TW200820257A - Bistable resistance random access memory structures with multiple memory layers and multilevel memory states - Google Patents

Bistable resistance random access memory structures with multiple memory layers and multilevel memory states Download PDF

Info

Publication number
TW200820257A
TW200820257A TW95139864A TW95139864A TW200820257A TW 200820257 A TW200820257 A TW 200820257A TW 95139864 A TW95139864 A TW 95139864A TW 95139864 A TW95139864 A TW 95139864A TW 200820257 A TW200820257 A TW 200820257A
Authority
TW
Taiwan
Prior art keywords
random access
access memory
resistive random
programmable resistive
programmable
Prior art date
Application number
TW95139864A
Other languages
Chinese (zh)
Other versions
TWI322993B (en
Inventor
Chia-Hua Ho
Erh-Kun Lai
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW95139864A priority Critical patent/TWI322993B/en
Publication of TW200820257A publication Critical patent/TW200820257A/en
Application granted granted Critical
Publication of TWI322993B publication Critical patent/TWI322993B/en

Links

Landscapes

  • Semiconductor Memories (AREA)

Abstract

A bistable resistance random access memory comprises a plurality of memory cells where each memory cell having multiple memory layer stack. Each memory layer stack includes a conductive layer overlying a programmable resistance random access memory layer. A first memory layer stack overlies a second memory layer stack, and the second memory layer stack overlies a third memory layer stack. The first memory layer stack has a first conductive layer overlies a first programmable resistance random access memory layer. The second memory layer stack has a second conductive layer overlies a second programmable resistance random access memory layer. The second programmable resistance random access memory layer has a memory area that is larger than a memory area of the first programmable resistance random access memory layer.

Description

TW2957PA 200820257 九、發明說明: 【發明所屬之技術4員域】 高穷ί於以可程式電阻式記憶材料為基料之 «山又之5己氐衣置及製造此些裝置之方法,可程 記憶材料包括"轉氧化㈣祕之材似其他材;/ 【先前技術】TW2957PA 200820257 IX. Description of the invention: [Technology of the 4th member of the invention] Highly poorly based on the programmable resistive memory material, the method of making and manufacturing these devices Memory materials include "transoxidation (four) secret materials like other materials; / [previous technology]

相變化。己丨思材係料廣泛的應用於可讀寫光碟片 二diHte 〇Ptical ―)。此材料具有至少兩種固相 『^ PhaSe) ’例如—般之非晶形固相(amorphous s〇lid =般之日日日形固相(CryStalline solid phase)。 脈衝係施加於謂寫光碟片上以轉換相位,及於相位 改變後讀入材料之光學屬性。 相變化記憶材料,如硫屬化合物(chaleogenide)材料 及似之材料可藉由積體電路内適當之電流達成相位改 Ί -般之非晶形㈣較—般之晶形狀態具有高電阻率之 特徵,、其可迅速地感應至指定之資料。這些特性引起使用 可寿王式電阻式§己憶材料,以製作可隨機存取之非揮發性記 憶電路之注意。 一般係以低電流之操作使非晶形狀態改變至晶形狀 態。此處將由晶形狀態改變至非晶形狀態之變化歸類為重 置(reset)。重置係高電流之操作,其包括一短暫的高密 度電流脈衝,以融化或崩潰晶形結構。且於相變化材料迅 速冷卻後’抑制相位改變的過程,以使至少一部份之相變 200820257篇 化結構可以穩定在非晶形狀態。此部分需最小化重置電流 的大小’重置電流係用以改變材料相位由晶形狀態轉變至 非晶形狀態。藉由減少相變化材料元件的胞體大小,及減 ’ 少電極與相變化材料的接觸面積之大小,可降低重置時重 ” 置電流之大小,以實現高電流密度中具有小絕對值之電流 通過相變化材料元件。 製作小孔隙於積體電路結構,且應用小量之可程式電 阻式材料以填充小孔隙係為一發展方向。闡述發展小孔隙 ⑩ 之專利包括Ovshinsky於1997年11月11日所發佈之 nMultibit Single Cell Memory Element Having TaperedPhase change.丨 丨 丨 广泛 广泛 广泛 广泛 广泛 广泛 di di di di di di di di di di di di di di di di di di The material has at least two solid phase "^ PhaSe" 'for example, an amorphous solid phase (amorphous s〇lid = CryStalline solid phase). The pulse system is applied to the pre-write optical disc. Converting the phase and reading the optical properties of the material after phase change. Phase change memory materials, such as chaleogenide materials and materials, can achieve phase changes by appropriate currents in the integrated circuit. The crystalline form (4) is characterized by a high resistivity compared to the state of the crystal form, which can be quickly sensed to the specified data. These characteristics cause the use of the Shouwang type resistive § Recall material to make a random access non-volatile Attention to the memory circuit. Generally, the amorphous state is changed to the crystalline state by the operation of low current. Here, the change from the crystalline state to the amorphous state is classified as a reset. , which includes a brief high-density current pulse to melt or collapse the crystal structure, and 'suppress the phase change process after the phase change material is rapidly cooled, so that at least one Part of the phase change 200820257 can be stabilized in an amorphous state. This part needs to minimize the magnitude of the reset current. The reset current is used to change the phase of the material from the crystalline state to the amorphous state. By reducing the phase change The cell size of the material component, and the reduction of the contact area between the electrode and the phase change material, can reduce the magnitude of the reset current during resetting to achieve a small absolute value of current through the phase change material in the high current density. The fabrication of small pores in the integrated circuit structure and the application of a small amount of programmable resistive material to fill the small pore system is a development direction. The patents for the development of small pores 10 include Ovshinsky's release on November 11, 1997. nMultibit Single Cell Memory Element Having Tapered

Contact11 (美國專利號碼 5687112) ; Zahorik 等人於 199,8 年 8 月 4 日所發佈之"Method of Making Chalogenide [sic] Memory Device”(美國專利號碼5789277) ; Doan等人於 2000 年 11 月 21 日所發佈之”Controllable OvonilcContact11 (US Patent No. 5687112); "Method of Making Chalogenide [sic] Memory Device" by Zahorik et al., August 4, 1989; US Patent No. 5789277; Doan et al., November 2000 "Controllable Ovonilc" released on the 21st

Phase-Change Semiconductor Memory Device and Methods of Fabricating the Same"(美國專利號碼 6150253)。 ⑩ 製造具非常小尺寸之此些裝置面臨問題,且大尺寸之 記憶裝置之製程變化亦須符合較為嚴謹之規格需求。為尋 求更大的記憶空間’可儲存多個位元之相變化記憶體將炙 手可熱。 【發明内容】 一雙穩態可程式電阻式隨機存取記憶體包括多個可 程式電阻式隨機存取記憶胞。每個可程式電阻式隨機存取Phase-Change Semiconductor Memory Device and Methods of Fabricating the Same" (US Patent No. 6150253). 10 The manufacture of such devices with very small dimensions is problematic, and the process variations of large-sized memory devices are subject to more stringent specifications. In order to find a larger memory space, the phase change memory that can store multiple bits will be hot. SUMMARY OF THE INVENTION A bistable programmable resistive random access memory includes a plurality of programmable resistive random access memory cells. Programmable resistive random access

TW2957PA 200820257 記憶胞具有多個記憶層堆疊。每個記憶層堆疊包括一導♦ 層’係位於一可程式電阻式隨機存取記憶層上。 ' 每個可程式電阻式隨機存取記憶層具有多屉土 恝,例如一第一位元係用以儲存一第一狀態’及〜第一位 元係用以儲存一第二狀態。第一記憶層堆疊係與第二—己伊 層堆疊串聯,且第二記憶層堆疊係與第三記憶層&amp;疊I 聯。一記憶胞具有三個記憶層堆疊可提供八個邏ς壯ς, 或2個邏輯狀態。k表示記憶層或記憶層堆疊之數旦^己 憶層堆疊之數量可依據記憶姐設計而增減。例如^ 胞具有兩個記憶層堆叠,則記憶層堆疊減少,又個二 憶胞具有讀記㈣衫,則記騎堆疊增加。個# 弟一可程式電阻式隨機存取m 式隨機存取記憶層或第三可s弟一可程式電阻 之適合材料包括金屬:二電:且式隨機存取記憶層 megnet〇resistance,CMR)平料 '一巨磁阻(c〇l〇sSal element 0xide)、相變化 、、二兀氧化物(three- 上述所提之材料並非用以限定=聚;^物為基料,料。 式電阻式隨機存取記憶居币二之選用。用於第一可程 材料與用於第二可程式^ 4隨機存取記憶體(刪: 料係可為㈣或Μ。= ί隨機存取記憶層之_材 億層之麵材_ f /二可程式電阻式隨機存取記 RRAM材料係可為相同或相I程式電阻式隨赫取記憶層之 存取記憶層之剛材第,程,阻,機 取記憶層之RRAM材料細 弟一可私式毛阻式縫機存 為相同或相異。每個用於第一、TW2957PA 200820257 Memory cells have multiple memory layer stacks. Each memory layer stack includes a conductive layer </ RTI> disposed on a programmable resistive random access memory layer. Each of the programmable resistive random access memory layers has a plurality of drawers, for example, a first bit system for storing a first state and a first bit system for storing a second state. The first memory layer stack is in series with the second-hex layer stack, and the second memory layer stack is coupled to the third memory layer &amp; A memory cell with three memory layer stacks can provide eight logics, or two logic states. k indicates that the number of layers of the memory layer or the memory layer stack can be increased or decreased according to the design of the memory sister. For example, if the cell has two memory layer stacks, the memory layer stack is reduced, and another two memory cells have a reading (four) shirt, and the counting stack is increased. A suitable material for a programmable resistive random access m-type random access memory layer or a third sigma-programmable resistor includes metal: two-electric: random access memory layer megnet〇resistance, CMR) Flat material 'a giant magnetoresistance (c〇l〇sSal element 0xide), phase change, diterpene oxide (three - the above mentioned materials are not used to define = poly; ^ material as a base material, material. The choice of the random access memory currency 2 is used for the first routable material and for the second programmable memory 4 (deleted: the material system can be (4) or Μ. = ί random access memory layer _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The RRAM material of the memory layer can be the same or different for each private-resistance sewing machine. Each is used for the first,

TW2957PA 200820257 第一及第一可各式電阻式隨機存取〃 係具有-範圍,舉例而言力° ^之材料之厚度 声、、多而从 大、、、勺係1咖至200 nm。 廣泛而辆’一記憶裝置包括一 阻式隨機存取記憶構—表。弟一可程式電 積。第-導電構件及第一可不一弟-電阻值之面 具有數個侧邊。ϋ =式議式隨機存取記憶構件 式隨機存取記_件上。;於-第二可程式電阻 構件係位於第二導電構件上,第=電阻式隨機存取記憶 記憶構件與第弟—可程式電阻式隨機存取 聯。第二可程式電式隨機存取記憶構件係為串 二電阻值之面積。第二構件具有-表示-第 大。 式私阻式自己憶構件所具有之面積 —種用以製造_且古夕乂 式泰阳々碎德— 丫、有夕個記憶層堆疊之雙穩態可程 ㈡隨;ί;記憶體亦於此… 記怜材料上i曰係位於—第一可程式電阻式隨機存取 上ttir記㈣堆㈣置放於一第二記憶層堆疊 程式雷;V:日堆®包括—第二導電層,係位於-第二可 _化二;上‘;J罩係藉由乾#刻或濕 鱼第一丨刀之弟一導電層上。钱刻第一導電層 式隨機存取記憶層之左側及右侧至第 式電上第:導電構件及-第一可程 己U構件。一介電側壁子係沈積於第一TW2957PA 200820257 The first and first various types of resistive random access systems have a range of, for example, the thickness of the material of the force, and the thickness of the material, from the large, and from the 1 to 200 nm. A wide range of devices includes a resistive random access memory configuration. The younger brother can be a program. The first conductive member and the first surface of the resistor-resistance have a plurality of sides. ϋ = formula random access memory component random access _ on the piece. The second-programmable resistance component is located on the second conductive member, and the first resistive random access memory memory member is coupled to the first-programmable resistive random access. The second programmable electrical random access memory component is the area of the string two resistor values. The second member has - indicates - the largest. Self-resistance self-remembering the area of the building - the kind used to make _ and the ancient eve 泰 泰 々 々 — — 丫 有 有 有 有 有 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆Herein, the memory of the material is located on the first programmable resistance random access ttir (four) heap (four) placed in a second memory layer stacking program; V: Hidden® includes - the second conductive layer , is located in the second - _ _ two; on the '; J hood by dry #刻 or wet fish first 丨 knife brother on a conductive layer. The left side and the right side of the first conductive layer of the random access memory layer are electrically connected to the first type: the conductive member and the first flexible member. A dielectric sidewall sub-system is deposited in the first

TW2957PA 200820257 導電構件及第一可程式電阻式隨機存取記憶構件之左侧 及右侧上。 介電侧壁子之厚度影響第二導電構件及第二可程式 電阻式隨機存取記憶構件之面積大小。例如,遮罩之關鍵 尺寸(critical dimension)約為0· 15 # m,則介電側壁子 之厚度可選擇為31 nm。也就是說,第二可程式電阻式隨 機存取記憶構件之面積約為第一可程式電阻式隨機存取 兄憶構件之面積的兩倍。面積係與電阻值成反比,如數學 關係式R=p(l/A)所示,1表示可程式電阻式隨機存取記 憶構件之長度,及符號A表示可程式電阻式隨機存取記憶 構件之面積。在此例中,第二可程式電阻式隨機存取記憶 構件之電阻約係第一可程式電阻式隨機存取記憶構件之 一半。第一及第二可程式電阻式隨機存取記憶構件所需求 之電阻差係根據可程式電阻式隨機存取記憶構件之設定/ 重置(SET/RESET)之電阻窗(resis1:ance wind〇w)決定带 阻窗係定義為-狀態與另—狀態之電阻比)。蝕刻第二: 電層與第二可程式電阻式隨機存取記憶層之左 ⑽成—第二導電構件及—第二可程式電阻式隨^ _/己憶構件。—介電侧料係置放於第-導電構件及^ 電阻式隨機存取記憶構件之左側上。侧第- 下—層,或_至穿過0機存取記憶層之左側及右側至 積於下一層。 〜層。一接觸孔(Via plug)係沈 根據本發明之第二太 面,揭露一種操作一具有兩串聯 200820257— 排列之記憶層堆疊之可程式電阻式隨機存取記憶體。第一 記憶層堆疊包括一第一導電層,係位於一第一可程式電阻 式隨機存取記憶層上。且第二記憶層堆疊包括一第二導電 - 層’係位於一第二可程式電阻式隨機存取記憶層上。一第 ^ 龟壓Vbl係連接於第一導電層之一頂面’且一第二電壓TW2957PA 200820257 Conductive member and the left and right sides of the first programmable resistive random access memory device. The thickness of the dielectric sidewall affects the size of the second conductive member and the second programmable resistive random access memory member. For example, if the critical dimension of the mask is about 0·15 # m, the thickness of the dielectric sidewall can be chosen to be 31 nm. That is, the area of the second programmable resistive random access memory component is approximately twice the area of the first programmable resistive random access brother. The area is inversely proportional to the resistance value, as shown by the mathematical relationship R=p(l/A), where 1 represents the length of the programmable resistive random access memory component, and symbol A represents the programmable resistive random access memory component. The area. In this example, the resistance of the second programmable resistive random access memory component is about half that of the first programmable resistive random access memory component. The resistance difference required by the first and second programmable resistive random access memory components is based on the resistance window of the programmable resistive random access memory component setting/reset (SET/RESET) (resis1: ance wind〇w The decision is made that the band-stop window is defined as the resistance ratio of the -state to the other state. Etching the second: the left layer of the electrical layer and the second programmable resistive random access memory layer (10) into a second conductive member and - the second programmable resistor type with the ^_/remembering member. - The dielectric side material is placed on the left side of the first conductive member and the resistive random access memory member. Side-down-layer, or _ to access the left and right sides of the memory layer through the 0 machine to the next layer. ~Floor. A Via plug is disclosed. According to the second aspect of the present invention, a programmable resistive random access memory having a memory layer stack of two serials 200820257-arranged is disclosed. The first memory layer stack includes a first conductive layer on a first programmable resistive random access memory layer. And the second memory layer stack includes a second conductive layer </ RTI> disposed on a second programmable resistive random access memory layer. a first turtle pressure Vbl is connected to one of the top surfaces of the first conductive layer and a second voltage

Vb2係連接於第二可程式電阻式隨機存取記憶層之一底 面。一第一可程式電阻式隨機存取記憶電壓V1RRAM1313具有 一第一端點,係與第一導電構件連接。一第二可程式電阻 _ 式隨機存取記憶電壓VmAMl314具有一第一端點及一第二 端點。第一端點一般係與第一可程式電阻式隨機存取記憶 構件連接,而第二端點係與第二可程式電阻式隨機存取記 憶構件連接。 &quot; 兩個重要變數影響雙穩態可程式電阻式隨機存取記 憶體如何由一邏輯狀態轉變至另一邏輯狀態。第一變數係 表不為/],代表一選擇之記憶材料之特性。第二變數係表 _ 示為彳,代表介電侧壁子之厚度或寬度。變數/之選擇或 變化係符合電阻變化,使得一操作窗(〇perati〇n wind〇w) 足以執行一多位元之RRAM。一雙穩態可程式電阻式隨機存 取記憶體具有兩個記憶層堆疊於每個記憶胞中,雙穩態可 程式電阻式隨機存取記憶體則以四個邏輯狀態操作,包括 邏輯狀態「〇〇」(或邏輯狀態「〇」)、邏輯狀態「01」(或 邏輯狀態「1」)、邏輯狀態「10」(或邏輯狀態「2」)及 邏輯狀態「11」(或邏輯狀態「3」)。四個不同之邏輯狀 態可以兩個變數/3及/與一電阻i?表示。邏輯狀態「〇」 11 200820257TW2957Pa 以數學表示式表示係(1 + /)允。邏輯狀態「1」以數學表示 式表示係。邏輯狀態Γ 2」以數學表示式表示係 (l+/3/)i?。邏輯狀態「3」以數學表示式表示係/7(1 + /)犮。 ‘ 本發明利用每個記憶胞中具有多個記憶層堆疊,以增 - 加雙穩態可程式電阻式隨機存取記憶體之總密度。本發明 亦提供三維的解決方法,以設計及製造雙穩態可程式電阪 式隨機存取記憶體。本發明更進一步減少雙穩態可程式電 阻式隨機存取記憶體之電阻變化。 ⑩ 本發明之結構及方法將揭露於下所述之詳細解說。本 摘要並非用以定義本發明。本發明係以專利申請範闺界 定。本技術之此些及其他實施例、特徵、觀點及優點轉藉 由以下之描述、附加之專利申請範圍以及其所附有之: 瞭解。 ^ 【實施方式】 鑫 現提供本發明之實施例及方法之描述,且請配合參照 第1圖至第17圖所繪示之圖示。需理解的是所揭露之 定的實施例並非用以限定本發明,而使本發明可以應用其 他特徵、元件、方法及實施例加以實施。相同的元件於^ 同實施例中一般係具有相同的標號。 第1圖繪示記憶陣列100之圖示說明,此處將描述其 實施之方式。於第1圖所繪示之圖示說明’ 一共溽^ . (co丽on source line)128、一字元線(w〇ni Hne)123、及 字元線124係為實質上相互平行的排列於γ方向。一仅元 12The Vb2 is connected to one of the bottoms of the second programmable resistive random access memory layer. A first programmable resistive random access memory voltage V1RRAM 1313 has a first end point connected to the first conductive member. A second programmable resistor _-type random access memory voltage VmAM1314 has a first endpoint and a second endpoint. The first endpoint is typically coupled to the first programmable resistive random access memory component and the second endpoint is coupled to the second programmable resistive random access memory component. &quot; Two important variables affect how a bistable programmable resistive random access memory transitions from one logic state to another. The first variable is not /] and represents the characteristics of a selected memory material. The second variable, _, is 彳, representing the thickness or width of the dielectric sidewall. The choice/variation of the variables/conforms to the change in resistance such that an operating window (〇perati〇n wind〇w) is sufficient to execute a multi-bit RRAM. A bistable programmable resistive random access memory has two memory layers stacked in each memory cell, and the bistable programmable resistive random access memory operates in four logic states, including a logic state. 〇〇" (or logic state "〇"), logic state "01" (or logic state "1"), logic state "10" (or logic state "2"), and logic state "11" (or logic state " 3"). The four different logic states can be represented by two variables /3 and / and a resistor i?. The logical state "〇" 11 200820257TW2957Pa is expressed in mathematical expression (1 + /). The logical state "1" is expressed in mathematical expression. The logical state Γ 2" is expressed in mathematical expression (l+/3/)i?. The logical state "3" represents the system /7(1 + /)犮 in mathematical expression. The present invention utilizes a plurality of memory layer stacks in each memory cell to increase the total density of the bistable programmable resistive random access memory. The present invention also provides a three-dimensional solution for designing and fabricating a bistable programmable electronic random access memory. The present invention further reduces the resistance variation of the bistable programmable resist random access memory. The structure and method of the present invention will be disclosed in the detailed description below. This abstract is not intended to define the invention. The invention is defined by the patent application. These and other embodiments, features, aspects and advantages of the present technology are disclosed by the following description, the scope of the appended claims and the accompanying claims. [Embodiment] Xin now provides a description of the embodiments and methods of the present invention, and with reference to the drawings shown in Figures 1 through 17. It is to be understood that the disclosed embodiments are not intended to limit the invention, but the invention may be applied to other features, elements, methods and embodiments. The same elements are generally given the same reference numerals in the same embodiment. Figure 1 illustrates an illustration of a memory array 100, the manner in which it is implemented will be described herein. The illustration shown in FIG. 1 'co-on source line 128, one word line (w〇ni Hne) 123, and word line 124 are substantially parallel to each other. In the γ direction. One yuan only 12

TW2957PA 200820257 線(bit line)141及位元線142係為實質上相互平行排列 於X方向。因此,位於一區塊i45之一 γ—解碼器(γ一dec〇der) 及一字元線驅動器(word line driVer)係與字元線123、 124耦接。位於一區塊146之一 X-解碼器(x—dec〇der)及 - 組之感應放大裔(sense amplif ier)係與位元線mi、142 耦接。共源線128係與電晶體150、151、152及153之源 極端(source terminal)耦接。電晶體15〇之閘極(gate) 係與字元線123輕接。電晶體151之閘極係與字元線124 馨耗接。電晶體152之閘極與字元線123係為相互耦接。電 晶體153之閘極係與字元線124叙接。電晶體ι5〇之沒極 (drain)係與下部電極構件(b〇tt〇m electmde member)132耦接做為侧壁接腳記憶胞(sidewaU pin memory cel 1)135。側壁接腳記憶胞具有上部電極構件(t〇p electrode member)134及下部電極構件132。上部電極構 件134係與位元線141耦揍。此處可瞭解共源線128係被 兩列之記憶胞所共用’如圖不中所繪示,其中一列是排列 ® 於Y方向。其他實施例中,電晶體可以二極體取代。其他 可於陣列中控制電流,以於陣列中選取裝置作讀寫資料之 動作之結構亦可用以取代電晶體。 第2圖繪示根據本發明實施例之RRAM結構之積體電 路2 0 0的簡化方塊圖。積體電路2 7 5包括一記憶陣列,記 憶陣列之係利用半導體基板上之側壁主動接腳雙穩態電 阻式隨機存取記憶胞(sidewall active pin bistable resistance random access memory cell)來建構。—列 13TW2957PA 200820257 The bit line 141 and the bit line 142 are substantially parallel to each other in the X direction. Therefore, a γ-decoder (γ-dec der) and a word line driVer located in a block i45 are coupled to the word lines 123, 124. The X-Decoder (x-dec〇der) and the - sense amplifier of one of the blocks 146 are coupled to the bit lines mi, 142. The common source line 128 is coupled to the source terminals of the transistors 150, 151, 152, and 153. The gate of the transistor 15 is lightly connected to the word line 123. The gate of the transistor 151 is consuming with the word line 124. The gate of the transistor 152 and the word line 123 are coupled to each other. The gate of transistor 153 is connected to word line 124. The drain of the transistor ι5 is coupled to the lower electrode member 132 as a sidewaU pin memory cel 1 135. The sidewall pin memory cell has an upper electrode member 134 and a lower electrode member 132. The upper electrode member 134 is coupled to the bit line 141. It can be seen here that the common source line 128 is shared by the memory cells of the two columns. As shown in the figure, one of the columns is arranged in the Y direction. In other embodiments, the transistor can be replaced by a diode. Others The structure that controls the current in the array to select the device for reading and writing data in the array can also be used to replace the transistor. 2 is a simplified block diagram of the integrated circuit 200 of the RRAM structure in accordance with an embodiment of the present invention. The integrated circuit 275 includes a memory array constructed using a sidewall active pin bistable resistance random access memory cell on the semiconductor substrate. - column 13

