TW200823958A - Discharge lamp - Google Patents

Discharge lamp Download PDF

Info

Publication number
TW200823958A
TW200823958A TW096130725A TW96130725A TW200823958A TW 200823958 A TW200823958 A TW 200823958A TW 096130725 A TW096130725 A TW 096130725A TW 96130725 A TW96130725 A TW 96130725A TW 200823958 A TW200823958 A TW 200823958A
Authority
TW
Taiwan
Prior art keywords
particles
ultraviolet
discharge
ultraviolet ray
scattering
Prior art date
Application number
TW096130725A
Other languages
Chinese (zh)
Other versions
TWI364056B (en
Inventor
Takafumi Mizojiri
Satoshi Matsuzawa
Yukihiro Morimoto
Original Assignee
Ushio Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Electric Inc filed Critical Ushio Electric Inc
Publication of TW200823958A publication Critical patent/TW200823958A/en
Application granted granted Critical
Publication of TWI364056B publication Critical patent/TWI364056B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • H01J61/35Vessels; Containers provided with coatings on the walls thereof; Selection of materials for the coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • H01J61/18Selection of substances for gas fillings; Specified operating pressure or temperature having a metallic vapour as the principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • H01J61/18Selection of substances for gas fillings; Specified operating pressure or temperature having a metallic vapour as the principal constituent
    • H01J61/20Selection of substances for gas fillings; Specified operating pressure or temperature having a metallic vapour as the principal constituent mercury vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • H01J61/34Double-wall vessels or containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/54Igniting arrangements, e.g. promoting ionisation for starting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • H01J65/046Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by using capacitive means around the vessel

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

An objective of the invention is to provide a discharge lamp in which an ultraviolet scattering-reflecting film containing particles of a high ultraviolet reflectance is formed on a surface of a discharge container made of high purity material or crystal, and the ultraviolet scattering-reflecting film is prevented from separating easily. The discharge lamp emits ultraviolet rays by providing the ultraviolet scattering-reflecting film formed with ultraviolet scattering particles containing silica particles on the surface of the discharge container made of silica glass and forming a light emitting window by not providing the ultraviolet scattering-reflecting film at least at a part of the discharge container. The ultraviolet scattering-reflecting film is formed so that an existence ratio of the silica particles to the ultraviolet scattering particles is ten or more in a range apart from the surface of the discharge container by a length of a radius of the silica particles.

