。所述切換氧化物層包括一種過渡性金屬氧化物。所述第一界面層包括第一材料的第一非連續薄膜,所述第一材料比所述過渡性金屬氧化物具備更強的化學穩定性。所述RRAM器件可以進一步包括位於所述切換氧化物層和所述第二電極之間的第二界面層。所述第二界面層包括第二材料的第二非連續薄膜,所述第二材料比所述過渡性金屬氧化物具備更強的化學穩定性。所述第二電極可以包括多個電極組件,所述電極組件包括合金、第一金屬材料的第一層和/或第二金屬材料的第二層。 The present invention relates to a resistive random access memory (RRAM) device. a RRAM The device may include a first electrode, a first interface layer formed on the first electrode; a switching oxide layer formed on the first interface layer; and a second electrode formed on the switching oxide layer . The switching oxide layer includes a transition metal oxide. The first interface layer includes a first discontinuous film of a first material that has greater chemical stability than the transition metal oxide. The RRAM device may further include a second interface layer between the switching oxide layer and the second electrode. The second interface layer includes a second discontinuous film of a second material that has greater chemical stability than the transition metal oxide. The second electrode may include a plurality of electrode assemblies including an alloy, a first layer of a first metallic material, and/or a second layer of a second metallic material.
Description
本申請要求於2021年5月12日申請,名稱為“具備多成分電極的電阻式隨機存取儲存器件”的美國專利申請No.17/319,057,於2021年5月12日申請,名稱為“具備多成分電極的電阻式隨機存取儲存器件”的美國專利申請No.17/319.068,於2021年11月15日申請,名稱為“具備多成分電極和非連續界面層的電阻式隨機存取儲存器件”的美國專利申請No.17/454,914的優先權,其中每項申請都被完整的結合在本申請中。 This application is filed on May 12, 2021, and is called U.S. Patent Application No. 17/319,057, titled "Resistive Random Access Memory Device with Multi-Component Electrodes", filed on May 12, 2021, titled " U.S. Patent Application No. 17/319.068 "Resistive Random Access Memory Device with Multi-Component Electrodes" was filed on November 15, 2021, and is titled "Resistive Random Access Memory Device with Multi-Component Electrodes and Discontinuous Interface Layer" Storage Device," U.S. Patent Application No. 17/454,914, each of which is hereby incorporated by reference in its entirety.
本發明的實施方式係關於一種電阻式隨機存取儲存(RRAM)器件,尤其關於一種具備多成分電極和非連續界面層的RRAM器件。 Embodiments of the present invention relate to a resistive random access memory (RRAM) device, and more particularly to an RRAM device having multi-component electrodes and a discontinuous interface layer.
電阻式隨機存取儲存(RRAM)器件是一種具備可調整和非易失性電阻的兩端被動元件。通過對RRAM器件施加適當的可編程訊號,RRAM器件可以在高電阻狀態(HRS)和低電阻狀態(LRS)之間 進行電切換。RRAM器件可用於形成交叉陣列,從而應用於記憶體內計算、非易失性固態儲存器、圖像處理、神經網路等。 A resistive random access memory (RRAM) device is a two-terminal passive component with adjustable and nonvolatile resistance. By applying appropriate programmable signals to the RRAM device, the RRAM device can be switched between a high resistance state (HRS) and a low resistance state (LRS). Perform electrical switching. RRAM devices can be used to form crossbar arrays for applications in in-memory computing, non-volatile solid-state storage, image processing, neural networks, etc.
以下是本發明的簡要發明內容用於提供對本發明的一些方面的基本理解。發明內容不是本發明的廣泛概述。發明內容並非旨在識別本發明的關鍵或重要要素,也並非旨在說明本發明的特定實現的任何範圍或者申請專利範圍的任何範圍。發明內容的唯一目的是作為後續呈現的更詳細描述的語言簡化呈現本發明的一些概念。 The following is a simplified summary of the invention intended to provide a basic understanding of some aspects of the invention. This summary is not an extensive overview of the invention. This summary is not intended to identify key or critical elements of the invention or to delineate any scope of particular implementations of the invention or the scope of the patent claims. The sole purpose of this Summary is to simplify the presentation of some concepts of the invention in the language of the more detailed description that is subsequently presented.
在本發明的一個方面,一種電阻式隨機存取儲存(RRAM)器件可包括:第一電極;製造於第一電極上的第一界面層,其中所述第一界面層包括第一材料的第一非連續薄膜;製造於所述第一界面層上的切換氧化物層,其中所述切換氧化物層包括至少一種過渡性金屬氧化物,且所述第一材料比所述至少一種過渡性金屬氧化物具備更強的化學穩定性;製造於所述切換氧化物層上的第二電極。 In one aspect of the invention, a resistive random access memory (RRAM) device may include: a first electrode; a first interface layer fabricated on the first electrode, wherein the first interface layer includes a first material of a first electrode. a discontinuous thin film; a switching oxide layer fabricated on the first interface layer, wherein the switching oxide layer includes at least one transition metal oxide, and the first material is smaller than the at least one transition metal The oxide has stronger chemical stability; the second electrode is fabricated on the switching oxide layer.
在一些實施例中,所述至少一種過渡性金屬氧化物包括HfOx或TaOy的至少一種,其中x2.0和y2.5。 In some embodiments, the at least one transition metal oxide includes at least one of HfOx or TaOy, where x 2.0 and y 2.5.
在一些實施例中,所述第一材料包括Al2O3、MgO、Y2O3或La2O3中的至少一種。 In some embodiments, the first material includes at least one of Al 2 O 3 , MgO, Y 2 O 3 or La 2 O 3 .
在一些實施例中,所述第一材料的所述第一非連續薄膜包括一個或多個第一孔隙,且其中所述切換氧化物層通過所述第一孔隙中的至少一個接觸所述第一電極的一個或多個部分。 In some embodiments, the first discontinuous film of the first material includes one or more first pores, and wherein the switching oxide layer contacts the first pore through at least one of the first pores. One or more parts of an electrode.
在一些實施例中,所述第一界面層的厚度在0.2奈米和1奈米之間。 In some embodiments, the thickness of the first interface layer is between 0.2 nanometer and 1 nanometer.
在一些實施例中,所述第二電極包括一種鉭合金。所述鉭合金進一步包括鉿、鉬、鎢、鈮或鋯中的至少一種。其中所述鉭合金包括由鉭組成的二元合金,有鉭組成的三元合金,由鉭組成的四元合金,由鉭組成的五元合金,由鉭組成的六元合金或由鉭組成的高元合金(high order alloy)中的至少一種。 In some embodiments, the second electrode includes a tantalum alloy. The tantalum alloy further includes at least one of hafnium, molybdenum, tungsten, niobium or zirconium. The tantalum alloys include binary alloys composed of tantalum, ternary alloys composed of tantalum, quaternary alloys composed of tantalum, quintuple alloys composed of tantalum, six-element alloys composed of tantalum or tantalum alloys. At least one of high order alloys.
在一些實施例中,所述RRAM器件包括位於所述切換氧化物層和所述第二電極之間的第二界面層,其中所述第二界面層包括第二材料的第二非連續薄膜,其中所述第二材料比所述至少一種過渡性金屬氧化物具備更強的化學穩定性。所述第二電極接觸所述切換氧化物層的至少一部分。 In some embodiments, the RRAM device includes a second interface layer between the switching oxide layer and the second electrode, wherein the second interface layer includes a second discontinuous film of a second material, Wherein the second material has stronger chemical stability than the at least one transition metal oxide. The second electrode contacts at least a portion of the switching oxide layer.
在一些實施例中,所述第二材料包括Al2O3、MgO、Y2O3或La2O3中的至少一種。 In some embodiments, the second material includes at least one of Al 2 O 3 , MgO, Y 2 O 3 or La 2 O 3 .
在一些實施例中,所述第二界面層的厚度在0.2奈米和1奈米之間。 In some embodiments, the thickness of the second interface layer is between 0.2 nanometer and 1 nanometer.
在一些實施例中,包括第一金屬材料的第一層;包括第二金屬材料的第二層,其中所述第一層製造於所述切換氧化物層上,所述第二層製造於所述包括第一金屬材料的第一層上。所述第一材料比所述第一金屬材料的氧化物具備更強的化學穩定性,且所述第一金屬材料的氧化物比所述至少一種過渡性金屬氧化物具備更強的化學穩定性。如請求項14所述的RRAM器件,其中所述第二電極中的所述第一金屬材料包括Ti、Hf或Zr中的至少一種。在一些實施例中,所述第二電極中的所述第二金屬材料包括鉭。 In some embodiments, a first layer includes a first metallic material; a second layer includes a second metallic material, wherein the first layer is fabricated on the switching oxide layer and the second layer is fabricated on the switching oxide layer. The first layer includes a first metallic material. The first material has stronger chemical stability than the oxide of the first metal material, and the oxide of the first metal material has stronger chemical stability than the at least one transition metal oxide. . The RRAM device of claim 14, wherein the first metal material in the second electrode includes at least one of Ti, Hf or Zr. In some embodiments, the second metallic material in the second electrode includes tantalum.
在一些實施例中,包含所述第一金屬材料的所述第一層的厚度在0.2奈米和5奈米之間 In some embodiments, the first layer including the first metallic material has a thickness between 0.2 nanometers and 5 nanometers.
本發明的一個或多個方面提供了一種製造RRAM器件的方法。所述方法包括:在所述RRAM器件的第一電極上,製造包含第一材料的第一非連續薄膜的第一界面層。所述方法還包括在所述第一界面層上,製造包括至少一種過渡性金屬氧化物的切換氧化物層,其中所述第一材料比所述至少一種過渡性金屬氧化物具備更強的化學穩定性。所述方法還包括在所述切換氧化物層上,製造包含第二材料的第二非連續薄膜的第二界面層,其中所述第二材料比所述至少一種過渡性金屬氧化物具備更強的化學穩定性。所述方法還包括在所述第二界面層上,製造第二電極。 One or more aspects of the invention provide a method of manufacturing an RRAM device. The method includes fabricating a first interface layer including a first discontinuous film of a first material on a first electrode of the RRAM device. The method also includes fabricating a switching oxide layer including at least one transition metal oxide on the first interface layer, wherein the first material has a stronger chemical resistance than the at least one transition metal oxide. Stability. The method also includes fabricating a second interface layer comprising a second discontinuous film of a second material on the switching oxide layer, wherein the second material has a stronger oxidation potential than the at least one transition metal oxide. chemical stability. The method further includes fabricating a second electrode on the second interface layer.
在一些實施例中,所述第一材料的第一非連續薄膜包括至少一個孔隙,且在所述第一界面上製造包括至少一種過渡性金屬氧化物所述切換氧化物層包括通過所示至少一個孔隙將所述至少一種過渡性金屬氧化物沉積在所述第一電極上。在所述RRAM器件的第一電極上製造包括第一材料的第一非連續薄膜的所述第一界面層包括在所述第一電極上沉積所述第一材料以形成所述第一非連續薄膜。 In some embodiments, the first discontinuous film of the first material includes at least one pore, and fabricating the switching oxide layer including at least one transition metal oxide at the first interface includes at least A pore deposits the at least one transition metal oxide on the first electrode. Fabricating the first interface layer including a first discontinuous film of a first material on a first electrode of the RRAM device includes depositing the first material on the first electrode to form the first discontinuous film. film.
根據本發明的一個或多個方面,RRAM器件可以包括第一電極,製造於所述第一電極上的第一界面層,製造於所述第一界面層上的切換氧化物層,製造於所述切換氧化物層上第二界面層以及製造於所述切換氧化物層上的第二電極。 According to one or more aspects of the present invention, an RRAM device may include a first electrode, a first interface layer fabricated on the first electrode, a switching oxide layer fabricated on the first interface layer, a second interface layer on the switching oxide layer and a second electrode manufactured on the switching oxide layer.
根據本發明的一個或多個方面,RRAM器件可以包括第一電極,製造於所述第一電極上的切換氧化物層,製造於所述切換氧化物層上的界面層以及製造於所述界面上的第二電極。所述切換氧化物層可以包括 至少一種過渡性金屬氧化物。所述界面層可以包括由一種材料的非連續薄膜,所述材料比所述至少一種過渡性金屬氧化物具備更強的化學穩定性。 According to one or more aspects of the present invention, an RRAM device may include a first electrode, a switching oxide layer fabricated on the first electrode, an interface layer fabricated on the switching oxide layer, and an interface layer fabricated on the interface. on the second electrode. The switching oxide layer may include at least one transition metal oxide. The interface layer may include a discontinuous film of a material that is more chemically stable than the at least one transition metal oxide.
100:交叉電路 100:cross circuit
111a、111b、111i、111n:行線 111a, 111b, 111i, 111n: row line
113a、113b、113j、113m:列線 113a, 113b, 113j, 113m: column lines
120a、120b、120ij、120z:交叉點器件 120a, 120b, 120ij, 120z: cross-point devices
200:交叉點器件 200: Crosspoint device
201:RRAM器件 201:RRAM device
203:電晶體 203:Transistor
211:位元線 211:Bit line
213:選擇線 213:Select line
215:字線 215: word line
300a、300b、300c:RRAM器件 300a, 300b, 300c: RRAM devices
310:基板 310:Substrate
320:第一電極 320: first electrode
330:切換氧化物層 330: Switch oxide layer
340:第二電極 340: Second electrode
335a:導電通道 335a: Conductive channel
335b:中斷導電通道 335b: Interrupt conductive path
400a、400b、400c、400d、400e:半導體器件 400a, 400b, 400c, 400d, 400e: semiconductor devices
410:基板 410:Substrate
420:第一電極 420: first electrode
422:界面層 422:Interface layer
422a:非連續薄膜 422a: Discontinuous film
424:孔隙 424:pore
430:切換氧化物層 430: Switch oxide layer
440:第二電極 440: Second electrode
435a:導電通道 435a: Conductive channel
500a、500b、500c、500d:半導體器件 500a, 500b, 500c, 500d: semiconductor devices
532:第二界面層 532: Second interface layer
532a:非連續薄膜 532a: Discontinuous film
534:孔隙 534:pore
535a:導電通道 535a: Conductive channel
535b:中斷導電通道 535b: Interrupt conductive path
540:第二電極 540: Second electrode
600a、600b、600c、600d:半導體器件 600a, 600b, 600c, 600d: semiconductor devices
630:切換氧化物層 630: Switch oxide layer
632:界面層 632:Interface layer
632a:非連續薄膜 632a: Discontinuous film
634:孔隙 634:pore
635a:導電通道 635a: Conductive channel
635b:中斷導電通道 635b: Interrupt conductive path
640:第二電極 640: Second electrode
700:用於製造RRAM器件的第二電極的方法示例 700: Example of method for fabricating second electrode of RRAM device
710:第一層 710:First floor
720:第二層 720:Second floor
1000:製造RRAM器件的方法的示例 1000: Examples of methods of fabricating RRAM devices
1010、1020、1030、1040:步驟 1010, 1020, 1030, 1040: steps
1100:製造RRAM器件的方法的示例 1100: Examples of methods of fabricating RRAM devices
1110、1120、1130、1140、1150:步驟 1110, 1120, 1130, 1140, 1150: steps
1200:製造RRAM器件的方法的示例 1200: Examples of methods of fabricating RRAM devices
1210、1220、1230、1240:步驟 1210, 1220, 1230, 1240: steps
1300:製造RRAM器件的頂電極的方法示例 1300: Example of method of fabricating top electrode of RRAM device
1310、1320:步驟 1310, 1320: steps
從下述給出的詳細描述和本發明的各種實施例的附圖,將更充分地理解本發明。然而,附圖不應被用於將本發明限制在特定實施例中,而是僅用於解釋和理解。 The present invention will be more fully understood from the detailed description given below and the accompanying drawings of various embodiments of the invention. However, the drawings should not be used to limit the invention to specific embodiments, but only for explanation and understanding.
圖1是根據本發明一些實施方式所示的示例性交叉電路的示意圖。 Figure 1 is a schematic diagram of an exemplary crossover circuit shown in accordance with some embodiments of the present invention.
圖2是根據本發明一些實施方式所示的示例性交叉點器件的示意圖。 Figure 2 is a schematic diagram of an exemplary cross-point device shown in accordance with some embodiments of the present invention.
圖3A-3C,4A-4F,5A-5D和6A-6D是根據本發明一些實施例所示的示例性RRAM器件的截面圖。 3A-3C, 4A-4F, 5A-5D, and 6A-6D are cross-sectional views of exemplary RRAM devices shown in accordance with some embodiments of the invention.
圖7是根據本發明一些實施例所示的RRAM器件中頂電極的的橫截面圖。 Figure 7 is a cross-sectional view of a top electrode in an RRAM device according to some embodiments of the present invention.
圖8是根據本發明一些實施例所示的表示金屬氧化物的化學穩定性的Ellingham圖。 Figure 8 is an Ellingham plot representing the chemical stability of metal oxides in accordance with some embodiments of the present invention.