200820257TW2957PA 解碼器261係與多條字元線262耦接,且其係沿著列排列 於記憶陣列260中。一接腳解碼器(pindec〇der)263係與 多條位元線264輕接。位元線264係沿著記憶陣列260之 接腳排列,以頊取及程式化記憶陣列260内之侧壁接腳記 - 憶胞之資料。匯流排265提供位址至接腳解碼器263及列 解碼器261。位於區塊266之感應放大器及資料輸入結構 (data-in structure)係經由資料匯排流267與接腳解碼 為263搞接。資料之提供係從位於積體電路275上之輸入 • /輸出埠(input/output port)或從位於積體電路275之内 部或外部之其他資料來源,經由實料輸入線271,流入區 塊2 6 6之資料輸入結構。於闡述之實施例中,其他電路亦 包括於積體電路上,如一般用途處理器(general_purpose processor)、特殊用途應用電路系統(speciai purpose application circuitry)或藉由薄膜雙穩態電阻式隨機存 取記憶胞陣列提供功能性之系統晶片(system-on-a-chip) 之模組組合。資料之提供係從位於區塊266之感應放大 馨 器,經由資料輸出線272,流入位於積體電路275上之輸 入/輸出埠或流入其他位於積體電路275之内部或外部之 其他資料目的地(data destination)。 此例中控制器使用偏壓棑列狀態機(bias arrangement state machine)269控制偏壓排列供應電麗 (bias arrangement supply voltage)268 之應用,例如讀 -取、程式化、抹徐、抹除驗證及程式化驗證電壓。控制器 係藉由習知之特殊用途邏輯電路系統(special-purpose 200820257TW2957pa hie circuitry)實施。另-替代之實施例中,控制The 200820257 TW2957PA decoder 261 is coupled to a plurality of word lines 262 and is arranged in a memory array 260 along a column. A pin decoder 263 is connected to the plurality of bit lines 264. The bit lines 264 are arranged along the pins of the memory array 260 to capture and program the data of the sidewall pins in the memory array 260. Bus 265 provides an address to pin decoder 263 and column decoder 261. The sense amplifier and data-in structure located in block 266 are connected to pin 263 via data sink drain 267. The data is supplied from the input/output port located on the integrated circuit 275 or from other sources located inside or outside the integrated circuit 275 via the physical input line 271 to the block 2 6 6 data input structure. In the illustrated embodiment, other circuits are also included in the integrated circuit, such as a general-purpose processor, a specialiated application circuitry, or a thin film bistable resistive random access. The memory cell array provides a modular system-on-a-chip module combination. The data is provided from the inductive amplifier located at block 266, via the data output line 272, to the input/output port located on the integrated circuit 275 or to other data destinations located inside or outside the integrated circuit 275. (data destination). In this example, the controller uses a bias arrangement state machine 269 to control the application of the bias arrangement supply voltage 268, such as read-and-fetch, program, wipe, and erase verification. And stylize verification voltage. The controller is implemented by a conventional special-purpose logic circuit system (special-purpose 200820257 TW2957pa hie circuitry). In another alternative embodiment, the control

般用途處理器,其之應用可於同—積體電路上。I £體電路係用减行’電腦程式以控制裝置之作動。再 :個實施例中,特殊践邏輯電路系統及—般⑽處理器 之級合係用以實施控制器。 辦夕= 程式電阻式隨機存取記憶 ,之參考步驟的簡化流程圖’雙穩態可料電阻式隨機存General purpose processor, its application can be on the same-integrated circuit. The I £ body circuit uses a subtraction computer program to control the operation of the device. Further, in one embodiment, the special logic circuit system and the general (10) processor are used to implement the controller.夕 = Program Resistive Random Access Memory, a simplified flow chart of the reference steps 'Bistable Resistive Random Memory

取記憶體係具有以沈積及微影技術製造之兩可程式電阻 式記憶層。雙穩態RRAM 300包括一第一可程式電阻式隨 ,存取記憶層310,係與一第二可程式電阻式隨機存取記 k層320串聯。第一可程式電阻式隨機存取記憶層31〇與 第二可程式電阻式隨機存取記憶層320皆提供儲存兩個資 料狀態之能力。第一可程式電阻式隨機存取記憶層310及 第二可程式電阻式隨機存取記憶層320於雙穩態跗龍300 中’共提供四個邏輯狀態,包括第一邏輯狀態「00」(或The memory system has two programmable resistive memory layers fabricated by deposition and lithography. The bistable RRAM 300 includes a first programmable resistive access memory layer 310 in series with a second programmable resistive random access k layer 320. Both the first programmable resistive random access memory layer 31 and the second programmable resistive random access memory layer 320 provide the ability to store two data states. The first programmable resistive random access memory layer 310 and the second programmable resistive random access memory layer 320 provide a total of four logic states in the bistable Snapdragon 300, including the first logic state "00" ( or

「0」)、第二邏輯狀態「01」(或「1」)、第三邏輯狀態 「!〇」(或「2」)及第四邏輯狀態「11」(或「3」)。 於一實施例中,第一可程式電阻式隨機存取記憶層 與第二可程式電阻式隨機存取記憶層320係為相同之 材料。於另一實施例中,第一可程式電阻式隨機存取記憶 層310與第二可程式電阻式隨機存取記憶層320係為不同 之材料。第一可程式電阻式隨機存取記憶層310與第二可 程式電阻式隨機存取記憶層320所具有之厚度係可為相同 或相異。第一可程式電阻式隨機存取記憶層310或第二可 15"0"), the second logic state "01" (or "1"), the third logic state "!〇" (or "2"), and the fourth logic state "11" (or "3"). In one embodiment, the first programmable resistive random access memory layer and the second programmable resistive random access memory layer 320 are the same material. In another embodiment, the first programmable resistive random access memory layer 310 and the second programmable resistive random access memory layer 320 are different materials. The thickness of the first programmable resistive random access memory layer 310 and the second programmable resistive random access memory layer 320 may be the same or different. The first programmable resistive random access memory layer 310 or the second

200820257TW2957PA 程式電阻式隨機存取記憶層之厚度範圍例如從i nm至2〇〇 nm ° 每個可程式電阻式隨機存取記憶層31〇及32〇係由至 少包括兩種穩定電阻位準(resistance ievei)之材料所形 ‘ 成’其中此些材料意指電阻式記憶材料(resistance random access memory material)。下列陳述幾個經驗證 係可用以製造RRAM之材料。 項次「雙穩態RRAM」係意指藉由一電壓振幅、一電 _ 流振幅或一電極性(electrical polarity)控制電阻位 準。相變化記憶體之狀態控制係藉由電壓振幅、電流振幅 或脈波時間處理。雙穩態RRAM 300之電極性並不影響雙 穩態RRAM 300之程式化。 以下陳述用以描述適用於RRAM實施之四種電阻式記 憶材料形式之簡短摘要。於實施例中使用之第一種記憶材 料形式係巨磁阻(colossal magnetoresistance,CMR)材 料,如镨-約-锰氧化物(PrxCayMn〇3),x:y=0.5:0.5或 馨 x:0〜l;y:0〜1之其他組成。CMR材料所包括之氧化錳係可 選擇性使用。 形成CMR的範例方法係利用物理氣相沈積(physical vapor deposition, PVD) 滅鑛或磁控錢鑛 (magnetron-sputtering)方法,於氣壓 1 m〜100 m 托(Torr) 下使用氬(Ar)、氮(N2)、氧(〇2)及/或氦(He)等氣體源。濺 鍍之溫度係由濺鍍後處理情況決定,溫度之範圍係為室溫 至600°C。具有深寬比(aspect ratio)為1~5之準直儀 16200820257TW2957PA Program resistive random access memory layer thickness range, for example, from i nm to 2〇〇nm ° Each programmable resistive random access memory layer 31〇 and 32〇 consists of at least two stable resistance levels (resistance) The material of ievei) is shaped as "resistance random access memory material". The following statements describe several materials that can be used to fabricate RRAM. The term "bistable RRAM" means controlling the resistance level by a voltage amplitude, an electric current amplitude or an electrical polarity. The state control of the phase change memory is handled by voltage amplitude, current amplitude or pulse time. The polarity of the bistable RRAM 300 does not affect the stylization of the bistable RRAM 300. The following statements are presented to describe a short summary of the four resistive material forms that are suitable for RRAM implementation. The first form of memory material used in the examples is a colossal magnetoresistance (CMR) material such as 镨-about-manganese oxide (PrxCayMn〇3), x:y=0.5:0.5 or scent x:0 ~l;y: other components of 0~1. The manganese oxides included in the CMR materials can be selectively used. An exemplary method for forming a CMR is to use argon (Ar) at a gas pressure of 1 m to 100 m Torr using a physical vapor deposition (PVD) ore-magnetron-sputtering method. A gas source such as nitrogen (N2), oxygen (〇2), and/or helium (He). The temperature of the sputtering is determined by the post-spray treatment and the temperature ranges from room temperature to 600 °C. Collimator with an aspect ratio of 1 to 5 16

200820257TW2957PA (collimator)係可用以改善填充之成效。為了改善填充之 成效,亦可使用幾十至幾百伏特之直流偏壓。另一方面, 直流偏壓及準直儀之組合也可同時使用。幾十高斯(Gauss) w 到至多一特斯拉(Tesla=10000 Gauss)可應用於改善磁性 ~ 晶形化相位(magnetic crystallized phase)。 真空、N2環境或〇2/N2混合環境中,沈積後退火處理 (post-deposition annealing treatment)係選擇性用以 改善CMR材料之晶形化狀態。典型的退火溫度於退火時間 _ 少於2小時之情況下,其範圍係從4〇(TC〜600°C。 CMR材料之厚度決定於晶片結構之設計。1〇 nm至2〇〇 nm之CMR的厚度係可用以作為核心材料(core material)。釔-鋇—銅氧化物(YBaCu〇3)係一種高溫超導體 材料(high temperature superconductor material)之形 式’係做為緩衝層(buffer layer)以改善CMR材料之晶形 化狀態。YBC0係沈積於CMR材料沈積之前。YBC0之厚度 具有一範圍,係從30 nm至200 nm。 ⑩ 苐二種記憶材料形式係二元化合物,例如氧化鎳 (NixOy)、氧化鈦(Tix〇y)、氧化鋁(Alx〇y)、氧化鎢(wx〇y)、 氧化鋅(Znx〇y)、氧化錘(Zrx〇y)或氧化銅(cUx〇y)等。 x:y=0· 5:0· 5,或x:〇〜1 ;y:Q〜1之其他組成。形成之範例 方法係使用金屬氧化物作為靶材,如Nix〇y、Tix〇y、Alx〇y、 W)y、Znx〇y、Zrx〇y 或 Cux〇y 等,於氣壓1111~1〇〇111技下,利 - 用Ar、N2、〇2及/或He等反應氣體,以藉由PVD濺鍍或磁 控濺鍍方法形成。沈積通常係於室溫下執行。具有深寬比 17 200820257XW2957pa 為1〜5之準直儀係可用以改善填充之成效。為了改善填充 之成效,亦可使用幾十伏特至幾百伏特之直流偏壓。若有 所需要時,直流偏壓及準直儀之組合也可同時使用。 - 於真空、N2環境或〇2/沁混合環境中進行沈積後退火 處理係選擇性地使用以改善以金屬氧化物中氧的分佈。退 火溫度於退火時間少於2小時之情況下,其範圍係從400 °C-600°C ° 一種替代性的製造方法係利用PVD濺鍍或磁控濺鍍 _ 方法,於氣壓1 m〜1〇〇 m托下,利用Ar/〇2、Ar/N2/〇2、純 、He/〇2或He/N2/〇2等反應氣體及如鎳(Ni)、鈦(Ti)、鋁 (A1)、鶴(W)、鋅(Zn)、結(Zr)或銅(Cu)等金屬氧化物作 為靶材製造。沈積通常係於室溫下執行。具有深寬比為1〜5 之準直儀係可用以改善填充之成效。為了改善填充之成 致,亦可使用幾十伏特至幾百伏特之直流偏壓。若有所需 要時,直流偏壓及準直儀之組合也可同時使用。 於真空、N2環境或〇2/N2混合環境中進行沈積後退火 處理係選擇性地使用以改善以金屬氧化物中氧的分佈。退 火溫度於退火時間少於2小時之情況下,其範圍係從400 °C-6〇〇°c - 另一種製造方法係藉由高溫氧化系統以氧化,如加熱 、 爐或快速熱火處理(rapid thermal pulse, RTP)系統。在 純〇2或沁/〇2混合氣體環境中,溫度範圍係200Ϊ至700 ,且壓力係幾毫托至1大氣壓。時間之範圍係可為幾分 鐘至幾小時。另一種氧化方法係電漿氧化(plasma 18200820257TW2957PA (collimator) can be used to improve the effectiveness of the fill. In order to improve the filling effect, a DC bias of several tens to several hundreds of volts can also be used. On the other hand, a combination of DC bias and collimator can also be used simultaneously. Dozens of Gauss w to at most one Tesla (Tesla = 10000 Gauss) can be applied to improve the magnetic crystallized phase. In a vacuum, N2 environment or 〇2/N2 mixed environment, post-deposition annealing treatment is selective to improve the crystallized state of the CMR material. Typical annealing temperatures range from 4 〇 to less than 2 hours (TC to 600 ° C. The thickness of the CMR material is determined by the design of the wafer structure. CMR from 1 〇 nm to 2 〇〇 nm The thickness can be used as a core material. YBaCu〇3 is a form of high temperature superconductor material as a buffer layer to improve The crystallized state of the CMR material. The YBC0 is deposited before the deposition of the CMR material. The thickness of the YBC0 has a range from 30 nm to 200 nm. 10 苐 Two kinds of memory materials are binary compounds such as nickel oxide (NixOy), Titanium oxide (Tix〇y), alumina (Alx〇y), tungsten oxide (wx〇y), zinc oxide (Znx〇y), oxidized hammer (Zrx〇y) or copper oxide (cUx〇y), etc. x : y = 0 · 5: 0 · 5, or x: 〇 ~ 1 ; y: other composition of Q ~ 1. The exemplary method of formation is to use metal oxide as a target, such as Nix〇y, Tix〇y, Alx 〇y, W)y, Znx〇y, Zrx〇y or Cux〇y, etc., under the pressure of 1111~1〇〇111, benefit - using Ar, N2, 〇 A reaction gas such as 2 and/or He is formed by PVD sputtering or magnetron sputtering. Deposition is usually performed at room temperature. With a aspect ratio 17 200820257XW2957pa A collimator of 1 to 5 can be used to improve the effectiveness of the filling. In order to improve the effect of filling, a DC bias of several tens of volts to several hundreds of volts can also be used. The combination of DC bias and collimator can also be used at the same time if needed. - Post-deposition annealing in a vacuum, N2 environment or 〇2/沁 mixed environment is selectively used to improve the distribution of oxygen in the metal oxide. Annealing temperature in the case of annealing time less than 2 hours, the range is from 400 °C to 600 °C ° An alternative manufacturing method using PVD sputtering or magnetron sputtering _ method, at a pressure of 1 m~1 〇〇m, using Ar/〇2, Ar/N2/〇2, pure, He/〇2 or He/N2/〇2 reaction gases such as nickel (Ni), titanium (Ti), aluminum (A1) Metal oxides such as crane (W), zinc (Zn), knot (Zr) or copper (Cu) are used as targets. Deposition is usually performed at room temperature. A collimator with an aspect ratio of 1 to 5 can be used to improve the effectiveness of the filling. In order to improve the filling, a DC bias of several tens of volts to several hundreds of volts can also be used. The combination of DC bias and collimator can also be used at the same time if required. The post-deposition annealing treatment is carried out in a vacuum, N2 environment or 〇2/N2 mixed environment to selectively use to improve the distribution of oxygen in the metal oxide. Annealing temperature in the case of annealing time less than 2 hours, the range is from 400 °C to 6 ° ° C - Another manufacturing method is by oxidation by high temperature oxidation system, such as heating, furnace or rapid heat treatment (rapid Thermal pulse, RTP) system. In a pure helium 2 or krypton/niobium 2 mixed gas atmosphere, the temperature range is from 200 Ϊ to 700, and the pressure is from a few millitorr to 1 atm. The time range can range from a few minutes to a few hours. Another oxidation method is plasma oxidation (plasma 18

200820257XW2957PA oxidation)。在具有純⑺或紅/⑴混合氣體或紅/仏/^混 合氣體之射頻電漿源(RF source plasma)或直流電漿源 (DC source plasma),於氣壓係1 m〜1〇〇毫托下,用以氧 “ 化金屬之表面,如附、Ti、Al、W、Zn、Zr或Cu等。氧 - 化時間之範圍係幾秒至幾分鐘。氧化溫度決定於離子氧化 之程度,其範圍係從室溫至300。(3。 第三種記憶材料形式係聚合物材料,如氰基對醌二甲 烧錯合物(tetracyquinodimethane,TCNQ)中添加 Cu、 • C6°、竑等或苯基 C61 丁酸甲脂(Phenyi C61-butyric acid methyl ester,PCBM)-氰基對醌二曱烷錯合物(TCNq)混合 水合物。一種製造方式係利用熱蒸鑛(thermai evaporation)、電子束蒸鏡(e—beam evaporation)或分子 束蠢晶成長(molecular beam epitaxy, MBE)系統等蒸鐘 方法。固相之TCNQ及摻雜之粒子係於單一腔體中共蒸 (co-evaporated)。固相之TCNQ及摻雜之粒子係放置於鎢 舟(W-boat)、组舟(W-boat:)或陶舟(ceramic boat)中。物 _ 料源係藉由一咼電流或一電子束之供應而融化,以使材料 混合並沈積於晶圓上。此處並無任何反應化學物或氣體。 沈積係於壓力1(Γ4〜托下執行。晶圓溫度之範圍係從室 溫至 200°c: 〇 真空或N2環境中,沈積後退火處理係選擇性用以改善 聚合物材料之組成分佈。退火溫度於退火時間少於1小時 之情況下,其範圍係為室溫至3〇〇。〇。 另一用以製造聚合物作為基料之記憶材料層之技術 19200820257XW2957PA oxidation). In the RF source plasma or DC source plasma with pure (7) or red / (1) mixed gas or red / 仏 / ^ mixed gas, in the pneumatic system 1 m ~ 1 〇〇 mTorr For oxygen, the surface of the metal, such as Ti, Al, W, Zn, Zr or Cu. The oxygenation time ranges from a few seconds to a few minutes. The oxidation temperature is determined by the degree of ion oxidation. From room temperature to 300. (3. The third form of memory material is a polymer material, such as cyano-tetracyquinodimethane (TCNQ) added with Cu, • C6°, hydrazine, etc. or phenyl C61 Phenyi C61-butyric acid methyl ester (PCBM)-cyano-p-dioxane complex (TCNq) mixed hydrate. One method of manufacture is to use hotmai evaporation, electron beam evaporation. A vaporization method such as an e-beam evaporation or a molecular beam epitaxy (MBE) system. The solid phase TCNQ and the doped particles are co-evaporated in a single cavity. The TCNQ and doped particles are placed on a tungsten boat (W-boat) and a group boat (W-boat:) Or in a ceramic boat, the material source is melted by a current or an electron beam supply to mix and deposit the material on the wafer. There is no reaction chemical or gas. The deposition is performed at a pressure of 1 (Γ4~Torr. The wafer temperature ranges from room temperature to 200 °C: in a vacuum or N2 environment, post-deposition annealing is selective to improve the compositional distribution of the polymer material. The annealing temperature is in the range of room temperature to 3 Torr when the annealing time is less than 1 hour. Another technique for manufacturing a memory material layer of a polymer as a binder 19

200820257TW2957PA 係使用力疋轉塗饰機(Spin coater)。旋轉塗佈機具有摻雜 TCNQ之溶液’且以少於1〇〇〇 rpm條件下旋轉。旋轉塗佈 之後,晶圓被擺置一段時間以足夠形成固相形式。擺置之 溫度典型地係為室溫或少於2〇(rc。擺置之時間決定於溫 度及製造條件,其範圍係從數分鐘至數天。200820257TW2957PA is a spin coater. The spin coater has a TCNQ doped solution&apos; and is rotated at less than 1 rpm. After spin coating, the wafer is placed for a period of time sufficient to form a solid phase. The temperature of the placement is typically room temperature or less than 2 〇 (rc. The time of placement is determined by temperature and manufacturing conditions, ranging from minutes to days.