Description

200823958 (1) 九、發明說明 【發明所屬之技術領域】 本發明是關於放電燈,尤其是關於放射紫外線的放電 燈,紫外線散射反射膜形成於放電容器的表面所成的放電 • 燈。 【先前技術】 0 近年來,藉由在金屬、玻璃、其他材料所成的被處理 體,照射波長200nm以下的真空紫外光,而開發了藉由當 該真空紫外光及藉此所生成的臭氧作用來處理被處理體的 技術,例如除去附著於被處理體表面的有機污染物質的洗 淨處理技術,或在被處理體表面形成氧化膜的氧化膜形成 處理技術,而被實用化。 放射紫外線的放電燈,是爲了更有效率地放射更高強 度的紫外線施以很多嘗試。第9圖是表示圖示於專利文獻1 φ 的放電燈的說明用斷面圖。記載著具備透過紫外線的石英 玻璃所成的放電容器2,而在該放電容器2的內側與外側分 別構成有內側電極3與外側電極4所成,在放電容器2的表 * 面具有紫外線散射反射膜8的放電燈1。在形成有該紫外線 ' 散射反射膜8的放電容器2,成爲不會入射存在於放電空間 的紫外線。又,爲了放射在放電容器內所產生的紫外線, 在未形成有紫外線散射反射膜8的光出射窗23形成在放電 容器2的一部分。 紫外線散射反射膜8設於放電容器2內部之故,因而藉 200823958 (2) 由紫外線散射反射膜8令紫外線被反射時未透過石英玻璃 ’僅紫外線被放出到外部才透過石英玻璃而從光出射窗23 被放射之故,因而可抑制依透過石英玻璃所致的衰減。又 ’藉由防止放電空間內的紫外線入射於構成放電容器2的 • 石英玻璃,可減小依紫外線變形所致的損害,可防止產生 - 裂痕。 專利文獻1:日本特開2002-93377號公報 【發明內容】 放電容器是紫外線反射率高的粒子,例如氧化鋁粒子 所示地藉紫外線的反射率高的材料所構成較佳,可得到高 反射效率。然而,將氧化鋁粒子作爲主體的放電容器形成 在二氧化砂純度筒的石英玻璃的放電容器表面,則有紫外 線散射反射膜容易脆弱地剝落的問題。一般,在放電容器 的表面,很難形成膨脹係數與放電容器不相同的粒子所形 φ 成的紫外線散射反射膜,使得紫外線散射反射膜成爲容易 脆弱地剝落。 本發明是鑑於上述的缺點問題,其目的是在於提供即 ' 使在石英玻璃所成的放電容器的表面,也形成含有高紫外 ' 線反射率的粒子的紫外線散射反射膜,又紫外線散射反射 膜不會脆弱地剝落的放射燈。 本發明的放電燈,屬於在石英玻璃所成的放電容器的 表面,設有藉含有二氧化矽粒子的紫外線散射粒子所形成 的紫外線散射反射膜,在上述放電容器的至少一部分形成 -6 - 200823958 (3) 有未設有上述紫外線散射反射膜所致的光出 外線的放電燈,其特徵爲:上述紫外線散射 著部分中,主要存在著上述二氧化矽粒子。 又,本案第2項發明的放電燈,屬於在 - 的放電容器的表面,設有藉含有二氧化矽粒 ^ 射粒子所形成的紫外線散射反射膜,在上述 少一部分形成有未設有上述紫外線散射反射 射窗,照射紫外線的放電燈,其特徵爲:上 反射膜是在接著部分,僅存在著上述二氧化 又,本案第3項的發明,是在第1項的 二氧化矽粒子的粒徑是比上述二氧化矽粒子 外線散射粒子的粒徑還小,爲其特徵者。 又,本案第4項的發明,是在第3項的 述放電容器的表面,形成有比上述二氧化矽 大,比上述二氧化矽粒子以外的上述紫外線 ^ 徑還小寬度的溝,爲其特徵者。 又,本案第5項的發明,是在第1項的 述紫外線散射反射膜的表面,形成有反射率 ~ 子還高的紫外線散射粒子所成的反射膜表面 * 者。 又,本案第6項的發明,是在第1項的 紫外線散射反射膜是設在被曝露在放電空間 面,爲其特徵者。 又,本案第7項的發明,是在第1項的 射窗,照射紫 反射膜是在接 石英玻璃所成 子的紫外線散 放電容器的至 膜所致的光出 述紫外線散射 砂粒子。 發明中,上述 以外的上述紫 發明中,在上 粒子的粒徑還 散射粒子的粒 發明中,在上 比二氧化矽粒 層,爲其特徵 發明中,上述 的放電容器表 發明中,上述 -7- 200823958 (4) 紫外線散射粒子是含有氧化鋁、氟化鎂、氟化鈣、氟化 鋰、氧化鎂的任何一種以上的物質,爲其特徵者。 依照本發明的放電燈,藉由在從放電容器的表面距二 氧化矽粒子的半徑的長度範圍內形成有僅存在二氧化矽粒 • 子的紫外線散射反射膜,不會使得紫外線散射反射膜脆弱 • 剝落的情形。又,可提供將含有很多紫外線的高反射率的 紫外線散射粒子的紫外線散射反射膜形成在放電燈的表面 而提高反射效率,有效地照射紫外線的放電燈。 【實施方式】 以下,針對於本發明的實施形態加以說明。第1圖是 表示本發明的放電燈的說明斷面圖。 放電燈1是全體由管狀放電容器2所構成,塡充有放電 用氣體的直管部21,及在其兩端形成有氣密直管部21的密 封部22。放電容器2是作爲良好地透過真空紫外光的介質 材料,由合成石英玻璃所構成。 在放電容器2的內部,內側電極3配置成朝放電容器2 的大約中心延伸,而在放電容器2外面配置有外側電極4成 爲密接的狀態。內側電極3是例如由鎢線材所構成,具有 線圈狀所形成的線圈部,及連繋於該線圈部兩端的直線部 。內側電極3是在密封部22中,分別接合於金屬箔5,又, 在金屬箔5接合有外部引入線6。 在內側電極3的周圍,覆蓋該周圍般地設有介質材料 所構成的內側管7,而令內側電極3被插入在該內側管7中 -8 - 200823958 (5) 。亦即,經由介質材料配置有一對電極。內側管7是由合 成石英玻璃所構成,在內側電極3之至少與外側電極4之間 覆蓋於進行放電的部位外側,而其端部是超過外側電極4 的端部延伸著,內側管7是在放電空間內開放著兩端,而 , 在線圈部3 1的兩端部未存在。因此,內側電極3是在線圈 • 部的兩端部與直線部的一部分不會被覆蓋於內側管7而成 爲直接地露出於放電用氣體。 ^ 外側電極4是筒狀地形成網狀地構成金屬線的網目構 造體者,配置成覆蓋放電容器2的外表面,所以,來自放 電容器2的真空紫外光,是成爲透過外側電極4的網目而被 放射。又,針對於外側電極4,作成將1條金屬線編織成無 縫的構造,則會增加與放電容器2的密接性而有利。 在被形成於直管部21的內部的放電空間,藉由介有介 質材料的放電而形成準分子,而且作爲從該準分子放射真 空紫外光的放電用氣體,封入有例如氙氣體,或混合氬與 φ 氯的氣體等。在內側電極3及外側電極4供應點燈電力,介 設介質材料的放電容器2及內側管7而在兩極間生成放電, 俾在放電用氣體產生率分子發光。作爲放電用氣體使用氙 氣體時,放出在波長17211111具有峰値的真空紫外線,而作 爲放電用氣體使用混合氬與氯的氣體時,放出在波長 1 75 nm具有峰値的真空紫外線。 在放電容器2的表面以如3 0至3 0 0 μ m厚度設有紫外線 散射反射膜8。尤其是,在曝露於產生準分子發光的放電 空間的放電容器2的表面,具體來說,在直管部2〗的內表 200823958 (6) 面與內側管7的外表面形成紫外線散射反射膜8,則藉由防 止放電空間內的紫外線入射至構成放電容器2的石英玻璃 ,以減小依紫外線變形所致的損傷,並可防止發生裂痕。 又,即使爲放電容器2的表面,若形成紫外線散射反射膜8 在物理上具有困難等問題時,則未形成紫外線散射反射膜 - 8。例如爲曝露在產生密封部22的準分子發光的放電空間 的內表面。在該紫外線散射反射膜8形成於表面的放電容 $ 器2中,存在於放電空間內的紫外線被反射散射。又,爲 了放射在放電容器內所產生的紫外線,未形成有紫外線散 射反射膜8的光出射窗23形成於放電容器2的一部分。 此種紫外線散射反射膜8是使用例如被稱爲生材片的 薄膜狀成形體,藉由燒成該生材片,就可形成。 亦即,首先,含有二氧化矽粒子的紫外線散射粒子爲 例如以丙烯系樹脂等的可塑劑及分散劑等混合在溶劑而作 成糊狀。在表面施以脫模處理的薄膜狀的聚乙烯對苯二酸 φ 酯(PET)等的有機薄膜構造體的表面,以一定厚度流延糊 ,經乾燥溶劑而形成有作爲薄膜狀成形體的生材片。之後 ,從有機薄膜構造體剝落該生材片,接著於放電容器2的 ' 表面之後,施以燒成就形成紫外線散射反射膜8。 * 又,使用稱爲浸漬的方法也可形成紫外線散射反射膜 8。這時候,將含有二氧化矽粒子的紫外線散射粒子混合 在溶劑而形成溶液,令溶液充滿放電容器2內部般地被吸 起,藉由回流溶液,附著於放電容器2的表面。之後,經 乾燥、燒成、形成有紫外線散射反射膜8。 -10- 200823958 (7) 又,使用稱爲溶膠凝膠法也可形成紫外線散射反射膜 8。這時候,在含有奈米尺度尺寸的二氧化矽粒子的溶膠 ,凝膠液投入氧化鋁,形成懸濁液,將其溶液流進放電容 器2的內面以形成紫外線散射反射膜8。 , 第2圖是表示放電容器2與紫外線散射反射膜8的接合 * 部分的擴大圖,第2(b)圖是表示於圖示於第2(a)圖的接著 部分83的擴大圖。又,紫外線散射反射膜8是略述存在於 最表面附近的紫外線散射粒子8 0者。 因無法將放電容器2的放電空間放進金屬,因此紫外 線散射反射膜8是未排出不純氣體,由耐於放電的陶瓷所 形成。紫外線散射反射膜8是藉由含有二氧化矽粒子8 1的 紫外線散射粒子80所構成。一般線膨脹係數的散値相等或 近似者,而有容易接著的性質。二氧化矽粒子8 1是線膨脹 係數的數値與放電容器2相等,爲了提高與放電容器2的接 著力,由與放電容器2的同質的二氧化矽粒子所構成。又 φ ’二氧化矽粒子以外的紫外線散射粒子82是紫外線的反射 率比_^氧化砂粒子速局的陶瓷材料所構成,例如氧化銘、 氟化鎂、氟化鈣、氟化鋰、氟化鈉、氟化鋇、氟化鑭、氟 化鈽、氧化铈、氧化鉻、氧化釔、氧化鈦、氧化鎂、氧化 鈣的任一種以上的粒子所構成。紫外線散射反射膜8是二 氧化矽粒子8 1爲紫外線散射粒子8 2中含有3 0重量%以上較 佳。 在陶瓷性的紫外線散射粒子8 0所排列的紫外線散射反 射膜8形成於表面的放電容器2 ’例如照射波長1 7 2 nm的真 • 11 - 200823958 (8) 空紫外光,則真空紫外光是折射,一部分是反射,又一部 分是被透過在微小粒子內部。透過微小粒子內部的光線’ 是一部分被吸收惟大都是透過,再從微小粒子內部出射時 會折射。藉由重複此種折射,真空紫外光是朝與所入射的 • 方向相反方向散射,而此成爲反射光。 - 如第2圖所示地,二氧化矽粒子8 1的粒徑是比二氧化 矽粒子以外的紫外線散射粒子82的粒子還小。在此’使用 第2(b)圖,來定義粒徑84。所謂粒徑84是指在使用電子顯 微鏡所照的擴大投影像中,以兩條平行線隔著任意紫外線 散射粒子80的粒子時,平行線的間隔成爲最大的粒子寬度 。又,比較二氧化矽粒子8 1的粒徑84,與二氧化矽粒子以 外的紫外線散射粒子82的粒徑84的大小時,則使用中心徑 。中心徑是指計數複數粒徑84,將其粒徑84的數値表示在 度數分布,而其度數成爲最大的區分的粒徑84的數値。例 如將計測複數的粒徑84,依其値分類成爲具有0.2〜 ^ 0.2 9 μ m ' 0.3 〜0.39μιη、0.4 〜0·49μιη 等的一定範圍,計數 屬於各個區分的粒徑84的個數。該數成爲該區分的度數。 求出所有區分的度數,比較其結果,而選擇度數成爲最大 ' 的區分,該區分的粒徑84的數値的中央値成爲中心徑。 • 又,紫外線散射反射膜8與放電容器2的接著力成爲問 題的部分,是紫外線散射反射膜8與放電容器2的接著部分 83。在此,將接著部分83定義爲從放電容器2的表面僅隔 開二氧化矽粒子81的半徑長度的範圍。紫外線散射反射膜 8的膜厚爲3 0〜3 0 0 μ m,而二氧化矽粒子8 1的粒徑爲0.1〜 -12- 200823958 (9) l〇pm之故,因而接著部分83是紫外線散射反射膜8的寬度 大約1 〇〇分之1左右的部分。紫外線散射反射膜8與放電容 器2的接著力的關係爲二氧化矽粒子8 1之故,因而以二氧 化矽粒子8 1作爲基準來決定接著部分83。亦即,在放電容 • 器2的表面近旁的斷面的擴大投影像中,沿著放電容器2表 - 面的任意每一單位長度,將僅隔著二氧化矽粒子8 1的半徑 長度的範圍作爲接著部分83。又,二氧化矽粒子8 1的半徑 _ 爲二氧化矽粒子8 1的中心徑的一半値。 欲觀察紫外線散射反射膜8與放電容器2的接著部分83 ’以觀察在紫外線散射粒子8 2中最大粒徑的3倍左右的長 度作爲一邊的正方形的範圍較佳。觀察此種範圍,就可立 即判斷在接著部分83是否存在著二氧化矽粒子以外的紫外 線散射粒子82。 又,在接著部分8 3的二氧化矽粒子8 1的析出,是藉由 粒子自然地移動所得到的效果之故,因而不僅觀察1點還 φ 觀察複數位置來確定接著部分83較佳。第3圖是表示在放 電容器2的內表面設有放電容器8的狀態的立體圖。沿著設 有紫外線散射反射膜8的領域的長邊面(在第3圖中,沿著 放電容器2的軸方向),設定測定線8 5。在測定線8 5上等間 ' 隔地對於1〇點,較佳爲20點以上照到擴大投影像來觀察接 著部分83。在所觀察的所有擴大投影像中90%以上的擴大 投影像中,若在接著部分8 3僅存在二氧化矽,則認定爲「 在接著部分中,主要存在著二氧化矽粒子」。 第4圖是表示紫外線散射反射膜8所形成的放電容器2 -13- 200823958 (10) 的表面近旁的擴大投影像。 將該構成表示於以下: (放電容器)材質:石英玻璃 (紫外線散射反射膜)反射率:約75% * (二氧化矽粒子)材質:二氧化矽,粒徑〇·1μιη〜0·5μπι - ,中心徑:〇 · 3 μ m,含有比:6 0重量% (二氧化矽粒子以外的紫外線散射粒子)材質:氧化鋁 ,粒徑:0·5μηι〜5.0μηι,中心徑:3μιη,含有比:40重量 % 沿著放電容器2的表面,在成爲僅隔開二氧化矽粒子 81的半徑長度〇·15μηι的範圍的接著部分83中’僅存在著二 氧化矽粒子8 1。 在紫外線散射反射膜8的二氧化矽粒子8 1與二氧化矽 粒子以外的紫外線散射粒子82的含有比是6比4 ’而在接著 部分83僅二氧化矽粒子8 1接觸於放電容器2 °燒成紫外線 ^ 散射反射膜8之際會燒失溶媒等之故’因而在接著部分83 僅存在著二氧化矽粒子8 1。如此地’將二氧化砂粒子8 1的 粒子作成小於二氧化矽粒子以外的紫外線散射粒子8 2的粒 、 徑10分之1以下較佳,藉由此,二氧化矽粒子81進入二氧 _ 化矽粒子以外的紫外線散射粒子82之間,而不管紫外線散 射反射膜8的含有比’在接著部分8 3中僅存在二氧化砂粒 子8 1。藉由如此地構成,令接著部83的二氧化矽粒子8 1牢 固地結合於放電容器2的石英玻璃之故’因而二氧化砂粒 子8 1的粒徑是比二氧化矽粒子以外的紫外線散射粒子82的 -14 - 200823958 (11) 粒徑還小者較好,而可防止紫外線散射反射膜8由放電容 器2脆弱地剝落。又,將含有很多紫外線的高反射率的二 氧化矽粒子以外的紫外線散射粒子82的紫外線散射反射膜 8可形成在放電容器2的表面之故,因而提高曝露在產生準 分子發光的放電空間的紫外線散射反射膜8表面的反射效 率,而有效率地可利用紫外線。 在所觀察的所有擴大投影影像中90%以上的擴大投影 像中若僅二氧化矽存在於接著部分8 3,亦即,如在「接著 部分83中,主要存在著二氧化矽粒子」般地構成紫外線散 射反射膜8,即使在接著部分8 3存在著二氧化矽粒子以外 的紫外線散射粒子8 2的部分,紫外線散射反射膜8是無問 題地可確定結合於放電容器2。二氧化矽以外的紫外線散 射粒子8 2本身是與放電容器2的結合力較弱,惟周圍的二 氧化矽粒子81會牢固地結合在放電容器2的石英玻璃之故 ,因而整體上來看紫外線散射反射膜8不會剝落。 又,在溶劑混合紫外線散射粒子82作成懸濁液而塗佈 在放電容器2時’若混合複數材料的紫外線散射粒子8 2, 則比重比二氧化矽粒子8 1還重的紫外線散射粒子82是在塗 佈工程藉由重力下降,而有很多存在於與放電容器2的接 著部分83的可能性。如此地當形成有紫外線散射反射膜8 ,則會有從放電容器2剝落的情形。因此,含有於紫外線 散射反射膜8的紫外線散射粒子8 2的主成分。是二氧化砂 粒子8 1較佳。 第5圖是表示在放電容器2表面形成有溝的情形的放電 -15- 200823958 (12) 容器2與紫外線散射反射膜8的部分的擴大圖。又,紫外線 散射反射膜8是略述存在最表面附近的紫外線散射粒子8 0 者。 在設有紫外線散射反射膜8的放電容器2的表面,形成 * 有比二氧化矽粒子以外的紫外線散射粒子82的粒徑還小, • 而比二氧化矽粒子8 1的粒徑還大的寬度的溝24。溝24的寬 度比二氧化矽粒子以外的紫外線散射粒子82的粒徑還小之 _ 故,因而在溝24中僅可進入二氧化矽粒子8 1,而在形成溝 24的放電容器2的表面僅接觸到二氧化矽粒子81。藉由設 置此種溝24,也可提高接著部分83的二氧化矽粒子8 1的存 在率。藉由如此地構成,可防止紫外線散射反射膜8從放 電容器2脆弱剝落的情形。又,將含有很多高反射率的二 氧化矽粒子以外的紫外線散射粒子82的紫外線散射反射膜 8可形成在放電容器2的表面之故,因而可提高曝露在產生 準分子發光的放電空間的紫外線散射反射膜8表面的反射 φ 效率,而可有效率地利用紫外線。 第6圖是表示在放電容器2的表面形成兩層紫外線散射 反射膜8時的放電燈的斷面圖。 藉由分成兩層來形成紫外線散射反射膜8,也可提高 接著部分8 3的二氧化矽粒子8 1的存在比率。例如藉由生材 片形成含有60重量%以上二氧化矽粒子81的第一紫外線散 射反射膜8a,而在其上面藉由浸漬形成含有60重量%以上 紫外線散射粒子82的第二紫外線散射反射膜8b的情形。第 二紫外線散射反射膜8b的紫外線散射粒子82進入第一紫外 -16- 200823958 (13) 線散射反射膜8 a的二氧化矽粒子8 1的膜表面的間隙,令第 一紫外線散射反射膜8a與第二紫外線散射反射膜8b被接合 。藉由如此地構成,含有很多二氧化矽粒子81的第一紫外 線散射反射膜8a提高接著部分83的二氧化矽粒子81的存在 ' 比率,以防止紫外線散射反射膜8從放電容器2脆弱地剝落 • 。又,含有很多高反射率的紫外線散射粒子82的第二紫外 線散射反射膜8b形成在曝露於產生準分子發光的放電空間 0 的表面之故,因而提高紫外線散射反射膜8的反射率,可 有效地利用紫外線。 第7圖是表示在放電容器2的表面形成兩層紫外線散射 反射膜8,而在其表面上形成反射膜表面層9時的放電燈的 斷面圖。 在藉第一紫外線散射反射膜8a與第二紫外線散射反射 膜8b的兩層所構成的紫外線散射反射膜8的表面上,形成 反射率比二氧化矽粒子8 1還高的紫外線散射粒子82所構成 φ 的反射膜表面層9,也可更提高紫外線的反射率。在與放 電容器2的表面接觸的接著部分83中,形成以二氧化矽粒 子81作爲主成分的第一紫外線散射反射膜8a,隨著愈接近 ' 放電空間側,形成二氧化矽粒子8 1以外的紫外線散射粒子 ' 8 2的含有比較多的第二紫外線散射反射膜8 b,而在曝露於 產生準分子發光的放電空間的表面,作成形成反射率比二 氧化矽粒子8 1還高的紫外線散射粒子82所構成的反射膜表 面層9的多重構造。藉由二氧化矽粒子81的含有比成爲階 層狀的多重構造,防止第一紫外線散射反射膜8a從放電容 -17- 200823958 (14) 器2的表面脆弱地剝落,而防止與第二紫外線散射反射膜 8b或反射膜表面層9的接合面剝落,而且提高曝露在產生 準分子發光的放電空間的表面的反射效率,可有效率地利 用紫外線。又,僅形成一層紫外線散射反射膜8,而在其 表面上也可形成反射膜表面層9成爲不會剝落時,則不要 階層狀地形成紫外線散射反射膜8而形成反射膜表面層9, 也可作爲兩層構造。 又,在以上,針對於延伸放電容器2的大約中心般地 配置有線圈狀內側電極3的放電燈1加以說明,惟在表示於 雙重管構造的準分子燈,或表示於第8圖的方型構造的準 分子燈,短弧高壓放電燈等,放射紫外線的其他放電燈, 適用本發明的紫外線散射反射膜8,也可防止紫外線散射 反射膜8脆弱地剝落。 以下,針對於實施例加以說明。 實施例1 表示於第8圖的放電燈1是具備合成石英玻璃所構成的 斷面長方形的放電容器2,在互相相對該放電容器2的外表 面朝放電容器2的管軸方向延伸般地配設有金屬所構成的 一對外側電極4。在放電容器內塡充有放電用氣體的氙氣 ,配置有如鋇所成的除氣劑11。又,在放電容器外,構成 有排氣管10。在放電容器2的表面,設有紫外線散射反射 膜8。又,在放電容器2的外表面未形成有外側電極4的任 意的一面,形成有未形成的紫外線散射反射膜8的光出射 -18- 200823958 (15) 窗23。 將該放電燈1的構成表示於以下。 (放電容器)材質:石英玻璃,全長:150mm,縱方向 尺寸:3 4mm,橫方向尺寸:14mm,厚度:2mm。 * (紫外線散射反射膜)形成方法:生材片,厚度: 1 0 0 μπι (二氧化矽粒子)材質:二氧化矽,粒徑:0 · 1 μπι〜 0.5 μ m,中心徑·· 0 · 3 μ m,含有比:6 0重量% (二氧化矽以外的反射膜表面層)材質:氧化鋁,粒徑 :0·5μηι〜5.0μπι,中心徑:3·0μπι,含有比:40重量% 觀察該紫外線散射反射膜8的接著部分,僅存在著二 氧化矽粒子。所以,紫外線散射反射膜8是不會剝落地形 成在不會剝落的放電容器2。該放電燈以放電空間的體積 每1cm3的輸入電壓成爲大約1W的條件下施以點燈。這時 候的照度是與未設置紫外線散射反射膜8的放電燈相比較 φ ,成爲約兩倍。 又,藉由浸漬將紫外線散射反射膜形成膜厚30μηι時 ,確認也具有同樣的效果。 ' 實施例2 在表示於第9圖的放電燈1的放電容器2的外側管內表 面,形成紫外線散射反射膜8。又,作爲放電用氣體將氬 氣封入在放電空間,進行波長126mm的氬準分子光的發光 。將此放電燈的構成表示於以下。 -19- 200823958 (16)BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a discharge lamp, and more particularly to a discharge lamp that emits ultraviolet rays, and a discharge lamp that is formed on a surface of a discharge vessel by an ultraviolet scattering reflection film. [Prior Art] 0 In recent years, by irradiating vacuum ultraviolet light having a wavelength of 200 nm or less with a target body formed of metal, glass, or other materials, ozone generated by the vacuum ultraviolet light and thereby is developed. A technique for processing a target object, for example, a cleaning treatment technique for removing an organic contaminant adhering to the surface of a target object, or an oxide film formation treatment technique for forming an oxide film on the surface of the object to be processed, is put to practical use. A discharge lamp that emits ultraviolet light is a lot of attempts to more efficiently emit higher intensity ultraviolet rays. Fig. 9 is a cross-sectional view for explaining the discharge lamp shown in Patent Document 1 φ. The discharge vessel 2 made of quartz glass that transmits ultraviolet rays is described, and the inner electrode 3 and the outer electrode 4 are formed inside and outside the discharge vessel 2, respectively, and the surface of the discharge vessel 2 has ultraviolet scattering reflection. Discharge lamp 1 of membrane 8. The discharge vessel 2 in which the ultraviolet ray scattering reflection film 8 is formed does not enter the ultraviolet ray existing in the discharge space. Further, in order to radiate the ultraviolet rays generated in the discharge vessel, a light exit window 23 in which the ultraviolet scattering reflection film 8 is not formed is formed in a part of the discharge container 2. The ultraviolet ray reflection and reflection film 8 is disposed inside the discharge vessel 2, so that it is not transmitted through the quartz glass when the ultraviolet ray is reflected by the ultraviolet ray scattering reflection film 8 by the ultraviolet ray reflection film 8 'only ultraviolet rays are emitted to the outside to pass through the quartz glass and are emitted from the light. The window 23 is radiated, so that the attenuation by the quartz glass can be suppressed. Further, by preventing ultraviolet rays in the discharge space from entering the quartz glass constituting the discharge vessel 2, damage due to ultraviolet rays can be reduced, and occurrence of cracks can be prevented. Patent Document 1: JP-A-2002-93377 SUMMARY OF THE INVENTION The discharge vessel is a particle having a high ultraviolet reflectance, and is preferably made of a material having a high reflectance of ultraviolet rays as shown by alumina particles, and a high reflection can be obtained. effectiveness. However, when the discharge vessel having the alumina particles as a main body is formed on the surface of the discharge vessel of the quartz glass of the silica sand purity cylinder, there is a problem that the ultraviolet ray scattering film is easily peeled off fragilely. In general, on the surface of the discharge vessel, it is difficult to form an ultraviolet scattering reflection film having a coefficient of expansion different from that of the discharge vessel, so that the ultraviolet scattering reflection film is easily peeled off fragilely. The present invention has been made in view of the above-described problems, and an object thereof is to provide an ultraviolet scattering reflection film which is formed on a surface of a discharge vessel formed of quartz glass and which also forms particles having a high ultraviolet 'line reflectance, and an ultraviolet scattering reflection film. A radiation lamp that does not flake off. The discharge lamp of the present invention belongs to a surface of a discharge vessel formed of quartz glass, and is provided with an ultraviolet scattering reflection film formed by ultraviolet scattering particles containing cerium oxide particles, and forms at least a part of the discharge vessel -6 - 200823958 (3) A discharge lamp having an external light line which is not provided with the ultraviolet ray-scattering film is characterized in that the ruthenium dioxide particles are mainly present in the ultraviolet ray scattering portion. Further, in the discharge lamp of the second aspect of the invention, the surface of the discharge vessel of the present invention is provided with an ultraviolet scattering reflection film formed by the particles containing the cerium oxide particles, and the ultraviolet rays are not provided in the above-mentioned part. A discharge lamp that scatters a reflection window and emits ultraviolet rays, and is characterized in that: the upper reflection film is in the subsequent portion, and only the above-mentioned oxidation is present, and the invention of the third item of the present invention is the particle of the cerium oxide particle in the first item. The diameter is smaller than the particle diameter of the above-mentioned cerium oxide particle outer-scattering particle, and is characterized by it. Further, in the invention of the fourth aspect of the invention, the surface of the discharge vessel of the third aspect is formed with a groove having a larger width than the above-mentioned cerium oxide and having a smaller width than the ultraviolet ray other than the cerium oxide particle. Feature. Further, in the invention of the fifth aspect of the invention, the surface of the reflecting film formed by the ultraviolet ray scattering particles having a high reflectance is formed on the surface of the ultraviolet ray scattering film of the first item. Further, in the invention of the sixth aspect of the invention, the ultraviolet scattering reflection film of the first item is characterized in that it is exposed on the discharge space surface. Further, the invention according to the seventh aspect of the invention is the projection window of the first aspect, wherein the illuminating violet reflecting film is a light-emitting ultraviolet scattering sand particle which is obtained by a film of an ultraviolet ray discharging capacitor which is formed by the quartz glass. In the invention of the above-described purple invention, in the invention of the particle of the particle size of the upper particle and the particle of the scattering particle, in the invention of the upper than the cerium oxide particle layer, in the above-described discharge vessel table invention, the above- 7-200823958 (4) The ultraviolet ray scattering particles are any one or more of those containing aluminum oxide, magnesium fluoride, calcium fluoride, lithium fluoride, and magnesium oxide. According to the discharge lamp of the present invention, the ultraviolet ray scattering reflection film which is present only in the presence of the cerium oxide particle in the range of the length from the surface of the discharge vessel to the cerium oxide particle does not make the ultraviolet ray scattering film fragile • The situation of flaking. Further, it is possible to provide a discharge lamp in which an ultraviolet ray scattering reflection film containing a large amount of ultraviolet ray having high reflectance ultraviolet ray scattering particles is formed on the surface of a discharge lamp to improve reflection efficiency and to efficiently illuminate ultraviolet rays. [Embodiment] Hereinafter, embodiments of the present invention will be described. Fig. 1 is an explanatory sectional view showing a discharge lamp of the present invention. The discharge lamp 1 is composed of a tubular discharge vessel 2, a straight pipe portion 21 filled with a discharge gas, and a sealing portion 22 having a gastight straight pipe portion 21 formed at both ends thereof. The discharge vessel 2 is made of synthetic quartz glass as a dielectric material that satisfactorily transmits vacuum ultraviolet light. Inside the discharge vessel 2, the inner electrode 3 is disposed so as to extend toward the center of the discharge vessel 2, and the outer electrode 4 is placed outside the discharge vessel 2 in a state of being in close contact with each other. The inner electrode 3 is, for example, a tungsten wire material, and has a coil portion formed in a coil shape and a