圖9是根據本發明一些實施例所示的鉭-鈦(Ta-Ti)二元相圖。 Figure 9 is a tantalum-titanium (Ta-Ti) binary phase diagram according to some embodiments of the present invention.
圖10是根據本發明一些實施例所示的製造RRAM器件的方法的流程圖。 Figure 10 is a flowchart of a method of manufacturing an RRAM device according to some embodiments of the present invention.
圖11是根據本發明一些實施例所示的製造RRAM器件的方法的流程圖。 Figure 11 is a flowchart of a method of manufacturing an RRAM device according to some embodiments of the present invention.
圖12是根據本發明一些實施例所示的製造RRAM器件的方法的流程圖。 Figure 12 is a flowchart of a method of manufacturing an RRAM device according to some embodiments of the present invention.
圖13描述了根據本發明一些實施例所示的製造RRAM器件中頂電極的方法流程圖。 Figure 13 depicts a flow chart of a method of manufacturing a top electrode in an RRAM device according to some embodiments of the present invention.
圖14A描述了根據本發明一些實施例所示的鉭-鉿(Ta-Hf)二元相圖。 Figure 14A depicts a tantalum-hafnium (Ta-Hf) binary phase diagram according to some embodiments of the invention.
圖14B描述了根據本發明一些實施例所示的鉭-鎢(Ta-W)二元相圖。 Figure 14B depicts a tantalum-tungsten (Ta-W) binary phase diagram according to some embodiments of the invention.
圖14C描述了根據本發明一些實施例所示的鉭-鉬(Ta-Mo)二元相圖。 Figure 14C depicts a tantalum-molybdenum (Ta-Mo) binary phase diagram according to some embodiments of the invention.
圖14D描述了根據本發明一些實施例所示的鉭-鈮(Ta-Nb)二元相圖。 Figure 14D depicts a tantalum-niobium (Ta-Nb) binary phase diagram according to some embodiments of the invention.
圖14E描述了根據本發明一些實施例所示的鉭-鋯(Ta-Zr)二元相圖。 Figure 14E depicts a tantalum-zirconium (Ta-Zr) binary phase diagram according to some embodiments of the invention.
本發明的各方面提供了電阻式隨機存取儲存(RRAM)器件和製作RRAM器件的方法。RRAM器件是具有可調電阻的兩端被動元件。所述RRAM器件可包括第一電極、第二電極和位於第一電極和第二電極之間的切換氧化物層。所述第一電極可以包括非反應性金屬,例如鉑(Pt)、鈀(Pd)等。所述第二電極可以包括反應性金屬,例如鉭(Ta)等。包括非反應性金屬的電極在此也被稱為“非反應性電極”。包括反應性金屬的電極在此也被稱為“反應性電極”。所述切換氧化物層可以包括一個過渡性金屬氧化物,例如氧化鉿(HfOx)或氧化鉭(TaOx)。所述RRAM器件可以 處於一個初始狀態或原始狀態,並且在施加任何合適的電類比(例如,施加到RRAM器件的電壓或電流訊號)之前,所述RRAM器件可以具有初始高電阻。所述RRAM器件可以通過形成過程從原始狀態切換到較低的電阻態,或者通過設置過程從高電阻狀態(HRS)切換到低電阻狀態(LRS)。所述形成過程可以是指從原始狀態開始對器件進行編程。所述設置過程可以是指從高電阻狀態(HRS)對器件進行編程。在反應性金屬電極沉積在切換氧化物層上之後,反應性金屬可以從切換氧化物層中吸附氧離子並在切換氧化物層中產生氧空位,氧離子可以通過空位機制在切換氧化物層中遷移。在形成過程中,適當的編程訊號(例如,電壓或電流訊號)可以被施加到RRAM器件上,這可能導致氧離子的漂移從切換氧化物層遷移到反應性電極。因此,可以通過切換氧化物層(例如,從反應性電極到非反應性電極)形成導電通道或導電細絲。然後,可以通過向RRAM器件施加重置訊號(例如,電壓訊號、電流訊號)使得所述RRAM器件重置到高電阻狀態。向所述RRAM器件施加所述重置訊號可以引起氧離子遷移回切換氧化物層,並因此可中斷導電細絲。通過向所述RRAM器件施加適當的編程訊號(例如,電壓訊號,電流訊號等),所述RRAM器件可以在高電阻狀態和低電阻狀態之間進行電切換。在交叉陣列電路中,所述編程訊號可以通過選擇器,如電晶體,提供給指定的RRAM器件。 Aspects of the present invention provide resistive random access memory (RRAM) devices and methods of fabricating RRAM devices. RRAM devices are two-terminal passive components with adjustable resistance. The RRAM device may include a first electrode, a second electrode, and a switching oxide layer between the first electrode and the second electrode. The first electrode may include non-reactive metal, such as platinum (Pt), palladium (Pd), etc. The second electrode may include a reactive metal such as tantalum (Ta) or the like. Electrodes that include non-reactive metals are also referred to herein as "non-reactive electrodes." Electrodes including reactive metals are also referred to herein as "reactive electrodes." The switching oxide layer may include a transition metal oxide such as hafnium oxide (HfOx) or tantalum oxide (TaOx). The RRAM device can In an initial or original state, and before any suitable electrical analog (eg, a voltage or current signal applied to the RRAM device) is applied, the RRAM device may have an initially high resistance. The RRAM device can be switched from a raw state to a lower resistance state through a forming process, or from a high resistance state (HRS) to a low resistance state (LRS) through a setup process. The forming process may refer to programming the device from an original state. The setup process may refer to programming the device from a high resistance state (HRS). After the reactive metal electrode is deposited on the switching oxide layer, the reactive metal can adsorb oxygen ions from the switching oxide layer and generate oxygen vacancies in the switching oxide layer. The oxygen ions can be absorbed in the switching oxide layer through the vacancy mechanism. migration. During the formation process, appropriate programming signals (eg, voltage or current signals) may be applied to the RRAM device, which may cause drift of oxygen ions to migrate from the switching oxide layer to the reactive electrode. Thus, conductive channels or conductive filaments can be formed by switching oxide layers (eg, from reactive to non-reactive electrodes). Then, the RRAM device can be reset to a high resistance state by applying a reset signal (eg, voltage signal, current signal) to the RRAM device. Applying the reset signal to the RRAM device can cause oxygen ions to migrate back to the switching oxide layer and thus interrupt the conductive filaments. By applying appropriate programming signals (eg, voltage signals, current signals, etc.) to the RRAM device, the RRAM device can be electrically switched between a high resistance state and a low resistance state. In a crossbar array circuit, the programming signal can be provided to a designated RRAM device through a selector, such as a transistor.
在一些實施方案中,可能期望將RRAM器件縮減到適當尺寸(例如,100nm、10nm或更小尺寸的臨界尺寸)從而實現記憶體內計算(IMC)應用(例如,需要高密度RRAM器件和/或低功耗的IMC應用)。然而,當傳統RRAM器件的臨界尺寸縮減時,在傳統RRAM器件上形成的導電細絲可能不會對應縮小。例如,在縮減後的RRAM器件上形成的導電細絲尺寸不會等比例縮小。因此,形成、設置、和/或重置一個傳統縮小 RRAM器件可能仍然需要相對較高的電流或電壓。這也會阻止選擇器(例如,電晶體)和/或集成電路的有效縮減,所述集成電路用於向縮減後的RRAM器件提供電流或電壓的。此外,縮減後的RRAM器件可能擁有一個相對較小面積的頂電極。所述頂電極可能不會像大尺寸的RRAM器件那樣吸附較多的氧離子。這會引發RRAM器件的設備故障和/或操作故障。例如,由於氧離子的存在導致的反應性電極和切換氧化物層之間的分層會引發設備故障。再例如,在外部電壓下,氧離子可能從切換氧化物遷移到頂電極,一旦外部電壓被移除,氧離子可能遷移回切換氧化物,導致操作不穩定,造成非易失性儲存器的操作失敗。 In some embodiments, it may be desirable to scale RRAM devices to appropriate dimensions (e.g., critical dimensions of 100 nm, 10 nm, or smaller dimensions) to enable in-memory computing (IMC) applications (e.g., where high-density RRAM devices and/or low power consumption of IMC applications). However, as the critical dimensions of conventional RRAM devices shrink, the conductive filaments formed on conventional RRAM devices may not shrink accordingly. For example, the size of the conductive filaments formed on scaled-down RRAM devices will not scale. Therefore, forming, setting, and/or resetting a traditional shrink RRAM devices may still require relatively high current or voltage. This would also prevent efficient scaling of the selectors (eg, transistors) and/or integrated circuits used to provide current or voltage to the scaled-down RRAM device. In addition, the scaled-down RRAM device may have a relatively small area top electrode. The top electrode may not adsorb as many oxygen ions as large-sized RRAM devices. This can cause equipment failure and/or operational failure of the RRAM device. For example, delamination between the reactive electrode and the switching oxide layer due to the presence of oxygen ions can trigger device failure. For another example, under external voltage, oxygen ions may migrate from the switching oxide to the top electrode. Once the external voltage is removed, the oxygen ions may migrate back to the switching oxide, resulting in unstable operation and failure of the non-volatile memory. .
為了解決傳統RRAM器件的上述和其他缺陷,本發明提供了一種具備多成分電極結構、多層電極結構及界面層的RRAM器件,可以加強RRAM器件的性能和實現低功耗IMC應用。在一些實施例中,RRAM器件可以包括一個底電極,形成於所述底電極上的第一界面層、形成於所述第一界面層上的切換氧化物層以及一個形成於所述切換氧化物層上的頂電極。所述底電極可以包括鉑或其他合適的非反應性金屬。所述切換氧化物層可以包括過渡性金屬氧化物,例如HfOx,TaOx,TiOx,NbOx,ZrOx等。所述第一界面層可以包括第一材料的非連續薄膜,其中第一材料擁有比過渡性金屬氧化物具備更強的化學穩定性。所述第一材料可以包括,例如三氧化二鋁(Al2O3)、氧化鎂(MgO),、三氧化二釔(Y2O3)、氧化鑭(La2O3)等。第一界面層的加入可以減少切換氧化物層於第一電極之間的接觸面積,從而使得形成過程不那麼突然,降低形成電壓,減少重置電流,並降低後續操作過程中的電壓和/或電流要求。例如,所述第一電極和所述切換氧化物之間在沒有第一界面層的存在時可以完全直接接觸。在所述第一電極和所述所述切換氧化物之間存在一個連續的第一界面層時,所述第一電極不 直接接觸所述切換氧化物。相反,在所述第一電極和所述切換氧化物之間存在一個非連續性第一界面層時,所述第一電極和所述切換氧化物的直接接觸會減少或受到控制。 In order to solve the above and other defects of traditional RRAM devices, the present invention provides an RRAM device with a multi-component electrode structure, a multi-layer electrode structure and an interface layer, which can enhance the performance of the RRAM device and realize low-power IMC applications. In some embodiments, the RRAM device may include a bottom electrode, a first interface layer formed on the bottom electrode, a switching oxide layer formed on the first interface layer, and a switching oxide layer formed on the switching oxide layer. top electrode on the layer. The bottom electrode may include platinum or other suitable non-reactive metal. The switching oxide layer may include transition metal oxides, such as HfOx, TaOx, TiOx, NbOx, ZrOx, etc. The first interface layer may include a discontinuous film of a first material, wherein the first material has greater chemical stability than the transition metal oxide. The first material may include, for example, aluminum oxide (Al 2 O 3 ), magnesium oxide (MgO), yttrium oxide (Y 2 O 3 ), lanthanum oxide (La 2 O 3 ), etc. The addition of the first interface layer can reduce the contact area between the switching oxide layer and the first electrode, thereby making the formation process less sudden, reducing the formation voltage, reducing the reset current, and reducing the voltage and/or voltage during subsequent operations. current requirements. For example, the first electrode and the switching oxide may be in complete direct contact without the presence of the first interface layer. When there is a continuous first interface layer between the first electrode and the switching oxide, the first electrode does not directly contact the switching oxide. In contrast, when a discontinuous first interface layer exists between the first electrode and the switching oxide, direct contact between the first electrode and the switching oxide is reduced or controlled.
在一些實施方案中,所述RRAM器件可以進一步包括製造於切換氧化物層上的第二界面層。在一些實施方案中,所述頂電極可以製造於所述第二界面層上。所述第二界面層可以包括一個第二材料的非連續薄膜,所述第二材料比過渡性金屬氧化物具備更強的化學穩定性。所述第二界面層的加入可以減少所述切換氧化物層和所述頂電極的接觸面積。 In some implementations, the RRAM device may further include a second interface layer fabricated on the switching oxide layer. In some embodiments, the top electrode can be fabricated on the second interface layer. The second interface layer may include a discontinuous film of a second material that is more chemically stable than the transition metal oxide. The addition of the second interface layer can reduce the contact area between the switching oxide layer and the top electrode.
在一些實施例中,所述頂電極可以包括一個或多個多成分電極結構。例如,在一種實施方式中,所述頂電極可以包括一種或多種鉭合金。所述鉭合金可以是和/或包括含有Ta的二元合金、含有Ta的三元合金、含有Ta的四元合金、含有Ta的五元合金、含有Ta的六元合金和/或含有Ta的高元合金(例如,含有6種金屬元素以上的合金)。每種合金都包括鉭和一種或多種其他金屬元素,相比鉭,所述其他金屬元素擁有所需的熱力學和/或動力學特性,例如,鎢(W)、鉿(Hf)、鉬(Mo)、鈮(Nb)、鋯(Zr)等。例如,使用鉭的合金而不是純鉭金屬製造頂電極可以減少形成過程中鉭向切換氧化物層的遷移,從而減少在切換氧化物層形成的導電細絲的尺寸(例如,通過減少導電細絲的橫向尺寸或直徑)。這將增加RRAM器件的導電細絲電阻,並因此增加RRAM器件在低電阻狀態和高電阻狀態下的電阻,從而可以減少RRAM器件操作,例如形成、設置、重置、和/或調整RRAM器件,所需的電壓和/或電流。所述多成分電極結構的RRAM器件可以在多個維度上呈現動態記憶性行為,適合用於實現動態學習、邊緣處理、推理引擎加速、和其他IMC應用。 In some embodiments, the top electrode may include one or more multi-component electrode structures. For example, in one embodiment, the top electrode may include one or more tantalum alloys. The tantalum alloy may be and/or include a binary alloy containing Ta, a ternary alloy containing Ta, a quaternary alloy containing Ta, a five-element alloy containing Ta, a six-element alloy containing Ta and/or a Ta-containing High-element alloys (for example, alloys containing more than 6 metal elements). Each alloy includes tantalum and one or more other metallic elements that possess desirable thermodynamic and/or kinetic properties compared to tantalum, e.g., tungsten (W), hafnium (Hf), molybdenum (Mo ), niobium (Nb), zirconium (Zr), etc. For example, using an alloy of tantalum instead of pure tantalum metal to fabricate the top electrode can reduce the migration of tantalum into the switching oxide layer during the formation process, thereby reducing the size of the conductive filaments formed in the switching oxide layer (e.g., by reducing the conductive filaments lateral size or diameter). This will increase the conductive filament resistance of the RRAM device, and therefore increase the resistance of the RRAM device in the low-resistance state and the high-resistance state, which may reduce RRAM device operations, such as forming, setting, resetting, and/or adjusting the RRAM device, required voltage and/or current. The multi-component electrode structure RRAM device can exhibit dynamic memory behavior in multiple dimensions and is suitable for realizing dynamic learning, edge processing, inference engine acceleration, and other IMC applications.
在其他實施方式中,頂電極可以包括由不同金屬材料組成的多個層。例如,所述頂電極可以包括一個鈦(Ti)層和一個鉭(Ta)層。Ti層可以比Ta層薄得多。例如,Ti層的厚度可以在0.2nm至5nm之間。Ta層的厚度可以是約50nm。在一些實施例中,Ti層的厚度可以在0.3nm至2nm之間。Ti和Ta都可以在器件運行期間吸附和釋放氧離子。在RRAM器件中加入薄的Ti層可以改變所述RRAM器件的原始電阻,導致不突然的形成過程,降低形成電壓,減少重置電流,並減少後續操作中電壓和/或電流需求。 In other embodiments, the top electrode may include multiple layers composed of different metallic materials. For example, the top electrode may include a titanium (Ti) layer and a tantalum (Ta) layer. The Ti layer can be much thinner than the Ta layer. For example, the thickness of the Ti layer may be between 0.2nm and 5nm. The thickness of the Ta layer may be about 50 nm. In some embodiments, the thickness of the Ti layer may be between 0.3nm and 2nm. Both Ti and Ta can adsorb and release oxygen ions during device operation. Adding a thin Ti layer to an RRAM device can change the original resistance of the RRAM device, leading to a less abrupt formation process, lowering the formation voltage, reducing reset current, and reducing voltage and/or current requirements in subsequent operations.