第四種形式係硫屬化合物材料,如鍺—銻〜碌 (GexSbyTez) ’ xWz=2:2:5,或其他 x:0〜5 ; y:0〜5 ; z:〇〜1{) 之組合成分。GeSbTe可選擇性的使用如N-、Si-、Ti〜或 其他元素之摻雜物。 衣L氣屬化合物材料之示範方法可於氣壓為1 、宅托下使用氣體源係為Ar、N2或/及He等PVJ)錢 鍍或磁控濺鍍方法。溫度之範圍通常係室溫。具有深寬昆 為1、〜5之準直儀係可用以改善填充之成效。為了改善填充 成放’亦可使用幾十伏特至幾百伏特之直流偏壓。另一 面直抓偏壓及準直儀之組合也可同時使用。 真空或N2環境中,沈積後退火處理係選擇性用以改^ ^ 化口物材料之晶形化狀態。典型的退火溫度於退火限 、3〇刀姜里之f月況下,其範圍係從iq〇〇c至4〇〇°c。p +合物材料之厚度係決定於晶片結構之設計。一般两 二具有超過8 mm厚度之硫屬化合物材料係具有相變^ 每以使材料可展現至少兩個穩定電阻式狀態。 化I施例中位於雙穩態RRAM 300之記憶胞可包 他::化記憶材料包括以硫屬化合物作為基; 寸及其他材枓,用以形成第—可程式電阻式隨機存耳 20 200820257蘭· 記憶層310及第二可程式電阻式隨機存取記憶層320。硫 屬化合物包括組成元素週期表第六族之四種元素氧(0)、 硫(S)、硒(Se)及碲(Te)的任意一種。硫屬化合物包括具 ‘ 有多個正電性元素(electropositive element)或自由基 、 (radical)之硫族元素(chalcogen)的化合物。硫屬化合物 合金包括硫屬化合物與其他材料之組合,如過渡金屬 (transition metal)。硫屬化合物合金通常包括元素週期 表第六行之一種或多種元素,如鍺(Ge)及錫(Sn)。硫屬化 鲁 合物合金大多包括一種或多種銻(Sb)、鎵(Ga)、銦(In)及 銀(Ag)之組合。許多相變化記憶材料於技術文獻中係描述 為具有下列之合金 Ga/Sb、In/Sb、In/Se、Sb/Te、Ge/Te、 Ge/Sb/Te、In/Sb/Te、Ga/Se/Te、Sn/Sb/Te、In/Sb/Ge、 Ag/In/Sb/Te、Ge/Sn/Sb/Te、Ge/Sb/Se/Te 及 Te/Ge/Sb/S。The fourth form is a chalcogenide material, such as GexSbyTez 'xWz=2:2:5, or other x:0~5; y:0~5; z:〇~1{) Combination ingredients. GeSbTe can selectively use dopants such as N-, Si-, Ti~ or other elements. An exemplary method for the material of the L-based gas compound may be a gas plating method or a magnetically controlled sputtering method using a gas source of a gas source of Ar, N2 or/and He. The temperature range is usually room temperature. A collimator with a deep width of 1 to 5 can be used to improve the effectiveness of the filling. A DC bias of several tens of volts to several hundreds of volts can also be used in order to improve the filling. The combination of direct bias and collimator on the other side can also be used simultaneously. In a vacuum or N2 environment, post-deposition annealing is selectively used to modify the crystalline state of the material. The typical annealing temperature ranges from iq〇〇c to 4〇〇°c in the annealing limit and in the case of 3 姜 姜 姜. The thickness of the p+ composite material is determined by the design of the wafer structure. Generally, the chalcogenide material having a thickness of more than 8 mm has a phase change so that the material can exhibit at least two stable resistance states. The memory cell located in the bistable RRAM 300 may include: a memory material comprising a chalcogen compound; and an inch and other materials for forming a first-programmable resistive random ear 20 200820257 The blue memory layer 310 and the second programmable resistive random access memory layer 320. The chalcogen compound includes any one of the four elements oxygen (0), sulfur (S), selenium (Se), and tellurium (Te) constituting the sixth group of the periodic table. Chalcogenides include compounds having &apos;chalcogen having a plurality of electropositive elements or radicals. Chalcogenide alloys include combinations of chalcogenides with other materials, such as transition metals. The chalcogenide alloy usually includes one or more elements of the sixth row of the periodic table, such as germanium (Ge) and tin (Sn). The chalcogenide alloys mostly comprise one or more combinations of antimony (Sb), gallium (Ga), indium (In) and silver (Ag). Many phase change memory materials are described in the technical literature as having the following alloys Ga/Sb, In/Sb, In/Se, Sb/Te, Ge/Te, Ge/Sb/Te, In/Sb/Te, Ga/ Se/Te, Sn/Sb/Te, In/Sb/Ge, Ag/In/Sb/Te, Ge/Sn/Sb/Te, Ge/Sb/Se/Te, and Te/Ge/Sb/S.

Ge/Sb/Te合金族中,大範圍之合金組成係可行的。組成成 分之特徵可歸類為TeaGebSbioo-uHo。一研究者描述大部分有 用之合金係具有平均濃度小於70%之Te於沈積材料中。一 _ 般Te之濃度係小於60%,且濃度範圍之分佈係約從23%至 58%。大多較偏好之Te之濃度約為48%至58%。Ge之濃度 係大於5%,且於材料中之平均範圍大約係為8%至30%。大 多偏好濃度約8%至40%之Ge。於此成分中剩餘之主要構成 元素係為Sb。此些百分比係為構成元素之全部原子的原子 百分比(Ovshinsky之專利112中第1〇-11行)。另一研究 - 者所評估之特定之合金包括Ge2Sb2Te5、GeSb2Te4及In the Ge/Sb/Te alloy family, a wide range of alloy compositions are feasible. The characteristics of the constituents can be classified as TeaGebSbioo-uHo. One investigator described that most useful alloys have an average concentration of less than 70% Te in the deposited material. The concentration of Te is less than 60%, and the concentration range is about 23% to 58%. Most of the preferred concentrations of Te are about 48% to 58%. The concentration of Ge is greater than 5% and the average range in the material is approximately 8% to 30%. Most prefer a concentration of about 8% to 40% Ge. The main constituent element remaining in this component is Sb. These percentages are atomic percentages of all atoms constituting the element (lines 1-11 of Ovshinsky's Patent 112). Another study - the specific alloys evaluated include Ge2Sb2Te5, GeSb2Te4 and

GeSb4Te7(Noboru Yamada, !| Potential of Ge-Sb-Te 21GeSb4Te7 (Noboru Yamada, !| Potential of Ge-Sb-Te 21

200820257rw2957PA200820257rw2957PA

Phase-Change Optical Disks f0r High-Data-RatePhase-Change Optical Disks f0r High-Data-Rate

Recording,” vSPJT f·幻㈣,pp· 28〜37 (1997))。更廣泛 而論,過渡金屬如Cr、Fe、Ni、Nb、Pd、Pt及混合物或 ’ 其合金係可與Ge/Sb/Te結合以形成—具有可程式電阻式 ^ 特性之相變化合金。Ovshinsky之專利H2中第Π-13行 提供有用之記憶材料之特定例子。此處將這些例子包含於 參考文獻中。 相變化合金係可於第一結構狀態及第二結構狀態中 • 轉換。材料之第一結構狀態係一般之非晶形固相,材料之 第二結構狀態於胞體之動態通道區域(active channel region)之區域次序(l〇cai order)中係一般之晶形固相。 此些合金至少係為雙穩態。非晶形項次係意指對比地較不 具次序之結構,也就是較單一晶體不具次序。非晶形結構 之可賴之特性,如具有較晶形相高之電阻。晶形項次係 意指較具次序之結構,也就是說較非晶形結構較為具有次 序。晶形結構之可_之特性,如具有較非晶形相低之電 •阻。一般而言,相變化材料係可於不同之可偵測狀態之區 域次序及頻譜間作電性轉換。頻譜係介於完全晶形狀態及 完全非晶形狀態。其他受晶形相與非晶形相之改變情況影 響的材料特性包括原子次序、自由電子密度及活化能。此 材料可轉Μ至不同之1§相或兩種或多種之混合之固相,以 提供一介於完全晶形相及非完全晶形相之狀態之灰階 * (gray SCale)。材料之電性狀態係對應地變化。 相變化合金係藉由施加電脈衝之從一相位狀態轉變 22Recording," vSPJT f. Magic (4), pp. 28~37 (1997)). More broadly, transition metals such as Cr, Fe, Ni, Nb, Pd, Pt and mixtures or 'alloys can be combined with Ge/Sb /Te combines to form a phase change alloy with programmable resistance characteristics. Lines 13 to 0 of Ovshinsky's patent H2 provide specific examples of useful memory materials. These examples are included in the references. The alloy system can be converted in the first structural state and the second structural state. The first structural state of the material is a generally amorphous solid phase, and the second structural state of the material is in the active channel region of the cell body. The regional order (l〇cai order) is a general crystalline solid phase. These alloys are at least bistable. The amorphous term means a relatively less ordered structure, that is, a single crystal is not in order. The characteristic of the crystal structure, such as the resistance with a higher crystal phase. The crystal structure refers to a more ordered structure, that is to say, the order of the amorphous structure is more orderly. More The crystal phase has a low electrical resistance. In general, the phase change material can be electrically converted between different regions of the detectable state and the spectrum. The spectrum is in a fully crystalline state and a completely amorphous state. Material properties affected by changes in the crystalline phase and the amorphous phase include atomic order, free electron density, and activation energy. This material can be transferred to a different solid phase or a mixture of two or more solids to provide an Gray state* (gray SCale) of the state of the fully crystalline phase and the incompletely crystalline phase. The electrical state of the material changes correspondingly. The phase change alloy is transformed from a phase state by applying an electrical pulse 22

TW2957PA 200820257 至另 使相短及較高振幅之脈衝易於 之脈衝易於使相變化材料改變至—般之較^ =之脈衝能量可使晶形結構之嶋^ 月匕里H避免原子重新排列組合成晶形狀態。不需過 度實驗即可決定適用於特定的相變化合奴脈衝曲線。於 下列揭露之章節中’相變化材料係意指鍺-銻-碲(GST),、TW2957PA 200820257 To make the pulse of phase short and high amplitude easy to pulse, it is easy to change the phase change material to - generally the pulse energy of ^ = can make the crystal structure 嶋 ^ 匕 匕 H avoid atom realignment into crystal form status. It is not necessary to over-test to determine the curve suitable for a particular phase change. In the section disclosed below, 'phase change material means 锗-锑-碲 (GST),

且此處可瞭解其他形式之相變化材料亦可使用。在此處描 速用以實施相變化隨機存取記憶體(phase chage random access memeory,PCRAM)之材料. Ge2Sb2Te5。 本發明之其他實施例中係可使用其他可程式電阻式 記憶材料以決定電阻,包括1摻雜GST、GexSby或其他使 用不同晶相變化之材料。PrxCayMn〇3、PrSrMn〇3、Zr〇χ、、It can be seen here that other forms of phase change materials can also be used. Here, the material used to implement the phase chage random access memeory (PCRAM) is described. Ge2Sb2Te5. Other programmable resistive memory materials may be used in other embodiments of the invention to determine resistance, including 1 doped GST, GexSby, or other materials that use different crystal phase variations. PrxCayMn〇3, PrSrMn〇3, Zr〇χ,

Ti〇x、AlOx或其他材料係使用電脈衝以改變電阻狀態。 7, 7, 8, 8-TCNQ、PCBM、TCNQ-PCBM、Cu-TCNQ、Ag-TC_.、 —-TCNQ、TCNQ摻雜其他金屬或任何具有以電脈衝控制之 雙穩態或多穩態電阻狀態之聚合物材料。 第一導電層312係位於第一可程式電阻式隨機存取 記憶層310上,且其係作為一導電元件。第二導電層322 係沈積於第一可程式電阻式隨機存取記憶層310及第二可 程式電阻式隨機存取記憶層320之間。第一導電層312係 作為一導電元件’以與第一可程式電阻式隨機存取記憶層 310連接。第二導電展322係作為一導電元件,以與第二 可程式電阻式隨機存取記憶層320連接。第一導電層312 23Ti〇x, AlOx or other materials use electrical pulses to change the resistance state. 7, 7, 8, 8-TCNQ, PCBM, TCNQ-PCBM, Cu-TCNQ, Ag-TC_., —-TCNQ, TCNQ doped with other metals or any bistable or multi-stable resistors controlled by electrical pulses State of the polymer material. The first conductive layer 312 is located on the first programmable resistive random access memory layer 310 and functions as a conductive element. The second conductive layer 322 is deposited between the first programmable resistive random access memory layer 310 and the second programmable resistive random access memory layer 320. The first conductive layer 312 is connected as a conductive element ′ to the first programmable resistive random access memory layer 310. The second conductive trace 322 serves as a conductive element for connection to the second programmable resistive random access memory layer 320. First conductive layer 312 23

200820257TW2957PA 及第二導電層322之合適材料包括Ti、氮化鈦(TiN)、 TiN/W/nN'TiN/n/Al/TiN'^ 複晶矽(n+polysillc〇n)、 Ti⑽、Ta、TaN、TaON及其他材料。 於一實施例中,第一導電層312係與第二導電層322 ‘ 具有相同之材料。於另一實施例中,第一導電層312係與 第二導電層322具有不同之材料。第一導電層312與第二 ^&quot;電層322可具有相同或相異之厚度。第一導電層M2或 癱第二導電層322具有一厚度,其範圍例如約為1〇麵至200 .nm 〇 一遮罩330係形成於第一導電層312上。遮罩330包 括一光阻或一硬遮罩,如氧化矽(Si〇x)、氮化矽(SiNx)及 氣氧化破(Si〇xNy)。遮罩330之關鍵尺寸可依據遮罩之形 式選擇適合之技術加以修整完成。假若遮罩330係光阻, 則具化學物係以C12或HBr為基料之活性離子钱刻機可用 以移除光阻。假若遮罩330係硬遮罩,則具有適當之溶劑 • 的濕移除(wet tri顏ing)可用以移除硬遮罩。於特定情況 中,氫氟酸(dilute HF)可用以移除以Si〇x所製造之硬遮 I。熱鱗酸(hot phosphoric acid)可用以移除以Sil所 製造之硬遮罩。 第4圖繪示製造雙穩態RRAM 300之下一步驟的流程 - 圖,此步驟係執行蝕刻製程到沈積有介電側壁子的第二導 電層322,介電侧壁子係與第一導電構件412及第一可程 式電阻式隨機存取記憶構件410相鄰。如第3圖所示,鍅 刻第一導電層312與第一可程式電阻式隨機存取記憶層 24Suitable materials for 200820257TW2957PA and second conductive layer 322 include Ti, titanium nitride (TiN), TiN/W/nN'TiN/n/Al/TiN'^ polycrystalline yttrium (n+polysillc〇n), Ti(10), Ta, TaN, TaON and other materials. In one embodiment, the first conductive layer 312 has the same material as the second conductive layer 322'. In another embodiment, the first conductive layer 312 has a different material than the second conductive layer 322. The first conductive layer 312 and the second ^&quot; electrical layer 322 may have the same or different thicknesses. The first conductive layer M2 or the second conductive layer 322 has a thickness ranging from, for example, about 1 to 200 nm. A mask 330 is formed on the first conductive layer 312. The mask 330 includes a photoresist or a hard mask such as yttrium oxide (Si〇x), tantalum nitride (SiNx), and gas oxidized (Si〇xNy). The critical dimensions of the mask 330 can be tailored to fit the desired technique in the form of a mask. If the mask 330 is a photoresist, an active ion engraver with a chemical system based on C12 or HBr can be used to remove the photoresist. If the mask 330 is a hard mask, wet dimming with a suitable solvent can be used to remove the hard mask. In certain cases, hydrofluoric acid (dilute HF) can be used to remove the hard mask produced by Si〇x. Hot phosphoric acid can be used to remove the hard mask made of Sil. 4 is a flow diagram of a step of fabricating a bistable RRAM 300, which performs an etching process to a second conductive layer 322 having dielectric sidewalls deposited thereon, a dielectric sidewall sub-system and a first conductive layer. The member 412 and the first programmable resistive random access memory member 410 are adjacent. As shown in FIG. 3, the first conductive layer 312 and the first programmable resistive random access memory layer are etched 24

rW2957PA 200820257 310至第二導電層322之頂面,以產 及第一可程式電阻式p媸六说 產生弟一導電構件412 可為對第-導電層 層310之單—^非等^:可&amp;式電阻式隨機存取記憶 刻,弟一蝕刻係以第―蝕 勹〜驟之蝕 穿一#糾# 蚀刻化予物蝕刻第一導電層 弟-關係以第二_化學祕 曰312, 機存取記憶層31〇。飪了耘式电阻式隨 個材料決定。例如,:=^選擇之單-材料或多 之材料,亂係用以作為第-可程式電阻m412 構件410之材料,則勃^ 弋酼祛存取記憶 以CL·作為蝕刻第一暮带s Qi〇 乐蝕刻步驟係 步驟係以肌作為二;層到化學物’第二钱刻 31。之嫌學:;=;電阻式隨機存取記憶層 ^予物弟一介電側壁子430係沈積於第一可 程式電阻式隨機存取印卜 、 亡m目,丨Μ = 構件41G及第—導電構件412之 左右㈣H電側壁子⑽係位於第 芦 頂面之一部分上。笛入 9 ^ _及_,、_ 電侧壁子430之適合材料包括rW2957PA 200820257 310 to the top surface of the second conductive layer 322, to produce the first programmable resistance type, the conductive member 412 can be a pair of the first conductive layer 310 can be: &amp; type resistive random access memory engraving, brother-etching system with the first - eclipse ~ eclipse through a # 纠 etch etch etch etched first conductive layer - relationship to the second _ chemical tips 312, The machine accesses the memory layer 31〇. The 耘-type resistance type is determined by the material. For example, if: ^^ selects a single-material or a plurality of materials, which is used as the material of the first-programmable resistor m412 member 410, then the access memory is CL-etched as the first ribbon s The Qi 〇 etch step is based on the muscle as the second; the layer to the chemical 'second money 31'. The suspicion of learning:; =; resistive random access memory layer ^ to the younger brother a dielectric sidewall 430 is deposited in the first programmable resistance random access ink, die m, 丨Μ = component 41G and - The left and right (four) H electric side walls (10) of the electrically conductive member 412 are located on a portion of the top surface of the reed. Suitable materials for the flute 9 ^ _ and _, _ electric sidewall 430 include

Sl〇x及Si獅讀料具有預先決定之厚度 ㈣子嫩厚度影響第二導電構件512(如 所二 及第二可程式電阻式隨機存取記憶構件51〇之面積 圖所不)°舉例而言’假若遮罩330舉有-關鍵尺寸約為 0.15 /zm,則預先決定之厚度可約為31 nm,使得第二可 程式電阻式隨機存取記憶構件51〇之面積約為第一可程式 電阻式隨機存取記憶構件410之面積之兩倍。換句話說, 於相同邏輯狀態下,如設定或重置狀態,第二可程式電阻 25The Sl〇x and Si lion readings have a predetermined thickness (four) of the thickness of the second conductive member 512 (such as the area map of the second and second programmable resistive random access memory members 51). </ RTI> If the mask 330 is - the critical dimension is about 0.15 / zm, the predetermined thickness can be about 31 nm, so that the area of the second programmable resistive random access memory member 51 is about the first programmable The area of the resistive random access memory component 410 is twice as large. In other words, in the same logic state, such as the set or reset state, the second programmable resistor 25

W2957PA 200820257 式隨機存取記憶構件51 〇之電阻約為第一可程式電阻式隨 機存取記憶構件410之電阻的一半。第一可程式電阻式隨 機存取記憶構件410及第二可程式電阻式隨機存取記憶構 件510之%阻差決疋於笔阻式㊂己憶材料之設定/重置電限 窗。假若設定/重置窗約為10倍(一個數量級(〇rder 〇f magnitude)),則第一可程式電阻式隨機存取記憶構件41〇 與第一可程式電阻式隨機存取記憶構件51〇之電阻差以約 為2倍較為適當。 第5圖繪不雙穩態可程式電阻式隨機存取記憶體 500,此步驟係為蝕刻通過第二可程式電阻式隨機存取記 憶層。姓刻第二導電層322及第二可程式電阻式隨機存取 記憶層32G(如第3圖所示)至-底層之頂面,或以活性離 =刻機侧至通過―底層_(如第6圖所示),以產生 I。^’件512及第二可程式電阻式隨機存取記憶構件 式ph刻1^可為對第二導電,3 2 2及第二可程式電阻 取2層!20之單一之非等向蝕刻。蝕刻製程或 導電ί 3 2: ’ I I弟一蝕刻:系以第一蝕刻化學物蝕刻第二 式電:式隨機存:,刻係以第二蝕刻化學物蝕刻第二可程 -材料或:個材料2層蝕刻化學嫩 隨機存取記憶構:二用以作為第二可程式電阻式 一钱刻步驟係以C1你材料,則執行兩步驟之钱刻,第 學物,第二钱刻步驟^為侧弟二導電構件512之餘刻化 糸以SF8作為蝕刻第二可程式電阻式 26The resistance of the W2957PA 200820257 type random access memory unit 51 is approximately half of the resistance of the first programmable resistive random access memory unit 410. The % difference of the first programmable resistive random access memory component 410 and the second programmable resistive random access memory component 510 is determined by the setting/resetting power limit window of the pen resistance type. If the setting/resetting window is about 10 times (an order of magnitude 〇f magnitude), the first programmable resistive random access memory unit 41 is coupled to the first programmable resistive random access memory unit 51. The difference in resistance is about 2 times more appropriate. Figure 5 depicts the non-bistable programmable resistive random access memory 500, which is etched through a second programmable resistive random access memory layer. The last name of the second conductive layer 322 and the second programmable resistive random access memory layer 32G (as shown in FIG. 3) to the top surface of the bottom layer, or from the active side = the edge of the machine to the bottom layer (such as Figure 6) to generate I. The ^' 512 and the second programmable resistive random access memory device can be a single non-isotropic etch of 2 layers! 20 for the second conductive, 3 2 2 and second programmable resistors. Etching process or conductive ί 3 2: 'II-one etching: etching the second type of electricity with the first etching chemistry: random storage: etching the second etchable material with the second etching chemistry or: Material 2 layer etching chemical random random access memory structure: 2 used as the second programmable resistance type of money engraving step to C1 your material, then perform the two-step money engraving, the first thing, the second money engraving step ^ For the second step of the second conductive member 512, SF8 is used as the second programmable resistance type 26

200820257TW2957PA 隨機存取記憶構件510之姓刻化學物。 第6圖纟會不雙穩悲可私式電阻式隨機存取記憶體6 〇 〇 之可程式電阻式記憶胞結構之簡化流程圖。可程式電阻式 記憶胞結構以圖示闡明底層610被姓刻通過,如上述依p ‘ 第5圖所述之部分。雙穩態可程式電阻式隨機存取記憶層 之可程式電阻式記憶胞結構包括底層610,係位於第二可 程式電阻式隨機存取5己丨思構件510下。底層61 〇之钱刻夢 程於到達中間介電層(interlayer dielectric)630之頂面 Φ 處停止。底層610係與一接觸孔(via plug)620連接。接 觸孔620係沈積於底層610下且具中間介電層630於其周 遭。接觸孔620於實施例中包括鎢楱觸孔(w-plUg)或複晶 矽接觸孔(poly-Si plug)。複晶矽接觸孔可藉由複晶石夕二 極體或NP二極體構成。 第7圖繪示具有一可程式電阻式隨機存取記憶層之 雙穩態可程式電阻式隨機存取記憶體的電流-電壓曲線範 例圖700,X-軸表示電壓710及y-軸表示電流720。重置 ® 狀態730中,可程式電阻式隨機存取記憶層係低電阻狀 態。設定狀態740中,可程式電阻式隨機存取記憶層係高 電阻狀態。此例中可程式電阻式隨機存取記憶層之設定/ 重置窗约係一個數量級之讀取電壓(read voltage)750。 以虛線752表示之讀取電壓75〇係用以展示高電流狀態 (或高邏輯狀態)與低電流狀態(或低邏輯狀態)間具有顯 著之間距。在一電Μ應力(voltage stress)之後,電流從 重置狀態730提高至高電流狀態,從設定狀態740下降。 27200820257TW2957PA The surname of the random access memory component 510 is a chemical. Figure 6 is a simplified flow chart of a programmable resistive memory cell structure that does not have a bistable and sturdy private resistive random access memory. The programmable resistive memory cell structure exemplifies that the underlying layer 610 is passed by the surname, as described above in the section of FIG. The programmable resistive memory cell structure of the bistable programmable resistive random access memory layer includes a bottom layer 610 and is located under the second programmable resistive random access 5 MIMO component 510. The bottom layer 61 刻 刻 刻 到达 到达 到达 到达 到达 到达 到达 到达 到达 到达 到达 到达 到达 到达 到达 。 。 。 。 。 。 。 。 。 。 The bottom layer 610 is connected to a via plug 620. Contact holes 620 are deposited under the bottom layer 610 with an intermediate dielectric layer 630 surrounding it. The contact hole 620 includes a tungsten germanium contact hole (w-plUg) or a poly-Si plug in the embodiment. The polycrystalline germanium contact hole may be composed of a polycrystalline spine or a NP diode. FIG. 7 is a diagram showing an example current-voltage curve 700 of a bistable programmable resistive random access memory having a programmable resistive random access memory layer, wherein the X-axis represents voltage 710 and the y-axis represents current. 720. In Reset ® Status 730, the programmable resistive random access memory layer is low resistance. In the set state 740, the programmable resistive random access memory layer is in a high resistance state. In this example, the set/reset window of the programmable resistive random access memory layer is approximately one order of magnitude read voltage 750. The read voltage 75, indicated by dashed line 752, is used to show a significant distance between the high current state (or high logic state) and the low current state (or low logic state). After a voltage stress, the current is raised from the reset state 730 to the high current state, falling from the set state 740. 27