linear portion connected to both ends of the coil portion. The inner electrode 3 is bonded to the metal foil 5 in the sealing portion 22, and the outer lead wire 6 is joined to the metal foil 5. An inner tube 7 made of a dielectric material is provided around the inner electrode 3, and the inner electrode 3 is inserted in the inner tube 7 -8 - 200823958 (5). That is, a pair of electrodes are disposed via the dielectric material. The inner tube 7 is made of synthetic quartz glass, and covers at least the portion where the discharge is performed between the inner electrode 3 and the outer electrode 4, and the end portion extends beyond the end portion of the outer electrode 4, and the inner tube 7 is Both ends are opened in the discharge space, and are not present at both end portions of the coil portion 31. Therefore, the inner electrode 3 is directly exposed to the discharge gas so that a part of the coil portion and a part of the straight portion are not covered by the inner tube 7. ^ The outer electrode 4 is a mesh structure in which a metal wire is formed in a mesh shape, and is disposed so as to cover the outer surface of the discharge vessel 2. Therefore, the vacuum ultraviolet light from the discharge vessel 2 is a mesh that passes through the outer electrode 4. And being emitted. Further, it is advantageous for the outer electrode 4 to have a structure in which one metal wire is woven into a seamless structure, and the adhesion to the discharge vessel 2 is increased. An excimer is formed in a discharge space formed inside the straight tube portion 21 by discharge of a dielectric material, and a discharge gas that emits vacuum ultraviolet light from the excimer is sealed with, for example, helium gas or mixed with argon. Gas with φ chlorine, etc. The inner electrode 3 and the outer electrode 4 are supplied with lighting power, and the discharge vessel 2 and the inner tube 7 of the dielectric material are interposed to generate a discharge between the two electrodes, and the gas is emitted at a gas generation rate of the discharge. When a helium gas is used as the discharge gas, a vacuum ultraviolet ray having a peak 波长 at a wavelength of 17211111 is released, and when a gas containing argon and chlorine is used as a discharge gas, a vacuum ultraviolet ray having a peak at a wavelength of 1 75 nm is released. An ultraviolet scattering reflection film 8 is provided on the surface of the discharge vessel 2 at a thickness of, for example, 30 to 300 μm. In particular, on the surface of the discharge vessel 2 exposed to the discharge space where the excimer emits light, specifically, the ultraviolet scattering reflection film is formed on the outer surface of the inner surface of the inner tube 7 at the inner surface of the straight tube portion 2, 200823958 (6). 8. By preventing ultraviolet rays in the discharge space from entering the quartz glass constituting the discharge vessel 2, damage due to ultraviolet rays is reduced, and cracking can be prevented. Further, even if the surface of the discharge vessel 2 has a problem that the ultraviolet ray scattering film 8 is physically difficult to form, the ultraviolet ray scattering film -8 is not formed. For example, it is an inner surface of a discharge space which is exposed to excimer light which generates the sealing portion 22. In the discharge capacitor 2 in which the ultraviolet ray reflection reflection film 8 is formed on the surface, the ultraviolet ray existing in the discharge space is reflected and scattered. Further, in order to radiate ultraviolet rays generated in the discharge vessel, a light exit window 23 in which the ultraviolet-ray-scattered reflection film 8 is not formed is formed in a part of the discharge vessel 2. Such an ultraviolet scattering reflection film 8 can be formed by firing the green sheet, for example, a film-shaped molded body called a green sheet. In other words, the ultraviolet ray scattering particles containing the cerium oxide particles are mixed with a solvent such as a propylene resin or the like in a solvent to form a paste. The surface of the organic film structure such as film-like polyethylene terephthalate (PET) which has been subjected to release treatment on the surface is cast to a predetermined thickness, and a film-form molded body is formed by drying the solvent. Raw material. Thereafter, the green sheet is peeled off from the organic film structure, and then, after the surface of the discharge vessel 2, the ultraviolet scattering reflection film 8 is formed by firing. * Further, the ultraviolet ray scattering reflection film 8 can be formed by a method called immersion. At this time, the ultraviolet ray scattering particles containing the cerium oxide particles are mixed in a solvent to form a solution, and the solution is filled up inside the discharge vessel 2, and adhered to the surface of the discharge vessel 2 by refluxing the solution. Thereafter, the ultraviolet scattering reflection film 8 is formed by drying, firing, and formation. -10- 200823958 (7) Further, an ultraviolet scattering reflection film 8 can be formed by using a method called sol-gel method. At this time, in the sol containing the nanometer-sized cerium oxide particles, the gel solution is poured into alumina to form a suspension, and the solution is introduced into the inner surface of the discharge capacitor 2 to form the ultraviolet ray scattering film 8. Fig. 2 is an enlarged view showing a portion where the discharge vessel 2 and the ultraviolet ray scattering film 8 are joined, and Fig. 2(b) is an enlarged view showing a contiguous portion 83 of Fig. 2(a). Further, the ultraviolet ray scattering and reflecting film 8 is an example of the ultraviolet ray scattering particles 80 which are present in the vicinity of the outermost surface. Since the discharge space of the discharge vessel 2 cannot be placed in the metal, the ultraviolet ray-scattering reflection film 8 is formed of a ceramic which is resistant to discharge without discharging an impurity gas. The ultraviolet scattering reflection film 8 is composed of ultraviolet scattering particles 80 containing cerium oxide particles 81. Generally, the divergence coefficients of the linear expansion coefficients are equal or similar, and have the property of being easy to follow. The cerium oxide particles 8 1 have the same number of linear expansion coefficients as the discharge vessel 2, and are formed of homogenous cerium oxide particles similar to the discharge vessel 2 in order to increase the adhesion to the discharge vessel 2. Further, the ultraviolet ray scattering particles 82 other than the φ 'cerium oxide particles are composed of a ceramic material having a reflectance of ultraviolet rays higher than that of the oxidized sand particles, for example, oxidized magnesium, magnesium fluoride, calcium fluoride, lithium fluoride, and fluorinated. Any of particles of sodium, cesium fluoride, cesium fluoride, cesium fluoride, cerium oxide, chromium oxide, cerium oxide, titanium oxide, magnesium oxide, and calcium oxide. The ultraviolet ray scattering and reflecting film 8 is preferably cerium oxide particles 81 in an amount of 30% by weight or more of the ultraviolet ray scattering particles 8 2 . The ultraviolet ray scattering reflection film 8 arranged in the ceramic ultraviolet ray scattering particles 80 is formed on the surface of the discharge vessel 2', for example, irradiating a wavelength of 1 7 2 nm true 11 - 200823958 (8) empty ultraviolet light, then the vacuum ultraviolet light is Refraction, part of which is reflection, and part of it is transmitted inside tiny particles. The light rays passing through the inside of the tiny particles are partially absorbed and transmitted, and are refracted when they are emitted from inside the tiny particles. By repeating this refraction, the vacuum ultraviolet light is scattered in the opposite direction to the incident direction, and this becomes reflected light. - As shown in Fig. 2, the particle size of the cerium oxide particles 81 is smaller than the particles of the ultraviolet ray scattering particles 82 other than the cerium oxide particles. Here, the particle size 84 is defined using the second (b) diagram. The particle size 84 is a particle width at which the interval between the parallel lines is maximized when particles of any of the ultraviolet ray scattering particles 80 are interposed by two parallel lines in the enlarged projection image illuminated by the electron microscope. Further, when the particle diameter 84 of the cerium oxide particle 81 is compared with the particle diameter 84 of the ultraviolet ray scattering particle 82 