因此,本發明提供了製造具備高導電細絲電阻和降低操作電壓和電流的RRAM器件的技術。所述RRAM器件還可以為IMC應用提供需要的線性、類比、保持和疲勞等特性。所述第一界面層和/或第二界面層的加入可以減少所述切換氧化物層和所述底電極之間的接觸和/或切換氧化物層和所述頂電極之間的接觸。這些技術可以實現RRAM器件的有效縮減和使用RRAM器件的低功耗IMC應用。 Accordingly, the present invention provides techniques for fabricating RRAM devices with high conductive filament resistance and reduced operating voltage and current. The RRAM device can also provide required linearity, analog, retention and fatigue characteristics for IMC applications. The addition of the first interface layer and/or the second interface layer can reduce the contact between the switching oxide layer and the bottom electrode and/or the contact between the switching oxide layer and the top electrode. These technologies enable effective reduction of RRAM devices and low-power IMC applications using RRAM devices.
圖1是根據本發明一些實施例所示的交叉電路的示例100的示意圖。如圖所示,交叉電路100可以包括多個互連導電線,例如n行m列的交叉電路中的一個或多個行線111a、111b、...、111i、...、111n,和一個或多個列線113a、113b、...、113j、...、113m。所述交叉電路100可以進一步包括交叉點器件120a、120b、...、120z等。每個交叉點器件可以連接一個行線和一個列線。例如,交叉點器件120ij可以連接行線111i和列線113j。在一些實施例中,交叉電路100可以進一步包括數位類比轉換器(DAC,未顯示)、類比數位轉換器(ADC,未顯示)、開關(未顯示),和/或其他合適可實現交叉器件的電路元件。列線113a-m的數量和行線111a-n的數量可以相同也可以不相同。 Figure 1 is a schematic diagram of an example 100 of a crossover circuit shown in accordance with some embodiments of the present invention. As shown, the cross circuit 100 may include a plurality of interconnected conductive lines, such as one or more row lines 111a, 111b, ..., 111i, ..., 111n, in the cross circuit of n rows and m columns, and One or more column lines 113a, 113b, ..., 113j, ..., 113m. The cross circuit 100 may further include cross point devices 120a, 120b, ..., 120z, etc. Each crosspoint device can connect one row line and one column line. For example, crosspoint device 120ij may connect row line 111i and column line 113j. In some embodiments, the crossover circuit 100 may further include a digital-to-analog converter (DAC, not shown), an analog-to-digital converter (ADC, not shown), a switch (not shown), and/or other suitable crossover devices. circuit components. The number of column lines 113a-m and the number of row lines 111a-n may be the same or different.
行線111可以包括第一行線111a、第二行線111b、...、111i、...和第n行線111n。每個行線111a、...、111n可以是和/或包括任何合適的導電材料。在一些實施例中,每個行線111a-n可以是金屬線。 The row lines 111 may include a first row line 111a, a second row line 111b, . . . , 111i, . . . and an n-th row line 111n. Each row line 111a, ..., 111n may be and/or include any suitable conductive material. In some embodiments, each row line 111a-n may be a metal line.
列線113可以包括第一列線113a、第二列線113b、...和第m列線113m。每個列線113a-m可以是和/或包括任何合適的導電材料。在一些實施例中,每個列線113a-m可以是金屬線。 The column lines 113 may include a first column line 113a, a second column line 113b, . . . and an m-th column line 113m. Each column line 113a-m may be and/or include any suitable conductive material. In some embodiments, each column line 113a-m may be a metal line.
每個交叉點器件120可以是和/或包括任何合適具備可調電阻的器件,例如憶阻器(memristor)、脈沖編碼調制(PCM)裝置、浮動閘極、自旋電子學器件、RRAM、靜態隨機存取儲存器(SRAM)等。在一些實施例中,所述交叉點器件120中的一個或多個可以包括與圖3A-5B描述相關的RRAM器件。 Each crosspoint device 120 may be and/or include any suitable device having adjustable resistance, such as a memristor, pulse code modulation (PCM) device, floating gate, spintronics device, RRAM, static Random Access Memory (SRAM), etc. In some embodiments, one or more of the crosspoint devices 120 may include RRAM devices described in connection with Figures 3A-5B.
交叉電路100可以執行並行加權電壓乘法和電流求和。例如,輸入電壓訊號可以施加到交叉電路100中的一個或多個行(例如,一個或多個選定的行)。輸入訊號可以經過所述交叉電路110各行的交叉點器件。所述交叉點器件的電導可以調整到一個特定值(也可以被稱為“權重”)。基於歐姆定律,輸入電壓乘以交叉點電導生成交叉點器件的電流。基於克希荷夫定律(Kirchhoff’s law),通過每個列線上器件的電流之和生成的電流作為輸出訊號,輸出訊號可以從列線上被讀取(例如,ADC的輸出)。根據歐姆定律和克希荷夫定律,交叉陣列的輸入-輸出關係可以表示為I=VG,其中I作為電流,表示輸出訊號矩陣;V作為電壓,表示輸入訊號矩陣;G表示交叉點器件的電導矩陣。因此,根據歐姆定律,輸入訊號在每個交叉點器件上被其電導加權。加權後的電流通過每個列線輸出,並基於克希荷夫定律進行累積。這可以通過在交叉陣列上實施並行乘法和求和從而實現記憶體內計算(IMC)。 Crossover circuit 100 can perform parallel weighted voltage multiplication and current summation. For example, the input voltage signal may be applied to one or more rows in crossbar circuit 100 (eg, one or more selected rows). Input signals may pass through crosspoint devices in each row of the crossbar circuit 110 . The conductance of the crosspoint device can be adjusted to a specific value (also referred to as a "weight"). Based on Ohm's law, the input voltage multiplied by the crosspoint conductance generates the current flowing through the crosspoint device. Based on Kirchhoff’s law, the current generated by the sum of the currents of the devices on each column line is used as the output signal, and the output signal can be read from the column line (for example, the output of the ADC). According to Ohm's law and Kirchhoff's law, the input-output relationship of the cross array can be expressed as I=VG, where I is the current and represents the output signal matrix; V is the voltage and represents the input signal matrix; G represents the conductance of the cross-point device matrix. Therefore, according to Ohm's law, the input signal is weighted at each cross-point device by its conductance. The weighted current is output through each column line and accumulated based on Kirchhoff's law. This enables in-memory computing (IMC) by implementing parallel multiplications and sums over the crossbar array.
圖2是根據本發明一些實施例所示的交叉點器件的示例200的示意圖。如圖所示,交叉點器件200可以連接位元線(BL)211,選擇線(SEL)213和字線(WL)215。所述位元線211和所述字線215可以分別是圖1中所描述的一個列線和一個行線。 Figure 2 is a schematic diagram of an example 200 of a cross-point device according to some embodiments of the present invention. As shown, crosspoint device 200 may connect bit lines (BL) 211, select lines (SEL) 213, and word lines (WL) 215. The bit line 211 and the word line 215 may be a column line and a row line respectively as described in FIG. 1 .
交叉點器件200可以包括RRAM器件201和電晶體203。電晶體是一種三端器件,可以分別標記為閘極(G)、源極(S)和漏極(D)。所述電晶體203可以串行連接至所述RRAM器件201。如圖2所示,所述RRAM器件201的第一電極可以連接至所述電晶體203的漏極。所述RRAM器件201的第二電極可以連接至位元線211。所述電晶體203的源極可以連接至字線215。所述電晶體203的閘極可以連接至所述選擇線213。RRAM器件可以包括一個或多個如圖3A-7所描述的RRAM器件。交叉點器件200也可以被成為1-電晶體-1-電阻器(1T1R)配置。所述電晶體203可以作為選擇器和電流控制器來執行,可以在編程期間為所述RRAM器件設置電流限制器。所述電晶體203的閘極電壓在編程期間可以為交叉點器件200設置電流限制器,從而控制交叉點器件200的導電性和類比行為。例如,在交叉點器件200被設置為從高電阻狀態到低電阻狀態,設置訊號(例如,電壓訊號、電流訊號)可以通過位元線(BL)211提供。另一個電壓,也被稱為選擇電壓或閘極電壓,可以通過所述選擇線(SEL)213施加至電晶體閘極,從而打開閘極和設置電流限制器,而字線(WL)215可以被設置為接地。當交叉點器件200從低電阻狀態重置到高電阻狀態,閘極電壓可以通過選擇線213施加至所述電晶體203的閘極,從而打開電晶體閘極。同時,重置訊號可以通過字線215發送至所述RRAM器件201,而位元線211可以被設置為接地。 Crosspoint device 200 may include RRAM device 201 and transistor 203 . A transistor is a three-terminal device, which can be labeled gate (G), source (S), and drain (D). The transistor 203 may be connected in series to the RRAM device 201. As shown in FIG. 2 , the first electrode of the RRAM device 201 may be connected to the drain of the transistor 203 . The second electrode of the RRAM device 201 may be connected to the bit line 211 . The source of transistor 203 may be connected to word line 215 . The gate of the transistor 203 may be connected to the select line 213 . RRAM devices may include one or more RRAM devices as described in Figures 3A-7. Crosspoint device 200 may also be configured in a 1-transistor-1-resistor (1T1R) configuration. The transistor 203 may perform as a selector and current controller, and a current limiter may be set for the RRAM device during programming. The gate voltage of the transistor 203 can set a current limiter for the crosspoint device 200 during programming, thereby controlling the conductivity and analog behavior of the crosspoint device 200 . For example, when the cross-point device 200 is set from a high-resistance state to a low-resistance state, a setting signal (eg, voltage signal, current signal) may be provided through bit line (BL) 211 . Another voltage, also called the select voltage or gate voltage, can be applied to the transistor gate via the select line (SEL) 213, thereby opening the gate and setting the current limiter, while the word line (WL) 215 Can be set to ground. When crosspoint device 200 resets from a low resistance state to a high resistance state, a gate voltage may be applied to the gate of transistor 203 via select line 213, thereby opening the transistor gate. At the same time, a reset signal can be sent to the RRAM device 201 through the word line 215, and the bit line 211 can be set to ground.
圖3A、3B和3C顯示了根據本發明的一些實施例的示例RRAM器件的截面圖。RRAM器件300a、300b和300c可以分別對應於初始狀態、低電阻狀態和高電阻狀態的RRAM器件。 Figures 3A, 3B, and 3C show cross-sectional views of example RRAM devices in accordance with some embodiments of the invention. The RRAM devices 300a, 300b, and 300c may correspond to RRAM devices in an initial state, a low resistance state, and a high resistance state, respectively.
如圖3A所示,RRAM器件300a可以包括基板310、第一電極320、切換氧化物層330和第二電極340。所述RRAM器件300a可以進一步包括一個或多個可用於實現記憶體內計算應用的其他元件。 As shown in FIG. 3A, the RRAM device 300a may include a substrate 310, a first electrode 320, a switching oxide layer 330, and a second electrode 340. The RRAM device 300a may further include one or more other components that may be used to implement in-memory computing applications.
基板310可以包括包含可作為RRAM器件基板的任何合適材料的一個或多個層,例如矽(Si),二氧化矽(SiO2),氮化矽(Si3N4)、氧化鋁(Al2O3)、氮化鋁(AlN)等。在一些實施例中,基板310可以包括二極體、電晶體、互連器件、集成電路等。在一些實施例中,所述基板可以包括驅動電路,驅動電路包括一個或多個可單獨控制的電路(例如,電路陣列)。在一些實施例中,所述驅動電路可以包括一個或多個互補金屬氧化物半導體(CMOS)驅動器。 Substrate 310 may include one or more layers including any suitable material that may serve as a substrate for an RRAM device, such as silicon (Si), silicon dioxide (SiO2), silicon nitride (Si3N4), aluminum oxide (Al 2 O 3 ), Aluminum nitride (AlN), etc. In some embodiments, substrate 310 may include diodes, transistors, interconnect devices, integrated circuits, and the like. In some embodiments, the substrate may include driver circuitry that includes one or more individually controllable circuits (eg, a circuit array). In some embodiments, the driver circuit may include one or more complementary metal oxide semiconductor (CMOS) drivers.
第一電極320可以是和/或包括任何合適的材料,該材料對切換氧化物具有電子導電性和非反應性。例如,第一電極320可以包括鉑(Pt)、鈀(Pd)、銥(Ir)、氮化鈦(TiN)、氮化鉭(TaN)等。 The first electrode 320 may be and/or include any suitable material that is electronically conductive and non-reactive to the switching oxide. For example, the first electrode 320 may include platinum (Pt), palladium (Pd), iridium (Ir), titanium nitride (TiN), tantalum nitride (TaN), or the like.
切換氧化物層330可以包括二元氧化物、三元氧化物和高元氧化物中的一種或多種過渡性金屬氧化物,例如TaOx、HfOx、TiOx、NbOx、ZrOx等。在一些實施例中,第一電極320中非反應性金屬的化學穩定性可以高於切換氧化物層330中過渡性金屬氧化物的化學穩定性。 The switching oxide layer 330 may include one or more transition metal oxides among binary oxides, ternary oxides, and higher oxides, such as TaOx, HfOx, TiOx, NbOx, ZrOx, and the like. In some embodiments, the chemical stability of the non-reactive metal in the first electrode 320 may be higher than the chemical stability of the transition metal oxide in the switching oxide layer 330 .
第二電極340可以包括任何合適的對切換氧化物具有電子導電性和反應性的金屬材料。例如,第二電極340的金屬材料可以包括Ta、Hf、Ti、TiN、TaN等。第二電極340對切換氧化物是反應性的,且具備合適的氧溶解度,從而可以從切換氧化物層330吸附一部分氧使得在切換氧化 物層330中生成氧空位。換而言之,第二電極340中的反應性金屬材料可以具備合適的氧溶解度和/或氧流動性。在一些實施例中,第二電極340不僅可以在切換氧化物層330中生成氧空位(例如,通過清除氧離子),還可以在單元編程期間作為切換氧化物層330的氧庫或氧源。 Second electrode 340 may include any suitable metallic material that is electronically conductive and reactive toward the switching oxide. For example, the metal material of the second electrode 340 may include Ta, Hf, Ti, TiN, TaN, etc. The second electrode 340 is reactive to the switching oxide and has appropriate oxygen solubility, so that a portion of the oxygen can be adsorbed from the switching oxide layer 330 to achieve switching oxidation. Oxygen vacancies are generated in the material layer 330 . In other words, the reactive metal material in the second electrode 340 may have appropriate oxygen solubility and/or oxygen mobility. In some embodiments, the second electrode 340 may not only generate oxygen vacancies in the switching oxide layer 330 (eg, by scavenging oxygen ions), but may also serve as an oxygen reservoir or source for the switching oxide layer 330 during cell programming.
RRAM器件330a在被製作後可以具備初始電阻(也可以被稱之為“原始電阻”)。RRAM器件300a的初始電阻可以被改變,且RRAM器件300a可以通過形成過程切換到低電阻狀態。例如,可以將合適的電壓或電流施加到RRAM器件300a上。對RRAM器件300施加電壓可以促使第二電極的金屬材料從切換氧化物層330吸附氧離子並在切換氧化物層330生成氧空位。從而可以在切換氧化物層330中形成富含氧空位的導電通道(例如,導電細絲)。例如,如圖3B所示,在切換氧化物層330形成了導電通道335a。如圖所示,可以形成從第二電極330到第一電極320貫穿切換氧化物層330的導電通道335a。RRAM器件300b可以重置至高電阻狀態。例如,重置訊號(例如,電壓訊號或電流訊號)可以在重置過程中被施加至RRAM器件300b。在一些實施例中,設置訊號和重置訊號可以具備相反的極性,即分別為正訊號和負訊號。重置訊號可以使得氧離子遷移回切換氧化物層330,並與一個或多個氧空位重新結合。例如,在重置過程中,如圖3C所示,可以在切換氧化物層330形成中斷導電通道335b。如圖所示,由於在中斷導電通道335b和第一電極320之間有個氧化物間隙,導電通道被中斷。導電通道335b的橫向尺寸可以小於導電通道335a的橫向尺寸。在一些實施例中,導電通道335b不能持續性連接第一電極320和第二電極340。RRAM器件330a-c可以通過向RRAM器件施加合適的編程訊號(例如,電壓訊號、電流訊號等)從而在高電阻狀態和低電阻狀態之間進行電切換。 The RRAM device 330a may have an initial resistance (also referred to as "original resistance") after being fabricated. The initial resistance of RRAM device 300a can be changed, and RRAM device 300a can switch to a low resistance state through the formation process. For example, a suitable voltage or current may be applied to RRAM device 300a. Applying a voltage to the RRAM device 300 can cause the metal material of the second electrode to adsorb oxygen ions from the switching oxide layer 330 and generate oxygen vacancies in the switching oxide layer 330 . Oxygen vacancy-rich conductive channels (eg, conductive filaments) may thereby be formed in the switching oxide layer 330 . For example, as shown in FIG. 3B , a conductive channel 335a is formed in the switching oxide layer 330 . As shown, a conductive channel 335a may be formed through the switching oxide layer 330 from the second electrode 330 to the first electrode 320. RRAM device 300b can be reset to a high resistance state. For example, a reset signal (eg, a voltage signal or a current signal) may be applied to the RRAM device 300b during the reset process. In some embodiments, the set signal and the reset signal may have opposite polarities, that is, positive signals and negative signals respectively. The reset signal may cause oxygen ions to migrate back to the switching oxide layer 330 and recombine with one or more oxygen vacancies. For example, during a reset process, as shown in FIG. 3C , an interrupted conductive channel 335b may be formed in the switching oxide layer 330 . As shown in the figure, the conductive path is interrupted due to an oxide gap between the interrupted conductive path 335b and the first electrode 320. The lateral dimension of conductive channel 335b may be smaller than the lateral dimension of conductive channel 335a. In some embodiments, the conductive channel 335b cannot continuously connect the first electrode 320 and the second electrode 340. RRAM devices 330a-c can be electrically switched between high resistance states and low resistance states by applying appropriate programming signals (eg, voltage signals, current signals, etc.) to the RRAM devices.