2〇〇820257:W2957PA 兒流由一低狀恝至一高狀態或由一高狀態至一低狀態之 ^幅度的升降,使得其不易以電壓控制器分辨出不同的邏 、輯多層狀態°不同之可程式電阻式隨機存取記憶層相互串 娜時’可用以實現在—雙穩態可程式電阻式隨機存取記憶 趟中具有不同的邏輯狀態。每個可程式電阻式隨機存取記 燒層具有獨自之面積或電阻。 第8A圖繪不具有兩個可程式電阻式隨機存取記憶構 鲁件的雙穩態可程式電阻式隨機存取記憶體刪之簡化流程 $丄此些可程式電阻式隨機存取記憶構件皆係重置狀態。 =第一可程式電阻式隨機存取記憶構件41〇及第二可程式 =阻式隨機存取記憶構件51〇皆為重置狀態時,雙穩態可 程式電阻式隨機存取記憶體600係以邏輯狀態「〇〇」之方 =操作。第二可程式電阻式隨機存取記憶構件51〇具有一 I阻i? 810 ’且第-可程式電阻式隨機存取記憶構件41〇 :有-電阻/i?82G。變數/大於!,因為第—可程式電阻 _ $隨機存取記憶構件410之面積係小於第二可程式電阻式 ,機存取記憶構件510之面積。雙穩態可程式電阻式隨機 $取記憶體_之總電阻係約為⑽)j?。舉例而言,假若 文數/係為2 ’則可計算得$總電卩且係為,數學表 不式係為(1+2)恥3i?。 八 弟8B圖緣示具有兩個可程式電阻式隨機存取記憶構 .陶的雙穩態可程式電阻式隨機存取記憶體咖之簡化流程 二此些可程式電阻式隨機存取記憶構件係處於設定狀態 及4置狀態。當第-Γ程式電阻式隨機存取記憶構件41〇 282〇〇820257: The rise and fall of the W2957PA flow from a low state to a high state or from a high state to a low state makes it difficult for the voltage controller to distinguish different logic and multi-layer states. The programmable resistive random access memory layer can be used to achieve different logic states in the bistable programmable resistive random access memory. Each programmable resistive random access memory layer has its own area or resistance. Figure 8A depicts a simplified flow of a bistable programmable resistive random access memory without two programmable resistive random access memory components. These programmable resistive random access memory components are Reset status. = the first programmable resistive random access memory component 41 and the second programmable = resistive random access memory component 51 are all in a reset state, the bistable programmable resistive random access memory 600 In the logical state of "〇〇" = operation. The second programmable resistive random access memory unit 51 has an I-resistance i? 810' and the first-programmable resistive random access memory member 41 is: - resistance / i? 82G. Variable / greater than! Because the area of the first-programmable resistor _$ random access memory member 410 is smaller than the second programmable resistance type, the area of the machine access memory member 510. The total resistance of the bistable programmable resistance random memory is approximately (10)) j?. For example, if the number of texts/system is 2 ’, the total amount of electricity can be calculated and the mathematical equation is (1+2) shame 3i?. The eight-figure 8B picture shows two programmable resistive random access memory structures. The simplification of the bistable programmable resistive random access memory of the pottery is two programmable resistive random access memory components. It is in the set state and 4 set state. When the first-stage program resistive random access memory member 41〇 28

TW2957PA 200820257 係為設定狀態及第二可程式電阻式隨機存取記憶構件5l〇 係為重置狀時’雙穩4可程式電阻式隨機存取記憶體 600係以邏輯狀態、「〇1」之方式操作。第二可程式電阻式 隨機存取記憶構件510係保持在重置狀態或沒有改變狀態 之情沉。第二可程式電阻式隨機存取記憶構件51〇具有一 電阻i? 810,且第一可程式電阻式隨機存取記憶構件41〇 具有一電阻830。變數ϋ可大於2。雙穩態可程式電 阻式隨機存取記憶體600之總電阻係約為(1+/2/)犮。舉例 _ 而言,假若變數ί係為2且變數£/係為1〇,則可計算得出 總電阻係為21i?,其中數學表示式係為(1+2〇)恥21i?。 第8C圖繪示與本發明一致之具有兩個可程式電阻式 隨機存取記憶構件的雙穩態可程式電阻式隨機存取記憶 體600之簡化流程圖,此些可程式電阻式隨機存取記憶構 件係設定狀態及重置狀態。當第一可程式電阻式隨機存取 記憶構件410係為重置狀態及第二可程式電阻式隨機存取 ▲ 記憶構件510係為設定狀態時,雙穩態可程式電阻式隨機 存取記憶體600係以邏輯狀態「1〇」之方式操作。第一可 程式電阻式隨機存取記憶構件410係保持重置狀態或沒有 改變狀態之情況。第二可程式電阻式隨機存取記憶構件 51〇具有一電阻;^ 850,且第一可程式電阻式隨機存取記 憶構件410具有一電阻汉860。變數15可大於1。雙穩態 可程式電阻式隨機存取記憶體600之總電阻係約為 (n+f)i?。舉例而言,假若變數f係為2且變數η係為1〇, 則可計算得出總電阻係為12i?,其中數學表示式係為 29TW2957PA 200820257 is a set state and the second programmable resistive random access memory device 5l is reset. The bistable 4 programmable resistive random access memory 600 is in a logic state, "〇1" Mode operation. The second programmable resistive random access memory component 510 is held in a reset state or has not changed state. The second programmable resistive random access memory device 51 has a resistor i? 810, and the first programmable resistive random access memory member 41 has a resistor 830. The variable ϋ can be greater than 2. The total resistance of the bistable programmable resist random access memory 600 is approximately (1+/2/) 犮. For example, _, if the variable ί is 2 and the variable £/ is 1〇, then the total resistance is 21i?, where the mathematical expression is (1+2〇) shame 21i?. FIG. 8C is a simplified flowchart of a bistable programmable resistive random access memory 600 having two programmable resistive random access memory components consistent with the present invention, such programmable resistive random access The memory component is set to a state and a reset state. When the first programmable resistive random access memory component 410 is in a reset state and the second programmable resistive random access memory 510 is in a set state, the bistable programmable resistive random access memory The 600 Series operates in a logical state of "1". The first programmable resistive random access memory component 410 is in a state of being reset or not changing. The second programmable resistive random access memory device 51 has a resistor 850, and the first programmable resistive random access memory member 410 has a resistor 860. The variable 15 can be greater than one. The total resistance of the bistable programmable resist random access memory 600 is approximately (n + f)i?. For example, if the variable f is 2 and the variable η is 1〇, then the total resistance is 12i?, where the mathematical expression is 29

200820257rW2957PA (10+2)iM2i?〇 第8D圖繪示具有兩個可程式電阻式隨機存取記憶構 件的雙穩態可程式電阻式隨機存取記憶體600之簡化流程 - 圖,此些可程式電阻式隨機存取記憶構件皆係設定狀態。 … 當第一可程式電阻式隨機存取記憶構件410及第二可程式 電阻式隨機存取§己仏、構件510皆為設定狀態時,雙穩態可 程式電阻式隨機存取記憶體600係以邏輯狀態r n」之方 式操作。第二可程式電阻式隨機存取記憶構件51〇具有一 _ 電阻乃允870,且第一可程式電阻式隨機存取記憶構件41〇 具有一電供880。雙穩態可程式電阻式隨機存取記憶 體600之總電阻係約為η(1 + /)及。舉例而言,假若變數歹 係為2且變數/3係為10,則可計算得出總電阻係為及, 其中數學表示式係為10(1+2)恥30i?。 第9圖繪示與本發明一致之具有兩個相互串聯之可 程式電阻式隨機存取記憶構件之雙穩態可程式電阻式隨 機存取記憶體600的數學關係式,兩個相互串聯之可程式 電阻式隨機存取記憶構件係提供四個邏輯狀態及每個記 憶胞提供雨個位元。電阻關係式中使用三個變數及、η及^:。 變數i?表不一記憶構件之重置電阻。變數η與電阻式記憶 材料之特性相關。變數/與一介電侧壁子之厚度相關。換 句話說,變數η決定於選擇之材料的特性。變數f係可藉 由介電侧壁子之厚度控制。在邏輯狀態「〇」91〇,雙穩態 可程式電阻式隨機存取記憶體600之總電阻係約為 (l + i)i?。在邏輯狀態「〗」92〇,雙穩態可程式電阻式隨機 30200820257rW2957PA (10+2) iM2i? 〇 8D shows a simplified flow of a bistable programmable resistive random access memory 600 with two programmable resistive random access memory components - such a programmable Resistive random access memory components are in a set state. When the first programmable resistive random access memory component 410 and the second programmable resistive random access device and the component 510 are in a set state, the bistable programmable resistive random access memory 600 is Operate in the logical state rn". The second programmable resistive random access memory device 51 has a _ resistor 870, and the first programmable resistive random access memory member 41 has an electrical supply 880. The total resistance of the bistable programmable resistive random access memory 600 is approximately η(1 + /) and . For example, if the variable 歹 is 2 and the variable /3 is 10, then the total resistance is calculated as , where the mathematical expression is 10 (1 + 2) shame 30i?. FIG. 9 is a schematic diagram showing the mathematical relationship between the bistable programmable resistive random access memory 600 having two programmable resistive random access memory components connected in series, which are identical to the present invention. The program resistive random access memory component provides four logic states and each memory cell provides rain bits. Three variables are used in the resistance relation, η and ^:. The variable i? represents the reset resistance of the memory component. The variable η is related to the characteristics of the resistive memory material. The variable / is related to the thickness of a dielectric sidewall. In other words, the variable η is determined by the characteristics of the material selected. The variable f can be controlled by the thickness of the dielectric sidewalls. In the logic state "〇" 91〇, the total resistance of the bistable programmable resist random access memory 600 is approximately (l + i)i?. In the logic state "〗" 92, bistable programmable resistance random 30

TW2957PA 200820257 存取記憶體600之總電阻係約為(奸 厂 930,雙穩態可程式電阻式隨機術 迷 」 ., 各 現機存取記憶體600之總電阻 係为為⑽m。在邏輯狀態「3」_ 式 阻式隨機存取記憶體咖之_ 又Ί μ i f 苗效、^人 &lt;〜飞阻係約為n(l+i)i?。變數 係调王以配,電阻變化’使得操 ^電阻式_存取記憶體_中作2位元之操 。上述所提之2位το的操作窗顯*下列之電阻:狀、12況、 ⑽至猶。假若變數fi=議且變數付,則2位元之操作 窗可計算為3i?、l〇2i?、20ii?至300及。 第10圖綠不具有多個記憶構件之雙穩態可程式電阻 式隨機存取記«麵之如圖。多個可程式電阻式隨 機存取記憶構件係為相互串聯,以於每個記憶胞中提供多 個位元。雙穩態可程式電阻式隨機存取記憶體誦包括 多個相互串聯之可程式電阻式隨機存取記憶層。換句話 說’第一可程式電阻式隨機存取記憶層31〇係與第二可程 式電阻式隨機存取記憶層320串聯,第二可程式電阻式隨 機存取纪憶層320係與第三可程式電阻式隨機存取記憶層 1010串聯,…’第(n—Dth可程式電阻式隨機存取記憶層 1020係與第nth可程式電阻式隨機存取記憶層1〇3〇串聯。 於一實施例中,第一、第二、第三…第(n_1)th、第nth可 程式電阻式隨機存取記憶層310、320、1010、1〇20、1030 皆提供儲存兩個邏輯狀態之能力。於額外之實施例中,第 一、第二、第三…第(n_l)th、第nth可程式電阻式隨機存 取記憶層310、320、1010、1020、1030皆提供儲存大於 31 200820257圓篇 兩個位元資料之能力。於其他實施例中,第一、第二、第 三…第(n-l)th、第nth可程式電阻式隨機存取記憶層310、TW2957PA 200820257 The total resistance of the access memory 600 is about (the 930, bistable programmable resistance random surgery fans). The total resistance of each memory access memory 600 is (10) m. "3" _ type resistive random access memory coffee _ Ί if μ if Miao effect, ^ people &lt; ~ flying resistance system is about n (l + i) i?. Variables are adjusted to match the king, resistance changes 'Let the operation 电阻 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ And the variable pays, the 2-bit operation window can be calculated as 3i?, l〇2i?, 20ii? to 300 and. Figure 10 Green does not have multiple memory components bistable programmable resistance random access As shown in the figure, a plurality of programmable resistive random access memory components are connected in series to provide a plurality of bits in each memory cell. The bistable programmable resistive random access memory includes a plurality of a programmable resistive random access memory layer connected in series. In other words, the first programmable resistive random access memory layer 31 The second programmable resistive random access memory layer 320 is connected in series, and the second programmable resistive random access memory layer 320 is connected in series with the third programmable resistive random access memory layer 1010, ... 'the (n-Dth can The program resistive random access memory layer 1020 is connected in series with the nth programmable resistive random access memory layer 1〇3〇. In one embodiment, the first, second, third, ... (n_1)th, The nth programmable resistive random access memory layers 310, 320, 1010, 1 20, 1030 provide the ability to store two logic states. In additional embodiments, the first, second, third, ... (n_l) The thth, nth programmable resistive random access memory layers 310, 320, 1010, 1020, 1030 all provide the ability to store more than 31 200820257 round two bits of data. In other embodiments, the first and second Third, the (nl)th, nth programmable resistive random access memory layer 310,

320、1010、1020、1030皆提供儲存兩個或多於兩個位元 資料之能力,其中每個位元具有儲存多個位準資料之能 力。雙穩態可程式電阻式隨機存取記憶體1〇〇〇之邏輯狀 態之總數量決定於每個可程式電阻式隨機存取記憶層之X 個位元數’及每個位元之y個位準數。以數學式表示係為 Zx〃,其中符號Z係代表可程式電阻式隨機存取記憶層之總 個數。舉例而言,假若雙穩態可程式電阻式隨機存取記憶 體10 0 0具有8個可私式電阻式隨機存取記憶層,每個可* 私式電阻式隨機存取€憶層儲存1個位元之資料且每個位 元儲存兩個邏輯狀態或電流位準,則可計算得出邏輯狀態 之總個數係為8&quot;2或64個邏輯狀態。 第一、第一、第二…第(n-l)th、第,可程式電阻式 隨機存取記憶層310、320、1010、Li)、103Q係可具有 相同或相異之材料’或特定之可程式式隨機存取記憶 層具相同之材料’而其餘之可程式電阻錢機存取記憶層 第 具另一相同之材料之組合。此外,第一、第_、第二第 (n-1)、第η可程式電阻式隨機存取記憶層、 1010、1020、1030可具有相同或相異之厚度,或特定之 程式電阻式隨機存取記憶層具相同之厚度,而其 口 α 式電阻式隨機存取記憶層具另一相同之厚度之組人&quot;程 一二、第二、第三·.·第(nKnth可程式電阻式隨機 取記憶層310、320、1010、1020、1〇3〇具有一範例之尸 32320, 1010, 1020, 1030 all provide the ability to store two or more bits of data, each of which has the ability to store multiple levels of data. The total number of logic states of the bistable programmable resistive random access memory is determined by the number of X bits of each programmable resistive random access memory layer and the y bits of each bit. The number of bits. The mathematical expression is Zx〃, where the symbol Z represents the total number of programmable resistive random access memory layers. For example, if the bistable programmable resistive random access memory 100 has eight private resistive random access memory layers, each of the private resistive random access memory layers can be stored. The data of one bit and each bit stores two logic states or current levels, then the total number of logic states can be calculated as 8&quot;2 or 64 logic states. The first, first, second, ... (nl)th, first, programmable resistive random access memory layers 310, 320, 1010, Li), 103Q may have the same or different materials 'or specific The program random access memory layer has the same material' while the remaining programmable resistor access memory layer has a combination of the same material. In addition, the first, the _th, the second (n-1)th, the nth programmable resistive random access memory layer, 1010, 1020, 1030 may have the same or different thickness, or a specific program resistive random The access memory layer has the same thickness, and the port α-type resistive random access memory layer has another group of the same thickness. [1, 2, 3, ... (nKnth programmable resistor) Random access memory layers 310, 320, 1010, 1020, 1〇3〇 have an example of corpse 32

TW2957PA 200820257 度,其範圍係由1 nm至200腿。 每個可程式電阻式隨機存取記憶層係與—導電層相 互連接。除了上述所提及之第-及第二導電層、尬 第三導電層刪躲於第三可程式電 ㈣、程式電阻式隨機存輪憶 !〇32 第11圖緣示具有第一、第—w &amp; 弟一可耘式電阻式隨機存取 德構件410、51〇及第一、第二介電侧壁子·、 之雙穩態可程式電阻式隨機存取記憶體的流一 式㈣^機存取記憶構件410、510_刻形 43(3、lm係沈積形成。_ 矛可進―步執行於接續在第—及第二可程式電 機存取§己憶構件410、51〇下之可程十+ 4 現 情芦,如篦- π妒私式私阻式隨機存取記 :;電阻式隨機存取記憶層1_。在此例 係於_第三可程式電阻式隨機存 取_層ι_ _時_。相對應之介電侧壁子亦可沈 積於接_之導電層及可程式電阻式韻存取記憶層之 間於-實施例中’第二可喊電阻式隨機存取記憶構科 510之面積係預先決定於第一介電側壁子$汕之厚度。屏 樣i也,第三可程式電阻式隨機存取記憶構件121〇之面禾 亦係預先決定於第二介電侧壁子111〇之厚度。因此,4 個可程式電阻式隨機存取記憶層具有由介電侧壁子之义 33 200820257 —一…一 u TW2957PA ^先&amp;之個別的面積’使得每個可程式電阻式隨機 取§己憶層具有個別之電阻值。.TW2957PA 200820257 degrees, ranging from 1 nm to 200 legs. Each programmable resistive random access memory layer is interconnected with a conductive layer. In addition to the above mentioned first and second conductive layers, the third conductive layer is occluded in the third programmable electric (four), the program resistive random storage memory recalls! 〇 32 the 11th picture shows the first, the first - w &amp; a 电阻-type resistive random access device 410, 51〇 and the first and second dielectric sidewalls, the bistable programmable resistance random access memory of a stream (4) ^ The machine access memory member 410, 510_etched 43 (3, lm system is formed. _ spear can be further implemented in the continuation of the first and second programmable motor access § the memory components 410, 51 Can be 10 + 4 current reed, such as 篦 - π 妒 private private resistance random access:: Resistive random access memory layer 1_. In this case is _ third programmable resistance random access _ Layer ι_ _ _. The corresponding dielectric sidewalls may also be deposited between the conductive layer and the programmable resistive access memory layer - in the embodiment 'second shouting resistive random access The area of the memory structure 510 is determined in advance by the thickness of the first dielectric sidewall 汕. The screen y also, the third programmable resistive random access memory member 121 The surface is also determined in advance by the thickness of the second dielectric sidewall 111. Therefore, the four programmable resistive random access memory layers have the meaning of the dielectric sidewall 33 200820257 - one ... one u TW2957PA ^First &amp; individual area' makes each programmable resistive random access layer have individual resistance values.

第12圖繪讀移除介電側壁子後,具有多個可 。、阻式Ik機存取5&amp;憶構件及導電構件之雙穩態可程 阻式隨機存取記憶體12⑽的流程圖。雙穩態可程式電阻 式隨機存取記憶體1200包括第一導電構件412,係位於第 一可程式電阻式隨機存取記憶構件41〇上。第一可程式電 ^式隨機存取記憶構件41〇係位於第二導電構件512上二 第二導電構件512係位於第二可程式電阻式隨機存取記憶 構件510上。第二可程式電阻式隨機存取記憶構件51〇係 位於第三導電構件1220上。第三導電構件122〇係位於第 二可程式電阻式隨機存取記憶構件1210上…及第導電 構件1040係位於第nth可程式電阻式隨機存取記憶層〗〇3〇 上。於一實施例中,第一導電構件412係與第一可程式電 阻式隨機存取記憶構件410具有相同之寬度,此寬度小於 第二導電構件512及第二可程式電阻式隨機存取記憶構件 510之寬度。第二導電構件512係與第二可程式電阻式隨 機存取記憶構件510具有相同之寬度,此寬度小於第三導 電構件1220及第二可程式電阻式隨機存取記憶構件 之寬度。第nth導電構件1040與第沪可程式電阻式隨機存 取記憶層1030之寬度典型的較上述所提及之可程式電阻 式隨機存取記憶構件及導電構件之寬度寬。 如第12圖及第13圖所闡述,供應位元線電壓至雙穩 態可程式電阻式隨機存取記憶體600,以達成不同之邏輯 34Figure 12 depicts a plurality of possible removable sidewalls. A flowchart of the bistable resistive random access memory 12 (10) of the resistive Ik machine accessing 5&amp; The bistable programmable resistive random access memory 1200 includes a first conductive member 412 located on the first programmable resistive random access memory member 41. The first programmable memory access device 41 is located on the second conductive member 512. The second conductive member 512 is located on the second programmable resistive random access memory member 510. The second programmable resistive random access memory member 51 is located on the third conductive member 1220. The third conductive member 122 is located on the second programmable resistive random access memory device 1210. The first conductive member 1040 is located on the nth programmable resistive random access memory layer. In one embodiment, the first conductive member 412 has the same width as the first programmable resistive random access memory member 410, and the width is smaller than the second conductive member 512 and the second programmable resistive random access memory member. Width of 510. The second conductive member 512 has the same width as the second programmable resistive random access memory member 510, and the width is smaller than the width of the third conductive member 1220 and the second programmable resistive random access memory member. The width of the nth conductive member 1040 and the first programmable resistive random access memory layer 1030 is typically wider than the width of the above-mentioned programmable resistive random access memory member and conductive member. As illustrated in Figures 12 and 13, the bit line voltage is supplied to the bistable programmable resistive random access memory 600 to achieve different logic.