other than the cerium oxide particle, the center diameter is used. The center diameter is a number 计数 of the plurality of particle diameters 84 in which the complex particle diameter 84 is counted, and the number 値 of the particle diameter 84 is expressed in the degree distribution, and the degree is the largest. For example, the particle diameter 84 of the measurement plural is classified into a predetermined range of 0.2 to ^ 0.2 9 μm '0.3 to 0.39 μm, 0.4 to 0·49 μm, etc., and the number of the particle diameters 84 belonging to each division is counted. This number becomes the degree of the distinction. The degree of all the divisions is obtained, and the result is compared, and the degree of selection becomes the largest ', and the center 値 of the number 値 of the divided particle diameters 84 becomes the center diameter. Further, the portion where the adhesion between the ultraviolet ray scattering film 8 and the discharge vessel 2 is a problem is the ultraviolet ray scatter reflection film 8 and the succeeding portion 83 of the discharge vessel 2. Here, the succeeding portion 83 is defined as a range in which only the radius of the cerium oxide particle 81 is separated from the surface of the discharge vessel 2. The film thickness of the ultraviolet ray scattering film 8 is 30 to 300 μm, and the particle size of the cerium oxide particle 8 1 is 0.1 to -12 to 200823958 (9) l pm, so that the portion 83 is ultraviolet rays. The width of the scattering reflection film 8 is about 1 part or so. Since the relationship between the ultraviolet scattered reflection film 8 and the adhesion force of the discharge capacitor 2 is the ruthenium dioxide particles 81, the succeeding portion 83 is determined based on the ruthenium dioxide particles 8 1 as a reference. That is, in the enlarged projection image of the cross section near the surface of the discharge capacitor 2, along the length of each surface of the surface of the discharge vessel 2, only the radius of the cerium oxide particle 8 1 is separated. The range is taken as the subsequent portion 83. Further, the radius _ of the cerium oxide particle 8 1 is half the center diameter of the cerium oxide particle 8 1 . It is preferable that the ultraviolet scattering reflection film 8 and the succeeding portion 83' of the discharge vessel 2 have a square having a length of about three times the maximum particle diameter of the ultraviolet ray scattering particles 8 as one side. By observing such a range, it is possible to immediately judge whether or not the ultraviolet ray scattering particles 82 other than the cerium oxide particles are present in the subsequent portion 83. Further, the precipitation of the cerium oxide particles 8 1 in the succeeding portion 8 3 is an effect obtained by the natural movement of the particles. Therefore, it is preferable to observe not only the one point but also the φ to observe the complex position to determine the subsequent portion 83. Fig. 3 is a perspective view showing a state in which the discharge vessel 8 is provided on the inner surface of the discharge capacitor 2. The measurement line 85 is set along the long side surface of the field in which the ultraviolet scattering reflection film 8 is provided (in the third direction, along the axial direction of the discharge vessel 2). On the measurement line 8.5, the occlusion portion is observed for the 1 〇 point, preferably 20 points or more, to the enlarged projection image. In the enlarged projection image of 90% or more of all the expanded projection images observed, if only the cerium oxide exists in the subsequent portion 8.3, it is considered that "the cerium oxide particles are mainly present in the subsequent portion". Fig. 4 is an enlarged projection image showing the vicinity of the surface of the discharge vessel 2-13-200823958 (10) formed by the ultraviolet scattering reflection film 8. This configuration is shown below: (discharger) Material: quartz glass (ultraviolet scattering reflection film) Reflectance: about 75% * (cerium oxide particles) Material: cerium oxide, particle size 〇 · 1 μιη ~ 0 · 5 μπι - , center diameter: 〇 · 3 μ m, content ratio: 60% by weight (ultraviolet scattering particles other than cerium oxide particles) Material: alumina, particle size: 0·5μηι~5.0μηι, center diameter: 3μιη, content ratio 40% by weight Along the surface of the discharge vessel 2, only the cerium oxide particles 8 1 are present in the subsequent portion 83 which is a range of a radius of 〇·15 μm which is only separated by the cerium oxide particles 81. The content ratio of the ultraviolet ray scattering particles 82 other than the cerium oxide particles 81 and the cerium oxide particles of the ultraviolet ray scattering and reflecting film 8 is 6 to 4', and in the subsequent portion 83, only the cerium oxide particles 8 1 are in contact with the discharge vessel 2 °. When the ultraviolet ray is fired, the scattering film 8 is burned out of the solvent, etc., so that only the cerium oxide particles 81 are present in the succeeding portion 83. In this manner, it is preferable that the particles of the silica sand particles 8 1 are made of particles of the ultraviolet ray scattering particles 8 2 other than the cerium oxide particles, and the diameter of the particles is 1 or less, whereby the cerium oxide particles 81 enter the dioxin. Between the ultraviolet ray scattering particles 82 other than the cerium particles, regardless of the content ratio of the ultraviolet ray scattering film 8, only the SiO 2 particles are present in the contiguous portion 8.3. With such a configuration, the cerium oxide particles 8 1 of the bonding portion 83 are firmly bonded to the quartz glass of the discharge vessel 2, and thus the particle diameter of the silica sand particles 8 1 is ultraviolet scattering other than the cerium oxide particles. The particle size of -14 - 200823958 (11) of the particle 82 is preferably small, and the ultraviolet scattering reflection film 8 is prevented from being weakly peeled off by the discharge vessel 2. Further, the ultraviolet ray scattering film 8 of the ultraviolet ray scattering particles 82 other than the high reflectance cerium oxide particles containing a large amount of ultraviolet rays can be formed on the surface of the discharge vessel 2, thereby improving exposure to a discharge space in which excimer light is generated. The ultraviolet ray scatters the reflection efficiency of the surface of the reflection film 8, and ultraviolet rays are efficiently utilized. In the expanded projection image of 90% or more of all the enlarged projection images observed, if only ruthenium dioxide exists in the subsequent portion 83, that is, as in "the subsequent portion 83, mainly cerium oxide particles exist" When the ultraviolet ray scattering film 8 is formed, even if the ultraviolet ray scattering particles 8 other than the cerium oxide particles are present in the subsequent portion 83, the ultraviolet ray scattering film 8 can be surely bonded to the discharge vessel 2 without any problem. The ultraviolet ray scattering particles other than cerium oxide 8 2 are weakly bonded to the discharge vessel 2, but the surrounding cerium oxide particles 81 are firmly bonded to the quartz glass of the discharge vessel 2, so that the ultraviolet ray as a whole is observed. The reflective film 8 does not peel off. Further, when the solvent-mixed ultraviolet ray scattering particles 82 are formed as a suspension and applied to the discharge vessel 2, when the ultraviolet ray scattering particles 8 2 of the plurality of materials are mixed, the ultraviolet ray scattering particles 82 having a specific gravity higher than that of the cerium oxide particles 8 1 are In the coating process, there is a possibility of being present in the subsequent portion 83 of the discharge vessel 2 by gravity. When the ultraviolet ray reflection and reflection film 8 is formed as described above, there is a case where it is peeled off from the discharge vessel 2. Therefore, the main component of the ultraviolet ray scattering particles 8 2 contained in the ultraviolet ray scattering and reflecting film 8 is obtained. It is preferred that the silica sand particles 8 1 are. Fig. 5 is an enlarged view showing a portion of the discharge -15-200823958 (12) container 2 and the ultraviolet ray scattering reflection film 8 in the case where a groove is formed on the surface of the discharge vessel 2. Further, the ultraviolet ray scattering reflection film 8 is a case where the ultraviolet ray scattering particles 80 in the vicinity of the outermost surface are present. On the surface of the discharge vessel 2 provided