圖4A-4F是說明根據本發明的一些實施例的RRAM器件的示例結構400a、400b、400c、400d、400e和400f的剖視圖的示意圖。 4A-4F are schematic diagrams illustrating cross-sectional views of example structures 400a, 400b, 400c, 400d, 400e, and 400f of RRAM devices in accordance with some embodiments of the invention.
如圖4A所示,第一電極420可以被製造於基板410上。所述第一電極420和所述基板410可以分別對應於圖3A、3B和3C中描述的第一電極320和基板310。 As shown in FIG. 4A, the first electrode 420 may be fabricated on the substrate 410. The first electrode 420 and the substrate 410 may respectively correspond to the first electrode 320 and the substrate 310 described in FIGS. 3A, 3B, and 3C.
如圖4B所示,界面層422可以被製造於第一電極420上。所述界面層422(在此也被稱為“第一界面層)可以是和/或包括非連續薄膜422a。例如,所述非連續薄膜422a可以包括一個或多個孔隙424。所述孔隙424(在此也被稱為”第一孔隙“)可以具備任何合適的大小和/或尺寸,並可以隨機分散在所述界面層422上。雖然在圖4B中示出了具體數量的孔隙,但這僅僅是說明性的。所述非連續薄膜422a可以包括任何合適數量的孔隙。在一些實施例中,所述界面層422和/或非連續薄膜422a的厚度可以在約0.2奈米到約0.5奈米之間。在一些實施例中,所述非連續薄膜422a可以是厚度等於或小於0.5奈米的Al2O3薄膜。在一些實施例中,所述非連續薄膜422a可以包括厚度小於1奈米的Al2O3薄膜。 As shown in FIG. 4B , an interface layer 422 may be fabricated on the first electrode 420 . The interface layer 422 (also referred to herein as the "first interface layer) may be and/or include a discontinuous film 422a. For example, the discontinuous film 422a may include one or more pores 424. The pores 424 (also referred to herein as "first pores") may be of any suitable size and/or dimensions and may be randomly dispersed across the interface layer 422. Although a specific number of pores is shown in Figure 4B, This is illustrative only. The discontinuous film 422a can include any suitable number of pores. In some embodiments, the thickness of the interface layer 422 and/or the discontinuous film 422a can range from about 0.2 nanometers to about 0.5 nanometers. between nanometers. In some embodiments, the discontinuous film 422a may be an Al 2 O 3 film with a thickness equal to or less than 0.5 nanometers. In some embodiments, the discontinuous film 422a may include an Al 2 O 3 film with a thickness less than 1 nm. Nano-sized Al 2 O 3 thin film.
如圖4C所示,切換氧化物層430可以被製造於所述界面層422上。所述切換氧化物層430可以包括一種或多種過渡性金屬氧化物,例如TaOx、HfOx、TiOx、NbOx、ZrOx等二元氧化物、三元氧化物或高元氧化物,其中x可以用於表示與完全(或終級)氧化物相比該氧化物是缺氧的,且x的取值可以隨著其完全氧化物的化學計量中氧和金屬原子的比率變化,例如,對於HfOx(其中HfO2是完全氧化物),x2.0,對於TaOx(其中Ta2O5為完全氧化物),x2.5。作為一個示例,所述切換氧化物層430可以包括Ta2O5。作為另一個示例,所述切換氧化物層430可以包括HfO2。 As shown in FIG. 4C , a switching oxide layer 430 may be fabricated on the interface layer 422 . The switching oxide layer 430 may include one or more transition metal oxides, such as TaOx, HfOx, TiOx, NbOx, ZrOx and other binary oxides, ternary oxides or higher oxides, where x may be used to represent The oxide is anoxic compared to the complete (or final) oxide, and the value of x can vary with the ratio of oxygen to metal atoms in the stoichiometry of its complete oxide, for example, for HfO is a complete oxide), x 2.0, for TaOx (where Ta2O5 is a complete oxide), x 2.5. As an example, the switching oxide layer 430 may include Ta2O5. As another example, the switching oxide layer 430 may include HfO2.
在一些實施例中,在所述切換氧化物層430製造期間,過渡性金屬氧化物的一部分或多部分可以通過一個或多個孔隙424布置在所述第一電極420上。因此,所述切換氧化物層430可以與所述第一電極420的一個或多個部分接觸。 In some embodiments, a portion or portions of a transition metal oxide may be disposed on the first electrode 420 through one or more pores 424 during fabrication of the switching oxide layer 430 . Accordingly, the switching oxide layer 430 may be in contact with one or more portions of the first electrode 420 .
在一些實施例中,所述界面層422可以包括比所述切換氧化層430中的過渡性金屬氧化物具備更強的化學穩定性的第一材料。因此,所述第一材料可以不與所述切換氧化層430中的過渡性金屬氧化物反應。所述第一材料可以包括單價金屬元素。作為一個示例,所述切換氧化層中的切換氧化物可以是和/或包括一個或多個過渡性金屬氧化物,例如HfOx或TaOy中的至少一個,其中x2.0和y2.5,且所述第一材料可以包括Al2O3,MgO,Y2O3,La2O3等。 In some embodiments, the interface layer 422 may include a first material that has greater chemical stability than the transition metal oxide in the switching oxide layer 430 . Therefore, the first material may not react with the transition metal oxide in the switching oxide layer 430 . The first material may include a monovalent metal element. As an example, the switching oxide in the switching oxide layer may be and/or include one or more transition metal oxides, such as at least one of HfOx or TaOy, where x 2.0 and y 2.5, and the first material may include Al 2 O 3 , MgO, Y 2 O 3 , La 2 O 3 , etc.
參考圖8,可以使用埃林漢姆(Ellingham)圖識別比切換氧化物層430中的過渡性金屬氧化物具備更強化學穩定性的材料。如圖所示,Ellingham圖800繪製了氧化反應的吉布斯自由能變量與溫度的關係。所述材料的化學穩定性可以基於材料的吉布斯生成能值確定。圖8中縱軸所示的吉布斯自由能表示氧化物(包括1摩爾氧)的生成自由能,橫軸表示開爾文溫度。如圖所示,這些氧化物的相對穩定性從Ta2O5,TiO2,HfO2到Al2O3是增加的。Al2O3在室溫下比HfO2更穩定。應當注意的是鋁金屬在933k(660攝氏度)下熔化,且鋁液體比鋁個體擁有更高的熵。在更高的溫度下Al2O3變得比HfO2不穩定。在Ellingham圖中,所述界面層422的材料的曲線可能低於對應於所述切換氧化物層420中的過渡性金屬氧化物的曲線。作為一個示例,在一些實施例中,Al2O3可以被用作所述第一材料,其中所述切換氧化物層430中的過渡性金屬氧化物包括HfO2或Ta2O5。在設置過程 和重置過程中包含Al2O3的第一材料不會與含有HfO2或Ta2O5的過渡性金屬氧化物反應。 Referring to FIG. 8 , an Ellingham plot can be used to identify materials that are more chemically stable than the transition metal oxide in the switching oxide layer 430 . As shown, the Ellingham diagram 800 plots the Gibbs free energy variable of the oxidation reaction as a function of temperature. The chemical stability of the material can be determined based on the material's Gibbs energy of generation value. The Gibbs free energy shown on the vertical axis in FIG. 8 represents the free energy of formation of an oxide (including 1 mole of oxygen), and the horizontal axis represents the Kelvin temperature. As shown in the figure, the relative stability of these oxides increases from Ta2O5, TiO2, HfO2 to Al 2 O 3 . Al 2 O 3 is more stable than HfO2 at room temperature. It should be noted that aluminum metal melts at 933k (660 degrees Celsius), and the aluminum liquid has a higher entropy than individual aluminum. Al 2 O 3 becomes less stable than HfO 2 at higher temperatures. In the Ellingham diagram, the curve for the material of the interface layer 422 may be lower than the curve corresponding to the transition metal oxide in the switching oxide layer 420 . As an example, in some embodiments, Al 2 O 3 may be used as the first material, wherein the transition metal oxide in the switching oxide layer 430 includes HfO 2 or Ta 2 O 5 . The first material containing Al 2 O 3 does not react with the transition metal oxide containing HfO 2 or Ta 2 O 5 during the setup process and the reset process.
如圖4D所示,第二電極440可以被製造於所述切換氧化物層430上。在一些實施例中,所述第二電極440可以包括如圖7所述的一個或多個頂電極700。在一些實施例中,製造於所述切換氧化物層430上的所述第二電極440可以包括一種或多種合金。每種合金可以包括兩種或兩種以上的金屬元素。每種合金可以包括二元合金(例如,包含兩種金屬元素的合金)、三元合金(例如,包含三種金屬元素的合金)、四元合金(例如,包含四種金屬元素的合金)、五元合金(例如,包含五種金屬元素的合金)、六元合金(例如,包含六種金屬元素的合金)和/或高元合金(例如,包含多於六種金屬元素的合金)。在一些實施例中,所述第二電極340可以包括一種或多種含有第一金屬元素和一種或多種第二金屬元素的合金。每種第二金屬元素與第一金屬元素相比,對切換氧化物層中的過渡性金屬氧化物的反應性可以更小或更大。在一些實施例中,所述第一金屬元素可以是Ta。所述第二金屬元素可以包括W、Hf、Mo、Nb、Zr等中的一種或多種。在一些實施例中,第二電極440的合金中第一金屬元和和第二金屬元素的比例可以是約50原子百分比。在一些實施例中,合金中第一金屬元素和第二金屬元素的合適比例可以在整個成分範圍優化。在形成過程中,第二金屬元素在切換氧化物層形成的氧空位可能比第一金屬元素少,因此,在包括含有所述合金的第二電極的RRAM器件中形成的導電細絲的橫向尺寸可能小於包括僅含有第一金屬的第二電極的RRAM器件中形成的導電細絲的橫向尺寸。在RRAM器件中所述第二電極440中含有Ta的合金的實施可以使得形成過程不太突然,降低形成電壓,降低重置電流,並降低後續操作過程中的電壓和/或電流要求。 As shown in FIG. 4D, a second electrode 440 may be fabricated on the switching oxide layer 430. In some embodiments, the second electrode 440 may include one or more top electrodes 700 as described in FIG. 7 . In some embodiments, the second electrode 440 fabricated on the switching oxide layer 430 may include one or more alloys. Each alloy may include two or more metallic elements. Each alloy may include a binary alloy (e.g., an alloy containing two metal elements), a ternary alloy (e.g., an alloy containing three metal elements), a quaternary alloy (e.g., an alloy containing four metal elements), a quintile alloy. Meta-alloys (eg, alloys containing five metallic elements), hexa-metal alloys (eg, alloys containing six metallic elements), and/or high-alloys (eg, alloys containing more than six metallic elements). In some embodiments, the second electrode 340 may include one or more alloys containing a first metal element and one or more second metal elements. Each second metal element may be less or more reactive toward the transition metal oxide in the switching oxide layer than the first metal element. In some embodiments, the first metal element may be Ta. The second metal element may include one or more of W, Hf, Mo, Nb, Zr, etc. In some embodiments, the ratio of the first metal element and the second metal element in the alloy of the second electrode 440 may be about 50 atomic percent. In some embodiments, the appropriate ratio of the first metallic element to the second metallic element in the alloy can be optimized over the entire composition range. During the formation process, the second metal element may form fewer oxygen vacancies in the switching oxide layer than the first metal element, and therefore, the lateral dimensions of the conductive filaments formed in the RRAM device including the second electrode containing the alloy May be smaller than the lateral dimensions of conductive filaments formed in RRAM devices that include second electrodes containing only the first metal. Implementation of a Ta-containing alloy in the second electrode 440 in an RRAM device may make the formation process less abrupt, lower the formation voltage, lower the reset current, and reduce voltage and/or current requirements during subsequent operation.
示例性地,所述第二電極440可以包括一種或多種含有Ta的合金(也可稱之為“Ta合金”)。每種Ta合金可以包括Ta和一種或多種其他金屬元素(例如Hf、W、Mo、Nb、Zr等)。示例性地,所述第二電極440可以包括一種或多種含有Ta的二元合金。例如,含有Ta的二元合金可以包括Ta-Hf合金、Ta-W合金、Ta-Mo合金、Ta-Nb合金、Ta-Zr合金等。示例性地,所述第二電極440可以包括一種或多種含有Ta的三元合金。例如,含有Ta的三元合金可以包括Ta-Hf-Mo合金、Ta-Hf-Nb合金、Ta-Hf-W合金、Ta-Hf-Zr合金、Ta-Mo-Nb合金、Ta-Mo-W合金、Ta-Mo-Zr合金、Ta-Nb-W合金、Ta-Nb-Zr合金、Ta-W-Zr合金等。示例性地,所述第二電極440可以包括一種或多種含有Ta的四元合金。例如,含有Ta的四元合金可以包括Ta-Hf-Mo-Nb合金、Ta-Hf-Mo-W合金、Ta-Hf-Mo-Zr合金、Ta-Hf-Nb-W合金、Ta-Hf-Nb-Zr合金、Ta-Mo-Nb-W合金、Ta-Mo-Nb-Zr合金、Ta-Nb-W-Zr合金等。示例性地,所述第二電極可以包括一種或多種含有Ta的五元合金。例如,含有Ta五元合金可以包括Ta-Hf-Mo-Nb-W合金、Ta-Mo-Nb-W-Zr合金、Ta-Hf-Nb-W-Zr合金、Ta-Hf-Mo-W-Zr合金、Ta-Hf-Mo-Nb-Zr合金等。示例性地,所述第二電極440可以包括含有Ta的六元合金,例如Ta-Hf-Mo-Nb-W-Zr合金。示例性地,所述第二電極440可以包括含有Ta的高元合金。在一些實施例中,所述高元合金可進一步包括釩(V)。 For example, the second electrode 440 may include one or more Ta-containing alloys (also referred to as “Ta alloys”). Each Ta alloy may include Ta and one or more other metal elements (eg, Hf, W, Mo, Nb, Zr, etc.). Exemplarily, the second electrode 440 may include one or more binary alloys containing Ta. For example, Ta-containing binary alloys may include Ta-Hf alloys, Ta-W alloys, Ta-Mo alloys, Ta-Nb alloys, Ta-Zr alloys, and the like. Exemplarily, the second electrode 440 may include one or more ternary alloys containing Ta. For example, the ternary alloy containing Ta may include Ta-Hf-Mo alloy, Ta-Hf-Nb alloy, Ta-Hf-W alloy, Ta-Hf-Zr alloy, Ta-Mo-Nb alloy, Ta-Mo-W Alloy, Ta-Mo-Zr alloy, Ta-Nb-W alloy, Ta-Nb-Zr alloy, Ta-W-Zr alloy, etc. Exemplarily, the second electrode 440 may include one or more quaternary alloys containing Ta. For example, the Ta-containing quaternary alloy may include Ta-Hf-Mo-Nb alloy, Ta-Hf-Mo-W alloy, Ta-Hf-Mo-Zr alloy, Ta-Hf-Nb-W alloy, Ta-Hf- Nb-Zr alloy, Ta-Mo-Nb-W alloy, Ta-Mo-Nb-Zr alloy, Ta-Nb-W-Zr alloy, etc. Exemplarily, the second electrode may include one or more quinary alloys containing Ta. For example, Ta-containing five-element alloys may include Ta-Hf-Mo-Nb-W alloy, Ta-Mo-Nb-W-Zr alloy, Ta-Hf-Nb-W-Zr alloy, Ta-Hf-Mo-W- Zr alloy, Ta-Hf-Mo-Nb-Zr alloy, etc. Exemplarily, the second electrode 440 may include a six-element alloy containing Ta, such as Ta-Hf-Mo-Nb-W-Zr alloy. For example, the second electrode 440 may include a high-element alloy containing Ta. In some embodiments, the high-element alloy may further include vanadium (V).