rW2957PA 200820257rW2957PA 200820257

狀恶。第5圖中之雙穩態可程式電阻式隨機存取記憶體5⑽ 可以第13圖之等效電路系统的方式表示。於此例中,描 述兩個可程式電阻式隨機存取記憶層,且額外之記憶層及 所相應之位元線電壓亦增加。電路系統1300具有一第一 電阻器Ri 1310,係代表第一可程式電阻式隨機存取記憶 構件410之電阻,及一第二電阻器h 1312係代表第二可 程式電阻式隨機存取記憶構件51〇之電阻。第二電阻器匕 1312連接於第一位元線電壓Vm 132〇及第二位元線電壓 Vm 1330之間。第一位元線電壓Vbi 132〇係與第一位元線 BL1 1340連接。第二位元線電壓—133〇係與第二位元線 Bu 1342連接。第一位元線電壓Vbi 132〇係連接於第一導 電構件412之頂面,且第二位元線電壓l 133〇係連接於 第二可程式電阻式隨機存取記憶構件之底面。此實施 例中,雙穩態可程式電阻式隨機存取記憶體5〇〇包括具有 兩個與第一可程式電阻式隨機存取記憶構件41〇及第二可 程式電阻式隨機存取記憶構件51〇相關之電壓。兩電壓以 符號VlR_&amp; VmAM 1314代表,以分別作為與第一可程式電 阻式隨機存取記憶構件41〇相關之第一電壓及與第二可程 式電阻式隨機存取記憶構件51〇相關之第二電壓。第一可 程式電阻式隨機存取記憶電壓Virram1313具有一第一端點 及,第二端點。第一端點係與第一導電構件412連接。第 二端點係與第一可程式電阻式隨機存取記憶構件410連 接。第二可程式電阻式隨機存取記憶電壓1314具有 一第一端點及一第二端點。第一端點通常係與第一可程式 35Evil. The bistable programmable resist random access memory 5 (10) in Fig. 5 can be represented by the equivalent circuit system of Fig. 13. In this example, two programmable resistive random access memory layers are described, and the additional memory layers and corresponding bit line voltages are also increased. The circuit system 1300 has a first resistor Ri 1310 representing the resistance of the first programmable resistive random access memory component 410, and a second resistor h 1312 representing the second programmable resistive random access memory component. 51 〇 resistor. The second resistor 匕 1312 is connected between the first bit line voltage Vm 132 〇 and the second bit line voltage Vm 1330. The first bit line voltage Vbi 132 is connected to the first bit line BL1 1340. The second bit line voltage - 133 is connected to the second bit line Bu 1342. The first bit line voltage Vbi 132 is connected to the top surface of the first conductive member 412, and the second bit line voltage l 133 is connected to the bottom surface of the second programmable resistive random access memory member. In this embodiment, the bistable programmable resistive random access memory 5 includes two and first programmable resistive random access memory components 41 and a second programmable resistive random access memory component. 51 〇 related voltage. The two voltages are represented by the symbol VlR_&amp; VmAM 1314 to respectively correspond to the first voltage associated with the first programmable resistive random access memory component 41 and to the second programmable resistive random access memory component 51. Two voltages. The first programmable resistive random access memory voltage Virram 1313 has a first endpoint and a second endpoint. The first end point is coupled to the first conductive member 412. The second endpoint is coupled to the first programmable resistive random access memory component 410. The second programmable resistive random access memory voltage 1314 has a first end point and a second end point. The first endpoint is usually associated with the first executable 35

200820257rW2957PA 電阻式隨機存取記憶構件410及第一可程式電阻式隨機存 取記憶電壓Vi_m1313連接。第二端點係與第二可程式電阻 式隨機存取記憶構件510連接。額外的可程式電阻式隨機 存取記fe包壓可應用於接續之可程式電阻式隨機存取記 •憶構件,如第三可程式電阻式隨機存取記憶電壓V3R_1316 係與第二可耘式隨機存取電阻式記憶構件121〇連接。 當雙穩悲可程式電阻式隨機存取記憶體5〇〇係為重 置時,也就疋重置狀態時,雙穩態可程式電阻式隨機存取 ⑩記憶體600起始於邏輯狀態「〇」(或邏輯狀態「00」)。 雙穩態可程式電阻式隨機存取記憶體6⑽可由邏輯狀態 「0」程式化至邏輯狀態「1」(或邏輯狀態「01」)。或從 邏輯狀態「〇」種式化至邏輯狀態「2」(或邏輯狀態「1〇」)。 或從邏輯狀恶「0」程式化至邏輯狀態「3」(或邏輯狀態 「11」)。 雙稳悲可程式電阻式隨機存取記憶體500由邏輯狀 鲁 態「00」程式化至邏輯狀態「10」時,供應第一電壓至第 一位元線’以成為第一位元線電壓1320,及供應第二 電壓至第二位元線,以成為第二位元線電壓Vb2 1330。供 應至第一位兀線電壓Vbl 132〇係可為〇伏或小的負電壓。 第一位70線電® ^ 1320與第二位元線電壓Vb2 1330之電 •壓差等同於第一可程式電阻式隨機存取記憶電壓 . Virram1313及第二可程式電阻式隨機存取記憶電壓V2R_ 1314 之_ 。以數學表示式表.示係為The 200820257rW2957PA resistive random access memory component 410 is connected to the first programmable resistive random access memory voltage Vi_m1313. The second endpoint is coupled to the second programmable resistive random access memory component 510. An additional programmable resistive random access memory can be applied to successive programmable resistive random access memory and memory components, such as a third programmable resistive random access memory voltage V3R_1316 system and a second removable type The random access resistive memory member 121 is connected. When the bistable sorrowable resistive random access memory 5 is reset, that is, when the reset state is reached, the bistable programmable resist random access memory 10 starts at a logic state. 〇" (or logic state "00"). The bistable programmable resist random access memory 6 (10) can be programmed from a logic state of "0" to a logic state "1" (or logic state "01"). Or from the logic state "〇" to the logic state "2" (or the logic state "1〇"). Or from the logic "0" to the logic state "3" (or logic state "11"). The bistable sorcerer resistive random access memory 500 is programmed from the logic state "00" to the logic state "10", supplying the first voltage to the first bit line 'to become the first bit line voltage 1320, and supplying the second voltage to the second bit line to become the second bit line voltage Vb2 1330. The supply to the first 兀 line voltage Vbl 132 可 can be a negative voltage of 〇 or small. The first 70-wire power ^ ^ 1320 and the second bit line voltage Vb2 1330 are the same as the first programmable resistance random access memory voltage. Virram1313 and the second programmable resistance random access memory voltage _ of V2R_ 1314. In mathematical expressions, the system is

Vb2-Vm^e_+V2RRAfVi()w。第一可程式電阻式隨機存取記憶構 36Vb2-Vm^e_+V2RRAfVi()w. The first programmable resistive random access memory structure 36

200820257TW2957PA 及第一可程式電阻式隨機存取記憶構件別之初始 ^係為重置狀您,也就係為低電阻狀態。此實施例中, 第可輊式I阻式隨機存取記憶構件41〇具有一小於第二 :可程式電阻式隨機存取記憶構件510之面積。因此,第-‘可程式電阻式隨機存取記憶構件41〇具有一大於第二可程 式電阻式隨機存取記憶構件510之電阻。此表示第一可程 式電阻式隨機存取記憶電壓Virram1313之值係大於第二可 程式電阻式隨機存取記憶電壓v_ 1314。以數學表示式 •係4 W&gt;V_。假若第-可程式電阻式隨機存取記憶電 壓Vi_1313之值係大於一設定電壓(Vi_&gt;VsET),則第一可 程式電阻式隨機存取記憶構件410由重置狀態轉變至設定 狀態(換句話說,係為高電阻狀態)。假若第二可程式電阻 式卩返機存取記憶電壓VmAM 1314之值係小於一設定電壓 (VmMasn) ’則第二可程式電阻式隨機存取記憶構件510 係保持於重置狀態。第一可程式電阻式隨機存取記憶構件 410内之電阻由邏輯狀態「0」(或邏輯狀態「⑽」)轉變至 ^ 邏輯狀態「2」(或邏輯狀態「10」)。邏輯狀態「〇」具有 電阻係為(1 + ί)及,邏輯狀態「2」具有電阻係為(ι+Ώ/)允。 舉例而言’假若變數/=2且變數/1=10,則第二可程式電阻 式隨機存取記憶構件510之重置電阻等同於及,且總電阻 值將從3i?改變至21 。 雙穩態可程式電阻式隨機存取記憶體β〇〇由邏輯狀 態「〇」(或邏輯狀態「00」)程式化至邏輯狀態「3」(或 邏輯狀態「11」)時,供應第一電壓至第一位元線,以成 37The initials of 200820257TW2957PA and the first programmable resistive random access memory component are reset, which is the low resistance state. In this embodiment, the resistive type I random access memory member 41 has a smaller area than the second: programmable resistive random access memory member 510. Therefore, the first-programmable resistive random access memory member 41 has a larger resistance than the second programmable resistive random access memory member 510. This indicates that the value of the first programmable resistive random access memory voltage Virram 1313 is greater than the second programmable resistive random access memory voltage v_ 1314. In mathematical expressions • System 4 W &gt; V_. If the value of the first programmable resistive random access memory voltage Vi_1313 is greater than a set voltage (Vi_&gt;VsET), the first programmable resistive random access memory component 410 transitions from the reset state to the set state (in other words) In other words, it is a high resistance state). If the value of the second programmable resistance return memory access voltage VmAM 1314 is less than a set voltage (VmMasn), the second programmable resistive random access memory device 510 remains in the reset state. The resistance in the first programmable resistive random access memory block 410 is changed from a logic state of "0" (or a logic state "(10)") to a logic state of "2" (or a logic state of "10"). The logic state "〇" has a resistance of (1 + ί) and the logic state of "2" has a resistance of (ι + Ώ /). For example, if the variable /=2 and the variable /1=10, the reset resistance of the second programmable resistive random access memory member 510 is equal to and the total resistance value will change from 3i? to 21. The bistable programmable resistive random access memory β〇〇 is supplied by the logic state “〇” (or logic state “00”) to the logic state “3” (or logic state “11”). Voltage to the first bit line to become 37

200820257rW2957PA 為第一位元線電壓vbl 1320,及供應第二電壓至第二位元 線,以成為第二位元線電壓V,2 1330。供應至第一位元線 電壓1320可為0伏或小的負電壓。第一可程式電阻式 — 隨機存取記憶構件410及第二可程式電阻式隨機存取記= 構件510之初始狀態皆為重置狀態,換句話說係為低電阻 狀態。第一位元線電壓132()與第二位元線電壓Vb2 133〇 之電壓差足夠高(vhigh),使得第一可程式電阻式隨機存取 圮憶構件410之第一可程式電阻式隨機存取記憶電壓 _ ν·ΑΜ1313及第二可程式電阻式隨機存取記憶構件51〇之第 二可程式電阻式隨機存取記憶電壓V2RRAM 1314皆高於Vset。 第一可程式電阻式隨機存取記憶構件及第二可程式電 阻式隨機存取記憶構件51〇之電阻狀態從重置狀態轉變至 設定狀態。第一及第二可程式電阻式隨機存取記憶構件 410、510之電阻由邏輯狀態「〇」(或邏輯狀態「〇〇」)轉 變至邏輯狀態「3」(或邏輯狀態「11」)。邏輯狀態「0」 具有電阻係為+ ,邏輯狀態「2」具有電阻係為 &lt;1 + /)及。舉例而言,假若變數且變數/2=10,則第二 可程式電阻式隨機存取記憶構件510之重置電阻等同於 J,且總電阻值將從改變至30i?。 雙穩態可程式電阻式隨椽存取記憶體600由邏輯狀 _ 態「〇」(或邏輯狀態「00」)程式化至邏輯狀態「1」(咸 邏輯狀態「01」)時,雙穩態可程式電阻式隨機存取記憶 體600首先由邏輯狀態「〇」依序改變至邏輯狀態「3」(或 邏輯狀態「11」)。第一及第二可程式電阻式隨機存取記 38200820257rW2957PA is the first bit line voltage vbl 1320, and supplies the second voltage to the second bit line to become the second bit line voltage V, 2 1330. The supply to the first bit line voltage 1320 can be a negative voltage of 0 volts or less. The first programmable resistance type - the random access memory component 410 and the second programmable resistive random access memory = the initial state of the component 510 are all in a reset state, in other words, in a low resistance state. The voltage difference between the first bit line voltage 132 () and the second bit line voltage Vb2 133 足够 is sufficiently high (vhigh) that the first programmable resistance random access memory member 410 has the first programmable resistance random The second programmable resistance random access memory voltage V2RRAM 1314 of the access memory voltage _ν·ΑΜ1313 and the second programmable resistive random access memory unit 51 is higher than Vset. The resistance states of the first programmable resistive random access memory means and the second programmable resistive random access memory means 51 are changed from the reset state to the set state. The resistances of the first and second programmable resistive random access memory components 410, 510 are changed from a logic state "〇" (or a logic state "〇〇") to a logic state "3" (or a logic state "11"). The logic state "0" has a resistance of + and a logic state of "2" has a resistance of &lt;1 + /). For example, if the variable and the variable /2 = 10, the reset resistance of the second programmable resistive random access memory member 510 is equivalent to J, and the total resistance value will be changed to 30i?. The bistable programmable resistive access memory 600 is stable by a logic state "〇" (or logic state "00") to a logic state "1" (salty logic state "01"). The state programmable resistive random access memory 600 first sequentially changes the logic state "〇" to the logic state "3" (or the logic state "11"). First and second programmable resistive random access codes 38

TW2957PA 200820257 憶構件410、510係從重置狀態改變至設定狀態。提供至 第二位元線電壓^ 1330之電壓係可〇伏或小的負電壓, 其數學表示式係為。提供至第—位元線電壓 -Vm 1320係為—正電壓。於設定狀態時,第一可程式電阻 式隨機存取記憶構件410具有-小於第二可程式電阻式隨 機存取記憶構件510之面積,使得第一可程式電阻式隨機 存取記憶構件410具有一大於第二可程式電阻式隨機存取 §己憶構件510之電阻。此表示一較高電壓通過第一可程式 _ 電阻式隨機存取記憶構件410時產生電壓下降之情況。其 數學表不式係為丨VlOAM | &gt;丨VmAM |。假若第一可程式電阻式隨 機存取記憶電壓VimMl313之絕對值大於重設電壓. (|VimM|&gt;VmET),則第一可程式電阻式隨機存取記憶構件, 410轉換至重置狀態(低電阻狀態)。假若第二可程式電阻 式隨機存取記憶電壓V2RRAM 1314之絕對值小於重設電壓 (丨V2RRAM丨〈VresET),則第二可程式電阻式隨機存取記憶構件^ 510保持於設定狀態。第一及第二可程式電阻式隨機存取 _ 記憶構件410、510内之電阻由邏輯狀態「3」(或邏輯狀 態「11」)轉變至邏輯狀態「1」(或邏輯狀態「〇1」)。邏 輯狀態「3」具有電阻係為+ 邏輯狀態「〗」具有 電阻係為舉例而言,假若變數/=2且變數’ 則當邏輯狀態由「0」轉變至「3」,第二可程式電阻式隨 機存取記憶構件510.之重置電阻等同於允,且總電阻值將 V 從3i?改變至30i?。當邏輯狀態由「3」轉變至「1」,第二 可程式電阻式隨機存取記憶構件510之重置電阻等同於 39TW2957PA 200820257 The components 410, 510 are changed from the reset state to the set state. The voltage supplied to the second bit line voltage ^ 1330 is a negative voltage that can be crouched or small, the mathematical expression of which is. The voltage supplied to the first bit line -Vm 1320 is - positive voltage. In the set state, the first programmable resistive random access memory component 410 has an area smaller than the second programmable resistive random access memory component 510 such that the first programmable resistive random access memory component 410 has a Greater than the resistance of the second programmable resistive random access § memory component 510. This represents a situation in which a higher voltage is passed through the first programmable _ resistive random access memory member 410. Its mathematical form is 丨VlOAM | &gt;丨VmAM |. If the absolute value of the first programmable resistive random access memory voltage VimMl313 is greater than the reset voltage (|VimM|&gt;VmET), the first programmable resistive random access memory component, 410 is switched to the reset state ( Low resistance state). If the absolute value of the second programmable resistive random access memory voltage V2RRAM 1314 is less than the reset voltage (丨V2RRAM丨<VresET), the second programmable resistive random access memory device 510 remains in the set state. The first and second programmable resistive random access _ memory elements 410, 510 are switched from logic state "3" (or logic state "11") to logic state "1" (or logic state "〇1" ). The logic state "3" has a resistance system of + logic state "〗". The resistance system is, for example, if the variable /=2 and the variable ', then the logic state changes from "0" to "3", the second programmable resistance The reset resistance of the random access memory component 510. is equivalent to the allowable, and the total resistance value changes V from 3i? to 30i?. When the logic state is changed from "3" to "1", the reset resistance of the second programmable resistive random access memory member 510 is equivalent to 39.

2〇〇82〇257rW2957PA i?,且總電阻值將從30i?改變至12i?。 電阻Ri 1310及R2 1312係相互串聯置於兩位元線BL· 1340及BL2 1342之間。供給至各別的位元線之電壓係以 Vm 1320及Vb2 1330表示。通過兩個電阻之電壓下降係Vu· - 及V2RRAM,因此兩電源線之電壓下降係等同於ViRRAM + V^AM。 如圖中所示,第一可程式電阻式隨機存取記憶構件410之 面積小於第二可程式電阻式隨機存取記憶構件510之面 積。因此,電阻R!大於電阻R2。 • 第1表狀態/值 重設 設定 1(01) 設定 重設 2(10) 重設 設定 3(11) RRAM之狀態及其產生之胞值於第1表中所示。胞值 係對應於相對之全部的電阻值。 值得注意是第1表之實施例係依循一小尾序 (small-endian)之結構表示。也就是說,最後一個元件係 為最小有效數元(least significant digit, MSD)及最大 有效數元(most significant digit)。其他實施例係依循 大尾序(big-endian)模組,其中數元係被保存,且以下開 始之程序係為同樣之程序,但保存兩個記憶元件。 如第8A圖至第8D圖所示,其係用以解釋每個胞體狀 態之來源以描述每個胞體狀態所呈現之關係。第8A圖描2〇〇82〇257rW2957PA i?, and the total resistance value will change from 30i? to 12i?. The resistors Ri 1310 and R2 1312 are placed in series between the two bit lines BL· 1340 and BL2 1342. The voltages supplied to the respective bit lines are represented by Vm 1320 and Vb2 1330. The voltage drop across the two resistors is Vu· - and V2RRAM, so the voltage drop across the two power lines is equivalent to ViRRAM + V^AM. As shown in the figure, the area of the first programmable resistive random access memory member 410 is smaller than the area of the second programmable resistive random access memory member 510. Therefore, the resistance R! is larger than the resistance R2. • Table 1 Status/Value Reset Setting 1 (01) Setting Reset 2 (10) Reset Setting 3 (11) The state of the RRAM and the resulting cell value are shown in Table 1. The cell value corresponds to the relative resistance value. It is worth noting that the embodiment of Table 1 is represented by a small-endian structure. That is to say, the last component is the least significant digit (MSD) and the most significant digit. Other embodiments follow a big-endian module in which the numerator is saved and the following procedure is the same procedure, but two memory elements are saved. As shown in Figures 8A through 8D, it is used to explain the source of each cell state to describe the relationship exhibited by each cell state. Figure 8A

200820257TW2957PA 述具第一記憶元件Mi及第二記憶元件M2之胞體。第一記憶 元件Mi包括第一可程式電阻式隨機存取記憶構件410、第 一導電構件420。第二記憶元件M2包括第二可程式電阻式 隨機存取記憶構件510及第二導電構件520。兩構件於此 - 係為具低電阻之重置狀態。假若i?係為較大之第二可程式 電阻式隨機存取記憶構件510之電阻,則另一個第一可程 式電阻式隨機存取記憶構件410具有一相對於第二可程式 電阻式隨機存取記憶構件510之電阻值係為一常數值/。 ⑩ 於實施例中所示,第一可程式電阻式隨機存取記憶構件 410具有較第二可程式電阻式隨機存取記憶構件510高之 電阻,因此常數f可知係大於1。但其他實施例於語義 (semantics)上係為相反之關係。 如上所述,第8A圖至第8D圖之實施例之電阻差係因 兩個可程式電阻式隨機存取記憶構件之尺寸差異所造 成。較小之可程式電阻式隨機存取記憶構件具有較高之.電 阻。其他實施例中(圖示中並無繪示),可藉由應用不同材 ® 料之兩元件,以達成操作方式相同,但電阻卻相異之情 況。兩貫施例之相異的結構並不影響其關係之表不方式’ 然而,此處之差異仍可藉由常數/得知。於此實施例中, 兩個可程式電阻式隨機存取記憶構件係為大約相同之厚 度,但此兩個可程式電阻式隨機存取記憶構件之寬度係為 相異(如下列更多之描述),且寬度之差異產生電阻之差 '異。 兩個可程式電阻式隨機存取記憶構件係相互串聯之200820257TW2957PA describes the cell body of the first memory element Mi and the second memory element M2. The first memory element Mi includes a first programmable resistive random access memory member 410 and a first conductive member 420. The second memory element M2 includes a second programmable resistive random access memory member 510 and a second conductive member 520. The two components are here - a reset state with low resistance. If the i? is the resistance of the second second programmable resistive random access memory component 510, the other first programmable resistive random access memory component 410 has a random stored memory relative to the second programmable resistive memory. The resistance value of the memory member 510 is taken as a constant value /. 10 In the embodiment, the first programmable resistive random access memory component 410 has a higher resistance than the second programmable resistive random access memory component 510, so the constant f is greater than one. However, other embodiments are inversely related to semantics. As described above, the resistance difference of the embodiments of Figs. 8A to 8D is caused by the difference in size between the two programmable resistive random access memory members. Smaller programmable resistive random access memory components have higher resistance. In other embodiments (not shown in the figure), it is possible to achieve the same operation mode by using two components of different materials, but the resistance is different. The different structures of the two examples do not affect the way in which the relationship is expressed. However, the difference here can still be known by constants. In this embodiment, the two programmable resistive random access memory components are approximately the same thickness, but the widths of the two programmable resistive random access memory components are different (as described in more detail below). ), and the difference in width produces a difference in resistance. Two programmable resistive random access memory components are connected in series

2〇〇820257rW2957PA 排列,因此胞體之全部之電阻係可表示為科伙或(l+/)i?。 轉換低階元件m2至設定狀態,如同第δΒ圖所示。轉換低 階元件糾目對地具有較高之電阻位準。電阻位準藉由等比 於-常數J2之f作提升。不同材料將會展現不同之常數, -此決定於特定化合物或選择之特性。但若給予一特定之材 料,則重置與設定狀態之關係式可表示為如第犯圖所示, hi?。因此第8B圖中所插述之狀態可藉由表示式 或U+iOi?形容。 • 同樣地,第8C圖描述一 RRAM元件I轉換至設定狀 恝’且Μι保持重置狀悲之結果。於實施例中顯示,兩構件 之材料相同時,常數/3係描述設定狀態及重設狀態之差異 值,ili?/係用以描述電阻值,此部分之胞體之電p且值係以 (l+i2/)i?描述。最後,第8D圖繪示出轉換兩個可程式電阻 式隨機存取記憶構件Μι及M2至毁定狀維,以產生允—pi? (M2) 及(Μ!)。此狀態可表示為偷响或nG + iOi?。 與四個胞值(cell value)相關之語義關係摘錄如第2 •表所示' 第2表胞值關係 關係 胞值 (l+/)i? 0(00) (niOR 1(01) 2(10) n(l+〇R 3(11) 422〇〇820257rW2957PA is arranged, so the total resistance of the cell body can be expressed as a group or (l+/)i?. Convert the low-order component m2 to the set state as shown in the δΒ diagram. Converting low-order components has a higher resistance level to ground. The resistance level is boosted by an equal ratio to the constant of the constant J2. Different materials will exhibit different constants - depending on the specific compound or the characteristics of the choice. However, if a specific material is given, the relationship between the reset and the set state can be expressed as shown in the first figure, hi?. Therefore, the state interpolated in Fig. 8B can be described by the expression or U+iOi?. • Similarly, Figure 8C depicts the result of a RRAM component I transitioning to the set state Μ' and Μι remaining reset. In the embodiment, when the materials of the two members are the same, the constant/3 system describes the difference between the set state and the reset state, and the ili?/ is used to describe the resistance value, and the electrical value of the cell body of this part is (l+i2/)i? Description. Finally, Figure 8D illustrates the conversion of two programmable resistive random access memory components Μι and M2 to the ruined dimension to produce the allowable pi? (M2) and (Μ!). This status can be expressed as stun or nG + iOi?. The semantic relationship excerpts related to the four cell values are as shown in the second table. 'The second table cell value relationship cell value (l+/)i? 0(00) (niOR 1(01) 2(10 ) n(l+〇R 3(11) 42