with the ultraviolet scattering reflection film 8, * is formed to have a smaller particle diameter than the ultraviolet ray scattering particles 82 other than the cerium oxide particles, and is larger than the particle diameter of the cerium oxide particle 8 1 The width of the groove 24. The width of the groove 24 is smaller than the particle diameter of the ultraviolet ray scattering particles 82 other than the cerium oxide particles, so that only the cerium oxide particles 181 can be entered in the groove 24 and the surface of the discharge vessel 2 forming the groove 24 Only the cerium oxide particles 81 are contacted. By providing such a groove 24, the existence rate of the cerium oxide particles 8 1 of the succeeding portion 83 can also be increased. With such a configuration, it is possible to prevent the ultraviolet ray scattering reflection film 8 from being strongly peeled off from the discharge capacitor 2. Further, the ultraviolet ray scattering film 8 containing the ultraviolet ray scattering particles 82 other than the high reflectance cerium oxide particles can be formed on the surface of the discharge vessel 2, thereby improving the ultraviolet ray exposed to the discharge space where the excimer light is generated. The efficiency of the reflection φ on the surface of the scattering reflection film 8 can be utilized efficiently. Fig. 6 is a cross-sectional view showing the discharge lamp when two layers of the ultraviolet scattering reflection film 8 are formed on the surface of the discharge vessel 2. By forming the ultraviolet ray scattering film 8 in two layers, the ratio of the presence of the cerium oxide particles 81 in the subsequent portion 8 3 can also be increased. For example, the first ultraviolet ray scattering film 8a containing 60% by weight or more of the cerium oxide particles 81 is formed on the green sheet, and the second ultraviolet ray scattering film containing 60% by weight or more of the ultraviolet ray scattering particles 82 is formed thereon by immersion. 8b situation. The ultraviolet ray scattering particles 82 of the second ultraviolet ray scattering reflection film 8b enter the gap of the film surface of the cerium oxide particle 8 1 of the first ultraviolet-16-200823958 (13) linear scattering reflection film 8a, so that the first ultraviolet ray scattering film 8a The second ultraviolet scattering reflection film 8b is joined. With such a configuration, the first ultraviolet-scattering reflection film 8a containing a large number of cerium oxide particles 81 increases the ratio of the presence of the cerium oxide particles 81 of the succeeding portion 83 to prevent the ultraviolet ray-scattering reflection film 8 from being peeled off from the discharge vessel 2 • . Further, the second ultraviolet-scattering reflection film 8b containing a plurality of high-reflectance ultraviolet-ray scattering particles 82 is formed on the surface of the discharge space 0 where excimer light emission is generated, thereby improving the reflectance of the ultraviolet-scattering reflection film 8, which is effective Use ultraviolet light. Fig. 7 is a cross-sectional view showing a discharge lamp in which two layers of the ultraviolet-ray scattering reflection film 8 are formed on the surface of the discharge vessel 2, and the surface layer 9 of the reflection film is formed on the surface thereof. On the surface of the ultraviolet ray scattering film 8 composed of two layers of the first ultraviolet ray scattering film 8a and the second ultraviolet ray scatter film 8b, ultraviolet ray scattering particles 82 having a higher reflectance than the cerium oxide particles 8 1 are formed. The reflection film surface layer 9 constituting φ can further increase the reflectance of ultraviolet rays. In the succeeding portion 83 which is in contact with the surface of the discharge vessel 2, a first ultraviolet-scattering reflection film 8a having cerium oxide particles 81 as a main component is formed, and the cerium oxide particles 8 1 are formed as it approaches the side of the discharge space. The ultraviolet ray scattering particles '82 contain a relatively large amount of the second ultraviolet ray scattering reflection film 8b, and are exposed to the surface of the discharge space where the excimer luminescence is generated, thereby forming ultraviolet rays having a higher reflectance than the cerium oxide particles 81. The multiple structure of the reflective film surface layer 9 composed of the scattering particles 82. By the multiple structure in which the content ratio of the cerium oxide particles 81 is hierarchical, the first ultraviolet ray scattering film 8a is prevented from being weakly peeled off from the surface of the discharge capacitor -17-200823958 (14), and the second ultraviolet ray is prevented from being scattered. The joint surface of the reflective film 8b or the reflective film surface layer 9 is peeled off, and the reflection efficiency of the surface exposed to the discharge space where the excimer emits light is increased, and ultraviolet rays can be efficiently utilized. Further, when only one ultraviolet scattering reflection film 8 is formed, and the surface layer 9 of the reflection film can be formed on the surface thereof so as not to peel off, the ultraviolet scattering reflection film 8 is not formed in a layered manner to form the surface layer 9 of the reflection film. Can be used as a two-layer construction. In the above, the discharge lamp 1 in which the coil-shaped inner electrode 3 is disposed approximately at the center of the extension discharge vessel 2 will be described, but the excimer lamp shown in the double tube structure or the square diagram shown in FIG. The excimer lamp of a type structure, a short arc high-pressure discharge lamp, or the like, and other discharge lamps that emit ultraviolet rays are applied to the ultraviolet-ray scattering reflection film 8 of the present invention, and the ultraviolet-scattering reflection film 8 can be prevented from being weakly peeled off. Hereinafter, the embodiment will be described. [Embodiment 1] The discharge lamp 1 shown in Fig. 8 is a discharge vessel 2 having a rectangular cross section formed of synthetic quartz glass, and is arranged to extend in the tube axis direction of the discharge vessel 2 with respect to the outer surface of the discharge vessel 2 A pair of outer electrodes 4 made of metal are provided. A helium gas filled with a discharge gas is placed in the discharge vessel, and a deaerator 11 such as a crucible is disposed. Further, an exhaust pipe 10 is formed outside the discharge vessel. On the surface of the discharge vessel 2, an ultraviolet scattering reflection film 8 is provided. Further, on the outer surface of the discharge vessel 2, the outer surface of the outer electrode 4 is not formed, and the light-emitting -18-200823958 (15) window 23 in which the ultraviolet-ray scattering reflection film 8 is not formed is formed. The configuration of the discharge lamp 1 is shown below. (discharger) Material: quartz glass, full length: 150mm, longitudinal direction Dimensions: 3 4mm, lateral dimension: 14mm, thickness: 2mm. * (UV scattering reflection film) formation method: green sheet, thickness: 1 0 0 μπι (cerium oxide particles) Material: cerium oxide, particle size: 0 · 1 μπι~ 0.5 μ m, center diameter ·· 0 · 3 μ m, content ratio: 60% by weight (surface layer of reflective film other than cerium oxide) Material: Alumina, particle size: 0·5μηι~5.0μπι, center diameter: 3·0μπι, content ratio: 40% by weight The subsequent portion of the ultraviolet-ray-scattering reflection film 8 was observed, and only the cerium oxide particles were present. Therefore, the ultraviolet ray scattering reflection film 8 is formed so as not to be peeled off to form the discharge vessel 2 which does not peel off. The discharge lamp was lit with a volume of the discharge space of about 1 W per 1 cm 3 of input voltage. The illuminance at this time is about twice as large as that of the discharge lamp in which the ultraviolet scattering reflection film 8 is not provided. Further, when the ultraviolet scattering reflective film was formed by immersion to have a film thickness of 30 μm, it was confirmed that the same effect was obtained. [Embodiment 2] An ultraviolet scattering reflection film 8 is formed on the inner surface of the outer tube of the discharge vessel 2 of the discharge lamp 1 shown in Fig. 9. Further, argon gas was sealed in the discharge space as a discharge gas, and argon excimer light having a wavelength of 126 mm was emitted. The configuration of this discharge lamp is shown below. -19- 200823958 (16)