在一些實施例中,所述第二電極440可以包括多種合金。每種合金可以是含有Ta和一種或多種其他金屬元素(例如Hf、W、Mo、Nb、Zr等)的Ta合金。所述Ta合金可以是和/或包括二元合金、三元合金、四元合金、五元合金、六元合金、高元合金等。示例性地,所述第二電極440可以包括含有Ta的第一合金、含有Ta的第二合金、含有Ta的第三合金、含有Ta的第四合金、含有Ta的第五合金和含有Ta的第六合金中的兩種或兩種以 上。在一些實施例中,所述含有Ta的第一合金、含有Ta的第二合金、含有Ta的第三合金、含有Ta的第四合金、含有Ta的第五合金和含有Ta的第六合金可以分別是二元合金、三元合金、四元合金、五元合金、六元合金和高元合金。 In some embodiments, the second electrode 440 may include multiple alloys. Each alloy may be a Ta alloy containing Ta and one or more other metal elements (eg, Hf, W, Mo, Nb, Zr, etc.). The Ta alloy may be and/or include a binary alloy, a ternary alloy, a quaternary alloy, a five-element alloy, a six-element alloy, a high-element alloy, etc. Exemplarily, the second electrode 440 may include a first alloy containing Ta, a second alloy containing Ta, a third alloy containing Ta, a fourth alloy containing Ta, a fifth alloy containing Ta, and a third alloy containing Ta. Two or more of the sixth alloys superior. In some embodiments, the first alloy containing Ta, the second alloy containing Ta, the third alloy containing Ta, the fourth alloy containing Ta, the fifth alloy containing Ta and the sixth alloy containing Ta They can be binary alloys, ternary alloys, quaternary alloys, five-element alloys, six-element alloys and high-element alloys.
在一些實施例中,第二電極440中的多種合金可以對應於相同數量的金屬元素的組合。例如,所述含有Ta的第一合金和含有Ta的第二合金可以分別包括含有Ta的第一二元合金(例如,Ta-W合金)和含有Ta的第二二元合金(例如,Ta-Mo合金)。示例性地,所述含有Ta的第一合金和含有Ta的第二合金可以分別包括含有Ta的第一三元合金(例如,Ta-Hf-Mo合金)和含有Ta的第二三元合金(例如,Ta-Hf-Nb合金)。示例性地,所述第二電極440可以包括多種合金系統。每種合金系統可以包含含有不同成分的特定金屬元素的混合物。例如,二元系統可以包括一種或多種含有兩種金屬元素(例如Ta和Hf)的二元合金,該二元合金具備不同成分。每種二元合金可以是具備特定成分的兩種金屬元素的組合。示例性地,三元系統可以包括一種或多種含有三種金屬元素(例如,Ta、Hf和W)的三元合金,該三元合金具備不同成分。每種三元合金可以是具備特定成分的三種金屬元素的組合。在一些實施例中,所述第二電極440可以包括含有一種或多種合金系統的Ta合金系統。在一些實施例中,所述Ta合金系統可以包括兩種或兩種以上合金系統。例如,所述Ta合金系統可以包括含有Ta、Hf、W、Mo、Nb、和Zr中的一種或多種合金的六元系統。所述Ta合金系統可以進一步包括一個或多個含有Ta合金的二元系統、三元系統、四元系統和/或五元系統。所述二元系統可以包括Ta-Hf合金系統、Ta-W合金系統、Ta-Mo合金系統、Ta-Nb合金系統和/或Ta-Zr合金系統中的一種或多種。所述三元系統可以包括Ta-Hf-Mo合金系統、Ta-Hf-Nb合金系統、Ta-Hf-W合金系統、 Ta-Hf-Zr合金系統、Ta-Mo-Nb合金系統、Ta-Mo-W合金系統、Ta-Mo-Zr合金系統、Ta-Nb-Zr合金系統、Ta-Nb-W合金系統和/或Ta-W-Zr合金系統中的一種或多種。四元合金系統可以包括Ta-Hf-Mo-Nb合金系統、Ta-Hf-Mo-W合金系統、Ta-Hf-Mo-Zr合金系統、Ta-Hf-Nb-W合金系統、Ta-Hf-Nb-Zr合金系統、Ta-Mo-Nb-W合金系統、Ta-Mo-Nb-Zr合金系統、Ta-Nb-W-Zr合金系統中的一種或多種。五元合金可以包括Ta-Hf-Mo-Nb-W合金系統、Ta-Mo-Nb-W-Zr合金系統、Ta-Hf-Nb-W-Zr合金系統、Ta-Hf-Mo-W-Zr合金系統和/或Ta-Hf-Mo-Nb-Zr合金系統中的一種或多種。包含在第二電極440中的每種合金系統可以具備獨特的熱力學和動力學特性,並可以視為一種電極成分。因此,第二電極440可以包括多個電極成分用於提供多個狀態變量,從而可以使得具備可用於計算和學習的不同時間常數的豐富動態性。例如,每種電極成分可以具備對切換氧化物不同的反應性或對氧的親和性。每種電極成分可以具有不同的擴散性(例如,自擴散、互擴散、擴散時間常數等)。具有多種成分的第二電極440可以為IMC應用提供多種動態行為。因此,包含多成分第二電極的RRAM器件可以在多個維度上呈現動態記憶性行為。 In some embodiments, the multiple alloys in the second electrode 440 may correspond to the same number of combinations of metal elements. For example, the first alloy containing Ta and the second alloy containing Ta may respectively include a first binary alloy containing Ta (eg, Ta-W alloy) and a second binary alloy containing Ta (eg, Ta- Mo alloy). Exemplarily, the first alloy containing Ta and the second alloy containing Ta may respectively include a first ternary alloy containing Ta (for example, Ta-Hf-Mo alloy) and a second ternary alloy containing Ta (e.g., Ta-Hf-Mo alloy). For example, Ta-Hf-Nb alloy). By way of example, the second electrode 440 may include a variety of alloy systems. Each alloy system can contain a mixture of specific metallic elements with different compositions. For example, a binary system may include one or more binary alloys containing two metallic elements, such as Ta and Hf, with different compositions. Each binary alloy can be a combination of two metallic elements with a specific composition. Illustratively, a ternary system may include one or more ternary alloys containing three metallic elements (eg, Ta, Hf, and W) with different compositions. Each ternary alloy can be a combination of three metallic elements with a specific composition. In some embodiments, the second electrode 440 may include a Ta alloy system containing one or more alloy systems. In some embodiments, the Ta alloy system may include two or more alloy systems. For example, the Ta alloy system may include a six-element system containing one or more alloys of Ta, Hf, W, Mo, Nb, and Zr. The Ta alloy system may further include one or more binary systems, ternary systems, quaternary systems and/or quintuple systems containing Ta alloys. The binary system may include one or more of Ta-Hf alloy system, Ta-W alloy system, Ta-Mo alloy system, Ta-Nb alloy system and/or Ta-Zr alloy system. The ternary system may include Ta-Hf-Mo alloy system, Ta-Hf-Nb alloy system, Ta-Hf-W alloy system, Ta-Hf-Zr alloy system, Ta-Mo-Nb alloy system, Ta-Mo-W alloy system, Ta-Mo-Zr alloy system, Ta-Nb-Zr alloy system, Ta-Nb-W alloy system and/or One or more of the Ta-W-Zr alloy systems. The quaternary alloy system may include Ta-Hf-Mo-Nb alloy system, Ta-Hf-Mo-W alloy system, Ta-Hf-Mo-Zr alloy system, Ta-Hf-Nb-W alloy system, Ta-Hf- One or more of the Nb-Zr alloy system, Ta-Mo-Nb-W alloy system, Ta-Mo-Nb-Zr alloy system, and Ta-Nb-W-Zr alloy system. Five-element alloys may include Ta-Hf-Mo-Nb-W alloy system, Ta-Mo-Nb-W-Zr alloy system, Ta-Hf-Nb-W-Zr alloy system, Ta-Hf-Mo-W-Zr One or more of the alloy system and/or Ta-Hf-Mo-Nb-Zr alloy system. Each alloy system included in second electrode 440 may possess unique thermodynamic and kinetic properties and may be considered an electrode component. Therefore, the second electrode 440 may include multiple electrode components for providing multiple state variables, thereby enabling rich dynamics with different time constants that can be used for calculation and learning. For example, each electrode component may possess a different reactivity toward the switching oxide or affinity toward oxygen. Each electrode component can have different diffusivity (eg, self-diffusion, interdiffusion, diffusion time constant, etc.). Second electrode 440 with multiple compositions can provide multiple dynamic behaviors for IMC applications. Therefore, RRAM devices containing multi-component second electrodes can exhibit dynamic memory behavior in multiple dimensions.
圖4E和4F說明了可分別對應於RRAM器件400d的低電阻狀態和高電阻狀態的半導體器件400e和400f。非連續膜422的加入可以減少所述切換氧化物層430和所述第一電極420之間的接觸面積。如圖4E所示,可形成從所述第二電極440到所述第一電極420通過所述界面層422和所述切換氧化物層430的一個導電通道435a(例如,導電細絲)。如圖4F所示,在重置過程中,可在所述切換氧化物層430形成一個中斷導電通道435b。與圖3B和圖3C相比,所述導電通道435a和所示中斷導電通道435b的橫向尺寸可以分別小於335a和335b的橫向尺寸。因此,形成於具備非連續薄膜422 的RRAM器件中的導電細絲的橫向尺寸可以小於形成於沒有在所述第一電極和所述切換氧化物層之間形成多孔和/或非連續薄膜的RRAM器件中的導電細絲的橫向尺寸。非連續薄膜422在RRAM器件中的加入可以使得形成過程不太突然,降低形成電壓,降低重置電流,並降低後續操作過程中的電壓和/或電流要求。 4E and 4F illustrate semiconductor devices 400e and 400f that may correspond to low resistance states and high resistance states, respectively, of RRAM device 400d. The addition of the discontinuous film 422 can reduce the contact area between the switching oxide layer 430 and the first electrode 420 . As shown in FIG. 4E, a conductive channel 435a (eg, a conductive filament) may be formed from the second electrode 440 to the first electrode 420 through the interface layer 422 and the switching oxide layer 430. As shown in FIG. 4F, during the reset process, an interrupted conductive channel 435b may be formed in the switching oxide layer 430. Compared to Figures 3B and 3C, the lateral dimensions of the conductive channel 435a and the illustrated interrupted conductive channel 435b may be smaller than the lateral dimensions of 335a and 335b, respectively. Therefore, formed on a film having a discontinuous film 422 The lateral dimensions of the conductive filaments in an RRAM device may be smaller than the lateral dimensions of the conductive filaments formed in an RRAM device in which a porous and/or discontinuous film is not formed between the first electrode and the switching oxide layer . The addition of discontinuous film 422 to RRAM devices can make the formation process less abrupt, reduce formation voltage, reduce reset current, and reduce voltage and/or current requirements during subsequent operations.
在一些實施例中,RRAM器件可以包括多個製造於所述第一電極和所述第二電極之間的界面層。每個界面層可以包括如圖4B所述的非連續薄膜。例如,如圖5A所示,可以通過在如圖4C所述的半導體結構400c上製造界面層532(也被稱為“第二界面層”)來製造半導體器件500a。在一些實施例中,所述第二界面層532可以包括第二材料的非連續薄膜532a。所述第二材料可以具備比所述切換氧化物層430中的至少一種過渡性金屬氧化物更強的化學穩定性。作為一個示例,所述第二材料可以包括Al2O3、MgO、Y2O3、La2O3等。所述第二材料可以與第一材料相同,也可以不同。 In some embodiments, an RRAM device may include a plurality of interface layers fabricated between the first electrode and the second electrode. Each interface layer may include a discontinuous film as described in Figure 4B. For example, as shown in FIG. 5A, semiconductor device 500a may be fabricated by fabricating interface layer 532 (also referred to as a "second interface layer") on semiconductor structure 400c as described in FIG. 4C. In some embodiments, the second interface layer 532 may include a discontinuous film 532a of the second material. The second material may have greater chemical stability than at least one transition metal oxide in the switching oxide layer 430 . As an example, the second material may include Al 2 O 3 , MgO, Y 2 O 3 , La 2 O 3 , etc. The second material may be the same as the first material, or may be different.
所述非連續薄膜532a可以包括一個或多個孔隙534(也被稱為“一個或多個第二孔隙”)。所述孔隙534可以具有任何合適的大小和/或尺寸。多個孔隙534可以有相同的大小和/或尺寸,也可以沒有。在一些實施例中,所述第二界面層532和/或所述第二非連續薄膜532a可以包括隨機分布在所述第二非連續薄膜532上的多個孔隙534。所述非連續薄膜532a可以包括任何合適數量的孔隙。 The discontinuous film 532a may include one or more pores 534 (also referred to as "one or more second pores"). The pores 534 may be of any suitable size and/or dimensions. The plurality of apertures 534 may or may not have the same size and/or dimensions. In some embodiments, the second interface layer 532 and/or the second discontinuous film 532a may include a plurality of pores 534 randomly distributed on the second discontinuous film 532. The discontinuous membrane 532a may include any suitable number of pores.
在一些實施例中,所述第二界面層532和/或所述非連續薄膜532a的厚度(也被稱為“第二厚度”)可以在約0.2奈米和約0.5奈米之間。作為另一個示例,所述第二界面層532可以包括一個厚度等於或小於0.5奈米的非連續Al2O3薄膜。在一些實施例中,所述第二界面層532可以包括一個 厚度小於1奈米的非連續Al2O3薄膜。所述第二界面層532的所述第二厚度可以與所述第一件面層422的第一厚度相同,也可以不同。 In some embodiments, the thickness of the second interface layer 532 and/or the discontinuous film 532a (also referred to as the "second thickness") may be between about 0.2 nanometers and about 0.5 nanometers. As another example, the second interface layer 532 may include a discontinuous Al 2 O 3 film with a thickness equal to or less than 0.5 nanometers. In some embodiments, the second interface layer 532 may include a discontinuous Al 2 O 3 film with a thickness less than 1 nanometer. The second thickness of the second interface layer 532 may be the same as the first thickness of the first surface layer 422 , or may be different.
如圖5B所示,可以在所述第二界面層532上製造第二電極540以製造半導體器件500b。因此所述第二界面層532可以被定位於所述切換氧化物層430和所述第二電極540之間。所述第二電極540可以是和/或包括如圖4D-4F所描述的第二電極440。在一些實施例中,在所述切換氧化物層430的製造期間,所述第二電極540的一個或多個部分可以通過一個或多個孔隙534布置在所述切換氧化物層430上。因此,所述第二電極540可以通過所述一個或多個孔隙534接觸所述切換氧化物層430的一個或多個部分。 As shown in FIG. 5B, a second electrode 540 may be fabricated on the second interface layer 532 to fabricate the semiconductor device 500b. The second interface layer 532 may therefore be positioned between the switching oxide layer 430 and the second electrode 540 . The second electrode 540 may be and/or include the second electrode 440 as described in Figures 4D-4F. In some embodiments, one or more portions of the second electrode 540 may be disposed on the switching oxide layer 430 through one or more apertures 534 during fabrication of the switching oxide layer 430 . Accordingly, the second electrode 540 may contact one or more portions of the switching oxide layer 430 through the one or more pores 534 .
圖5C和5D說明可可分別對應於RRAM器件500b的低電阻狀態和高電阻狀態的半導體器件500c和500d。所述第一界面層422和所述第二界面層532的共同加入可以進一步減少所述切換氧化物層430和所述第一電極420的接觸面積和所述切換氧化物層430和所述第二電極540的接觸面積。如圖5C所示,可以形成從所述第一電極420到所述第二電極540通過所述界面層422、所述切換氧化物層430和所述第二非連續薄膜532的導電通道535a(例如,導電細絲)。如圖5D所示,可以在重置過程中,在所述切換氧化物層430中形成中斷導電通道535b。與圖3B和3C相比,所述導電通道535a和中斷導電通道535b的橫向尺寸可以分別小於335a和335b的橫向尺寸。因此,形成於同時具備所述界面層422和所述第二界面層532的RRAM器件上的導電細絲的橫向尺寸可以進一步減小,從而使得形成過程不太突然,降低形成電壓,減少重置電流,並減少後續操作過程中的電壓和/或電流要求。 5C and 5D illustrate semiconductor devices 500c and 500d respectively corresponding to the low resistance state and the high resistance state of RRAM device 500b. The joint addition of the first interface layer 422 and the second interface layer 532 can further reduce the contact area between the switching oxide layer 430 and the first electrode 420 and the contact area between the switching oxide layer 430 and the third electrode. The contact area of the two electrodes 540. As shown in FIG. 5C , a conductive channel 535a ( For example, conductive filaments). As shown in Figure 5D, interrupt conductive channels 535b may be formed in the switching oxide layer 430 during the reset process. Compared to Figures 3B and 3C, the lateral dimensions of the conductive channel 535a and the interrupted conductive channel 535b may be smaller than the lateral dimensions of 335a and 335b respectively. Therefore, the lateral size of the conductive filaments formed on the RRAM device having both the interface layer 422 and the second interface layer 532 can be further reduced, thereby making the formation process less abrupt, reducing the formation voltage, and reducing resets. current and reduce voltage and/or current requirements during subsequent operation.