200820257TW2957PA 感應^作窗之一實例可藉由設定參數/2、/及及達成。 假若]?=104Ω、以10及/=2,則四個狀態之電阻可為3χΐ〇4 Ω、L 2χ1〇5Ω、2· 1χ1〇5Ω 及 3χ105Ω。以—120 mv 之感 應電壓(讀取電屋),四個狀態之感應電流係分別為4) A、 1 // A 0. 6 # a及〇. 4 # A。多層操作之部分電壓可設定 為2.5 #A、0.8以及〇.5 #A。具有較2 5以高之 ,應電流時’最低之電阻狀態可定義為「0」狀態(或狀態 〇&amp;〇」)。具有較〇· 5 # A低之感應電流時,最高之電阻 ^可定義為「3」狀態(或狀態「11」)。具有較〇. 8 # A ° 較2. 5 # A低之感應電流時,—低電阻狀態可定 為「1」狀態(或狀態「01」)。具有較0 5以高,但較 t8 低之感應電流時,—高電阻狀態可定義為「2」狀 4應電流之變化量蚊於製程之變化 寬产㈣心上變化。舉例而言,介電側壁子之厚度(或 二於」、疋弟二可程式電阻式隨機存取記憶構件之面 之帝阻。田士,=式電阻式隨機存取記憶構件 ,而一寬操作窗以執行高品質之多位元 ,田巧_數歧較高之係數,供較寬的= _因此可避免產品產生失敗之狀態決定。 BL記憶胞至一 f求值係藉由提供—跨位元線虬及 全部可能的值。習知姑菽+ 成弟1表所示之 技藝中可理解許多可能性係存在於直 貝_中’使用兩個正電壓(其中正帝 43An example of the 200820257 TW2957PA sensing window can be achieved by setting the parameters /2, / and . If ?? = 104 Ω, with 10 and /= 2, the resistance of the four states can be 3 χΐ〇 4 Ω, L 2 χ 1 〇 5 Ω, 2 · 1 χ 1 〇 5 Ω, and 3 χ 105 Ω. With an induced voltage of -120 mv (reading the electric house), the induced currents of the four states are 4) A, 1 // A 0. 6 # a and 〇. 4 # A. The partial voltage of the multi-layer operation can be set to 2.5 #A, 0.8, and 〇.5 #A. It has a higher resistance than 2, and the lowest resistance state can be defined as "0" state (or state 〇 &amp; 〇). When the induction current is lower than 5·5 # A, the highest resistance ^ can be defined as the "3" state (or state "11"). When the current is low, the low resistance state can be set to "1" state (or state "01"). When the induction current is higher than 0 5 but lower than t8, the high resistance state can be defined as "2". 4 The change in current should be changed in the process of the mosquito. The wide yield (4) changes in the heart. For example, the thickness of the dielectric sidewall is equal to or greater than the thickness of the surface of the two-dimensional resistive random access memory device. Tianshi, = resistive random access memory component, and a wide The operation window is used to execute high-quality multi-bits, and the value of Tian Qiao _ number is higher, for wider = _ thus avoiding the state of product failure. BL memory cell to f evaluation is provided by - Cross-bit line 虬 and all possible values. It is understandable in the technique shown in the table of the syllabus + Chengdi 1 that many possibilities exist in the direct _ _ use two positive voltages (including Zhengdi 43

200820257rw2957PA 壓係於Vb2相對於Vm得出)及兩個負電壓,所得之電壓以 Vhigh、Vlow、- Vhigh及-Vlow表不。提_供之電壓之絕對值決定於 記憶構件所含括之特性,包括使用之材料及尺寸。實施例 - 中表示,高電壓值3. 3伏及低電壓值1. 5伏皆係證明為是 …有效值。 第一個過程係為一般之重設過程,第一過程係驅動可 程式電阻式隨機存取記憶構件成為重設狀態,使得一胞值 係為0。此程序如下之第3表所示。 _ 第3表全部重置之轉變過程 V2-Vl = ~Yhigh 元件狀態 胞體 動作 元件狀態 胞體 Μι 1 3 | Vl | &gt;VsET 0 0 M2 1 1 V2 1 &gt;Yreset 0 此轉變過程之適當的電壓值如示係為-Vhigh,使得每個 VlRRAM及V2RRAM之電壓下降的絕對值超過重設值。當兩個可程 ^ 式電阻式隨機存取記憶構件皆為重設狀態,則全部之胞值 即為0 〇 重設情況係為所有進一步操作的起點。由於無法預測 之結果可能於轉換之中間狀態中發生,因此降低單元至重 設情況,以作為任何狀態變化之操作的第一步驟係為較理 想的方式。 相反之情沉,胞值係為3,如下之第4表所表示。 第4表0-3之轉變過程 44 200820257 二连緬航· TW2957PA Vb2*'Vbl==Vhigh 元件狀態 胞體 動作 元件狀態 胞體 Μι 0 0 Vi&gt;Yset 1 3 M2 0 V2&gt;VsET 1 此處,供應電壓Vhigh使得兩個構件足以產生電壓下降 超過VSET。當兩個構件皆為設定狀態,則胞值係為二位元 之11或3。 產生記憶胞值為2之過程如下之第5表所示。 第5表0-2之轉變過程 (Yb2-Vbl)-Vlow 元件狀態 胞體 動作 元件狀態 胞體 Μι 0 0 Vl&gt;VsET 1 2 M2 0 V2&lt;VsET 0 在此設定中,電壓下降Vi大於所需產生之設定情況之 值,因此Rl係為設定情況,但電壓下降V2係小於設定所需 之值,使得元件係為重設情況。Ri係為設定情況及R2係為 重設情況,產生胞值係為二位元之01或2之結果。 產生1之胞值如下之第6表所示。達成1之值之轉便 過程係較其他實施例困難,以直覺地觀察可知當兩個構件 皆開始於重設狀態,必須提供足以使V2產生設定狀態之電 壓,且V!亦然。如此則會產生胞值為3的情況,並非為1。 此情況之解決方式係首先使胞體轉變為完全之設定狀 45 200820257200820257rw2957PA is based on Vb2 vs. Vm) and two negative voltages. The resulting voltage is represented by Vhigh, Vlow, -Vhigh and -Vlow. The absolute value of the voltage supplied depends on the characteristics of the memory component, including the materials and dimensions used. In the embodiment - the high voltage value of 3.3 volts and the low voltage value of 1.5 volts are proved to be ... effective values. The first process is a general reset process in which the first process drives the programmable resistive random access memory device to a reset state such that the cell value is zero. This procedure is shown in Table 3 below. _ 3rd table all reset transition process V2-Vl = ~Yhigh component state cell body action component state cell body Μι 1 3 | Vl | &gt;VsET 0 0 M2 1 1 V2 1 &gt;Yreset 0 Appropriate for this transition process The voltage value is shown as -Vhigh, so that the absolute value of the voltage drop of each VlRRAM and V2RRAM exceeds the reset value. When both of the resistive random access memory components are reset, the total cell value is 0 〇 The reset condition is the starting point for all further operations. Since the unpredictable results may occur in the intermediate state of the transition, it is desirable to reduce the unit to reset condition as the first step of any state change operation. On the contrary, the cell value is 3, as shown in the fourth table below. Transition Process 44 of Table 4 0-3 200820257 Erlang Myanmar TW2957PA Vb2*'Vbl==Vhigh Component Status Cell Body Action Element State Cell Μι 0 0 Vi&gt;Yset 1 3 M2 0 V2&gt;VsET 1 Here, The supply voltage Vhigh is such that the two components are sufficient to cause a voltage drop above VSET. When both components are in the set state, the cell value is 11 or 3 of the two bits. The process of generating a memory cell value of 2 is shown in Table 5 below. Conversion process of Table 5-2 (Yb2-Vbl)-Vlow Element state Cell body action element state cell body 0 0 0 Vl&gt;VsET 1 2 M2 0 V2&lt;VsET 0 In this setting, the voltage drop Vi is greater than required The value of the set condition is generated, so Rl is set as the setting, but the voltage drop V2 is less than the value required for setting, so that the component is reset. The Ri system is set and the R2 system is reset, and the cell value is the result of 01 or 2 of the two bits. The cell value yielding 1 is shown in Table 6 below. The process of achieving a value of 1 is more difficult than the other embodiments. Intuitive observation shows that when both components start to be reset, a voltage sufficient to cause V2 to generate a set state must be provided, and V! is also the same. This will result in a cytometry of 3, not 1. The solution to this situation is to first transform the cell body into a complete setting. 45 200820257

二违_弧.TW2957PA 悲,如上述之第3表所示。接著,由胞值係3開始,提供 一電壓-V_以產生一重設狀態於Ri但非匕,使得胞值產生 二位元01或1。 第6表3-1之轉變過程 (Yb2-Vbl)=-Vibw 元件狀態 胞體 動作 元件狀態 胞體 Μι 1 〇 J1H&gt;Vset 0 M2 1 0 v2 丨 &lt;vSET 1 1 第14圖繪示雙穩態可程式電阻式隨機存取記憶體 600由邏輯狀態「〇〇」程式化至其他三個邏輯狀態「〇1」、 「10」及「11」之流程圖14〇〇。步驟1410中,雙穩態可 程式電阻式隨機存取記憶體600係邏輯狀態「00」。假若 雙穩態可程式電阻式隨機存取記憶體600係由邏輯狀態 「00」程式化至邏輯狀態「01」,首先,於步驟H20中, 雙穩態可程式電阻式隨機存取記憶體600由邏輯狀態「00」 轉變至邏輯狀態「11」。步驟1430中,第二程式化之步驟 係由邏輯狀態「11」轉變至邏輯狀態「〇1」。步驟1420中, 雙穩態可程式電阻式隨機存取記憶體600係由邏輯狀態 「00」程式化至邏輯狀態「11」。第一位元線電壓Vm 1320 及第二位元線電壓Vb2 1330之電壓差係等同於一高電壓 Vh_,以數學表示式表示係Vbl_Vb2=Vhigh。第二可程式電阻 式隨機存取記憶電壓V2RMM 1314較電壓Vset大,且第一可 程式電阻式隨機存取記憶電壓VimM1313較電壓VSET大。步 46 200820257Second violation _ arc. TW2957PA sad, as shown in the third table above. Next, starting from the cell value system 3, a voltage -V_ is supplied to generate a reset state of Ri but not 匕 so that the cell value produces two bits 01 or 1. Transition process of Table 6 3-1 (Yb2-Vbl) = - Vibw Component state Cell body action element state Cell body Μ 1 1 〇 J1H &gt; Vset 0 M2 1 0 v2 丨 &lt;vSET 1 1 Figure 14 shows bistable The programmable resistive random access memory 600 is programmed from the logic state "〇〇" to the flow chart 14 of the other three logic states "〇1", "10" and "11". In step 1410, the bistable programmable resistive random access memory 600 is in a logic state "00". If the bistable programmable resistive random access memory 600 is programmed from the logic state "00" to the logic state "01", first, in step H20, the bistable programmable resistive random access memory 600 Transition from logic state "00" to logic state "11". In step 1430, the second stylized step transitions from a logic state "11" to a logic state "〇1". In step 1420, the bistable programmable resistive random access memory 600 is programmed from a logic state "00" to a logic state "11". The voltage difference between the first bit line voltage Vm 1320 and the second bit line voltage Vb2 1330 is equivalent to a high voltage Vh_, which is represented by a mathematical expression Vbl_Vb2 = Vhigh. The second programmable resistive random access memory voltage V2RMM 1314 is larger than the voltage Vset, and the first programmable resistive random access memory voltage VimM1313 is larger than the voltage VSET. Step 46 200820257

—•迁綱m . TW2957PA 驟1430中,雙穩態可程式電阻式隨機存取記憶體6〇〇係 由邏輯狀態「11」程式化至邏輯狀態「〇1」。第一位元線 電麼Vbi 1320及弟一位元線電壓Vb2 1330之電麼差係等同 、 於一負的低電壓-Vuw,以數學表示式表示係Vb2-Vbl=-v^。 - 第二可程式電阻式隨機存取記憶電壓VmM 1314之絕對值 較電壓Vreset之絕對值小,且第一可程式電阻式隨機存取記 憶電壓Virram1313之絕對值較電壓vRESST之絕對值大。 步驟1440中,雙穩態可程式電阻式隨機存取記憶體 _ 600係由邏輯狀態「〇〇」程式化至邏輯狀態「1〇」。第„位 元線電壓Vbi 1320及弟^一位元線電壓Vb2 1330之電壓差传 等同於一低電壓V-,以數學表示式表示係Vb2—Vbl=:Vh5w。第 二可程式電阻式隨機存取記憶電壓VmAM 1314較電壓ySET 小,且第一可程式電阻式隨機存取記憶電壓V1RRAm1 313較電 壓Vset大。步驟1450中,雙穩態可程式電阻式隨機存取記 憶體600係由邏輯狀態「00」程式化至邏輯狀態「11」。 第一位元線電壓Vw 1320及第二位元線電壓Vm 1330之電 ⑩ 壓差係等同於一高電壓Vhigh,以數學表示式表示係 Vbi-Vb2 = Vh帥。第二可程式電阻式隨機存取記憶電壓V2RRAM 1314較電壓Vsn大,且第一可程式電阻式隨機存取記憶電 壓Vi_1313較電壓Vset大。 第15圖繪示雙穩態可程式電阻式隨機存取記憶體 600由邏輯狀態「01」程式化至其他三個邏輯狀態「〇〇」、 「10」及「11」之流程圖15 0 〇。步驟1510中,雙穩態可 程式電阻式隨機存取記憶體6〇0係邏輯狀態「〇1」。步驟 47 200820257—• 迁目 m . TW2957PA In step 1430, the bistable programmable resistive random access memory 6 is programmed from the logic state "11" to the logic state "〇1". The first bit line is Vbi 1320 and the other one line voltage Vb2 1330 is equal to the difference, and a negative low voltage -Vuw is expressed in mathematical expression Vb2-Vbl=-v^. - The absolute value of the second programmable resistive random access memory voltage VmM 1314 is smaller than the absolute value of the voltage Vreset, and the absolute value of the first programmable resistive random access memory voltage Virram 1313 is larger than the absolute value of the voltage vRESST. In step 1440, the bistable programmable resistive random access memory _600 is programmed from a logic state "〇〇" to a logic state "1". The voltage difference between the first bit line voltage Vbi 1320 and the one bit line voltage Vb2 1330 is equivalent to a low voltage V-, expressed in mathematical expressions Vb2 - Vbl =: Vh5w. The second programmable resistance is random The access memory voltage VmAM 1314 is smaller than the voltage ySET, and the first programmable resistive random access memory voltage V1RRAm1 313 is larger than the voltage Vset. In step 1450, the bistable programmable resistive random access memory 600 is logic The state "00" is programmed to the logic state "11". The voltage difference between the first bit line voltage Vw 1320 and the second bit line voltage Vm 1330 is equivalent to a high voltage Vhigh, which is represented by a mathematical expression Vbi-Vb2 = Vh handsome. The second programmable resistive random access memory voltage V2RRAM 1314 is larger than the voltage Vsn, and the first programmable resistive random access memory voltage Vi_1313 is larger than the voltage Vset. Figure 15 is a flow chart showing the bistable programmable resistive random access memory 600 programmed from the logic state "01" to the other three logic states "〇〇", "10" and "11". . In step 1510, the bistable programmable resistive random access memory 6 〇 0 is in a logic state "〇1". Step 47 200820257

三達編號:TW2957PA 1520中,雙穩態可程式電阻式隨機存取記憶體6〇〇係由邏 輯狀態「01」程式化至邏輯狀態「〇 〇」。第一位元線電壓 Vbi 1320及弟一位元線電壓Vb2 1330之電壓差係等同於一 負的高電壓-Vhuh,以數學表示式表示係Vm-Vb2&gt;Vhigh。第 二可程式電阻式隨機存取記憶電壓y2RRM 1314之絕對值較 電壓Vmn大,且第一可程式電阻式隨機存取記憶電壓 Virram1313之絕對值較電壓VRESET大。 φ 假若雙穩態可程式電阻式隨機存取記憶體600係由 邏輯狀態「01」程式化至邏輯狀態「10」,雙穩態可程式 電阻式隨機存取記憶體600係首先於步驟1530中由邏輯 狀態「〇1」程式化至邏輯狀態「00」。接著於步驟1540中:, 由邏輯狀態「〇〇」程式化至邏輯狀態「10」。步驟1530中, 雙穩態可程式電阻式隨機存取記憶體600係由邏輯狀態 「〇1」程式化至邏輯狀態「00」。第一位元線電壓^ 132〇 及第二位元線電壓Vm 1330之電壓差係等同於一負的高電 馨 壓,以數學表示式表示係Vbl-VbF-Vhigh。第二可程式 電阻式隨機存取記憶電壓VmAM 1314之絕對值較電壓yRESST 大,且第一可程式電阻式隨機存取記憶電壓Vi_1313之絕 對值較電壓Vreset大。步驟1540中,雙穩態可程式電阻式 隨機存取記憶體600係由邏輯狀態「00」程式化至邏輯狀 ——恶「10」。第一位元線電壓Vbi 1320及第二位元線電壓 ' 1330之電壓差係等同於一低電壓Vlc&gt;w,以數學表示式表示 係Vm-Vb^ViQW。第二可程式電阻式隨機存取記憶電壓 1314較電壓VREsn大,且第一可程式電阻式隨機存取記憶 48 200820257In the TW2957PA 1520, the bistable programmable resistive random access memory 6 is programmed from the logic state "01" to the logic state "〇 〇". The voltage difference between the first bit line voltage Vbi 1320 and the bit line voltage Vb2 1330 is equivalent to a negative high voltage -Vhuh, which is expressed in mathematical expression Vm-Vb2&gt;Vhigh. The absolute value of the second programmable resistive random access memory voltage y2RRM 1314 is larger than the voltage Vmn, and the absolute value of the first programmable resistive random access memory voltage Virram 1313 is larger than the voltage VRESET. If the bistable programmable resistive random access memory 600 is programmed from the logic state "01" to the logic state "10", the bistable programmable resistive random access memory 600 is first in step 1530. Stylized from logic state "〇1" to logic state "00". Next, in step 1540:, the logic state "〇〇" is programmed to the logic state "10". In step 1530, the bistable programmable resistive random access memory 600 is programmed from a logic state "〇1" to a logic state "00". The voltage difference between the first bit line voltage ^ 132 〇 and the second bit line voltage Vm 1330 is equivalent to a negative high singular voltage, expressed in mathematical expressions Vbl-VbF-Vhigh. The absolute value of the second programmable resistive random access memory voltage VmAM 1314 is larger than the voltage yRESST, and the absolute value of the first programmable resistive random access memory voltage Vi_1313 is larger than the voltage Vreset. In step 1540, the bistable programmable resist random access memory 600 is programmed from the logic state "00" to a logical state - evil "10". The voltage difference between the first bit line voltage Vbi 1320 and the second bit line voltage '1330 is equivalent to a low voltage Vlc&gt;w, expressed in mathematical expressions Vm-Vb^ViQW. The second programmable resistive random access memory voltage 1314 is larger than the voltage VREsn, and the first programmable resistive random access memory 48 200820257

二遂緬筑.TW2957PA 電壓Vl_13l3較電壓V讓T小。 步驟1550中,雙穩態可程式電阻式隨機存取記憶體 600係由邏輯狀態「01」程式化至邏輯狀態「11」。第一位 ’ 元線電壓Vw 1320及第二位元線電壓Vt&gt;2 1330之電壓差係 等同於一高電壓Vhw,以數學表示式表示係為 VM-Vb2 = Vhigh。第二可程式電阻式隨機存取記憶電壓y2_ 1314較電壓Vset大,且第一可程式電阻式隨機存取記憶電 壓ViRRAMl313較電壓VsET大。 _ 第16圖繪示雙穩態可程式電阻式隨機存取記憶體 600由邏輯狀態「1〇」程式化至其他三個邏輯狀態「〇〇」、 「01」及「11」之流程圖1600。步驟1610中,雙穩態可 程式電阻式隨機存取記憶體600係邏輯狀態「10」。步驟 1620中,雙穩態可程式電阻式隨機存取記憶體6〇〇係由邏 輯狀態「10」程式化至邏輯狀態「〇〇」。第一位元線電壓 Vw 1320及第二位元線電壓vb2 1330之電壓差係等同於一 負的高電壓-Vhigh,以數學表示式表示係vbl—vb2—Vhigh。第 一可程式電阻式隨機存取記憶電壓V2RRAM 1 3 1 4之絕對值較 電壓Vmn大,且第一可程式電阻式隨機存取記憶電壓 ViRRAm1313 電屋 Vrese了大。 假若雙穩態可程式電阻式隨機存取記憶體600係由 邏輯狀態「10」程式化至邏輯狀態「01」,雙穩態可程式 • 電阻式隨機存取記憶體600係首先於步驟1630中由邏輯 狀態「10」程式化至邏輯狀態「11」。且接著於步驟164〇 中,由邏輯狀態「11」程式化至邏輯狀態「01」。步驟1630 49 200820257Second 遂 Burmese. TW2957PA voltage Vl_13l3 is smaller than voltage V to make T small. In step 1550, the bistable programmable resistive random access memory 600 is programmed from a logic state "01" to a logic state "11". The voltage difference between the first 'yuan line voltage Vw 1320 and the second bit line voltage Vt&gt; 2 1330 is equivalent to a high voltage Vhw, expressed as a mathematical expression VM-Vb2 = Vhigh. The second programmable resistive random access memory voltage y2_ 1314 is larger than the voltage Vset, and the first programmable resistive random access memory voltage ViRRAM1313 is larger than the voltage VsET. _ Figure 16 shows a flow chart 1600 of the bistable programmable resistive random access memory 600 programmed from the logic state "1" to the other three logic states "〇〇", "01" and "11" . In step 1610, the bistable programmable resistive random access memory 600 is in a logic state "10". In step 1620, the bistable programmable resistive random access memory 6 is programmed from the logic state "10" to the logic state "〇〇". The voltage difference between the first bit line voltage Vw 1320 and the second bit line voltage vb2 1330 is equivalent to a negative high voltage -Vhigh, expressed in mathematical expressions vbl - vb2 - Vhigh. The absolute value of the first programmable resistive random access memory voltage V2RRAM 1 3 1 4 is larger than the voltage Vmn, and the first programmable resistive random access memory voltage ViRRAm1313 has a large Vrese. If the bistable programmable resistive random access memory 600 is programmed from the logic state "10" to the logic state "01", the bistable programmable resistive random access memory 600 is first in step 1630. Stylized from logic state "10" to logic state "11". Then, in step 164, the logic state "11" is programmed to the logic state "01". Step 1630 49 200820257