(紫外線散射反射膜)形成方法:生材片,厚度: ΙΟΟμπι,燒成:900°C (二氧化砂粒子)材質:二氧化砂,粒徑·· 〇 .丨μ m〜 0.5μιη,中心徑:0·3μιη,含有比:68重量% (二氧化矽粒子以外的紫外線散射粒子)材質:氟化鎂 ,粒徑:ΙΟμιη〜50μπι,中心徑:30μπι,含有比:32重量 % 觀測該紫外線散射反射膜8的接著部分,僅存在著二 氧化矽粒子。所以,紫外線散射反射膜8是不會剝落地結 裝於放電容器2。該放電燈1以放電空間的體積每icm3的輸 入電壓成爲大約1 W的條件下施以點燈。這時候的照度是 與未設置紫外線散射反射膜8的放電燈相比較,成爲約1 . i 倍。 實施例3 將紫外線散射反射膜作成兩層構造形成在與實施例1 同樣的放電燈1。將該放電燈的構成表示於以下。 (第一紫外線散射反射膜)形成方法:生材片,厚度: 50μηι (二氧化砍粒子)材質:二氧化砂,粒徑:Ο.ΐμπι〜 0·5μιη,中心徑:0·3μιη,含有比:80重量% (二氧化矽粒子以外的反射膜表面層)材質:氧化鋁, 粒徑:〇.2μπι〜0.8μηι,中心徑:0·5μιη,含有比:20重量 % -20- 200823958 (17) (第二紫外線散射反射膜)形成方法:生材片,厚度: 5 0 μπι (二氧化矽粒子)材質:二氧化矽,粒徑:〇1μηι〜 0 · 5 μ m中心徑:〇 · 3 μ m,含有比:2 0重量% (二氧化矽粒子以外的反射膜表面層)材質:氧化鋁, 粒徑:〇·2μηι〜0·8μπι,中心徑:〇·5μιη,含有比:80重量 % 在放電容器2的表面形成第一紫外線散射反射膜8 a, 而在第一紫外線散射反射膜8 a上形成第二紫外線散射反射 膜8b,以115 °C燒成該兩層構造的生材片而形成有紫外線 散射反射膜8。 因兩層構造,而在接著部分中存在很多二氧化矽粒子 之故,因而紫外線散射反射膜是不會剝落地固裝於放電容 器。又,在第一紫外線散射反射膜與第二紫外線散射反射 膜之境界,形成有第一紫外線散射反射膜的二氧化矽粒子 所成凹凸,在該間隙進入第二紫外線散射反射膜的反射膜 表面層,令兩層不會剝落地形成。 實施例4 在實施例3的紫外線散射反射膜形成兩層構造的放電 燈1,形成反射膜表面層。將該放電燈的構成表示於以下 〇 (反射膜表面層形成方法):生材片、厚度:,反 射率8 3 % -21 - 200823958 (18) (紫外線散射粒子材質):氧化鋁,粒徑:〇 0 · 8 μ m,中心徑:〇 . 5 μ m 與實施例2同樣地,紫外線散射反射膜是不會 固裝於放電容器,而第二紫外線散射反射膜是含有 ^ 氧化矽粒子以外的紫外線散射粒子之故,因而在與 * 表面層的接合面不會被剝落。又,反射膜表面層是 比二氧化矽粒子還高的紫外線散射粒子所構成之故 _ 提高曝露在產生準分子發光的放電空間的表面的反 ,而可有效率地利用紫外線。 又,在上述實施例1〜4中,使用粒徑Ο.ίμιη-的二氧化矽粒子,惟作爲紫外線反射膜的紫外線散 可使用的二氧化矽粒子是未被限定於粒徑,也可 1 μπι以上的二氧化矽粒子使用作爲紫外線散射粒子 【圖式簡單說明】 φ 第1圖是表示放電燈的說明用斷面圖。 第2 (a)圖及第2(b)圖是表示放電容器與紫外線 射膜的接合部分的擴大圖。 ’ 第3圖是表示在放電容器2的內表面設有紫外線 ' 射膜8的狀態的立體圖。 第4是表示形成有紫外線散射反射膜的放電容 面近旁的擴大投影像圖。 第5圖是表示放電容器與紫外線散射反射膜的 分的擴大圖。 • 2 μ m 〜 剝落地 很多二 反射膜 反射率 ,因而 射效率 -0.5 μ m 射粒子 將粒徑 散射反 散射反 器的表 接合部 -22- 200823958 (19) 第6圖是表示放電燈的斷面圖。 第7圖是表示放電燈的斷面圖。 第8圖是表示放電燈的說明用斷面圖。 第9圖是表示放電燈的說明用斷面圖。 【主要元件對照表】 1 :放電燈 2 :放電容器 3 :內側電極 4 :外側電極 8 :紫外線散射反射膜 80 :紫外線散射粒子 8 1 :二氧化矽粒子 82 :二氧化矽粒子以外的紫外線散射粒子 83 :接著部分(UV scattering reflection film) formation method: green sheet, thickness: ΙΟΟμπι, firing: 900 ° C (silica dioxide particles) Material: silica sand, particle size · · 〇.丨μ m~ 0.5μιη, center diameter :0·3μιη, content ratio: 68% by weight (ultraviolet scattering particles other than cerium oxide particles) Material: magnesium fluoride, particle size: ΙΟμιη~50μπι, center diameter: 30μπι, content ratio: 32% by weight Observing the ultraviolet scattering At the subsequent portion of the reflective film 8, only the cerium oxide particles are present. Therefore, the ultraviolet ray scattering film 8 is not detached and attached to the discharge vessel 2. The discharge lamp 1 is lit with the volume of the discharge space being about 1 W per icm3 of input voltage. The illuminance at this time is about 1. μ times as compared with the discharge lamp in which the ultraviolet ray scattering reflection film 8 is not provided. Example 3 A discharge lamp 1 similar to that of Example 1 was formed in a two-layer structure of an ultraviolet scattering reflection film. The configuration of the discharge lamp is shown below. (First ultraviolet scattering reflective film) formation method: green sheet, thickness: 50μηι (dioxide chopping particles) Material: silica sand, particle size: Ο.ΐμπι~ 0·5μιη, center diameter: 0·3μιη, containing ratio 80% by weight (surface layer of a reflective film other than cerium oxide particles) Material: Alumina, Particle size: 〇.2μπι~0.8μηι, center diameter: 0·5μιη, content ratio: 20% by weight -20- 200823958 (17 (Second ultraviolet scattering reflective film) formation method: green sheet, thickness: 5 0 μπι (cerium oxide particles) Material: cerium oxide, particle size: 〇1μηι~ 0 · 5 μ m center diameter: 〇· 3 μ m, content ratio: 20% by weight (surface layer of reflective film other than cerium oxide particles) Material: Alumina, Particle size: 〇·2μηι~0·8μπι, center diameter: 〇·5μιη, content ratio: 80 weight % The first ultraviolet scattering reflection film 8a is formed on the surface of the discharge vessel 2, and the second ultraviolet scattering reflection film 8b is formed on the first ultraviolet scattering reflection film 8a, and the two-layer structure of the raw material is fired at 115 °C. An ultraviolet scattering reflective film 8 is formed on the sheet. Due to the two-layer structure, there are many cerium oxide particles in the subsequent portion, so that the ultraviolet ray scattering film is not peeled off and fixed to the discharge capacitor. Further, at the boundary between the first ultraviolet ray scattering film and the second ultraviolet ray scatter film, the ruthenium dioxide particles of the first ultraviolet ray reflection film are formed into irregularities, and the gap enters the surface of the reflection film of the second ultraviolet ray reflection film. Layer, so that the two layers will not peel off and form. [Example 4] The ultraviolet ray scattering film of Example 3 was formed into a discharge lamp 1 having a two-layer structure to form a surface layer of a reflection film. The configuration of the discharge lamp is shown in the following (formation method of the surface layer of the reflective film): green sheet, thickness: reflectance 8 3 % -21 - 200823958 (18) (UV scattering particle material): alumina, particle diameter 〇0 · 8 μ m, center diameter: 〇. 5 μ m In the same manner as in the second embodiment, the ultraviolet ray scattering film is not fixed to the discharge vessel, and the second ultraviolet ray reflection film is made of cerium oxide particles. The ultraviolet ray scatters the particles so that the joint surface with the * surface layer is not peeled off. Further, the surface layer of the reflective film is composed of ultraviolet ray scattering particles higher than that of the cerium oxide particles. _ The surface of the surface of the discharge space where excimer light is emitted is increased, and ultraviolet rays can be efficiently utilized. Further, in the above-mentioned Examples 1 to 4, the cerium oxide particles having a particle diameter of ί.ίμιη- are used, but the cerium oxide particles which can be used as the ultraviolet ray scattering of the ultraviolet ray reflecting film are not limited to the particle diameter, and may be 1 The cerium oxide particle of μπι or more is used as the ultraviolet ray scattering particle [Simplified description of the drawing] φ Fig. 1 is a cross-sectional view for explaining the discharge lamp. Fig. 2(a) and Fig. 2(b) are enlarged views showing a joint portion between the discharge vessel and the ultraviolet film. Fig. 3 is a perspective view showing a state in which the ultraviolet ray film 8 is provided on the inner surface of the discharge vessel 2. The fourth is an enlarged projection image showing the vicinity of the discharge surface of the ultraviolet scattering reflection film. Fig. 5 is an enlarged view showing the division of the discharge vessel and the ultraviolet scattering reflection film. • 2 μ m ~ stripping a lot of two reflective film reflectivity, so the ejection efficiency -0.5 μ m shot particles will scatter the surface of the anti-scattering reflector -22- 200823958 (19) Figure 6 shows the discharge lamp Sectional view. Figure 7 is a cross-sectional view showing the discharge lamp. Fig. 8 is a cross-sectional view showing the discharge lamp. Fig. 9 is a cross-sectional view showing the discharge lamp. [Main component comparison table] 1 : Discharge lamp 2 : discharge vessel 3 : inner electrode 4 : outer electrode 8 : ultraviolet scattering reflection film 80 : ultraviolet scattering particle 8 1 : cerium oxide particle 82 : ultraviolet ray scattering other than cerium oxide particle Particle 83: Next part