在一些實施例中,根據本發明的一些實施例,可以在RRAM器件的切換氧化物層製造界面層。例如,如圖6A所示,切換氧化物層630可 以被製造於如圖4A所述相關的半導體器件400a上。界面層632可以被製造於所述切換氧化層630上以製造半導體器件600a。所述切換氧化物層630可以是和/或包括與圖4C-4F描述相關的切換氧化物層430。在一些實施例中,所述界面層632可以包括第三材料的非連續薄膜。所述第三材料可以可以具備比所述切換氧化物層630中的至少一種過渡性金屬氧化物更強的化學穩定性。作為一個示例,所述第三材料可以包括Al2O3、MgO、Y2O3、La2O3等。 In some embodiments, an interface layer may be fabricated at the switching oxide layer of the RRAM device in accordance with some embodiments of the present invention. For example, as shown in FIG. 6A, switching oxide layer 630 may be fabricated on semiconductor device 400a as described in connection with FIG. 4A. Interface layer 632 may be fabricated on the switching oxide layer 630 to fabricate semiconductor device 600a. The switching oxide layer 630 may be and/or include the switching oxide layer 430 described in connection with Figures 4C-4F. In some embodiments, the interface layer 632 may include a discontinuous film of a third material. The third material may have greater chemical stability than at least one transition metal oxide in the switching oxide layer 630 . As an example, the third material may include Al 2 O 3 , MgO, Y 2 O 3 , La 2 O 3 , etc.
所述非連續薄膜632a可以包括一個或多個孔隙634(也被稱為“一個或多個第三孔隙”)。所述孔隙634可以具有任何合適的大小和/或尺寸,且隨機分布在所述第二非連續薄膜632上。在一些實施例中,所述界面層632的厚度(也被稱為“第三厚度”)可以在約0.2奈米和約0.5奈米之間。作為另一個示例,所述界面層632的厚度可以等於或小於0.5奈米的厚度。作為進一步的示例,所述界面層632的厚度可以小於1奈米。 The discontinuous film 632a may include one or more apertures 634 (also referred to as "one or more third apertures"). The pores 634 may be of any suitable size and/or dimensions and may be randomly distributed on the second discontinuous film 632 . In some embodiments, the thickness of the interface layer 632 (also referred to as the "third thickness") may be between about 0.2 nanometers and about 0.5 nanometers. As another example, the thickness of the interface layer 632 may be equal to or less than a thickness of 0.5 nanometers. As a further example, the thickness of the interface layer 632 may be less than 1 nanometer.
如圖6B所示,第二電極640可以被製造於所述界面層632上以製造半導體器件600b。因此,所述界面層632可以被定位於所述切換氧化物層630和所述第二電極640之間。所述第二電極可以是和/或包括與圖4D-4F所述相關的第二電極440。在一些實施例中,在所述第二電極640的製造期間,所述第二電極640的一個或多個部分可以通過一個或多個孔隙634布置在所述切換氧化物層630上。因此,所述第二電極640可以接觸所述切換氧化物層630的一個或多個部分。 As shown in FIG. 6B, a second electrode 640 may be fabricated on the interface layer 632 to fabricate the semiconductor device 600b. Therefore, the interface layer 632 may be positioned between the switching oxide layer 630 and the second electrode 640 . The second electrode may be and/or include second electrode 440 described in connection with Figures 4D-4F. In some embodiments, during fabrication of the second electrode 640, one or more portions of the second electrode 640 may be disposed on the switching oxide layer 630 through one or more apertures 634. Accordingly, the second electrode 640 may contact one or more portions of the switching oxide layer 630 .
圖6C和6D說明了分別對應於RRAM器件660b的低電阻狀態和高電阻狀態的半導體器件600c和600d。所述非連續薄膜632的加入可以減少所述切換氧化物層630和所述第二電極640的接觸面積。如圖6C所示,可以形成從所述第二電極640到所述第一電極420通過所述切換氧化物 層630和所述非連續薄膜632的導電通道635a(例如,導電細絲)。如圖6D所示,可以在重置過程中,在所述切換氧化物層630中形成中斷導電通道635b。與圖3B和3C相比,所述導電通道635a和中斷導電通道635b的橫向尺寸可以分別小於335a和335b的橫向尺寸。因此,形成於具備所述非連續薄膜632的RRAM器件上的導電細絲的橫向尺寸可以小於形成於不具備非連續薄膜632的RRAM器件上的導電細絲的橫向尺寸。所述非連續薄膜632在RRAM器件中的使用可以使得形成過程不那麼突然,降低形成電壓,減少重置電流,並減少後續操作過程中的電壓和/或電流要求。 6C and 6D illustrate semiconductor devices 600c and 600d respectively corresponding to the low resistance state and the high resistance state of RRAM device 660b. The addition of the discontinuous film 632 can reduce the contact area between the switching oxide layer 630 and the second electrode 640 . As shown in FIG. 6C , a switching oxide may be formed from the second electrode 640 to the first electrode 420 through the switching oxide. Layer 630 and conductive channels 635a (eg, conductive filaments) of the discontinuous film 632. As shown in FIG. 6D , an interrupted conductive channel 635b may be formed in the switching oxide layer 630 during the reset process. Compared to Figures 3B and 3C, the lateral dimensions of the conductive channel 635a and the interrupted conductive channel 635b may be smaller than the lateral dimensions of 335a and 335b respectively. Therefore, the lateral dimensions of the conductive filaments formed on the RRAM device having the discontinuous film 632 may be smaller than the lateral dimensions of the conductive filaments formed on the RRAM device not having the discontinuous film 632 . The use of the discontinuous film 632 in RRAM devices can make the formation process less abrupt, lower the formation voltage, reduce reset current, and reduce voltage and/or current requirements during subsequent operations.
圖7說明了根據本發明的一些實施例中頂電極的一個示例700的橫截面圖。 Figure 7 illustrates a cross-sectional view of an example 700 of a top electrode in accordance with some embodiments of the invention.
如圖所示,所述頂電極700可以包括第一層710和第二層720。所述第一層710可以包括可以從所述切換氧化物層中的過渡性金屬氧化物中清除氧的第一金屬材料。所述第二層720可以包括可以從所述切換氧化物層中的過渡性金屬氧化物中清除氧的第二金屬材料。所述第一金屬材料的氧化物比所述切換氧化物層中的過渡性金屬氧化物具備更高的化學穩定性。因此,所述第一金屬材料可以與所述切換氧化物層中的過渡性金屬氧化物反應並從所述切換氧化物層中的過渡性金屬氧化物中清除氧。所述第一金屬材料的氧化物的化學穩定性可能低於所述第一非連續薄膜的第一材料和所述第二非連續薄膜的第二材料。因此,第一金屬材料可能不會對所述第一非連續薄膜和所述第二非連續薄膜進行化學還原。如上所述,可採用Ellingham圖確定比較兩種或更多元素的化學穩定性。 As shown, the top electrode 700 may include a first layer 710 and a second layer 720. The first layer 710 may include a first metal material that may scavenge oxygen from the transition metal oxide in the switching oxide layer. The second layer 720 may include a second metal material that may scavenge oxygen from the transition metal oxide in the switching oxide layer. The oxide of the first metal material has higher chemical stability than the transition metal oxide in the switching oxide layer. Accordingly, the first metal material can react with and scavenge oxygen from the transition metal oxide in the switching oxide layer. The oxide of the first metallic material may be less chemically stable than the first material of the first discontinuous film and the second material of the second discontinuous film. Therefore, the first metallic material may not chemically reduce the first discontinuous film and the second discontinuous film. As mentioned above, the Ellingham plot can be used to determine and compare the chemical stabilities of two or more elements.
所述第一金屬材料和所述第二金屬材料可以包括不同的化學元素,且擁有不同的氧親和性和/或不同熱力學和動力學特性。所述第一金屬材料和所述第二金屬材料可以是不相溶的。在一些實施例中,所述第 一金屬材料可以包括Ti。所述第二金屬材料可以包括Ta。在一些實施例中,所述第一層710可以是和/或包括Ti金屬層(例如,Ti薄膜)。所述第二層720可以是和/或包括Ta金屬層(例如,Ta薄膜)。如圖9的Ta-Ti二元相圖所示,Ta和Ti相圖是不相溶的,且在300K(27℃)時具有最小的相互溶解度,該溫度約是RRAM器件的操作溫度(例如,室溫附近或以上的溫度)。因此,在RRAM器件中添加Ti可能不會影響本文所述的切換氧化物中Ta導電細絲的操作機制和RRAM器件的切換機制。如圖7所示的RRAM器件可以應用於需要在類比行為、線性、持續、可靠性等方面有優異性能的RRAM器件的IMC應用。Ta和Ti相圖之間的不相溶性和最小相互溶解度也可以使得第二層720和第一層710之間達到熱力學平衡。因此,一個薄Ti膜可以按照設計發揮功能,而不會與Ta膜發生反應或被Ta膜所溶解。 The first metallic material and the second metallic material may include different chemical elements and possess different oxygen affinities and/or different thermodynamic and kinetic properties. The first metal material and the second metal material may be incompatible. In some embodiments, the A metallic material may include Ti. The second metal material may include Ta. In some embodiments, the first layer 710 may be and/or include a Ti metal layer (eg, a Ti film). The second layer 720 may be and/or include a Ta metal layer (eg, Ta film). As shown in the Ta-Ti binary phase diagram in Figure 9, the Ta and Ti phase diagrams are immiscible and have minimum mutual solubility at 300K (27°C), which is approximately the operating temperature of RRAM devices (e.g. , temperatures near or above room temperature). Therefore, the addition of Ti in RRAM devices may not affect the operating mechanism of Ta conductive filaments in switching oxides and the switching mechanism of RRAM devices described in this paper. The RRAM device shown in Figure 7 can be applied to IMC applications that require RRAM devices with excellent performance in terms of analog behavior, linearity, persistence, reliability, etc. The incompatibility and minimum mutual solubility between the Ta and Ti phase diagrams can also allow thermodynamic equilibrium to be reached between the second layer 720 and the first layer 710 . Therefore, a thin Ti film can function as designed without reacting with or being dissolved by the Ta film.
此外,因為Ti比Ta具備更高的氧親和力,Ti可以更容易地從切換氧化物中清除氧離子。因此,將第一層710納入RRAM器件可以通過降低RRAM形成過程中需求的形成電壓和後續操作過程中的電流和電壓要求來進一步的提升RRAM器件的性能。例如,如圖4D-4F中所示的第二電極440,圖5B-5D中所示的第二電極540和/或圖6B-6D中所示的第二電極640可以是和/或包括第二電極700。在形成過程中,第一金屬材料和第二金屬材料都可以在切換氧化物層330、430和/或630中產生氧空位。與圖3B和3C相比,導電通道和中斷導電通道的橫向尺寸可以分別小於335a和335b的橫向尺寸。由於Ti具有比Ta更高的氧親和力,包括頂電極700的RRAM器件500b的原始電阻可以小於不包括頂電極700的RRAM器件的原始電阻,從而導致較低的形成電壓、較低的重置電壓、較低的重置電流等。 In addition, because Ti has a higher oxygen affinity than Ta, Ti can more easily scavenge oxygen ions from switching oxides. Therefore, incorporating the first layer 710 into the RRAM device can further improve the performance of the RRAM device by reducing the formation voltage required during RRAM formation and the current and voltage requirements during subsequent operations. For example, the second electrode 440 shown in FIGS. 4D-4F, the second electrode 540 shown in FIGS. 5B-5D, and/or the second electrode 640 shown in FIGS. 6B-6D may be and/or include a third electrode. Two electrodes 700. During the formation process, both the first metal material and the second metal material may create oxygen vacancies in switching oxide layers 330, 430, and/or 630. Compared to Figures 3B and 3C, the lateral dimensions of the conductive channels and interrupted conductive channels may be smaller than the lateral dimensions of 335a and 335b, respectively. Since Ti has a higher oxygen affinity than Ta, the original resistance of the RRAM device 500b including the top electrode 700 may be less than that of the RRAM device not including the top electrode 700, resulting in a lower formation voltage, a lower reset voltage , lower reset current, etc.
Ti在設置過程中(當氧離子從切換氧化物遷移至第二電極時)也可以容易地儲存氧離子。這可以使得第二電極在重置過程中儲存氧 離子,並因此防止器件故障(可以由切換氧化物和第二電極之間氧分子的存在導致的)和/或操作故障(可以由一旦去除重置電壓氧離子遷移回切換氧化物或開關不穩定造成的)。 Ti can also easily store oxygen ions during setup (when oxygen ions migrate from the switching oxide to the second electrode). This allows the second electrode to store oxygen during the reset process ions, and thus prevents device failure (which can be caused by the presence of oxygen molecules between the switching oxide and the second electrode) and/or operating failures (which can be caused by oxygen ions migrating back to the switching oxide or switching instability once the reset voltage is removed Caused).
所述第一層710可以生長到合適的厚度從而使得所述第一層710的第一金屬材料(例如Ti)可以如上所述發揮作用,而不影響切換氧化物層330上包括第二金屬材料的導電細絲(例如Ta導電細絲)的形成。在一些實施例中,所述第一層710的厚度可以在0.2nm至約5nm之間。在一些實施例中,所述第一層710的厚度可以在0.5nm至約2nm之間。在一些實施例中,所述第一層710的厚度可以是約1nm。在一些實施例中,所述第一層710的厚度可以小於1nm。第二層720的比第一層710更厚。在一些實施例中,所述第二層720的厚度可以在5nm至300nm之間。例如,所述第二層720的厚度可以在約10nm至約100nm之間。在一些實施例中,所述第二層720的厚度可以是在約10nm至約200nm之間。在一些實施例中,所述第二層720的厚度可以是約50nm。所述第一電極的厚度可以在約5nm至100nm之間。在一些實施例中,所述第一電極的厚度可以是約30nm。在一些實施例中,RRAM器件400d、500b和/或600b的尺寸(例如,臨界尺寸)可以在1μm和個位數奈米之間。在一些實施例中,RRAM器件400d、500b和/或600b的臨界尺寸可以是大約或小於0.28μm,和/或在1μm至1奈米之間。在一些實施例中,RRAM器件400d、500b和/或600b的臨界尺寸可以在1μm和2nm之間。在一些實施例中,RRAM器件400d、500b和/或600b的臨界尺寸可以在1μm和5nm之間。在一些實施例中,RRAM器件400d、500b和/或600b的臨界尺寸可以是個位數的奈米尺度(例如,位於約1nm至9nm之間)。 The first layer 710 can be grown to a suitable thickness so that the first metal material (eg, Ti) of the first layer 710 can function as described above without affecting the inclusion of the second metal material on the switching oxide layer 330 The formation of conductive filaments (such as Ta conductive filaments). In some embodiments, the thickness of the first layer 710 may be between 0.2 nm and about 5 nm. In some embodiments, the thickness of the first layer 710 may be between 0.5 nm and about 2 nm. In some embodiments, the thickness of the first layer 710 may be approximately 1 nm. In some embodiments, the thickness of the first layer 710 may be less than 1 nm. The second layer 720 is thicker than the first layer 710 . In some embodiments, the thickness of the second layer 720 may be between 5 nm and 300 nm. For example, the thickness of the second layer 720 may be between about 10 nm and about 100 nm. In some embodiments, the thickness of the second layer 720 may be between about 10 nm and about 200 nm. In some embodiments, the thickness of the second layer 720 may be approximately 50 nm. The thickness of the first electrode may be between approximately 5 nm and 100 nm. In some embodiments, the thickness of the first electrode may be about 30 nm. In some embodiments, the dimensions (eg, critical dimensions) of RRAM devices 400d, 500b, and/or 600b may be between 1 μm and single digit nanometers. In some embodiments, the critical dimension of RRAM devices 400d, 500b, and/or 600b may be about or less than 0.28 μm, and/or between 1 μm and 1 nanometer. In some embodiments, the critical dimension of RRAM devices 400d, 500b, and/or 600b may be between 1 μm and 2 nm. In some embodiments, the critical dimension of RRAM devices 400d, 500b, and/or 600b may be between 1 μm and 5 nm. In some embodiments, the critical dimensions of RRAM devices 400d, 500b, and/or 600b may be in the single-digit nanometer scale (eg, between approximately 1 nm and 9 nm).