二連編航· TW2957PA 中,雙穩態可程式電阻式隨機存取記憶體6 態「10」程式化至邏輯狀態「11」。第-位元線電壓v= 及第二位元線電壓Vb2 1330之電壓差係 认In the TW2957PA, the bistable programmable resistive random access memory 6 state "10" is programmed to the logic state "11". The voltage difference between the first bit line voltage v= and the second bit line voltage Vb2 1330 is recognized

Vhish,以數學表示式表示係為Vbi_Vb2=Vhigh。:回宅壓 禾—式音* 阻式Be機存取§己丨思電壓V2RRAM 1314較電壓v i V SET y 3 繁 可程式電阻式隨機存取記憶電壓Virram1313較電壓%大 步驟1640中’雙穩態可程式電阻式隨機存取記^°Vhish, expressed in mathematical expression, is Vbi_Vb2=Vhigh. :回宅压禾-式音* Resistive Be machine access § 丨思思V2RRAM 1314 voltage vi V SET y 3 versatile programmable random access memory voltage Virram1313 is greater than voltage % step 1640 in 'stable State programmable resistance random access

係由邏輯狀態「11」程式化至邏輯狀態「1〇 。^ _ , 」。弟一位元 線電壓Vm 1320及第二位元線電壓vb2 133〇之電屋差係等 同於一負的低電壓-viC)W ’以數學表示式一 ' 〆 、衣不係It is programmed from the logic state "11" to the logic state "1〇.^ _ , ". The electric line difference between the first line voltage Vm 1320 and the second bit line voltage vb2 133〇 is equal to a negative low voltage -viC)W ’ mathematical expression of the formula ' 〆 , clothing is not

Vbi-Vb2=-Vi〇w。第二可程式電阻式隨機存取記憶電壓v 1314之絕對值較電壓Vreset之絕對值大,且第一可輕气電 阻式隨機存取記憶電壓VimMl313之絕對值較電屋^服打之 絕對值小。 步驟1650中,雙穩態可程式電阻式隨機存取記憶體 6〇〇係由邏輯狀態「10」程式化至邏輯狀態「11」。第—位 元線電壓Vw 1320及第二位元線電壓Vm 1330之電壓差係 等同於一高電壓Vhigh,以數學表示式表示係為 Vbl〜Vb2 = Vhigh。第二可程式電阻式隨機存取記憶電壓V2_ 1314較電壓VSET大,且第一可程式電阻式隨機存取記憶電 壓Vi_1313較電壓Vset大。 第17圖繪示雙穩態可程式電阻式隨機存取記憶體 600由邏輯狀態「11」程式化至其他三個邏輯狀態「〇〇」、 「〇1」及「10」之流程圖Π00。步驟1710中,雙穩態可 50 200820257Vbi-Vb2=-Vi〇w. The absolute value of the second programmable resistance random access memory voltage v 1314 is larger than the absolute value of the voltage Vreset, and the absolute value of the first light gas resistive random access memory voltage VimMl313 is greater than the absolute value of the electric house. small. In step 1650, the bistable programmable resistive random access memory 6 is programmed from a logic state "10" to a logic state "11". The voltage difference between the first bit line voltage Vw 1320 and the second bit line voltage Vm 1330 is equivalent to a high voltage Vhigh, expressed as a mathematical expression Vbl~Vb2 = Vhigh. The second programmable resistive random access memory voltage V2_1314 is larger than the voltage VSET, and the first programmable resistive random access memory voltage Vi_1313 is larger than the voltage Vset. Figure 17 is a flow chart Π 00 of the bistable programmable resistive random access memory 600 programmed from the logic state "11" to the other three logic states "〇〇", "〇1" and "10". In step 1710, the bistable state can be 50 200820257

1W2957PA 程式電阻式隨機存取記憶體600係邏輯狀態 1720中,雙穩態可程式電阻式隨機存取記憶體= 輯狀態「11」程式化至邏輯狀態「00 。第一 '峻 雷厭1W2957PA Program Resistive Random Access Memory 600 Logic State 1720, bistable programmable resistive random access memory = set state "11" is programmed to logic state "00. The first 'thinking

Vbi 1320及第一位元線電廢Vb2 1330之電壓差係等门於 負的尚電廢-Vhigh,以數學表示式表示係為〜〜; 第二可程式電阻式隨機存取記憶電壓V2rram 13l4b^gh^h° 較電麼v_* ’且第一可程式電阻式隨機存取記ς電二Vbi 1320 and the first bit line electric waste Vb2 1330 voltage difference is equal to the negative electric waste -Vhigh, expressed in mathematical expression is ~ ~; The second programmable resistance random access memory voltage V2rram 13l4b ^gh^h° is more electric than v_* 'and the first programmable resistance random access memory

VirramI313之絕對值較電壓vRESET大。 ^ 步驟1730中,雙穩態可程式電阻式隨機存取記憶體 600係由邏輯狀態「11」程式化至邏輯狀態「〇1」。第一位 元線電壓Vm 1320及第二位元線電壓Vb2 133〇之電壓差係 等同於一負的低電壓,以數學表示式表示係為 Vbl - Vb2 = -Vi〇W。第一可程式電阻式隨機存取記憶電壓 1314之纟&amp;對值較電壓Vreset之絕對值大,且第^一可程式電 阻式記憶電壓V1RRAM之絕對值較電壓VRmT之絕對值小。 假若雙穩態可程式電阻式隨機存取記憶體6〇〇係由 邏輯狀態「11」程式化至邏輯狀態「10」,雙穩態可程式 . . * ' · 電阻式隨機存取兄憶體600係首先於步驟1740中由邏輯 狀態「11」轉變至邏輯狀態「00」。且於步驟1750中,由 邏輯狀態「⑼」第二程式化至邏輯狀態「1〇」。步驟1740 中,雙穩態可程式電阻式隨機存取記憶體6〇〇係由邏輯狀 態「11」程式化轉變至邏輯狀態「〇〇」。第一位元線電壓 Vbi 1320及第二位元線電壓Vb2 1330之電壓差係等同於一 負的高電壓以數學表示式表示係Vbl-Vf_Vhigh。第 51 200820257The absolute value of Virram I313 is larger than the voltage vRESET. ^ In step 1730, the bistable programmable resistive random access memory 600 is programmed from a logic state "11" to a logic state "〇1". The voltage difference between the first bit line voltage Vm 1320 and the second bit line voltage Vb2 133 系 is equivalent to a negative low voltage, expressed as a mathematical expression Vbl - Vb2 = -Vi〇W. The first programmable resistive random access memory voltage 1314 has a larger absolute value than the voltage Vreset, and the absolute value of the first programmable resistive memory voltage V1RRAM is smaller than the absolute value of the voltage VRmT. If the bistable programmable resistive random access memory 6 is programmed from the logic state "11" to the logic state "10", the bistable program can be programmed. * ' · Resistive random access sibling The 600 system first transitions from a logic state "11" to a logic state "00" in step 1740. In step 1750, the logic state "(9)" is second programmed to the logic state "1". In step 1740, the bistable programmable resistive random access memory 6 is programmed from a logic state "11" to a logic state "〇〇". The voltage difference between the first bit line voltage Vbi 1320 and the second bit line voltage Vb2 1330 is equivalent to a negative high voltage in a mathematical expression for the system Vbl-Vf_Vhigh. The 51st 200820257

一肺m · TW2957PA 二可程式電阻式隨機存取記憶電壓V2RRAM 1314之絕對值較 電壓大,且第一可程式電阻式隨機存取記憶電壓 VlRRAIiil313之絕對值較電壓VrESET大。步驟1750中,雙穩態 ^ 可程式電阻式隨機存取記憶體600係由邏輯狀態「00」程 ' 式化至邏輯狀態「10」。第一位元線電壓Vh 1320及第二 位元線電壓Vm 1330之電壓差係等同於一低電壓Vh,以 數學表示式表示係VM-Vb2 = Vlow。第二可程式電阻式隨機存 取記憶電壓V2RRAM 1314較電壓VsET大,且第一可程式電阻 _ 式隨機存取記憶電壓Vi_l 313較電壓VseH、。 關於相變化記憶裝置之製造、材料組成、使用及操作 之其他資訊,可參照美國專利編號n/155067之πΤΜη Film Fuse Phase Change RAM and Manufacturing Method”(2005年6月17曰)。此專利之應用係屬於受讓 人,且包括於此提出之參考文獻内。 綜上所述,雖然本發明已以較佳實施例揭露如上,然 _ 其並非用以限定本發明。本發明所屬技術領域中具有通常 知識者,在不脫離本發明之精神和範圍内,當可作各種之 更動與/閏飾。因此,本發明之保護範圍當視後附之申請專 利範圍所界定者為準。 52 200820257The absolute value of the first programmable resistance random access memory voltage VlRRAIi 313 is larger than the voltage VrESET. In step 1750, the bistable ^ programmable resistive random access memory 600 is programmed from a logic state "00" to a logic state "10". The voltage difference between the first bit line voltage Vh 1320 and the second bit line voltage Vm 1330 is equivalent to a low voltage Vh, expressed in mathematical expression for the system VM-Vb2 = Vlow. The second programmable resistance random access memory voltage V2RRAM 1314 is larger than the voltage VsET, and the first programmable resistance _ random access memory voltage Vi_l 313 is lower than the voltage VseH. For additional information on the fabrication, material composition, use, and operation of phase change memory devices, reference is made to US Patent No. n/155,067, π ΤΜ Film Fuse Phase Change RAM and Manufacturing Method (June 17, 2005). The present invention is incorporated by reference to the assignee of the present disclosure. The scope of the invention is defined by the scope of the appended claims.

二達編號:TW2957PA 【圖式簡單說明】 第1圖繪示與根據本發明之雙穩態可程式電阻式隨 機存取記憶陣列之簡圖。 第2圖繪示根據本發明實施例之RRAM結構之積體電 • 路的簡化方塊圖。 第3圖繪示根據本發明之製造雙穩態可程式電阻式 隨機存取記憶體之參考步驟的簡化流程圖,雙穩態可程式 電阻式隨機存取記憶體係具有以沈積及微影技術製造之 _ 兩可程式電阻式隨機存取記憶層。 第4圖繪示與本發明一致之製造雙穩態可程式電阻 式隨機存取記憶體之下一步驟的流程圖,此步驟係執行蝕 刻製程至具有沈積之介電側壁子的第二導電層,介電侧壁 子係與第一導電構件及第一可程式電阻式隨機存取記憶 構件相鄰。 第5圖繪示與本發明一致之製造雙穩態可程式電阻 式隨機存取記憶層之下一步驟的流程圖,此步驟係為蝕刻 通過第二可程式電阻式隨機存取記憶層。 第6圖繪示根據本發明之雙穩態可程式電阻式隨機 存取記憶體之可程式電阻式記憶胞結構之簡化流程圖。 第7圖繪示根據本發明之具有一可程式電阻式隨機 . 存取記憶層之雙穩態可程式電阻式隨機存取記憶體的電 流-電壓曲線範例圖。 * 第8A圖繪示根據本發明之具有兩個皆處於重置狀態 之可程式電阻式隨機存取記憶構件的雙穩態可程式電阻 53 200820257Erda Number: TW2957PA [Simplified Schematic] FIG. 1 is a schematic diagram of a bistable programmable resistance random access memory array according to the present invention. 2 is a simplified block diagram of an integrated circuit of an RRAM structure in accordance with an embodiment of the present invention. 3 is a simplified flow chart showing a reference step of fabricating a bistable programmable resistive random access memory according to the present invention. The bistable programmable resistive random access memory system is fabricated by deposition and lithography. _ Two programmable resistive random access memory layers. 4 is a flow chart showing a step of manufacturing a bistable programmable resistive random access memory in accordance with the present invention, the step of performing an etching process to a second conductive layer having deposited dielectric sidewalls. The dielectric sidewall sub-system is adjacent to the first conductive member and the first programmable resistive random access memory device. Figure 5 is a flow chart showing a step of fabricating a bistable programmable resistive random access memory layer in accordance with the present invention, the step of etching through a second programmable resistive random access memory layer. Figure 6 is a simplified flow chart showing the programmable resistive memory cell structure of the bistable programmable resistive random access memory according to the present invention. Figure 7 is a diagram showing an example of current-voltage curves of a bistable programmable resistive random access memory having a programmable resistive random access memory layer in accordance with the present invention. * FIG. 8A is a diagram showing a bistable programmable resistor having two programmable resistive random access memory members in a reset state according to the present invention 53 200820257

二连麵筑.TW2957PA 式隨機存取記憶體之簡化流程圖。 第8B圖繪示與根據本發明之具有兩個處於設定狀態 及重置狀態之可程式電阻式隨機存取記憶構件的雙穩態 ‘ 可程式電阻式隨機存取記憶體之簡化流程圖。 .第8C圖繪示根據本發明之具有兩個處於設定狀態及 重置狀態之可程式電阻式隨機存取記憶構件的雙穩態可 程式電阻式隨機存取記憶體之簡化流程圖。 第8D圖繪示根據本發明之具有兩個處於設定狀態之 • 可程式電阻式隨機存取記憶構件的雙穩態可程式電阻式 隨機存取記憶體之簡化流程圖。 第9圖繪示根據本發明之具有兩個相互串聯之可程 式電阻式隨機存取記憶構件之雙穩態可程式電阻式隨機 存取記憶體以提供四個邏輯狀態的四個邏輯狀態之數學 關係式。 第10圖繪示根據本發明之具有多個相互串聯之可程 式電阻式隨機存取記憶構件使每個記憶胞提供多個位元 之雙穩態可程式電阻式隨機存取記憶體的製程流程圖。 第11圖繪示根據本發明包括第一、第二可程式電阻 式隨機存取記憶層之蝕刻步驟及介電侧壁子之沈積步驟 之雙穩態可程式電阻式隨機存取記憶體的步驟流程圖。 第12圖繪示根據本發明,於移除介電側壁子後,具 有多個可程式電阻式隨機存取記憶構件及導電構件之雙 穩態可程式電阻式隨機存取記憶體的製程流程圖。 第13圖繪示根據本發明之提供電壓以程式化具有兩 54 200820257A simplified flow chart of the TW2957PA type random access memory. Figure 8B is a simplified flow diagram of a bistable 'programmable resistive random access memory with a programmable resistive random access memory device in a set state and a reset state in accordance with the present invention. Figure 8C is a simplified flow diagram of a bistable programmable resistive random access memory having two programmable resistive random access memory devices in a set state and a reset state in accordance with the present invention. Figure 8D is a simplified flow diagram of a bistable programmable resistive random access memory having two programmable resistive random access memory components in a set state in accordance with the present invention. Figure 9 is a diagram showing the mathematics of four logic states of four logic states provided by two bistable programmable resistive random access memories having two programmable resistors in series with each other in accordance with the present invention. Relationship. FIG. 10 is a flowchart showing a process flow of a bistable programmable resistive random access memory having a plurality of bit-programmable random access memory modules connected in series to each other to provide a plurality of bits in each memory cell according to the present invention. Figure. 11 is a diagram showing steps of a bistable programmable resistive random access memory including an etching step of a first and a second programmable resistive random access memory layer and a deposition step of a dielectric sidewall according to the present invention. flow chart. 12 is a flow chart showing a process of bistable programmable resistive random access memory having a plurality of programmable resistive random access memory members and conductive members after removing dielectric sidewalls according to the present invention. . Figure 13 is a diagram showing the supply voltage according to the present invention to have two 54 200820257

三達編號:TW2957PA 個可程式電阻式隨機存取記憶構件之雙穩態可程式電阻 式隨機存取記憶體的電路圖。 … 第丨4圖繪示根據本發明之雙穩態可程式電阻式隨機 存取5己彳思體由邏輯狀態「〇〇」程式化至其他三個邏輯狀態 厂 01」'「10」及「11」之流程圖。 第15圖繪示根據本發明之雙穩態可程式電阻式隨機 存取記憶體由邏輯狀態「01」程式化至其他三個邏輯狀態 _ 「00」、「1〇」及「11」之流程圖。 第圖繪示根據本發明之雙穩態可程式電阻式隨機 1取1 2 3 4己憶體由邏輯狀態「10」程式化至其他三個邏輯狀態 ^〇」、「〇1」及「u」之流程圖。 第17圖緣示根據本發明之雙穩態可程式電阻式隨機 t取圮憶體由邏輯狀態「11」程式化至其他三個邏輯狀態 ⑽」、「01」及「10」之流程圖。 55 1 【主要元件符號說明】 2 10〇、260 :記憶陣列 123、124、262 :字元線 128 :共源線 132 133 ·下部電極構件 3 ▲ 134 :上部電極構件 4 - 135 :侧壁接腳記憶胞 141、142、264 :位元線 U5、146、266 :區塊 200820257Sanda number: TW2957PA Circuit diagram of a bistable programmable resistive random access memory of a programmable resistive random access memory device. ... Figure 4 shows that the bistable programmable resistance random access 5 according to the present invention is programmed from the logic state "〇〇" to the other three logic state factories 01"'"10" and " Flow chart of 11". Figure 15 is a flowchart showing the flow of the bistable programmable resistive random access memory according to the present invention from the logic state "01" to the other three logic states _ "00", "1" and "11" Figure. The figure shows that the bistable programmable resistance type random 1 1 2 3 4 memory is programmed from the logic state "10" to the other three logic states ^ 〇 ", 〇 1" and "u" according to the present invention. Flow chart. Figure 17 is a flow chart showing the bistable programmable resistance type random access memory according to the present invention programmed from the logic state "11" to the other three logic states (10), "01" and "10". 55 1 [Description of main component symbols] 2 10〇, 260: Memory array 123, 124, 262: Word line 128: Common source line 132 133 • Lower electrode member 3 ▲ 134: Upper electrode member 4 - 135: Side wall connection Foot memory cells 141, 142, 264: bit lines U5, 146, 266: block 200820257

二達編號:TW2957PA 150、151、152、153 :電晶體 200、275 :積體電路 261 :列解碼器 263:接腳解碼器 ‘ 265 :匯流排 267:資料匯排流 268:偏壓排列供應電壓 269 :偏壓排列狀態機Erda number: TW2957PA 150, 151, 152, 153: transistor 200, 275: integrated circuit 261: column decoder 263: pin decoder '265: bus bar 267: data sink drain 268: bias arrangement supply Voltage 269: biased state machine

• 271 :資料輸入線 272:資料輸出線 274 :其他電路 300:雙穩態RRAM 310 :第一可程式電阻式隨機存取記憶層 312 :第一導電層 320 :第二可程式電阻式隨機存取記憶層 322:第二導電層 • 330 :遮罩 410 :第一可程式電阻式隨機存取記憶構件 412、420 :第一導電構件 430 :第一介電侧壁子 500 :雙穩態可程式電阻式隨機存取記憶體 510 :第二可程式電阻式隨機存取記憶構件 512、520 :第二導電構件 600 :雙穩態可程式電阻式隨機存取記憶體 56 200820257 建緬魷· TW2957PA 610 : 底層 620 : 接觸孔 630 : 中間介電層 700 : 電流-電壓曲線範例圖 710 : 電壓 720 : 電流 730 : 重置狀態 740 : 設定狀態 750 : 讀取電壓 752 : 虛線 810、820、830、850、860、870、880 :電阻 910 :邏輯狀態「0 920 :邏輯狀態「1 930 :邏輯狀態「2 940 :邏輯狀態「3 1000 1012 1010 1020 1022 1030 1032• 271: data input line 272: data output line 274: other circuit 300: bistable RRAM 310: first programmable resistive random access memory layer 312: first conductive layer 320: second programmable resistive random memory Taking memory layer 322: second conductive layer • 330: mask 410: first programmable resistive random access memory member 412, 420: first conductive member 430: first dielectric sidewall sub-500: bistable Program resistive random access memory 510: second programmable resistive random access memory component 512, 520: second conductive member 600: bistable programmable resistive random access memory 56 200820257 建建鱿· TW2957PA 610: bottom layer 620: contact hole 630: intermediate dielectric layer 700: current-voltage curve example diagram 710: voltage 720: current 730: reset state 740: set state 750: read voltage 752: dashed line 810, 820, 830, 850, 860, 870, 880: Resistor 910: Logic state "0 920: Logic state "1 930: Logic state "2 940: Logic state "3 1000 1012 1010 1020 1022 1030 1032

雙穩態可程式電阻式隨機存取記憶體 第三導電層 第三可程式電阻式隨機存取記憶層 第(η -1)1 h可程式電阻式隨機存取記憶層 第(n-l)th導電層 第nth可程式電阻式隨機存取記憶層 第nth導電層 1040 :第nth導電構件 1110 :第二介電侧壁子 57 200820257Bi-stable programmable resistive random access memory third conductive layer third programmable resistive random access memory layer (η -1) 1 h programmable resistive random access memory layer (nl)th conductive Layer nth programmable resistive random access memory layer nth conductive layer 1040: nth conductive member 1110: second dielectric sidewall 57 200820257

一班麵狐· TW2957PA 1200 :雙穩態可程式電阻式隨機存取記憶體 1210 :第三可程式電阻式隨機存取記憶構件 1220:第三導電構件 ‘ 1300:電路系統 - 1310 :第一電阻器 1312:第二電阻器 1313 :第一可程式電阻式隨機存取記憶電壓 1314 :第二可程式電阻式隨機存取記憶電壓 • 1316 ··第三可程式電阻式隨機存取記憶電壓 1320 :第一位元線電壓 1330 :第二位元線電壓 1340 :第一位元線 1342 :第二位元線 1400、1500、1600、1700 :流程圖 58A class of face fox TW2957PA 1200: bistable programmable resistance random access memory 1210: third programmable resistance random access memory component 1220: third conductive member '1300: circuit system - 1310: first resistance 1312: second resistor 1313: first programmable resistive random access memory voltage 1314: second programmable resistive random access memory voltage • 1316 · third programmable resistive random access memory voltage 1320: First bit line voltage 1330: second bit line voltage 1340: first bit line 1342: second bit line 1400, 1500, 1600, 1700: flowchart 58

Claims (1)