-23 --twenty three -

Claims (1)

200823958 (1) 十、申請專利範圍 1. 一種放電燈,屬於在石英玻璃所成 表面,設有藉含有二氧化矽粒子的紫外線散 的紫外線散射反射膜的放電燈,其特徵爲: ^ 上述紫外線散射反射膜是在接著部分中 - 上述二氧化矽粒子。 2. 一種放電燈,屬於在石英玻璃所成 表面,設有藉含有二氧化矽粒子的紫外線散 的紫外線散射反射膜,在上述放電容器的至 有未設有上述紫外線散射反射膜所致的光出 外線的放電燈,其特徵爲: 上述紫外線散射反射膜是在接著部分, 二氧化矽粒子。 3 ·如申請專利範圍第1項所述的放電 述二氧化矽粒子的粒徑是比上述二氧化矽粒 ^ 紫外線散射粒子的粒徑還小。 4 ·如申請專利範圍第3項所述的放電 上述放電容器的表面,形成有比上述二氧化 * 還大,比上述二氧化矽粒子以外的上述紫外 粒徑還小寬度的溝。 5 ·如申請專利範圍第1項所述的放電 上述紫外線散射反射膜的表面,形成有反射 粒子還高的紫外線散射粒子所成的反射膜表 6 ·如申請專利範圍第1項所述的放電 的放電容器的 射粒子所形成 ,主要存在著 的放電容器的 射粒子所形成 少一部分形成 射窗,照射紫 僅存在著上述 燈,其中,上 子以外的上述 燈,其中,在 矽粒子的粒徑 線散射粒子的 燈,其中,在 率比二氧化矽 面層。 燈,其中,上 -24- 200823958 (2) 述紫外線散射反射膜是設在被曝露在放電空間的放電容器 表面。 7 ·如申請專利範圍第1項所述的放電燈,其中,上 述紫外線散射粒子是含有氧化鋁、氟化鎂、氟化鈣、氟化 ' @ '氧化鎂的任何一種以上的物質。200823958 (1) X. Patent application scope 1. A discharge lamp belonging to the surface of quartz glass with a UV-scattering reflection film containing ultraviolet light dispersed by cerium oxide particles, characterized by: The scattering reflection film is in the succeeding portion - the above-mentioned cerium oxide particles. 2. A discharge lamp belonging to the surface of a quartz glass provided with an ultraviolet ray scattering reflection film containing ultraviolet ray particles containing cerium oxide particles, wherein the light absorbing capacitor is not provided with the ultraviolet ray scattering reflection film The discharge lamp of the external line is characterized in that: the ultraviolet ray scattering reflection film is a ruthenium dioxide particle in a subsequent portion. 3. The discharge of the cerium oxide particles according to the first aspect of the invention is smaller than the particle size of the cerium oxide particles. 4. Discharge according to the third aspect of the patent application The surface of the discharge vessel is formed with a groove larger than the above-mentioned oxidation amount* and having a smaller width than the ultraviolet particle diameter other than the above-mentioned ceria particle. 5. The surface of the above-mentioned ultraviolet ray-scattering film according to the first aspect of the invention is formed by reflecting the surface of the ultraviolet ray-scattering film, and the reflecting film formed by the ultraviolet ray scattering particles having high reflective particles is formed. 6. The discharge according to the first aspect of the patent application is as follows. The radiation particles of the discharge vessel are formed, and a part of the emission particles of the discharge vessel are mainly formed to form a projection window, and only the lamp is present in the illumination violet, wherein the lamp other than the upper sub-particle, wherein the particles of the antimony particle The radial scattering particles of the lamp, wherein the ratio is higher than the ceria surface layer. Lamp, wherein, upper -24- 200823958 (2) The ultraviolet scattering reflection film is disposed on the surface of the discharge vessel exposed to the discharge space. The discharge lamp according to claim 1, wherein the ultraviolet ray scattering particles are any one or more of alumina, magnesium fluoride, calcium fluoride, and fluorinated '@' magnesium oxide. -25--25-
TW096130725A 2006-11-24 2007-08-20 Discharge lamp TW200823958A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006316936 2006-11-24
JP2007106852A JP4900011B2 (en) 2006-11-24 2007-04-16 Discharge lamp

Publications (2)

Publication Number Publication Date
TW200823958A true TW200823958A (en) 2008-06-01
TWI364056B TWI364056B (en) 2012-05-11

Family

ID=39480502

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096130725A TW200823958A (en) 2006-11-24 2007-08-20 Discharge lamp

Country Status (4)

Country Link
JP (1) JP4900011B2 (en)
KR (1) KR101195690B1 (en)
CN (1) CN101188184B (en)
TW (1) TW200823958A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI470668B (en) * 2009-11-17 2015-01-21 Ushio Electric Inc Discharge lamp
TWI809175B (en) * 2018-09-13 2023-07-21 日商東芝照明技術股份有限公司 blocking discharge lamp

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5245552B2 (en) * 2008-06-06 2013-07-24 ウシオ電機株式会社 Excimer lamp
JP5528683B2 (en) * 2008-06-06 2014-06-25 ウシオ電機株式会社 Excimer lamp
JP5200749B2 (en) * 2008-08-08 2013-06-05 ウシオ電機株式会社 Excimer lamp
JP2010205635A (en) * 2009-03-05 2010-09-16 Ushio Inc Rare gas fluorescent lamp
JP5201042B2 (en) * 2009-03-23 2013-06-05 ウシオ電機株式会社 Excimer lamp
US8188664B1 (en) * 2010-11-16 2012-05-29 General Electric Company Compact high intensity discharge lamp with textured outer envelope
JP5712588B2 (en) * 2010-12-07 2015-05-07 ウシオ電機株式会社 Fluorescent lamp and manufacturing method thereof
CN103377873B (en) * 2012-04-27 2017-04-12 株式会社杰士汤浅国际 Dielectric barrier discharge lamp
JP5928848B2 (en) * 2014-04-22 2016-06-01 ウシオ電機株式会社 Light irradiation device and long arc type discharge lamp
JP6770322B2 (en) * 2016-02-17 2020-10-14 日本タングステン株式会社 UV reflective film forming paint and UV reflective film
EP3799109A4 (en) * 2018-05-22 2022-03-02 Ushio Denki Kabushiki Kaisha Light transmissive material and lamp, and gas treating device and gas treating method
JP7135605B2 (en) * 2018-08-31 2022-09-13 東芝ライテック株式会社 Barrier discharge lamp, UV irradiation unit and UV irradiation device
JP2023158283A (en) * 2022-04-18 2023-10-30 スタンレー電気株式会社 Excimer lamp, lamp unit, and excimer lamp manufacturing method

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02172153A (en) * 1988-12-26 1990-07-03 Hitachi Ltd Fluorescent lamp with reflecting film
JPH0636348B2 (en) * 1989-02-23 1994-05-11 日亜化学工業株式会社 High color rendering fluorescent lamp
JPH03176960A (en) * 1989-12-05 1991-07-31 Toshiba Lighting & Technol Corp Film for tubular bulb
JP2626144B2 (en) * 1990-03-28 1997-07-02 東芝ライテック株式会社 Reflective UV lamp
JPH08264157A (en) * 1995-03-22 1996-10-11 Toshiba Lighting & Technol Corp Fluorescent lamp, lighting system and reader
JP3647954B2 (en) * 1995-12-20 2005-05-18 日本曹達株式会社 Light source for illumination with photocatalyst
JPH09173865A (en) * 1995-12-25 1997-07-08 Toshiba Lighting & Technol Corp Photocatalyst, lamp and lighting appliance
EP0894335B1 (en) * 1996-12-09 2002-04-03 Koninklijke Philips Electronics N.V. Glass coating on lead-through conductors in a low-pressure sodium discharge lamp
JP2000087025A (en) * 1998-09-10 2000-03-28 Noritake Co Ltd Phosphor layer, phosphor paste, and production of phosphor paste
JP2000113857A (en) 1998-10-02 2000-04-21 Matsushita Electric Works Ltd Fluorescent lamp and light source device
JP3580233B2 (en) * 2000-09-19 2004-10-20 ウシオ電機株式会社 Dielectric barrier discharge lamp device
JP2003051284A (en) * 2001-05-30 2003-02-21 Toshiba Lighting & Technology Corp Fluorescence lamp and illumination instrument
JP2004079267A (en) * 2002-08-13 2004-03-11 Stanley Electric Co Ltd External electrode type fluorescent lamp
CN100355011C (en) * 2003-09-25 2007-12-12 东芝照明技术株式会社 Fluorescent lamp, bulb shaped fluorescent lamp and light fixtures
CN1585068A (en) * 2004-05-28 2005-02-23 北京爱华新业照明器材有限公司 Treating method for internal wall of discharging light cavity
JP2006066104A (en) * 2004-08-24 2006-03-09 Matsushita Electric Ind Co Ltd Flexed fluorescent lamp and backlight device
JP2006222065A (en) * 2004-11-30 2006-08-24 Toshiba Lighting & Technology Corp Fluorescent lamp and lighting fitting

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI470668B (en) * 2009-11-17 2015-01-21 Ushio Electric Inc Discharge lamp
TWI809175B (en) * 2018-09-13 2023-07-21 日商東芝照明技術股份有限公司 blocking discharge lamp

Also Published As

Publication number Publication date
JP4900011B2 (en) 2012-03-21
KR20080047259A (en) 2008-05-28
CN101188184A (en) 2008-05-28
KR101195690B1 (en) 2012-10-30
TWI364056B (en) 2012-05-11
JP2008153187A (en) 2008-07-03
CN101188184B (en) 2013-08-07

Similar Documents

Publication Publication Date Title
TWI364056B (en)
JP4857939B2 (en) Discharge lamp
TW200931485A (en) Discharge lamp
CN101133475A (en) UVC/VUV dielectric barrier discharge lamp with reflector
JP4788534B2 (en) Excimer lamp
TW201140647A (en) Dielectric barrier discharge lamps and ultra violet irradiation device including the lamps
JP2015195098A (en) fluorescent light source device
JP4946772B2 (en) Excimer lamp
JP4998827B2 (en) Excimer lamp
KR101220549B1 (en) Excimer lamp
JP2009081076A (en) Excimer lamp
TW200917322A (en) Excimer lamp
JP2009099263A (en) Excimer lamp
TW200849314A (en) Fluorescent lamp
TW201140645A (en) Fluorescent lamp
JP5526724B2 (en) Discharge lamp
KR101581755B1 (en) Excimer lamp having uv reflecting layer of multilayer structure and manufacturing method thereof
JP2015197959A (en) lamp
JP5050824B2 (en) Excimer lamp
CN105006420A (en) Light irradiation apparatus and long-arc type discharge lamp
TW200926253A (en) Excimer lamp
JP5151816B2 (en) Excimer lamp
JP2016115563A (en) Light-emitting device
JP2004267979A (en) Photocatalyst filter apparatus
JP2010015839A (en) Excimer lamp