在一種實施方式中,所述第二層720可以直接在第一層710上製造。例如,如圖7所示,所述第二層720的表面可以直接連接至所述第 一層710的表面。在另一種實施方式中,在第一層710和第二層720之間可以沉積一種或多種其他合適的材料層。 In one embodiment, the second layer 720 may be fabricated directly on the first layer 710 . For example, as shown in Figure 7, the surface of the second layer 720 may be directly connected to the One layer of 710 surface. In another embodiment, one or more other suitable material layers may be deposited between first layer 710 and second layer 720.
RRAM器件中加入第一層710可以降低RRAM器件的原始電阻,降低形成電壓,並降低重置電流,使得形成過程不突然,較低導電性的導電細絲和後續操作過程中較低的電壓和電流。 Adding the first layer 710 to the RRAM device can reduce the original resistance of the RRAM device, reduce the formation voltage, and reduce the reset current, so that the formation process is not sudden, the conductive filaments with lower conductivity and the lower voltage during subsequent operations and current.
雖然圖4D-4F、5B-5D和6B-6D中示出了RRAM器件400d-f、500b-d和600b-d的某些部件,但這僅僅是說明性的。RRAM器件400d-f、500b-d和600b-d可以包括用於實現IMC應用的一個或多個含合適材料的其他層。例如,在切換氧化物層和第二電極與第一電極中的一個或多個之間可以製造一個或多個界面層(未示出),以改善界面穩定性和器件性能。 Although certain components of RRAM devices 400d-f, 500b-d, and 600b-d are shown in Figures 4D-4F, 5B-5D, and 6B-6D, this is for illustrative purposes only. RRAM devices 400d-f, 500b-d, and 600b-d may include one or more additional layers of suitable materials for implementing IMC applications. For example, one or more interface layers (not shown) may be fabricated between the switching oxide layer and one or more of the second and first electrodes to improve interface stability and device performance.
圖10是根據本發明一些實施例示出的製造RRAM器件的方法的示例1000的流程圖。 Figure 10 is a flowchart illustrating an example 1000 of a method of manufacturing an RRAM device in accordance with some embodiments of the invention.
在1010中,可以在基板上製造第一電極。製造第一電極可以利用物理氣相沉積(PVD)技術、化學氣相沉積(CVD)技術、濺射沉積技術、原子層沉積(ALD)技術和/或任何其他合適的沉積技術沉積一個或多個非反應性金屬層,例如Pt、Pd、Ir等。在一些實施例中,製造第一電極可以沉積一個或多個Pt層。所述第一電極可以是和/或包括與圖3A-6D所描述相關的第一電極320和420。 In 1010, a first electrode may be fabricated on the substrate. The first electrode may be fabricated using physical vapor deposition (PVD) technology, chemical vapor deposition (CVD) technology, sputter deposition technology, atomic layer deposition (ALD) technology and/or any other suitable deposition technology to deposit one or more Non-reactive metal layer, such as Pt, Pd, Ir, etc. In some embodiments, fabricating the first electrode may deposit one or more Pt layers. The first electrode may be and/or include first electrodes 320 and 420 as described in connection with Figures 3A-6D.
在1020中,可以在第一電極上製造界面層。製造界面層可以涉及在第一電極上沉積第一材料以形成第一材料的第一非連續薄膜。所述第一非連續薄膜可以包含一個或多個孔隙。所述第一材料可以比如下文所述的切換氧化物層中的過渡性金屬氧化物具備更強的化學穩定性。在一些實施例中,所述第一材料可以包括Al2O3、MgO、Y2O3、La2O3等。所述界面層可以是和/或包括與圖4B-5D所述相關的第一界面層422.在一些實施例 中,製造所述第一界面層可以涉及沉積具有適當厚度的第一材料層以形成所述第一非連續薄膜。例如,製造所述第一界面層可以涉及將第一材料沉積到在約0.2nm和約1nm之間厚度。所述第一非連續薄膜可以使用PVD、CVD、ALD和/或其他任何合適的沉積技術進行沉積。 At 1020, an interface layer can be fabricated on the first electrode. Fabricating the interface layer may involve depositing a first material on the first electrode to form a first discontinuous film of the first material. The first discontinuous film may contain one or more pores. The first material may have greater chemical stability than the transition metal oxide in the switching oxide layer described below. In some embodiments, the first material may include Al 2 O 3 , MgO, Y 2 O 3 , La 2 O 3 , etc. The interface layer may be and/or include a first interface layer 422 as described in connection with Figures 4B-5D. In some embodiments, fabricating the first interface layer may involve depositing a first material layer having an appropriate thickness to The first discontinuous film is formed. For example, fabricating the first interface layer may involve depositing a first material to a thickness of between about 0.2 nm and about 1 nm. The first discontinuous film may be deposited using PVD, CVD, ALD and/or any other suitable deposition technique.
在1030中,可以在所述界面層上製造切換氧化物層。所述切換氧化物層可以包括一種或多種過渡性金屬氧化物。所述過渡性金屬氧化物可以包括,例如,TaOx、HfOx、TiOx、NbOx、ZrOx等。在一些實施例中,在所述切換氧化物層製造期間,所述過渡性金屬氧化物的一個或多個部分可以通過一個或多個所述第一孔隙沉積在所述第一電極上。所述切換氧化物層可以使用PVD、CVD、ALD和/或其他任何合適的沉積技術進行沉積。所述切換氧化物層可以是和/包括與圖4C-5D所述相關的切換氧化物層430。 At 1030, a switching oxide layer can be fabricated on the interface layer. The switching oxide layer may include one or more transition metal oxides. The transition metal oxide may include, for example, TaOx, HfOx, TiOx, NbOx, ZrOx, etc. In some embodiments, one or more portions of the transition metal oxide may be deposited on the first electrode through one or more of the first pores during fabrication of the switching oxide layer. The switching oxide layer may be deposited using PVD, CVD, ALD and/or any other suitable deposition technique. The switching oxide layer may be and/or include the switching oxide layer 430 described in connection with Figures 4C-5D.
在1040中,可以在所述切換氧化物層上製造第二電極。所述第二電極可以包括一種或多種合金。每種合金可以包含第一金屬元素和一種或多種第二金屬元素。每種第二金屬元素和第一金屬元素對切換氧化物層上的過渡性金屬氧化物具備不同的反應性。在一些實施例中,第一金屬元素可以是Ta。第二金屬元素可以是W、Hf、Mo、Nb、Zr等中的一種或多種。基於如圖14A-14E所示的涉及Ta和第二金屬元素W、Hf、Mo、Nb或Zr的二元相圖,Ta-W(圖14B)、Ta-Mo(圖14C)和Ta-Nb(圖14D)形成連續固溶體,並且Ta-Hf(圖14A)和Ta-Zr(圖14E)在RRAM器件操作溫度下是不相溶的。在這些二元合金之間沒有形成二元金屬間化合物。在這些二元系統中沒有金屬間化合物對於IMC應用是有利的,這種合金電極可以很容易被製造和控制。例如,製造第二電極可以通過共濺射第一金屬和第二金屬製造合金。再例如,製造第二合金可以涉及從合金靶材(例如Ta- W合金、Ta-Hf合金、Ta-Mo合金、Ta-Nb合金、Ta-Zr合金等)中濺射第一金屬元素(例如,純Ta金屬)和第二金屬元素(例如,純Hf金屬)之間的必要成分。 At 1040, a second electrode may be fabricated on the switching oxide layer. The second electrode may include one or more alloys. Each alloy may contain a first metallic element and one or more second metallic elements. Each of the second metal element and the first metal element has different reactivity towards the transition metal oxide on the switching oxide layer. In some embodiments, the first metallic element may be Ta. The second metal element may be one or more of W, Hf, Mo, Nb, Zr, etc. Based on the binary phase diagrams involving Ta and the second metal element W, Hf, Mo, Nb or Zr as shown in Figures 14A-14E, Ta-W (Figure 14B), Ta-Mo (Figure 14C) and Ta-Nb (Fig. 14D) A continuous solid solution is formed, and Ta-Hf (Fig. 14A) and Ta-Zr (Fig. 14E) are immiscible at the RRAM device operating temperature. No binary intermetallic compounds are formed between these binary alloys. The absence of intermetallic compounds in these binary systems is advantageous for IMC applications, and such alloy electrodes can be easily fabricated and controlled. For example, the second electrode may be made by co-sputtering the first metal and the second metal to make an alloy. As another example, making the second alloy may involve starting from an alloy target such as Ta- W alloy, Ta-Hf alloy, Ta-Mo alloy, Ta-Nb alloy, Ta-Zr alloy, etc.) by sputtering the first metal element (for example, pure Ta metal) and the second metal element (for example, pure Hf metal) necessary ingredients.
在一些實施例中,製造第二電極可以涉及製造包括Ta、Hf、Nb、Mo、W和/或Zr的多種電極組件。每種電極組件可以是和/或包括Ta的二元合金、三元合金、四元合金、五元合金、六元合金和/或告誡合金。例如,製造第二電極可以製造如圖4D所描述的包括一種或多種合金和/或合金系統的第二電極440。更具體地,例如,製造第二電極可以涉及製造包括含有Ta的第一合金、含有Ta的第二合金、含有Ta的第三合金、含有Ta的第四合金、含有Ta的第五合金和含有Ta的第六合金中的兩種或兩種以上。所述含有Ta的第一合金、含有Ta的第二合金、含有Ta的第三合金、含有Ta的第四合金、含有Ta的第五合金和含有Ta的第六合金可以分別是二元合金、三元合金、四元合金、五元合金、六元合金和高元合金。 In some embodiments, fabricating the second electrode may involve fabricating a variety of electrode components including Ta, Hf, Nb, Mo, W, and/or Zr. Each electrode assembly may be and/or include a binary alloy, a ternary alloy, a quaternary alloy, a quinary alloy, a six-component alloy, and/or a cavernous alloy of Ta. For example, fabricating the second electrode may fabricate second electrode 440 including one or more alloys and/or alloy systems as depicted in Figure 4D. More specifically, for example, manufacturing the second electrode may involve manufacturing a first alloy containing Ta, a second alloy containing Ta, a third alloy containing Ta, a fourth alloy containing Ta, a fifth alloy containing Ta, and a fifth alloy containing Ta. Two or more of its sixth alloys. The first alloy containing Ta, the second alloy containing Ta, the third alloy containing Ta, the fourth alloy containing Ta, the fifth alloy containing Ta and the sixth alloy containing Ta may respectively be binary alloys. , ternary alloys, quaternary alloys, five-element alloys, six-element alloys and high-element alloys.
在一些實施例中,製造第二電極可以涉及製造多種金屬材料的多個層,例如如圖7所描述的層710和720。在一些實施例中,所述第二電極可以通過執行與圖13所述相關的一個或多個操作進行製造。 In some embodiments, fabricating the second electrode may involve fabricating multiple layers of multiple metallic materials, such as layers 710 and 720 as depicted in FIG. 7 . In some embodiments, the second electrode may be fabricated by performing one or more operations described in connection with FIG. 13 .
所述第二電極可以使用PVD、CVD、ALD和/或其他任何合適的沉積技術進行沉積。所述第二電極可以是和/或包括與圖4D-4F所述相關的第二電極440。 The second electrode may be deposited using PVD, CVD, ALD and/or any other suitable deposition technique. The second electrode may be and/or include second electrode 440 described in connection with Figures 4D-4F.
圖11是根據本發明一些實施例中製造RRAM器件的方法的示例1100的流程圖。 Figure 11 is a flowchart of an example 1100 of a method of manufacturing an RRAM device in accordance with some embodiments of the present invention.
在1110中,可以在基板上製造第一電極。所述第一電極可以通過執行與圖10的步驟1010相關的一個或多個操作被製造於基板上。所述第一電極可以是和/或包括與圖3A-6D所述相關的第一電極320和/或420。 At 1110, a first electrode may be fabricated on the substrate. The first electrode may be fabricated on the substrate by performing one or more operations associated with step 1010 of FIG. 10 . The first electrode may be and/or include first electrodes 320 and/or 420 described in connection with Figures 3A-6D.
在1120中,可以在所述第一電極上製造第一界面層。製造所述第一界面層可以涉及製造第一材料的第一非連續薄膜。所述第一界面層可以通過執行與圖10的步驟1020相關的一個或多個操作被製造於所述第一電極上。所述第一界面層可以是和/或包括與圖4B-5D所述相關的第一界面層422。 At 1120, a first interface layer can be fabricated on the first electrode. Fabricating the first interface layer may involve fabricating a first discontinuous film of the first material. The first interface layer may be fabricated on the first electrode by performing one or more operations associated with step 1020 of FIG. 10 . The first interface layer may be and/or include first interface layer 422 described in connection with Figures 4B-5D.
在1130中,可以在所述第一界面層上製造切換氧化物層。所述切換氧化物層可以通過執行與圖10的步驟1030相關的一個或多個操作被製造於所述第一界面層上。所述切換氧化物層可以是和/或包括與圖4C-5D所述相關的切換氧化物層430。 At 1130, a switching oxide layer can be fabricated on the first interface layer. The switching oxide layer may be fabricated on the first interface layer by performing one or more operations associated with step 1030 of FIG. 10 . The switching oxide layer may be and/or include switching oxide layer 430 as described in connection with Figures 4C-5D.
在1140中,可以在所述切換氧化物層上製造第二界面層。製造所述第二界面層可以涉及製造第二材料的第二非連續薄膜,其中所述第二材料比所述切換氧化物層中的過渡性金屬氧化物具備更強的化學穩定性。在一些實施例中,所述第二材料可以包括Al2O3、MgO、Y2O3、La2O3等。在一些實施例中,製造所述第二界面層可以涉及沉積具有適當厚度的第二材料以形成所述第二非連續薄膜。所述非連續薄膜可以使用PVD、CVD、ALD和/或其他任何合適的沉積技術進行沉積。所述第二界面層可以是和/或包括與圖5A-5D所述相關的第二界面層532。 At 1140, a second interface layer can be fabricated on the switching oxide layer. Fabricating the second interface layer may involve fabricating a second discontinuous film of a second material that is more chemically stable than the transition metal oxide in the switching oxide layer. In some embodiments, the second material may include Al 2 O 3 , MgO, Y 2 O 3 , La 2 O 3 , etc. In some embodiments, fabricating the second interface layer may involve depositing a second material with an appropriate thickness to form the second discontinuous film. The discontinuous film may be deposited using PVD, CVD, ALD and/or any other suitable deposition technique. The second interface layer may be and/or include the second interface layer 532 described in connection with Figures 5A-5D.
在1150中,可以在第二界面層上製造第二電極。所述第二電極可以通過執行與圖10的步驟1040相關的一個或多個操作被製造於所述第二界面層上。在一些實施例中,在製造所述第二電極期間,所述第二電極的一個或多個部分可以通過一個或多個第二孔隙沉積在所述切換氧化物層上。所述第二電極可以是和/或包括與圖5B-5D所述相關的第二電極540。 At 1150, a second electrode may be fabricated on the second interface layer. The second electrode may be fabricated on the second interface layer by performing one or more operations associated with step 1040 of FIG. 10 . In some embodiments, during fabrication of the second electrode, one or more portions of the second electrode may be deposited on the switching oxide layer through one or more second pores. The second electrode may be and/or include the second electrode 540 described in connection with Figures 5B-5D.
圖12是說明根據本發明的一些實施例中製造RRAM器件的方法的示例1200的流程圖。 Figure 12 is a flowchart illustrating an example 1200 of a method of fabricating an RRAM device in accordance with some embodiments of the invention.
在1210中,可以在基板上製造第一電極。所述第一電極可以通過執行與圖10的步驟1010相關的一個或多個操作被製造於所述基板上。所述第一電極可以是和/或包括與圖3A-6D所述相關的第一電極320和/或420。 At 1210, a first electrode may be fabricated on the substrate. The first electrode may be fabricated on the substrate by performing one or more operations associated with step 1010 of FIG. 10 . The first electrode may be and/or include first electrodes 320 and/or 420 described in connection with Figures 3A-6D.
在1220中,可以在所述第一電極上製造切換氧化物層。所述切換氧化物層可以包括一種或多種過渡性金屬氧化物。所述過渡性金屬氧化物可以包括,例如,TaOx、HfOx、TiOx、NbOx、ZrOx等。所述切換氧化物層可以是和/或包括與圖6A-6D所述相關的切換氧化物層630。 At 1220, a switching oxide layer can be fabricated on the first electrode. The switching oxide layer may include one or more transition metal oxides. The transition metal oxide may include, for example, TaOx, HfOx, TiOx, NbOx, ZrOx, etc. The switching oxide layer may be and/or include switching oxide layer 630 as described in connection with Figures 6A-6D.