,TW2957PA 200820257 十、申請專利範圍: 1· 一種記憶裝置,包括: 一第一導電構件(first conductive member),係位 於一第一可程式電阻式隨機存取記憶構件(first programmable resistance random access memory member) 上,該第一可程式電阻式隨機存取記憶構件具有一表示一 第一電阻值之面積,該第一導電構件及該第一可程式電阻 式隨機存取記憶構件皆具有數個侧邊;及TW2957PA 200820257 X. Patent Application Range: 1. A memory device comprising: a first conductive member located in a first programmable resistance random access memory member (first programmable resistance random access memory member) The first programmable resistive random access memory device has an area representing a first resistance value, and the first conductive member and the first programmable resistive random access memory member each have a plurality of sides ;and 一第二導電構件(second conductive member),係位 於一第二可程式電阻式隨機存取記憶構件(sec〇nd programmable resistance random access memory member) 上,該第一可程式電阻式隨機存取記憶構件係位於該第二 =¾構件上,該第一可程式電阻式隨機存取記憶構件與該 第二可程式電阻式隨機存取記憶構件係為串聯,該第二可 程式電阻式隨機存取記憶構件具有一表示一第二電阻值 之面積’該第二可程式電阻式_存取記憶構件所具有之 面積大於該第-可程式電阻式隨機存取記憶構件所具有 之面積。 2.如申請專利範圍第丨項所述之裝置,其中該第二 可程,阻式隨機存取記憶構件之面積大“為該第一 可程式電阻式隨機存取記憶構件之面積之兩倍。 3承如申請專利範圍第μ所述之襄置:其中該記摘 衣置更包括—第一介電侧壁子(fim spacer),係置放於該第—導電構件及該第—可程式電陣 59 200820257 rW2957PA 式隨機存取記憶構件之侧邊上’且該第一介電侧壁子亦置 放於該第二導電構件之一頂面上,其中該第二可程式電阻 式隨機存取記憶構件之面積係為該第_介電彳則;子t - 度的函數。 ‘ 4.如申請專利範圍第1項所述之裝置,苴中該記 裝置更包括一第三導電構件(thini ^ndueii = flieinbei·),係位於一第三可程式電阻式隨機存取記憶構件 (third programmable resistance random access memory 籲 member)上,該第二可程式電阻式隨機存取記憶構件係位 於該第三導電構件上,該第二可程式電阻式隨機存取記憶 構件與該第三可程式電阻式隨機存取記憶構件係為串 聯,該第二可程式電阻式隨機存取記憶構件具有一表示一 第三電阻值之面積,該第三可程式電阻式隨機存取記憶構 件所具有之面積大於該第二可程式電阻式隨機存取記憶 構件所具有之面積。 5.如申請專利範圍第4項所述之裝置,其中該記憶 裝置,包括-第二介電侧壁子,係置放於該第二導電構件 及該第一可私式電阻式隨機存取記憶構件之侧邊上,其中 該第三可程式電阻式隨機存取記憶構件之面積係為該第 二介電侧壁子之厚度的函數。 - 6· *申請專利範圍第1項所述之裝置,其中該第一 ^第二可程式電阻式隨機存取記憶構件提供兩邏輯狀 態(log二state) ’該第—可程式電阻式隨機存取記憶構 件與該第二可程式電阻式隨機存取記憶構件之串聯組合 200820257 二達編就.TW2957PA 係提供四種邏輯狀態。 7. 如申請專利範圍第4項所述之裝置,其中該第一、 該第二及該第三可程式電阻式隨機存取記憶構件各自提 ‘ 供兩邏輯狀態,該第一可程式電阻式隨機存取記憶構件與 ' 該第二可程式電阻式隨機存取記憶構件及該第三可程式 電阻式隨機存取記憶構件之串聯組合係提供八種邏輯狀 態。 8. 如申請專利範圍第1項所述之裝置,其中該第一 _ 可程式電阻式隨機存取記憶構件與該第二可程式電阻式 隨機存取記憶構件係具有相同之材料特徵。 9. 如申請專利範圍第1項所述之裝置,其中該策一 可程式電阻式隨機存取記憶構件與該第二可程式電阻式 隨機存取記憶構件係具有不同之材料特徵。 10. 如申請專利範圍第1項所述之裝置,其中該第一 可程式電阻式隨機存取記憶構件與該第二可程式電阻式 隨機存取記憶構件係具有相同之厚度。 β 11.如申請專利範圍第1項所述之裝置,其中該第一 可程式電阻式隨機存取記憶構件與該第二可程式電阻式 隨機存取記憶構件係具有不同之厚度。 12.如申請專利範圍第1項所述之裝置,其中該第一 可程式電阻式隨機存取記憶構件具有一位於1丽至200醒 間之厚度。 V 13.如申請專利範圍第1項所述之裝置,其中該第一 可程式電阻式隨機存取記憶構件包括一金屬氧化物,該金 61 TW2957PA 200820257 屬氧化物係為氧化鎳(Ni〇x)、氧化鈦(Ti〇x)、氧化鶴(w〇x)、 氧化鋁(Al〇x)、氧化錘(Zr〇x)、氡化鋅(211〇〇或氧化銅 (CuOx) ° 14·如申請專利範圍第1項所述之裝置,其中該第一 可程式電阻式隨機存取記憶構件包括一巨磁阻 magnetoresistance)材料,該巨磁阻材料係為鳍—鈣—錳氧 化物(PrCaMn〇3)或镨-鋰—錳氧化物(prSrMn〇3)。 15·如申請專利範圍第1項所述之裝置,其中該第一 可程式電阻式隨機存取記憶構件包括一三元化合物 (three-e 1 ement c⑽pound),該三元化合物係為摻雜絡(Cr) 之認-欽氧化物(Cr-doped SrTi〇3)或摻雜銳(㈣)之錄一鈦 氧化物(Nb-doped SrTiCh)。 16. 如申請專利範圍第1項所述之裝置,其中該第一 可程式電阻式隨機存取記憶構件包括一聚合物(p〇lymer) 係為銅-四氰基對醌二甲烧錯合物 (Cu-TCNQ(tetracyquinodimethane))或 TCNQ/苯基 C61 丁 酸曱脂(phenyl C61 -butyric acid methyl ester,PCBM)。 17. 如申請專利範圍第1項所述之裝置,其中該第一 可程式電阻式隨機存取記憶構件係選自一群材料之兩種 或兩種以上材料之組合’該群材料包括錯(Ge)、録(Sb)、 碲(Te)、石西(Se)、銦(In)、鈦(Ti)、鎵(Ga)、秘(Bi)、錫 (Sn)、銅(Cu)、le(Pd)、錯(Pb)、銀(Ag)、硫(S)、金(Au) 或其組合。 62 20082^7·通 18·如申請專利範圍第1項所述之裝置,其中該第二 可程式電阻式隨機存取記憶構件包括一金屬氧化物,該金 屬氧化物係為氧化鎳(Ni0x)、氧化鈦(Ti0x)、氧化鎢(w0x)、 氧化鋁(A10x)、氧化錘(Zr〇x)、氧化鋅(Zn〇x)或氧化銅 (CuOx) 〇 19·如申請專利範圍第〗項所述之裝置,其中該第二 可耘式電阻式隨機存取記憶構件包括一巨磁阻材料係為 譜-舞-猛氧化物(PrCaMn〇3)或譜―銘—猛氧化物(PrSrMn〇3)。 20·如申請專利範圍第1項所述之裝置,其中該第二 可程式電阻式隨機存取記憶構件包括一三元化合物,該三 π化合物係為摻雜Cr之SrTi〇3或摻雜Nb之srTi〇3。 21·如申請專利範圍第丨項所述之裝置,其中該第二 可私式電阻式_存取記憶構件包括—聚合物,該聚合物 係為 Cu-TCNQ 或 TCNQ/PCBM。 22·如申請專利範圍第1項所述之裝置,其中該第二 可私式%阻式隧機存取記憶構件係選自一群材料之兩種 或兩種以上材料之組合,該群材料包括Ge、%、&amp;、^、 ΙΠ ^ Tl ^ ^ M ' Sn /Cu ^ Pd ^ Pb ^ Ag ^ S ^ Au 〇 23·如申明專利範圍第1項所述之裝置,其中該第一 ¥電構件與該第二導電構件係具有相同之厚度。 …24·如申凊專利範圍第】項所述之襞置,其中該第一 導電構件與該第二導電構件係具有不同之厚度。 、。Μ·如申凊專利範圍第1項所述之裝置,其中該第一 導電構件具有-位於1 nm至200 nm間之厚度。 63 IW2957PA 200820257 26.如申請專利範圍第1項所述之裝置,其中該第一 導電構件包括氮化鈦(TiN)、TiN/W/TiN、TiN/Ti/Al/TiN 或 n+複晶石夕(n+ polysilicon)。 • 27.如申請專利範圍第1項所述之裝置,其中該記憶 - 裝置更包括一底層,係沈積於該第二可程式電阻式隨機存 取記憶構件下,以與一接觸孔(plug)連接。 28. —種用以製造一可程式電阻式隨機存取記憶體 之方法,包括: ⑩ 形成一第一導電層於一第一可程式電阻式隨機存取 記憶層上; 形成一第二導電層於一第二可程式電阻式隨機存取 1記憶層上,該第一可程式電阻式隨機存取記憶層係位於該 第二導電層上,該第一可程式電阻式隨機存取記憶層與該 第二可程式電阻式隨機存取記憶層係為串聯; 置放一遮罩於該第一導電層之一頂面上,以蝕刻該第 一導電層及該第一可程式電阻式隨機存取記憶層之侧 ® 邊,而形成一第一導電構件及一第一可程式電阻式隨機存 取記憶構件,該第一可程式電阻式隨機存取記憶構件具有 一代表一第一電阻值之面積;及 形成一第一介電侧壁子於該第一導電構件及該第一 可程式電阻:式隨機存取記憶構件之侧邊上,以及該第該第 二導電層之一頂面上·, ' 其中,該第二可程式電阻式隨機存取記憶層具有一面 積係為該第一介電側壁子之厚度之函數。 64 200820257 二适編狐 * iW2957PA 29. 如申請專利範圍第28項所述之方法,其中該第 二導電層係為該第一介電侧壁子之該厚度之函數。 30. 如申請專利範圍第28項所述之方法,其中該遮 u 罩(mask)包括一光阻(photo resist)或一硬遮罩(hard ^ mask),該硬遮罩包括氧化矽(SiOx)、氮化矽(SiNx)或氮氧 化矽(SiOxNy)。 31. 如申請專利範圍第30項所述之方法,其中假若 該遮罩係為該光阻,該光阻則應用以氯(C12)為基料或以硼 着 酸(HB2)為基料之活性離子钱刻機(reactive ion etcher) 進行修整。 32. 如申請專利範圍第30項所述之方法,其中假若 該遮罩係為該硬遮罩,該硬遮罩則係藉由濕修整(wet trimming)移除。 33. 如申請專利範圍第32項所述之方法,其中假若 該硬遮罩包括SiOx,該硬遮罩則係藉由稀釋氫氟酸(di lute HF)修整。 w 34.如申請專利範圍第32項所述之方法,其中假若 該硬遮罩包括材料SiNx,該硬遮罩則藉由熱磷酸(hot phosphoric acid)修整。 35.如申請專利範圍第28項所述之方法,其中該方 法更包括: 形成一第三導電層於一第三可程式電阻式隨機存取 記憶層上,該第二可程式電阻式隨機存取記憶層係位於該 第三導電層上,該第二可程式電阻式隨機存取記憶層與該 65 200820257 —* TW2957PA 第三可程式電阻式隨機存取今 36.如申請專利範圍‘:^係為串聯。 法更包括: 項所述之方法,其中該方 置放一第二介電側壁子於該箓一 可程式電阻式隨機存取記憶構件X 一導電構件及該第二 侧壁子亦置放於該第三導電層之^侧邊上,且該第二介電 蝕刻該第二導電層及該%^項。面上’·及 記憶層之側邊,以形成一第二導:可輕式電阻式隨機存取 阻式隨機存取記憶構件,該第二,,件及一第二可程式電 憶構件具有一代表一第二電阻可長式電阻式隨機存取記 0 7 »丄 值之面精。 37·如申請專利範圍第祁 、、 三導電層及該第三可程式電阻式^斤述之方法,其中該第 之一面積係為該第二介電側辟/隨機存取記憶層所具有 .38·如申請專利範圍第28項:二5。 該第一導電層及令亥篦 和 、斤述之方法,其中蝕刻 側邊之料,包式電阻式隨機存取記憶層之 電層之:邊姓及刻步驟係藉由-第-化學物蝕刻該第-導 、苐儀刻步驟係藉由一第二化學物兹刻該第一可 程式電阻柄機縣記歸之㈣。 一斤39·、如申請專利範圍第38項所述之方法,其中假若 該第一導電層係為TiN,且該第一方輕式電阻式隨機存取 記k層係為Al〇x,則該第一蝕刻资驊包括一以ch為基料 之蝕刻步驟,該第二蝕刻步驟包括/以BC13為基料之韻刻 步驟。 66a second conductive member is disposed on a second programmable resistive random access memory member, the first programmable resistive random access memory member Positioned on the second component, the first programmable resistive random access memory component and the second programmable resistive random access memory component are connected in series, and the second programmable resistive random access memory The member has an area representing a second resistance value. The second programmable resistance type access memory member has an area larger than an area of the first programmable resistance random access memory device. 2. The device of claim 2, wherein the second programmable, resistive random access memory component has a large area "double the area of the first programmable resistive random access memory component" 3. The device of claim 19, wherein the picking device further comprises a first dielectric spacer (fim spacer) disposed on the first conductive member and the first a circuit array 59 200820257 rW2957PA type random access memory member on the side of the 'and the first dielectric sidewall is also placed on the top surface of the second conductive member, wherein the second programmable resistance random The area of the access memory member is a function of the first dielectric state; the sub-t-degree. 4. The device of claim 1, wherein the device further comprises a third conductive member. (thini ^ndueii = flieinbei·) is located on a third programmable resistance random access memory member (third programmable resistance random access memory member), the second programmable resistive random access memory component is located On the third conductive member, The second programmable resistive random access memory component is connected in series with the third programmable resistive random access memory component, and the second programmable resistive random access memory component has a third resistance value. The area of the third programmable resistive random access memory device is greater than the area of the second programmable resistive random access memory device. 5. The device of claim 4, The memory device includes a second dielectric sidewall disposed on a side of the second conductive member and the first flexible resistive random access memory device, wherein the third programmable resistor The area of the random access memory device is a function of the thickness of the second dielectric sidewall. The apparatus of claim 1, wherein the first and second programmable resistance are random The access memory component provides two logic states (log two states) 'the serial combination of the first programmable resistive random access memory component and the second programmable resistive random access memory component 200820257 The TW2957PA system provides four logic states. 7. The device of claim 4, wherein the first, the second, and the third programmable resistance random access memory components respectively provide a logic state, the first programmable resistive random access memory component and the serial combination of the second programmable resistive random access memory component and the third programmable resistive random access memory component provide eight logics 8. The device of claim 1, wherein the first programmable resistive random access memory component and the second programmable resistive random access memory component have the same material characteristics. 9. The device of claim 1, wherein the programmable resistive random access memory component and the second programmable resistive random access memory component have different material characteristics. 10. The device of claim 1, wherein the first programmable resistive random access memory component and the second programmable resistive random access memory component have the same thickness. The device of claim 1, wherein the first programmable resistive random access memory component and the second programmable resistive random access memory component have different thicknesses. 12. The device of claim 1, wherein the first programmable resistive random access memory component has a thickness between 1 and 200 awake. The device of claim 1, wherein the first programmable resistive random access memory device comprises a metal oxide, and the gold 61 TW2957PA 200820257 is an oxide system of nickel oxide (Ni〇x) ), titanium oxide (Ti〇x), oxidized crane (w〇x), alumina (Al〇x), oxidized hammer (Zr〇x), zinc telluride (211〇〇 or copper oxide (CuOx) ° 14· The device of claim 1, wherein the first programmable resistive random access memory device comprises a giant magnetoresistance material, the giant magnetoresistive material being fin-calcium-manganese oxide (PrCaMn) 〇 3) or 镨-lithium-manganese oxide (prSrMn〇3). The device of claim 1, wherein the first programmable resistive random access memory member comprises a three-element compound (three-e 1 ement c (10) pound), the ternary compound being doped Cr-doped SrTi〇3 (Cr) or Nb-doped SrTiCh doped with sharp ((4)). 16. The device of claim 1, wherein the first programmable resistive random access memory device comprises a polymer (p〇lymer) which is a copper-tetracyano-p-butadiene (Cu-TCNQ (tetracyquinodimethane)) or TCNQ/phenyl C61-butyric acid methyl ester (PCBM). 17. The device of claim 1, wherein the first programmable resistive random access memory component is selected from the group consisting of two or more materials of a group of materials. ), recorded (Sb), bismuth (Te), sillimanite (Se), indium (In), titanium (Ti), gallium (Ga), secret (Bi), tin (Sn), copper (Cu), le ( Pd), (Pb), silver (Ag), sulfur (S), gold (Au) or a combination thereof. The apparatus of claim 1, wherein the second programmable resistive random access memory member comprises a metal oxide, the metal oxide is nickel oxide (Ni0x) , titanium oxide (Ti0x), tungsten oxide (w0x), alumina (A10x), oxidized hammer (Zr〇x), zinc oxide (Zn〇x) or copper oxide (CuOx) 〇19· as claimed in the scope of the article The device, wherein the second sturdy resistive random access memory member comprises a giant magnetoresistive material system as a spectrum-dance-dye oxide (PrCaMn〇3) or a spectrum-Ming-Meng oxide (PrSrMn〇) 3). The device of claim 1, wherein the second programmable resistive random access memory device comprises a ternary compound which is Cr-doped SrTi〇3 or doped Nb srTi〇3. The device of claim 2, wherein the second private resistive access memory member comprises a polymer, the polymer being Cu-TCNQ or TCNQ/PCBM. The device of claim 1, wherein the second private-type refractory tunnel access memory component is selected from the group consisting of two or more materials of a group of materials, the group material comprising Ge, %, &amp;, ^, ΙΠ ^ Tl ^ ^ M ' Sn / Cu ^ Pd ^ Pb ^ Ag ^ S ^ Au 〇 23 · The device according to claim 1, wherein the first electricity The member has the same thickness as the second conductive member. The device of claim 7, wherein the first conductive member and the second conductive member have different thicknesses. ,. The device of claim 1, wherein the first conductive member has a thickness of between 1 nm and 200 nm. The apparatus of claim 1, wherein the first conductive member comprises titanium nitride (TiN), TiN/W/TiN, TiN/Ti/Al/TiN or n+ double crystal slab (n+ polysilicon). The device of claim 1, wherein the memory device further includes a bottom layer deposited under the second programmable resistive random access memory device to form a plug connection. 28. A method for fabricating a programmable resistive random access memory, comprising: 10 forming a first conductive layer on a first programmable resistive random access memory layer; forming a second conductive layer The first programmable resistive random access memory layer is located on the second conductive layer on the second programmable resistive random access memory layer, and the first programmable resistive random access memory layer is The second programmable resistive random access memory layer is connected in series; a mask is placed on a top surface of the first conductive layer to etch the first conductive layer and the first programmable resistive memory Taking a side of the memory layer to form a first conductive member and a first programmable resistive random access memory member, the first programmable resistive random access memory member has a first resistance value And forming a first dielectric sidewall on a side of the first conductive member and the first programmable resistor: and a top surface of the second conductive layer ·, 'where the second can Resistive Random Access Memory function layer having a thickness that one surface of the product line of the first dielectric sidewall spacers. The method of claim 28, wherein the second conductive layer is a function of the thickness of the first dielectric sidewall. 30. The method of claim 28, wherein the mask comprises a photo resist or a hard mask, the hard mask comprising yttrium oxide (SiOx) ), tantalum nitride (SiNx) or bismuth oxynitride (SiOxNy). 31. The method of claim 30, wherein if the mask is the photoresist, the photoresist is based on chlorine (C12) or based on boronic acid (HB2). The reactive ion etcher is trimmed. 32. The method of claim 30, wherein if the mask is the hard mask, the hard mask is removed by wet trimming. 33. The method of claim 32, wherein the hard mask is trimmed by distilling hydrofluoric acid (di lute HF) if the hard mask comprises SiOx. The method of claim 32, wherein if the hard mask comprises the material SiNx, the hard mask is trimmed by hot phosphoric acid. 35. The method of claim 28, wherein the method further comprises: forming a third conductive layer on a third programmable resistive random access memory layer, the second programmable resistive memory Taking a memory layer on the third conductive layer, the second programmable resistive random access memory layer and the 65 200820257 —* TW2957PA third programmable resistance random access. 36. as claimed in the patent scope:: ^ It is connected in series. The method further includes the method of: wherein the side places a second dielectric sidewall on the first programmable resistive random access memory member X, a conductive member and the second sidewall are also disposed On the side of the third conductive layer, the second dielectric etches the second conductive layer and the %. a side of the '· and the memory layer to form a second guide: a lightly resistive random access resistive random access memory member, the second, the second and the second programmable electronic component have One represents a second resistor and can be long-resistance random access memory. 37. The method of claim 3, the third conductive layer, and the third programmable resistance type, wherein the first area is the second dielectric side/random access memory layer .38·If you apply for patent scope item 28: 2. The first conductive layer and the method of etching the side, wherein the material of the side is etched, and the electrical layer of the packaged resistive random access memory layer: the edge surname and the engraving step are by the -th chemical Etching the first-guided, sputum-engraving step is performed by a second chemical etched by the first programmable resistor controller (4). The method of claim 38, wherein if the first conductive layer is TiN and the first side light resistive random access k layer is Al〇x, The first etch etch includes a etch step based on ch, the second etch step comprising/being a BC13 based rudder step. 66
TW95139864A 2006-10-27 2006-10-27 Programmable resistance random access memory and method of forming the same TWI322993B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95139864A TWI322993B (en) 2006-10-27 2006-10-27 Programmable resistance random access memory and method of forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95139864A TWI322993B (en) 2006-10-27 2006-10-27 Programmable resistance random access memory and method of forming the same

Publications (2)

Publication Number Publication Date
TW200820257A true TW200820257A (en) 2008-05-01
TWI322993B TWI322993B (en) 2010-04-01

Family

ID=44770106

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95139864A TWI322993B (en) 2006-10-27 2006-10-27 Programmable resistance random access memory and method of forming the same

Country Status (1)

Country Link
TW (1) TWI322993B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI451608B (en) * 2011-05-17 2014-09-01 Ind Tech Res Inst Resistive random-access memory cell and the fabricating method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI463641B (en) 2012-02-24 2014-12-01 Nat Applied Res Laboratories Ultra-high density resistive memory structure and its manufacturing method
US9041129B2 (en) 2012-02-24 2015-05-26 National Applied Research Laboratories Semiconductor memory storage array device and method for fabricating the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI451608B (en) * 2011-05-17 2014-09-01 Ind Tech Res Inst Resistive random-access memory cell and the fabricating method thereof

Also Published As

Publication number Publication date
TWI322993B (en) 2010-04-01

Similar Documents

Publication Publication Date Title
US7388771B2 (en) Methods of operating a bistable resistance random access memory with multiple memory layers and multilevel memory states
TWI354327B (en) Method for manufacturing a narrow structure on an
TWI387103B (en) Fully self-aligned pore-type memory cell having diode access device
US9236568B2 (en) Sidewall thin film electrode with self-aligned top electrode and programmable resistance memory
US7785920B2 (en) Method for making a pillar-type phase change memory element
US8315088B2 (en) Multiple phase change materials in an integrated circuit for system on a chip application
US8062833B2 (en) Chalcogenide layer etching method
US7560337B2 (en) Programmable resistive RAM and manufacturing method
US7616472B2 (en) Method and apparatus for non-volatile multi-bit memory
US7816661B2 (en) Air cell thermal isolation for a memory array formed of a programmable resistive material
TWI313044B (en) Method for manufacturing a resistor random access memory with reduced active area and reduced contact areas
US20080094885A1 (en) Bistable Resistance Random Access Memory Structures with Multiple Memory Layers and Multilevel Memory States
CN100563042C (en) Manufacture method with resistive ram of autoregistration air gap insulator
TW200947695A (en) Memory cell having a buried phase change region and method for fabricating the same
TW200820422A (en) Memory cell device with circumferentially-extending memory element
CN101071753A (en) Method for manufacturing a narrow structure on an integrated circuit
TW200834587A (en) Memory cell device and programming methods
TW200847420A (en) 4F2 self align side wall active phase change memory
TW201015763A (en) Dielectric mesh isolated phase change structure for phase change memory
US8344347B2 (en) Multi-layer electrode structure
US20080247224A1 (en) Phase Change Memory Bridge Cell with Diode Isolation Device
TW200820257A (en) Bistable resistance random access memory structures with multiple memory layers and multilevel memory states
TW201015713A (en) Dielectric-sandwiched pillar memory device
TWI310237B (en) Methods of operating a bistable resistance random access memory with multiple memory layers and multilevel memory states
TWI357635B (en) Resistor random access memory cell with reduced ac