在1230中,可以在所述切換氧化物層上製造界面層。所述界面層可以包括一種材料的非連續薄膜,所述材料比所述切換氧化物層中的過渡性金屬氧化物具備更強的化學穩定性。所述界面層可以通過執行與圖11的步驟1140相關的一個或多個操作被製造於所述切換氧化物層上。所述界面層可以是和/或包括與圖6A-6D所述相關的第二界面層632。 At 1230, an interface layer can be fabricated on the switching oxide layer. The interface layer may include a discontinuous film of a material that is more chemically stable than the transition metal oxide in the switching oxide layer. The interface layer may be fabricated on the switching oxide layer by performing one or more operations associated with step 1140 of FIG. 11 . The interface layer may be and/or include the second interface layer 632 described in connection with Figures 6A-6D.
在1240中,可以在所述界面層上製造第二電極。所述第二電極可以通過執行與圖11的步驟1150相關的一個或多個操作被製造於所述界面層上。所述第二電極可以是和/或包括與圖6B-6D所述相關的第二電極640。 At 1240, a second electrode can be fabricated on the interface layer. The second electrode may be fabricated on the interface layer by performing one or more operations associated with step 1150 of FIG. 11 . The second electrode may be and/or include second electrode 640 described in connection with Figures 6B-6D.
圖13是根據本發明一些實施例的用於製造RRAM器件的頂電極的方法示例1300的流程圖。 Figure 13 is a flowchart of an example method 1300 for fabricating a top electrode of an RRAM device in accordance with some embodiments of the present invention.
在1310中,可以製造包括第一金屬材料的第一層。所述第一金屬材料可以包括第一金屬元素,例如Ti、Hf和Zr。第一金屬材料的第一層可以通過使用PVD、CVD、濺射、ALD和/或任何其他合適的沉積技術沉積第一金屬(例如,Ti金屬)來進行製造。製造第一金屬材料的第一層可 以涉及沉積適當厚度的第一金屬層,例如在約0.2nm至約5nm之間的厚度、在約0.5nm至約2nm之間的厚度等。 At 1310, a first layer including a first metallic material may be fabricated. The first metal material may include a first metal element such as Ti, Hf, and Zr. The first layer of first metallic material may be fabricated by depositing a first metal (eg, Ti metal) using PVD, CVD, sputtering, ALD, and/or any other suitable deposition technique. Fabricating the first layer of first metallic material may This involves depositing a first metal layer of appropriate thickness, such as a thickness between about 0.2 nm and about 5 nm, a thickness between about 0.5 nm and about 2 nm, and the like.
在1320中,可以製造包括第二金屬材料的第二層。第二金屬材料可以包括不同於第一金屬元素的第二金屬元素。例如,第二金屬元素可以是Ta。在一些實施例中,製造含有第二金屬材料的第二層可以涉及通過使用PVD、CVD、濺射、ALD和/或任何其他合適的沉積技術沉積第二金屬(例如,Ta金屬)來進行製造。製造第二金屬的第二層可以涉及沉積適當厚度的第二金屬層,例如第二金屬層可以比第一金屬層更厚。在一些實施例中,可以沉積厚度在10nm至100nm之間的第二金屬層。在一些實施例中,第二金屬的第二層可以直接沉積於第一金屬的第一層上。在該實施例中,第一金屬的第一層的表面可以直接連接至第二金屬的第二層的一個或多個部分表面。 At 1320, a second layer including a second metallic material may be fabricated. The second metal material may include a second metal element different from the first metal element. For example, the second metallic element may be Ta. In some embodiments, fabricating the second layer containing the second metallic material may involve fabricating by depositing a second metal (eg, Ta metal) using PVD, CVD, sputtering, ALD, and/or any other suitable deposition technique. . Fabricating the second layer of the second metal may involve depositing a suitable thickness of the second metal layer, eg the second metal layer may be thicker than the first metal layer. In some embodiments, the second metal layer may be deposited with a thickness of between 10 nm and 100 nm. In some embodiments, the second layer of the second metal can be deposited directly on the first layer of the first metal. In this embodiment, the surface of the first layer of first metal may be directly connected to one or more partial surfaces of the second layer of second metal.
在一些實施例中,製造包含第二金屬材料的第二層包括可以涉及製造包括一種或多種合金的層。如上文所述,每種合金可以包括第一金屬元素和一種或多種第二金屬元素。每種第二金屬元素可以具備對切換氧化物層中的過渡性金屬氧化物和第一金屬元素不同的反應性。在一些實施例中,所述第一金屬元素可以是Ta。所述第二金屬元素可以是W、Hf、Mo、Nb、Zr等中的一種或多種。製造Ta合金的第二層可以涉及使用PVD、CVD、濺射、ALD和/或任何其他合適的沉積技術沉積Ta合金。製造Ta合金的第二層可以涉及沉積適當厚度的Ta合金層,例如,Ta合金層的厚度比第一金屬的第一層的厚度更厚。在一些實施例中,可以沉積厚度在約5nm和100nm之間的包含一種或多種Ta合金的層。 In some embodiments, fabricating the second layer that includes the second metallic material may involve fabricating a layer that includes one or more alloys. As mentioned above, each alloy may include a first metallic element and one or more second metallic elements. Each second metal element may have different reactivity toward the transition metal oxide and the first metal element in the switching oxide layer. In some embodiments, the first metal element may be Ta. The second metal element may be one or more of W, Hf, Mo, Nb, Zr, etc. Fabricating the second layer of Ta alloy may involve depositing Ta alloy using PVD, CVD, sputtering, ALD and/or any other suitable deposition technique. Fabricating the second layer of Ta alloy may involve depositing a Ta alloy layer of appropriate thickness, for example, the Ta alloy layer being thicker than the first layer of the first metal. In some embodiments, a layer containing one or more Ta alloys may be deposited to a thickness of between about 5 nm and 100 nm.
為了解釋的簡約起見,本發明的方法被描繪和描述為一系列動作。然而,根據本發明的動作能夠以各種順序和/或同時發生,並且與本 發明中未呈現和未描述的其他動作一起發生。此外,並非所有圖示的動作都是實現根據公開的主題的方法所需的。另外,本領域的技術人員將理解和明白,這些方法可以可替代地通過狀態圖或事件被表示為一系列相互關聯的狀態。 For simplicity of explanation, the method of the present invention is depicted and described as a sequence of actions. However, actions according to the present invention can occur in various orders and/or simultaneously, and are consistent with the present invention. Other actions not shown and not described in the invention occur together. Furthermore, not all illustrated acts may be required to implement methods in accordance with the disclosed subject matter. Additionally, those skilled in the art will understand and appreciate that these methods may alternatively be represented as a series of interrelated states through state diagrams or events.
本文使用的術語“大約”、“關於”和“基本上”可以指在本領域的正常公差範圍內,例如在平均值的2個標準差內,在一些實施例中在目標尺寸的±20%內,在一些實施例中在目標尺寸的±10%內,在一些實施例中在目標尺寸的±5%內,在一些實施例中在目標尺寸的±2%內,在一些實施例中在目標尺寸的±1%內,以及在一些實施例中在目標尺寸的±0.1%內。術語“大約”和“關於”可以包括目標尺寸。除非特別說明或從上下文中明顯看出,本文描述的所有數值都由術語“約”修飾。 As used herein, the terms "about," "about," and "substantially" may mean within normal tolerances in the art, such as within 2 standard deviations of the mean, and in some embodiments ±20% of the target dimension. Within, in some embodiments within ±10% of the target size, in some embodiments within ±5% of the target size, in some embodiments within ±2% of the target size, in some embodiments within Within ±1% of the target size, and in some embodiments within ±0.1% of the target size. The terms "about" and "about" may include target dimensions. All numerical values described herein are modified by the term "about" unless otherwise specified or apparent from context.
如本文所用,一個範圍包括該範圍內的所有數值。例如,1至10的範圍可以包括任何數字、數字組合、來自1、2、3、4、5、6、7、8、9和10的數字的子範圍以及其分數。 As used herein, a range includes all values within that range. For example, a range of 1 to 10 may include any number, combination of numbers, subranges of numbers from 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10, and fractions thereof.
本發明在以上說明中提到了很多細節。但顯而易見的是,沒有這些具體細節本發明也可以實施。在一些例子中,為了突出本發明的內容,熟知的結構和設備以框圖的形式顯示,而非具體細節。 The present invention is described in many details in the above description. It will be apparent, however, that the present invention may be practiced without these specific details. In some instances, well-known structures and devices are shown in block diagram form rather than in specific detail in order to highlight the aspects of the present invention.
本文所使用的術語“第一”、“第二”、“第三”、“第四”等是用於區分不同部件的標記,可以不必具有所用數字編號的序數含義。 The terms "first", "second", "third", "fourth", etc. used herein are labels used to distinguish different components and may not necessarily have the ordinal meaning of the numerical numbers used.
這裡使用的“例子”或“示範性”一詞是指作為例子、實例或說明。此處描述為“示例”或“示範”的任何方面或設計不一定被理解為比其他方面或設計更優選或有利。相反,使用“例子”或“示範性”這些詞的目的是為了以一種具體的方式呈現概念。在本申請中,術語“或”的意思是包括“或”,而不是排除“或”。也就是說,除非另有規定,或從上下文中可以看 出,“X包括A或B”意指任何自然的包容性排列組合。也就是說,如果X包括A;X包括B;或者X同時包括A和B,那麼在上述任何情況下,“X包括A或B”都被滿足。此外,在本申請和所附申請專利範圍中使用的“a”和“an”通常應被理解為“一個或多個”,除非另有規定或從上下文中明確指出是針對單數形式。本說明書中提到的“一個實施方案”或“一個實施方案”是指與該實施方案有關的特定特徵、結構或特性至少包括在一個實施方案中。因此,在本說明書的不同地方出現的短語“一個實施方案”或“一個實施方案”不一定都是指同一個實施方案。 The word "example" or "demonstrative" as used herein is meant as an example, instance, or illustration. Any aspect or design described herein as an "example" or "demonstration" is not necessarily to be construed as preferred or advantageous over other aspects or designs. Rather, the purpose of using the words "example" or "demonstrative" is to present the concept in a concrete way. In this application, the term "or" is meant to include "or", not to exclude "or". That is, unless otherwise stated or it appears from the context By the way, "X includes A or B" means any natural inclusive permutation. That is, if X includes A; X includes B; or X includes both A and B, then in any of the above cases, "X includes A or B" is satisfied. Furthermore, the terms "a" and "an" used in the patent scope of this and the appended applications shall generally be understood to mean "one or more" unless otherwise specified or clear from the context to the singular form. Reference in this specification to "one embodiment" or "an embodiment" means that a specific feature, structure or characteristic related to the embodiment is included in at least one embodiment. Thus, the appearances of the phrases "one embodiment" or "an embodiment" in various places in this specification are not necessarily all referring to the same embodiment.
如本文所使用的,當一個元素或層被稱為“在”另一個元素或層上時,該元素或層可以直接在另一個元素或層上,或者可以存在介入的元素或層。反之,當一個元素或層被稱為“直接在”另一個元素或層上時,不存在中間的元素或層。 As used herein, when an element or layer is referred to as being "on" another element or layer, the element or layer can be directly on the other element or layer, or intervening elements or layers may be present. In contrast, when an element or layer is referred to as being "directly on" another element or layer, there are no intervening elements or layers present.
儘管在瞭解上述描述後,對於本發明內容做出另外的變更和修改對於本領域普通技術人員無疑是顯而易見的,但應理解的是,以說明方式所顯示和描述的任何具體實施例不應被視為是限制的。因此,各種實施例的細節並不是為了限制申請專利範圍的範圍,申請專利範圍本身只是敘述了本發明技術特徵。 Although additional changes and modifications to the present invention will undoubtedly be apparent to those of ordinary skill in the art upon understanding the foregoing description, it should be understood that any specific embodiments shown and described by way of illustration should not be construed as considered to be restricted. Therefore, the details of various embodiments are not intended to limit the scope of the patent application, which itself merely describes the technical features of the present invention.
400a:半導體器件 400a: Semiconductor devices
410:基板 410:Substrate
420:第一電極 420: first electrode
600b:半導體器件 600b: Semiconductor devices
630:切換氧化物層 630: Switch oxide layer
632:界面層 632:Interface layer
632a:非連續薄膜 632a: Discontinuous film
634:孔隙 634:pore
640:第二電極 640: Second electrode
Claims (19)
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/319,057 US20220367802A1 (en) | 2021-05-12 | 2021-05-12 | Resistive random-access memory devices with multi-component electrodes |
US17/319,068 | 2021-05-12 | ||
US17/319,057 | 2021-05-12 | ||
US17/319,068 US20220367803A1 (en) | 2021-05-12 | 2021-05-12 | Resistive random-access memory devices with multi-component electrodes |
WOPCT/US21/040389 | 2021-07-03 | ||
PCT/US2021/040389 WO2022240426A1 (en) | 2021-05-12 | 2021-07-03 | Resistive random-access memory devices with multi-component electrodes |
US17/454,914 | 2021-11-15 | ||
US17/454,914 US20220077389A1 (en) | 2020-07-06 | 2021-11-15 | Resistive random-access memory devices with multi-component electrodes and discontinuous interface layers |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202312168A TW202312168A (en) | 2023-03-16 |
TWI824516B true TWI824516B (en) | 2023-12-01 |
Family
ID=86690613
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111117735A TWI824516B (en) | 2021-05-12 | 2022-05-11 | Resistive random-access memory devices with multicomponent electrodes and discontinuous interface layers |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI824516B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200824046A (en) * | 2006-11-20 | 2008-06-01 | Ind Tech Res Inst | Resistive random access memory (RRAM) and method for fabricating the same |
US8658511B1 (en) * | 2012-12-20 | 2014-02-25 | Intermolecular, Inc. | Etching resistive switching and electrode layers |
US20180219154A1 (en) * | 2014-09-25 | 2018-08-02 | Intel Corporation | Rare earth metal & metal oxide electrode interfacing of oxide memory element in resistive random access memory cell |
US20210013407A1 (en) * | 2018-03-28 | 2021-01-14 | Agency For Science, Technology And Research | Memory cell and method of forming the same |
-
2022
- 2022-05-11 TW TW111117735A patent/TWI824516B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200824046A (en) * | 2006-11-20 | 2008-06-01 | Ind Tech Res Inst | Resistive random access memory (RRAM) and method for fabricating the same |
US8658511B1 (en) * | 2012-12-20 | 2014-02-25 | Intermolecular, Inc. | Etching resistive switching and electrode layers |
US20180219154A1 (en) * | 2014-09-25 | 2018-08-02 | Intel Corporation | Rare earth metal & metal oxide electrode interfacing of oxide memory element in resistive random access memory cell |
US20210013407A1 (en) * | 2018-03-28 | 2021-01-14 | Agency For Science, Technology And Research | Memory cell and method of forming the same |
Also Published As
Publication number | Publication date |
---|---|
TW202312168A (en) | 2023-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8084760B2 (en) | Ring-shaped electrode and manufacturing method for same | |
TWI619242B (en) | Resistive switching devices having a switching layer and an intermediate electrode layer and methods of formation thereof | |
JP5524296B2 (en) | Storage element and storage device | |
US20090302315A1 (en) | Resistive random access memory | |
US20220077389A1 (en) | Resistive random-access memory devices with multi-component electrodes and discontinuous interface layers | |
US10700129B2 (en) | Vertical array of resistive switching devices having a tunable oxygen vacancy concentration | |
JPWO2013001742A1 (en) | Nonvolatile semiconductor memory element, nonvolatile semiconductor memory device, and manufacturing method thereof | |
US20220367802A1 (en) | Resistive random-access memory devices with multi-component electrodes | |
Mikolajick et al. | Versatile resistive switching in niobium oxide | |
TW202404045A (en) | Resistive random-access memory devices with engineered electronic defects and methods for making the same | |
US20220320430A1 (en) | Resistive random-access memory devices with engineered electronic defects and methods for making the same | |
KR20240006677A (en) | Resistive random access memory device with multi-component electrodes and discontinuous interface layers | |
JP2007335869A (en) | NONVOLATILE VARIABLE RESISTANCE MEMORY DEVICE INCLUDING Cu2O | |
TWI824516B (en) | Resistive random-access memory devices with multicomponent electrodes and discontinuous interface layers | |
US20220367804A1 (en) | Resistive random-access memory devices with metal-nitride compound electrodes | |
US8546781B2 (en) | Nitrogen doped aluminum oxide resistive random access memory | |
US20220367803A1 (en) | Resistive random-access memory devices with multi-component electrodes | |
US20230087409A1 (en) | Low current rram-based crossbar array circuits implemented with interface engineering technologies | |
WO2022240426A1 (en) | Resistive random-access memory devices with multi-component electrodes | |
WO2016163978A1 (en) | Electrically conducting oxygen diffusion barriers for memristors and selectors | |
TW202312437A (en) | Resistive random-access memory devices with multi-component electrodes | |
CN117480878A (en) | Resistive random access memory device having multicomponent electrode and discontinuous interface layer | |
CN117296466A (en) | Resistive random access memory device with multicomponent electrode | |
CN117322153A (en) | Manufacturing method of resistive random access memory device | |
TW202412351A (en) | Resistive random-access memory devices with metal-nitride compound electrodes |